WO2008081957A1 - Method for producing metal-containing sulfur-introduced titanium oxide and metal-containing sulfur-introduced titanium oxide - Google Patents

Method for producing metal-containing sulfur-introduced titanium oxide and metal-containing sulfur-introduced titanium oxide Download PDF

Info

Publication number
WO2008081957A1
WO2008081957A1 PCT/JP2007/075344 JP2007075344W WO2008081957A1 WO 2008081957 A1 WO2008081957 A1 WO 2008081957A1 JP 2007075344 W JP2007075344 W JP 2007075344W WO 2008081957 A1 WO2008081957 A1 WO 2008081957A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
sulfur
titanium oxide
titanium salt
compound
Prior art date
Application number
PCT/JP2007/075344
Other languages
French (fr)
Japanese (ja)
Inventor
Daisuke Taki
Taichi Tanaka
Original Assignee
Toho Titanium Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Titanium Co., Ltd filed Critical Toho Titanium Co., Ltd
Publication of WO2008081957A1 publication Critical patent/WO2008081957A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0536Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • B01J27/043Sulfides with iron group metals or platinum group metals
    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/007Titanium sulfides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide (Fe2O3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/12Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/20Sulfiding
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area

Definitions

  • the present invention relates to a method for producing a metal-containing sulfur-introduced titanium oxide used for a visible light photocatalyst, a photosensitized solar cell, or the like.
  • Titanium oxide powder has long been used as a white pigment. In recent years, it has been used as an ultraviolet shielding material for cosmetics, photocatalysts, capacitors, thermistors, or sintered materials used in electronic materials such as raw materials for barium titanate. Recently, research and development of application of dye-sensitized titanium oxide to electrodes, etc. has been made. In particular, in recent years, the use as a photocatalyst has been actively attempted, and the use development of the photocatalytic reaction has been actively conducted. This titanium oxide photocatalyst has a wide variety of uses. Generation of hydrogen by water decomposition, synthesis of organic compounds using redox reaction, exhaust gas treatment, air purification, deodorization, sterilization, antibacterial, water treatment, lighting. Numerous applications have been developed, such as preventing contamination of equipment.
  • titanium oxide shows a large refractive index in the wavelength region near visible light, light absorption hardly occurs in the visible light region.
  • most of the spectrum of fluorescent lamps is 400 nm or more, so it is not possible to develop sufficient characteristics as a photocatalyst. In view of this, the development of more highly active photocatalysts that can exhibit catalytic activity in the visible light region is underway.
  • Patent Document 1 JP 2004-1 4 30 3 2 (Claims)
  • Patent Document 2 JP 2006-8 20 7 1 (Claims) According to the production method described in the examples of JP-A-2006-6-2071, there is a problem in that sulfur-containing titanium oxide having sufficient photocatalytic activity cannot be obtained.
  • an object of the present invention is to describe a metal-containing sulfur-introduced titanium oxide (hereinafter referred to as a metal-containing sulfur-introduced titanium oxide) having a high photocatalytic activity under visible light. ) And a metal-containing sulfur-introduced titanium oxide. Disclosure of the invention
  • the present inventors have obtained a metal-containing sulfur-introduced titanium oxide depending on the time when the metal compound used for introducing the metal is contained in the titanium oxide.
  • a difference in the photocatalytic activity of the titanium salt Specifically, before calcining the mixture of the hydrolyzate or alkali neutralized product of the titanium salt and the sulfur compound, the hydrolyzed product or alkali neutralized product of the titanium salt. It has been found that a metal-containing sulfur-introduced titanium oxide having high photocatalytic activity can be obtained by previously containing a metal in the product, and the present invention has been completed.
  • the present invention (1) has a firing step of firing a mixture of a metal-containing raw material titanium oxide and a sulfur compound to obtain a metal-containing sulfur-introduced titanium oxide, and the metal content in the metal-containing material titanium oxide is , With respect to 10 parts by mass of the metal-containing raw material titanium oxide when converted to ⁇ io 2 , the metal atom is 0.03 to 0.15 parts by mass,
  • the present invention provides a method for producing a metal-containing sulfur-introduced titanium oxide characterized by the following.
  • the present invention (2) includes a baking raw material mixture preparation step for obtaining a mixture of a metal-containing titanium salt hydrolyzed Z alkali neutralized product and a sulfur compound, the metal-containing titanium salt hydrolyzed Z alkali neutralized product and the sulfur Calcining a mixture with the compound to obtain a metal-containing sulfur-introduced titanium oxide, and
  • the calcining raw material mixture preparation step comprises hydrolyzing Z-al strength re-neutralization treatment to prepare a slurry containing titanium salt hydrolyzed Z-al strength neutralized product by hydrolyzing or neutralizing titanium salt.
  • the amount of the metal compound added in the stirring and mixing treatment of the metal compound is from 0.03 to 0.5 parts by weight as a metal atom with respect to 100 parts by mass of the titanium salt hydrolyzed neutralized product when converted to Ti 0 2 . 0.15 in an amount of 5 parts by mass,
  • the present invention provides a method for producing a metal-containing sulfur-introduced titanium oxide characterized by the following.
  • the present invention (3) includes a baking raw material mixture preparation step for obtaining a mixture of a heat-treated product of a metal-containing titanium salt hydrolyzed Z alkali neutralized product and a sulfur compound, Calcining the mixture of the heat-treated product and the sulfur compound to obtain a metal-containing sulfur-introduced titanium oxide, and
  • the calcination raw material mixture preparation step comprises hydrolyzing / alkali neutralizing treatment to prepare a slurry containing titanium salt hydrolyzed / al strength neutralized product by hydrolyzing or neutralizing titanium salt.
  • Metal compound is added to slurry containing salt hydrolysis / alkali neutralized product and stirred to obtain metal-containing titanium salt hydrolyzed metal compound stirring and mixing treatment to obtain alkali-neutralized product, and the metal-containing titanium salt in alkali Heat treatment of a Japanese product to obtain a heat-treated product, and
  • the amount of the metal compound added in the stirring and mixing treatment of the metal compound is from 0.03 to 0.5 parts by weight as the metal atom with respect to 100 parts by mass of the hydrolyzed alkali salt of the titanium salt when converted to Ti 2 O 2 . 0.1 5 parts by mass, and mixing the sulfur compound between before the hydrolysis and alkali neutralization treatment and after the heat treatment,
  • the present invention provides a method for producing metal-containing sulfur-introduced titanium oxide.
  • the present invention (4) includes a calcining raw material mixture preparation step for obtaining a mixture of a metal-containing titanium salt hydrolyzed / alkali neutralized product and a sulfur compound, Calcining the mixture with the sulfur compound to obtain a metal-containing sulfur-introduced titanium oxide, and
  • hydrolysis and alkali neutralization treatment is performed by hydrolyzing or neutralizing titanium salt in the presence of a metal compound to obtain a metal-containing titanium salt hydrolyzed neutralized product.
  • a sulfur-containing compound is mixed between before the hydrolysis Z-al strength re-neutralization treatment and after the hydrolysis Z-al strength re-neutralization treatment.
  • a method for producing titanium oxide is provided.
  • the present invention (5) includes a baking raw material mixture preparation step for obtaining a mixture of a heat-treated product of metal-containing titanium salt hydrolyzed / alkali neutralized product and a sulfur compound, and a mixture of the heat-treated product and the sulfur compound. Firing step to obtain metal-containing sulfur-introduced titanium oxide, and
  • the firing raw material mixture preparation step comprises hydrolyzing or alkali neutralizing the titanium salt to obtain a titanium salt hydrolyzed Z alkali neutralized product. Heat-treating the metal-containing titanium salt hydrolysis alkali neutralized product to obtain a heat-treated product, and
  • the amount of the metal compound be present in the titanium salt hydrolysis / Al Chikarari neutralization process, with respect to the titanium salt 1 0 0 parts by weight when T i O 2 converted, 0.0 3 metal atom 0.15 in an amount of 5 parts by mass,
  • the present invention provides a method for producing metal-containing sulfur-introduced titanium oxide.
  • the present invention (6) includes a firing raw material mixture preparation step for obtaining a mixture of a metal-containing titanium salt hydrolyzed Z alkali neutralized product and a sulfur compound, Calcining the mixture with the sulfur compound to obtain a metal-containing sulfur-introduced titanium oxide, and
  • the firing raw material mixture preparation step includes hydrolyzing or neutralizing the titanium salt in the presence of a metal compound to hydrolyze the metal-containing titanium salt. Hydrolysis to prepare re-neutralized product-containing slurry Z metal strength neutralization treatment and metal-containing titanium salt hydrolysis Add alkali metal neutralized product-containing slurry, stir, metal-containing titanium A salt hydrolysis Z-alkali neutralized product to obtain a metal compound stirring and mixing process,
  • the total amount of the metal compound to be present in the hydrolysis and Z-force neutralization treatment and the metal compound to be added in the metal compound stirring and mixing treatment is 100 parts by mass with respect to 100 parts by mass of ⁇ io 2
  • the amount of metal atoms is 0.03 to 0.15 parts by mass
  • the present invention provides a method for producing metal-containing sulfur-introduced titanium oxide.
  • the present invention (7) includes a calcined raw material mixture preparation step for obtaining a mixture of a heat-treated product of metal-containing titanium salt hydrolyzed / alkali neutralized product and a sulfur compound, and a mixture of the heat-treated product and the sulfur compound. Firing step to obtain metal-containing sulfur-introduced titanium oxide, and
  • the baking raw material mixture preparation step hydrolyzes or neutralizes the titanium salt to hydrolyze the metal-containing titanium salt hydrolyzed Z-alloy neutralized product-containing slurry.
  • Metal alkali-containing neutralization treatment, metal-containing titanium salt hydrolysis, alkali-neutralized product-containing slurry, a metal compound is added and stirred to obtain a metal-containing titanium salt hydrolysis alkali-neutralized metal compound stirring and mixing treatment, Hydrolysis of the metal-containing titanium salt, heat treatment of an alkali neutral to obtain a heat-treated product, and the metal compound and the metal to be present in the hydrolysis / al force neutralization treatment.
  • the total amount of the metal compound added in compound stirring and mixing process, with respect to the titanium salt 1 0 0 parts by weight when T i O 2 converted, 0 as the metal atom. 0 3-0. 1 5 parts by mass
  • the present invention provides a method for producing metal-containing sulfur-introduced titanium oxide.
  • the present invention (8) has a metal content of 0.03 to 0.15 mass%, a sulfur content of 0.02 to 0.1 mass%, and a specific surface area of 60 to 1 2 Om 2 Zg, the main component of the crystal structure is anatase-type titanium oxide, sulfur atoms in the titanium oxide are introduced into the titanium oxide titanium site, and the metal is contained on the surface and inside of the titanium oxide, A metal-containing sulfur-introduced titanium oxide is provided.
  • transduction titanium oxide can be provided.
  • the method for producing a metal-containing sulfur-introduced titanium oxide of the present invention includes a firing step of firing a mixture of a metal-containing raw material titanium oxide and a sulfur compound to obtain a metal-containing sulfur-introduced titanium oxide, and the metal-containing raw material oxidation wherein the metal content in the titanium and with respect to the metal-containing raw material titanium oxide 1 00 parts by weight when T i O 2 converted, 0. metal atom 0 3 to 0.1 5 it is parts by weight, the This is a method for producing a metal-containing sulfur-introduced titanium oxide.
  • the mass of the metal atom with respect to 100 parts by mass when converted to Ti 0 2 is preferably 0.03 to 0.15 parts by mass, particularly preferably 0.05 to 0.
  • the mixing amount is 1 part by mass.
  • the method for producing a metal-containing sulfur-introduced titanium oxide according to the first aspect of the present invention comprises a metal-containing titanium salt hydrolyzed alkali neutralized product A and a sulfur compound. Firing raw material mixture preparation step A to obtain a mixture A and the metal-containing titanium salt hydrolysis alkali neutralized product A and the sulfur compound A are calcined to obtain a metal-containing sulfur-introduced titanium oxide.
  • the calcination raw material mixture preparation step A is hydrolyzed or neutralized with a titanium salt to hydrolyze a titanium salt hydrolyzed Z-alkaline neutralized product A-containing slurry. And a metal compound stirring and mixing treatment A to obtain a metal-containing titanium salt hydrolyzed Z Al power re-neutralized product A by adding a metal compound to the titanium salt hydrolyzed Z alkali neutral A-containing slurry and stirring.
  • hydrolysis or alkali neutralization is also referred to as “hydrolysis alkali neutralization”.
  • the metal-containing titanium salt hydrolyzed Z-al is obtained from the titanium salt by performing the hydrolysis Z-al strength neutralization treatment A and the metal compound stirring and mixing treatment A. Power neutralized product A is obtained.
  • the hydrolysis and alkali neutralization treatment A is performed.
  • the hydrolysis and alkali neutralization treatment A hydrolyzes the titanium salt.
  • the slurry containing the hydrolyzate A of the titanium salt or the neutral force neutralized product A of the titanium salt, ie, the titanium salt hydrolyzed Decomposition Alkali neutralized product A-containing slurry is prepared.
  • titanium salt relating to the hydrolysis / alternative neutralization treatment A examples include, for example, organometallic compounds such as titanium alkoxide, titanium chlorides such as titanium tetrachloride and titanium trichloride, titanyl sulfate, and titanium sulfate. And inorganic salts such as sulfates. Of these, titanium tetrachloride, titanyl sulfate, and titanium sulfate are preferred from the viewpoint of handling and economy.
  • the titanium salt may be hydrolyzed by preparing an aqueous solution in which the titanium salt is dissolved in water and heating the aqueous solution while stirring.
  • the hydrolysis temperature at the time of hydrolysis is preferably 20 ° C. to the boiling point of an aqueous solution, particularly preferably 40 to 80 ° C.
  • the hydrolysis time for the hydrolysis is usually 5 minutes to 10 hours, preferably 10 minutes to 5 hours, and particularly preferably 10 minutes to 1 hour.
  • the titanium salt is dissolved in water.
  • the solvent for dissolving the titanium salt is not particularly limited as long as it dissolves the metal compound.
  • organic solvents such as alcohol.
  • water is preferable from the viewpoint of easy handling and economical efficiency.
  • hydrolysis is preferably performed in a low pH region because a hydrolyzate having a small particle size can be obtained. Therefore, when performing hydrolysis in the hydrolysis Z alkali neutralization treatment A, especially when the hydrolysis temperature is near the boiling point of the aqueous solution. In view of reducing the pH of the reaction system, it is preferable to install a reflux device or the like in the reaction tank to suppress the generated hydrogen chloride from being discharged out of the reaction system as hydrogen chloride gas.
  • the titanium salt hydrolyzate is generated by hydrolyzing the titanium salt, and the titanium salt hydrolyzate is dispersed in an aqueous solvent.
  • the titanium salt hydrolyzate A-containing slurry is obtained.
  • the titanium salt hydrolyzate A is an intermediate in the process of changing from titanium oxide or the titanium salt to titanium oxide.
  • the titanium salt is neutralized by preparing an aqueous solution in which the titanium salt is dissolved in water. And the titanium salt and the alkali are brought into contact with each other. More specifically, for example,
  • the alkali related to the hydrolysis and alkali neutralization treatment A is not particularly limited, and examples thereof include ammonia and aqueous ammonia. Among these, ammonia or aqueous ammonia is contained in the metal-containing sulfur-introduced titanium oxide. Since a metal component derived from Al force is not contained, it is preferable for controlling the photocatalytic activity of the metal-containing sulfur-introduced titanium oxide with visible light.
  • the alkali neutralization temperature during the alkali neutralization is preferably 10 to 80 ° C, particularly preferably 30 to 80 ° C, more preferably 4 0 ⁇ 70 ° C.
  • the addition time of the alkali at the time of alkali neutralization is usually 1 minute to 10 hours, preferably 3 minutes to 5 hours, particularly preferably 5 minutes to 1 hour.
  • the titanium salt alkali neutralized product is generated by neutralizing the titanium salt with an alkali force, and the titanium salt alkali force is neutralized in an aqueous medium.
  • the titanium salt aluminum neutralized product A-containing slurry in which the product is dispersed is obtained.
  • the titanium salt alkali neutralized product A is an intermediate in the process of changing from titanium oxide or the titanium salt to titanium oxide.
  • the metal compound stirring and mixing treatment A is performed.
  • the metal compound stirring and mixing treatment A is carried out by adding the metal compound to the titanium salt hydrolyzed Z alkali neutralized product A-containing slurry, and stirring and mixing the metal containing titanium salt hydrolyzed Z alkali neutralized product A. It is a process to obtain.
  • the titanium salt hydrolysis neutralized product A prepared in the hydrolysis Z alkali neutralization treatment A is used in the titanium salt hydrolysis alkali.
  • the metal compound is added to the slurry without separating the solvate A.
  • the metal compound related to the metal compound stirring and mixing treatment A may be any metal compound that dissolves uniformly in the slurry aqueous medium, and includes inorganic metal salts such as chlorides, sulfates and nitrates, or organic metal compounds. .
  • the metal species of the metal compound is preferably iron from the viewpoint that the photocatalytic activity of the metal-containing sulfur-introduced titanium oxide with visible light is increased.
  • the metal compound is preferably an inorganic metal salt, and is preferably an iron salt in that the photocatalytic activity of the metal-containing sulfur-introduced titanium oxide with visible light is increased.
  • Examples include iron citrate, fermented ammonium iron, ferric ammonium sulfate, ammonium citrate, iron sulfide, iron phosphate, and ammonium iron oxalate.
  • the mixing amount of the metal compound can be appropriately selected depending on the amount of metal introduced into the metal-containing sulfur-introduced titanium oxide.
  • the mass of metal atoms with respect to 100 parts by mass in terms of T i O 2 is preferably 0.03 to 0.15 parts by mass, particularly preferably 0.05 to 0.1 parts by mass. It is a mixing amount.
  • the mixing amount of the metal compound is within the above range, the photocatalytic activity of the metal-containing sulfur-introduced titanium oxide with visible light is increased.
  • the stirring and mixing temperature at the time of stirring and mixing is preferably 20 to 803 ⁇ 4: particularly preferably 50 to 7, and the stirring and mixing time is preferably 1 to 2 hours.
  • the metal compound stirring and mixing treatment A the metal compound is dissolved in the solvent in the slurry by stirring and mixing in the slurry containing the titanium salt hydrolyzed alkali neutral A, and further stirred.
  • the metal compound is hydrolyzed, neutralized or reduced in the liquid content of the titanium salt hydrolyzed Z alkali neutralized product A-containing slurry, and converted into a hydroxide or an oxide.
  • the produced hydroxide or oxide adheres to the surface of the titan salt hydrolyzed neutralized product A or is taken into the inside. Thereby, the metal-containing titanium salt hydrolyzed Z alkali neutralized product A is formed.
  • the produced metal-containing titanium salt hydrolyzed neutralized neutralized product A is separated from the slurry by a method such as filtration and centrifugation, or the solvent of the slurry is evaporated to remove the solvent, and the solid is removed.
  • Product, and after washing as necessary, drying the metal-containing titanium salt Z alkali neutralized product A is obtained.
  • the drying temperature is usually 90 to 1550 ⁇ : the drying atmosphere is in an oxidizing atmosphere such as air or oxygen gas; inert such as nitrogen gas or argon gas Under gas atmosphere; under vacuum.
  • the metal-containing titanium salt hydrolyzed Z-al strength neutralized product A from the titanium salt in the baking raw material mixture preparing step that is, the titanium salt hydrolyzed Z-alloy.
  • the sulfur compound is mixed, for example,
  • the sulfur compound is mixed with the aqueous solution of the titanium salt, or before dropping the Al force solution to the aqueous solution of the titanium salt.
  • the sulfur compound is mixed with an aqueous solution of the titanium salt.
  • (A 2) for example, when the alkaline aqueous solution is dropped into the titanium salt aqueous solution, the alkaline aqueous solution mixed with the sulfur compound is dropped into the titanium salt aqueous solution.
  • the aqueous solution of alkali By adding dropwise an aqueous solution of the titanium salt mixed with the sulfur compound, the sulfur compound is mixed while performing the hydrolysis and alkali neutralization treatment A.
  • (A 5) for example, after the metal compound stirring and mixing treatment A is performed to obtain the metal-containing titanium salt hydrolyzed Z-al strength neutralized product A, the obtained metal-containing titanium salt hydrolyzed product is obtained. It is mentioned to mix the decomposition / alternative neutralized product A and the sulfur compound.
  • (A 5 _ 1) a solution in which the sulfur compound is dissolved in the metal-containing titanium salt hydrolyzed / al strength neutralized product A (A 5-2) Hydrolysis of the metal-containing titanium salt Z alkali neutral A and the sulfur compound in a dry process, A 5-3) Hydrolysis of the metal-containing titanium salt Z neutralized product A and the sulfur compound are dispersed in a dispersion medium.
  • the method (A 5 -2) is preferable from the viewpoint of operability.
  • the mixing of the sulfur compound may be performed at any time of the above (A 1), (A 2), (A 3), (A 4), or (A 5), or of these It can be divided into two or more periods.
  • the sulfur compound according to the firing raw material mixture preparation step A (the sulfur compound according to the method for producing the metal-containing sulfur-introduced titanium oxide of the present invention, the production of the metal-containing sulfur-introduced titanium oxide according to the first to seventh aspects of the present invention)
  • sulfur-containing organic compounds sulfur-containing inorganic compounds, metal sulfides, sulfur, etc., which are solid or liquid at room temperature, and more specifically, for example, thiourea, thiourea derivatives, Examples include sulfates. Of these, thiourea is particularly preferable because it completely decomposes at 400 to 500 ° C. and does not remain in the metal-containing sulfur-introduced titanium oxide.
  • the amount of the sulfur compound is determined as follows.
  • the mass of sulfur atoms relative to 100 parts by mass when converted to 2 is preferably 5 to 1500 parts by mass, particularly preferably 10 to 50 parts by mass, and more preferably 20 to 40 parts by mass. Is the amount.
  • the sulfur content is from 0.02 to It becomes easy to obtain 0.1% by mass of metal-containing sulfur-introduced titanium oxide.
  • the mixing amount of the sulfur compound is the total amount when mixing the sulfur compound in two or more periods.
  • the metal-containing titanium salt hydrolyzed neutralized product A And a mixture A of the sulfur compound is calcined.
  • the mixture A of the metal-containing titanium salt hydrolyzed neutralized product A and the sulfur compound As a method for firing the mixture A of the metal-containing titanium salt hydrolyzed neutralized product A and the sulfur compound, the mixture A is put into a firing container and the lid is covered. At that time, if the system is completely open, the gas generated from the sulfur compound does not stay in the atmosphere, so a slight gap is left open.
  • the sulfur compound When the mixture is fired, the sulfur compound is decomposed by heat, and SO 2 gas and S 0 3 gas are generated in the decomposition process, and sulfur in these gases is converted into the metal-containing titanium.
  • Salt hydrolysis Z Incorporated into Z-force neutralized product A some of the titanium atoms in the metal-containing titanium salt hydrolyzed neutralized product A are replaced with sulfur atoms.
  • the calcining temperature when calcining the mixture of the metal-containing titanium salt hydrolyzed neutralized product A and the sulfur compound is preferably 3500 to 800, particularly preferably 3500 to 600 ° C.
  • the baking time is preferably 1 to 10 hours, particularly preferably 1 to 5 hours, and further preferably 2 to 5 hours.
  • the atmosphere at the time of firing the mixture of the metal-containing titanium salt hydrolyzed neutral alkali A and the sulfur compound is not particularly limited, and is in an oxidizing atmosphere such as in air or oxygen gas; in nitrogen gas, Under an inert atmosphere such as in argon gas; under vacuum.
  • the metal-containing titanium salt hydrolyzed alkali neutralized product A The sulfur content in the metal-containing sulfur-introduced titanium oxide varies depending on the mixing amount of the sulfur compound in the mixture A and the calcination temperature. Therefore, in the firing step A, the metal-containing titanium salt hydrolyzed Z alkali neutralized product A and the mixture A of the sulfur compound, the amount of the sulfur compound in the mixture A, and the firing temperature are appropriately selected, and the metal The sulfur content in the contained sulfur-introduced titanium oxide can be adjusted, and the sulfur content in the metal-containing sulfur-introduced titanium oxide is preferably set to be from 0.02 to 0.1% by mass. .
  • the amount of the sulfur compound in the mixture A is changed to the amount of the metal-containing titanium salt hydrolyzed alkali hydrate A
  • the amount of sulfur atoms relative to 100 parts by mass in terms of O 2 is preferably 5 to 20 parts by mass, particularly preferably 5 to 10 parts by mass. It is.
  • the amount of the sulfur compound in the mixture A is changed to the metal-containing titanium salt hydrolyzed Z Al force neutralized product A 0
  • 2-converted mass of a sulfur atom for 1 0 0 parts by weight of time is 1 0-5 0 it is preferred to a mass parts become mixed-weight, particularly preferably 2 0-4 0 weight parts to become mixed- It is to be a quantity.
  • the amount of the sulfur compound in the mixture A is changed to the metal-containing titanium salt hydrolyzed Z-al strength neutralized product A It is preferable to set the mixing amount so that the mass of sulfur atoms with respect to 100 parts by mass when converted to O 2 is 40 to 150 parts by mass, and particularly preferably 100 to 150 parts by mass.
  • the mixing amount is a part.
  • a mixture A of the metal-containing titanium salt hydrolyzed neutral alkali A and the sulfur compound is fired, and the total amount of mixing is predetermined for the obtained metal-containing sulfur-introduced titanium oxide.
  • the sulfur compound can be mixed again and fired again within a range not exceeding the mixing amount of.
  • the method for producing the metal-containing sulfur-introduced titanium oxide of the second aspect of the present invention is a metal-containing titanium salt hydrolysis alkali-neutralized product B heat treatment
  • the calcining raw material mixture preparation step B comprises hydrolysis or alkali neutralization treatment B to hydrolyze or neutralize titanium salt to prepare titanium salt hydrolyzed Z aluminum force neutralized product B-containing slurry.
  • a metal compound is added to the slurry containing the alkali salt B of the alkali salt hydrolysis B slurry and stirred to obtain a metal-containing titanium salt hydrolyzed Z-al strength neutralized product B.
  • Heat treatment B to obtain a heat-treated product B by heat-treating the titanium salt hydrolyzed no-alkali neutralized product B, and
  • the amount of the metal compound added in the metal compound stirring and mixing treatment B is 0.003 as a metal atom with respect to 100 parts by mass of the titanium salt hydrolyzed alkali neutralized product B 10 when converted to Ti 0 2 .
  • a sulfur compound is mixed between before the hydrolysis Al force re-neutralization treatment B and after the heat treatment B.
  • the titanium salt hydrolysis Z alkali neutralization treatment B and the metal compound stirring and mixing treatment B are carried out to convert the metal-containing titanium salt hydrolysis Z alcohol from the titanium salt.
  • Power neutralized product B is obtained.
  • the hydrolysis / al strength neutralization treatment B according to the baking raw material mixture preparation step B, the titanium salt, the titanium salt hydrolysis hydroalkali neutralization product B, the titanium salt hydrolysis alkali neutralization product B-containing slurry, Metal compound stirring and mixing treatment B, the metal compound, the metal-containing titanium salt hydrolyzed neutralized product B, Firing raw material mixture preparation step A according to the hydrolysis Z al force neutralization treatment A, the titanium salt, the titanium salt hydrolysis alkali neutralized product A, the titanium salt hydrolysis Z alkali neutralized product A-containing slurry, This is the same as the metal compound stirring and mixing treatment A, the metal compound, and the metal-containing titanium salt hydrolyzed alkali neutralized product A.
  • the heat treatment B is performed after the metal compound stirring and mixing treatment B is performed.
  • the heat treatment temperature when the metal-containing titanium salt hydrolyzed neutralized product B is heat-treated is 200 3550 ⁇ , preferably 250 300 ° C.
  • the specific surface area is 150 500 m 2 Zg
  • the specific surface area of the heat-treated product tends to be larger than 400 m 2 Zg, or the half width of the (1 0 1) peak of anatase is 2 0 1.5 ° Prone to become wider.
  • the heat treatment temperature is If the temperature is lower than 2500 ° C, the specific surface area of the heat-treated product tends to be larger than 3 10 m 2 Zg. If the temperature exceeds 300 ° C, the specific surface area of the heat-treated material is smaller than 200 m 2 / g. easy.
  • the heat treatment time when the metal-containing titanium salt hydrolyzed alkali neutralized product B is heat-treated is preferably 1 to 5 hours, particularly preferably 2 to 3 hours.
  • the atmosphere for heat-treating the metal-containing titanium salt hydrolyzed / al strength neutralized product B is not particularly limited, and is in an oxidizing atmosphere such as in air or oxygen gas; nitrogen In an inert atmosphere such as in a gas or argon gas; in a vacuum, etc. In the air, the air is advantageous.
  • the sulfur compound is mixed to obtain a mixture B of the heat treated product B of the titanium salt hydrolyzed / al strength re-neutralized product B and the sulfur compound. More specifically, in the baking raw material mixture preparation step B, the sulfur compound is mixed, for example, before (B 1) hydrolysis and alkali neutralization treatment B,
  • the (B 1), (B 2), (B 3), (B 4) related to the baking raw material mixture preparation step B are the (A 1), (B 4) related to the baking raw material mixture preparation step A The same as (A2), (A3) and (A4).
  • the metal-containing titanium salt hydrolysis mixture B is obtained to obtain the metal-containing titanium salt hydrolyzed Al force neutralized product B, and then the metal-containing titanium salt hydrolyzed. Examples thereof include mixing the alkali neutralized product B and the sulfur compound.
  • (B 5) more specifically, for example, (B 5-1) a solution in which the sulfur compound is dissolved in the metal-containing titanium salt hydrolyzed neutralized product B is added.
  • (B 5-2) A method of evaporating the solvent containing the metal-containing titanium salt Alkaline hydrate B and the sulfur compound in a dry process, or (B 5-3 )
  • the metal-containing titanium salt hydrolyzed / alkaline neutralized product B and the sulfur compound may be mixed in a dispersion medium.
  • the (B 5-2) The method is preferable from the viewpoint of operability.
  • (B 6) for example, after the heat treatment B is performed to obtain the heat-treated product B, the obtained heat-treated product B and the sulfur compound are mixed.
  • (B 6) more specifically, for example, (B 6-1) A solution in which the sulfur compound is dissolved is added to the heat-treated product B, mixed well, and then the solvent is added.
  • a method of evaporating (B 6-2) a method of mixing the heat-treated product B and the sulfur compound in a dry process
  • (B 6-3) a method of mixing the heat-treated product B and the sulfur compound with a dispersion medium.
  • the method (B6-2) is preferable from the viewpoint of operability.
  • the sulfur compound may be mixed at any time of (B 1), (B 2), (B 3), (B 4), (A 5) or (B 6). Or it can be divided into two or more of these periods.
  • the mixing amount of the sulfur compound In the mixture B of the heat treatment B and the sulfur compound, the mixing amount of the sulfur compound, the mass of the sulfur atom with respect to 1 0 0 parts by weight when the heat treatment was B T i 0 2 converted, preferably 5 to 150 parts by weight, particularly preferably 10 ⁇ 50 parts by mass, more preferably 20 to 40 parts by mass.
  • the mixing amount of the sulfur compound is the total amount when mixing the sulfur compound in two or more periods.
  • the mixed amount of the sulfur compound is determined by adding the metal-containing titanium salt hydrolyzed Z alkali neutralized product B to T i O 2
  • the amount of sulfur atoms with respect to 100 parts by mass when converted is preferably 5 to 20 parts by mass, particularly preferably 5 to 10 parts by mass.
  • the amount of the sulfur compound to be mixed before the heat treatment B is within the above range, the catalytic activity of the metal-containing sulfur-introduced titanium oxide is increased.
  • the sulfur compound is further added to the heat-treated product B obtained by performing the heat treatment B within a range not exceeding a predetermined mixing amount. May be mixed.
  • the mixture B of the heat-treated product B and the sulfur compound is fired.
  • the firing step B is mixed with the sulfur compound, and the former is a heat-treated product B of the metal-containing titanium salt hydrolyzed / al strength neutralized product B.
  • the latter is the same as the calcination step A except that the metal-containing titanium salt hydrolyzed alkali neutral A. Therefore, the metal-containing titanium salt hydrolyzed / al strength neutralized product A in the description of the calcination step A may be read as the heat-treated product B and the mixture A as the mixture B.
  • the method for producing a metal-containing sulfur-introduced titanium oxide according to the third aspect of the present invention is a metal-containing titanium salt hydrolyzed / alternative neutralized product C Firing raw material mixture for obtaining a mixture C and sulfur compound C Preparation step C, the metal-containing titanium salt hydrolyzed / al strength re-neutralized product C and the sulfur compound C is calcined, and metal-containing sulfur is introduced.
  • the calcining raw material mixture preparation step C is hydrolyzed or alkalinized in the presence of a metal compound to hydrolyze or neutralize a titanium salt to obtain a metal-containing titanium salt hydrolyzed Z al force reneutralized product C.
  • a step of performing sum process C the amount of the metal compound be present in the hydrolysis Noarukari neutralization C is, with respect to the titanium salt 1 0 0 parts by weight when the T I_ ⁇ 2 terms, as a metal atom 0.03 to 0.15 is an amount of 5 parts by mass,
  • a method for producing a metal-containing sulfur-introduced titanium oxide comprising mixing a sulfur compound before performing the hydrolysis Z-alkali neutralization treatment c and after performing the hydrolysis alkali-neutralization treatment C. It is.
  • the titanium salt according to the hydrolysis Z alkali neutralization treatment C is the same as the titanium salt according to the titanium salt hydrolysis Z alkali neutralization treatment A.
  • the metal compound according to the titanium salt hydrolysis Z-al force neutralization treatment c is the same as the metal compound according to the metal compound stirring and mixing treatment A.
  • the titanium salt is hydrolyzed by preparing an aqueous solution in which the titanium salt and the metal compound are dissolved in water, and stirring the aqueous solution.
  • the method of heating is mentioned.
  • the hydrolysis temperature during the hydrolysis is preferably 20 ° C. to the boiling point of the aqueous solution, particularly preferably 40 to 80 ° C.
  • the hydrolysis time for the hydrolysis is usually 5 minutes to 10 hours, preferably 10 minutes to 5 hours, and particularly preferably 10 minutes to 1 hour.
  • the titanium salt is dissolved in water, but the solvent for dissolving the titanium salt is not particularly limited as long as it dissolves the metal compound.
  • the solvent for dissolving the titanium salt is not particularly limited as long as it dissolves the metal compound. Examples include organic solvents such as alcohol. Among these, water is preferable from the viewpoint of easy handling and economical efficiency.
  • hydrolysis is preferably performed in a low pH region because a hydrolyzate having a small particle size can be obtained. Therefore, when hydrolyzing in the hydrolysis Z alkali neutralization treatment c, particularly when the hydrolysis temperature is near the boiling point of the aqueous solution, a reflux apparatus is installed in the reaction tank, and the generated hydrogen chloride is chlorinated. It is preferable to suppress discharge from the reaction system as hydrogen gas because the pH of the reaction system can be lowered.
  • the titanium salt is hydrolyzed to produce the titanium salt hydrolyzate, and the metal compound is hydrolyzed or reduced.
  • the metal-containing titanium salt hydrolyzate C is obtained by incorporating the hydroxide or the oxide into the surface adhesion or inside of the titanium salt hydrolyzate formed. .
  • the metal-containing titanium salt hydrolyzate is titanium oxide or an intermediate in the process of changing from the titanium salt to titanium oxide.
  • hydrolysis Z-al strength neutralization treatment c as a method for neutralizing the titanium salt, an aqueous solution in which the titanium salt and the metal compound are dissolved in water is prepared. While stirring, mix the alkali, A method of bringing the titanium salt into contact with the alkali, and more specifically, for example,
  • the metal compound can be added to the reaction vessel regardless of whether it is present in the aqueous solution of the titanium salt or in the aqueous solution of the alkali.
  • the metal compound may be present in the added water, that is, the metal compound may be present in the dropped aqueous solution, or the metal compound may be present in the dropped aqueous solution.
  • the alkali related to the hydrolysis-no-alkali neutralization treatment C is not particularly limited, and examples thereof include ammonia and aqueous ammonia. Among these, ammonia or aqueous ammonia is contained in the metal-containing sulfur-introduced titanium oxide. Since a metal component derived from Al force is not contained, it is preferable for controlling the photocatalytic activity of the metal-containing sulfur-introduced titanium oxide with visible light.
  • the alkali neutralization temperature during the alkali neutralization is preferably 10 to 80 ° C, particularly preferably 30 to 80, more preferably 40. ⁇ 70. When the alkali neutralization temperature is less than 10 ° C, the neutralization reaction hardly occurs.
  • the addition time of the alkali at the time of alkali neutralization is usually 1 minute to 10 hours, preferably 3 minutes to 5 hours, particularly preferably 5 minutes to 1 hour. Then, in the hydrolysis Z alkali neutralization treatment c, the titanium salt Al force re-neutralized product is formed by performing the Al force re-neutralization of the titanium salt, and the metal compound is hydrolyzed or reduced.
  • the hydroxide or the oxide is taken into the surface of the alkali neutralized product of the produced titanium salt or is taken into the inside thereof, in the metal-containing titanium salt alkali.
  • Japanese product C is obtained.
  • the metal-containing titanium salt alkali neutralized product C is an intermediate in the process of changing from titanium oxide or the titanium salt to titanium oxide.
  • the mixing amount of the metal compound, 1 00 mass when can be appropriately selected by the introduction of the metal of the metal-containing sulfur introduced titanium oxide, which the titanium salt T io 2 converted
  • the mixing amount is such that the mass of the metal atom with respect to parts is preferably 0.03 to 0.15 parts by mass, particularly preferably 0.05 to 0.1 parts by mass. When the mixing amount of the metal compound is within the above range, the photocatalytic activity of the metal-containing sulfur-introduced titanium oxide with visible light is increased.
  • the metal-containing titanium salt hydrolyzed alkali-neutralized product C after drying is mainly composed of anatase type crystal structure, and has a specific surface area of 150 to 400 m 2 Zg, preferably 200 to 30 m 2 / g.
  • the metal-containing titanium salt hydrolyzed alkali neutralized product C from the titanium salt in the step of preparing the firing raw material mixture that is, the hydrolysis / al force re-neutralization treatment.
  • the sulfur compound between before the C and after the hydrolytic neutralization treatment C the titanium salt hydrolyzed Z alkali neutralized product C and the sulfur compound are mixed.
  • the sulfur Mixing compounds for example
  • the sulfur compound is mixed with the aqueous solution of the titanium salt, or before the alkali is added dropwise to the aqueous solution of the titanium salt. And mixing the sulfur compound with an aqueous solution of the titanium salt.
  • (C 2) for example, when the alkaline aqueous solution is dropped into the titanium salt aqueous solution, the alkaline aqueous solution mixed with the sulfur compound is dropped into the titanium salt aqueous solution.
  • the sulfur aqueous solution is added to the alkali aqueous solution.
  • the sulfur compound is mixed while performing the hydrolysis-no-alkali neutralization treatment C.
  • the metal-containing titanium obtained is obtained by performing the hydrolysis Z-al strength neutralization treatment C to obtain the metal-containing titanium salt hydrolyzed al- strength neutralized product C.
  • the salt hydrolyzed neutralized product C and the sulfur compound may be mixed.
  • (C 3-1) A solution containing the sulfur compound dissolved in the metal-containing titanium salt hydrolyzed Z alkali neutralized product C is added.
  • the mixing of the sulfur compound can be performed at any one of the above (CI), (C2) or (C3), or can be performed at two or more of these times. .
  • the amount of the sulfur compound in the mixture C is determined as follows.
  • the mass of sulfur atoms relative to 100 parts by mass when converted to 2 is preferably 5 to 1500 parts by mass, particularly preferably 10 to 50 parts by mass, and more preferably 20 to 40 parts by mass. Is the amount.
  • Hydrolysis of the metal-containing titanium salt Z Al force neutralized product c and the mixture c of the sulfur compound
  • the sulfur content is from 0.02 to It becomes easy to obtain 0.1% by mass of metal-containing sulfur-introduced titanium oxide.
  • the mixing amount of the sulfur compound is the total amount when mixing the sulfur compound in two or more periods.
  • the calcination step C is mixed with the sulfur compound.
  • the former is the metal-containing titanium salt hydrolyzed / al strength neutralized product C
  • the latter is the metal-containing Titanium salt hydrolysis Z Similar to the calcination step A except that it is a neutralized alkali A. Therefore, the metal-containing titanium salt hydrolyzed / al strength neutralized product A in the description of the calcination step A, the metal-containing titan salt hydrolyzed / al strength neutralized product C, and the mixture A It should be read as Mixture C.
  • the method for producing the metal-containing sulfur-introduced titanium oxide of the fourth aspect of the present invention is a method for hydrolyzing metal-containing titanium salt Solution Z-strength neutralized product D Heat-treated product D and sulfur compound D are obtained D Preparation process D for calcining raw material and hydrolysis of the metal-containing titanium salt Z-strength neutralized product D A mixture D of D and the sulfur compound is calcined to obtain a metal-containing sulfur-introduced titanium oxide; and
  • the firing raw material mixture preparation step D hydrolyzes or neutralizes the titanium salt to obtain a titanium salt hydrolyzed neutralized neutralized product D.
  • Heat-treating D and the metal-containing titanium salt hydrolyzed Al force neutralized product D to obtain a heat-treated product D.
  • the amount of the metal compound be present in the hydrolysis Z Al Chikarari neutralization D is, with respect to the titanium salt 1 0 0 parts by weight when T i O 2 converted, by a metal atom 0.0 3-0 1
  • the amount is 5 parts by mass
  • a sulfur compound is mixed between before the hydrolysis Z al force re-neutralization treatment D and after the heat treatment D.
  • the titanium; ⁇ hydrolysis Z neutralization treatment D and the heat treatment D are carried out, whereby the metal-containing titanium salt hydrolysis in alkali Heat D of Japanese product D is obtained.
  • the calcination raw material mixture preparation step D The hydrolysis Z al force neutralization treatment D, the titanium salt, the metal compound, the metal-containing titanium salt hydrolysis Z alkali neutralization product D is the calcination raw material mixture preparation step C. This is the same as the hydrolysis / alkaline neutralization treatment C, the titanium salt, the metal compound, and the metal-containing titanium salt hydrolyzed Z alkali neutralized product C.
  • the heat treatment D is performed after the hydrolysis / al strength neutralization treatment D is performed.
  • the heat treatment D is heat-treated compared to the heat treatment B.
  • the former is the metal-containing titanium salt hydrolyzed / alkaline neutralized product D
  • the latter is the metal-containing titanium. Salt hydrolysis
  • the metal-containing titanium salt hydrolyzed Z-alkaline neutralized product B in the explanation of the heat-treated B is converted into the metal-containing titanium salt hydrolyzed Z alkali-neutralized product D and the heat-treated product B.
  • the heat-treated product D may be replaced with this.
  • the sulfur compound is mixed to obtain a mixture D of the heat-treated product D of the titanium salt hydrolysis neutralized product D and the sulfur compound. More specifically, in the baking raw material mixture preparation step D, the sulfur compound is mixed, for example, before (D 1) hydrolysis Z alkali neutralization treatment D,
  • the (D 1) and (D 2) relating to the baking raw material mixture preparation step D This is the same as (C 1) and (C 2) in the raw material mixture preparation step C.
  • the hydrolysis-alkali neutralization treatment D is performed to obtain the metal-containing titanium salt hydrolyzed Z-al strength neutralized product D, and then the obtained metal-containing titanium salt hydrolyzed.
  • An example of this is to mix the decomposed Z-al strength neutralized product D with the sulfur compound.
  • (D3) more specifically, for example, (D3-1) hydrolysis of the metal-containing titanium salt alkali neutralized product D is added with a solution in which the sulfur compound is dissolved, (D 3-2) Hydrolysis of the metal-containing titanium salt Z Al force re-neutralized product D and the sulfur compound, or (D 3 — 3) Hydrolysis of metal-containing titanium salt Z Alkali neutralized product D and sulfur compound are mixed in a dispersion medium.
  • (D 3 -2) The method is preferable from the viewpoint of operability.
  • (D4) for example, after the heat treatment D is performed to obtain the heat-treated product D, the obtained heat-treated product D and the sulfur compound are mixed.
  • (D 4) more specifically, for example, (D 4-1) A solution in which the sulfur compound is dissolved is added to the heat-treated product D, and after sufficiently mixing, the solvent is added.
  • the method (D4-2) is preferred from the viewpoint of operability.
  • the mixing of the sulfur compound may be performed at any one of the times (D 1), (D 2), (D 3) or (D 4), or two or more of these times. It can also be divided into two.
  • the amount of the sulfur atom is preferably 5 to 1550 parts by mass, particularly preferably 10 to 50 parts by mass, and still more preferably 20 to 40 parts by mass.
  • the mixing amount of the sulfur compound is the total amount when mixing the sulfur compound in two or more periods.
  • the amount of the sulfur compound is determined by converting the metal-containing titanium salt hydrolyzed alkali neutralized product D to Ti 0 2
  • the mass of sulfur atoms with respect to 100 parts by mass is preferably 5 to 20 parts by mass, particularly preferably 5 to 10 parts by mass.
  • the mixture D of the heat-treated product D and the sulfur compound is fired.
  • the firing step D is mixed with the sulfur compound, and the former is a heat-treated product D of the metal-containing titanium salt hydrolyzed / al strength neutralized product D.
  • the latter is the same as the calcination step A except that the metal-containing titanium salt hydrolyzed Z-alkaline intermediate A. Therefore, the metal-containing titanium salt hydrolyzed Z al force neutralized product A in the description of the firing step A may be read as the heat-treated product D, and the mixture A as the mixture D.
  • the photocatalytic activity of the resulting metal-containing sulfur-introduced titanium oxide can be further increased.
  • the fifth metal-containing sulfur-introduced titanium oxide production method of the present invention (hereinafter referred to as the present invention) Also described as Ming's manufacturing method (5). ) Is a calcined raw material mixture preparation step E to obtain a mixture E of a metal-containing titanium salt hydrolyzed / alkali neutralized product E (2) and a sulfur compound, and the metal-containing titanium salt hydrolyzed / alkaline neutralized product A mixture E of E (2) and the sulfur compound is calcined to obtain a metal-containing sulfur-introduced titanium oxide, and
  • the titanium salt is hydrolyzed or alkali neutralized to obtain a metal-containing titanium salt hydrolyzed / alkali neutralized product E (1) -containing slurry.
  • Hydrolysis to be prepared Z alkali neutralization treatment E and the metal-containing titanium salt hydrolyzed Z alkali-neutralized product E (1) Add the metal compound to the slurry and stir to obtain the metal-containing titanium salt hydrolyzed Z
  • the metal compound stirring and mixing treatment E to obtain the alkali neutralized product E (2), and
  • the hydrolysis / alkali neutralization treatment E and the metal compound stirring and mixing treatment E are performed.
  • hydrolysis / alkali neutralization treatment E by hydrolyzing the titanium salt in the presence of the metal compound, or by neutralizing the titanium salt in the presence of the metal compound.
  • a slurry containing the metal-containing titanium salt hydrolyzed alkali neutralized product E (1), that is, a metal-containing titanium salt hydrolyzed / alkali neutralized product E (1) -containing slurry is obtained.
  • the hydrolysis Z-al strength re-neutralization treatment E is the same as the hydrolysis Z-al strength re-neutralization treatment C.
  • the titanium salt according to the hydrolysis Z-al strength re-neutralization treatment E, the metal compound, The titanium salt hydrolyzed Z alkali neutralized product E (1) is the same as the titanium salt, the metal compound, and the titanium salt hydrolyzed neutralized product C of the hydrolyzed alkali neutralized treatment C. .
  • the metal-containing titanium salt hydrolyzed neutralized product E (1) is It is an intermediate in the process of changing from titanium oxide or the titanium salt to titanium oxide.
  • the metal compound stirring / mixing treatment E the metal compound is added to the slurry containing the metal-containing titanium salt hydrolyzed / alkali neutralized product E (1), stirred and mixed, and the metal-containing titanium salt hydrolyzed /
  • This is a treatment for obtaining the metal-containing titanium salt hydrolyzed Z-alkaline intermediate E (2) in which the metal is further introduced into the alkali neutralized product E (1).
  • the thing before processing by this metal compound stirring mixing process E is described as this metal containing titanium salt hydrolysis alkali neutralized product E (1), The treated product was described as the metal-containing titanium salt hydrolyzed neutralized product E (2).
  • the metal compound stirring and mixing treatment E is contained in a slurry. / Alkali neutralized product E (1), while the latter is the same as the metal compound stirring and mixing treatment A except that the latter is the titanium salt hydrolyzed neutral force neutralized product A. Accordingly, the titanium salt hydrolysis Z alkali power neutralized product A in the description of the metal compound stirring and mixing treatment A is used as the metal-containing titanium salt hydrolyzed / alkali neutralized product E (1) and the metal-containing product.
  • the titanium salt hydrolyzed neutralized product A may be read as the metal-containing titanium salt hydrolyzed Z alkali neutralized product E (2).
  • the total amount of the metal compound to be present in the hydrolysis / al neutralization treatment E and the metal compound stirring and mixing treatment E depends on the amount of metal introduced into the metal-containing sulfur-introduced titanium oxide.
  • the mass of the metal atom with respect to 100 parts by mass when the titanium salt is converted to TiO 2 is preferably 0.03 to 0.15 parts by mass, particularly preferably 0.05 to 0.1 Mixing amount to be 1 part by mass.
  • the mixing amount of the metal compound is within the above range, the photocatalytic activity of the metal-containing sulfur-introduced titanium oxide with visible light is increased.
  • the metal-containing titanium salt hydrolyzed Z Al force re-neutralized product E (2) from the titanium salt in the firing raw material mixture preparation step E that is, the titanium salt hydrolyzed
  • the sulfur compound is mixed, for example,
  • the (E 1) and (E 2) related to the baking raw material mixture preparation step E are the same as the (C 1) and (C 2) related to the baking raw material mixture preparation step C, and
  • the (E 3), (E 4), and (E 5) related to the baking raw material mixture preparation step E are the (A 3), (A4), and (( Same as A5).
  • the mixing of the sulfur compound may be performed at any time of the above (E 1), (E 2), (E 3), (E 4) or (E 5), or these It can be divided into two or more of them.
  • the amount of the sulfur compound in the mixture E of the metal-containing titanium salt hydrolyzed Z alkali neutralized product E (2) and the sulfur compound is determined by the metal-containing titanium salt hydrolyzed Z alkali neutralized product E
  • the mass of sulfur atoms with respect to 100 parts by mass when (2) is converted to Ti 0 2 is preferably 5 to 150 parts by mass, particularly preferably 10 to 50 parts by mass, and more preferably 20 to 40 parts by mass. It is an amount that becomes a part.
  • the mixing amount of the sulfur compound is the total amount when mixing the sulfur compound in two or more periods. In the firing step E, a mixture E of the metal-containing titanium salt hydrolyzed Z-al strength neutralized product E (2) and the sulfur compound is fired.
  • the calcination step E is mixed with the sulfur compound.
  • the former is the metal-containing titanium salt hydrolyzed alkali neutralized product E (2)
  • the latter is the metal It is the same as the calcination step A except that the titanium salt is hydrolyzed with an alkali neutralized product A. Therefore, in the firing step A
  • the metal-containing titanium salt hydrolyzed Z-alkaline neutralized product A can be read as the metal-containing titanium salt hydrolyzed Z-alkali neutralized product E (2), and the mixture A can be read as the mixture E. That's fine.
  • the sixth metal-containing sulfur-introduced titanium oxide production method of the present invention (hereinafter also referred to as the production method (6) of the present invention) is a metal-containing titanium salt hydrolyzed Z alkali neutralized product F (2).
  • Heat-processed product F and sulfur compound mixture F Preparation step F for obtaining a raw material mixture F, Metal-containing titanium salt hydrolysis Z Al force re-neutralized product F (2) Heat-processed product F and the sulfur compound And firing step F to obtain a metal-containing sulfur-introduced titanium oxide, and a mixture F of
  • the titanium salt is hydrolyzed or alkali-neutralized to obtain a metal-containing titanium salt hydrolyzed alkali neutralized product F (1) -containing slurry.
  • Hydrolysis-no alkali neutralization treatment F to be prepared and the metal-containing titanium salt hydrolysis Z alkali-neutralized product F (1) Add the metal compound to the slurry and stir to hydrolyze the metal-containing titanium salt in alkali.
  • the metal compound stirring and mixing treatment F to obtain a hydrate F (2), the metal-containing titanium salt hydrolysis / alkali neutralized product F (2), and the heat treatment F to obtain the heat treatment product F, Is a process to perform,
  • the total amount of the metal compound to be present in the hydrolysis and the neutralization treatment F and the metal compound to be mixed in the metal compound stirring and mixing treatment F is the titanium salt when converted to Ti 0 2 1 0 0 It is an amount of 0.03 to 0.15 parts by mass with respect to parts by mass as metal atoms,
  • a sulfur compound is mixed between before the hydrolysis-no-alkali neutralization treatment F and after the heat treatment F.
  • the hydrolysis Z al force neutralization treatment F, the metal compound stirring and mixing treatment F, and the heating treatment F are performed.
  • the metal-containing titanium salt hydrolysis / alkali neutralized product F (2) is the hydrolysis / alkali neutralization treatment E, the metal compound stirring / mixing treatment E, the titanium salt according to the baking raw material mixture preparation step E.
  • the hydrolysis Z alkali neutralization treatment F is performed to obtain the metal-containing titanium salt hydrolysis neutral alkali treatment product F (1) -containing slurry, and then the metal By carrying out compound stirring treatment F, the metal-containing titanium salt hydrolyzed neutralized neutralized product F (2) is obtained.
  • the heat treatment F is performed after the metal compound stirring and mixing treatment F is performed.
  • the heat treatment F is heat-treated compared to the heat treatment B.
  • the former is the metal-containing titanium salt hydrolyzed Z-alkaline neutralized product F (2)
  • the latter is the metal Containing titanium salt hydrolysis It is the same as the heat treatment B except that it is an alkali neutralized product B. Therefore, the gold in the description of the heat treatment B
  • Metal-containing titanium salt hydrolysis Z Al force neutralized product B can be read as the metal-containing titanium salt hydrolyzed Z alkali neutralized product F (2), and the heat-treated product B can be read as the heat-treated product F. That's fine.
  • the heat-treated product F is obtained from the titanium salt in the baking raw material mixture preparation step F, that is, before the titanium salt hydrolyzing neutralization treatment F is performed, the heat treatment is performed.
  • the sulfur compound is mixed, for example,
  • (F 1) and (F 2) relating to the firing raw material mixture preparation step F are the same as the (C 1) and (C 2) relating to the firing raw material mixture preparation step C, and
  • the (F 3) and (F 4) relating to the firing raw material mixture preparation step F are the same as the (A 3) and (A4) relating to the firing raw material mixture preparation step A, and the firing raw material mixture
  • the preparation steps (F 5) and (F 6) are the same as the (B 5) and (B 6) according to the baking raw material mixture preparation step B.
  • the sulfur compound may be mixed at any time of the above (F 1), (F 2), (F 3), (F 4), (F 5) or (F 6). Or it can be divided into two or more of these periods.
  • the mass of the sulfur atom with respect to 1 0 0 parts by weight when the heat treatment was F T i O 2 converted preferably Is in an amount of 5 to 1500 parts by mass, particularly preferably 10 to 50 parts by mass, and more preferably 20 to 40 parts by mass.
  • the mixing amount of the sulfur compound is the total amount when mixing the sulfur compound in two or more periods.
  • the mixing amount of the sulfur compound 1 0 0 mass when the heat treatment was F T i 0 2 converted
  • the amount of sulfur atoms with respect to parts is preferably 5 to 20 parts by weight, particularly preferably 5 to 10 parts by weight.
  • the mixture F of the heat-treated product F and the sulfur compound is fired.
  • the firing step F is mixed with the sulfur compound, whereas the former is a heat-treated product F of the metal-containing titanium salt hydrolyzed Z alkali neutralized product F (2).
  • the latter is the same as the calcination step A except that the metal-containing titanium salt hydrolyzed / alkali neutralized product A. Therefore, the metal-containing titanium salt hydrolyzed Z-al strength neutralized product A in the description of the firing step A may be read as the heat-treated product F, and the mixture A as the mixture F.
  • the photocatalytic activity of the obtained metal-containing sulfur-introduced titanium oxide can be further increased.
  • the heat-treated product F of the titanium salt hydrolyzed neutralized product F (2) containing the main component of the crystal structure is anatase type and has the following physical properties (i), (ii), and (iii) It is preferable in that the photocatalytic activity of the metal-containing sulfur-introduced titanium oxide with visible light is increased.
  • the metal content is 0.03 to 0.15 mass%.
  • the main component of the crystal structure is anatase type
  • the metal-containing titanium salt hydrolyzed neutralized product A having the physical properties (i) to (iii), the metal-containing titanium salt hydrolyzed Z-al strength neutralized product B heat-treated product B, metal-containing titanium salt hydrolyzed alkali neutralized product C, metal-containing titanium salt hydrolyzed neutral force neutralized product D heat-treated product D, metal-containing titanium salt hydrolyzed / alloy Potassium neutralized product E (2) and the heat-treated product F of the metal-containing titanium salt hydrolyzed / alkali neutralized product F (2) are mixed amount of metal compound, hydrolysis condition, alkaline neutralized condition, slurry Separation of solids from the liquid or by appropriately selecting conditions such as washing and drying as necessary to obtain the solids, or by performing heat treatment and appropriately selecting the heat treatment conditions Can be obtained.
  • a method for producing a metal-containing sulfur-introduced titanium oxide according to the seventh aspect of the present invention (hereinafter, This is also referred to as the production method (7) of the present invention. )
  • the metal content in the metal-containing raw material titanium oxide is 0.03 to 0.15 parts by mass as metal atoms with respect to 100 parts by mass of the metal-containing raw material titanium oxide when converted to Tio 2 .
  • the metal-containing raw material titanium oxide according to the production method (7) of the present invention metal-containing organic weight, relative to the metal-containing raw material titanium oxide 1 00 parts by weight when T i 0 2 terms, 0 as a metal atom 03 to 0.1 1 Titanium oxide in 5 parts by mass.
  • the metal-containing raw material titanium oxide according to the production method (7) of the present invention is mainly composed of anatase type crystal structure, and has the following physical properties (i),
  • Titanium oxide having (ii) and (iiii) is preferred in that the photocatalytic activity of the metal-containing sulfur-introduced titanium oxide with visible light is increased.
  • the specific surface area is 150 to 400 m 2 / g, preferably 2000 to 3 10 m 2 Z g.
  • the metal content is 0.03 to 0.15 mass%.
  • the mixture G of the metal-containing raw material titanium oxide and the sulfur compound is fired.
  • the firing step G according to the production method (7) of the present invention is mixed with the sulfur compound.
  • the latter is the same as calcination step A except that the metal-containing titanium salt hydrolyzed Z alkali neutralized product A. Therefore, the metal-containing titanium salt hydrolyzed Z
  • the neutralized product A may be read as the metal-containing raw material titanium oxide, and the mixture A as the mixture G.
  • the obtained metal-containing sulfur-introduced titanium oxide is further metal-introduced to obtain metal-containing sulfur-introduced titanium oxide in which the metal is reintroduced.
  • An introduction process may be performed.
  • the metal-containing sulfur-introduced titanium oxide obtained by the firing step is immersed in a solution of the metal compound, hydrolyzed, alkali neutralized, irradiated with light, or the solvent is evaporated, and then heated as necessary. Processing may be performed.
  • the metal-containing sulfur-introduced titanium oxide obtained by performing the firing step and the metal compound can be obtained by CVD, PVD (sputtering method, vacuum deposition method, ion plating method, etc.), plating method, etc.
  • a metal may be contained on the surface of the sulfur-introduced titanium oxide.
  • a sulfur re-introduction step may be performed in which the metal-containing sulfur-introduced titanium oxide further contains sulfur. Further, the metal reintroduction step and the sulfur reintroduction step may be repeated.
  • the metal-containing sulfur-introduced titanium oxide obtained by the production method of the present invention is a compound in which a sulfur atom is introduced into the skeleton structure of titanium oxide, and is one of anatase-type titanium oxide titanium sites (cation sites). Part has a structure substituted with a sulfur atom. That is, the metal-containing sulfur-introduced titanium oxide obtained by the production method of the present invention is a sulfur cation-substituted titanium oxide.
  • the confirmation that the metal-containing sulfur-introduced titanium oxide obtained by the production method of the present invention has a structure in which a part of the titanium site is substituted with a sulfur atom is confirmed by X-ray photoelectron spectroscopy (XPS). Done by analysis.
  • XPS X-ray photoelectron spectroscopy
  • Sulfur-containing acid When titanium fluoride is sulfur-containing titanium oxide in which part of the titanium site is replaced with sulfur atoms, a characteristic peak around 1 69 eV derived from S 4 + is observed. In other words, if a characteristic peak around 1 69 eV is seen, it is assumed that a part of the titanium site (force thione site) is replaced with sulfur atoms.
  • the sulfur-containing titanium oxide is not sulfur-containing titanium oxide in which part of the titanium site is substituted with sulfur atoms, but sulfur-containing titanium oxide in which some oxygen atoms are substituted with sulfur atoms, S 2 _ characteristic peak around 1 6 0 e V derived is observed, the characteristic peaks in the vicinity of 1 6 9 e V derived from the S 4 + is not observed.
  • the sulfur-containing titanium oxide is not a compound in which some of the atoms in the titanium oxide are substituted with sulfur atoms, but a simple mixture of titanium oxide and sulfur, There is no characteristic peak in any of the vicinity of eV.
  • the metal compound is present in the form of metal ions or oxides on the surface and inside of the metal-containing sulfur-introduced titanium oxide particles. Ratio of the amount of metal present in titanium oxide to the total amount of metal contained (%) ((Amount of metal present in titanium oxide Z Total amount of metal contained in titanium oxide) X
  • the metal compound is 15% or more and 90% or less, preferably 20% or more and 85% or less, and particularly preferably 50% or more and 75% or less. Since the metal compound is present not only on the sulfur-containing titanium oxide surface but also inside thereof, the decomposition performance into carbon dioxide is particularly good.
  • the amount of metal present on the surface is a value obtained by boiling the metal-containing sulfur-introduced titanium oxide in a 9% hydrochloric acid aqueous solution and analyzing the weight composition.
  • the amount of metal present inside is the total amount of metal minus the amount of metal present on the surface.
  • the total amount of metal is a value obtained by analyzing the amount of metal from a product obtained by boiling and melting the metal-containing sulfur-introduced titanium oxide with hydrofluoric acid.
  • the metal species photocatalyst with visible light From the viewpoint of high activity, iron is preferable.
  • the metal-containing sulfur-introduced titanium oxide obtained by the production method of the present invention has a metal content of 0.03 to 0.15% by mass, a sulfur content of 0.02 to 0.1% by mass,
  • the surface area is 60 to 120 m 2 Z g, and the main crystal structure is the anatase type.
  • the metal-containing sulfur-introduced titanium oxide of the present invention has a metal content of 0.03 to 0.15 mass%, a sulfur content of 0.02 to 0.1 mass%, and a specific surface area of 60 to 1. 20m 2 Zg,
  • the main part of the crystal structure is the anatase type
  • Sulfur atoms in titanium oxide are introduced into the titanium oxide titanium site.
  • the metal content of the metal-containing sulfur-introduced titanium oxide of the present invention is 0.03 to 0.15% by mass, preferably 0.05 to 0.1% by mass. When the metal content is within the above range, the photocatalytic activity of visible light of the metal-containing sulfur-introduced titanium oxide is increased.
  • the sulfur content of the metal-containing sulfur-introduced titanium oxide of the present invention is 0.02 to 0.1% by mass, preferably 0.03 to 0.1% by mass. When the sulfur content is within the above range, the photocatalytic activity of the metal-containing sulfur-introduced titanium oxide with visible light is increased.
  • the specific surface area of the metal-containing sulfur introduced titanium oxide of the present invention 6 0 ⁇ 1 20 m 2 / g, preferably 6 5 ⁇ 1 0 5m 2 / g , particularly preferably 80: is I 00 m 2 / g .
  • the specific surface area is within the above range, the photocatalytic activity of the metal-containing sulfur-introduced titanium oxide with visible light is increased.
  • the crystal structure of the metal-containing sulfur-introduced titanium oxide of the present invention is suitable for X-ray diffraction analysis. According to this, it is a phase mainly composed of anatase.
  • the fact that the crystal structure is mainly anatase type means that the rutile ratio defined by the following formula is 1% or less (AS TM D 3 7 2 0-8 4 ).
  • the metal-containing sulfur-introduced titanium oxide of the present invention may contain wurtzite.
  • Rutile ratio (mass%) 1 0 0-1 0 0 / (1 + 1. 2 X 1 ⁇ / I d) I r: strongest interference line of rutile crystalline titanium oxide in the X-ray diffraction pattern (face index 1 1 0) peak area,
  • I d Peak area of the strongest interference line (surface index 1 0 1) of anatase-type titanium oxide powder in the X-ray diffraction pattern
  • the metal is present in the form of metal ions or oxides on the particle surface and inside of the metal-containing sulfur-introduced titanium oxide, and the titanium oxide with respect to the total amount of metal contained in the titanium oxide.
  • the ratio of the amount of metal present in the interior (%) ((the amount of metal present in the titanium oxide and the total amount of metal contained in the titanium oxide) XI 0 0) is 15% or more and 90% or less.
  • the ratio (%) of the amount of metal present in the titanium oxide to the total amount of metal contained in the titanium oxide is within the above range, so that the photocatalytic activity of the metal-containing sulfur-introduced titanium oxide in visible light, particularly to carbon dioxide gas
  • the ratio (%) of the amount of metal present in the titanium oxide to the total amount of metal contained in the titanium oxide is the photocatalytic activity of the metal-containing sulfur-introduced titanium oxide under visible light, decomposition characteristics of organic matter, and carbon dioxide.
  • the metal-containing sulfur-introduced titanium oxide obtained by the production method of the present invention and the metal-containing sulfur-introduced titanium oxide of the present invention have excellent visible light absorption characteristics and photocatalytic activity in visible light. Compared with the metal-containing sulfur-introduced titanium oxide obtained by the production method, the photocatalytic activity under visible light is high. In addition, since the metal compound is present not only on the surface of the sulfur-containing titanium oxide but also inside thereof, the decomposition performance into carbon dioxide gas is particularly good.
  • the metal-containing sulfur-introduced titanium oxide obtained by the production method of the present invention and the metal-containing sulfur-introduced titanium oxide of the present invention are useful as photocatalysts that exhibit catalytic activity by irradiation with visible light.
  • the production method of the present invention is simpler than the conventional method for producing metal-containing sulfur-introduced titanium oxide because the introduction of metal is performed before obtaining sulfur-containing titanium oxide, that is, before introducing sulfur. It is.
  • the width (angle) at which the height of the anatase (1 0 1) peak is 1 to 2 was measured.
  • the rutile ratio depends on the peak area (I r) of the strongest interference line (plane index 1 1 0) of rutile crystalline titanium oxide in the X-ray diffraction pattern according to AS TM D 3 7 2 0— 8 4 and the anatase
  • the peak area (Id) of the strongest interference line (surface index 10 1) of the type titanium oxide powder was obtained, and obtained from the following calculation formula.
  • Rutile ratio (mass%) 1 0 0-1 0 0 / (1 + 1.2 X 1 ⁇ / I d)
  • IPA isopropyl alcohol
  • I P A decomposition performance was determined by the following equation.
  • Degradation performance A (%) (I PA concentration of Y 1 after 2 hours-X 1 after 2 hours IPA concentration) X 1 00 Z (IPA concentration of Y 1 after 2 hours)
  • the concentration of carbon dioxide produced as a result of the decomposition of acetonitrile and the decomposition of acetonitrile was measured.
  • Decomposition performance B (ppm) 1 8 h CO 2 concentration after the irradiation - CO 2 concentration after 5 hours left without irradiating
  • Decomposition performance C (%) (Acetaldehyde concentration after standing for 5 hours without irradiation) 1 1 0 (Acetaldehyde concentration after 5 hours without irradiation) X 1 00 (Acetaldehyde concentration after 5 hours without irradiation)
  • the measurement was performed under the following measurement conditions. No pretreatment of the sample such as etching was performed.
  • XPS system XP S-5 700 manufactured by PH I
  • X-ray source Monochrome A l Kct (1 4 8 6. 6 e V) 200 W Measurement area: 800 ⁇ m diameter
  • Neutralizing electron gun used (7) Measurement of iron content in titanium oxide (total iron content in titanium oxide) 2 g of titanium oxide, 15 m 1 hydrofluoric acid with a concentration of 50%, nitric acid with a concentration of 60%
  • this slurry one iron chloride (F e C 1 3 ⁇ H 2 O ( KK Wako Pure Chemical)) aqueous solution, when the titanium salt alkali neutralized product in slurries and T io 2 conversion calculation It added so that it might become 0.05 mass part as an iron atom with respect to 100 mass parts, and it stirred and mixed at 60 degreeC for 1 hour, and obtained the liquid mixture.
  • this mixed solution was heated at 110 ° C. for 24 hours to evaporate and remove water to obtain a solid.
  • the obtained solid was washed twice with pure water and filtered twice, and the filtered solid was It was dried at 110 ° C. for 24 hours to obtain an iron-containing titanium salt alkali neutralized product a1.
  • the iron-containing titanium salt alkali neutralized product a 1 was heat-treated at 25 ° C. for 3 hours under atmospheric pressure to obtain a heat-treated product b 1.
  • iron chloride Fe C 1 3 ⁇ H 2 O (manufactured by Wako Pure Chemical Industries, Ltd.)
  • aqueous solution titanium oxide in the slurry converted to Ti O 2 100 mass
  • iron chloride Fe C 1 3 ⁇ H 2 O (Wako Pure Example 1)
  • the aqueous solution is added so that the titanium oxide in the slurry is 0.03 parts by mass as iron atoms with respect to 100 parts by mass when converted to Ti 0 2.
  • the same procedure was followed to obtain an iron-containing titanium salt aluminum neutralized product a2.
  • a heat treatment is performed in the same manner as in Example 1 except that the iron-containing titanium salt alkali neutralized product a 1 is used instead of the iron-containing titanium salt alkaline neutralized product a 2.
  • Object b 2 was obtained.
  • Example 2 An iron-containing sulfur-introduced titanium oxide c 2 was obtained in the same manner as in Example 1 except that the heat-treated product b 2 was used instead of the heat-treated product b 1.
  • Table 1 shows the characteristics of this iron-containing sulfur-introduced titanium oxide c 2 and the measurement results of its photocatalytic performance.
  • a heat-treated product b3 was obtained in the same manner as in Example 1 except that the iron-containing titanium salt alkali neutralized product a3 was used instead of the iron-containing titanium salt alkaline neutralized product a1.
  • a heat-treated product b4 was obtained in the same manner as in Example 1 except that the iron-containing titanium salt alkali neutralized product a4 was used instead of the iron-containing titanium salt alkaline neutralized product a1.
  • Example 5 An iron-containing sulfur-introduced titanium oxide c 4 was obtained in the same manner as in Example 1 except that the heat-treated product b 4 was used instead of the heat-treated product b 1. Table 1 shows the characteristics of this iron-containing sulfur-introduced titanium oxide c4 and the photocatalytic performance measurement results. [Example 5]
  • the neutralized slurry is mixed with iron chloride (F e C 1 3 ⁇ H 2 0 (stock the company manufactured by Wako pure Chemical Industries, Ltd.)) aqueous solution, and 0.1 parts by iron atoms relative to 1 0 0 parts by weight when the titanium emission salt Al Chikarari neutralized product of the slurry in one T i O 2 converted
  • iron chloride Fe C 1 3 ⁇ H 2 0 (stock the company manufactured by Wako pure Chemical Industries, Ltd.)
  • the iron-containing titanium salt alkali neutralized product a5 was obtained in the same manner as in Example 1 except that the iron-containing titanium salt alkali neutralized product a5 was obtained.
  • a heat-treated product b5 was obtained in the same manner as in Example 1 except that the iron-containing titanium salt alkali neutralized product a1 was used instead of the iron-containing titanium salt alkaline neutralized product a1.
  • the iron content was 0.10% by mass.
  • An iron-containing sulfur-introduced titanium oxide c5 was obtained in the same manner as in Example 1 except that the heat-treated product b5 was used instead of the heat-treated product b1.
  • Table 1 shows the characteristics of this iron-containing sulfur-introduced titanium oxide c5 and the photocatalytic performance measurement results.
  • a heat-treated product e1 was obtained in the same manner as in Example 1 except that the titanium salt alkali neutralized product dl was used instead of the iron-containing titanium salt alkali neutralized product a1.
  • a sulfur-containing titanium oxide f 1 was obtained in the same manner as in Example 1 except that the heat-treated product b 1 was used instead of the heat-treated product b 1.
  • Table 1 shows the characteristics of this sulfur-containing titanium oxide f1 and the photocatalytic performance measurement results.
  • an aqueous solution of iron chloride (F e C 1 3 ⁇ H 2 O (manufactured by Wako Pure Chemical Industries, Ltd.)) and neutralized titanium salt alkali in the slurry when converted to T io 2
  • iron chloride Fe C 1 3 'H 2 0 (stock) (Wako Pure Chemicals Co., Ltd.)
  • An aqueous solution is made of iron with respect to 100 parts by mass when converted to Ti 0 2 of the neutralized titanate in the slurry. Except for adding 0.1 part by mass as an atom, the same procedure as in Example 1 was performed to obtain an iron-containing titanium salt aluminum force neutralized product d2.
  • a heat-treated product e2 was obtained in the same manner as in Example 1 except that the iron-containing titanium salt alkaline neutralized product a1 was used instead of the iron-containing titanium salt alkaline neutralized product d2.
  • An iron-containing sulfur-introduced titanium oxide f 2 was obtained in the same manner as in Example 1 except that the heat-treated product b 2 was used instead of the heat-treated product b 1.
  • Table 1 shows the characteristics of this iron-containing sulfur-introduced titanium oxide f 2 and the photocatalytic performance measurement results.
  • titanium tetrachloride aqueous solution titanium concentration: 4% by mass
  • iron chloride FeC 1 3 ⁇ H 2 o (Made by Mitsuru Pure Chemical Co., Ltd.)
  • the aqueous solution was added so that the amount of iron atom was 0.05 parts by mass with respect to 100 parts by mass of titanium tetrachloride when converted to Tio 2 , and then heated to 60 ° C.
  • aqueous ammonia was added all at once, and neutralized at 60 ° C. for 1 hour so that the pH of the reaction system was maintained at 7.4 to obtain a slurry.
  • This slurry was heated at 110 for 24 hours to evaporate and remove water to obtain a solid.
  • the obtained solid was washed with pure water twice and filtered twice. It was dried at 10 hours for 24 hours to obtain an iron-containing titanium salt aluminum neutralized product a6.
  • a heat-treated product b 6 was prepared in the same manner as in Example 1, except that the iron-containing titanium salt alkaline neutralized product a 1 was used instead of the iron-containing titanium salt alkaline neutralized product a 6.
  • Example 7 Example except that the heat-treated product b 6 is used instead of the heat-treated product b 1 In the same manner as in Example 1, iron-containing sulfur-introduced titanium oxide c6 was obtained. Table 2 shows the measurement results of the characteristics and photocatalytic performance of the iron-containing sulfur-introduced titanium oxide c6. [Example 7]
  • Iron chloride (Fe C 1 3 ⁇ H 2 0 (Wako Pure Chemical Industries, Ltd.)) Aqueous solution of iron tetrachloride relative to 100 parts by mass of titanium tetrachloride when converted to TiO 2 Instead of putting it in mass parts, the iron chloride (Fe C 1 3 ⁇ H 2 0 (manufactured by Wako Pure Chemical Industries, Ltd.)) aqueous solution was used to convert titanium tetrachloride into Ti O 2 at 1 00
  • An iron-containing titanium salt alkali neutralized product a7 was obtained in the same manner as in Example 6 except that the iron atom was added in an amount of 0.1 part by mass with respect to part by mass.
  • a heat-treated product b7 was obtained in the same manner as in Example 1, except that the iron-containing titanium salt alkali neutralized product a1 was used instead of the iron-containing titanium salt alkaline neutralized product a7. It was.
  • An iron-containing sulfur-introduced titanium oxide c7 was obtained in the same manner as in Example 1 except that the heat-treated product b1 was used instead of the heat-treated product b1.
  • Table 2 shows the measurement results of characteristics and photocatalytic performance of this iron-containing sulfur-introduced titanium oxide c7.
  • Comparative Example 3 Put the sulfur-containing titanium oxide f 1 obtained in Comparative Example 1 in pure water, stir it, and then add an aqueous solution of iron chloride (Fe C 1 3 ⁇ H 2 0 (manufactured by Wako Pure Chemical Industries, Ltd.)) The titanium oxide fl contained was added so as to be 0.05 parts by mass of iron atoms with respect to 100 parts by mass when converted to Ti 0 2 and stirred for 30 minutes to obtain a suspension. After stirring, the obtained suspension was filtered, and the filtered powder was dried at 110 ° C. for 12 hours to obtain a copper-colored sulfur-containing titanium oxide g 3. Table 2 shows the measurement results of the characteristics and photocatalytic performance of this sulfur-containing titanium oxide powder g3.
  • Iron chloride Fe C 1 3 ⁇ H 2 O (manufactured by Wako Pure Chemical Industries, Ltd.) Sulfur-containing ⁇ "Titanium oxide f 1 when converted to TiO 2 , iron atoms with respect to 100 parts by mass Instead of adding 0.05 parts by mass, iron chloride (Fe C 1 3 'H 2 O (manufactured by Wako Pure Chemical Industries, Ltd.)) aqueous solution, sulfur-containing titanium oxide f 1 T i O 2 A bronze sulfur-containing titanium oxide g 4 was obtained in the same manner as in Comparative Example 3 except that the iron atom was added in an amount of 0.1 part by mass with respect to 100 parts by mass when converted. Table 2 shows the measurement results of characteristics and photocatalytic performance of this sulfur-containing titanium oxide g4.
  • the iron-containing titanium salt Al force neutralization obtained by adding an iron compound to the slurry containing the neutralized titanium salt alkali obtained by neutralizing the titanium salt with Al force
  • the iron-containing sulfur-introduced titanium oxide obtained by reacting the product with the sulfur compound has the best decomposition performance into carbon dioxide gas, and then the titanium salt in the titanium salt solution containing the iron compound.
  • the iron-containing titanium salt alkali neutralized product obtained by neutralization with Al is reacted with the sulfur compound.
  • the iron-containing sulfur-introduced titanium oxide obtained in this way had good decomposition performance into carbon dioxide.
  • a heat-treated product b8 was obtained in the same manner as in Example 4 except that the heat treatment temperature in the heat treatment was changed to 350 ° C instead of 250 ° C.
  • Example 9 An iron-containing sulfur-introduced titanium oxide c8 was obtained in the same manner as in Example 4 except that the heat-treated product b4 was used instead of the heat-treated product b4. Table 3 shows the measurement results of characteristics and photocatalytic performance of this iron-containing sulfur-introduced titanium oxide c8.
  • a heat-treated product b9 was obtained in the same manner as in Example 4 except that the heat treatment temperature in the heat treatment was changed to 300 ° C instead of 250 ° C.
  • An iron-containing sulfur-introduced titanium oxide c9 was obtained in the same manner as in Example 4 except that the heat-treated product b9 was used instead of the heat-treated product b4.
  • Table 3 shows the measurement results of characteristics and photocatalytic performance of this iron-containing sulfur-introduced titanium oxide c9.
  • a heat-treated product b 10 was obtained in the same manner as in Example 4 except that the heat treatment temperature in the heat treatment was changed to 200 ° C. instead of 250 ° C.
  • Example 1 An iron-containing sulfur-introduced titanium oxide c 10 was obtained in the same manner as in Example 4 except that the heat-treated product b 4 was used instead of the heat-treated product b 4.
  • Table 3 shows the measurement results of the characteristics and photocatalytic performance of this iron-containing sulfur-introduced titanium oxide c10.
  • Example 4 Manufacture of iron-containing titanium salt aluminum neutralized product, heat treatment and calcination
  • Example 4 except that the calcination temperature in the calcination was set to 4-50 ° C instead of 400 ° C.
  • iron-containing sulfur-introduced titanium oxide c 1 1 was obtained.
  • Table 3 shows the measurement results of the characteristics and photocatalytic performance of this iron-containing sulfur-introduced titanium oxide c 11.
  • Example 4 The same procedure as in Example 4 was performed to obtain an iron-containing titanium salt aluminum neutralized product a 1 2.
  • the iron-containing titanium salt aluminum strength neutralized product a 1 2 and thiourea pulverized in a mortar are converted to Ti 0 2 of the iron-containing titanium salt aluminum strength neutralized product a 12 It mixed so that the mass of a sulfur atom might be 5 mass parts with respect to a mass part, and the mixture was obtained.
  • the mixture was heat-treated at 300 ° C. for 3 hours under atmospheric pressure, and the fired product obtained was pulverized with a ball mill to obtain the heat-treated product b 12.
  • the iron content was 36 ° C. and 36 ° C.
  • the mass of sulfur atoms is 40 parts by mass with respect to 100 parts by mass of the heat-treated product b 1 2 and thiourea pulverized in a mortar when the heat-treated product b 1 2 is converted to Ti 0 2 So that a mixture was obtained.
  • the mixture was baked at 400 ° C. for 2.5 hours in a baking furnace.
  • the obtained fired product was pulverized with a ball mill, washed with pure water, and dried at 110 ° C. to obtain yellow to yellow-orange iron-containing sulfur-introduced titanium oxide c 12.
  • Table 4 shows the measurement results of characteristics and photocatalytic performance of this iron-containing sulfur-introduced titanium oxide c12.
  • the heating was carried out in the same manner as in Example 12 except that the iron-containing titanium salt aluminum strength neutralized product a 1 2 was used instead of the iron-containing titanium salt aluminum strength neutralized product a 1 3.
  • the treated product b 1 3 was obtained.
  • the mass of sulfur atoms is 40 parts by mass with respect to 100 parts by mass of the heat-treated product b 1 2 and thiourea pulverized in a mortar when the heat-treated product b 1 2 is converted to Ti 0 2
  • the heat-treated product b 1 3 is converted to TiO 2
  • the mass of sulfur atoms is 20 parts by mass with respect to 100 parts by mass of the obtained iron
  • the iron-containing sulfur-introduced titanium oxide c 1 3 is obtained. It was.
  • Table 4 shows the measurement results of the characteristics and photocatalytic performance of this iron-containing sulfur-introduced titanium oxide c13.
  • Example 4 The same procedure as in Example 4 was performed to obtain an iron-containing titanium salt aluminum neutralized product a 1 4.
  • the heating was carried out in the same manner as in Example 12 except that the iron-containing titanium salt aluminum strength neutralized product a 1 2 was used instead of the iron-containing titanium salt aluminum strength neutralized product a 1 4.
  • the treated product b 1 4 was obtained.
  • the iron-containing sulfur-introduced titanium oxide c 14 was obtained in the same manner as in Example 13 except that the firing temperature in the firing was changed to 400 ° C. instead of 450 ° C.
  • Table 4 shows the measurement results of characteristics and photocatalytic performance of this iron-containing sulfur-introduced titanium oxide c14.
  • the iron-containing titanium salt alkaline product a 15 is used, and thiourea is added to the iron-containing titanium salt alkaline product a 1 2.
  • the so mass of sulfur atom relative to 1 00 parts by weight when T i O 2 converted is 5 parts by weight, instead of mixing, the Chio urea, iron-containing titanium salts Al Chikarari neutralization Except for mixing so that the mass of sulfur atoms is 10 parts by mass with respect to 100 parts by mass of product a 15 converted to Ti O 2 , the same procedure as in Example 12 was performed. And the heat-treated product b 15 was obtained.
  • An iron-containing sulfur-introduced titanium oxide c 15 was obtained in the same manner as in Example 14 except that the heat-treated product b 15 was used instead of the heat-treated product b 14.
  • Table 4 shows the measurement results of characteristics and photocatalytic performance of this iron-containing sulfur-introduced titanium oxide c 15.
  • Example 12 heat treatment was carried out in the same manner as in Example 12 except that the iron-containing titanium salt Al neutralized product d 5 was used. 5 was obtained.
  • Example 14 A treatment was performed in the same manner as in Example 14 except that the heating compound e 5 was used instead of the heating compound b 14 to obtain iron-containing sulfur-introduced titanium oxide f 5.
  • Table 4 shows the measurement results of the characteristics and photocatalytic performance of this iron-containing sulfur-introduced titanium oxide f5.
  • the iron-containing titanium salt A heat-treated product e6 was obtained in the same manner as in Example 12 except that the neutralized product d6 was used.
  • An iron-containing sulfur-introduced titanium oxide f6 was obtained in the same manner as in Example 14 except that the heat-treated product e6 was used instead of the heat-treated product b14.
  • Table 4 shows the measurement results of characteristics and photocatalytic performance of this iron-containing sulfur-introduced titanium oxide f6.
  • the heat-treated product b 1 was prepared in the same manner as in Example 12 except that the iron-containing titanium salt alkaline neutralized product a 1 6 was used instead of the iron-containing titanium salt alkaline neutralized product a 1 2. 6 was obtained.
  • An iron-containing sulfur-introduced titanium oxide h 16 was obtained in the same manner as in Example 12 except that the heat-treated product b 1 6 was used instead of the heat-treated product b 1 2.
  • the obtained iron-containing sulfur-introduced titanium oxide h 1 6 was put into pure water, stirred, and an aqueous solution of iron chloride (Fe C 1 3 ⁇ H 2 O (manufactured by Wako Pure Chemical Industries, Ltd.))
  • the sulfur-introduced titanium oxide h 16 is added to 100 parts by mass when converted to Ti 0 2 so that it becomes 0.05 parts by mass as iron atoms, and stirred for 30 minutes to obtain a suspension. It was.
  • Table 5 shows the measurement results of characteristics and photocatalytic performance of the iron-containing sulfur-introduced titanium oxide c 16.
  • An iron-containing sulfur-introduced titanium oxide h 1 7 was obtained in the same manner as in Example 13 except that the heat-treated product b 1 7 was used instead of the heat-treated product b 1 3.
  • the iron-containing sulfur-introduced titanium oxide h 1 7 is put into pure water, stirred, and an aqueous solution of iron chloride (FeC 1 3 ⁇ H 2 O (manufactured by Wako Pure Chemical Industries, Ltd.)) Sulfur-introduced titanium oxide h 17 was added to 100 parts by mass when converted to Ti O 2 so that the amount was 0.1 parts by mass as iron atoms, and stirred for 30 minutes to obtain a suspension. .
  • Example 4 The same procedure as in Example 4 was performed to obtain an iron-containing titanium salt aluminum neutralized product a 1 8.
  • the heat-treated product b 1 was prepared in the same manner as in Example 12 except that the iron-containing titanium salt alkaline neutralized product a 1 8 was used instead of the iron-containing titanium salt alkaline neutralized product a 1 2. 8 got.
  • An iron-containing sulfur-introduced titanium oxide h 1 8 was obtained in the same manner as in Example 13 except that the heat-treated product b 1 8 was used instead of the heat-treated product b 1 3.
  • the iron-containing sulfur-introduced titanium oxide h 1 8 is put into pure water, stirred, and an aqueous solution of iron chloride (Fe C 1 3 ⁇ H 2 O (manufactured by Wako Pure Chemical Industries, Ltd.)) and 0.0 3 parts by weight of iron atoms of sulfur introduced titanium oxide h 1 8 and against the 1 0 0 parts by weight when T i O 2 converted - so as to put, stirred for 30 minutes, A suspension was obtained.
  • Table 5 shows the measurement results of the properties and photocatalytic performance of this iron-introduced sulfur-containing titanium oxide c 18.
  • titanium tetrachloride aqueous solution titanium concentration: 4% by mass
  • iron chloride Fe C 1 3 ⁇ H 2 O (Made by Mitsuru Pure Chemical Co., Ltd.)
  • Aqueous solution was put in an amount of 0.05 parts by mass as iron atoms with respect to 100 parts by mass of titanium tetrachloride when converted to Ti O 2 , and then heated to 60 ° C. Heated. Next, ammonia water was added all at once, and the mixture was neutralized at 60 for 1 hour so that the pH of the reaction system was maintained at 7.4 to obtain a slurry.
  • This slurry was heated at 110 ° C. for 24 hours to evaporate and remove water to obtain a solid, and the obtained solid was washed twice with pure water and filtered twice. It was dried at 110 ° C for 24 hours to obtain a neutralized iron-containing titanium salt.
  • the heat-treated product was obtained in the same manner as in Example 13 except that the iron-containing titanium salt aluminum strength neutralized product a 1 3 was used instead of the iron-containing titanium salt aluminum strength neutralized product a 19. b 1 9 was obtained.
  • An iron-containing sulfur-introduced titanium oxide c 19 was obtained in the same manner as in Example 13 except that the heat-treated product b 19 was used instead of the heat-treated product b 13.
  • Table 5 shows the characteristics of this iron-containing sulfur-introduced titanium oxide c 19 and the measurement results of its photocatalytic performance.
  • a round bottom flask equipped with a stirrer was charged with 1 000 g of pure water and then heated to 60 ° C. Titanium tetrachloride aqueous solution (titanium concentration: 6% by mass) 2 00 g and ammonia water (28%) diluted 5 times with pure water 2 05 7 g Over time, dripping and neutralization were performed.
  • An iron-containing sulfur-introduced titanium oxide c20 was obtained in the same manner as in Example 1 except that the heat-treated product b1 was used instead of the heat-treated product b1.
  • Table 6 shows the characteristics of this iron-containing sulfur-introduced titanium oxide c 20 and the measurement results of its photocatalytic performance.
  • Example 2 1 A round bottom flask equipped with a stirrer was charged with 1 000 g of pure water and then heated to 60 ° C. Titanium tetrachloride aqueous solution (titanium concentration: 6% by mass) 20 00 g and ammonia water (28%) diluted 5 times with pure water 2057 g, both of which take 3 hours to neutralize Then, dripping and neutralization were performed. This liquid was heated at 110 ° C. for 24 hours to evaporate and remove water, and then the obtained solid was washed with pure water and filtered twice. The filtered powder was dried at 110 ° C. for 24 hours.
  • Example 2 The same procedure as in Example 1 was conducted except that the iron-containing titanium salt alkali neutralized product a 2 1 was used instead of the iron-containing titanium salt alkali neutralized product a 1, and the heat-treated product b 2 1 was used. Obtained.
  • the iron content was 0.07% by mass.
  • An iron-containing sulfur-introduced titanium oxide c 2 1 was obtained in the same manner as in Example 1 except that the heat-treated product b 2 1 was used instead of the heat-treated product b 1.
  • Table 6 shows the characteristics of this iron-containing sulfur-introduced titanium oxide c 21 and the photocatalytic performance measurement results.
  • titanium oxide having high photocatalytic activity with visible light can be produced.

Abstract

Disclosed is a method for producing a metal-containing sulfur-introduced titanium oxide, which is characterized by comprising a firing step for obtaining a metal-containing sulfur-introduced titanium oxide by firing a mixture of a metal-containing raw material titanium oxide and a sulfur compound. This method for producing a metal-containing sulfur-introduced titanium oxide is further characterized in that the metal content in the metal-containing raw material titanium oxide is 0.03-0.15 part by mass as metal atoms, relative to 100 parts by mass of the metal-containing raw material titanium oxide in terms of TiO2. This method enables to produce a metal-introduced sulfur-containing titanium oxide which exhibits high photocatalytic activity under visible light. Also disclosed is a metal-containing sulfur-introduced titanium oxide.

Description

明細書  Specification
金属含有硫黄導入酸化チタンの製造方法 および金属含有硫黄導入酸化チタン 技術分野  Method for producing metal-containing sulfur-introduced titanium oxide and metal-containing sulfur-introduced titanium oxide
本発明は、 可視光型光触媒や光増感型太陽電池などに用いられる金属 含有硫黄導入酸化チタンの製造方法に関する。 背景技術  The present invention relates to a method for producing a metal-containing sulfur-introduced titanium oxide used for a visible light photocatalyst, a photosensitized solar cell, or the like. Background art
酸化チタン粉末は、 白色顔料として古くから利用されており、 近年は 化粧品などの紫外線遮蔽材料、 光触媒、 コンデンサ、 サーミスタの構成 材料あるいはチタン酸バリ ゥムの原料等電子材料に用いられる焼結材料 などに広く利用され、 また、 最近は、 色素増感型酸化チタンの電極など への適用の研究開発がなされている。 特にここ数年、 光触媒としての利 用が盛んに試みられており、 光触媒反応の用途開発が盛んに行われてい る。 この酸化チタン光触媒の用途は非常に多岐に亘つており、 水の分解 による水素の発生、 酸化還元反応を利用した有機化合物の合成、 排ガス 処理、 空気清浄、 防臭、 殺菌、 抗菌、 水処理、 照明機器等の汚れ防止等、 数多くの用途開発が行われている。  Titanium oxide powder has long been used as a white pigment. In recent years, it has been used as an ultraviolet shielding material for cosmetics, photocatalysts, capacitors, thermistors, or sintered materials used in electronic materials such as raw materials for barium titanate. Recently, research and development of application of dye-sensitized titanium oxide to electrodes, etc. has been made. In particular, in recent years, the use as a photocatalyst has been actively attempted, and the use development of the photocatalytic reaction has been actively conducted. This titanium oxide photocatalyst has a wide variety of uses. Generation of hydrogen by water decomposition, synthesis of organic compounds using redox reaction, exhaust gas treatment, air purification, deodorization, sterilization, antibacterial, water treatment, lighting. Numerous applications have been developed, such as preventing contamination of equipment.
しかしながら、 酸化チタンは可視光付近の波長領域において大きな屈 折率を示すため、 可視光領域では殆ど光吸収は起こらない。 屋内での蛍 光灯などの下での利用を考えると、 蛍光灯のスぺク トルは殆どが 4 0 0 n m以上であるため、 光触媒として十分な特性を発現することはできな い。 そこで可視光領域での触媒活性を発現させることができる、 より利 用性の高い高活性の光触媒の開発が行なわれている。  However, since titanium oxide shows a large refractive index in the wavelength region near visible light, light absorption hardly occurs in the visible light region. Considering the use under fluorescent lamps indoors, most of the spectrum of fluorescent lamps is 400 nm or more, so it is not possible to develop sufficient characteristics as a photocatalyst. In view of this, the development of more highly active photocatalysts that can exhibit catalytic activity in the visible light region is underway.
近年、 従前の金属を酸化チタンにドープした光触媒の不十分な触媒活 性を改善するものとして、 金属原子の一部を硫黄で置換した硫黄含有酸 化チタン粉末が開示されている(特開 2004 - 1 4 30 3 2号公報)。 また、 硫黄含有酸化チタンのトルエンの分解効率を上げるため、 金属陽 イオン (F e、 C u、 I n、 W、 P b、 V、 B i、 N b、 T i、 S r、 Z n、 B a、 C a、 K、 S n、 Z rからなる群から選ばれた少なく とも 1つの金属原子がイオン化されたもの) を導入した硫黄含有酸化チタン が示されている (特開 200 6— 8 20 7 1号公報) 。 In recent years, the insufficient catalytic activity of photocatalysts doped with titanium oxide by conventional metals In order to improve the properties, a sulfur-containing titanium oxide powder in which a part of metal atoms is substituted with sulfur has been disclosed (Japanese Patent Laid-Open No. 2004-143032). In order to increase the decomposition efficiency of sulfur-containing titanium oxide toluene, metal cations (F e, Cu, In, W, Pb, V, Bi, Nb, Ti, Sr, Zn, Sulfur-containing titanium oxide into which at least one metal atom selected from the group consisting of Ba, Ca, K, Sn, and Zr is ionized is disclosed (Japanese Patent Laid-Open No. 2006-6-). 8 20 7 1).
(特許文献 1) 特開 2004— 1 4 30 3 2号 (特許請求の範囲) (特許文献 2) 特開 2006— 8 20 7 1号 (特許請求の範囲) しかしながら、 本発明者らの検討によれば、 特開 200 6— 8 20 7 1号の実施例に記載の製造方法では、 十分な光触媒活性を有する硫黄含 有酸化チタンが得られないという問題点があった。  (Patent Document 1) JP 2004-1 4 30 3 2 (Claims) (Patent Document 2) JP 2006-8 20 7 1 (Claims) According to the production method described in the examples of JP-A-2006-6-2071, there is a problem in that sulfur-containing titanium oxide having sufficient photocatalytic activity cannot be obtained.
従って、 本発明の目的は、 可視光での高い光触媒活性を有する、 金属 を含有する硫黄導入酸化チタン (以下、 金属を含有する硫黄導入酸化チ タンを、 金属含有硫黄導入酸化チタンとも記載する。 ) の製造方法およ び金属含有硫黄導入酸化チタンを提供することにある。 発明の開示  Therefore, an object of the present invention is to describe a metal-containing sulfur-introduced titanium oxide (hereinafter referred to as a metal-containing sulfur-introduced titanium oxide) having a high photocatalytic activity under visible light. ) And a metal-containing sulfur-introduced titanium oxide. Disclosure of the invention
本発明者らは、 上記従来技術における課題を解決すべく、 鋭意研究を 重ねた結果、 金属を導入するために用いる金属化合物を、 酸化チタンに 含有させる時期により、 得られる金属含有硫黄導入酸化チタンの光触媒 活性に差が出ること、 具体的には、 チタン塩の加水分解物又はアルカリ 中和物と、 硫黄化合物との混合物を焼成する前に、 該チタン塩の加水分 解物又はアルカリ中和物に予め、 金属を含有させておく と、 高い光触媒 活性を有する金属含有硫黄導入酸化チタンが得られることを見出し、 本 発明を完成させた。 すなわち、 本発明 ( 1 ) は、 金属含有原料酸化チタンと硫黄化合物と の混合物を焼成し、金属含有硫黄導入酸化チタンを得る焼成工程を有し、 該金属含有 料酸化チタン中の金属含有量が、 τ i o 2換算したとき の該金属含有原料酸化チタン 1 0 0質量部に対して、金属原子として 0 . 0 3〜0 . 1 5質量部であること、 As a result of intensive research to solve the above-described problems in the prior art, the present inventors have obtained a metal-containing sulfur-introduced titanium oxide depending on the time when the metal compound used for introducing the metal is contained in the titanium oxide. A difference in the photocatalytic activity of the titanium salt. Specifically, before calcining the mixture of the hydrolyzate or alkali neutralized product of the titanium salt and the sulfur compound, the hydrolyzed product or alkali neutralized product of the titanium salt. It has been found that a metal-containing sulfur-introduced titanium oxide having high photocatalytic activity can be obtained by previously containing a metal in the product, and the present invention has been completed. That is, the present invention (1) has a firing step of firing a mixture of a metal-containing raw material titanium oxide and a sulfur compound to obtain a metal-containing sulfur-introduced titanium oxide, and the metal content in the metal-containing material titanium oxide is , With respect to 10 parts by mass of the metal-containing raw material titanium oxide when converted to τ io 2 , the metal atom is 0.03 to 0.15 parts by mass,
を特徵とする金属含有硫黄導入酸化チタンの製造方法を提供するもので ある。 The present invention provides a method for producing a metal-containing sulfur-introduced titanium oxide characterized by the following.
また、 本発明 (2 ) は、 金属含有チタン塩加水分解 Zアルカリ中和物 と硫黄化合物との混合物を得る焼成原料混合物調製工程と、 該金属含有 チタン塩加水分解 Zアルカリ中和物と該硫黄化合物との混合物を、 焼成 し、 金属含有硫黄導入酸化チタンを得る焼成工程と、 を有し、  In addition, the present invention (2) includes a baking raw material mixture preparation step for obtaining a mixture of a metal-containing titanium salt hydrolyzed Z alkali neutralized product and a sulfur compound, the metal-containing titanium salt hydrolyzed Z alkali neutralized product and the sulfur Calcining a mixture with the compound to obtain a metal-containing sulfur-introduced titanium oxide, and
該焼成原料混合物調製工程が、 チタン塩を加水分解またはアル力リ中 和して、 チタン塩加水分解 Zアル力リ中和物含有スラリ一を調製する加 水分解 Zアル力リ中和処理と、 該チタン塩加水分解ノアルカリ中和物含 有スラリーに、 金属化合物を加え、 撹拌して、 金属含有チタン塩加水分 解/アル力リ中和物を得る金属化合物撹拌混合処理と、 を行う工程であ The calcining raw material mixture preparation step comprises hydrolyzing Z-al strength re-neutralization treatment to prepare a slurry containing titanium salt hydrolyzed Z-al strength neutralized product by hydrolyzing or neutralizing titanium salt. A step of adding a metal compound to the slurry containing the hydrolyzed titanium salt hydrolyzed neutralized product and stirring to obtain a metal-containing titanium salt hydrolyzed / alternative neutralized product. In
•9、 • 9,
該金属化合物撹拌混合処理で該金属化合物を加える量が、 T i 02換 算したときの該チタン塩加水分解ノアルカリ中和物 1 0 0質量部に対し て、 金属原子として 0 . 0 3〜0 . 1 5質量部となる量であり、 The amount of the metal compound added in the stirring and mixing treatment of the metal compound is from 0.03 to 0.5 parts by weight as a metal atom with respect to 100 parts by mass of the titanium salt hydrolyzed neutralized product when converted to Ti 0 2 . 0.15 in an amount of 5 parts by mass,
且つ、 該加水分解 Zアル力リ中和処理を行う前から該金属化合物撹拌 混合処理を行った後までの間に、 硫黄化合物を混合すること、  And mixing the sulfur compound between before the hydrolysis Z-al force neutralization treatment and after the metal compound stirring and mixing treatment,
を特徵とする金属含有硫黄導入酸化チタンの製造方法を提供するもので ある。 The present invention provides a method for producing a metal-containing sulfur-introduced titanium oxide characterized by the following.
また、 本発明 (3 ) は、 金属含有チタン塩加水分解 Zアルカリ中和物 の加熱処理物と硫黄化合物との混合物を得る焼成原料混合物調製工程と、 該加熱処理物と該硫黄化合物との混合物を、 焼成し、 金属含有硫黄導入 酸化チタンを得る焼成工程と、 を有し、 Further, the present invention (3) includes a baking raw material mixture preparation step for obtaining a mixture of a heat-treated product of a metal-containing titanium salt hydrolyzed Z alkali neutralized product and a sulfur compound, Calcining the mixture of the heat-treated product and the sulfur compound to obtain a metal-containing sulfur-introduced titanium oxide, and
該焼成原料混合物調製工程が、 チタン塩を加水分解またはアル力リ中 和して、 チタン塩加水分解/アル力リ中和物含有スラリーを調製する加 水分解/アルカリ中和処理と、 該チタン塩加水分解/アルカリ中和物含 有スラリーに、 金属化合物を加え、 撹拌して、 金属含有チタン塩加水分 解 アルカリ中和物を得る金属化合物撹拌混合処理と、 該金属含有チタ ン塩 アルカリ中和物を加熱処理して、 加熱処理物を得る加熱処理と、 を行う工程であり、  The calcination raw material mixture preparation step comprises hydrolyzing / alkali neutralizing treatment to prepare a slurry containing titanium salt hydrolyzed / al strength neutralized product by hydrolyzing or neutralizing titanium salt. Metal compound is added to slurry containing salt hydrolysis / alkali neutralized product and stirred to obtain metal-containing titanium salt hydrolyzed metal compound stirring and mixing treatment to obtain alkali-neutralized product, and the metal-containing titanium salt in alkali Heat treatment of a Japanese product to obtain a heat-treated product, and
該金属化合物撹拌混合処理で該金属化合物を加える量が、 T i O 2換 算したときの該チタン塩加水分解 アルカリ中和物 1 0 0質量部に対し て、 金属原子として 0 . 0 3〜0 . 1 5質量部となる量であり、 且つ、 該加水分解 アルカリ中和処理を行う前から該加熱処理を行つ た後までの間に、 硫黄化合物を混合すること、 The amount of the metal compound added in the stirring and mixing treatment of the metal compound is from 0.03 to 0.5 parts by weight as the metal atom with respect to 100 parts by mass of the hydrolyzed alkali salt of the titanium salt when converted to Ti 2 O 2 . 0.1 5 parts by mass, and mixing the sulfur compound between before the hydrolysis and alkali neutralization treatment and after the heat treatment,
を特徴とする金属含有硫黄導入酸化チタンの製造方法を提供するもので ある。 The present invention provides a method for producing metal-containing sulfur-introduced titanium oxide.
また、 本発明 (4 ) は、 金属含有チタン塩加水分解/アルカリ中和物 と硫黄化合物との混合物を得る焼成原料混合物調製工程と、 該金属含有 チタン塩加水分解 Zアル力リ中和物と該硫黄化合物との混合物を、 焼成 し、 金属含有硫黄導入酸化チタンを得る焼成工程と、 を有し、  Further, the present invention (4) includes a calcining raw material mixture preparation step for obtaining a mixture of a metal-containing titanium salt hydrolyzed / alkali neutralized product and a sulfur compound, Calcining the mixture with the sulfur compound to obtain a metal-containing sulfur-introduced titanium oxide, and
該焼成原料混合物調製工程が、 金属化合物の存在下で、 チタン塩を加 水分解またはアル力リ中和して、 金属含有チタン塩加水分解ノアルカリ 中和物を得る加水分解 アルカリ中和処理を行う工程であり、  In the firing raw material mixture preparation step, hydrolysis and alkali neutralization treatment is performed by hydrolyzing or neutralizing titanium salt in the presence of a metal compound to obtain a metal-containing titanium salt hydrolyzed neutralized product. Process,
該加水分解ノアルカリ中和処理で存在させる該金属化合物の量が、 T i O 2換算したときのチタン塩 1 0 0質量部に対して、 金属原子として 0 . 0 3〜0 . 1 5質量部となる量であり、 且つ、 該加水分解 Zアル力リ中和処理を行う前から該加水分解 Zアル 力リ中和処理を行った後までの間に、 硫黄化合物を混合すること、 を特徴とする金属含有硫黄導入酸化チタンの製造方法を提供するもので ある。 The amount of the metal compound be present in the hydrolysis Noarukari neutralization process, with respect to the titanium salt 1 0 0 parts by weight when T i O 2 converted, 0 as the metal atom. 0 3 to 0.1 5 parts by weight The amount of In addition, a sulfur-containing compound is mixed between before the hydrolysis Z-al strength re-neutralization treatment and after the hydrolysis Z-al strength re-neutralization treatment. A method for producing titanium oxide is provided.
また、 本発明 (5 ) は、 金属含有チタン塩加水分解/アルカリ中和物 の加熱処理物と硫黄化合物との混合物を得る焼成原料混合物調製工程と、 該加熱処理物と該硫黄化合物との混合物を、 焼成し、 金属含有硫黄導入 酸化チタンを得る焼成工程と、 を有し、  Further, the present invention (5) includes a baking raw material mixture preparation step for obtaining a mixture of a heat-treated product of metal-containing titanium salt hydrolyzed / alkali neutralized product and a sulfur compound, and a mixture of the heat-treated product and the sulfur compound. Firing step to obtain metal-containing sulfur-introduced titanium oxide, and
該焼成原料混合物調製工程が、 金属化合物の存在下で、 チタン塩を加 水分解またはアルカリ中和して、 チタン塩加水分解 Zアルカリ中和物を 得る加水分解 Zアル力リ中和処理と、 該金属含有チタン塩加水分解 ア ルカリ中和物を加熱処理して、 加熱処理物を得る加熱処理と、 を行うェ 程であり、  In the presence of the metal compound, the firing raw material mixture preparation step comprises hydrolyzing or alkali neutralizing the titanium salt to obtain a titanium salt hydrolyzed Z alkali neutralized product. Heat-treating the metal-containing titanium salt hydrolysis alkali neutralized product to obtain a heat-treated product, and
該チタン塩加水分解/アル力リ中和処理で存在させる該金属化合物の 量が、 T i O 2換算したときのチタン塩 1 0 0質量部に対して、 金属原 子として 0 . 0 3〜0 . 1 5質量部となる量であり、 The amount of the metal compound be present in the titanium salt hydrolysis / Al Chikarari neutralization process, with respect to the titanium salt 1 0 0 parts by weight when T i O 2 converted, 0.0 3 metal atom 0.15 in an amount of 5 parts by mass,
且つ、 該加水分解 Zアル力リ中和処理を行う前から該加熱処理を行つ た後までの間に、 硫黄化合物を混合すること、  And mixing the sulfur compound between before the hydrolysis and the neutralization treatment until after the heat treatment,
を特徴とする金属含有硫黄導入酸化チタンの製造方法を提供するもので ある。 The present invention provides a method for producing metal-containing sulfur-introduced titanium oxide.
また、 本発明 (6 ) は、 金属含有チタン塩加水分解 Zアルカリ中和物 と硫黄化合物との混合物を得る焼成原料混合物調製工程と、 該金属含有 チタン塩加水分解 Zアル力リ中和物と該硫黄化合物との混合物を、 焼成 し、 金属含有硫黄導入酸化チタンを得る焼成工程と、 を有し、  In addition, the present invention (6) includes a firing raw material mixture preparation step for obtaining a mixture of a metal-containing titanium salt hydrolyzed Z alkali neutralized product and a sulfur compound, Calcining the mixture with the sulfur compound to obtain a metal-containing sulfur-introduced titanium oxide, and
該焼成原料混合物調製工程が、 金属化合物の存在下で、 該チタン塩を 加水分解またはアル力リ中和して、 金属含有チタン塩加水分解 Zアル力 リ中和物含有スラリ一を調製する加水分解 Zアル力リ中和処理と、 該金 属含有チタン塩加水分解 アルカリ中和物含有スラリ一に、 金属化合物 を加え、 撹拌して、 金属含有チタン塩加水分解 Zアルカリ中和物を得る 金属化合物撹拌混合処理と、 を行う工程であり、 The firing raw material mixture preparation step includes hydrolyzing or neutralizing the titanium salt in the presence of a metal compound to hydrolyze the metal-containing titanium salt. Hydrolysis to prepare re-neutralized product-containing slurry Z metal strength neutralization treatment and metal-containing titanium salt hydrolysis Add alkali metal neutralized product-containing slurry, stir, metal-containing titanium A salt hydrolysis Z-alkali neutralized product to obtain a metal compound stirring and mixing process,
該加水分解 Zアル力リ中和処理で存在させる該金属化合物及び該金属 化合物撹拌混合処理で加える該金属化合物の合計量が、 τ i o 2換算し たときのチタン塩 1 0 0質量部に対して、金属原子として 0 . 0 3〜0 . 1 5質量部となる量であり、 The total amount of the metal compound to be present in the hydrolysis and Z-force neutralization treatment and the metal compound to be added in the metal compound stirring and mixing treatment is 100 parts by mass with respect to 100 parts by mass of τ io 2 The amount of metal atoms is 0.03 to 0.15 parts by mass,
且つ、 該加水分解 Zアル力リ中和処理を行う前から該金属化合物撹拌 混合処理を行った後までの間に、 硫黄化合物を混合すること、  And mixing the sulfur compound between before the hydrolysis Z-al force neutralization treatment and after the metal compound stirring and mixing treatment,
を特徴とする金属含有硫黄導入酸化チタンの製造方法を提供するもので ある。 The present invention provides a method for producing metal-containing sulfur-introduced titanium oxide.
また、 本発明 (7 ) は、 金属含有チタン塩加水分解/アルカリ中和物 の加熱処理物と硫黄化合物との混合物を得る焼成原料混合物調製工程と、 該加熱処理物と該硫黄化合物との混合物を、 焼成し、 金属含有硫黄導入 酸化チタンを得る焼成工程と、 を有し、  Further, the present invention (7) includes a calcined raw material mixture preparation step for obtaining a mixture of a heat-treated product of metal-containing titanium salt hydrolyzed / alkali neutralized product and a sulfur compound, and a mixture of the heat-treated product and the sulfur compound. Firing step to obtain metal-containing sulfur-introduced titanium oxide, and
該焼成原料混合物調製工程が、 金属化合物の存在下で、 該チタン塩を 加水分解またはアル力リ中和して、 金属含有チタン塩加水分解 Zアル力 リ中和物含有スラリーを調製する加水分解ノアルカリ中和処理と、 該金 属含有チタン塩加水分解 アルカリ中和物含有スラリーに、 金属化合物 を加え、 撹拌して、 金属含有チタン塩加水分解 アルカリ中和物を得る 金属化合物撹拌混合処理と、 該金属含有チタン塩加水分解 アルカリ中 和物を加熱処理し、 加熱処理物を得る加熱処理と、 を行う工程であり、 該加水分解/アル力リ中和処理で存在させる該金属化合物及び該金属 化合物撹拌混合処理で加える該金属化合物の合計量が、 T i O 2換算し たときのチタン塩 1 0 0質量部に対して、金属原子として 0 . 0 3〜0 . 1 5質量部となる量であり、 In the presence of the metal compound, the baking raw material mixture preparation step hydrolyzes or neutralizes the titanium salt to hydrolyze the metal-containing titanium salt hydrolyzed Z-alloy neutralized product-containing slurry. Metal alkali-containing neutralization treatment, metal-containing titanium salt hydrolysis, alkali-neutralized product-containing slurry, a metal compound is added and stirred to obtain a metal-containing titanium salt hydrolysis alkali-neutralized metal compound stirring and mixing treatment, Hydrolysis of the metal-containing titanium salt, heat treatment of an alkali neutral to obtain a heat-treated product, and the metal compound and the metal to be present in the hydrolysis / al force neutralization treatment. the total amount of the metal compound added in compound stirring and mixing process, with respect to the titanium salt 1 0 0 parts by weight when T i O 2 converted, 0 as the metal atom. 0 3-0. 1 5 parts by mass
且つ、 該加水分解/アル力リ中和処理を行う前から該加熱処理を行つ た後までの間に、 硫黄化合物を混合すること、  And mixing the sulfur compound between before the hydrolysis / al neutralization treatment and after the heat treatment,
を特徴とする金属含有硫黄導入酸化チタンの製造方法を提供するもので ある。 The present invention provides a method for producing metal-containing sulfur-introduced titanium oxide.
また、 本発明 (8) は、 金属含有量が 0. 0 3〜0. 1 5質量%、 硫 黄含有量が 0. 02〜0. 1質量%、比表面積が 60〜; 1 2 Om2Zg、 結晶構造の主体がアナターゼ型である酸化チタンであり、 該酸化チタン 中の硫黄原子が、 酸化チタンのチタンサイ トに導入され、 金属が酸化チ タンの表面および内部に含まれていること、 を特徴とする金属含有硫黄 導入酸化チタンを提供するものである。 Further, the present invention (8) has a metal content of 0.03 to 0.15 mass%, a sulfur content of 0.02 to 0.1 mass%, and a specific surface area of 60 to 1 2 Om 2 Zg, the main component of the crystal structure is anatase-type titanium oxide, sulfur atoms in the titanium oxide are introduced into the titanium oxide titanium site, and the metal is contained on the surface and inside of the titanium oxide, A metal-containing sulfur-introduced titanium oxide is provided.
本発明によれば、 可視光での高い光触媒活性を有する金属含有硫黄導 入酸化チタンの製造方法および金属含有硫黄導入酸化チタンを提供する ことができる。 発明を実施するための最良の形態  ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of a metal containing sulfur introduction | transduction titanium oxide which has high photocatalytic activity in visible light, and a metal containing sulfur introduction | transduction titanium oxide can be provided. BEST MODE FOR CARRYING OUT THE INVENTION
本発明の金属含有硫黄導入酸化チタンの製造方法は、 金属含有原料酸 化チタンと硫黄化合物との混合物を焼成し、 金属含有硫黄導入酸化チタ ンを得る焼成工程を有し、該金属含有原料酸化チタン中の金属含有量が、 T i O2換算したときの該金属含有原料酸化チタン 1 00質量部に対し て、 金属原子として 0. 0 3〜0. 1 5質量部であること、 を特徴とす る金属含有硫黄導入酸化チタンの製造方法である。 該金属化合物の含有 量は、 T i 02換算したときの 1 00質量部に対する金属原子の質量が、 好ましくは 0. 0 3〜0. 1 5質量部、 特に好ましくは 0. 05〜0. 1質量部となる混合量である。 該金属化合物の混合量が、 上記範囲内に あることにより、 金属含有硫黄導入酸化チタンの可視光での光触媒活性 が高くなる。 The method for producing a metal-containing sulfur-introduced titanium oxide of the present invention includes a firing step of firing a mixture of a metal-containing raw material titanium oxide and a sulfur compound to obtain a metal-containing sulfur-introduced titanium oxide, and the metal-containing raw material oxidation wherein the metal content in the titanium and with respect to the metal-containing raw material titanium oxide 1 00 parts by weight when T i O 2 converted, 0. metal atom 0 3 to 0.1 5 it is parts by weight, the This is a method for producing a metal-containing sulfur-introduced titanium oxide. As for the content of the metal compound, the mass of the metal atom with respect to 100 parts by mass when converted to Ti 0 2 is preferably 0.03 to 0.15 parts by mass, particularly preferably 0.05 to 0. The mixing amount is 1 part by mass. When the mixing amount of the metal compound is within the above range, the photocatalytic activity of the metal-containing sulfur-introduced titanium oxide with visible light is visible. Becomes higher.
本発明の第一の形態の金属含有硫黄導入酸化チタンの製造方法(以下、 本発明の製造方法 ( 1 ) とも記載) は、 金属含有チタン塩加水分解 ア ルカリ中和物 Aと硫黄化合物との混合物 Aを得る焼成原料混合物調製ェ 程 Aと、 該金属含有チタン塩加水分解 アルカリ中和物 Aと該硫黄化合 物との混合物 Aを、 焼成し、 金属含有硫黄導入酸化チタンを得る焼成ェ 程 Aと、 を有し、  The method for producing a metal-containing sulfur-introduced titanium oxide according to the first aspect of the present invention (hereinafter also referred to as the production method (1) of the present invention) comprises a metal-containing titanium salt hydrolyzed alkali neutralized product A and a sulfur compound. Firing raw material mixture preparation step A to obtain a mixture A and the metal-containing titanium salt hydrolysis alkali neutralized product A and the sulfur compound A are calcined to obtain a metal-containing sulfur-introduced titanium oxide. A and
該焼成原料混合物調製工程 Aが、 チタン塩を加水分解またはアル力リ 中和して、 チタン塩加水分解 Zアル力リ中和物 A含有スラリ一を調製す る加水分解 Zアルカリ中和処理 Aと、 該チタン塩加水分解 Zアルカリ中 和物 A含有スラリーに、 金属化合物を加え、 撹拌して、 金属含有チタン 塩加水分解 Zアル力リ中和物 Aを得る金属化合物撹拌混合処理 Aと、 を 行う工程であり、  The calcination raw material mixture preparation step A is hydrolyzed or neutralized with a titanium salt to hydrolyze a titanium salt hydrolyzed Z-alkaline neutralized product A-containing slurry. And a metal compound stirring and mixing treatment A to obtain a metal-containing titanium salt hydrolyzed Z Al power re-neutralized product A by adding a metal compound to the titanium salt hydrolyzed Z alkali neutral A-containing slurry and stirring. Is the process of performing
該金属化合物撹拌混合処理 Aで該金属化合物を加える量が、 T i 0 2 換算したときの該チタン塩加水分解 Zアルカリ中和物 A 1 0 0質量部 に対して、 金属原子として 0 . 0 3〜0 . 1 5質量部となる量であり、 且つ、 該加水分解 Zアル力リ中和処理 Aを行う前から該金属化合物撹 拌混合処理 Aを行った後までの間に、 硫黄化合物を混合する、 0 amount in the metal compound stirred mixing process A is added the metal compound, relative to the titanium salt hydrolysis Z alkali neutralization product A 1 0 0 parts by weight when T i 0 2 terms, as the metal atom. 0 3 to 0.15 parts by mass, and before performing the hydrolysis Z-al force neutralization process A and after performing the metal compound stirring and mixing process A, a sulfur compound. Mixing,
金属含有硫黄導入酸化チタンの製造方法である。なお、本発明では、 「加 水分解またはアルカリ中和」 を、 「加水分解 アルカリ中和」 とも記載 する。 It is a manufacturing method of a metal containing sulfur introduction | transduction titanium oxide. In the present invention, “hydrolysis or alkali neutralization” is also referred to as “hydrolysis alkali neutralization”.
該焼成原料混合物調製工程 Aでは、 該加水分解 Zアル力リ中和処理 A と、 該金属化合物撹拌混合処理 Aと、 を行うことにより、 該チタン塩か ら該金属含有チタン塩加水分解 Zアル力リ中和物 Aを得る。  In the calcining raw material mixture preparation step A, the metal-containing titanium salt hydrolyzed Z-al is obtained from the titanium salt by performing the hydrolysis Z-al strength neutralization treatment A and the metal compound stirring and mixing treatment A. Power neutralized product A is obtained.
該焼成原料混合物調製工程 Aでは、 先ず、 該加水分解 アルカリ中和 処理 Aを行う。 該加水分解 アルカリ中和処理 Aは、 該チタン塩を加水 分解することにより、または該チタン塩をアル力リ中和することにより、 該チタン塩の加水分解物 Aまたは該チタン塩のアル力リ中和物 Aを含有 するスラリー、 すなわち、 該チタン塩加水分解 アルカリ中和物 A含有 スラリーを調製する処理である。 In the baking raw material mixture preparation step A, first, the hydrolysis and alkali neutralization treatment A is performed. The hydrolysis and alkali neutralization treatment A hydrolyzes the titanium salt. The slurry containing the hydrolyzate A of the titanium salt or the neutral force neutralized product A of the titanium salt, ie, the titanium salt hydrolyzed Decomposition Alkali neutralized product A-containing slurry is prepared.
該加水分解/アル力リ中和処理 Aに係る該チタン塩としては、例えば、 チタンアルコキシド等の有機金属化合物、 あるいは、 四塩化チタン、 三 塩化チタン等のチタン塩化物、 硫酸チタニル、 硫酸チタン等の硫酸塩の ような無機塩が挙げられる。 これらのうち、 取り扱い性や経済性から、 四塩化チタン、 硫酸チタニル、 硫酸チタンが好ましい。  Examples of the titanium salt relating to the hydrolysis / alternative neutralization treatment A include, for example, organometallic compounds such as titanium alkoxide, titanium chlorides such as titanium tetrachloride and titanium trichloride, titanyl sulfate, and titanium sulfate. And inorganic salts such as sulfates. Of these, titanium tetrachloride, titanyl sulfate, and titanium sulfate are preferred from the viewpoint of handling and economy.
該加水分解/アルカリ中和処理 Aにおいて、 該チタン塩の加水分解を 行う方法としては、 該チタン塩を水に溶解させた水溶液を調製し、 該水 溶液を撹拌しながら加熱する方法が挙げられる。 この方法では、 加水分 解する際の加水分解温度は、 好ましくは 2 0 °C〜水溶液の沸点、 特に好 ましくは 4 0〜 8 0 °Cである。該加水分解温度が、 2 0 °C未満であると、 加水分解速度が遅くなり易い。また、加水分解する際の加水分解時間は、 通常 5分〜 1 0時間、 好ましくは 1 0分〜 5時間、 特に好ましくは 1 0 分〜 1時間である。 なお、 上記では、 該チタン塩を水に溶解させる旨を 記載したが、 該チタン塩を溶解させる溶媒としては、 該金属化合物を溶 解するものであれば、 特に制限されず、 水の他に、 アルコールなどの有 機溶媒が挙げられ、 これらのうち、 水は取り扱いが容易な点、 経済性の 点から好ましい。 また、 加水分解する際に、 水とともに該硫黄化合物を 混合しても構わない。  In the hydrolysis / alkali neutralization treatment A, the titanium salt may be hydrolyzed by preparing an aqueous solution in which the titanium salt is dissolved in water and heating the aqueous solution while stirring. . In this method, the hydrolysis temperature at the time of hydrolysis is preferably 20 ° C. to the boiling point of an aqueous solution, particularly preferably 40 to 80 ° C. When the hydrolysis temperature is less than 20 ° C, the hydrolysis rate tends to be slow. The hydrolysis time for the hydrolysis is usually 5 minutes to 10 hours, preferably 10 minutes to 5 hours, and particularly preferably 10 minutes to 1 hour. In the above description, the titanium salt is dissolved in water. However, the solvent for dissolving the titanium salt is not particularly limited as long as it dissolves the metal compound. And organic solvents such as alcohol. Among these, water is preferable from the viewpoint of easy handling and economical efficiency. Moreover, when hydrolyzing, you may mix this sulfur compound with water.
該加水分解 アルカリ中和処理 Aにおいて加水分解する際、 低 p H領 域で加水分解を行うことが、 粒径が小さい加水分解物を得ることができ る点で好ましい。 そのため、 該加水分解 Zアルカ リ中和処理 Aにおいて 加水分解をする際、 特に、 加水分解温度が水溶液の沸点付近である場合 においては、 反応槽に還流装置等を設置し、 発生する塩化水素が塩化水 素ガスとして反応系外へ排出されることを抑えることが、 反応系の p H を低くできる点で好ましい。 Hydrolysis In the alkali neutralization treatment A, hydrolysis is preferably performed in a low pH region because a hydrolyzate having a small particle size can be obtained. Therefore, when performing hydrolysis in the hydrolysis Z alkali neutralization treatment A, especially when the hydrolysis temperature is near the boiling point of the aqueous solution. In view of reducing the pH of the reaction system, it is preferable to install a reflux device or the like in the reaction tank to suppress the generated hydrogen chloride from being discharged out of the reaction system as hydrogen chloride gas.
そして、 該加水分解/アルカリ中和処理 Aでは、 該チタン塩の加水分 解を行なうことにより、 該チタン塩加水分解物が生成して、 水溶媒に、 該チタン塩加水分解物が分散されている該チタン塩加水分解物 A含有ス ラリーが得られる。 該チタン塩加水分解物 Aは、 酸化チタン又は該チタ ン塩から酸化チタンに変化途中の中間体である。  In the hydrolysis / alkali neutralization treatment A, the titanium salt hydrolyzate is generated by hydrolyzing the titanium salt, and the titanium salt hydrolyzate is dispersed in an aqueous solvent. The titanium salt hydrolyzate A-containing slurry is obtained. The titanium salt hydrolyzate A is an intermediate in the process of changing from titanium oxide or the titanium salt to titanium oxide.
該加水分解/アル力リ中和処理 Aにおいて、 該チタン塩のアル力リ中 和を行なう方法としては、該チタン塩を水に溶解させた水溶液を調製し、 該水溶液を撹拌しながら、 アルカリを混合して、 該チタン塩と該ァルカ リとを接触させる方法が挙げられ、 更に具体的には、 例えば、  In the hydrolysis / alkaline neutralization treatment A, the titanium salt is neutralized by preparing an aqueous solution in which the titanium salt is dissolved in water. And the titanium salt and the alkali are brought into contact with each other. More specifically, for example,
( i ) 該チタン塩の水溶液に対して、 該アルカリの水溶液を滴下し、 両 者を接触させる方法、  (i) a method in which the aqueous alkali solution is dropped into the aqueous titanium salt solution and the two are brought into contact with each other;
( i i ) 該アルカリの水溶液に对して、 該チタン塩の水溶液を滴下し、 両者を接触させる方法、  (ii) a method of dropping the aqueous solution of titanium salt against the aqueous solution of alkali and bringing them into contact;
( i i i ) 反応容器に水を入れておき、 その中に、 該チタン塩の水溶液 と該アルカリの水溶液とを滴下し、 両者を接触させる方法、  (ii) A method in which water is put in a reaction vessel, an aqueous solution of the titanium salt and an aqueous solution of the alkali are dropped therein, and both are brought into contact with each other,
が挙げられる。 Is mentioned.
該加水分解 アルカリ中和処理 Aに係る該アルカリとしては、 特に制 限されず、 例えば、 アンモニア、 アンモニア水等が挙げられ、 これらの うち、 アンモニア又はアンモニア水が、 金属含有硫黄導入酸化チタン中 にアル力リ由来の金属成分が含有されないので、 該金属含有硫黄導入酸 化チタンの可視光での光触媒活性の制御上好ましい。 上記 ( i ) 〜 ( i i i ) の方法では、 アルカリ中和する際のアルカリ中和温度は、 好まし くは 1 0〜8 0 °C、 特に好ましくは 3 0〜8 0 °C、 更に好ましくは 4 0 〜7 0 °Cである。 該アルカリ中和温度が、 1 0 °C未満だと中和反応が起 こり難くなり、 また、 8 0 °Cを超えると発熱が激しく、 塩化水素の発生 が著しくなるため、 平均粒径が小さく且つ比表面積が大きいアル力リ中 和物が得られ難くなる。 また、 アルカリ中和する際の該アルカリの添加 時間は、 通常 1分〜 1 0時間、 好ましくは 3分〜 5時間、 特に好ましく は 5分〜 1時間である。 The alkali related to the hydrolysis and alkali neutralization treatment A is not particularly limited, and examples thereof include ammonia and aqueous ammonia. Among these, ammonia or aqueous ammonia is contained in the metal-containing sulfur-introduced titanium oxide. Since a metal component derived from Al force is not contained, it is preferable for controlling the photocatalytic activity of the metal-containing sulfur-introduced titanium oxide with visible light. In the methods (i) to (iii) described above, the alkali neutralization temperature during the alkali neutralization is preferably 10 to 80 ° C, particularly preferably 30 to 80 ° C, more preferably 4 0 ~ 70 ° C. When the alkali neutralization temperature is less than 10 ° C, the neutralization reaction hardly occurs. When the alkali neutralization temperature exceeds 80 ° C, the heat generation is intense and the generation of hydrogen chloride becomes significant, so the average particle size is small. Moreover, it is difficult to obtain an Al force neutralized compound having a large specific surface area. Further, the addition time of the alkali at the time of alkali neutralization is usually 1 minute to 10 hours, preferably 3 minutes to 5 hours, particularly preferably 5 minutes to 1 hour.
そして、 該加水分解/アルカリ中和処理 Aでは、 該チタン塩のアル力 リ中和を行なうことにより、 該チタン塩アルカリ中和物が生成し、 水溶 媒に、 該チタン塩アル力リ中和物が分散されている該チタン塩アル力リ 中和物 A含有スラリーが得られる。 該チタン塩アルカリ中和物 Aは、 酸 化チタン又は該チタン塩から酸化チタンに変化途中の中間体である。 次いで、 該焼成原料混合物調製工程 Aでは、 該金属化合物撹拌混合処 理 Aを行う。 該金属化合物撹拌混合処理 Aは、 該チタン塩加水分解 Zァ ルカリ中和物 A含有スラリーに、 該金属化合物を加え、 撹拌混合して、 該金属含有チタン塩加水分解 Zアルカリ中和物 Aを得る処理である。 例 えば、 該金属化合物撹拌混合処理 Aでは、 該加水分解 Zアルカリ中和処 理 Aで調製した該チタン塩加水分解 アル力リ中和物 A含有スラリ一か ら、 該チタン塩加水分解ノアルカリ中和物 Aを分離することなく、 該ス ラリーに、 該金属化合物を加える。  In the hydrolysis / alkali neutralization treatment A, the titanium salt alkali neutralized product is generated by neutralizing the titanium salt with an alkali force, and the titanium salt alkali force is neutralized in an aqueous medium. The titanium salt aluminum neutralized product A-containing slurry in which the product is dispersed is obtained. The titanium salt alkali neutralized product A is an intermediate in the process of changing from titanium oxide or the titanium salt to titanium oxide. Next, in the firing raw material mixture preparation step A, the metal compound stirring and mixing treatment A is performed. The metal compound stirring and mixing treatment A is carried out by adding the metal compound to the titanium salt hydrolyzed Z alkali neutralized product A-containing slurry, and stirring and mixing the metal containing titanium salt hydrolyzed Z alkali neutralized product A. It is a process to obtain. For example, in the metal compound stirring and mixing treatment A, the titanium salt hydrolysis neutralized product A prepared in the hydrolysis Z alkali neutralization treatment A is used in the titanium salt hydrolysis alkali. The metal compound is added to the slurry without separating the solvate A.
該金属化合物撹拌混合処理 Aに係る該金属化合物は、 スラリーの水溶 媒中に均一に溶解するものであれば良く、 塩化物、 硫酸塩、 硝酸塩等の 無機金属塩、 あるいは有機金属化合物が挙げられる。 また、 該金属化合 物の金属種としては、 金属含有硫黄導入酸化チタンの可視光での光触媒 活性が高くなる点で、鉄であることが好ましい。また、該金属化合物は、 無機金属塩であることが好ましく、 金属含有硫黄導入酸化チタンの可視 光での光触媒活性が高くなる点で、 鉄塩であることが好ましい。 具体的 には、 F e C l 2、 F e C l 3、 F e S 04、 F e 2 (S 04) 3、 F e (N 03) 3、 F e I 2、 F e I 3、 クェン酸鉄、 硫酵アンモニゥム鉄、 硫酸第 二鉄アンモユウム、 クェン酸アンモニゥム鉄、 硫化鉄、 リン酸鉄、 蓚酸 アンモニゥム鉄などが挙げられる。 The metal compound related to the metal compound stirring and mixing treatment A may be any metal compound that dissolves uniformly in the slurry aqueous medium, and includes inorganic metal salts such as chlorides, sulfates and nitrates, or organic metal compounds. . Further, the metal species of the metal compound is preferably iron from the viewpoint that the photocatalytic activity of the metal-containing sulfur-introduced titanium oxide with visible light is increased. The metal compound is preferably an inorganic metal salt, and is preferably an iron salt in that the photocatalytic activity of the metal-containing sulfur-introduced titanium oxide with visible light is increased. concrete F e C l 2 , F e C l 3 , F e S 0 4 , F e 2 (S 0 4 ) 3 , F e (N 0 3 ) 3 , F e I 2 , F e I 3 , Examples include iron citrate, fermented ammonium iron, ferric ammonium sulfate, ammonium citrate, iron sulfide, iron phosphate, and ammonium iron oxalate.
該金属化合物撹拌混合処理 Aにおいて、 該金属化合物の混合量は、 金 属含有硫黄導入酸化チタンへの金属の導入量により適宜選択できるが、 該チタン塩加水分解/アル力リ中和物 Aを T i O2換算したときの 1 0 0質量部に対する金属原子の質量が、 好ましくは 0. 0 3〜0. 1 5質 量部、 特に好ましくは 0. 0 5〜0. 1質量部となる混合量である。 .該 金属化合物の混合量が、 上記範囲内にあることにより、 金属含有硫黄導 入酸化チタンの可視光での光触媒活性が高くなる。 In the metal compound stirring and mixing treatment A, the mixing amount of the metal compound can be appropriately selected depending on the amount of metal introduced into the metal-containing sulfur-introduced titanium oxide. The mass of metal atoms with respect to 100 parts by mass in terms of T i O 2 is preferably 0.03 to 0.15 parts by mass, particularly preferably 0.05 to 0.1 parts by mass. It is a mixing amount. When the mixing amount of the metal compound is within the above range, the photocatalytic activity of the metal-containing sulfur-introduced titanium oxide with visible light is increased.
該金属化合物撹拌混合処理 Aにおいて、 撹拌混合する際の撹拌混合温 度は、 好ましくは 20〜80¾:、 特に好ましくは 50〜 7 であり、 撹拌混合時間は、 好ましくは 1〜 2時間である。  In the metal compound stirring and mixing treatment A, the stirring and mixing temperature at the time of stirring and mixing is preferably 20 to 80¾: particularly preferably 50 to 7, and the stirring and mixing time is preferably 1 to 2 hours.
該金属化合物撹拌混合処理 Aでは、 該チタン塩加水分解 アルカリ中 和物 A含有スラリー中で、 該金属化合物を、 撹拌混合することにより、 該金属化合物をスラリー中の溶媒に溶解させ、 更に、 撹拌を続けること により、 該金属化合物が、 該チタン塩加水分解 Zアルカリ中和物 A含有 スラリーの液体分で、 加水分解、 中和または還元されて、 水酸化物また は酸化物に変化すると共に、 生成した水酸化物または酸化物が、 該チタ ン塩加水分解ノアルカリ中和物 Aの表面に付着しまたは内部に取り込ま れる。 このことにより、 該金属含有チタン塩加水分解 Zアルカリ中和物 Aが生成する。次いで、 ろ過、遠心分離等の方法により、 スラリ一から、 生成した該金属含有チタン塩加水分解ノアルカリ中和物 Aを分離して、 あるいは、 スラリーの溶媒を蒸発させて溶媒を除去して、 固形物を得、 必要に応じ洗浄後、 乾燥することにより、 該金属含有チタン塩加水分解 Zアルカリ中和物 Aが得られる。 該乾燥の際、 乾燥温度は、 通常 90〜 1 50^:であり、 乾燥雰囲気は、 空気中、 酸素ガス中のような酸化性雰 囲気下;窒素ガス中、 アルゴンガス中のような不活性ガス雰囲気下;真 空下等が挙げられる。 In the metal compound stirring and mixing treatment A, the metal compound is dissolved in the solvent in the slurry by stirring and mixing in the slurry containing the titanium salt hydrolyzed alkali neutral A, and further stirred. By continuing the process, the metal compound is hydrolyzed, neutralized or reduced in the liquid content of the titanium salt hydrolyzed Z alkali neutralized product A-containing slurry, and converted into a hydroxide or an oxide. The produced hydroxide or oxide adheres to the surface of the titan salt hydrolyzed neutralized product A or is taken into the inside. Thereby, the metal-containing titanium salt hydrolyzed Z alkali neutralized product A is formed. Next, the produced metal-containing titanium salt hydrolyzed neutralized neutralized product A is separated from the slurry by a method such as filtration and centrifugation, or the solvent of the slurry is evaporated to remove the solvent, and the solid is removed. Product, and after washing as necessary, drying the metal-containing titanium salt Z alkali neutralized product A is obtained. At the time of the drying, the drying temperature is usually 90 to 1550 ^: the drying atmosphere is in an oxidizing atmosphere such as air or oxygen gas; inert such as nitrogen gas or argon gas Under gas atmosphere; under vacuum.
乾燥後の該金属含有チタン塩加水分解 Zアルカリ中和物 Aは、 結晶構 造の主体がアナターゼ型であり、 比表面積が 1 5 0〜4 00m2Zg、 好ましくは 2 0 0〜3 1 0m2/g、 X線回折分析によるアナターゼの (1 0 1) ピークの半値幅が 2 Θ = 1. 2〜 1. 5° であることが、 金 属含有硫黄導入酸化チタンの可視光での光触媒活性が高くなる点で好ま しい。 The metal-containing titanium salt hydrolyzed Z alkali neutralized product A after drying is mainly composed of anatase type crystal structure and has a specific surface area of 150 to 400 m 2 Zg, preferably 200 to 30 m. 2 / g, X-ray diffraction analysis shows that the half-value width of the (1 0 1) peak of anatase is 2 Θ = 1.2 to 1.5 °. It is preferable because of its high activity.
そして、 上記のように、 該焼成原料混合物調製工程 Αで、 該チタン塩 から該金属含有チタン塩加水分解 Zアル力リ中和物 Aを得る際に、 つま り、 該チタン塩加水分解 Zアル力リ中和処理 Aを行う前から該金属化合 物撹拌混合処理 Aを行った後までの間に、 該硫黄化合物を混合すること により、 該チタン塩加水分解ノアルカリ中和物 Aと該硫黄化合物との混 合物 Aを得る。 更に具体的には、 該焼成原料混合物調製工程 Aでは、 該 硫黄化合物の混合を、 例えば、  Then, as described above, in obtaining the metal-containing titanium salt hydrolyzed Z-al strength neutralized product A from the titanium salt in the baking raw material mixture preparing step, that is, the titanium salt hydrolyzed Z-alloy. By mixing the sulfur compound between before the metal re-neutralization treatment A and after the metal compound stirring and mixing treatment A, the titanium salt hydrolyzed neutral alkali A and the sulfur compound are mixed. A mixture A is obtained. More specifically, in the baking raw material mixture preparation step A, the sulfur compound is mixed, for example,
(A 1 ) 該加水分解 アルカリ中和処理 Aを行う前、  (A 1) Before performing the hydrolysis and alkali neutralization treatment A,
(A 2) 該加水分解/アルカリ中和処理 Aを行いつつ、  (A 2) While performing the hydrolysis / alkali neutralization treatment A,
(A3) 該金属化合物撹拌混合処理 Aの前、  (A3) Before the metal compound stirring and mixing treatment A,
(A4) 該金属化合物撹拌混合処理 Aを行いつつ、 または  (A4) While performing the metal compound stirring and mixing treatment A, or
(A5) 該金属化合物撹拌混合処理 Aを行った後、  (A5) After performing the metal compound stirring and mixing treatment A,
に行う。 To do.
該 (A 1 ) の場合、 例えば、 該チタン塩の水溶液を加熱する前に、 該 チタン塩の水溶液に該硫黄化合物混合することや、 該チタン塩の水溶液 に該アル力リを滴下する前に、 該チタン塩の水溶液に該硫黄化合物を混 合することが挙げられる。 In the case of (A 1), for example, before heating the aqueous solution of the titanium salt, the sulfur compound is mixed with the aqueous solution of the titanium salt, or before dropping the Al force solution to the aqueous solution of the titanium salt. The sulfur compound is mixed with an aqueous solution of the titanium salt. For example.
該 (A 2 ) の場合、 例えば、 該チタン塩の水溶液に該アルカリの水溶 液を滴下する際に、 該チタン塩の水溶液に対して、 該硫黄化合物を混合 した該ァルカリの水溶液を滴下することにより、 該加水分解/アル力リ 中和処理 Aを行いつつ、 該硫黄化合物を混合することや、 該アルカリの 水溶液に該チタン塩の水溶液を滴下する際に、 該ァルカリの水溶液に対 して、 該硫黄化合物を混合した該チタン塩の水溶液を滴下することによ り、 該加水分解 アルカリ中和処理 Aを行いつつ、 該硫黄化合物を混合 することが挙げられる。  In the case of (A 2), for example, when the alkaline aqueous solution is dropped into the titanium salt aqueous solution, the alkaline aqueous solution mixed with the sulfur compound is dropped into the titanium salt aqueous solution. When mixing the sulfur compound or performing dropwise addition of the titanium salt aqueous solution to the alkaline aqueous solution while carrying out the hydrolysis / alkaline neutralization treatment A, the aqueous solution of alkali By adding dropwise an aqueous solution of the titanium salt mixed with the sulfur compound, the sulfur compound is mixed while performing the hydrolysis and alkali neutralization treatment A.
該(A 3 ) の場合、例えば、該金属化合物撹拌混合処理 Aを行う前に、 該チタン塩加水分解ノアルカリ中和物 A含有スラ リーに、 該硫黄化合物 を混合することが挙げられる。  In the case of (A 3), for example, before the metal compound stirring and mixing treatment A, the sulfur compound is mixed with the titanium salt hydrolyzed neutralized product A-containing slurry.
該 (A 4 ) の場合、 例えば、 該チタン塩加水分解ノアルカリ中和物 A 含有スラリーに、 該金属化合物の水溶液を滴下する際に、 該チタン塩加 水分解ノアルカリ中和物 A含有スラリーに対して、 該硫黄化合物を含有 する該金属化合物の水溶液を滴下することにより、 該金属化合物撹拌混 合処理 Aを行いつつ、 該硫黄化合物を混合することが挙げられる。  In the case of (A 4), for example, when the aqueous solution of the metal compound is added dropwise to the titanium salt hydrolyzed neutralized product A-containing slurry, Then, by adding dropwise an aqueous solution of the metal compound containing the sulfur compound, the sulfur compound is mixed while performing the metal compound stirring and mixing treatment A.
該 (A 5 ) の場合、 例えば、 該金属化合物撹拌混合処理 Aを行い、 該 金属含有チタン塩加水分解 Zアル力リ中和物 Aを得た後、 得られた該金 属含有チタン塩加水分解/アル力リ中和物 Aと該硫黄化合物とを混合す ることが挙げられる。 該 (A 5 ) の場合としては、 更に具体的には、 例 えば、 (A 5 _ 1 )該金属含有チタン塩加水分解/アル力リ中和物 Aに、 該硫黄化合物を溶解させた溶液を添加し、 十分混合した後、 溶媒を蒸発 させる方法や、 (A 5— 2 ) 該金属含有チタン塩加水分解 Zアルカリ中 和物 Aと該硫黄化合物とを、 乾式で混合する方法や、 (A 5— 3 ) 該金 属含有チタン塩加水分解 Zアル力リ中和物 Aと該硫黄化合物を、 分散媒 中で混合する方法などが挙げられ、 これらの混合方法のうち、 該 (A 5 - 2 ) の方法が、 操作性の点から好ましい。 In the case of (A 5), for example, after the metal compound stirring and mixing treatment A is performed to obtain the metal-containing titanium salt hydrolyzed Z-al strength neutralized product A, the obtained metal-containing titanium salt hydrolyzed product is obtained. It is mentioned to mix the decomposition / alternative neutralized product A and the sulfur compound. In the case of (A 5), more specifically, for example, (A 5 _ 1) a solution in which the sulfur compound is dissolved in the metal-containing titanium salt hydrolyzed / al strength neutralized product A (A 5-2) Hydrolysis of the metal-containing titanium salt Z alkali neutral A and the sulfur compound in a dry process, A 5-3) Hydrolysis of the metal-containing titanium salt Z neutralized product A and the sulfur compound are dispersed in a dispersion medium. Among these mixing methods, the method (A 5 -2) is preferable from the viewpoint of operability.
そして、 該硫黄化合物の混合を、 上記 (A 1 ) 、 (A 2 ) 、 (A 3 ) 、 ( A 4 ) 又は (A 5 ) のいずれかの時期に行うことも、 あるいは、 これ らのうちの 2以上の時期に分けて行うこともできる。  The mixing of the sulfur compound may be performed at any time of the above (A 1), (A 2), (A 3), (A 4), or (A 5), or of these It can be divided into two or more periods.
該焼成原料混合物調製工程 Aに係る該硫黄化合物 (本発明の金属含有 硫黄導入酸化チタンの製造方法に係る該硫黄化合物、 本発明の第一〜第 七の形態の金属含有硫黄導入酸化チタンの製造方法に係る該硫黄化合物 も同様である。) は、後述する該焼成工程 Aにおいて、熱により分解し、 その分解過程で s o 2ガスや S O 3ガスが発生する、分子中に硫黄原子を 有する化合物であればよく、 常温で固体または液体である含硫黄有機化 合物、 含硫黄無機化合物、 金属硫化物、 硫黄などが挙げられ、 更に具体 的には、 例えば、 チォ尿素、 チォ尿素の誘導体、 硫酸塩などが挙げられ る。 これらのうち、 特に、 チォ尿素が、 4 0 0〜 5 0 0 °Cで完全に分解 し、 金属含有硫黄導入酸化チタン中に残存しないため好ましい。 The sulfur compound according to the firing raw material mixture preparation step A (the sulfur compound according to the method for producing the metal-containing sulfur-introduced titanium oxide of the present invention, the production of the metal-containing sulfur-introduced titanium oxide according to the first to seventh aspects of the present invention) The same applies to the sulfur compound according to the method.) Is a compound having a sulfur atom in the molecule, which is decomposed by heat in the firing step A described later, and so 2 gas and SO 3 gas are generated in the decomposition process. And sulfur-containing organic compounds, sulfur-containing inorganic compounds, metal sulfides, sulfur, etc., which are solid or liquid at room temperature, and more specifically, for example, thiourea, thiourea derivatives, Examples include sulfates. Of these, thiourea is particularly preferable because it completely decomposes at 400 to 500 ° C. and does not remain in the metal-containing sulfur-introduced titanium oxide.
該金属含有チタン塩加水分解 アルカリ中和物 Aと該硫黄化合物との 混合物 A中の、 該硫黄化合物の混合量は、 該金属含有チタン塩加水分解 Zアル力リ中和物 Aを T i O 2換算したときの 1 0 0質量部に対する硫 黄原子の質量が、 好ましくは 5〜 1 5 0質量部、 特に好ましくは 1 0〜 5 0質量部、 更に好ましくは 2 0〜4 0質量部となる量である。 該金属 含有チタン塩加水分解/アル力リ中和物 Aと該硫黄化合物との混合物 A 中の、 該硫黄化合物の混合量が上記範囲内にあることにより、 硫黄含有 量が 0 . 0 2〜0 . 1質量%の金属含有硫黄導入酸化チタンが得易くな る。 また、 該硫黄化合物の混合量は、 該硫黄化合物の混合を 2以上の時 期に分けて行う場合、 それらの合計量である。 Hydrolysis of the metal-containing titanium salt Alkaline neutralized product A and the sulfur compound In the mixture A, the amount of the sulfur compound is determined as follows. The mass of sulfur atoms relative to 100 parts by mass when converted to 2 is preferably 5 to 1500 parts by mass, particularly preferably 10 to 50 parts by mass, and more preferably 20 to 40 parts by mass. Is the amount. When the mixed amount of the sulfur compound in the mixture A of the metal-containing titanium salt hydrolyzed / alkaline neutralized product A and the sulfur compound is within the above range, the sulfur content is from 0.02 to It becomes easy to obtain 0.1% by mass of metal-containing sulfur-introduced titanium oxide. Further, the mixing amount of the sulfur compound is the total amount when mixing the sulfur compound in two or more periods.
該焼成工程 Aでは、 該金属含有チタン塩加水分解ノアルカリ中和物 A と該硫黄化合物との混合物 Aを、 焼成する。 In the firing step A, the metal-containing titanium salt hydrolyzed neutralized product A And a mixture A of the sulfur compound is calcined.
該金属含有チタン塩加水分解ノアル力リ中和物 Aと該硫黄化合物との 混合物 Aを焼成する方法としては、 焼成用容器に該混合物 Aを投入し、 蓋をする。その際、完全開放系だと、該硫黄化合物から発生するガスが、 雰囲気に滞留しないため、 若干の隙間を開けておく。 そして、 該混合物 の焼成の際には、 熱により該硫黄化合物が分解して、 その分解過程で S O 2ガスや S 0 3ガスが発生し、 これらのガス中の硫黄が、 該金属含有チ タン塩加水分解 Zアル力リ中和物 A中に取り込まれて、 該金属含有チタ ン塩加水分解ノアルカリ中和物 A中のチタン原子の一部が硫黄原子で置 換される。 As a method for firing the mixture A of the metal-containing titanium salt hydrolyzed neutralized product A and the sulfur compound, the mixture A is put into a firing container and the lid is covered. At that time, if the system is completely open, the gas generated from the sulfur compound does not stay in the atmosphere, so a slight gap is left open. When the mixture is fired, the sulfur compound is decomposed by heat, and SO 2 gas and S 0 3 gas are generated in the decomposition process, and sulfur in these gases is converted into the metal-containing titanium. Salt hydrolysis Z Incorporated into Z-force neutralized product A, some of the titanium atoms in the metal-containing titanium salt hydrolyzed neutralized product A are replaced with sulfur atoms.
つまり、 該焼成工程 Aでは、 該硫黄化合物の分解により生じる S 0 2 ガス及び S O 3ガスを、 雰囲気に滞留させつつ、 該金属含有チタン塩加 水分解 アル力リ中和物 Aと該硫黄化合物との混合物の焼成を行う。 該金属含有チタン塩加水分解ノアルカリ中和物 Aと該硫黄化合物との 混合物を焼成する際の焼成温度は、 好ましくは 3 5 0〜8 0 0 、 特に 好ましくは 3 5 0〜 6 0 0 °C、更に好ましくは 4 0 0〜 5 0 0 °Cであり、 焼成時間は、 好ましくは 1〜 1 0時間、 特に好ましくは 1〜 5時間、 更 に好ましくは 2〜 5時間である。 該金属含有チタン塩加水分解 アルカ リ中和物 Aと該硫黄化合物との混合物 Aを焼成する際の焼成温度及び焼 成時間が上記範囲内にあることにより、 該金属含有硫黄導入酸化チタン の可視光での光触媒活性が高くなる。 That is, in the firing step A, the S 0 2 gas and SO 3 gas generated by the decomposition of the sulfur compound are retained in the atmosphere while the metal-containing titanium salt hydrolyzed Al force re-neutralized product A and the sulfur compound And firing the mixture. The calcining temperature when calcining the mixture of the metal-containing titanium salt hydrolyzed neutralized product A and the sulfur compound is preferably 3500 to 800, particularly preferably 3500 to 600 ° C. The baking time is preferably 1 to 10 hours, particularly preferably 1 to 5 hours, and further preferably 2 to 5 hours. Hydrolysis of the metal-containing titanium salt Alkaline neutralized product A and the sulfur compound A When the firing temperature and firing time when firing the mixture A are within the above ranges, the metal-containing sulfur-introduced titanium oxide is visible. Increases photocatalytic activity with light.
該金属含有チタン塩加水分解ノアルカリ中和物 Aと該硫黄化合物との 混合物を焼成する際の雰囲気は、 特に制限されず、 空気中、 酸素ガス中 のような酸化性雰囲気下;窒素ガス中、 アルゴンガス中のような不活性 雰囲気下;真空下等が挙げられる。  The atmosphere at the time of firing the mixture of the metal-containing titanium salt hydrolyzed neutral alkali A and the sulfur compound is not particularly limited, and is in an oxidizing atmosphere such as in air or oxygen gas; in nitrogen gas, Under an inert atmosphere such as in argon gas; under vacuum.
該焼成工程 Aでは、 該金属含有チタン塩加水分解 アルカリ中和物 A と該硫黄化合物との混合物 A中の該硫黄化合物の混合量、 及び焼成温度 により、 該金属含有硫黄導入酸化チタン中の硫黄含有量が異なる。 その ため、 該焼成工程 Aでは、 該金属含有チタン塩加水分解 Zアルカリ中和 物 Aと該硫黄化合物との混合物 A中の該硫黄化合物の混合量、 及び焼成 温度を適宜選択して、 該金属含有硫黄導入酸化チタン中の硫黄含有量を 調節することができ、該金属含有硫黄導入酸化チタン中の硫黄含有量が、 0 . 0 2〜0 . 1質量%となるように設定することが好ましい。 In the firing step A, the metal-containing titanium salt hydrolyzed alkali neutralized product A The sulfur content in the metal-containing sulfur-introduced titanium oxide varies depending on the mixing amount of the sulfur compound in the mixture A and the calcination temperature. Therefore, in the firing step A, the metal-containing titanium salt hydrolyzed Z alkali neutralized product A and the mixture A of the sulfur compound, the amount of the sulfur compound in the mixture A, and the firing temperature are appropriately selected, and the metal The sulfur content in the contained sulfur-introduced titanium oxide can be adjusted, and the sulfur content in the metal-containing sulfur-introduced titanium oxide is preferably set to be from 0.02 to 0.1% by mass. .
具体的には、 該焼成温度が、 3 5 0〜4 0 0 °Cの場合、 該混合物 A中 の該硫黄化合物の混合量を、 該金属含有チタン塩加水分解 アルカリ中 和物 Aを T i O 2換算したときの 1 0 0質量部に対する硫黄原子の質量 が、 5〜2 0質量部となる混合量とすることが好ましく、 特に好ましく は 5〜 1 0質量部となる混合量とすることである。また、該焼成温度が、 4 0 0〜5 0 0 °Cの場合、 該混合物 A中の該硫黄化合物の混合量を、 該 金属含有チタン塩加水分解 Zアル力リ中和物 Aを T i 0 2換算したとき の 1 0 0質量部に対する硫黄原子の質量が、 1 0〜 5 0質量部となる混 合量とすることが好ましく、 特に好ましくは 2 0〜4 0質量部となる混 合量とすることである。また、該焼成温度が、 5 0 0〜8 0 0 °Cの場合、 該混合物 A中の該硫黄化合物の混合量を、 該金属含有チタン塩加水分解 Zアル力リ中和物 Aを T i O 2換算したときの 1 0 0質量部に対する硫 黄原子の質量が、 4 0〜 1 5 0質量部となる混合量とすることが好まし く、 特に好ましくは 1 0 0〜 1 5 0質量部となる混合量とすることであ る。 Specifically, when the calcination temperature is 3500 to 400 ° C, the amount of the sulfur compound in the mixture A is changed to the amount of the metal-containing titanium salt hydrolyzed alkali hydrate A The amount of sulfur atoms relative to 100 parts by mass in terms of O 2 is preferably 5 to 20 parts by mass, particularly preferably 5 to 10 parts by mass. It is. When the calcination temperature is 400 to 500 ° C., the amount of the sulfur compound in the mixture A is changed to the metal-containing titanium salt hydrolyzed Z Al force neutralized product A 0 2-converted mass of a sulfur atom for 1 0 0 parts by weight of time is 1 0-5 0 it is preferred to a mass parts become mixed-weight, particularly preferably 2 0-4 0 weight parts to become mixed- It is to be a quantity. In addition, when the calcination temperature is 500 to 800 ° C., the amount of the sulfur compound in the mixture A is changed to the metal-containing titanium salt hydrolyzed Z-al strength neutralized product A It is preferable to set the mixing amount so that the mass of sulfur atoms with respect to 100 parts by mass when converted to O 2 is 40 to 150 parts by mass, and particularly preferably 100 to 150 parts by mass. The mixing amount is a part.
また、 該焼成工程 Aでは、 該金属含有チタン塩加水分解ノアルカリ中 和物 Aと該硫黄化合物との混合物 Aを焼成して、 得られた金属含有硫黄 導入酸化チタンに、 合計の混合量が所定の混合量を超えない範囲で、 再 度該硫黄化合物を混合し、 再度焼成を行うこともできる。 本発明の第二の形態の金属含有硫黄導入酸化チタンの製造方法(以下、 本発明の製造方法 (2 ) とも記載する。 ) は、 金属含有チタン塩加水分 解 アルカリ中和物 Bの加熱処理物 Bと硫黄化合物との混合物 Bを得る 焼成原料混合物調製工程 Bと、 該加熱処理物 Bと該硫黄化合物との混合 物 Bを、 焼成し、 金属含有硫黄導入酸化チタンを得る焼成工程 Bと、 を 有し、 In addition, in the firing step A, a mixture A of the metal-containing titanium salt hydrolyzed neutral alkali A and the sulfur compound is fired, and the total amount of mixing is predetermined for the obtained metal-containing sulfur-introduced titanium oxide. The sulfur compound can be mixed again and fired again within a range not exceeding the mixing amount of. The method for producing the metal-containing sulfur-introduced titanium oxide of the second aspect of the present invention (hereinafter also referred to as the production method (2) of the present invention) is a metal-containing titanium salt hydrolysis alkali-neutralized product B heat treatment A baking raw material mixture preparation step B to obtain a mixture B of the product B and a sulfur compound, and a baking step B to obtain a metal-containing sulfur-introduced titanium oxide by firing the mixture B of the heat-treated product B and the sulfur compound. Have
該焼成原料混合物調製工程 Bが、 チタン塩を加水分解またはアル力リ 中和して、 チタン塩加水分解 Zアル力リ中和物 B含有スラリ一を調製す る加水分解ノアルカリ中和処理 Bと、 該チタン塩加水分解 アルカリ中 和物 B含有スラリーに、 金属化合物を加え、 撹拌して、 金属含有チタン 塩加水分解 Zアル力リ中和物 Bを得る金属化合物撹拌混合処理 Bと、 該 金属含有チタン塩加水分解ノアルカリ中和物 Bを加熱処理して、 加熱処 理物 Bを得る加熱処理 Bと、 を行う工程であり、  The calcining raw material mixture preparation step B comprises hydrolysis or alkali neutralization treatment B to hydrolyze or neutralize titanium salt to prepare titanium salt hydrolyzed Z aluminum force neutralized product B-containing slurry. A metal compound is added to the slurry containing the alkali salt B of the alkali salt hydrolysis B slurry and stirred to obtain a metal-containing titanium salt hydrolyzed Z-al strength neutralized product B. Heat treatment B to obtain a heat-treated product B by heat-treating the titanium salt hydrolyzed no-alkali neutralized product B, and
該金属化合物撹拌混合処理 Bで該金属化合物を加える量が、 T i 0 2 換算したときの該チタン塩加水分解 アルカリ中和物 B 1 0 0質量部 に対して、 金属原子として 0 . 0 3〜0 . 1 5質量部となる量であり、 且つ、 該加水分解 アル力リ中和処理 Bを行う前から該加熱処理 Bを 行った後までの間に、 硫黄化合物を混合する、 The amount of the metal compound added in the metal compound stirring and mixing treatment B is 0.003 as a metal atom with respect to 100 parts by mass of the titanium salt hydrolyzed alkali neutralized product B 10 when converted to Ti 0 2 . A sulfur compound is mixed between before the hydrolysis Al force re-neutralization treatment B and after the heat treatment B.
金属含有硫黄導入酸化チタンの製造方法である。 It is a manufacturing method of a metal containing sulfur introduction | transduction titanium oxide.
該焼成原料混合物調製工程 Bでは、 該チタン塩加水分解 Zアルカリ中 和処理 Bと、 該金属化合物撹拌混合処理 Bと、 を行うことにより、 該チ タン塩から該金属含有チタン塩加水分解 Zアル力リ中和物 Bを得る。 該焼成原料混合物調製工程 Bに係る該加水分解/アル力リ中和処理 B、 該チタン塩、 該チタン塩加水分解ノアルカリ中和物 B、 該チタン塩加水 分解 アルカリ中和物 B含有スラリー、 該金属化合物撹拌混合処理 B、 該金属化合物、 該金属含有チタン塩加水分解ノアルカリ中和物 Bは、 該 焼成原料混合物調製工程 Aに係る該加水分解 Zアル力リ中和処理 A、 該 チタン塩、 該チタン塩加水分解 アルカリ中和物 A、 該チタン塩加水分 解 Zアルカリ中和物 A含有スラリー、 該金属化合物撹拌混合処理 A、 該 金属化合物、 該金属含有チタン塩加水分解 アルカリ中和物 Aと同様で ある。 In the calcination raw material mixture preparation step B, the titanium salt hydrolysis Z alkali neutralization treatment B and the metal compound stirring and mixing treatment B are carried out to convert the metal-containing titanium salt hydrolysis Z alcohol from the titanium salt. Power neutralized product B is obtained. The hydrolysis / al strength neutralization treatment B according to the baking raw material mixture preparation step B, the titanium salt, the titanium salt hydrolysis hydroalkali neutralization product B, the titanium salt hydrolysis alkali neutralization product B-containing slurry, Metal compound stirring and mixing treatment B, the metal compound, the metal-containing titanium salt hydrolyzed neutralized product B, Firing raw material mixture preparation step A according to the hydrolysis Z al force neutralization treatment A, the titanium salt, the titanium salt hydrolysis alkali neutralized product A, the titanium salt hydrolysis Z alkali neutralized product A-containing slurry, This is the same as the metal compound stirring and mixing treatment A, the metal compound, and the metal-containing titanium salt hydrolyzed alkali neutralized product A.
該焼成原料混合物調製工程 Bでは、 該金属化合物撹拌混合処理 Bを行 つた後に、 該加熱処理 Bを行う。  In the firing raw material mixture preparation step B, the heat treatment B is performed after the metal compound stirring and mixing treatment B is performed.
該加熱処理 Bは、 該加水分解/アル力リ中和処理 B及び該金属化合物 撹拌混合処理 Bを行い得られる該金属含有チタン塩加水分解 Zアル力リ 中和物 Bを加熱処理し、 加熱処理物 Bを得る処理である。 そして、 該加 熱処理 Bを行なうことにより、 比表面積が 1 50 4 0 0m2/g、 好 ましくは 200 3 1 0m2Zg X線回折分析によるアナターゼの( 1 0 1) ピークの半値幅が 2 0 = 1. 2 1. 5° の該加熱処理物が得ら れる。 言い換えると、 該加熱処理 Bは、 該加熱処理物 Bの比表面積及び 半値幅を、 上記範囲に調整する処理である。 The heat treatment B is a heat treatment of the metal-containing titanium salt hydrolyzed Z al force neutralized product B obtained by performing the hydrolysis / al strength neutralization treatment B and the metal compound stirring and mixing treatment B. This is a process for obtaining a processed product B. Then, by performing the heat treatment B, the specific surface area is 1 50 400 m 2 / g, preferably 200 3 10 m 2 Zg The half width of the (1 0 1) peak of anatase by X-ray diffraction analysis is reduced. 2 0 = 1. 2 1. 5 ° of the heat-treated product is obtained. In other words, the heat treatment B is a treatment for adjusting the specific surface area and the half width of the heat-treated product B to the above ranges.
該加熱処理 Bにおいて、 該金属含有チタン塩加水分解ノアルカリ中和 物 Bを加熱処理する際の加熱処理温度は、 200 3 50< 、 好ましく は 250 300°Cである。 該加熱処理温度が、 上記範囲内にあること により、 比表面積が 1 5 0 40 0m2Zg、 アナターゼの ( 1 0 1 ) ピークの半値幅が 2 0 = 1. 2 1. 5° である加熱処理物を得易くな る。 一方、 該加熱処理温度が、 200°C未満だと、 加熱処理物の比表面 積が 400m2Zgより大きくなり易く、 あるいは、 アナターゼの ( 1 0 1 ) ピークの半値幅が 2 0 1. 5° より広くなり易い。 また、 該加 熱処理温度が、 3 50°Cを超えると、 加熱処理物の比表面積が 1 50m 2 gより小さくなり易く、 あるいは、 アナターゼの ( 1 0 1 ) ピーク の半値幅が 2 0 = 1. 2° より狭くなり易い。また、該加熱処理温度が、 2 5 0°C未満だと、 加熱処理物の比表面積が 3 1 0m 2Zgより大きく なり易く、 3 00°Cを超えると、 加熱処理物の比表面積が 2 00 m2/ gより小さくなり易い。 In the heat treatment B, the heat treatment temperature when the metal-containing titanium salt hydrolyzed neutralized product B is heat-treated is 200 3550 < , preferably 250 300 ° C. When the heat treatment temperature is within the above range, the specific surface area is 150 500 m 2 Zg, and the half-width of the (1 0 1) peak of anatase is 2 0 = 1. 2 1.5 ° It becomes easy to obtain a processed product. On the other hand, when the heat treatment temperature is less than 200 ° C, the specific surface area of the heat-treated product tends to be larger than 400 m 2 Zg, or the half width of the (1 0 1) peak of anatase is 2 0 1.5 ° Prone to become wider. When the heat treatment temperature exceeds 350 ° C, the specific surface area of the heat-treated product tends to be smaller than 150 m 2 g, or the half width of the anatase (1 0 1) peak is 2 0 = 1 It tends to be narrower than 2 °. The heat treatment temperature is If the temperature is lower than 2500 ° C, the specific surface area of the heat-treated product tends to be larger than 3 10 m 2 Zg. If the temperature exceeds 300 ° C, the specific surface area of the heat-treated material is smaller than 200 m 2 / g. easy.
該加熱処理 Bにおいて、 該金属含有チタン塩加水分解 アルカリ中和 物 Bを加熱処理する際の加熱処理時間は、 好ましくは 1〜5時間、 特に 好ましくは 2〜 3時間である。  In the heat treatment B, the heat treatment time when the metal-containing titanium salt hydrolyzed alkali neutralized product B is heat-treated is preferably 1 to 5 hours, particularly preferably 2 to 3 hours.
該加熱処理 Bにおいて、 該金属含有チタン塩加水分解/アル力リ中和 物 Bを加熱処理する際の雰囲気は、 特に制限されず、 空気中、 酸素ガス 中のような酸化性雰囲気下;窒素ガス中、 アルゴンガス中のような不活 性雰囲気下;真空下等が挙げられ、 経済的には、 空気中が有利である。 そして、 上記のように、 該焼成原料混合物調製工程 Bで、 該チタン塩 から該加熱処理物 Bを得る際に、 つまり、 該チタン塩加水分解 Zアル力 リ中和処理 Bを行う前から該加熱処理 Bを行った後までの間に、 該硫黄 化合物を混合することにより、 該チタン塩加水分解/アル力リ中和物 B の加熱処理物 Bと該硫黄化合物との混合物 Bを得る。 更に具体的には、 該焼成原料混合物調製工程 Bでは、 該硫黄化合物の混合を、 例えば、 (B 1 ) 該加水分解 アルカリ中和処理 Bを行う前、  In the heat treatment B, the atmosphere for heat-treating the metal-containing titanium salt hydrolyzed / al strength neutralized product B is not particularly limited, and is in an oxidizing atmosphere such as in air or oxygen gas; nitrogen In an inert atmosphere such as in a gas or argon gas; in a vacuum, etc. In the air, the air is advantageous. Then, as described above, in obtaining the heat-treated product B from the titanium salt in the baking raw material mixture preparation step B, that is, before performing the titanium salt hydrolysis Z al force re-neutralization treatment B, Before the heat treatment B is performed, the sulfur compound is mixed to obtain a mixture B of the heat treated product B of the titanium salt hydrolyzed / al strength re-neutralized product B and the sulfur compound. More specifically, in the baking raw material mixture preparation step B, the sulfur compound is mixed, for example, before (B 1) hydrolysis and alkali neutralization treatment B,
(B 2 ) 該加水分解/アルカリ中和処理 Bを行いつつ、  (B 2) While performing the hydrolysis / alkali neutralization treatment B,
(B 3) 該金属化合物撹拌混合処理 Bの前、  (B 3) Before the metal compound stirring and mixing treatment B,
(B 4) 該金属化合物撹拌混合処理 Bを行いつつ、  (B 4) While performing the metal compound stirring and mixing treatment B,
(B 5) 該加熱処理 Bを行う前、 または  (B 5) Before performing the heat treatment B, or
(B 6) 該加熱処理 Bを行った後  (B 6) After performing the heat treatment B
に行う。 To do.
該焼成原料混合物調製工程 Bに係る該 (B 1 ) 、 該 (B 2) 、 該 (B 3 ) 、 該 (B 4) は、 該焼成原料混合物調製工程 Aに係る該 (A 1) 、 該 (A2) 、 該 (A 3) 、 該 (A4) と同様である。 該 (B 5) の場合、 例えば、 該金属化合物撹拌混合処理 Bを行い、 該 金属含有チタン塩加水分解 アル力リ中和物 Bを得た後、 得られた該金 属含有チタン塩加水分解ノアルカリ中和物 Bと該硫黄化合物とを混合す ることが挙げられる。 該 (B 5) の場合としては、 更に具体的には、 例 えば、 (B 5— 1 )該金属含有チタン塩加水分解ノアルカリ中和物 Bに、 該硫黄化合物を溶解させた溶液を添加し、 十分混合した後、 溶媒を蒸発 させる方法や、 (B 5— 2) 該金属含有チタン塩加水分解 アルカリ中 和物 Bと該硫黄化合物とを、 乾式で混合する方法や、 (B 5— 3) 該金 属含有チタン塩加水分解/アル力リ中和物 Bと該硫黄化合物を、 分散媒 中で混合する方法などが挙げられ、 これらの混合方法のうち、 該 (B 5 — 2) の方法が、 操作性の点から好ましい。 The (B 1), (B 2), (B 3), (B 4) related to the baking raw material mixture preparation step B are the (A 1), (B 4) related to the baking raw material mixture preparation step A The same as (A2), (A3) and (A4). In the case of (B 5), for example, the metal-containing titanium salt hydrolysis mixture B is obtained to obtain the metal-containing titanium salt hydrolyzed Al force neutralized product B, and then the metal-containing titanium salt hydrolyzed. Examples thereof include mixing the alkali neutralized product B and the sulfur compound. In the case of (B 5), more specifically, for example, (B 5-1) a solution in which the sulfur compound is dissolved in the metal-containing titanium salt hydrolyzed neutralized product B is added. (B 5-2) A method of evaporating the solvent containing the metal-containing titanium salt Alkaline hydrate B and the sulfur compound in a dry process, or (B 5-3 ) The metal-containing titanium salt hydrolyzed / alkaline neutralized product B and the sulfur compound may be mixed in a dispersion medium. Among these mixing methods, the (B 5-2) The method is preferable from the viewpoint of operability.
該 (B 6) の場合、 例えば、 該加熱処理 Bを行い、 該加熱処理物 Bを 得た後、 得られた該加熱処理物 Bと該硫黄化合物とを混合することが挙 げられる。 該 (B 6) の場合としては、 更に具体的には、 例えば、 (B 6 - 1 ) 該加熱処理物 Bに、 該硫黄化合物を溶解させた溶液を添加し、 十分混合した後、 溶媒を蒸発させる方法や、 (B 6— 2) 該加熱処理物 Bと該硫黄化合物とを、 乾式で混合する方法や、 (B 6— 3) 該加熱処 理物 Bと該硫黄化合物を、 分散媒中で混合する方法などが挙げられ、 こ れらの混合方法のうち、 該 (B 6— 2) の方法が、 操作性の点から好ま しい。  In the case of (B 6), for example, after the heat treatment B is performed to obtain the heat-treated product B, the obtained heat-treated product B and the sulfur compound are mixed. In the case of (B 6), more specifically, for example, (B 6-1) A solution in which the sulfur compound is dissolved is added to the heat-treated product B, mixed well, and then the solvent is added. A method of evaporating, (B 6-2) a method of mixing the heat-treated product B and the sulfur compound in a dry process, and (B 6-3) a method of mixing the heat-treated product B and the sulfur compound with a dispersion medium. Among these mixing methods, the method (B6-2) is preferable from the viewpoint of operability.
そして、 該硫黄化合物の混合を、 上記 (B 1 ) 、 (B 2) 、 (B 3) 、 (B 4 ) 、 (A 5 ) または (B 6) のいずれかの時期に行うことも、 あ るいは、 これらのうちの 2以上の時期に分けて行うこともできる。  The sulfur compound may be mixed at any time of (B 1), (B 2), (B 3), (B 4), (A 5) or (B 6). Or it can be divided into two or more of these periods.
該加熱処理 Bと該硫黄化合物との混合物 B中の、 該硫黄化合物の混合 量は、 該加熱処理物 Bを T i 02換算したときの 1 0 0質量部に対する 硫黄原子の質量が、 好ましくは 5〜 1 50質量部、 特に好ましくは 1 0 〜 5 0質量部、 更に好ましくは 2 0〜4 0質量部となる量である。 該加 熱処理物 Bと該硫黄化合物との混合物 B中の、 該硫黄化合物の混合量が 上記範囲内にあることにより、 硫黄含有量が 0 . 0 2〜0 . 1質量%の 金属含有硫黄導入酸化チタンが得易くなる。 また、 該硫黄化合物の混合 量は、 該硫黄化合物の混合を 2以上の時期に分けて行う場合、 それらの 合計量である。 In the mixture B of the heat treatment B and the sulfur compound, the mixing amount of the sulfur compound, the mass of the sulfur atom with respect to 1 0 0 parts by weight when the heat treatment was B T i 0 2 converted, preferably 5 to 150 parts by weight, particularly preferably 10 ˜50 parts by mass, more preferably 20 to 40 parts by mass. Introducing metal-containing sulfur having a sulfur content of 0.02 to 0.1% by mass when the amount of the sulfur compound in the mixture B of the heat-treated product B and the sulfur compound is within the above range. Titanium oxide is easily obtained. Further, the mixing amount of the sulfur compound is the total amount when mixing the sulfur compound in two or more periods.
また、 該加熱処理 Bを行う前 (B 5 ) に、 該硫黄化合物を混合する場 合、 該硫黄化合物の混合量は、 該金属含有チタン塩加水分解 Zアルカリ 中和物 Bを T i O 2換算したときの 1 0 0質量部に対する硫黄原子の質 量が、 好ましくは 5〜2 0質量部、 特に好ましくは 5〜 1 0質量部とな る量である。 該加熱処理 Bを行う前に混合する該硫黄化合物の量が、 上 記範囲内にあることにより、 金属含有硫黄導入酸化チタンの触媒活性が 高くなる。 また、 該加熱処理 Bを行う前に、 該硫黄化合物を混合した場 合、 該加熱処理 Bを行い得られる該加熱処理物 Bに、 所定の混合量を超 えない範囲で、 更に該硫黄化合物を混合してもよい。 In addition, when the sulfur compound is mixed before the heat treatment B (B 5), the mixed amount of the sulfur compound is determined by adding the metal-containing titanium salt hydrolyzed Z alkali neutralized product B to T i O 2 The amount of sulfur atoms with respect to 100 parts by mass when converted is preferably 5 to 20 parts by mass, particularly preferably 5 to 10 parts by mass. When the amount of the sulfur compound to be mixed before the heat treatment B is within the above range, the catalytic activity of the metal-containing sulfur-introduced titanium oxide is increased. Further, when the sulfur compound is mixed before the heat treatment B, the sulfur compound is further added to the heat-treated product B obtained by performing the heat treatment B within a range not exceeding a predetermined mixing amount. May be mixed.
該焼成工程 Bでは、 該加熱処理物 Bと該硫黄化合物との混合物 Bを、 焼成する。  In the firing step B, the mixture B of the heat-treated product B and the sulfur compound is fired.
該焼成工程 Bは、 該焼成工程 Aと比べ、 該硫黄化合物と混合されるの 力 S、 前者は該金属含有チタン塩加水分解/アル力リ中和物 Bの加熱処理 物 Bであるのに対し、 後者は該金属含有チタン塩加水分解 アルカリ中 和物 Aであること以外は、 該焼成工程 Aと同様である。 よって、 該焼成 工程 Aの説明中の該金属含有チタン塩加水分解/アル力リ中和物 Aを、 該加熱処理物 Bと、 該混合物 Aを該混合物 Bと読み替えればよい。  Compared with the firing step A, the firing step B is mixed with the sulfur compound, and the former is a heat-treated product B of the metal-containing titanium salt hydrolyzed / al strength neutralized product B. On the other hand, the latter is the same as the calcination step A except that the metal-containing titanium salt hydrolyzed alkali neutral A. Therefore, the metal-containing titanium salt hydrolyzed / al strength neutralized product A in the description of the calcination step A may be read as the heat-treated product B and the mixture A as the mixture B.
そして、 本発明の製造方法 (2 ) では、 該加熱処理 Bを行なうことに より、 得られる金属含有硫黄導入酸化チタンの光触媒活性を更に高くす ることができる。 本発明の第三の形態の金属含有硫黄導入酸化チタンの製造方法(以下、 本発明の製造方法 (3 ) とも記載する。 ) は、 金属含有チタン塩加水分 解/アル力リ中和物 Cと硫黄化合物との混合物 Cを得る焼成原料混合物 調製工程 Cと、 該金属含有チタン塩加水分解/アル力リ中和物 Cと該硫 黄化合物との混合物 Cを、 焼成し、 金属含有硫黄導入酸化チタンを得る 焼成工程 Cと、 を有し、 In the production method (2) of the present invention, by performing the heat treatment B, the photocatalytic activity of the resulting metal-containing sulfur-introduced titanium oxide can be further increased. The method for producing a metal-containing sulfur-introduced titanium oxide according to the third aspect of the present invention (hereinafter also referred to as the production method (3) of the present invention) is a metal-containing titanium salt hydrolyzed / alternative neutralized product C Firing raw material mixture for obtaining a mixture C and sulfur compound C Preparation step C, the metal-containing titanium salt hydrolyzed / al strength re-neutralized product C and the sulfur compound C is calcined, and metal-containing sulfur is introduced. A firing step C for obtaining titanium oxide, and
該焼成原料混合物調製工程 Cが、 金属化合物の存在下で、 チタン塩を 加水分解またはアル力リ中和して、 金属含有チタン塩加水分解 Zアル力 リ中和物 Cを得る加水分解ノアルカリ中和処理 Cを行う工程であり、 該加水分解ノアルカリ中和処理 Cで存在させる該金属化合物の量が、 T i〇2換算したときのチタン塩 1 0 0質量部に対して、 金属原子とし て 0 . 0 3〜0 . 1 5質量部となる量であり、 The calcining raw material mixture preparation step C is hydrolyzed or alkalinized in the presence of a metal compound to hydrolyze or neutralize a titanium salt to obtain a metal-containing titanium salt hydrolyzed Z al force reneutralized product C. a step of performing sum process C, the amount of the metal compound be present in the hydrolysis Noarukari neutralization C is, with respect to the titanium salt 1 0 0 parts by weight when the T I_〇 2 terms, as a metal atom 0.03 to 0.15 is an amount of 5 parts by mass,
且つ、 該加水分解 Zアル力リ中和処理 cを行う前から該加水分解 ア ルカリ中和処理 Cを行った後までの間に、 硫黄化合物を混合する、 金属含有硫黄導入酸化チタンの製造方法である。  In addition, a method for producing a metal-containing sulfur-introduced titanium oxide, comprising mixing a sulfur compound before performing the hydrolysis Z-alkali neutralization treatment c and after performing the hydrolysis alkali-neutralization treatment C. It is.
該焼成原料調製工程 Cでは、 該金属化合物の存在下で、 該チタン塩を 加水分解することにより、 または該金属化'合物の存在下で、 該チタン塩 をアル力リ中和することにより、 該金属含有チタン塩加水分解 Zアル力 リ中和物 cを得る。  In the calcining raw material preparation step C, by hydrolyzing the titanium salt in the presence of the metal compound, or by neutralizing the titanium salt in the presence of the metal compound. The metal-containing titanium salt hydrolyzed Z-al strength neutralized product c is obtained.
該加水分解 Zアルカリ中和処理 Cに係る該チタン塩は、 該チタン塩加 水分解 Zアルカリ中和処理 Aに係る該チタン塩と同様である。 また、 該 チタン塩加水分解 Zアル力リ中和処理 cに係る該金属化合物は、 該金属 化合物撹拌混合処理 Aに係る該金属化合物と同様である。  The titanium salt according to the hydrolysis Z alkali neutralization treatment C is the same as the titanium salt according to the titanium salt hydrolysis Z alkali neutralization treatment A. In addition, the metal compound according to the titanium salt hydrolysis Z-al force neutralization treatment c is the same as the metal compound according to the metal compound stirring and mixing treatment A.
該加水分解/アル力リ中和処理 Cにおいて、 該チタン塩の加水分解を 行う方法としては、 該チタン塩及び該金属化合物を水に溶解させた水溶 液を調製し、 該水溶液を撹拌しながら加熱する方法が挙げられる。 この 方法では、 加水分解する際の加水分解温度は、 好ましくは 2 0 °C〜水溶 液の沸点、 特に好ましくは 4 0〜 8 0 °Cである。 該加水分解温度が、 2 0 °C未満であると、 加水分解速度が遅くなり易い。 また、 加水分解する 際の加水分解時間は、通常 5分〜 1 0時間、好ましくは 1 0分〜 5時間、 特に好ましくは 1 0分〜 1時間である。 なお、 上記では、 該チタン塩を 水に溶解させる旨を記載したが、該チタン塩を溶解させる溶媒としては、 該金属化合物を溶解するものであれば、 特に制限されず、 水の他に、 ァ ルコールなどの有機溶媒が挙げられ、 これらのうち、 水は取り扱いが容 易な点、 経済性の点から好ましい。 In the hydrolysis / alternative neutralization treatment C, the titanium salt is hydrolyzed by preparing an aqueous solution in which the titanium salt and the metal compound are dissolved in water, and stirring the aqueous solution. The method of heating is mentioned. this In the method, the hydrolysis temperature during the hydrolysis is preferably 20 ° C. to the boiling point of the aqueous solution, particularly preferably 40 to 80 ° C. When the hydrolysis temperature is less than 20 ° C, the hydrolysis rate tends to be slow. The hydrolysis time for the hydrolysis is usually 5 minutes to 10 hours, preferably 10 minutes to 5 hours, and particularly preferably 10 minutes to 1 hour. In the above description, the titanium salt is dissolved in water, but the solvent for dissolving the titanium salt is not particularly limited as long as it dissolves the metal compound. Examples include organic solvents such as alcohol. Among these, water is preferable from the viewpoint of easy handling and economical efficiency.
該加水分解 Zアルカリ中和処理 Cにおいて加水分解する際、 低 p H領 域で加水分解を行うことが、 粒径が小さい加水分解物を得ることができ る点で好ましい。 そのため、 該加水分解 Zアルカリ中和処理 cにおいて 加水分解をする際、 特に、 加水分解温度が水溶液の沸点付近である場合 においては、 反応槽に還流装置等を設置し、 発生する塩化水素が塩化水 素ガスとして反応系外へ排出されることを抑えることが、 反応系の p H を低くできる点で好ましい。  When hydrolyzing in the hydrolysis Z alkali neutralization treatment C, hydrolysis is preferably performed in a low pH region because a hydrolyzate having a small particle size can be obtained. Therefore, when hydrolyzing in the hydrolysis Z alkali neutralization treatment c, particularly when the hydrolysis temperature is near the boiling point of the aqueous solution, a reflux apparatus is installed in the reaction tank, and the generated hydrogen chloride is chlorinated. It is preferable to suppress discharge from the reaction system as hydrogen gas because the pH of the reaction system can be lowered.
そして、 該加水分解 Zアルカリ中和処理 Cでは、 該チタン塩の加水分 解を行なうことにより、 該チタン塩加水分解物が生成すると共に、 該金 属化合物が加水分解または還元されて、水酸化物または酸化物に変化し、 該水酸化物または該酸化物が、 生成した該チタン塩加水分解物の表面付 着または内部に取り込まれて、 該金属含有チタン塩加水分解物 Cが得ら れる。 該金属含有チタン塩加水分解物は、 酸化チタンまたは該チタン塩 から酸化チタンに変化途中の中間体である。  In the hydrolysis Z alkali neutralization treatment C, the titanium salt is hydrolyzed to produce the titanium salt hydrolyzate, and the metal compound is hydrolyzed or reduced. The metal-containing titanium salt hydrolyzate C is obtained by incorporating the hydroxide or the oxide into the surface adhesion or inside of the titanium salt hydrolyzate formed. . The metal-containing titanium salt hydrolyzate is titanium oxide or an intermediate in the process of changing from the titanium salt to titanium oxide.
該加水分解 Zアル力リ中和処理 cにおいて、 該チタン塩のアル力リ中 和を行なう方法としては、 該チタン塩および該金属化合物を水に溶解さ せた水溶液を調製し、 該水溶液を撹拌しながら、 アルカリを混合して、 該チタン塩と該アルカリ とを接触させる方法が挙げられ、 更に具体的に は、 例えば、 In the hydrolysis Z-al strength neutralization treatment c, as a method for neutralizing the titanium salt, an aqueous solution in which the titanium salt and the metal compound are dissolved in water is prepared. While stirring, mix the alkali, A method of bringing the titanium salt into contact with the alkali, and more specifically, for example,
( i ) 該チタン塩の水溶液に対して、 該アルカリの水溶液を滴下し、 両 者を接触させる方法、  (i) a method in which the aqueous alkali solution is dropped into the aqueous titanium salt solution and the two are brought into contact with each other;
( i i ) 該アルカリの水溶液に対して、 該チタン塩の水溶液を滴下し、 両者を接触させる方法、  (ii) A method of dropping an aqueous solution of the titanium salt into the aqueous solution of the alkali and bringing them into contact;
( i i i ) 反応容器に水を入れておき、 その中に、 該チタン塩の水溶液 と該アルカリの水溶液とを滴下し、 両者を接触させる方法、  (ii) A method in which water is put in a reaction vessel, an aqueous solution of the titanium salt and an aqueous solution of the alkali are dropped therein, and both are brought into contact with each other,
が挙げられる。 このとき、 該 ( i ) 、 ( i i ) 及び ( i i i ) では、 該 金属化合物を、 該チタン塩の水溶液中に存在させても、 該アルカリの水 溶液中に存在させても、 該反応容器に入れた水中に存在させてもよい、 つまり、 滴下される水溶液中に該金属化合物を存在させてもよいし、 滴 下する方の水溶液中に該金属化合物を存在させてもよい。 Is mentioned. At this time, in the (i), (ii) and (iii), the metal compound can be added to the reaction vessel regardless of whether it is present in the aqueous solution of the titanium salt or in the aqueous solution of the alkali. The metal compound may be present in the added water, that is, the metal compound may be present in the dropped aqueous solution, or the metal compound may be present in the dropped aqueous solution.
該加水分解ノアルカリ中和処理 Cに係る該ァルカリ としては、 特に制 限されず、 例えば、 アンモニア、 アンモニア水等が挙げられ、 これらの うち、 アンモニア又はアンモニア水が、 金属含有硫黄導入酸化チタン中 にアル力リ由来の金属成分が含有されないので、 該金属含有硫黄導入酸 化チタンの可視光での光触媒活性の制御上好ましい。 上記 ( i ) 〜 ( i i i ) の方法では、 アルカリ中和する際のアルカリ中和温度は、 好まし くは 1 0〜8 0 °C、 特に好ましくは 3 0〜 8 0 、 更に好ましくは 4 0 〜7 0 である。 該アルカリ中和温度が、 1 0 °C未満だと中和反応が起 こり難くなり、 また、 8 0 を超えると発熱が激しく、 塩化水素の発生 が著しくなるため、 平均粒径が小さく且つ比表面積が大きいアル力リ中 和物が得られ難くなる。 また、 アルカリ中和する際の該アルカリの添加 時間は、 通常 1分〜 1 0時間、 好ましくは 3分〜 5時間、 特に好ましく は 5分〜 1時間である。 そして、 該加水分解 Zアルカリ中和処理 cでは、 該チタン塩のアル力 リ中和を行なうことにより、 該チタン塩アル力リ中和物が生成すると共 に、 該金属化合物が加水分解または還元されて、 水酸化物または酸化物 に変化し、 該水酸化物または該酸化物が、 生成した該チタン塩アルカリ 中和物の表面付着または内部に取り込まれて、 該金属含有チタン塩アル カリ中和物 Cが得られる。 該金属含有チタン塩アルカリ中和物 Cは、 酸 化チタンまたは該チタン塩から酸化チタンに変化途中の中間体である。 該加水分解 アルカリ中和処理 Cにおいて、該金属化合物の混合量は、 金属含有硫黄導入酸化チタンへの金属の導入量により適宜選択できるが、 該チタン塩を T i o2換算したときの 1 00質量部に対する金属原子の 質量が、 好ましくは 0. 03〜0. 1 5質量部、 特に好ましくは 0. 0 5〜0. 1質量部となる混合量である。 該金属化合物の混合量が、 上記 範囲内にあることにより、 金属含有硫黄導入酸化チタンの可視光での光 触媒活性が高くなる。 The alkali related to the hydrolysis-no-alkali neutralization treatment C is not particularly limited, and examples thereof include ammonia and aqueous ammonia. Among these, ammonia or aqueous ammonia is contained in the metal-containing sulfur-introduced titanium oxide. Since a metal component derived from Al force is not contained, it is preferable for controlling the photocatalytic activity of the metal-containing sulfur-introduced titanium oxide with visible light. In the above methods (i) to (iii), the alkali neutralization temperature during the alkali neutralization is preferably 10 to 80 ° C, particularly preferably 30 to 80, more preferably 40. ~ 70. When the alkali neutralization temperature is less than 10 ° C, the neutralization reaction hardly occurs. When the alkali neutralization temperature exceeds 80 ° C, heat generation is intense and generation of hydrogen chloride becomes remarkable. It is difficult to obtain Al strength intermediates with a large surface area. Further, the addition time of the alkali at the time of alkali neutralization is usually 1 minute to 10 hours, preferably 3 minutes to 5 hours, particularly preferably 5 minutes to 1 hour. Then, in the hydrolysis Z alkali neutralization treatment c, the titanium salt Al force re-neutralized product is formed by performing the Al force re-neutralization of the titanium salt, and the metal compound is hydrolyzed or reduced. Is converted into a hydroxide or an oxide, and the hydroxide or the oxide is taken into the surface of the alkali neutralized product of the produced titanium salt or is taken into the inside thereof, in the metal-containing titanium salt alkali. Japanese product C is obtained. The metal-containing titanium salt alkali neutralized product C is an intermediate in the process of changing from titanium oxide or the titanium salt to titanium oxide. In hydrolysis alkali neutralization process C, the mixing amount of the metal compound, 1 00 mass when can be appropriately selected by the introduction of the metal of the metal-containing sulfur introduced titanium oxide, which the titanium salt T io 2 converted The mixing amount is such that the mass of the metal atom with respect to parts is preferably 0.03 to 0.15 parts by mass, particularly preferably 0.05 to 0.1 parts by mass. When the mixing amount of the metal compound is within the above range, the photocatalytic activity of the metal-containing sulfur-introduced titanium oxide with visible light is increased.
乾燥後の該金属含有チタン塩加水分解 アルカリ中和物 Cは、 結晶構 造の主体がアナターゼ型であり、 比表面積が 1 5 0〜40 0m2Zg、 好ましくは 200〜 3 1 0m2/g、 X線回折分析によるアナターゼの ( 1 0 1 ) ピークの半値幅が 2 0 = 1. 2〜 1. 5° であることが、 金 属含有硫黄導入酸化チタンの可視光での光触媒活性が高くなる点で好ま しい。 The metal-containing titanium salt hydrolyzed alkali-neutralized product C after drying is mainly composed of anatase type crystal structure, and has a specific surface area of 150 to 400 m 2 Zg, preferably 200 to 30 m 2 / g. The half-width of the (1 0 1) peak of anatase by X-ray diffraction analysis is 20 = 1.2 to 1.5 °, which indicates that the photocatalytic activity of metal-containing sulfur-introduced titanium oxide in visible light is high. This is preferable.
そして、 上記のように、 該焼成原料混合物調製工程じで、 該チタン塩 から該金属含有チタン塩加水分解 アルカリ中和物 Cを得る際に、 つま り、 該加水分解/アル力リ中和処理 Cを行う前から該加水分解ノアルカ リ中和処理 Cを行った後までの間に、 該硫黄化合物を混合することによ り、 該チタン塩加水分解 Zアルカ リ中和物 Cと該硫黄化合物との混合物 Cを得る。 更に具体的には、 該焼成原料混合物調製工程 Cでは、 該硫黄 化合物の混合を、 例えば、 Then, as described above, when obtaining the metal-containing titanium salt hydrolyzed alkali neutralized product C from the titanium salt in the step of preparing the firing raw material mixture, that is, the hydrolysis / al force re-neutralization treatment. By mixing the sulfur compound between before the C and after the hydrolytic neutralization treatment C, the titanium salt hydrolyzed Z alkali neutralized product C and the sulfur compound are mixed. To obtain a mixture C. More specifically, in the baking raw material mixture preparation step C, the sulfur Mixing compounds, for example
(c i) 該加水分解 Zアルカリ中和処理 cを行う前、  (c i) The hydrolysis Z alkali neutralization treatment
(C 2) 該加水分解/アルカリ中和処理 Cを行いつつ、 または  (C 2) While performing the hydrolysis / alkali neutralization treatment C, or
(C 3) 該加水分解 Zアルカリ中和処理 Cを行った後  (C 3) After the hydrolysis Z alkali neutralization treatment C
に行う。 To do.
該 (C 1 ) の場合、 例えば、 該チタン塩の水溶液を加熱する前に、 該 チタン塩の水溶液に該硫黄化合物を混合することや、 該チタン塩の水溶 液に該ァルカリを滴下する前に、 該チタン塩の水溶液に該硫黄化合物を 混合することが挙げられる。  In the case of (C 1), for example, before heating the aqueous solution of the titanium salt, the sulfur compound is mixed with the aqueous solution of the titanium salt, or before the alkali is added dropwise to the aqueous solution of the titanium salt. And mixing the sulfur compound with an aqueous solution of the titanium salt.
該 (C 2) の場合、 例えば、 該チタン塩の水溶液に該アルカリの水溶 液を滴下する際に、 該チタン塩の水溶液に対して、 該硫黄化合物を混合 した該ァルカリの水溶液を滴下することにより、 該加水分解ノアルカリ 中和処理 Cを行いつつ、 該硫黄化合物を混合することや、 該アルカリの 水溶液に該チタン塩の水溶液を滴下する際に、 該ァルカリの水溶液に対 して、 該硫黄化合物を混合した該チタン塩の水溶液を滴下することによ り、 該加水分解ノアルカリ中和処理 Cを行いつつ、 該硫黄化合物を混合 することが挙げられる。  In the case of (C 2), for example, when the alkaline aqueous solution is dropped into the titanium salt aqueous solution, the alkaline aqueous solution mixed with the sulfur compound is dropped into the titanium salt aqueous solution. When the sulfur compound is mixed while performing the hydrolysis-no-alkali neutralization treatment C, or when the titanium salt aqueous solution is dropped into the alkali aqueous solution, the sulfur aqueous solution is added to the alkali aqueous solution. By adding dropwise an aqueous solution of the titanium salt mixed with the compound, the sulfur compound is mixed while performing the hydrolysis-no-alkali neutralization treatment C.
該(C 3) の場合、例えば、該加水分解 Zアル力リ中和処理 Cを行い、 該金属含有チタン塩加水分解 アル力リ中和物 Cを得た後、 得られた該 金属含有チタン塩加水分解ノアルカリ中和物 Cと該硫黄化合物とを混合 することが挙げられる。 該 (C 3) の場合としては、 更に具体的には、 例えば、 (C 3— 1 ) 該金属含有チタン塩加水分解 Zアルカリ中和物 C に、 該硫黄化合物を溶解させた溶液を添加し、 十分混合した後、 溶媒を 蒸発させる方法や、 (C 3— 2) 該金属含有チタン塩加水分解 Zアル力 リ中和物 Cと該硫黄化合物とを、 乾式で混合する方法や、 (C 3— 3) 該金属含有チタン塩加水分解 Zアル力リ中和物 Cと該硫黄化合物を、 分 散媒中で混合する方法などが挙げられ、 これらの混合方法のうち、該(C 3 - 2 ) の方法が、 操作性の点から好ましい。 In the case of (C 3), for example, the metal-containing titanium obtained is obtained by performing the hydrolysis Z-al strength neutralization treatment C to obtain the metal-containing titanium salt hydrolyzed al- strength neutralized product C. For example, the salt hydrolyzed neutralized product C and the sulfur compound may be mixed. In the case of (C 3), more specifically, for example, (C 3-1) A solution containing the sulfur compound dissolved in the metal-containing titanium salt hydrolyzed Z alkali neutralized product C is added. (C 3-2) Hydrolysis of the metal-containing titanium salt Z Al force re-neutralized product C and the sulfur compound in a dry process, (C 3-2) 3-3) Hydrolysis of the metal-containing titanium salt Z neutralized product C and the sulfur compound The method of mixing in a dispersion medium etc. is mentioned, Among these mixing methods, this (C3-2) method is preferable from the point of operativity.
そして、 該硫黄化合物の混合を、 上記 (C I ) 、 ( C 2 ) または (C 3 ) のいずれかの時期に行うことも、 あるいは、 これらのうちの 2以上 の時期に分けて行うこともできる。  The mixing of the sulfur compound can be performed at any one of the above (CI), (C2) or (C3), or can be performed at two or more of these times. .
該金属含有チタン塩加水分解 Zアル力リ中和物 Cと該硫黄化合物との 混合物 C中の、 該硫黄化合物の混合量は、 該金属含有チタン塩加水分解 アルカリ中和物 Cを T i 0 2換算したときの 1 0 0質量部に対する硫 黄原子の質量が、 好ましくは 5〜 1 5 0質量部、 特に好ましくは 1 0〜 5 0質量部、 更に好ましくは 2 0〜4 0質量部となる量である。 該金属 含有チタン塩加水分解 Zアル力リ中和物 cと該硫黄化合物との混合物 c 中の、 該硫黄化合物の混合量が上記範囲内にあることにより、 硫黄含有 量が 0 . 0 2〜0 . 1質量%の金属含有硫黄導入酸化チタンが得易くな る。 また、 該硫黄化合物の混合量は、 該硫黄化合物の混合を 2以上の時 期に分けて行う場合、 それらの合計量である。 Hydrolysis of the metal-containing titanium salt Z Al force neutralized product C and the mixture of the sulfur compound The amount of the sulfur compound in the mixture C is determined as follows. The mass of sulfur atoms relative to 100 parts by mass when converted to 2 is preferably 5 to 1500 parts by mass, particularly preferably 10 to 50 parts by mass, and more preferably 20 to 40 parts by mass. Is the amount. Hydrolysis of the metal-containing titanium salt Z Al force neutralized product c and the mixture c of the sulfur compound When the mixing amount of the sulfur compound is within the above range, the sulfur content is from 0.02 to It becomes easy to obtain 0.1% by mass of metal-containing sulfur-introduced titanium oxide. Further, the mixing amount of the sulfur compound is the total amount when mixing the sulfur compound in two or more periods.
該焼成工程 Cでは、 該金属含有チタン塩加水分解/アル力リ中和物 C と該硫黄化合物との混合物。を、 焼成する。  In the firing step C, a mixture of the metal-containing titanium salt hydrolyzed / al strength re-neutralized product C and the sulfur compound. Is fired.
該焼成工程 Cは、 該焼成工程 Aと比べ、 該硫黄化合物と混合されるの 力 前者は該金属含有チタン塩加水分解/アル力リ中和物 Cであるのに 対し、 後者は該金属含有チタン塩加水分解 Zアルカリ中和物 Aであるこ と以外は、 該焼成工程 Aと同様である。 よって、 該焼成工程 Aの説明中 の該金属含有チタン塩加水分解/アル力リ中和物 Aを、 該金属含有チタ ン塩加水分解/アル力リ中和物 Cと、 該混合物 Aを該混合物 Cと読み替 えればよい。  Compared with the calcination step A, the calcination step C is mixed with the sulfur compound. The former is the metal-containing titanium salt hydrolyzed / al strength neutralized product C, whereas the latter is the metal-containing Titanium salt hydrolysis Z Similar to the calcination step A except that it is a neutralized alkali A. Therefore, the metal-containing titanium salt hydrolyzed / al strength neutralized product A in the description of the calcination step A, the metal-containing titan salt hydrolyzed / al strength neutralized product C, and the mixture A It should be read as Mixture C.
本発明の第四の形態の金属含有硫黄導入酸化チタンの製造方法(以下、 本発明の製造方法 (4 ) とも記載する。 ) は、 金属含有チタン塩加水分 解 Zアル力リ中和物 Dの加熱処理物 Dと硫黄化合物との混合物 Dを得る 焼成原料混合物調製工程 Dと、 該金属含有チタン塩加水分解 Zアル力リ 中和物 Dの加熱処理物 Dと該硫黄化合物との混合物 Dを、 焼成し、 金属 含有硫黄導入酸化チタンを得る焼成工程 Dと、 を有し、 The method for producing the metal-containing sulfur-introduced titanium oxide of the fourth aspect of the present invention (hereinafter also referred to as the production method (4) of the present invention) is a method for hydrolyzing metal-containing titanium salt Solution Z-strength neutralized product D Heat-treated product D and sulfur compound D are obtained D Preparation process D for calcining raw material and hydrolysis of the metal-containing titanium salt Z-strength neutralized product D A mixture D of D and the sulfur compound is calcined to obtain a metal-containing sulfur-introduced titanium oxide; and
該焼成原料混合物調製工程 Dが、 金属化合物の存在下で、 チタン塩を 加水分解またはアル力リ中和して、 チタン塩加水分解ノアルカリ中和物 Dを得る加水分解/アル力リ中和処理 Dと、 該金属含有チタン塩加水分 解 アル力リ中和物 Dを加熱処理して、 加熱処理物 Dを得る加熱処理 D と、 を行う工程であり、  In the presence of the metal compound, the firing raw material mixture preparation step D hydrolyzes or neutralizes the titanium salt to obtain a titanium salt hydrolyzed neutralized neutralized product D. Heat-treating D and the metal-containing titanium salt hydrolyzed Al force neutralized product D to obtain a heat-treated product D.
該加水分解 Zアル力リ中和処理 Dで存在させる該金属化合物の量が、 T i O 2換算したときのチタン塩 1 0 0質量部に対して、 金属原子とし て 0 . 0 3〜0 . 1 5質量部となる量であり、 The amount of the metal compound be present in the hydrolysis Z Al Chikarari neutralization D is, with respect to the titanium salt 1 0 0 parts by weight when T i O 2 converted, by a metal atom 0.0 3-0 1 The amount is 5 parts by mass,
且つ、 該加水分解 Zアル力リ中和処理 Dを行う前から該加熱処理 Dを 行った後までの間に、 硫黄化合物を混合する、  In addition, a sulfur compound is mixed between before the hydrolysis Z al force re-neutralization treatment D and after the heat treatment D.
金属含有硫黄導入酸化チタンの製造方法である。 It is a manufacturing method of a metal containing sulfur introduction | transduction titanium oxide.
該焼成原料混合物調製工程 Dでは、 該チタン; ^加水分解 Zアル力リ中 和処理 Dと、 該加熱処理 Dと、 を行うことにより、 該チタン塩から該金 属含有チタン塩加水分解 アルカリ中和物 Dの加熱処理物 Dを得る。 該焼成原料混合物調製工程 Dに係る該加水分解 Zアル力リ中和処理 D、 該チタン塩、 該金属化合物、 金属含有チタン塩加水分解 Zアルカリ中和 物 Dは、 該焼成原料混合物調製工程 Cに係る該加水分解/アル力リ中和 処理 C、 該チタン塩、 該金属化合物、 該金属含有チタン塩加水分解 Zァ ルカリ中和物 Cと同様である。  In the firing raw material mixture preparation step D, the titanium; ^ hydrolysis Z neutralization treatment D and the heat treatment D are carried out, whereby the metal-containing titanium salt hydrolysis in alkali Heat D of Japanese product D is obtained. The calcination raw material mixture preparation step D The hydrolysis Z al force neutralization treatment D, the titanium salt, the metal compound, the metal-containing titanium salt hydrolysis Z alkali neutralization product D is the calcination raw material mixture preparation step C. This is the same as the hydrolysis / alkaline neutralization treatment C, the titanium salt, the metal compound, and the metal-containing titanium salt hydrolyzed Z alkali neutralized product C.
該焼成原料混合物調製工程 Dでは、 該加水分解/アル力リ中和処理 D を行った後に、 該加熱処理 Dを行う。  In the firing raw material mixture preparation step D, the heat treatment D is performed after the hydrolysis / al strength neutralization treatment D is performed.
該加熱処理 Dは、 該加水分解 Zアル力リ中和処理 Dを行い得られる該 金属含有チタン塩加水分解 Zアル力リ中和物 Dを加熱処理し、 加熱処理 物 Dを得る処理である。 そして、 該加熱処理 Dを行なうことにより、 比 表面積が 1 5 0〜 400 m2/ g、 好ましくは 20 0〜3 1 0 m2/ g、 X線回折分析によるアナターゼの( 1 0 1 )ピークの半値幅が 2 0 = 1. 2〜 1. 5° の該加熱処理物が得られる。 言い換えると、 該加熱処理 D は、 該加熱処理物 Dの比表面積及び半値幅を、 上記範囲に調整する処理 である。 The heat treatment D may be performed by performing the hydrolysis Z-al force neutralization treatment D. Hydrolysis of metal-containing titanium salt Z Al force re-neutralized product D is heat-treated to obtain heat-treated product D. Then, by performing the heat treatment D, the specific surface area is 150 to 400 m 2 / g, preferably 200 to 3 10 m 2 / g, and the (1 0 1) peak of anatase by X-ray diffraction analysis The heat-treated product having a half-value width of 2 0 = 1. 2 to 1.5 ° is obtained. In other words, the heat treatment D is a treatment for adjusting the specific surface area and the half-value width of the heat-treated product D to the above ranges.
該加熱処理 Dは、 該加熱処理 Bと比べ、 加熱処理されるものが、 前者 は該金属含有チタン塩加水分解/アル力リ中和物 Dであるのに対し、 後 者は該金属含有チタン塩加水分解 アルカリ中和物 Bであること以外は、 該加熱処理 Bと同様である。 よって、 該加熱処理 Bの説明中の該金属含 有チタン塩加水分解 Zアル力リ中和物 Bを、 該金属含有チタン塩加水分 解 Zアルカリ中和物 Dと、 該加熱処理物 Bを、 該加熱処理物 Dと読み替 えればよい。  The heat treatment D is heat-treated compared to the heat treatment B. The former is the metal-containing titanium salt hydrolyzed / alkaline neutralized product D, whereas the latter is the metal-containing titanium. Salt hydrolysis The same as heat treatment B except that it is an alkali neutralized product B. Therefore, the metal-containing titanium salt hydrolyzed Z-alkaline neutralized product B in the explanation of the heat-treated B is converted into the metal-containing titanium salt hydrolyzed Z alkali-neutralized product D and the heat-treated product B. The heat-treated product D may be replaced with this.
そして、 上記のように、 該焼成原料混合物調製工程 Dで、 該チタン塩 から該加熱処理物 Dを得る際に、 つまり、 該チタン塩加水分解 Zアル力 リ中和処理 Dを行う前から該加熱処理 Dを行った後までの間に、 該硫黄 化合物を混合することにより、 該チタン塩加水分解ノアルカリ中和物 D の加熱処理物 Dと該硫黄化合物との混合物 Dを得る。 更に具体的には、 該焼成原料混合物調製工程 Dでは、 該硫黄化合物の混合を、 例えば、 (D 1 ) 該加水分解 Zアルカリ中和処理 Dを行う前、  Then, as described above, in obtaining the heat-treated product D from the titanium salt in the baking raw material mixture preparation step D, that is, before performing the titanium salt hydrolysis Z-al force re-neutralization treatment D, Before the heat treatment D is performed, the sulfur compound is mixed to obtain a mixture D of the heat-treated product D of the titanium salt hydrolysis neutralized product D and the sulfur compound. More specifically, in the baking raw material mixture preparation step D, the sulfur compound is mixed, for example, before (D 1) hydrolysis Z alkali neutralization treatment D,
(D 2) 該加水分解 Zアルカリ中和処理 Dを行いつつ、  (D 2) While performing the hydrolysis Z alkali neutralization treatment D,
(D 3) 該加熱処理 Dを行う前、 または  (D 3) Before performing the heat treatment D, or
(D 4) 該加熱処理 Dを行った後  (D 4) After performing the heat treatment D
に行う。 To do.
該焼成原料混合物調製工程 Dに係る該 (D 1 ) 、 該 (D 2) は、 該焼 成原料混合物調製工程 Cに係る該 (C 1 ) 、 該 (C 2) と同様である。 該(D 3) の場合、例えば、該加水分解ノアルカリ中和処理 Dを行い、 該金属含有チタン塩加水分解 Zアル力リ中和物 Dを得た後、 得られた該 金属含有チタン塩加水分解 Zアル力リ中和物 Dと該硫黄化合物とを混合 することが挙げられる。 該 (D 3) の場合としては、 更に具体的には、 例えば、 (D 3— 1 ) 該金属含有チタン塩加水分解 アルカリ中和物 D に、 該硫黄化合物を溶解させた溶液を添加し、 十分混合した後、 溶媒を 蒸発させる方法や、 (D 3— 2) 該金属含有チタン塩加水分解 Zアル力 リ中和物 Dと該硫黄化合物とを、 乾式で混合する方法や、 (D 3— 3) 該金属含有チタン塩加水分解 Zアルカリ中和物 Dと該硫黄化合物を、 分 散媒中で混合する方法などが挙げられ、これらの混合方法のうち、該(D 3 - 2) の方法が、 操作性の点から好ましい。 The (D 1) and (D 2) relating to the baking raw material mixture preparation step D This is the same as (C 1) and (C 2) in the raw material mixture preparation step C. In the case of the (D 3), for example, the hydrolysis-alkali neutralization treatment D is performed to obtain the metal-containing titanium salt hydrolyzed Z-al strength neutralized product D, and then the obtained metal-containing titanium salt hydrolyzed. An example of this is to mix the decomposed Z-al strength neutralized product D with the sulfur compound. In the case of (D3), more specifically, for example, (D3-1) hydrolysis of the metal-containing titanium salt alkali neutralized product D is added with a solution in which the sulfur compound is dissolved, (D 3-2) Hydrolysis of the metal-containing titanium salt Z Al force re-neutralized product D and the sulfur compound, or (D 3 — 3) Hydrolysis of metal-containing titanium salt Z Alkali neutralized product D and sulfur compound are mixed in a dispersion medium. Among these mixing methods, (D 3 -2) The method is preferable from the viewpoint of operability.
該 (D4) の場合、 例えば、 該加熱処理 Dを行い、 該加熱処理物 Dを 得た後、 得られた該加熱処理物 Dと該硫黄化合物とを混合することが挙 げられる。 該 (D 4) の場合としては、 更に具体的には、 例えば、 (D 4 - 1 ) 該加熱処理物 Dに、 該硫黄化合物を溶解させた溶液を添加し、 十分混合した後、 溶媒を蒸発させる方法や、 (D 4— 2) 該加熱処理物 Dと該硫黄化合物とを、 乾式で混合する方法や、 (D 4— 3) 該加熱処 理物 Dと該硫黄化合物を、 分散媒中で混合する方法などが挙げられ、 こ れらの混合方法のうち、 該 (D 4— 2) の方法が、 操作性の点から好ま しい。  In the case of (D4), for example, after the heat treatment D is performed to obtain the heat-treated product D, the obtained heat-treated product D and the sulfur compound are mixed. In the case of (D 4), more specifically, for example, (D 4-1) A solution in which the sulfur compound is dissolved is added to the heat-treated product D, and after sufficiently mixing, the solvent is added. A method of evaporating, (D 4-2) a method of mixing the heat-treated product D and the sulfur compound in a dry process, and (D 4-3) a method of mixing the heat-treated product D and the sulfur compound with a dispersion medium. Among these mixing methods, the method (D4-2) is preferred from the viewpoint of operability.
そして、 該硫黄化合物の混合を、 上記 (D l ) 、 (D 2) 、 (D 3) または、 (D 4) のいずれかの時期に行うことも、 あるいは、 これらの うちの 2以上の時期に分けて行うこともできる。  The mixing of the sulfur compound may be performed at any one of the times (D 1), (D 2), (D 3) or (D 4), or two or more of these times. It can also be divided into two.
該加熱処理 Dと該硫黄化合物との混合物 D中の、 該硫黄化合物の混合 量は、 該加熱処理物 Dを T i O2換算したときの 1 00質量部に対する 硫黄原子の質量が、 好ましくは 5〜 1 5 0質量部、 特に好ましくは 1 0 〜 5 0質量部、 更に好ましくは 2 0〜4 0質量部となる量である。 該加 熱処理物 Dと該硫黄化合物との混合物 D中の、 該硫黄化合物の混合量が 上記範囲内にあることにより、 硫黄含有量が 0 . 0 2〜0 . 1質量%の 金属含有硫黄導入酸化チタンが得易くなる。 また、 該硫黄化合物の混合 量は、 該硫黄化合物の混合を 2以上の時期に分けて行う場合、 それらの 合計量である。 In the mixture D of the heat treatment D and sulfur compounds, mixtures of sulfur compounds, for 1 00 parts by weight when the heat treatment was D T i O 2 converted The amount of the sulfur atom is preferably 5 to 1550 parts by mass, particularly preferably 10 to 50 parts by mass, and still more preferably 20 to 40 parts by mass. Introduction of metal-containing sulfur having a sulfur content of 0.02 to 0.1% by mass when the amount of the sulfur compound in the mixture D of the heat-treated product D and the sulfur compound is within the above range. Titanium oxide is easily obtained. Further, the mixing amount of the sulfur compound is the total amount when mixing the sulfur compound in two or more periods.
また、 該加熱処理 Dを行う前 (D 3 ) に、 該硫黄化合物を混合する場 合、 該硫黄化合物の混合量は、 該金属含有チタン塩加水分解 アルカリ 中和物 Dを T i 0 2換算したときの 1 0 0質量部に対する硫黄原子の質 量が、 好ましくは 5〜2 0質量部、 特に好ましくは 5〜 1 0質量部とな る量である。 該加熱処理物 Dにおいて混合する該硫黄化合物の量が、 上 記範囲内にあることにより、 金属含有硫黄導入酸化チタンの触媒活性が 高くなる。 In addition, when the sulfur compound is mixed before the heat treatment D (D 3), the amount of the sulfur compound is determined by converting the metal-containing titanium salt hydrolyzed alkali neutralized product D to Ti 0 2 In this case, the mass of sulfur atoms with respect to 100 parts by mass is preferably 5 to 20 parts by mass, particularly preferably 5 to 10 parts by mass. When the amount of the sulfur compound to be mixed in the heat-treated product D is within the above range, the catalytic activity of the metal-containing sulfur-introduced titanium oxide is increased.
該焼成工程 Dでは、 該加熱処理物 Dと該硫黄化合物との混合物 Dを、 焼成する。  In the firing step D, the mixture D of the heat-treated product D and the sulfur compound is fired.
該焼成工程 Dは、 該焼成工程 Aと比べ、 該硫黄化合物と混合されるの 力 S、 前者は該金属含有チタン塩加水分解/アル力リ中和物 Dの加熱処理 物 Dであるのに対し、 後者は該金属含有チタン塩加水分解 Zアル力リ中 和物 Aであること以外は、 該焼成工程 Aと同様である。 よって、 該焼成 工程 Aの説明中の該金属含有チタン塩加水分解 Zアル力リ中和物 Aを、 該加熱処理物 Dと、 該混合物 Aを該混合物 Dと読み替えればよい。  Compared with the firing step A, the firing step D is mixed with the sulfur compound, and the former is a heat-treated product D of the metal-containing titanium salt hydrolyzed / al strength neutralized product D. On the other hand, the latter is the same as the calcination step A except that the metal-containing titanium salt hydrolyzed Z-alkaline intermediate A. Therefore, the metal-containing titanium salt hydrolyzed Z al force neutralized product A in the description of the firing step A may be read as the heat-treated product D, and the mixture A as the mixture D.
そして、 本発明の製造方法 (4 ) では、 該加熱処理 Dを行なうことに より、 得られる金属含有硫黄導入酸化チタンの光触媒活性を更に高くす ることができる。  In the production method (4) of the present invention, by performing the heat treatment D, the photocatalytic activity of the resulting metal-containing sulfur-introduced titanium oxide can be further increased.
本発明の第五の金属含有硫黄導入酸化チタンの製造方法 (以下、 本発 明の製造方法 (5) とも記載する。 ) は、 金属含有チタン塩加水分解/ アルカリ中和物 E (2) と硫黄化合物との混合物 Eを得る焼成原料混合 物調製工程 Eと、該金属含有チタン塩加水分解/アル力リ中和物 E (2) と該硫黄化合物との混合物 Eを、 焼成し、 金属含有硫黄導入酸化チタン を得る焼成工程 Eと、 を有し、 The fifth metal-containing sulfur-introduced titanium oxide production method of the present invention (hereinafter referred to as the present invention) Also described as Ming's manufacturing method (5). ) Is a calcined raw material mixture preparation step E to obtain a mixture E of a metal-containing titanium salt hydrolyzed / alkali neutralized product E (2) and a sulfur compound, and the metal-containing titanium salt hydrolyzed / alkaline neutralized product A mixture E of E (2) and the sulfur compound is calcined to obtain a metal-containing sulfur-introduced titanium oxide, and
該焼成原料混合物調製工程 Eが、 金属化合物の存在下で、 該チタン塩 を加水分解またはアル力リ中和して、 金属含有チタン塩加水分解/アル カリ中和物 E (1 ) 含有スラリーを調製する加水分解 Zアルカリ中和処 理 Eと、 該金属含有チタン塩加水分解 Zアルカリ中和物 E ( 1 ) 含有ス ラリーに、 金属化合物を加え、 撹拌して、 金属含有チタン塩加水分解 Z アルカリ中和物 E (2) を得る金属化合物撹拌混合処理 Eと、 を行うェ 程であり、  In the firing raw material mixture preparation step E, in the presence of a metal compound, the titanium salt is hydrolyzed or alkali neutralized to obtain a metal-containing titanium salt hydrolyzed / alkali neutralized product E (1) -containing slurry. Hydrolysis to be prepared Z alkali neutralization treatment E and the metal-containing titanium salt hydrolyzed Z alkali-neutralized product E (1) Add the metal compound to the slurry and stir to obtain the metal-containing titanium salt hydrolyzed Z The metal compound stirring and mixing treatment E to obtain the alkali neutralized product E (2), and
該加水分解 Zアル力リ中和処理 Eで存在させる該金属化合物及び該金 属化合物撹拌混合処理 Eで加える該金属化合物の合計量が、 T i 02換 算したときのチタン塩 1 00質量部に対して、 金属原子として 0. 03 〜0. 1 5質量部となる量であり、 Titanium salt 1 00 mass when the total amount of the hydrolyzed Z Al Chikarari neutralized the metal compound be present in E or gold group compound stirred mixing process the metal compound added in E is obtained by T i 0 2 conversion calculation Is an amount of 0.03 to 0.15 parts by mass as a metal atom,
且つ、 該加水分解 アル力リ中和処理 Eを行う前から該金属化合物撹 拌混合処理 Eを行った後までの間に、 硫黄化合物を混合する、  And before performing this hydrolysis Al force re-neutralization process E until after performing this metal compound stirring mixing process E, a sulfur compound is mixed.
金属含有硫黄導入酸化チタンの製造方法である。 It is a manufacturing method of a metal containing sulfur introduction | transduction titanium oxide.
該焼成原料混合物調製工程 Eでは、 該加水分解/アルカリ中和処理 E 及び該金属化合物撹拌混合処理 Eを行う。  In the firing raw material mixture preparation step E, the hydrolysis / alkali neutralization treatment E and the metal compound stirring and mixing treatment E are performed.
該加水分解/アルカリ中和処理 Eでは、 該金属化合物の存在下で、 該 チタン塩を加水分解することにより、 または該金属化合物の存在下で、 該チタン塩をアル力リ中和することにより、 該金属含有チタン塩加水分 解 アルカリ中和物 E ( 1) を含有するスラリー、 すなわち、 金属含有 チタン塩加水分解/アルカリ中和物 E ( 1 ) 含有スラ リーを得る。 該加水分解 Zアル力リ中和処理 Eは、 該加水分解 Zアル力リ中和処理 Cと同様であり、 該加水分解 Zアル力リ中和処理 Eに係る該チタン塩、 該金属化合物、 該チタン塩加水分解 Zアルカリ中和物 E ( 1 ) は、 該加 水分解 アルカリ中和処理 Cに係る該チタン塩、 該金属化合物、 該チタ ン塩加水分解ノアルカリ中和物 Cと同様である。 In the hydrolysis / alkali neutralization treatment E, by hydrolyzing the titanium salt in the presence of the metal compound, or by neutralizing the titanium salt in the presence of the metal compound. A slurry containing the metal-containing titanium salt hydrolyzed alkali neutralized product E (1), that is, a metal-containing titanium salt hydrolyzed / alkali neutralized product E (1) -containing slurry is obtained. The hydrolysis Z-al strength re-neutralization treatment E is the same as the hydrolysis Z-al strength re-neutralization treatment C. The titanium salt according to the hydrolysis Z-al strength re-neutralization treatment E, the metal compound, The titanium salt hydrolyzed Z alkali neutralized product E (1) is the same as the titanium salt, the metal compound, and the titanium salt hydrolyzed neutralized product C of the hydrolyzed alkali neutralized treatment C. .
そして、 該加水分解/アルカリ中和処理 Eでは、 該金属含有チタン塩 加水分解ノアルカリ中和物 E (1 ) が生成するが、 該金属含有チタン塩 加水分解 アルカリ中和物 E (1 ) は、 酸化チタン又は該チタン塩から 酸化チタンに変化途中の中間体である。  And, in the hydrolysis / alkali neutralization treatment E, the metal-containing titanium salt hydrolyzed neutralized product E (1) is produced. The metal-containing titanium salt hydrolyzed alkali-neutralized product E (1) is It is an intermediate in the process of changing from titanium oxide or the titanium salt to titanium oxide.
次いで、 該金属化合物撹拌混合処理 Eでは、 該金属含有チタン塩加水 分解/アルカリ中和物 E ( 1 ) 含有スラリーに、 該金属化合物を加え、 撹拌混合して、 該金属含有チタン塩加水分解/アルカリ中和物 E ( 1) に更に該金属が導入された、 該金属含有チタン塩加水分解 Zアル力リ中 和物 E (2) を得る処理である。 なお、 本発明では、 該金属化合物撹拌 混合処理 Eで処理される前のものを、 該金属含有チタン塩加水分解 ア ルカリ中和物 E ( 1 ) と記載し、 該金属化合物撹拌混合処理 Eで処理さ れた後のものを、該金属含有チタン塩加水分解ノアルカリ中和物 E (2) と記載した。  Next, in the metal compound stirring / mixing treatment E, the metal compound is added to the slurry containing the metal-containing titanium salt hydrolyzed / alkali neutralized product E (1), stirred and mixed, and the metal-containing titanium salt hydrolyzed / This is a treatment for obtaining the metal-containing titanium salt hydrolyzed Z-alkaline intermediate E (2) in which the metal is further introduced into the alkali neutralized product E (1). In addition, in this invention, the thing before processing by this metal compound stirring mixing process E is described as this metal containing titanium salt hydrolysis alkali neutralized product E (1), The treated product was described as the metal-containing titanium salt hydrolyzed neutralized product E (2).
乾燥後の該金属含有チタン塩加水分解 Zアルカリ中和物 E (2) は、 結晶構造の主体がアナターゼ型であり、 比表面積が 1 50〜400 m2 /g、 好ましくは 200〜3 1 Om2/g , X線回折分析によるアナタ ーゼの ( 1 0 1 ) ピークの半値幅が 2 Θ = 1. 2〜 1. 5° であること 力 金属含有硫黄導入酸化チタンの可視光での光触媒活性が高くなる点 で好ましい。 The metal-containing titanium salt hydrolyzed Z alkali neutralized product E (2) after drying is mainly composed of anatase type crystal structure and has a specific surface area of 150 to 400 m 2 / g, preferably 200 to 3 1 Om 2 / g, X-ray diffraction analysis shows that the half width of the (1 0 1) peak of the anatase is 2 Θ = 1.2 to 1.5 ° force Photocatalyst of metal-containing sulfur-introduced titanium oxide with visible light It is preferable in terms of high activity.
該金属化合物撹拌混合処理 Eは、該金属化合物撹拌混合処理 Aと比べ、 スラ リーに含有されているものが、 前者は該金属含有チタン塩加水分解 /アルカリ中和物 E ( 1 ) であるのに対し、 後者は該チタン塩加水分解 ノアル力リ中和物 Aであること以外は、 該金属化合物撹拌混合処理 Aと 同様である。 よって、 該金属化合物撹拌混合処理 Aの説明中の該チタン 塩加水分解 Zアル力リ中和物 Aを、 該金属含有チタン塩加水分解/アル カリ中和物 E ( 1 ) と、 該金属含有チタン塩加水分解ノアルカリ中和物 Aを、 該金属含有チタン塩加水分解 Zアルカリ中和物 E (2) と、 読み 替えればよい。 Compared with the metal compound stirring and mixing treatment A, the metal compound stirring and mixing treatment E is contained in a slurry. / Alkali neutralized product E (1), while the latter is the same as the metal compound stirring and mixing treatment A except that the latter is the titanium salt hydrolyzed neutral force neutralized product A. Accordingly, the titanium salt hydrolysis Z alkali power neutralized product A in the description of the metal compound stirring and mixing treatment A is used as the metal-containing titanium salt hydrolyzed / alkali neutralized product E (1) and the metal-containing product. The titanium salt hydrolyzed neutralized product A may be read as the metal-containing titanium salt hydrolyzed Z alkali neutralized product E (2).
該加水分解/アル力リ中和処理 Eで存在させる該金属化合物及び該金 属化合物撹拌混合処理 Eで加える該金属化合物の合計量は、 金属含有硫 黄導入酸化チタンへの金属の導入量により適宜選択できるが、 該チタン 塩を T i O2換算したときの 1 00質量部に対する金属原子の質量が、 好ましくは 0. 0 3〜0. 1 5質量部、 特に好ましくは 0. 0 5〜0. 1質量部となる混合量である。 該金属化合物の混合量が、 上記範囲内に あることにより、 金属含有硫黄導入酸化チタンの可視光での光触媒活性 が高くなる。 The total amount of the metal compound to be present in the hydrolysis / al neutralization treatment E and the metal compound stirring and mixing treatment E depends on the amount of metal introduced into the metal-containing sulfur-introduced titanium oxide. Although it can be appropriately selected, the mass of the metal atom with respect to 100 parts by mass when the titanium salt is converted to TiO 2 is preferably 0.03 to 0.15 parts by mass, particularly preferably 0.05 to 0.1 Mixing amount to be 1 part by mass. When the mixing amount of the metal compound is within the above range, the photocatalytic activity of the metal-containing sulfur-introduced titanium oxide with visible light is increased.
そして、 上記のように、 該焼成原料混合物調製工程 Eで、 該チタン塩 から該金属含有チタン塩加水分解 Zアル力リ中和物 E (2)を得る際に、 つまり、 該チタン塩加水分解 Zアル力リ中和処理 Eを行う前から該金属 化合物撹拌混合処理 Eを行った後までの間に、 該硫黄化合物を混合する ことにより、 該チタン塩加水分解 アルカリ中和物 E (2) と該硫黄化 合物との混合物 Eを得る。 更に具体的には、 該焼成原料混合物調製工程 Eでは、 該硫黄化合物の混合を、 例えば、  Then, as described above, in obtaining the metal-containing titanium salt hydrolyzed Z Al force re-neutralized product E (2) from the titanium salt in the firing raw material mixture preparation step E, that is, the titanium salt hydrolyzed By mixing the sulfur compound between before the Z-alternative neutralization treatment E and after the metal compound stirring and mixing treatment E, the titanium salt hydrolysis alkali neutralized product E (2) And a mixture E of the sulfur compound is obtained. More specifically, in the baking raw material mixture preparation step E, the sulfur compound is mixed, for example,
(E 1 ) 該加水分解ノアルカリ中和処理 Eを行う前、  (E 1)
(E 2) 該加水分解 Zアル力リ中和処理 Eを行いつつ、  (E 2) While performing the hydrolysis Z Al force re-neutralization treatment E,
(E 3) 該金属化合物撹拌混合処理 Eの前、  (E 3) Before the metal compound stirring and mixing treatment E,
(E 4) 該金属化合物撹拌混合処理 Eを行いつつ、 または (E 5) 該金属化合物撹拌混合処理 Eを行った後 (E 4) While performing the metal compound stirring and mixing treatment E, or (E 5) After performing the metal compound stirring and mixing treatment E
に行う。 To do.
該焼成原料混合物調製工程 Eに係る該 (E 1 ) 、 該 (E 2) は、 該焼 成原料混合物調製工程 Cに係る該 (C 1) 、 該 (C 2) と同様であり、 また、 該焼成原料混合物調製工程 Eに係る該 (E 3) 、 該 (E 4) 、 該 (E 5)は、該焼成原料混合物調製工程 Aに係る該(A 3)、該(A4)、 該 (A 5) と同様である。  The (E 1) and (E 2) related to the baking raw material mixture preparation step E are the same as the (C 1) and (C 2) related to the baking raw material mixture preparation step C, and The (E 3), (E 4), and (E 5) related to the baking raw material mixture preparation step E are the (A 3), (A4), and (( Same as A5).
そして、 該硫黄化合物の混合を、 上記 (E 1 ) 、 (E 2) 、 (E 3) 、 (E 4) または (E 5) のいずれかの時期に行うことも、 あるいは、 こ れらのうちの 2以上の時期に分けて行うこともできる。  The mixing of the sulfur compound may be performed at any time of the above (E 1), (E 2), (E 3), (E 4) or (E 5), or these It can be divided into two or more of them.
該金属含有チタン塩加水分解 Zアルカリ中和物 E (2) と該硫黄化合 物との混合物 E中の、 該硫黄化合物の混合量は、 該金属含有チタン塩加 水分解 Zアルカリ中和物 E (2) を T i 02換算したときの 1 00質量 部に対する硫黄原子の質量が、 好ましくは 5〜 1 50質量部、 特に好ま しくは 1 0〜50質量部、 更に好ましくは 20〜40質量部となる量で ある。 該金属含有チタン塩加水分解 Zアルカリ中和物 E (2) と該硫黄 化合物との混合物 E中の、 該硫黄化合物の混合量が上記範囲内にあるこ とにより、 硫黄含有量が 0. 0 2〜0. 1質量%の金属含有硫黄導入酸 化チタンが得易くなる。 また、 該硫黄化合物の混合量は、 該硫黄化合物 の混合を 2以上の時期に分けて行う場合、 それらの合計量である。 該焼成工程 Eでは、 該金属含有チタン塩加水分解 Zアル力リ中和物 E (2) と該硫黄化合物との混合物 Eを、 焼成する。 The amount of the sulfur compound in the mixture E of the metal-containing titanium salt hydrolyzed Z alkali neutralized product E (2) and the sulfur compound is determined by the metal-containing titanium salt hydrolyzed Z alkali neutralized product E The mass of sulfur atoms with respect to 100 parts by mass when (2) is converted to Ti 0 2 is preferably 5 to 150 parts by mass, particularly preferably 10 to 50 parts by mass, and more preferably 20 to 40 parts by mass. It is an amount that becomes a part. Hydrolysis of the metal-containing titanium salt Z Alkali neutralized product E (2) and the sulfur compound In the mixture E of the sulfur compound within the above range, the sulfur content is 0.02 ˜0.1% by mass of metal-containing sulfur-introduced titanium oxide is easily obtained. Further, the mixing amount of the sulfur compound is the total amount when mixing the sulfur compound in two or more periods. In the firing step E, a mixture E of the metal-containing titanium salt hydrolyzed Z-al strength neutralized product E (2) and the sulfur compound is fired.
該焼成工程 Eは、 該焼成工程 Aと比べ、 該硫黄化合物と混合されるの 、 前者は該金属含有チタン塩加水分解 アルカリ中和物 E (2) であ るのに対し、 後者は該金属含有チタン塩加水分解 アルカリ中和物 Aで あること以外は、 該焼成工程 Aと同様である。 よって、 該焼成工程 Aの 説明中の該金属含有チタン塩加水分解 Zアル力リ中和物 Aを、 該金属含 有チタン塩加水分解 Zアルカリ中和物 E ( 2 ) と、 該混合物 Aを該混合 物 Eと読み替えればよい。 Compared with the calcination step A, the calcination step E is mixed with the sulfur compound. The former is the metal-containing titanium salt hydrolyzed alkali neutralized product E (2), whereas the latter is the metal It is the same as the calcination step A except that the titanium salt is hydrolyzed with an alkali neutralized product A. Therefore, in the firing step A In the description, the metal-containing titanium salt hydrolyzed Z-alkaline neutralized product A can be read as the metal-containing titanium salt hydrolyzed Z-alkali neutralized product E (2), and the mixture A can be read as the mixture E. That's fine.
本発明の第六の金属含有硫黄導入酸化チタンの製造方法 (以下、 本発 明の製造方法 (6 ) とも記載する。 ) は、 金属含有チタン塩加水分解 Z アルカリ中和物 F ( 2 ) の加熱処理物 Fと硫黄化合物との混合物 Fを得 る焼成原料混合物調製工程 Fと、 該金属含有チタン塩加水分解 Zアル力 リ中和物 F ( 2 ) の加熱処理物 Fと該硫黄化合物との混合物 Fを、 焼成 し、 金属含有硫黄導入酸化チタンを得る焼成工程 Fと、 を有し、  The sixth metal-containing sulfur-introduced titanium oxide production method of the present invention (hereinafter also referred to as the production method (6) of the present invention) is a metal-containing titanium salt hydrolyzed Z alkali neutralized product F (2). Heat-processed product F and sulfur compound mixture F Preparation step F for obtaining a raw material mixture F, Metal-containing titanium salt hydrolysis Z Al force re-neutralized product F (2) Heat-processed product F and the sulfur compound And firing step F to obtain a metal-containing sulfur-introduced titanium oxide, and a mixture F of
該焼成原料混合物調製工程 Fが、 金属化合物の存在下で、 該チタン塩 を加水分解またはアル力リ中和して、 金属含有チタン塩加水分解 アル カリ中和物 F ( 1 ) 含有スラ リーを調製する加水分解ノアルカリ中和処 理 Fと、 該金属含有チタン塩加水分解 Zアルカリ中和物 F ( 1 ) 含有ス ラリーに、 金属化合物を加え、 撹拌して、 金属含有チタン塩加水分解 アルカリ中和物 F ( 2 ) を得る金属化合物撹拌混合処理 Fと、 該金属含 有チタン塩加水分解/アルカリ中和物 F ( 2 ) を加熱処理し、 加熱処理 物 Fを得る加熱処理 Fと、 を行う工程であり、  In the firing raw material mixture preparation step F, in the presence of a metal compound, the titanium salt is hydrolyzed or alkali-neutralized to obtain a metal-containing titanium salt hydrolyzed alkali neutralized product F (1) -containing slurry. Hydrolysis-no alkali neutralization treatment F to be prepared and the metal-containing titanium salt hydrolysis Z alkali-neutralized product F (1) Add the metal compound to the slurry and stir to hydrolyze the metal-containing titanium salt in alkali. The metal compound stirring and mixing treatment F to obtain a hydrate F (2), the metal-containing titanium salt hydrolysis / alkali neutralized product F (2), and the heat treatment F to obtain the heat treatment product F, Is a process to perform,
該加水分解 Zアル力リ中和処理 Fで存在させる該金属化合物及び該金 属化合物撹拌混合処理 Fで加える該金属化合物の合計量が、 T i 0 2換 算したときのチタン塩 1 0 0質量部に対して、 金属原子として 0 . 0 3 〜0 . 1 5質量部となる量であり、 The total amount of the metal compound to be present in the hydrolysis and the neutralization treatment F and the metal compound to be mixed in the metal compound stirring and mixing treatment F is the titanium salt when converted to Ti 0 2 1 0 0 It is an amount of 0.03 to 0.15 parts by mass with respect to parts by mass as metal atoms,
且つ、 該加水分解ノアルカリ中和処理 Fを行う前から該加熱処理 Fを 行った後までの間に、 硫黄化合物を混合する、  In addition, a sulfur compound is mixed between before the hydrolysis-no-alkali neutralization treatment F and after the heat treatment F.
金属含有硫黄導入酸化チタンの製造方法である。 It is a manufacturing method of a metal containing sulfur introduction | transduction titanium oxide.
該焼成原料混合物調製工程 Fでは、該加水分解 Zアル力リ中和処理 F、 該金属化合物撹拌混合処理 F及び該加熱処理 Fを行う。 該焼成原料混合物調製工程 Fに係る該加水分解ノアルカリ中和処理 F、 該金属化合物撹拌混合処理 F、 該チタン塩、 該金属化合物、 該金属含有 チタン塩加水分解 Zアルカリ中和物 F ( 1) 、 該金属含有チタン塩加水 分解/アルカリ中和物 F (2) は、 該焼成原料混合物調製工程 Eに係る 該加水分解/アルカリ中和処理 E、 該金属化合物撹拌混合処理 E、 該チ タン塩、 該金属化合物、 該金属含有チタン塩加水分解ノアルカリ中和物 E ( 1) 、 該金属含有チタン塩加水分解ノアルカリ中和物 E (2) と同 様である。 In the firing raw material mixture preparation step F, the hydrolysis Z al force neutralization treatment F, the metal compound stirring and mixing treatment F, and the heating treatment F are performed. The hydrolysis raw alkali neutralization treatment F according to the firing raw material mixture preparation step F, the metal compound stirring and mixing treatment F, the titanium salt, the metal compound, the metal-containing titanium salt hydrolysis Z alkali neutralized product F (1) The metal-containing titanium salt hydrolysis / alkali neutralized product F (2) is the hydrolysis / alkali neutralization treatment E, the metal compound stirring / mixing treatment E, the titanium salt according to the baking raw material mixture preparation step E. These metal compounds, the metal-containing titanium salt hydrolyzed neutralized product E (1), and the metal-containing titanium salt hydrolyzed neutralized product E (2) are the same.
そして、 該焼成原料混合物調製工程 Fでは、 該加水分解 Zアルカリ中 和処理 Fを行うことにより、 該金属含有チタン塩加水分解ノアルカリ中 和処理物 F ( 1) 含有スラリーを得、 次いで、 該金属化合物撹拌混合処 理 Fを行うことにより、 該金属含有チタン塩加水分解ノアルカリ中和処 理物 F (2) を得る。  In the firing raw material mixture preparation step F, the hydrolysis Z alkali neutralization treatment F is performed to obtain the metal-containing titanium salt hydrolysis neutral alkali treatment product F (1) -containing slurry, and then the metal By carrying out compound stirring treatment F, the metal-containing titanium salt hydrolyzed neutralized neutralized product F (2) is obtained.
該焼成原料混合物調製工程 Fでは、 該金属化合物撹拌混合処理 Fを行 つた後に、 該加熱処理 Fを行う。  In the firing raw material mixture preparation step F, the heat treatment F is performed after the metal compound stirring and mixing treatment F is performed.
該加熱処理 Fは、 該金属化合物撹拌混合処理 Fを行い得られる該金属 含有チタン塩加水分解ノアルカリ中和物 F (2) を加熱処理し、 加熱処 理物 Fを得る処理である。 そして、 該加熱処理 Fを行なうことにより、 比表面積が 1 5 0〜40 0m2Zg、 X線回折分析によるアナタ一ゼの (1 0 1 ) ピークの半値幅が 2 0 = 1. 2〜; I . 5° の該加熱処理物が 得られる。 言い換えると、 該加熱処理 Fは、 該加熱処理物 Fの比表面積 及び半値幅を、 上記範囲に調整する処理である。 The heat treatment F is a treatment for obtaining a heat-treated product F by heat-treating the metal-containing titanium salt hydrolysis neutralized neutralized product F (2) obtained by performing the metal compound stirring and mixing treatment F. Then, by performing the heat treatment F, the specific surface area is 150 to 400 m 2 Zg, and the half width of the (1 0 1) peak of the anatase by X-ray diffraction analysis is 2 0 = 1.2 to I. The heat-treated product of 5 ° is obtained. In other words, the heat treatment F is a treatment for adjusting the specific surface area and the half-value width of the heat-treated product F to the above ranges.
該加熱処理 Fは、 該加熱処理 Bと比べ、 加熱処理されるのが、 前者は 該金属含有チタン塩加水分解 Zアル力リ中和物 F( 2)であるのに対し、 後者は該金属含有チタン塩加水分解 アルカリ中和物 Bであること以外 は、 該加熱処理 Bと同様である。 よって、 該加熱処理 Bの説明中の該金 属含有チタン塩加水分解 Zアル力リ中和物 Bを、 該金属含有チタン塩加 水分解 Zアルカリ中和物 F (2) と、 該加熱処理物 Bを、 該加熱処理物 Fと読み替えればよい。 The heat treatment F is heat-treated compared to the heat treatment B. The former is the metal-containing titanium salt hydrolyzed Z-alkaline neutralized product F (2), whereas the latter is the metal Containing titanium salt hydrolysis It is the same as the heat treatment B except that it is an alkali neutralized product B. Therefore, the gold in the description of the heat treatment B Metal-containing titanium salt hydrolysis Z Al force neutralized product B can be read as the metal-containing titanium salt hydrolyzed Z alkali neutralized product F (2), and the heat-treated product B can be read as the heat-treated product F. That's fine.
そして、 上記のように、 該焼成原料混合物調製工程 Fで、 該チタン塩 から該加熱処理物 Fを得る際に、 つまり、 該チタン塩加水分解ノアルカ リ中和処理 Fを行う前から該加熱処理 Fを行った後までの間に、 該硫黄 化合物を混合することにより、 該チタン塩加水分解 アルカリ中和物 F (2) の加熱処理物 Fと該硫黄化合物との混合物 Fを得る。 更に具体的 には、 該焼成原料混合物調製工程 Fでは、 該硫黄化合物の混合を、 例え ば、  Then, as described above, when the heat-treated product F is obtained from the titanium salt in the baking raw material mixture preparation step F, that is, before the titanium salt hydrolyzing neutralization treatment F is performed, the heat treatment is performed. By mixing the sulfur compound until after F is performed, a mixture F of the heat-treated product F of the titanium salt hydrolyzed alkali neutralized product F (2) and the sulfur compound is obtained. More specifically, in the baking raw material mixture preparation step F, the sulfur compound is mixed, for example,
(F 1 ) 該加水分解 Zアルカリ中和処理 Fを行う前、  (F 1) before hydrolysis Z alkali neutralization treatment F,
(F 2) 該加水分解ノアルカリ中和処理 Fを行いつつ、  (F 2) While performing the hydrolysis-no-alkali neutralization treatment F,
(F 3) 該金属化合物撹拌混合処理 Fの前、  (F 3) Before the metal compound stirring and mixing treatment F,
(F 4) 該金属化合物撹拌混合処理 Fを行いつつ、  (F 4) While performing the metal compound stirring and mixing treatment F,
(F 5) 該加熱処理 Fを行う前、 または  (F 5) Before performing the heat treatment F, or
(F 6) 該加熱処理 Fを行った後  (F 6) After performing the heat treatment F
に行う。 To do.
該焼成原料混合物調製工程 Fに係る (F 1) 、 該 (F 2) は、 該焼成 原料混合物調製工程 Cに係る該 (C 1 ) 、 該 (C 2) と同様であり、 ま た、 該焼成原料混合物調製工程 Fに係る該 (F 3) 、 該 (F 4) は、 該 焼成原料混合物調製工程 Aに係る該 (A 3) 、該 (A4) と同様であり、 また、 焼成原料混合物調製工程該 (F 5) 、 該 (F 6) は、 該焼成原料 混合物調製工程 Bに係る該 (B 5) 、 該 (B 6) と同様である。  (F 1) and (F 2) relating to the firing raw material mixture preparation step F are the same as the (C 1) and (C 2) relating to the firing raw material mixture preparation step C, and The (F 3) and (F 4) relating to the firing raw material mixture preparation step F are the same as the (A 3) and (A4) relating to the firing raw material mixture preparation step A, and the firing raw material mixture The preparation steps (F 5) and (F 6) are the same as the (B 5) and (B 6) according to the baking raw material mixture preparation step B.
そして、 該硫黄化合物の混合を、 上記 (F 1 ) 、 (F 2) 、 (F 3) 、 (F 4 ) 、 (F 5 ) または (F 6) のいずれかの時期に行うことも、 あ るいは、 これらのうちの 2以上の時期に分けて行うこともできる。 該加熱処理 Fと該硫黄化合物との混合物 F中の、 該硫黄化合物の混合 量は、 該加熱処理物 Fを T i O 2換算したときの 1 0 0質量部に対する 硫黄原子の質量が、 好ましくは 5〜 1 5 0質量部、 特に好ましくは 1 0 〜5 0質量部、 更に好ましくは 2 0〜4 0質量部となる量である。 該加 熱処理物 Fと該硫黄化合物との混合物 F中の、 該硫黄化合物の混合量が 上記範囲内にあることにより、 硫黄含有量が 0 . 0 2〜0 . 1質量%の 金属含有硫黄導入酸化チタンが得易くなる。 また、 該硫黄化合物の混合 量は、 該硫黄化合物の混合を 2以上の時期に分けて行う場合、 それらの 合計量である。 The sulfur compound may be mixed at any time of the above (F 1), (F 2), (F 3), (F 4), (F 5) or (F 6). Or it can be divided into two or more of these periods. In the mixture F of the heat treatment F and sulfur compounds, mixtures of sulfur compounds, the mass of the sulfur atom with respect to 1 0 0 parts by weight when the heat treatment was F T i O 2 converted, preferably Is in an amount of 5 to 1500 parts by mass, particularly preferably 10 to 50 parts by mass, and more preferably 20 to 40 parts by mass. Introducing metal-containing sulfur having a sulfur content of 0.02 to 0.1% by mass when the amount of the sulfur compound in the mixture F of the heat-treated product F and the sulfur compound is within the above range. Titanium oxide is easily obtained. Further, the mixing amount of the sulfur compound is the total amount when mixing the sulfur compound in two or more periods.
また、 該加熱処理 Fを行う前 (F 5 ) に、 該硫黄化合物を混合する場 合、 該硫黄化合物の混合量は、 該加熱処理物 Fを T i 0 2換算したとき の 1 0 0質量部に対する硫黄原子の質量が、好ましくは 5〜 2 0質量部、 特に好ましくは 5〜 1 0質量部となる量である。 該加熱処理物 Fにおい て混合する該硫黄化合物の量が、 上記範囲内にあることにより、 金属含 有硫黄導入酸化チタンの触媒活性が高くなる。 Moreover, before the heat treatment F (F 5), if mixing the sulfur compound, the mixing amount of the sulfur compound, 1 0 0 mass when the heat treatment was F T i 0 2 converted The amount of sulfur atoms with respect to parts is preferably 5 to 20 parts by weight, particularly preferably 5 to 10 parts by weight. When the amount of the sulfur compound to be mixed in the heat-treated product F is within the above range, the catalytic activity of the metal-containing sulfur-introduced titanium oxide is increased.
該焼成工程 Fでは、 該加熱処理物 Fと該硫黄化合物との混合物 Fを、 焼成する。  In the firing step F, the mixture F of the heat-treated product F and the sulfur compound is fired.
該焼成工程 Fは、 該焼成工程 Aと比べ、 該硫黄化合物と混合されるの 、 前者は該金属含有チタン塩加水分解 Zアルカリ中和物 F ( 2 ) の加 熱処理物 Fであるのに対し、 後者は該金属含有チタン塩加水分解/アル カリ中和物 Aであること以外は、 該焼成工程 Aと同様である。 よって、 該焼成工程 Aの説明中の該金属含有チタン塩加水分解 Zアル力リ中和物 Aを、該加熱処理物 Fと、該混合物 Aを該混合物 Fと読み替えればよい。 そして、 本発明の製造方法 (6 ) では、 該加熱処理 Fを行なうことに より、 得られる金属含有硫黄導入酸化チタンの光触媒活性を更に高くす ることができる。 本発明の製造方法 ( 1) 〜 (6) では、 該金属含有チタン塩加水分解 アルカリ中和物 A、 該金属含有チタン塩加水分解/アル力リ中和物 B の加熱処理物 B、 該金属含有チタン塩加水分解 アルカリ中和物 C、 該 金属含有チタン塩加水分解 アルカリ中和物 Dの加熱処理物 D、 該金属 含有チタン塩加水分解/アルカリ中和物 E (2) 、 及ぴ該金属含有チタ ン塩加水分解ノアルカリ中和物 F (2) の加熱処理物 Fは、 結晶構造の 主体がアナターゼ型であり、 以下の物性 ( i ) 、 ( i i ) 及び ( i i i ) を有していることが、 金属含有硫黄導入酸化チタンの可視光での光触媒 活性が高くなる点で好ましい。 Compared with the firing step A, the firing step F is mixed with the sulfur compound, whereas the former is a heat-treated product F of the metal-containing titanium salt hydrolyzed Z alkali neutralized product F (2). The latter is the same as the calcination step A except that the metal-containing titanium salt hydrolyzed / alkali neutralized product A. Therefore, the metal-containing titanium salt hydrolyzed Z-al strength neutralized product A in the description of the firing step A may be read as the heat-treated product F, and the mixture A as the mixture F. In the production method (6) of the present invention, by performing the heat treatment F, the photocatalytic activity of the obtained metal-containing sulfur-introduced titanium oxide can be further increased. In the production methods (1) to (6) of the present invention, the metal-containing titanium salt hydrolyzed alkali neutralized product A, the metal-containing titanium salt hydrolyzed / al strength neutralized product B heat-treated product B, the metal Hydrolyzed titanium salt hydrolyzed alkali neutralized product C, metal-containing titanium salt hydrolyzed alkali neutralized product D, heat-treated product D of the metal-containing titanium salt hydrolyzed / alkali neutralized product E (2), and the metal The heat-treated product F of the titanium salt hydrolyzed neutralized product F (2) containing the main component of the crystal structure is anatase type and has the following physical properties (i), (ii), and (iii) It is preferable in that the photocatalytic activity of the metal-containing sulfur-introduced titanium oxide with visible light is increased.
( i ) 比表面積が 1 50〜400m2Zg、 好ましくは 200〜 3 1 0 m 2 Z gである。 (I) a specific surface area of 1 50 to 400 m 2 Zg, preferably 200~ 3 1 0 m 2 Z g .
( i i ) X線回折分析によるアナターゼの ( 1 0 1) ピークの半値幅が 2 0 = 1. 2〜 1. 5° である。  (ii) The half width of the (1 0 1) peak of anatase by X-ray diffraction analysis is 2 0 = 1.2 to 1.5 °.
( i i i ) 金属含有量が、 0. 0 3〜0. 1 5質量%である。  (iiii) The metal content is 0.03 to 0.15 mass%.
なお、 結晶構造の主体がアナターゼ型であり、 該物性 ( i ) 〜 ( i i i ) を有する該金属含有チタン塩加水分解ノアルカリ中和物 A、 該金属 含有チタン塩加水分解 Zアル力リ中和物 Bの加熱処理物 B、 該金属含有 チタン塩加水分解 アルカリ中和物 C、 該金属含有チタン塩加水分解ノ アル力リ中和物 Dの加熱処理物 D、 該金属含有チタン塩加水分解/アル カリ中和物 E (2) 、 及び該金属含有チタン塩加水分解/アルカリ中和 物 F (2) の加熱処理物 Fは、 金属化合物の混合量、 加水分解条件ゃァ ルカリ中和条件、 スラリーからの固形物の分離、 あるいは、 固形物を得 るために必要に応じて実施する洗浄、 乾燥等の条件を適宜選択すること により、 あるいは、 加熱処理を行うこと、 その加熱処理条件を適宜選択 することにより得られる。  In addition, the main component of the crystal structure is anatase type, and the metal-containing titanium salt hydrolyzed neutralized product A having the physical properties (i) to (iii), the metal-containing titanium salt hydrolyzed Z-al strength neutralized product B heat-treated product B, metal-containing titanium salt hydrolyzed alkali neutralized product C, metal-containing titanium salt hydrolyzed neutral force neutralized product D heat-treated product D, metal-containing titanium salt hydrolyzed / alloy Potassium neutralized product E (2) and the heat-treated product F of the metal-containing titanium salt hydrolyzed / alkali neutralized product F (2) are mixed amount of metal compound, hydrolysis condition, alkaline neutralized condition, slurry Separation of solids from the liquid or by appropriately selecting conditions such as washing and drying as necessary to obtain the solids, or by performing heat treatment and appropriately selecting the heat treatment conditions Can be obtained.
本発明の第七の形態の金属含有硫黄導入酸化チタンの製造方法(以下、 本発明の製造方法 (7) とも記載する。 ) は、 金属含有原料酸化チタン と硫黄化合物との混合物を焼成し、 金属含有硫黄導入酸化チタンを得る 焼成工程 Gを有し、 A method for producing a metal-containing sulfur-introduced titanium oxide according to the seventh aspect of the present invention (hereinafter, This is also referred to as the production method (7) of the present invention. ) Has a firing step G for firing a mixture of a metal-containing raw material titanium oxide and a sulfur compound to obtain a metal-containing sulfur-introduced titanium oxide,
該金属含有原料酸化チタン中の金属含有量が、 T i o2換算したとき の該金属含有原料酸化チタン 1 00質量部に対して、金属原子として 0. 03〜 0. 1 5質量部である、 The metal content in the metal-containing raw material titanium oxide is 0.03 to 0.15 parts by mass as metal atoms with respect to 100 parts by mass of the metal-containing raw material titanium oxide when converted to Tio 2 .
金属含有硫黄導入酸化チタンの製造方法である。 It is a manufacturing method of a metal containing sulfur introduction | transduction titanium oxide.
本発明の製造方法 (7) に係る該金属含有原料酸化チタンは、 金属含 有量が、 T i 02換算したときの該金属含有原料酸化チタン 1 00質量 部に対して、 金属原子として 0. 03〜0. 1 5質量部である酸化チタ ンである。 そして、 本発明の製造方法 (7) に係る該金属含有原料酸化 チタンは、 結晶構造の主体がアナターゼ型であり、 以下の物性 ( i ) 、The metal-containing raw material titanium oxide according to the production method (7) of the present invention, metal-containing organic weight, relative to the metal-containing raw material titanium oxide 1 00 parts by weight when T i 0 2 terms, 0 as a metal atom 03 to 0.1 1 Titanium oxide in 5 parts by mass. And, the metal-containing raw material titanium oxide according to the production method (7) of the present invention is mainly composed of anatase type crystal structure, and has the following physical properties (i),
( i i ) 及び ( i i i ) を有している酸化チタンであることが、 金属含 有硫黄導入酸化チタンの可視光での光触媒活性が高くなる点で好ましい。 Titanium oxide having (ii) and (iiii) is preferred in that the photocatalytic activity of the metal-containing sulfur-introduced titanium oxide with visible light is increased.
( i ) 比表面積が 1 50〜4 00 m2/ g、 好ましくは 2 00〜 3 1 0 m 2 Z gである。 (i) The specific surface area is 150 to 400 m 2 / g, preferably 2000 to 3 10 m 2 Z g.
( i i ) X線回折分析によるアナターゼの ( 1 0 1) ピークの半値幅が 2 0 = 1. 2〜 1. 5。 である。  (ii) The half-width of the (1 0 1) peak of anatase by X-ray diffraction analysis is 2 0 = 1.2 to 1.5. It is.
( i i i ) 金属含有量が、 0. 0 3〜0. 1 5質量%である。  (iiii) The metal content is 0.03 to 0.15 mass%.
本発明の製造方法 (7) に係る該焼成工程 Gでは、 該金属含有原料酸 化チタンと該硫黄化合物との混合物 Gを、 焼成する。  In the firing step G according to the production method (7) of the present invention, the mixture G of the metal-containing raw material titanium oxide and the sulfur compound is fired.
本発明の製造方法( 7 )に係る該焼成工程 Gは、本発明の製造方法( 1 ) に係る該焼成工程 Aと比べ、 該硫黄化合物と混合されるのが、 前者は該 金属含有原料酸化チタンであるのに对し、 後者は該金属含有チタン塩加 水分解 Zアルカリ中和物 Aであること以外は、 該焼成工程 Aと同様であ る。 よって、 該焼成工程 Aの説明中の該金属含有チタン塩加水分解 Zァ ルカリ中和物 Aを、 該金属含有原料酸化チタンと、 該混合物 Aを該混合 物 Gと読み替えればよい。 Compared with the firing step A according to the production method (1) of the present invention, the firing step G according to the production method (7) of the present invention is mixed with the sulfur compound. In contrast to titanium, the latter is the same as calcination step A except that the metal-containing titanium salt hydrolyzed Z alkali neutralized product A. Therefore, the metal-containing titanium salt hydrolyzed Z The neutralized product A may be read as the metal-containing raw material titanium oxide, and the mixture A as the mixture G.
本発明の製造方法 ( 1 ) 〜 (7 ) では、 得られた金属含有硫黄導入酸 化チタンに対して、 更に金属導入を行い、 金属が再導入された金属含有 硫黄導入酸化チタンを得る金属再導入工程を行っても良い。 例えば、 該 焼成工程を行い得られた金属含有硫黄導入酸化チタンを、 該金属化合物 の溶液に浸漬、 加水分解、 アルカリ中和、 光照射、 あるいは溶媒を蒸発 させて、 その後、 必要に応じて加熱処理を行ってもよい。 また、 該焼成 工程を行い得られた金属含有硫黄導入酸化チタンと該金属化合物を、 C V D、 P V D (スパッタ リ ング法、 真空蒸着法、 イオンプレーティング 法など) 、 めっき法などにより、 該金属含有硫黄導入酸化チタン表面に 金属を含有させてもよい。 また、 更に、 該金属再導入工程を行って得ら れる金属が再導入された金属含有硫黄導入酸化チタンと、 該硫黄化合物 とを混合して、 焼成することにより、 該金属が再導入された金属含有硫 黄導入酸化チタンに、 更に硫黄を含有させる、 硫黄再導入工程を行って も良い。 また、 該金属再導入工程と該硫黄再導入工程とを繰り返し行つ ても良い。  In the production methods (1) to (7) of the present invention, the obtained metal-containing sulfur-introduced titanium oxide is further metal-introduced to obtain metal-containing sulfur-introduced titanium oxide in which the metal is reintroduced. An introduction process may be performed. For example, the metal-containing sulfur-introduced titanium oxide obtained by the firing step is immersed in a solution of the metal compound, hydrolyzed, alkali neutralized, irradiated with light, or the solvent is evaporated, and then heated as necessary. Processing may be performed. In addition, the metal-containing sulfur-introduced titanium oxide obtained by performing the firing step and the metal compound can be obtained by CVD, PVD (sputtering method, vacuum deposition method, ion plating method, etc.), plating method, etc. A metal may be contained on the surface of the sulfur-introduced titanium oxide. Furthermore, the metal re-introduced metal-containing sulfur-introduced titanium oxide in which the metal is re-introduced and the sulfur compound are mixed and fired to re-introduce the metal. A sulfur re-introduction step may be performed in which the metal-containing sulfur-introduced titanium oxide further contains sulfur. Further, the metal reintroduction step and the sulfur reintroduction step may be repeated.
本発明の製造方法により得られる金属含有硫黄導入酸化チタンは、 酸 化チタンの骨格構造中に硫黄原子が導入された化合物であり、 アナター ゼ型の酸化チタンのチタンサイ ト (カチオンサイ ト) の一部が、 硫黄原 子で置換された構造を有している。 すなわち、 本発明の製造方法により 得られる金属含有硫黄導入酸化チタンは、 硫黄カチオン置換型酸化チタ ンである。  The metal-containing sulfur-introduced titanium oxide obtained by the production method of the present invention is a compound in which a sulfur atom is introduced into the skeleton structure of titanium oxide, and is one of anatase-type titanium oxide titanium sites (cation sites). Part has a structure substituted with a sulfur atom. That is, the metal-containing sulfur-introduced titanium oxide obtained by the production method of the present invention is a sulfur cation-substituted titanium oxide.
本発明の製造方法により得られる金属含有硫黄導入酸化チタンが、 チ タンサイ トの一部が、 硫黄原子で置換された構造を有していることの確 認は、 X線光電子分光法 (X P S ) 分析により行なわれる。 硫黄含有酸 化チタンが、 チタンサイ トの一部が硫黄原子で置換された硫黄含有酸化 チタンの場合、 S 4 +に由来する 1 6 9 e V付近の特性ピークが見られる。 つまり、 1 6 9 e V付近の特性ピークが見られた場合、チタンサイ ト (力 チオンサイ ト)の一部が硫黄原子で置換されていると推測される。一方、 硫黄含有酸化チタンが、 チタンサイ トの一部が硫黄原子で置換された硫 黄含有酸化チタンではなく、 酸素原子の一部が硫黄原子で置換された硫 黄含有酸化チタンの場合、 S 2 _に由来する 1 6 0 e V付近の特性ピーク が見られ、 S 4 +に由来する 1 6 9 e V付近の特性ピークは見られない。 また、 硫黄含有酸化チタンが、 酸化チタン中の原子の一部が硫黄原子で 置換された化合物ではなく、 単なる酸化チタンと硫黄との混合物である 場合は、 1 6 9 e V付近及び 1 6 0 e V付近のいずれにも特性ピークは 見られない。 The confirmation that the metal-containing sulfur-introduced titanium oxide obtained by the production method of the present invention has a structure in which a part of the titanium site is substituted with a sulfur atom is confirmed by X-ray photoelectron spectroscopy (XPS). Done by analysis. Sulfur-containing acid When titanium fluoride is sulfur-containing titanium oxide in which part of the titanium site is replaced with sulfur atoms, a characteristic peak around 1 69 eV derived from S 4 + is observed. In other words, if a characteristic peak around 1 69 eV is seen, it is assumed that a part of the titanium site (force thione site) is replaced with sulfur atoms. On the other hand, when the sulfur-containing titanium oxide is not sulfur-containing titanium oxide in which part of the titanium site is substituted with sulfur atoms, but sulfur-containing titanium oxide in which some oxygen atoms are substituted with sulfur atoms, S 2 _ characteristic peak around 1 6 0 e V derived is observed, the characteristic peaks in the vicinity of 1 6 9 e V derived from the S 4 + is not observed. In addition, when the sulfur-containing titanium oxide is not a compound in which some of the atoms in the titanium oxide are substituted with sulfur atoms, but a simple mixture of titanium oxide and sulfur, There is no characteristic peak in any of the vicinity of eV.
また、 本発明の製造方法により得られる金属含有硫黄導入酸化チタン では、 金属化合物は、 金属イオン又は酸化物の形態で、 該金属含有硫黄 導入酸化チタンの粒子表面および内部に存在し、 酸化チタンに含まれる 全金属量に対する酸化チタン内部に存在する金属量の割合 (%) ( (酸 化チタンの内部に存在する金属量 Z酸化チタンに含まれる全金属量) X In the metal-containing sulfur-introduced titanium oxide obtained by the production method of the present invention, the metal compound is present in the form of metal ions or oxides on the surface and inside of the metal-containing sulfur-introduced titanium oxide particles. Ratio of the amount of metal present in titanium oxide to the total amount of metal contained (%) ((Amount of metal present in titanium oxide Z Total amount of metal contained in titanium oxide) X
1 0 0 )は、 1 5 %以上 9 0 %以下、好ましくは 2 0 %以上 8 5 %以下、 特に好ましくは 5 0 %以上 7 5 %以下である。 金属化合物が、 硫黄含有 酸化チタン表面だけではなく、 その内部に存在することで、 特に炭酸ガ スへの分解性能が良好となる。 ここで、 表面に存在する金属量は、 該金 属含有硫黄導入酸化チタンを 9 %塩酸水溶液で煮沸し、 重量組成分析し て得られる値である。 一方、 内部に存在する金属量は、 全体の金属量か ら表面に存在する金属量を差し引いたものである。 全体の金属量は、 該 金属含有硫黄導入酸化チタンをフッ硝酸で煮沸溶解したものから、 金属 量を分析して得られる値である。 該金属種としては、 可視光での光触媒 活性が高くなる点で、 鉄であることが好ましい。 1 0 0) is 15% or more and 90% or less, preferably 20% or more and 85% or less, and particularly preferably 50% or more and 75% or less. Since the metal compound is present not only on the sulfur-containing titanium oxide surface but also inside thereof, the decomposition performance into carbon dioxide is particularly good. Here, the amount of metal present on the surface is a value obtained by boiling the metal-containing sulfur-introduced titanium oxide in a 9% hydrochloric acid aqueous solution and analyzing the weight composition. On the other hand, the amount of metal present inside is the total amount of metal minus the amount of metal present on the surface. The total amount of metal is a value obtained by analyzing the amount of metal from a product obtained by boiling and melting the metal-containing sulfur-introduced titanium oxide with hydrofluoric acid. As the metal species, photocatalyst with visible light From the viewpoint of high activity, iron is preferable.
また、 本発明の製造方法により得られる金属含有硫黄導入酸化チタン は、 金属含有量が 0. 0 3〜0. 1 5質量%、 硫黄含有量が 0. 0 2〜 0. 1質量%、 比表面積が 6 0〜 1 20 m2Z gであり、 結晶構造の主 体がアナターゼ型である。 The metal-containing sulfur-introduced titanium oxide obtained by the production method of the present invention has a metal content of 0.03 to 0.15% by mass, a sulfur content of 0.02 to 0.1% by mass, The surface area is 60 to 120 m 2 Z g, and the main crystal structure is the anatase type.
つまり、 本発明の金属含有硫黄導入酸化チタンは、 金属含有量が 0. 03〜0. 1 5質量%、 硫黄含有量が 0. 0 2〜0. 1質量%、 比表面 積が 60〜 1 20m2Zgであり、 That is, the metal-containing sulfur-introduced titanium oxide of the present invention has a metal content of 0.03 to 0.15 mass%, a sulfur content of 0.02 to 0.1 mass%, and a specific surface area of 60 to 1. 20m 2 Zg,
結晶構造の主体がアナターゼ型であり、 The main part of the crystal structure is the anatase type,
酸化チタン中の硫黄原子が、 酸化チタンのチタンサイ トに導入されてお り、 Sulfur atoms in titanium oxide are introduced into the titanium oxide titanium site.
金属が酸化チタン表面および内部に含まれている金属含有硫黄導入酸化 チタンである。 This is a metal-containing sulfur-introduced titanium oxide in which a metal is contained in and on the surface of titanium oxide.
本発明の金属含有硫黄導入酸化チタンの金属含有量は、 0.03〜 0. 1 5質量%、 好ましくは 0. 05〜0. 1 0質量%である。 該金属含有 量が、 上記範囲内にあることにより、 該金属含有硫黄導入酸化チタンの 可視光での光触媒活性が高くなる。  The metal content of the metal-containing sulfur-introduced titanium oxide of the present invention is 0.03 to 0.15% by mass, preferably 0.05 to 0.1% by mass. When the metal content is within the above range, the photocatalytic activity of visible light of the metal-containing sulfur-introduced titanium oxide is increased.
本発明の金属含有硫黄導入酸化チタンの硫黄含有量は、 0.02〜 0. 1質量%、好ましくは0. 03〜0. 1質量%である。該硫黄含有量が、 上記範囲内にあることにより、 該金属含有硫黄導入酸化チタンの可視光 での光触媒活性が高くなる。  The sulfur content of the metal-containing sulfur-introduced titanium oxide of the present invention is 0.02 to 0.1% by mass, preferably 0.03 to 0.1% by mass. When the sulfur content is within the above range, the photocatalytic activity of the metal-containing sulfur-introduced titanium oxide with visible light is increased.
本発明の金属含有硫黄導入酸化チタンの比表面積は、 6 0〜 1 20 m 2 / g , 好ましくは 6 5〜 1 0 5m2/g、 特に好ましくは 80〜: I 00 m2/gである。 該比表面積が、 上記範囲内にあることにより、 該金属 含有硫黄導入酸化チタンの可視光での光触媒活性が高くなる。 The specific surface area of the metal-containing sulfur introduced titanium oxide of the present invention, 6 0~ 1 20 m 2 / g, preferably 6 5~ 1 0 5m 2 / g , particularly preferably 80: is I 00 m 2 / g . When the specific surface area is within the above range, the photocatalytic activity of the metal-containing sulfur-introduced titanium oxide with visible light is increased.
本発明の金属含有硫黄導入酸化チタンの結晶構造は、 X線回折分析に よるとアナターゼを主体とする相である。 そして、 本発明において、 結 晶構造の主体がアナターゼ型であるとは、 下記の式で定義されるルチル 化率が、 1 %以下であることを指す(A S TM D 3 7 2 0— 8 4)。 なお、 本発明の金属含有硫黄導入酸化チタンは、 ブルツカイ トを含んで いても構わない。 例えば、 X線回折パターンにおける 「アナターゼ型結 晶酸化チタンの 1 0 1 ピーク面積、 並びにブルツカイ ト型結晶酸化チタ ンの面指数 1 2 0及び面指数 1 1 1のピーク面積の合計」 に対する 「ブ ルッカイ ト型結晶酸化チタンの面指数 1 2 1のピーク面積」 の比が、 1 0%以下である。 結晶構造の主体がアナターゼ型であることにより、 該 金属含有硫黄導入酸化チタンの可視光での光触媒活性が高くなる。 The crystal structure of the metal-containing sulfur-introduced titanium oxide of the present invention is suitable for X-ray diffraction analysis. According to this, it is a phase mainly composed of anatase. In the present invention, the fact that the crystal structure is mainly anatase type means that the rutile ratio defined by the following formula is 1% or less (AS TM D 3 7 2 0-8 4 ). In addition, the metal-containing sulfur-introduced titanium oxide of the present invention may contain wurtzite. For example, in the X-ray diffraction pattern, “Both the peak area of the anatase-type crystalline titanium oxide and the peak area of the surface index of 120 and the surface index of the wurtzite-type titanium oxide” The ratio of the “peak area of the plane index 1 2 1 of lucite-type crystalline titanium oxide” is 10% or less. When the main body of the crystal structure is the anatase type, the photocatalytic activity of the metal-containing sulfur-introduced titanium oxide with visible light is increased.
ルチル化率 (質量%) = 1 0 0 - 1 0 0/ ( 1 + 1. 2 X 1 τ / I d) I r : X線回折パターンにおけるルチル型結晶酸化チタンの最強干渉 線 (面指数 1 1 0) のピーク面積、  Rutile ratio (mass%) = 1 0 0-1 0 0 / (1 + 1. 2 X 1 τ / I d) I r: strongest interference line of rutile crystalline titanium oxide in the X-ray diffraction pattern (face index 1 1 0) peak area,
I d : X線回折パターンにおけるアナターゼ型酸化チタン粉末の最強 干渉線 (面指数 1 0 1 ) のピーク面積  I d: Peak area of the strongest interference line (surface index 1 0 1) of anatase-type titanium oxide powder in the X-ray diffraction pattern
本発明の金属含有硫黄導入酸化チタンは、 金属が、 金属イオンまたは 酸化物の形態で、 該金属含有硫黄導入酸化チタンの粒子表面および内部 に存在し、 酸化チタンに含まれる全金属量に対する酸化チタン内部に存 在する金属量の割合 (%) ( (酸化チタンの内部に存在する金属量 酸 化チタンに含まれる全金属量) X I 0 0) は、 1 5 %以上 9 0 %以下で ある。 酸化チタンに含まれる全金属量に対する酸化チタン内部に存在す る金属量の割合 (%) 、 上記範囲にあることにより、 該金属含有硫黄 導入酸化チタンの可視光での光触媒活性、 特に炭酸ガスへの分解性能が 高くなる。 また、 酸化チタンに含まれる全金属量に対する酸化チタン内 部に存在する金属量の割合 (%) は、 該金属含有硫黄導入酸化チタンの 可視光での光触媒活性、 有機物の分解特性と炭酸ガスへの分解性能がよ り高くなる点で、 好ましくは 20%以上 8 5%以下、 特に好ましくは 5 0 %以上 75 %以下である。 In the metal-containing sulfur-introduced titanium oxide of the present invention, the metal is present in the form of metal ions or oxides on the particle surface and inside of the metal-containing sulfur-introduced titanium oxide, and the titanium oxide with respect to the total amount of metal contained in the titanium oxide. The ratio of the amount of metal present in the interior (%) ((the amount of metal present in the titanium oxide and the total amount of metal contained in the titanium oxide) XI 0 0) is 15% or more and 90% or less. The ratio (%) of the amount of metal present in the titanium oxide to the total amount of metal contained in the titanium oxide is within the above range, so that the photocatalytic activity of the metal-containing sulfur-introduced titanium oxide in visible light, particularly to carbon dioxide gas The decomposition performance of becomes higher. Moreover, the ratio (%) of the amount of metal present in the titanium oxide to the total amount of metal contained in the titanium oxide is the photocatalytic activity of the metal-containing sulfur-introduced titanium oxide under visible light, decomposition characteristics of organic matter, and carbon dioxide. The decomposition performance of From the standpoint of higher, it is preferably 20% or more and 85% or less, particularly preferably 50% or more and 75% or less.
本発明の製造方法により得られる金属含有硫黄導入酸化チタン、 およ び本発明の金属含有硫黄導入酸化チタンは、 優れた可視光吸収特性およ び可視光での光触媒活性を有し、 従来の製造方法で得られた金属含有硫 黄導入酸化チタンに比べ、 可視光での光触媒活性が高い。 また、 金属化 合物が、 硫黄含有酸化チタン表面だけではなく、 その内部にも存在して いるので、 特に炭酸ガスへの分解性能が良好となる。 従って、 本発明の 製造方法により得られる金属含有硫黄導入酸化チタン、 および本発明の 金属含有硫黄導入酸化チタンは、 可視光照射により触媒活性を発現する 光触媒として有用である。  The metal-containing sulfur-introduced titanium oxide obtained by the production method of the present invention and the metal-containing sulfur-introduced titanium oxide of the present invention have excellent visible light absorption characteristics and photocatalytic activity in visible light. Compared with the metal-containing sulfur-introduced titanium oxide obtained by the production method, the photocatalytic activity under visible light is high. In addition, since the metal compound is present not only on the surface of the sulfur-containing titanium oxide but also inside thereof, the decomposition performance into carbon dioxide gas is particularly good. Therefore, the metal-containing sulfur-introduced titanium oxide obtained by the production method of the present invention and the metal-containing sulfur-introduced titanium oxide of the present invention are useful as photocatalysts that exhibit catalytic activity by irradiation with visible light.
また、 本発明の製造方法は、 金属の導入を、 硫黄含有酸化チタンを得 る前、 つまり、 硫黄を導入する前に行なうので、 従来の金属含有硫黄導 入酸化チタンの製造方法に比べ、 簡便である。  Further, the production method of the present invention is simpler than the conventional method for producing metal-containing sulfur-introduced titanium oxide because the introduction of metal is performed before obtaining sulfur-containing titanium oxide, that is, before introducing sulfur. It is.
次に、 実施例を挙げて本発明を更に具体的に説明するが、 これは単に 例示であって、 本発明を制限するものではない。  EXAMPLES Next, the present invention will be described more specifically with reference to examples. However, this is merely an example and does not limit the present invention.
(実施例) (Example)
( 1 ) 酸化チタン中の硫黄含有量の測定  (1) Measurement of sulfur content in titanium oxide
酸素気流中燃焼一赤外線吸収法(測定装置:株式会社堀場製作所製 E M I A- 5 20) で測定した。  It was measured by an infra-red gas combustion one-infrared absorption method (measuring device: EMIA-520 from Horiba, Ltd.).
(2) X線回折分析  (2) X-ray diffraction analysis
以下の、 X線回折測定条件にて行った。 半値幅は、 アナターゼ ( 1 0 1 ) ピークの高さの 1ノ 2となる幅 (角度) を測定した。  The following X-ray diffraction measurement conditions were used. As for the half-value width, the width (angle) at which the height of the anatase (1 0 1) peak is 1 to 2 was measured.
(X線回折測定条件)  (X-ray diffraction measurement conditions)
回折装置 RAD— 1 C (株式会社リガク製) X線管球 Diffraction device RAD— 1 C (manufactured by Rigaku Corporation) X-ray tube
管電圧 ·管電流 4 0 k V、 3 O mA Tube voltage and tube current 40 kV, 3 O mA
スリ ッ ト D S-S S : 1度、 R S : 0. 1 5 mm Slit D S-S S: 1 degree, R S: 0.15 mm
モノクロメータ グラフアイ ト Monochromator graph item
測定間隔 0. 0 0 2度 Measurement interval 0.0 0 2 degrees
計数方法 定時計数法 Counting method Constant clock method
ルチル化率は、 A S TM D 3 7 2 0— 8 4に従い、 X線回折パタ ーンにおけるルチル型結晶酸化チタンの最強干渉線 (面指数 1 1 0) の ピーク面積 ( I r ) と、 アナターゼ型酸化チタン粉末の最強干渉線 (面 指数 1 0 1 ) のピーク面積 ( I d) を求め、 以下の算出式より求めた。 ルチル化率 (質量%) = 1 0 0 - 1 0 0/ ( 1 + 1. 2 X 1 τ / I d) The rutile ratio depends on the peak area (I r) of the strongest interference line (plane index 1 1 0) of rutile crystalline titanium oxide in the X-ray diffraction pattern according to AS TM D 3 7 2 0— 8 4 and the anatase The peak area (Id) of the strongest interference line (surface index 10 1) of the type titanium oxide powder was obtained, and obtained from the following calculation formula. Rutile ratio (mass%) = 1 0 0-1 0 0 / (1 + 1.2 X 1 τ / I d)
(3) 比表面積の測定 (3) Measurement of specific surface area
B ET法により測定した。 試料の脱気は、 1 1 0°Cにて行った。  Measured by BET method. The sample was degassed at 110 ° C.
(4) 光触媒性能の測定試験 1  (4) Photocatalytic performance measurement test 1
イソプロピルアルコール ( I PA) の分解性能において評価した。 1 0 m 1 の試験管に、 I P Aの初期濃度が 5 0 mm o 1 / 1 のァセトニト リル溶液 5 m 1を用意する。 これに得られた金属含有硫黄導入酸化チタ ン粉末を 0. 1 0 g混合する。 このような試験管を 2つ用意する (試験 管 X I及び試験管 Y 1 ) 。 1つの試験管 (試験管 X I ) には、 撹拌子で 撹拌しながら、 3 5 0 nm以下の波長を除いた光を 2時間照射する。 他 の 1つの試験管 (試験管 Y 1 ) は、 光を当てないように喑所で 2時間撹 拌する。  The degradation performance of isopropyl alcohol (IPA) was evaluated. Prepare 5 ml of a petrolonitrile solution with an initial IPA concentration of 50 mm o 1/1 in a 10 ml test tube. 0.1 g of the metal-containing sulfur-introduced titanium oxide powder obtained is mixed. Prepare two such test tubes (test tube X I and test tube Y 1). One test tube (test tube X I) is irradiated with light excluding wavelengths below 3500 nm for 2 hours while stirring with a stir bar. The other test tube (test tube Y 1) is stirred for 2 hours in a safe place so as not to be exposed to light.
所定の時間経過後、 それぞれの試験管中の溶液を遠心分離機にかけ、 上澄みを分取し、 ガスクロマトグラフィーを使用して I P Aの濃度を測 定した。 I P A分解性能は以下の式で求めた。  After a predetermined time, the solution in each test tube was centrifuged, the supernatant was separated, and the concentration of I PA was measured using gas chromatography. I P A decomposition performance was determined by the following equation.
分解性能 A (%) = ( 2時間後の Y 1の I PA濃度— 2時間後の X 1 の I P A濃度) X 1 00 Z ( 2時間後の Y 1の I P A濃度) Degradation performance A (%) = (I PA concentration of Y 1 after 2 hours-X 1 after 2 hours IPA concentration) X 1 00 Z (IPA concentration of Y 1 after 2 hours)
(5) 光触媒性能の測定試験 2  (5) Photocatalytic performance measurement test 2
ァセ トアルデヒ ドガスの分解とァセ トアルデヒ ドの分解の結果生成す る二酸化炭素の濃度を測定した。  The concentration of carbon dioxide produced as a result of the decomposition of acetonitrile and the decomposition of acetonitrile was measured.
金属含有硫黄導入酸化チタン粉末 0. 1 0 gを 60 mmのシャーレに のせ、 紫外光にて 1 6時間以上照射する。 このサンプルを 3 Lのテドラ 一バッグに入れ、 空気中にァセトアルデヒ ドガスの初期濃度が 1 00 p pmとなるように調整したガス 1 Lを封入する。 これを暗所にて 5時間 静置し、 ァセ卜アルデヒ ド濃度と二酸化炭素濃度を測定する。  Place 0.1 g of metal-containing sulfur-introduced titanium oxide powder in a petri dish of 60 mm and irradiate with ultraviolet light for 16 hours or longer. Place this sample in a 3 L tedlar bag and enclose 1 L of gas adjusted in the air so that the initial concentration of acetonitrile gas is 100 ppm. Let this stand in the dark for 5 hours, and measure the aldehyde concentration and carbon dioxide concentration.
さらに光を 1 8時間照射し、 ァセトアルデヒ ド濃度と二酸化炭素濃度 をガスモニタ装置 ( I NNOVA社 光音響ガスモニタ) で測定する。 光源として蛍光灯を用いる。 分解性能は以下の 2式により評価した。 分解性能 B (p p m) = 1 8時間照射後の CO 2濃度—照射せずに 5 時間放置後の CO 2濃度 Furthermore, light is irradiated for 18 hours, and the acetonitrile and carbon dioxide concentrations are measured with a gas monitor device (INNOVA photoacoustic gas monitor). A fluorescent lamp is used as the light source. The decomposition performance was evaluated by the following two formulas. Decomposition performance B (ppm) = 1 8 h CO 2 concentration after the irradiation - CO 2 concentration after 5 hours left without irradiating
分解性能 C (%) = (照射せずに 5時間放置後のァセトアルデヒ ド濃 度一 1 8時間照射後のァセトアルデヒ ド濃度) X 1 00 (照射せずに 5時間放置後のァセトアルデヒ ド濃度)  Decomposition performance C (%) = (Acetaldehyde concentration after standing for 5 hours without irradiation) 1 1 0 (Acetaldehyde concentration after 5 hours without irradiation) X 1 00 (Acetaldehyde concentration after 5 hours without irradiation)
(6) X P Sの測定  (6) X P S measurement
以下の測定条件にて行った。 エッチングなどの試料の前処理は特に行 わなかった。  The measurement was performed under the following measurement conditions. No pretreatment of the sample such as etching was performed.
(X P Sの測定条件)  (X P S measurement conditions)
X P S装置: PH I社製 XP S- 5 700  XPS system: XP S-5 700 manufactured by PH I
X線源: 単色化 A l Kct ( 1 4 8 6. 6 e V) 200 W 測定領域: 8 00 μ m径  X-ray source: Monochrome A l Kct (1 4 8 6. 6 e V) 200 W Measurement area: 800 μm diameter
検出角 : 4 5° (試料法線から)  Detection angle: 45 ° (From sample normal)
中和電子銃:使用 (7) 酸化チタン中の鉄含有量の測定 (酸化チタン中の全鉄含有量) 酸化チタン 2 gを、 濃度 5 0 %のフッ酸 1 5 m 1、 濃度 6 0 %の硝酸Neutralizing electron gun: used (7) Measurement of iron content in titanium oxide (total iron content in titanium oxide) 2 g of titanium oxide, 15 m 1 hydrofluoric acid with a concentration of 50%, nitric acid with a concentration of 60%
1 0m lの混酸 (フッ硝酸) 中で煮沸溶解し、 その液を純水で全量が 2 50m l となるように希釈して、 I C P発光分光分析 (高周波誘導結合 プラズマを光源とした発光分析法) により鉄濃度を測定した。 Boil and dissolve in 10 ml of mixed acid (fluoric nitric acid), dilute the solution with pure water to a total volume of 250 ml, and then use ICP emission spectroscopy (emission analysis using high frequency inductively coupled plasma as the light source) ) To measure the iron concentration.
(8) 酸化チタン表面の鉄含有量の測定  (8) Measurement of iron content on titanium oxide surface
酸化チタン 2 gを、 濃度 9%の塩酸水溶液 5 Om 1 中で煮沸し、 全量 が 1 0 Om 1 となるように純水で希釈した後、 I C P発光分光分析 (高 周波誘導結合プラズマを光源とした発光分析法) により鉄濃度を測定し た。  After boiling 2 g of titanium oxide in 5 Om 1 of hydrochloric acid with a concentration of 9% and diluting with pure water so that the total amount becomes 10 Om 1, ICP emission spectroscopy analysis (using high frequency inductively coupled plasma as the light source) The iron concentration was measured by an emission analysis method.
[実施例 1 ] [Example 1]
(鉄含有チタン塩アルカリ中和物の製造)  (Production of iron-containing titanium salt alkali neutralized product)
撹拌機を備えた容量 1 000m lの丸底フラスコに、 四塩化チタン水 溶液 (チタン濃度: 4質量%) 2 9 7 gを入れ、 次いで、 60°Cに加 熱した。 次いでアンモニア水を一気に添加して反応系の p Hが 7. 4に 維持されるように、 60°Cで 1時間中和処理を行い、 スラリーを得た。 次いで、 このスラリ一に、 塩化鉄 (F e C 1 3 · H2O (株式会社和光純 薬製) ) 水溶液を、 スラ リー中のチタン塩アルカリ中和物を T i o2換 算したときの 1 00質量部に対して鉄原子として 0. 05質量部となる ように添加し、 60°C、 1時間撹拌混合を行い、混合液を得た。次いで、 この混合液を 1 1 0¾にて、 24時間加熱して水を蒸発除去し、 固形物 を得、 得られた固形物の純水洗浄およびろ過を 2回繰り返し、 ろ過後の 固形物を 1 1 0°C、 24時間で乾燥して、 鉄含有チタン塩アルカリ中和 物 a 1を得た。 In a round bottom flask equipped with a stirrer and having a capacity of 1 000 ml, 297 g of titanium tetrachloride aqueous solution (titanium concentration: 4% by mass) was placed, and then heated to 60 ° C. Next, aqueous ammonia was added all at once, and neutralization was performed at 60 ° C. for 1 hour so that the pH of the reaction system was maintained at 7.4 to obtain a slurry. Then, this slurry one, iron chloride (F e C 1 3 · H 2 O ( KK Wako Pure Chemical)) aqueous solution, when the titanium salt alkali neutralized product in slurries and T io 2 conversion calculation It added so that it might become 0.05 mass part as an iron atom with respect to 100 mass parts, and it stirred and mixed at 60 degreeC for 1 hour, and obtained the liquid mixture. Next, this mixed solution was heated at 110 ° C. for 24 hours to evaporate and remove water to obtain a solid. The obtained solid was washed twice with pure water and filtered twice, and the filtered solid was It was dried at 110 ° C. for 24 hours to obtain an iron-containing titanium salt alkali neutralized product a1.
(加,熱処理) 該鉄含有チタン塩アルカリ中和物 a 1を、 2 5 0°Cで、 3時間、 大気 圧下にて加熱処理し、 加熱処理物 b 1を得た。 該加熱処理物 b 1の比表 面積は 2 8 0 m2/g、 X線回折分析によるアナターゼの ( 1 0 1 ) ピ ークの半値幅は 2 Θ = 1. 4 2° 、鉄含有量は 0. 0 5質量%であった。 (Additional heat treatment) The iron-containing titanium salt alkali neutralized product a 1 was heat-treated at 25 ° C. for 3 hours under atmospheric pressure to obtain a heat-treated product b 1. The ratio of the heat-treated product b 1 is 2 80 m 2 / g, the half-width of the (1 0 1) peak of anatase by X-ray diffraction analysis is 2 Θ = 1.4 2 °, iron content Was 0.05 mass%.
(焼成)  (Baking)
該加熱処理物 b 1 と、 乳鉢で粉砕したチォ尿素とを、 該加熱処理物 b 1を T i O2換算したときの 1 00質量部に対し硫黄原子の質量が 40 質量部となるように、 混合し、 混合物を得た。 次いで、 該混合物を焼成 炉にて、 400 で 2. 5時間焼成した。 得られた焼成物をボールミル にて粉砕して、 純水で洗浄した後、 1 1 0でで乾燥して黄色から黄橙色 の鉄含有硫黄導入酸化チタン c 1を得た。 この鉄含有硫黄導入酸化チタ ン c 1の特性と、 光触媒性能の測定結果を第 1表に示す。 The heat-treated product b 1 and thiourea pulverized in a mortar so that the mass of sulfur atoms is 40 parts by mass with respect to 100 parts by mass when the heat-treated product b 1 is converted to T i O 2 To obtain a mixture. The mixture was then fired at 400 for 2.5 hours in a firing furnace. The fired product thus obtained was pulverized with a ball mill, washed with pure water, and then dried with 110 to obtain yellow to yellow-orange iron-containing sulfur-introduced titanium oxide c 1. Table 1 shows the characteristics of the iron-containing sulfur-introduced titanium oxide c 1 and the photocatalytic performance measurement results.
[実施例 2 ] [Example 2]
(鉄含有チタン塩アルカリ中和物の製造)  (Production of iron-containing titanium salt alkali neutralized product)
中和処理後のスラリ一に、 塩化鉄 (F e C 1 3 · H2O (株式会社和光 純薬製) ) 水溶液を、 スラリー中の酸化チタンを T i O2換算したとき の 1 00質量部に対して鉄原子として 0. 0 5質量部となるように添加 することに代えて、 中和処理後のスラリ一に、 塩化鉄 (F e C 1 3 · H2 O (株式会社和光純薬製) ) 水溶液を、 スラリー中の酸化チタンを T i 02換算したときの 1 00質量部に対して鉄原子として 0. 03質量部 となるように添加すること以外は、 実施例 1 と同様の方法で行い、 鉄含 有チタン塩アル力リ中和物 a 2を得た。 In the slurry after neutralization treatment, iron chloride (Fe C 1 3 · H 2 O (manufactured by Wako Pure Chemical Industries, Ltd.)) aqueous solution, titanium oxide in the slurry converted to Ti O 2 100 mass Instead of adding 0.05 parts by mass as iron atoms to the part, iron chloride (Fe C 1 3 · H 2 O (Wako Pure Example 1) Except that the aqueous solution is added so that the titanium oxide in the slurry is 0.03 parts by mass as iron atoms with respect to 100 parts by mass when converted to Ti 0 2. The same procedure was followed to obtain an iron-containing titanium salt aluminum neutralized product a2.
(加熱処理)  (Heat treatment)
該鉄含有チタン塩アルカリ中和物 a 1に代えて、 該鉄含有チタン塩ァ ルカリ中和物 a 2とする以外は実施例 1 と同様の方法で行い、 加熱処理 物 b 2を得た。 該加熱処理物 b 2の比表面積は 1 7 Om2/g、 X線回 折分析によるアナターゼの( 1 0 1 )ピークの半値幅は 2 Θ = 1. 2 5° 、 鉄含有量は 0. 0 3質量%であった。 A heat treatment is performed in the same manner as in Example 1 except that the iron-containing titanium salt alkali neutralized product a 1 is used instead of the iron-containing titanium salt alkaline neutralized product a 2. Object b 2 was obtained. The heat-treated product b 2 has a specific surface area of 17 Om 2 / g, an anatase (1 0 1) peak half-width of 2 Θ = 1.25 ° by X-ray diffraction analysis, and an iron content of 0. 0 3% by mass.
(焼成)  (Baking)
該加熱処理物 b 1に代えて、 該加熱処理物 b 2とする以外は、 実施例 1 と同様の方法で行い、 鉄含有硫黄導入酸化チタン c 2を得た。 この鉄 含有硫黄導入酸化チタン c 2の特性と、 光触媒性能の測定結果を第 1表 に示す。 [実施例 3 ]  An iron-containing sulfur-introduced titanium oxide c 2 was obtained in the same manner as in Example 1 except that the heat-treated product b 2 was used instead of the heat-treated product b 1. Table 1 shows the characteristics of this iron-containing sulfur-introduced titanium oxide c 2 and the measurement results of its photocatalytic performance. [Example 3]
(鉄含有チタン塩アル力リ中和物の製造)  (Manufacture of iron-containing titanium salt Al neutralized product)
中和処理後のスラリーに、 塩化鉄 (F e C 1 3 · H20 (株式会社和光 純薬製) ) 水溶液を、 スラリー中の酸化チタンを T i o2換算したとき の 1 00質量部に対して鉄原子として 0. 0 5質量部となるように添加 することに代えて、 中和処理後のスラリーに、 塩化鉄 (F e C 1 3 · H2 O (株式会社和光純薬製) ) 水溶液を、 スラリー中の酸化チタンを T i O2換算したときの 1 00質量部に対して鉄原子として 0. 06質量部 となるように添加すること以外は、 実施例 1 と同様の方法で行い、 鉄含 有チタン塩アル力リ中和物 a 3を得た。 The slurry after neutralization, iron chloride (F e C 1 3 · H 2 0 ( Ltd. Wako Pure Chemical)) solution, the titanium oxide in the slurry to 1 00 parts by weight when the T io 2 terms Instead of adding 0.05 parts by mass as iron atoms, iron chloride (Fe C 1 3 · H 2 O (manufactured by Wako Pure Chemical Industries, Ltd.)) was added to the neutralized slurry. ) The same method as in Example 1, except that the aqueous solution was added so that the amount of iron atoms was 0.06 parts by mass with respect to 100 parts by mass when titanium oxide in the slurry was converted to TiO 2. To obtain an iron-containing titanium salt aluminum neutralized product a3.
(加熱処理)  (Heat treatment)
該鉄含有チタン塩アルカリ中和物 a 1に代えて、 該鉄含有チタン塩ァ ルカリ中和物 a 3とする以外は実施例 1 と同様の方法で行い、 加熱処理 物 b 3を得た。 該加熱処理物 b 3の比表面積は 2 70 m2Zg、 X線回 折分析によるアナターゼの( 1 0 1 )ピークの半値幅は 2 Θ = 1.4 3° 、 鉄含有量は 0. 06質量%であった。 A heat-treated product b3 was obtained in the same manner as in Example 1 except that the iron-containing titanium salt alkali neutralized product a3 was used instead of the iron-containing titanium salt alkaline neutralized product a1. The specific surface area of the heat-treated product b 3 is 270 m 2 Zg, the half width of the (1 0 1) peak of anatase by X-ray diffraction analysis is 2 Θ = 1.4 3 °, and the iron content is 0.06 mass% Met.
(焼成) 該加熱処理物 b 1に代えて、 該加熱処理物 b 3とする以外は、 実施例 1 と同様の方法で行い、 鉄含有硫黄導入酸化チタン c 3を得た。 この鉄 含有硫黄導入酸化チタン c 3の特性と、 光触媒性能の測定結果を第 1表 に示す。 (Baking) An iron-containing sulfur-introduced titanium oxide c3 was obtained in the same manner as in Example 1 except that the heat-treated product b3 was used instead of the heat-treated product b1. Table 1 shows the characteristics of this iron-containing sulfur-introduced titanium oxide c3 and the photocatalytic performance measurement results.
[実施例 4 ] [Example 4]
(鉄含有チタン塩アル力リ中和物の製造)  (Manufacture of iron-containing titanium salt Al neutralized product)
中和処理後のスラリ一に、 塩化鉄 (F e C 1 3 · H 2 O (株式会社和光 純薬製) ) 水溶液を、 スラリー中の酸化チタンを T i O 2換算したとき の 1 0 0質量部に対して鉄原子として 0 . 0 5質量部となるように添加 することに代えて、 中和処理後のスラリ一に、 塩化鉄 (F e C 1 3 · H 2 O (株式会社和光純薬製) ) 水溶液を、 スラリー中の酸化チタンを T i 0 2換算したときの 1 0 0質量部に対して鉄原子として 0 . 0 7質量部 となるように添加すること以外は、 実施例 1 と同様の方法で行い、 鉄含 有チタン塩アルカリ中和物 a 4を得た。 In the slurry after neutralization treatment, an aqueous solution of iron chloride (Fe C 1 3 · H 2 O (manufactured by Wako Pure Chemical Industries, Ltd.)) and titanium oxide in the slurry converted to Ti 2 O 1 0 0 Instead of adding 0.5 mass parts as iron atoms with respect to mass parts, the slurry after the neutralization treatment was mixed with iron chloride (Fe C 1 3 · H 2 O (WA light Junyaku Co.)) solution, except that the addition of titanium oxide in the slurry as zero. 0 7 parts by iron atoms relative to 1 0 0 parts by weight when T i 0 2 terms is performed In the same manner as in Example 1, an iron-containing titanium salt alkali neutralized product a4 was obtained.
(加熱処理)  (Heat treatment)
該鉄含有チタン塩アルカリ中和物 a 1に代えて、 該鉄含有チタン塩ァ ルカリ中和物 a 4とする以外は実施例 1 と同様の方法で行い、 加熱処理 物 b 4を得た。 該加熱処理物 b 4の比表面積は 2 9 0 m 2 Z g、 X線回 折分析によるアナターゼの( 1 0 1 )ピークの半値幅は 2 0 = 1 . 4 0 ° 、 鉄含有量は 0 . 0 7質量%であった。 A heat-treated product b4 was obtained in the same manner as in Example 1 except that the iron-containing titanium salt alkali neutralized product a4 was used instead of the iron-containing titanium salt alkaline neutralized product a1. The heat-treated product b 4 has a specific surface area of 2900 m 2 Z g, an anatase (1 0 1) peak half-value of 2 0 = 1.40 ° by X-ray diffraction analysis, and an iron content of 0 0 7% by mass.
(焼成)  (Baking)
該加熱処理物 b 1に代えて、 該加熱処理物 b 4とする以外は、 実施例 1と同様の方法で行い、 鉄含有硫黄導入酸化チタン c 4を得た。 この鉄 含有硫黄導入酸化チタン c 4の特性と、 光触媒性能の測定結果を第 1表 に示す。 [実施例 5] An iron-containing sulfur-introduced titanium oxide c 4 was obtained in the same manner as in Example 1 except that the heat-treated product b 4 was used instead of the heat-treated product b 1. Table 1 shows the characteristics of this iron-containing sulfur-introduced titanium oxide c4 and the photocatalytic performance measurement results. [Example 5]
(鉄含有チタン塩アル力リ中和物の製造)  (Manufacture of iron-containing titanium salt Al neutralized product)
中和処理後のスラリ一に、 塩化鉄 (F e C 1 3 · H20 (株式会社和光 純薬製) ) 水溶液を、 スラリー中のチタン塩アルカリ中和物を T i O2 換算したときの 1 00質量部に対して鉄原子として 0. 05質量部とな るように添加することに代えて、 中和処理後のスラリーに、 塩化鉄 (F e C 1 3 · H20 (株式会社和光純薬製) ) 水溶液を、 スラリ一中のチタ ン塩アル力リ中和物を T i O2換算したときの 1 0 0質量部に対して鉄 原子として 0. 1質量部となるように添加すること以外は、 実施例 1 と 同様の方法で行い、 鉄含有チタン塩アルカリ中和物 a 5を得た。 When the slurry after neutralization treatment is converted to T i O 2 with an aqueous solution of iron chloride (F e C 1 3 · H 2 0 (manufactured by Wako Pure Chemical Industries, Ltd.)) and neutralized titanium salt alkali in the slurry. Instead of adding 0.05 parts by mass of iron atoms to 100 parts by mass of iron, the neutralized slurry is mixed with iron chloride (F e C 1 3 · H 2 0 (stock the company manufactured by Wako pure Chemical Industries, Ltd.)) aqueous solution, and 0.1 parts by iron atoms relative to 1 0 0 parts by weight when the titanium emission salt Al Chikarari neutralized product of the slurry in one T i O 2 converted The iron-containing titanium salt alkali neutralized product a5 was obtained in the same manner as in Example 1 except that the iron-containing titanium salt alkali neutralized product a5 was obtained.
(加熱処理)  (Heat treatment)
該鉄含有チタン塩アルカリ中和物 a 1に代えて、 該鉄含有チタン塩ァ ルカリ中和物 a 5とする以外は実施例 1 と同様の方法で行い、 加熱処理 物 b 5を得た。 該加熱処理物 b 5の比表面積は 300m2Zg、 X線回 折分析によるアナターゼの( 1 0 1 )ピークの半値幅は 2 0 = 1.4 3。 、 鉄含有量は 0. 1 0質量%であった。 A heat-treated product b5 was obtained in the same manner as in Example 1 except that the iron-containing titanium salt alkali neutralized product a1 was used instead of the iron-containing titanium salt alkaline neutralized product a1. The heat-treated product b 5 has a specific surface area of 300 m 2 Zg, and the half width of the (1 0 1) peak of anatase by X-ray diffraction analysis is 2 0 = 1.4 3. The iron content was 0.10% by mass.
(焼成)  (Baking)
該加熱処理物 b 1に代えて、 該加熱処理物 b 5とする以外は、 実施例 1と同様の方法で行い、 鉄含有硫黄導入酸化チタン c 5を得た。 この鉄 含有硫黄導入酸化チタン c 5の特性と、 光触媒性能の測定結果を第 1表 に示す。  An iron-containing sulfur-introduced titanium oxide c5 was obtained in the same manner as in Example 1 except that the heat-treated product b5 was used instead of the heat-treated product b1. Table 1 shows the characteristics of this iron-containing sulfur-introduced titanium oxide c5 and the photocatalytic performance measurement results.
[比較例 1] [Comparative Example 1]
(チタン塩アルカリ中和物の製造)  (Production of neutralized titanium salt alkali)
撹拌機を備えた容量 1 000m lの丸底フラスコに、 四塩化チタン水 溶液 (チタン濃度 : 4質量%) 2 9 7 gを入れ、 次いで、 6 0°Cに加 熱した。 次いでアンモニア水を一気に添加して反応系の p Hが 7. 4に 維持されるように、 6 0°Cで 1時間中和処理を行い、 スラリーを得た。 次いで、 このスラリーを 1 1 0°Cにて、 4 5時間加熱して水を蒸発除去 し、 固形物を得、 得られた固形物の純水洗浄及びろ過を 2回操り返し、 ろ過後の固形物を 1 1 0°C、 1 2時間で乾燥し、 チタン塩アルカリ中和 物 d 1を得た。 Titanium tetrachloride in a 1 000 ml round bottom flask equipped with a stirrer A solution (titanium concentration: 4% by mass) 29 7 g was added, and then heated to 60 ° C. Next, aqueous ammonia was added all at once, and neutralization was performed at 60 ° C. for 1 hour so that the pH of the reaction system was maintained at 7.4 to obtain a slurry. Next, this slurry was heated at 110 ° C. for 45 hours to evaporate and remove water to obtain a solid, and the obtained solid was washed twice with pure water and filtered twice. The solid was dried at 110 ° C. for 12 hours to obtain a titanium salt alkali neutralized product d1.
(加熱処理)  (Heat treatment)
該鉄含有チタン塩アルカリ中和物 a 1に代えて、 該チタン塩アルカリ 中和物 d l とする以外は、 実施例 1 と同様の方法で行い、 加熱処理物 e 1を得た。 該加熱処理物 e 1の比表面積は 3 00 m2Z g、 X線回折に よるアナターゼの ( 1 0 1) ピークの半値幅 2 0 = 1. 4 1° 、 鉄含有 量は 0質量%であった。 A heat-treated product e1 was obtained in the same manner as in Example 1 except that the titanium salt alkali neutralized product dl was used instead of the iron-containing titanium salt alkali neutralized product a1. The heat-treated product e 1 has a specific surface area of 300 m 2 Z g, an anatase (1 0 1) peak half-width of 2 0 = 1.4 1 ° by X-ray diffraction, and an iron content of 0% by mass. there were.
(焼成)  (Baking)
該加熱処理物 b 1に代えて、 該加熱処理物 e 1 とする以外は、 実施例 1 と同様の方法で行い、 硫黄含有酸化チタン f 1を得た。 この硫黄含有 酸化チタン f 1の特性と、 光触媒性能の測定結果を第 1表に示す。  A sulfur-containing titanium oxide f 1 was obtained in the same manner as in Example 1 except that the heat-treated product b 1 was used instead of the heat-treated product b 1. Table 1 shows the characteristics of this sulfur-containing titanium oxide f1 and the photocatalytic performance measurement results.
[比較例 2] [Comparative Example 2]
(鉄含有チタン塩アルカリ中和物の製造)  (Production of iron-containing titanium salt alkali neutralized product)
中和処理後のスラリ一に、 塩化鉄 (F e C 1 3 · H2O (株式会社和光 純薬製) ) 水溶液を、 スラリー中のチタン塩アルカリ中和物を T i o2 換算したときの 1 00質量部に対して鉄原子として 0. 0 5質量部とな るように添加することに代えて、 中和処理後のスラリーに、 塩化鉄 (F e C 1 3 ' H20 (株式会社和光純薬製) ) 水溶液を、 スラリー中のチタ ン塩アル力リ中和物を T i 02換算したときの 1 0 0質量部に対して鉄 原子として 0. 0 1質量部となるように添加すること以外は、 実施例 1 と同様の方法で行い、 鉄含有チタン塩アル力リ中和物 d 2を得た。 In the slurry after neutralization treatment, an aqueous solution of iron chloride (F e C 1 3 · H 2 O (manufactured by Wako Pure Chemical Industries, Ltd.)) and neutralized titanium salt alkali in the slurry when converted to T io 2 Instead of adding 0.5 mass parts as iron atoms to 100 mass parts, iron chloride (F e C 1 3 'H 2 0 (stock) (Wako Pure Chemicals Co., Ltd.))) An aqueous solution is made of iron with respect to 100 parts by mass when converted to Ti 0 2 of the neutralized titanate in the slurry. Except for adding 0.1 part by mass as an atom, the same procedure as in Example 1 was performed to obtain an iron-containing titanium salt aluminum force neutralized product d2.
(加熱処理)  (Heat treatment)
該鉄含有チタン塩アルカリ中和物 a 1に代えて、 該鉄含有チタン塩ァ ルカリ中和物 d 2とする以外は実施例 1 と同様の方法で行い、 加熱処理 物 e 2を得た。 該加熱処理物 e 2の比表面積は 1 3 5 ni2Z g、 X線回 折分析によるアナターゼの( 1 0 1 )ピークの半値幅は 2 Θ = 1. 1 8° 、 鉄含有量は 0. 0 1質量%であった。 A heat-treated product e2 was obtained in the same manner as in Example 1 except that the iron-containing titanium salt alkaline neutralized product a1 was used instead of the iron-containing titanium salt alkaline neutralized product d2. The heat-treated product e 2 has a specific surface area of 1 3 5 ni 2 Z g, X-ray diffraction analysis reveals that the half width of the (1 0 1) peak of anatase is 2 Θ = 1.18 °, and the iron content is 0 0 1% by mass.
(焼成)  (Baking)
該加熱処理物 b 1に代えて、 該加熱処理物 e 2とする以外は、 実施例 1 と同様の方法で行い、 鉄含有硫黄導入酸化チタン f 2を得た。 この鉄 含有硫黄導入酸化チタン f 2の特性と、 光触媒性能の測定結果を第 1表 に示す。 An iron-containing sulfur-introduced titanium oxide f 2 was obtained in the same manner as in Example 1 except that the heat-treated product b 2 was used instead of the heat-treated product b 1. Table 1 shows the characteristics of this iron-containing sulfur-introduced titanium oxide f 2 and the photocatalytic performance measurement results.
第 1表 Table 1
Figure imgf000058_0001
実施例 1〜5では、 原料酸化チタンを製造する際に、 チタン塩アル力 リ中和物を含有するスラリーに、 所定量の鉄化合物を添加することで、 鉄含有量が 0 . 0 3〜 0 . 1 5質量%の鉄含有硫黄導入酸化チタンが得 られており、該鉄含有硫黄導入酸化チタンは、比較例 2の鉄含有量が 0 . 0 1質量%の鉄含有硫黄導入酸化チタンに比べ、 比表面積は若干小さい ものの、 光触媒性能が高かった。 また、 実施例 1〜 5および比較例 1、 比較例 2より、 鉄含有チタン塩アルカリ中和物の製造において、 チタン 塩アル力リ中和物を含有するスラリーに添加する鉄化合物の添加量が多 くなるに従い、 鉄含有チタン塩アル力リ中和物の比表面積は減少してい ることがわかる。 従って、 鉄含有チタン塩アルカリ中和物の製造におい て、 チタン塩アル力リ中和物を含有するスラリーに添加する鉄化合物の 添加量により、鉄含有チタン塩アル力リ中和物の比表面積を調整できる。 実施例 1〜 5の鉄含有硫黄導入酸化チタン c l〜 c 5の X P Sスぺク トル分析の結果、 いずれも、 S 4 +に由来する 1 6 9 e V付近の特性ピー クが見られ、 S 2_に由来する 1 6 0 e V付近の特性ピークは見られなか つた。 また、 鉄含有硫黄導入酸化チタン c l〜c 5の X線回折分析の結 果より、 ブルッカイ ト相のピークは観察されなかった。
Figure imgf000058_0001
In Examples 1 to 5, when a raw material titanium oxide was produced, a predetermined amount of an iron compound was added to a slurry containing a titanium salt Al force neutralized product, so that the iron content was 0.03 to 0.15% by mass of iron-containing sulfur-introduced titanium oxide was obtained, and the iron-containing sulfur-introduced titanium oxide was compared with iron-containing sulfur-introduced titanium oxide of Comparative Example 2 having an iron content of 0.1% by mass. In comparison, although the specific surface area was slightly smaller, the photocatalytic performance was high. Further, from Examples 1 to 5 and Comparative Examples 1 and 2, in the production of the iron-containing titanium salt alkali neutralized product, the amount of the iron compound added to the slurry containing the titanium salt alkali neutralized product is It can be seen that the specific surface area of the iron-containing titanium salt aluminum neutralized product decreases as the number increases. Therefore, in the production of the iron-containing titanium salt alkali neutralized product, the specific surface area of the iron-containing titanium salt alkaline neutralized product depends on the amount of iron compound added to the slurry containing the titanium salt alkaline neutralized product. Can be adjusted. As a result of XPS spectral analysis of the iron-containing sulfur-introduced titanium oxides cl to c 5 of Examples 1 to 5, a characteristic peak around 1 6 9 e V derived from S 4 + was observed. No characteristic peak around 1600 eV derived from 2_ was observed. In addition, from the results of X-ray diffraction analysis of iron-containing sulfur-introduced titanium oxide cl to c5, no peak of brookite phase was observed.
[実施例 6 ] [Example 6]
(鉄含有チタン塩アル力リ中和物の製造)  (Manufacture of iron-containing titanium salt Al neutralized product)
撹拌機を備えた容量 1 000m lの丸底フラスコに、 四塩化チタン水 溶液 (チタン濃度: 4質量%) 2 9 7 gと、 塩化鉄 (F e C 1 3 · H2 o (株式会社和光純薬製) ) 水溶液とを、 四塩化チタンを T i o2換算 したときの 1 00質量部に対して鉄原子 0. 05質量部となるように入 れ、 次いで、 60°Cに加熱した。 次いで、 アンモニア水を一気に添加し て反応系の p Hが 7. 4に維持されるように、 6 0°Cで 1時間中和し、 スラリーを得た。 このスラリーを 1 1 0でにて、 24時間加熱して、 水 を蒸発除去して、 固形物を得、 得られた固形物の純水洗浄およびろ過を 2回繰り返し、 ろ過後の粉末を 1 1 0で、 24時間で乾燥して、 鉄含有 チタン塩アル力リ中和物 a 6を得た。 In a 1 000 ml round bottom flask equipped with a stirrer, titanium tetrachloride aqueous solution (titanium concentration: 4% by mass) 2 9 7 g and iron chloride (FeC 1 3 · H 2 o (Made by Mitsuru Pure Chemical Co., Ltd.)) The aqueous solution was added so that the amount of iron atom was 0.05 parts by mass with respect to 100 parts by mass of titanium tetrachloride when converted to Tio 2 , and then heated to 60 ° C. Next, aqueous ammonia was added all at once, and neutralized at 60 ° C. for 1 hour so that the pH of the reaction system was maintained at 7.4 to obtain a slurry. This slurry was heated at 110 for 24 hours to evaporate and remove water to obtain a solid. The obtained solid was washed with pure water twice and filtered twice. It was dried at 10 hours for 24 hours to obtain an iron-containing titanium salt aluminum neutralized product a6.
(加熱処理)  (Heat treatment)
該鉄含有チタン塩アル力リ中和物 a 1に代えて、 該鉄含有チタン塩ァ ルカリ中和物 a 6とする以外は、 実施例 1 と同様の方法で行い、 加熱処 理物 b 6を得た。 該加熱処理物 b 6の比表面積は 2 9 Om2Zg、 X線 回折分析によるアナターゼの (1 0 1 ) ピークの半値幅は 2 0 = 1. 4 4° 、 鉄含有量は 0. 0 5質量%であった。 A heat-treated product b 6 was prepared in the same manner as in Example 1, except that the iron-containing titanium salt alkaline neutralized product a 1 was used instead of the iron-containing titanium salt alkaline neutralized product a 6. Got. The specific surface area of the heat-treated product b 6 is 29 Om 2 Zg, the half width of the (1 0 1) peak of anatase by X-ray diffraction analysis is 2 0 = 1.4 4 °, and the iron content is 0.05. It was mass%.
(焼成)  (Baking)
該加熱処理物 b 1に代えて、 該加熱処理物 b 6とする以外は、 実施例 1 と同様の方法で行い、 鉄含有硫黄導入酸化チタン c 6を得た。 該鉄含 有硫黄導入酸化チタン c 6の特性、 光触媒性能の測定結果を第 2表に示 す。 [実施例 7 ] Example except that the heat-treated product b 6 is used instead of the heat-treated product b 1 In the same manner as in Example 1, iron-containing sulfur-introduced titanium oxide c6 was obtained. Table 2 shows the measurement results of the characteristics and photocatalytic performance of the iron-containing sulfur-introduced titanium oxide c6. [Example 7]
(鉄含有チタン塩アル力リ中和物の製造)  (Manufacture of iron-containing titanium salt Al neutralized product)
塩化鉄 (F e C 1 3 · H20 (株式会社和光純薬製) ) 水溶液を、 四塩 化チタンを T i O2換算したときの 1 00質量部に対して鉄原子 0. 0 5質量部となるように入れることに代えて、 塩化鉄 (F e C 1 3 · H20 (株式会社和光純薬製) ) 水溶液を、 四塩化チタンを T i O2換算した ときの 1 00質量部に対して鉄原子 0. 1質量部となるように入れるこ と以外は、 実施例 6と同様の方法で行い、 鉄含有チタン塩アルカリ中和 物 a 7を得た。 Iron chloride (Fe C 1 3 · H 2 0 (Wako Pure Chemical Industries, Ltd.)) Aqueous solution of iron tetrachloride relative to 100 parts by mass of titanium tetrachloride when converted to TiO 2 Instead of putting it in mass parts, the iron chloride (Fe C 1 3 · H 2 0 (manufactured by Wako Pure Chemical Industries, Ltd.)) aqueous solution was used to convert titanium tetrachloride into Ti O 2 at 1 00 An iron-containing titanium salt alkali neutralized product a7 was obtained in the same manner as in Example 6 except that the iron atom was added in an amount of 0.1 part by mass with respect to part by mass.
(加熱処理)  (Heat treatment)
該鉄含有チタン塩アルカリ中和物 a 1に代えて、 該鉄含有チタン塩ァ ルカリ中和物 a 7とする以外は、 実施例 1 と同様の方法で行い、 加熱処 理物 b 7を得た。 該加熱処理物 b 7の比表面積は 3 1 0m2Zg、 X線 回折分析によるアナターゼの( 1 0 1 )ピークの半値幅 2 0 = 1.48° 、 鉄含有量は 0. 1 0質量%であった。 A heat-treated product b7 was obtained in the same manner as in Example 1, except that the iron-containing titanium salt alkali neutralized product a1 was used instead of the iron-containing titanium salt alkaline neutralized product a7. It was. The specific surface area of the heat-treated product b 7 was 3 10 m 2 Zg, the half-value width of the (1 0 1) peak of anatase by X-ray diffraction analysis 2 0 = 1.48 °, and the iron content was 0.10% by mass. It was.
(焼成)  (Baking)
該加熱処理物 b 1に代えて、 該加熱処理物 b 7とする以外は、 実施例 1 と同様の方法で行い、 鉄含有硫黄導入酸化チタン c 7を得た。 この鉄 含有硫黄導入酸化チタン c 7の特性、 光触媒性能の測定結果を第 2表に 示す。  An iron-containing sulfur-introduced titanium oxide c7 was obtained in the same manner as in Example 1 except that the heat-treated product b1 was used instead of the heat-treated product b1. Table 2 shows the measurement results of characteristics and photocatalytic performance of this iron-containing sulfur-introduced titanium oxide c7.
[比較例 3 ] 比較例 1で得られた硫黄含有酸化チタン f 1を純水中に入れ、撹拌し、 そこに塩化鉄 (F e C 1 3 · H20 (株式会社和光純薬製) ) 水溶液を、 硫黄含有酸化チタン f lを T i 02換算したときの 1 00質量部に対し て鉄原子 0. 05質量部となるように入れ、 30分間撹拌し、 懸濁液を 得た。 撹拌後、 得られた懸濁液をろ過し、 ろ過後の粉末を 1 1 0°C、 1 2時間乾燥して、 赤銅色の硫黄含有酸化チタン g 3を得た。 この硫黄含 有酸化チタン粉末 g 3の特性、 光触媒性能の測定結果を第 2表に示す。 [Comparative Example 3] Put the sulfur-containing titanium oxide f 1 obtained in Comparative Example 1 in pure water, stir it, and then add an aqueous solution of iron chloride (Fe C 1 3 · H 2 0 (manufactured by Wako Pure Chemical Industries, Ltd.)) The titanium oxide fl contained was added so as to be 0.05 parts by mass of iron atoms with respect to 100 parts by mass when converted to Ti 0 2 and stirred for 30 minutes to obtain a suspension. After stirring, the obtained suspension was filtered, and the filtered powder was dried at 110 ° C. for 12 hours to obtain a copper-colored sulfur-containing titanium oxide g 3. Table 2 shows the measurement results of the characteristics and photocatalytic performance of this sulfur-containing titanium oxide powder g3.
[比較例 4] [Comparative Example 4]
塩化鉄 (F e C 1 3 · H2O (株式会社和光純薬製) ) 水溶液を、 硫黄 含^"酸化チタン f 1を T i O2換算したときの 1 00質量部に対して鉄 原子 0. 05質量部となるように入れることに代えて、 塩化鉄 (F e C 1 3 ' H2O (株式会社和光純薬製) ) 水溶液を、 硫黄含有酸化チタン f 1を T i O2換算したときの 1 00質量部に対して鉄原子 0. 1質量部 となるように入れること以外は、 比較例 3と同様の方法で行い、 赤銅色 の硫黄含有酸化チタン g 4を得た。この硫黄含有酸化チタン g 4の特性、 光触媒性能の測定結果を第 2表に示す。 Iron chloride (Fe C 1 3 · H 2 O (manufactured by Wako Pure Chemical Industries, Ltd.)) Sulfur-containing ^ "Titanium oxide f 1 when converted to TiO 2 , iron atoms with respect to 100 parts by mass Instead of adding 0.05 parts by mass, iron chloride (Fe C 1 3 'H 2 O (manufactured by Wako Pure Chemical Industries, Ltd.)) aqueous solution, sulfur-containing titanium oxide f 1 T i O 2 A bronze sulfur-containing titanium oxide g 4 was obtained in the same manner as in Comparative Example 3 except that the iron atom was added in an amount of 0.1 part by mass with respect to 100 parts by mass when converted. Table 2 shows the measurement results of characteristics and photocatalytic performance of this sulfur-containing titanium oxide g4.
第 2表 Table 2
Figure imgf000062_0001
実施例 6の鉄含有硫黄導入酸化チタン c 6及び実施例 7の鉄含有硫黄 導入酸化チタン c 7の X P Sスぺク トル分析の結果、 いずれも、 S 4 +に 由来する 1 6 9 e V付近の特性ピークが見られ、 S 2 _に由来する 1 6 0 e V付近の特性ピークは見られなかった。 また、 鉄含有硫黄導入酸化チ タン c 6、 c 7の X線回折分析の結果より、 ブルッカイ ト相のピークは 観察されなかった。
Figure imgf000062_0001
As a result of XPS spectrum analysis of iron-containing sulfur-introduced titanium oxide c6 of Example 6 and iron-containing sulfur-introduced titanium oxide c7 of Example 7, both were derived from S 4 + around 1 6 9 e V The characteristic peak in the vicinity of 1600 eV derived from S 2 _ was not observed. From the results of X-ray diffraction analysis of iron-containing sulfur-introduced titanium oxides c6 and c7, no peak of brookite phase was observed.
光触媒性能の測定の結果、 チタン塩をアル力リ中和して得られたチタ ン塩アルカリ中和物を含有するスラリーに、 鉄化合物を加えて得た、 鉄 含有チタン塩アル力リ中和物と、 該硫黄化合物とを反応させて得た鉄含 有硫黄導入酸化チタンが、 最も炭酸ガスへの分解性能が良好であり、 次 いで、 鉄化合物を含有するチタン塩溶液中でチタン塩をアル力リ中和し て得た、 鉄含有チタン塩アルカリ中和物と、 該硫黄化合物とを反応させ て得た鉄含有硫黄導入酸化チタンが、 炭酸ガスへの分解性能が良好であ つた。 一方、 これらの方法で得た鉄含有硫黄導入酸化チタンに比べ、 先 に、 チタン塩のアル力リ中和物と硫黄化合物とを焼成して硫黄含有酸化 チタンを得、 これに、 鉄化合物を導入して得た、 鉄が導入された硫黄含 有酸化チタンは、 炭酸ガスへの分解性能が低かった。 [実施例 8 ] As a result of measuring the photocatalyst performance, the iron-containing titanium salt Al force neutralization obtained by adding an iron compound to the slurry containing the neutralized titanium salt alkali obtained by neutralizing the titanium salt with Al force The iron-containing sulfur-introduced titanium oxide obtained by reacting the product with the sulfur compound has the best decomposition performance into carbon dioxide gas, and then the titanium salt in the titanium salt solution containing the iron compound. The iron-containing titanium salt alkali neutralized product obtained by neutralization with Al is reacted with the sulfur compound. The iron-containing sulfur-introduced titanium oxide obtained in this way had good decomposition performance into carbon dioxide. On the other hand, compared with the iron-containing sulfur-introduced titanium oxide obtained by these methods, first, the aluminum salt neutralized product of the titanium salt and the sulfur compound were calcined to obtain the sulfur-containing titanium oxide, and the iron compound was The sulfur-containing titanium oxide with iron introduced was poor in its ability to decompose into carbon dioxide. [Example 8]
(鉄含有チタン塩アル力リ中和物の製造及び加熱処理)  (Production and heat treatment of iron-containing titanium salt Al neutralized product)
加熱処理での加熱処理温度を、 250 °Cとすることに代えて、 350°C とすること以外は、 実施例 4と同様の方法で行い、 加熱処理物 b 8を得 た。 該加熱処理物 b 8の比表面積は 1 80m2Zg、 X線回折分析によ るアナターゼの ( 101) ピークの半値幅は 2 0 = 1. 35° 、 鉄含有 量は 0. 07質量%であった。 A heat-treated product b8 was obtained in the same manner as in Example 4 except that the heat treatment temperature in the heat treatment was changed to 350 ° C instead of 250 ° C. The specific surface area of the heat-treated product b 8 is 180 m 2 Zg, the half-width of the (101) peak of anatase by X-ray diffraction analysis is 20 = 1.35 °, and the iron content is 0.07% by mass. there were.
(焼成)  (Baking)
該加熱処理物 b 4に代えて、 該加熱処理物 b 8とする以外は、 実施例 4と同様の方法で行い、 鉄含有硫黄導入酸化チタン c 8を得た。 この鉄 含有硫黄導入酸化チタン c 8の特性、 光触媒性能の測定結果を第 3表に 示す。 [実施例 9 ]  An iron-containing sulfur-introduced titanium oxide c8 was obtained in the same manner as in Example 4 except that the heat-treated product b4 was used instead of the heat-treated product b4. Table 3 shows the measurement results of characteristics and photocatalytic performance of this iron-containing sulfur-introduced titanium oxide c8. [Example 9]
(鉄含有チタン塩アル力リ中和物の製造及び加熱処理)  (Production and heat treatment of iron-containing titanium salt Al neutralized product)
加熱処理での加熱処理温度を、 250°Cとすることに代えて、 300°C とすること以外は、 実施例 4と同様の方法で行い、 加熱処理物 b 9を得 た。 該加熱処理物 b 9の比表面積は 220m2Zg、 X線回折分析によ るアナターゼの ( 1 0 1 ) ピークの半値幅は 20 = 1. 35° 、 鉄含有 量は 0. 07質量%であった。 (焼成) A heat-treated product b9 was obtained in the same manner as in Example 4 except that the heat treatment temperature in the heat treatment was changed to 300 ° C instead of 250 ° C. The specific surface area of the heat-treated product b9 is 220 m 2 Zg, the half-width of the (1 0 1) peak of anatase by X-ray diffraction analysis is 20 = 1.35 °, and the iron content is 0.07% by mass. there were. (Baking)
該加熱処理物 b 4に代えて、 該加熱処理物 b 9とする以外は、 実施例 4と同様の方法で行い、 鉄含有硫黄導入酸化チタン c 9を得た。 この鉄 含有硫黄導入酸化チタン c 9の特性、 光触媒性能の測定結果を第 3表に 示す。  An iron-containing sulfur-introduced titanium oxide c9 was obtained in the same manner as in Example 4 except that the heat-treated product b9 was used instead of the heat-treated product b4. Table 3 shows the measurement results of characteristics and photocatalytic performance of this iron-containing sulfur-introduced titanium oxide c9.
[実施例 1 0] [Example 1 0]
(鉄含有チタン塩アル力リ中和物の製造及び加熱処理)  (Production and heat treatment of iron-containing titanium salt Al neutralized product)
加熱処理での加熱処理温度を、 2 50°Cとすることに代えて、 200°C とすること以外は、 実施例 4と同様の方法で行い、 加熱処理物 b 1 0を 得た。 該加熱処理物 b 1 0の比表面積は 34 0m2/g、 X線回折分析 によるアナターゼの (1 0 1) ピークの半値幅は 2 6 = 1. 48° 、 鉄 含有量は 0. 0 7質量%であった。 A heat-treated product b 10 was obtained in the same manner as in Example 4 except that the heat treatment temperature in the heat treatment was changed to 200 ° C. instead of 250 ° C. The heat-treated product b 10 has a specific surface area of 340 m 2 / g, an anatase (1 0 1) peak half-width of 2 6 = 1. 48 ° by X-ray diffraction analysis, and an iron content of 0.0 7 It was mass%.
(焼成)  (Baking)
該加熱処理物 b 4に代えて、 該加熱処理物 b 1 0とする以外は、 実施 例 4と同様の方法で行い、 鉄含有硫黄導入酸化チタン c 1 0を得た。 こ の鉄含有硫黄導入酸化チタン c 1 0の特性、 光触媒性能の測定結果を第 3表に示す。 [実施例 1 1 ]  An iron-containing sulfur-introduced titanium oxide c 10 was obtained in the same manner as in Example 4 except that the heat-treated product b 4 was used instead of the heat-treated product b 4. Table 3 shows the measurement results of the characteristics and photocatalytic performance of this iron-containing sulfur-introduced titanium oxide c10. [Example 1 1]
(鉄含有チタン塩アル力リ中和物の製造、 加熱処理及び焼成) 焼成での焼成温度を、 400°Cとすることに代えて、 4 50°Cとする こと以外は、 実施例 4と同様の方法で行い、 鉄含有硫黄導入酸化チタン c 1 1を得た。 この鉄含有硫黄導入酸化チタン c 1 1の特性、 光触媒性 能の測定結果を第 3表に示す。 第 3表 (Manufacture of iron-containing titanium salt aluminum neutralized product, heat treatment and calcination) Example 4 except that the calcination temperature in the calcination was set to 4-50 ° C instead of 400 ° C. In the same manner, iron-containing sulfur-introduced titanium oxide c 1 1 was obtained. Table 3 shows the measurement results of the characteristics and photocatalytic performance of this iron-containing sulfur-introduced titanium oxide c 11. Table 3
Figure imgf000065_0001
Figure imgf000065_0001
[実施例 1 2 ] [Example 1 2]
(鉄含有チタン塩アル力リ中和物の製造)  (Manufacture of iron-containing titanium salt Al neutralized product)
実施例 4と同様の方法で行い、 鉄含有チタン塩アル力リ中和物 a 1 2 を得た。  The same procedure as in Example 4 was performed to obtain an iron-containing titanium salt aluminum neutralized product a 1 2.
(加熱処理)  (Heat treatment)
該鉄含有チタン塩アル力リ中和物 a 1 2と、 乳鉢で粉砕したチォ尿素 を、 該鉄含有チタン塩アル力リ中和物 a 1 2を T i 0 2換算したときの 1 0 0質量部に对し硫黄原子の質量が 5質量部となるように、 混合し、 混合物を得た。 次いで、 該混合物を、 3 0 0 °Cで、 3時間、 大気圧下に て加熱処理し、 得られた焼成物をボールミルにて粉碎した後、 該加熱処 理物 b 1 2を得た。 該加熱処理物 b 1 2の比表面積は 2 2 0 ni 2 Z g、 X線回折分析によるアナターゼの( 1 0 1 )ピークの半値幅は 2 Θ = 1 . 3 6° 、 鉄含有量は 0. 0 7質量%であった。 When the iron-containing titanium salt aluminum strength neutralized product a 1 2 and thiourea pulverized in a mortar are converted to Ti 0 2 of the iron-containing titanium salt aluminum strength neutralized product a 12 It mixed so that the mass of a sulfur atom might be 5 mass parts with respect to a mass part, and the mixture was obtained. Next, the mixture was heat-treated at 300 ° C. for 3 hours under atmospheric pressure, and the fired product obtained was pulverized with a ball mill to obtain the heat-treated product b 12. The heat-treated product b 1 2 has a specific surface area of 2 20 ni 2 Z g, and the half width of the (1 0 1) peak of anatase by X-ray diffraction analysis is 2 Θ = 1. The iron content was 36 ° C. and 36 ° C.
(焼成)  (Baking)
該加熱処理物 b 1 2と、 乳鉢で粉砕したチォ尿素とを、 該加熱処理物 b 1 2を T i 02換算したときの 1 00質量部に対し硫黄原子の質量が 40質量部となるように、 混合し、 混合物を得た。 次いで、 該混合物を 焼成炉にて、 400°Cで 2. 5時間焼成した。 得られた焼成物をボール ミルにて粉砕した後、 純水で洗浄した後、 1 1 0°Cで乾燥して黄色から 黄橙色の鉄含有硫黄導入酸化チタン c 1 2を得た。 The mass of sulfur atoms is 40 parts by mass with respect to 100 parts by mass of the heat-treated product b 1 2 and thiourea pulverized in a mortar when the heat-treated product b 1 2 is converted to Ti 0 2 So that a mixture was obtained. Next, the mixture was baked at 400 ° C. for 2.5 hours in a baking furnace. The obtained fired product was pulverized with a ball mill, washed with pure water, and dried at 110 ° C. to obtain yellow to yellow-orange iron-containing sulfur-introduced titanium oxide c 12.
この鉄含有硫黄導入酸化チタン c 1 2の特性、 光触媒性能の測定結果 を第 4表に示す。  Table 4 shows the measurement results of characteristics and photocatalytic performance of this iron-containing sulfur-introduced titanium oxide c12.
[実施例 1 3] [Example 1 3]
(鉄含有チタン塩アル力リ中和物の製造)  (Manufacture of iron-containing titanium salt Al neutralized product)
実施例 4と同様の方法で行い、.鉄含有チタン塩アル力リ中和物 a 1 3 を得た。  This was carried out in the same manner as in Example 4 to obtain an iron-containing titanium salt aluminum neutralized product a 1 3.
(加熱処理)  (Heat treatment)
該鉄含有チタン塩アル力リ中和物 a 1 2に代えて、 該鉄含有チタン塩 アル力リ中和物 a 1 3とした以外は、 実施例 1 2と同様な方法で行い、 該加熱処理物 b 1 3を得た。 該加熱処理物 b 1 3の比表面積は 2 20m 2Zg、 X線回折分析によるアナターゼの ( 1 0 1 ) ピークの半値幅は 2 6 = 1. 3 6° 、 鉄含有量は 0. 0 7質量%であった。 The heating was carried out in the same manner as in Example 12 except that the iron-containing titanium salt aluminum strength neutralized product a 1 2 was used instead of the iron-containing titanium salt aluminum strength neutralized product a 1 3. The treated product b 1 3 was obtained. The heat-treated product b 1 3 has a specific surface area of 2 20 m 2 Zg, an anatase (1 0 1) peak half width of 2 6 = 1. 3 6 ° by X-ray diffraction analysis, and an iron content of 0.0 7 It was mass%.
(焼成)  (Baking)
該加熱処理物 b 1 2と、 乳鉢で粉砕したチォ尿素とを、 該加熱処理物 b 1 2を T i 02換算したときの 1 00質量部に対し硫黄原子の質量が 40質量部となるように、 混合することに代えて、 該加熱処理物 b 1 3 と、 乳鉢で粉砕したチォ尿素とを、 該加熱処理物 b 1 3を T i O2換算 したときの 1 00質量部に対し硫黄原子の質量が 20質量部となるよう に、 混合すること以外は、 実施例 1 2と同様の方法で行い、 鉄含有硫黄 導入酸化チタン c 1 3を得た。 The mass of sulfur atoms is 40 parts by mass with respect to 100 parts by mass of the heat-treated product b 1 2 and thiourea pulverized in a mortar when the heat-treated product b 1 2 is converted to Ti 0 2 Thus, instead of mixing the heat-treated product b 1 3 and thiourea crushed in a mortar, the heat-treated product b 1 3 is converted to TiO 2 Except for mixing, so that the mass of sulfur atoms is 20 parts by mass with respect to 100 parts by mass of the obtained iron, the iron-containing sulfur-introduced titanium oxide c 1 3 is obtained. It was.
この鉄含有硫黄導入酸化チタン c 1 3の特性、 光触媒性能の測定結果 を第 4表に示す。  Table 4 shows the measurement results of the characteristics and photocatalytic performance of this iron-containing sulfur-introduced titanium oxide c13.
[実施例 1 4] [Example 1 4]
(鉄含有チタン塩アル力リ中和物の製造)  (Manufacture of iron-containing titanium salt Al neutralized product)
実施例 4と同様の方法で行い、 鉄含有チタン塩アル力リ中和物 a 1 4 を得た。  The same procedure as in Example 4 was performed to obtain an iron-containing titanium salt aluminum neutralized product a 1 4.
(加熱処理) '  (Heat treatment) '
該鉄含有チタン塩アル力リ中和物 a 1 2に代えて、 該鉄含有チタン塩 アル力リ中和物 a 1 4とした以外は、 実施例 1 2と同様な方法で行い、 該加熱処理物 b 1 4を得た。 該加熱処理物 b 1 4の比表面積は 2 20m 2Zg、 X線回折分析によるアナターゼの ( 1 0 1 ) ピークの半値幅は 2 0 = 1. 3 6° 、 鉄含有量は 0. 0 7質量。 /。であった。 The heating was carried out in the same manner as in Example 12 except that the iron-containing titanium salt aluminum strength neutralized product a 1 2 was used instead of the iron-containing titanium salt aluminum strength neutralized product a 1 4. The treated product b 1 4 was obtained. The heat-treated product b 14 has a specific surface area of 2 20 m 2 Zg, an anatase (1 0 1) peak half-width of 2 0 = 1. 3 6 ° by X-ray diffraction analysis, and an iron content of 0.0 7 mass. /. Met.
(焼成)  (Baking)
焼成での焼成温度を 400°Cとすることに代えて、 4 50 とするこ と以外は、 実施例 1 3と同様の方法で行い、 鉄含有硫黄導入酸化チタン c 1 4を得た。  The iron-containing sulfur-introduced titanium oxide c 14 was obtained in the same manner as in Example 13 except that the firing temperature in the firing was changed to 400 ° C. instead of 450 ° C.
この鉄含有硫黄導入酸化チタン c 1 4の特性、 光触媒性能の測定結果 を第 4表に示す。  Table 4 shows the measurement results of characteristics and photocatalytic performance of this iron-containing sulfur-introduced titanium oxide c14.
[実施例 1 5] [Example 1 5]
(鉄含有チタン塩アルカリ中和物の製造)  (Production of iron-containing titanium salt alkali neutralized product)
実施例 4と同様の方法で行い、 鉄含有チタン塩アル力リ中和物 a 1 5 を得た。 Performed in the same manner as in Example 4, neutralized iron-containing titanium salt Al power a 1 5 Got.
(加熱処理)  (Heat treatment)
該鉄含有チタン塩アルカリ中和物 a 1 2に代えて、 該鉄含有チタン塩 アル力リ中和物 a 1 5とし、 チォ尿素を、 該鉄含有チタン塩アル力リ中 和物 a 1 2を T i O2換算したときの 1 00質量部に対し硫黄原子の質 量が 5質量部となるように、 混合することに代えて、 チォ尿素を、 該鉄 含有チタン塩アル力リ中和物 a 1 5を T i O2換算したときの 1 00質 量部に対し硫黄原子の質量が 1 0質量部となるように、 混合すること以 外は、 実施例 1 2と同様の方法で行い、 該加熱処理物 b 1 5を得た。 該 加熱処理物 b 1 5の比表面積は 2 20 m2/g、 X線回折分析によるァ ナターゼの ( 1 0 1 ) ピークの半値幅は 2 0 = 1. 3 6° 、 鉄含有量は 0. 0 7質量%であった。 In place of the iron-containing titanium salt alkali neutralized product a 1 2, the iron-containing titanium salt alkaline product a 15 is used, and thiourea is added to the iron-containing titanium salt alkaline product a 1 2. the so mass of sulfur atom relative to 1 00 parts by weight when T i O 2 converted is 5 parts by weight, instead of mixing, the Chio urea, iron-containing titanium salts Al Chikarari neutralization Except for mixing so that the mass of sulfur atoms is 10 parts by mass with respect to 100 parts by mass of product a 15 converted to Ti O 2 , the same procedure as in Example 12 was performed. And the heat-treated product b 15 was obtained. The heat-treated product b 15 has a specific surface area of 220 m 2 / g, an anatase (1 0 1) peak half-value of 2 0 = 1. 36 °, and an iron content of 0 by X-ray diffraction analysis. 0 7% by mass.
(焼成)  (Baking)
該加熱処理物 b 1 4に代えて、 該加熱処理物 b 1 5とした以外は、 実 施例 1 4と同様の方法で行い、鉄含有硫黄導入酸化チタン c 1 5を得た。 この鉄含有硫黄導入酸化チタン c 1 5の特性、 光触媒性能の測定結果を 第 4表に示す。  An iron-containing sulfur-introduced titanium oxide c 15 was obtained in the same manner as in Example 14 except that the heat-treated product b 15 was used instead of the heat-treated product b 14. Table 4 shows the measurement results of characteristics and photocatalytic performance of this iron-containing sulfur-introduced titanium oxide c 15.
[比較例 5] [Comparative Example 5]
(鉄含有チタン塩アルカリ中和物の製造)  (Production of iron-containing titanium salt alkali neutralized product)
中和処理後のスラリ一に、 塩化鉄 (F e C 1 3 · H2O (株式会社和光 純薬製) ) 水溶液を、 スラリー中のチタン塩アルカリ中和物を T i O2 換算したときの 1 00質量部に対して鉄原子として 0. 0 7質量部とな るように添加することに代えて、 中和処理後のスラリーに、 塩化鉄 (F e C 1 3 ' H20 (株式会社和光純薬製) ) 水溶液を、 スラリー中のチタ ン塩アル力リ中和物を T i O2換算したときの 1 00質量部に対して鉄 原子として 0. 3質量部となるように添加すること以外は、 実施例 4と 同様の方法で行い、 鉄含有チタン塩アル力リ中和物 d 5を得た。 When the slurry after neutralization treatment is converted to TiO 2 with an aqueous solution of iron chloride (F e C 1 3 · H 2 O (manufactured by Wako Pure Chemical Industries, Ltd.)) and neutralized titanium salt alkali in the slurry. Instead of adding 0.07 parts by mass of iron atoms with respect to 100 parts by mass of iron, iron chloride (Fe C 1 3 'H 2 0 ( Ltd. Wako Junyaku Co.)) aqueous solution of iron per 1 00 parts by mass when the titanium emission salt Al Chikarari neutralized product in slurry T i O 2 converted Except for adding 0.3 parts by mass as an atom, the same procedure as in Example 4 was performed to obtain an iron-containing titanium salt aluminum neutralized product d5.
(加熱処理)  (Heat treatment)
該鉄含有チタン塩アルカリ中和物 a 1 2に代えて、 該鉄含有チタン塩 アル力リ中和物 d 5とした以外は、実施例 1 2と同様に加熱処理を行い、 加熱処理物 e 5を得た。 該加熱処理物 e 5の比表面積は 2 50m2Zg、 X線回折分析によるアナターゼの( 1 0 1)ピークの半値幅は 2 Θ = 1. 45° 、 鉄含有量は 0. 3質量%であった。 In place of the iron-containing titanium salt alkali neutralized product a 1 2, heat treatment was carried out in the same manner as in Example 12 except that the iron-containing titanium salt Al neutralized product d 5 was used. 5 was obtained. The heat-treated product e 5 has a specific surface area of 250 m 2 Zg, an anatase half-width of 2 1 = 1.45 ° by X-ray diffraction analysis, and an iron content of 0.3% by mass. there were.
(焼成)  (Baking)
該加熱化合物 b 1 4に代えて、 該加熱化合物 e 5とした以外は、 実施 例 1 4と同様な方法で処理を行い、 鉄含有硫黄導入酸化チタン f 5を得 た。 この鉄含有硫黄導入酸化チタン f 5の特性、 光触媒性能の測定結果 を第 4表に示す。 [比較例 6]  A treatment was performed in the same manner as in Example 14 except that the heating compound e 5 was used instead of the heating compound b 14 to obtain iron-containing sulfur-introduced titanium oxide f 5. Table 4 shows the measurement results of the characteristics and photocatalytic performance of this iron-containing sulfur-introduced titanium oxide f5. [Comparative Example 6]
(鉄含有チタン塩アル力リ中和物の製造)  (Manufacture of iron-containing titanium salt Al neutralized product)
中和処理後のスラリ一に、 塩化鉄 (F e C 1 3 · H20 (株式会社和光 純薬製) ) 水溶液を、 スラリー中のチタン塩アルカリ中和物を T i O2 換算したときの 1 00質量部に対して鉄原子として 0. 0 7質量部とな るように添加することに代えて、 中和処理後のスラリーに、 塩化鉄 (F e C 1 3 · H2O (株式会社和光純薬製) ) 水溶液を、 スラリー中のチタ ン塩アル力リ中和物を T i O2換算したときの 1 00質量部に対して鉄 原子として 0. 5質量部となるように添加すること以外は、 実施例 4と 同様の方法で行い、 鉄含有チタン塩アル力リ中和物 d 6を得た。 When the slurry after neutralization treatment is converted to T i O 2 with an aqueous solution of iron chloride (F e C 1 3 · H 2 0 (manufactured by Wako Pure Chemical Industries, Ltd.)) and neutralized titanium salt alkali in the slurry. Instead of adding 0.07 parts by mass of iron atoms to 100 parts by mass of iron, the slurry after neutralization treatment was added with iron chloride (F e C 1 3 · H 2 O ( Ltd. Wako Junyaku Co.)) solution, so as to be 0.5 parts by mass as an iron atom with respect to 1 00 parts by mass when the titanium emission salt Al Chikarari neutralized product in slurry T i O 2 converted The iron-containing titanium salt Al power re-neutralized product d6 was obtained in the same manner as in Example 4 except that it was added to the product.
(加熱処理)  (Heat treatment)
該鉄含有チタン塩アル力リ中和物 a 1 2に代えて、 該鉄含有チタン塩 アル力リ中和物 d 6とした以外は、 実施例 1 2と同様に行い、 該加熱処 理物 e 6を得た。 該加熱処理物 e 6の比表面積は 2 6 0 ni 2 Z g、 X線 回折分析によるアナターゼの (1 0 1 ) ピークの半値幅は 2 Θ == 1 . 4 6 ° 、 鉄含有量は 0 . 5質量%であった。 In place of the iron-containing titanium salt aluminum neutralized product a 1 2, the iron-containing titanium salt A heat-treated product e6 was obtained in the same manner as in Example 12 except that the neutralized product d6 was used. The heat-treated product e 6 has a specific surface area of 2 60 ni 2 Z g, an anatase (1 0 1) peak half-value of 2 Θ == 1.46 °, and an iron content of 0 by X-ray diffraction analysis. It was 5% by mass.
(焼成)  (Baking)
該加熱処理物 b 1 4に代えて、 該加熱処理物 e 6とした以外は、 実施 例 1 4と同様な方法で行い、 鉄含有硫黄導入酸化チタン f 6を得た。 こ の鉄含有硫黄導入酸化チタン f 6の特性、 光触媒性能の測定結果を第 4 表に示す。 第 4表  An iron-containing sulfur-introduced titanium oxide f6 was obtained in the same manner as in Example 14 except that the heat-treated product e6 was used instead of the heat-treated product b14. Table 4 shows the measurement results of characteristics and photocatalytic performance of this iron-containing sulfur-introduced titanium oxide f6. Table 4
Figure imgf000070_0001
Figure imgf000070_0001
[実施例 1 6 ] [Example 1 6]
(鉄含有チタン塩アル力リ中和物の製造) 実施例 1 と同様の方法で行い、 鉄含有チタン塩アル力リ中和物 a 1 6 を得た。 (Manufacture of iron-containing titanium salt Al neutralized product) The same procedure as in Example 1 was performed to obtain an iron-containing titanium salt aluminum neutralized product a 1 6.
(加熱処理)  (Heat treatment)
該鉄含有チタン塩アル力リ中和物 a 1 2に代えて、 該鉄含有チタン塩 アルカリ中和物 a 1 6とする以外は、 実施例 1 2と同様に行い、 該加熱 処理物 b 1 6を得た。 該加熱処理物 b 1 6の比表面積は 2 2 Om2Zg、 X線回折分析によるアナターゼの( 1 0 1)ピークの半値幅は 2 Θ = 1. 36° 、 鉄含有量は 0. 05質量%であった。 The heat-treated product b 1 was prepared in the same manner as in Example 12 except that the iron-containing titanium salt alkaline neutralized product a 1 6 was used instead of the iron-containing titanium salt alkaline neutralized product a 1 2. 6 was obtained. The heat-treated product b 1 6 has a specific surface area of 2 2 Om 2 Zg, an anatase half-width of 2 θ = 1.36 ° by X-ray diffraction analysis, and an iron content of 0.05 mass %Met.
(焼成)  (Baking)
該加熱処理物 b 1 2に代えて、 該加熱処理物 b 1 6とした以外は、 実 施例 1 2と同様の方法で行い、鉄含有硫黄導入酸化チタン h 1 6を得た。 得られた該鉄含有硫黄導入酸化チタン h 1 6を純水中に入れ、 撹拌し、 そこに塩化鉄 (F e C 1 3 · H2O (株式会社和光純薬製) ) 水溶液を、 鉄含有硫黄導入酸化チタン h 1 6を T i 02換算したときの 1 00質量 部に対して鉄原子として 0. 0 5質量部となるように入れ、 30分間撹 拌し、 懸濁液を得た。 撹拌後、 得られた懸濁液をろ過し、 ろ過後の粉末 を 1 1 0°C、 1 2時間乾燥して、 赤銅色の鉄含有硫黄導入酸化チタン c 1 6を得た。 該鉄含有硫黄導入酸化チタン c 1 6の特性、 光触媒性能の 測定結果を第 5表に示す。 An iron-containing sulfur-introduced titanium oxide h 16 was obtained in the same manner as in Example 12 except that the heat-treated product b 1 6 was used instead of the heat-treated product b 1 2. The obtained iron-containing sulfur-introduced titanium oxide h 1 6 was put into pure water, stirred, and an aqueous solution of iron chloride (Fe C 1 3 · H 2 O (manufactured by Wako Pure Chemical Industries, Ltd.)) The sulfur-introduced titanium oxide h 16 is added to 100 parts by mass when converted to Ti 0 2 so that it becomes 0.05 parts by mass as iron atoms, and stirred for 30 minutes to obtain a suspension. It was. After stirring, the resulting suspension was filtered, and the filtered powder was dried at 110 ° C. for 12 hours to obtain a copper-colored iron-containing sulfur-introduced titanium oxide c 16. Table 5 shows the measurement results of characteristics and photocatalytic performance of the iron-containing sulfur-introduced titanium oxide c 16.
[実施例 1 7] [Example 1 7]
(鉄含有チタン塩アル力リ中和物の製造及び加熱処理)  (Production and heat treatment of iron-containing titanium salt Al neutralized product)
実施例 1 6と同様の方法で行い、 加熱処理物 b 1 7を得た。  In the same manner as in Example 16, heat-treated product b 17 was obtained.
(焼成)  (Baking)
該加熱処理物 b 1 3に代えて、 該加熱処理物 b 1 7とした以外は、 実 施例 1 3と同様の方法で行い、鉄含有硫黄導入酸化チタン h 1 7を得た。 該鉄含有硫黄導入酸化チタン h 1 7を純水中に入れ、 撹拌し、 そこに塩 化鉄 (F e C 1 3 · H2O (株式会社和光純薬製) ) 水溶液を、 該鉄含有 硫黄導入酸化チタン h 1 7を T i O2換算したときの 1 0 0質量部に対 して鉄原子として 0. 1質量部となるように入れ、 30分間撹拌し、 懸 濁液を得た。撹拌後、得られた懸濁液をろ過し、ろ過後の粉末を 1 1 0°C、 1 2時間乾燥して、 赤銅色の鉄含有硫黄導入酸化チタン c 1 7を得た。 この鉄含有硫黄導入酸化チタン c 1 7の特性、 光触媒性能の測定結果を 第 5表に示す。 [実施例 1 8 ] An iron-containing sulfur-introduced titanium oxide h 1 7 was obtained in the same manner as in Example 13 except that the heat-treated product b 1 7 was used instead of the heat-treated product b 1 3. The iron-containing sulfur-introduced titanium oxide h 1 7 is put into pure water, stirred, and an aqueous solution of iron chloride (FeC 1 3 · H 2 O (manufactured by Wako Pure Chemical Industries, Ltd.)) Sulfur-introduced titanium oxide h 17 was added to 100 parts by mass when converted to Ti O 2 so that the amount was 0.1 parts by mass as iron atoms, and stirred for 30 minutes to obtain a suspension. . After stirring, the resulting suspension was filtered, and the filtered powder was dried at 110 ° C. for 12 hours to obtain a copper-colored iron-containing sulfur-introduced titanium oxide c 17. Table 5 shows the measurement results of characteristics and photocatalytic performance of this iron-containing sulfur-introduced titanium oxide c 17. [Example 1 8]
(鉄含有チタン塩アル力リ中和物の製造及び加熱処理)  (Production and heat treatment of iron-containing titanium salt Al neutralized product)
実施例 4と同様の方法で行い、 鉄含有チタン塩アル力リ中和物 a 1 8 を得た。  The same procedure as in Example 4 was performed to obtain an iron-containing titanium salt aluminum neutralized product a 1 8.
(加熱処理)  (Heat treatment)
該鉄含有チタン塩アル力リ中和物 a 1 2に代えて、 該鉄含有チタン塩 アルカリ中和物 a 1 8とする以外は、 実施例 1 2と同様に行い、 該加熱 処理物 b 1 8を得た。 該加熱処理物 b 1 8の比表面積は 26 0m2/g , X線回折分析によるアナターゼの( 1 0 1)ピークの半値幅は 2 Θ = 1. 40° 、 鉄含有量は 0. 0 7質量%であった。 The heat-treated product b 1 was prepared in the same manner as in Example 12 except that the iron-containing titanium salt alkaline neutralized product a 1 8 was used instead of the iron-containing titanium salt alkaline neutralized product a 1 2. 8 got. The heat-treated product b 1 8 has a specific surface area of 260 m 2 / g, the half-width of the (1 0 1) peak of anatase by X-ray diffraction analysis is 2 Θ = 1.40 °, and the iron content is 0.0 7 It was mass%.
(焼成)  (Baking)
該加熱処理物 b 1 3に代えて、 該加熱処理物 b 1 8とした以外は、 実 施例 1 3と同様の方法で行い、鉄含有硫黄導入酸化チタン h 1 8を得た。 該鉄含有硫黄導入酸化チタン h 1 8を純水中に入れ、 撹拌し、 そこに塩 化鉄 (F e C 1 3 · H2O (株式会社和光純薬製) ) 水溶液を、 該鉄含有 硫黄導入酸化チタン h 1 8を T i O2換算したときの 1 0 0質量部に対 して鉄原子として 0. 0 3質量部と-なるように入れ、 30分間撹拌し、 懸濁液を得た。 撹拌後、 得られた懸濁液をろ過し、 ろ過後の粉末を 1 1 0°C、 1 2時間乾燥して、 赤銅色の鉄含有硫黄導入酸化チタン c 1 8を 得た。 この鉄導入硫黄含有酸化チタン c 1 8の特性、 光触媒性能の測定 結果を第 5表に示す。 An iron-containing sulfur-introduced titanium oxide h 1 8 was obtained in the same manner as in Example 13 except that the heat-treated product b 1 8 was used instead of the heat-treated product b 1 3. The iron-containing sulfur-introduced titanium oxide h 1 8 is put into pure water, stirred, and an aqueous solution of iron chloride (Fe C 1 3 · H 2 O (manufactured by Wako Pure Chemical Industries, Ltd.)) and 0.0 3 parts by weight of iron atoms of sulfur introduced titanium oxide h 1 8 and against the 1 0 0 parts by weight when T i O 2 converted - so as to put, stirred for 30 minutes, A suspension was obtained. After stirring, the resulting suspension was filtered, and the filtered powder was dried at 110 ° C. for 12 hours to obtain a copper-colored iron-containing sulfur-introduced titanium oxide c 18. Table 5 shows the measurement results of the properties and photocatalytic performance of this iron-introduced sulfur-containing titanium oxide c 18.
[実施例 1 9] [Example 1 9]
(鉄含有チタン塩アル力リ中和物の製造及ぴ加熱処理)  (Production and heat treatment of iron-containing titanium salt Al neutralized product)
撹拌機を備えた容量 1 000m lの丸底フラスコに、 四塩化チタン水 溶液 (チタン濃度: 4質量%) 2 9 7 gと、 塩化鉄 (F e C 1 3 · H2 O (株式会社和光純薬製) ) 水溶液とを、 四塩化チタンを T i O2換算 したときの 1 00質量部に対して鉄原子として 0. 0 5質量部となるよ うに入れ、 次いで、 6 0°Cに加熱した。 次いで、 アンモニア水を一気に 添加して反応系の p Hが 7. 4に維持されるように、 60でで1時間中 和し、 スラリーを得た。 このスラリーを 1 1 0°Cにて、 24時間加熱し て、 水を蒸発除去して、 固形物を得、 得られた固形物の純水洗浄および ろ過を 2回繰り返し、 ろ過後の粉末を 1 1 0°C、 24時間で乾燥して、 鉄含有チタン塩アル力リ中和物を得た。 In a 1 000 ml round bottom flask equipped with a stirrer, titanium tetrachloride aqueous solution (titanium concentration: 4% by mass) 2 9 7 g, iron chloride (Fe C 1 3 · H 2 O (Made by Mitsuru Pure Chemical Co., Ltd.))) Aqueous solution was put in an amount of 0.05 parts by mass as iron atoms with respect to 100 parts by mass of titanium tetrachloride when converted to Ti O 2 , and then heated to 60 ° C. Heated. Next, ammonia water was added all at once, and the mixture was neutralized at 60 for 1 hour so that the pH of the reaction system was maintained at 7.4 to obtain a slurry. This slurry was heated at 110 ° C. for 24 hours to evaporate and remove water to obtain a solid, and the obtained solid was washed twice with pure water and filtered twice. It was dried at 110 ° C for 24 hours to obtain a neutralized iron-containing titanium salt.
次いで、 鉄含有チタン塩アル力リ中和物に純水 8 00 gを添加してス ラリ一を作製した。 このスラリ一に、 塩化鉄 (F e C 1 3 · H2O (株式 会社和光純薬製) ) 水溶液を、 スラリー中のチタン塩アルカリ中和物を T i O2換算したときの 1 00質量部に対して鉄原子として 0. 0 5質 量部となるように添加し、 6 0°C、 1時間撹拌混合を行い、 混合液を得 た。 次いで、 この混合液を 1 1 0°Cにて、 24時間加熱して水を蒸発除 去し、 固形物を得、 得られた固形物の純水洗浄およびろ過を 2回繰り返 し、 ろ過後の固形物を 1 1 0°C、 24時間で乾燥して、 鉄含有チタン塩 アル力リ中和物 a 1 9を得た。 (加熱処理) Next, 800 g of pure water was added to the iron-containing titanium salt aluminum neutralized product to prepare a slurry. In this slurry, an aqueous solution of iron chloride (Fe C 1 3 · H 2 O (manufactured by Wako Pure Chemical Industries, Ltd.)), 100 mass when the neutralized titanium salt alkali in the slurry is converted to TiO 2 The mixture was added in an amount of 0.05 mass parts as iron atoms, and stirred and mixed at 60 ° C for 1 hour to obtain a mixed solution. Next, this mixed solution was heated at 110 ° C. for 24 hours to evaporate and remove water to obtain a solid. The obtained solid was washed with pure water and filtered twice, and filtered. The subsequent solid matter was dried at 110 ° C. for 24 hours to obtain an iron-containing titanium salt neutralized product a 19. (Heat treatment)
該鉄含有チタン塩アル力リ中和物 a 1 3に代えて、 該鉄含有チタン塩 アル力リ中和物 a 1 9とした以外は、 実施例 1 3と同様に行い、 該加熱 処理物 b 1 9を得た。 該加熱処理物 b 1 9の比表面積は 2 7 0m2Zg、 X線回折分析によるアナターゼの( 1 0 1 )ピークの半値幅は 2 Θ = 1. 43° 、 鉄含有量は 0. 0 7質量%であった。 The heat-treated product was obtained in the same manner as in Example 13 except that the iron-containing titanium salt aluminum strength neutralized product a 1 3 was used instead of the iron-containing titanium salt aluminum strength neutralized product a 19. b 1 9 was obtained. The heat-treated product b 19 has a specific surface area of 2700 m 2 Zg, an anatase (1 0 1) peak half-width of 2 Θ = 1.43 ° by X-ray diffraction analysis, and an iron content of 0.07 It was mass%.
(焼成)  (Baking)
該加熱処理物 b 1 3に代えて、 該加熱処理物 b 1 9とした以外は、 実 施例 1 3と同様の方法でを行い、 鉄含有硫黄導入酸化チタン c 1 9を得 た。 この鉄含有硫黄導入酸化チタン c 1 9の特性と、 光触媒性能の測定 結果を第 5表に示す。 第 5表  An iron-containing sulfur-introduced titanium oxide c 19 was obtained in the same manner as in Example 13 except that the heat-treated product b 19 was used instead of the heat-treated product b 13. Table 5 shows the characteristics of this iron-containing sulfur-introduced titanium oxide c 19 and the measurement results of its photocatalytic performance. Table 5
Figure imgf000074_0001
[実施例 20]
Figure imgf000074_0001
[Example 20]
撹拌機を備えた丸底フラスコに、 純水 1 000 gを入れ、 次いで、 6 0°Cに加熱した。 四塩化チタン水溶液 (チタン濃度: 6質量%) 20 00 gと、 アンモニア水 (28%) を純水で 5倍希釈した液 2 05 7 gを、 中和等量となるように、 両者を 3時間かけて、 滴下、 中和を行つ た。 次いで、 このスラリ一に、 塩化鉄 (F e C 1 3 · H20 (株式会社和 光純薬製) ) 水溶液を、 スラリー中のチタン塩アルカリ中和物を T i O 2換算したときの 1 00質量部に対して鉄原子として 0. 0 7質量部と なるように添加し、 60°C、 1時間撹拌混合を行い、 混合液を得た。 次 いで、 この混合液を 1 1 0°Cにて、 24時間加熱して水を蒸発除去し、 固形物を得、 得られた固形物の純水洗浄およびろ過を 2回繰り返し、 ろ 過後の固形物を 1 1 0 、 24時間で乾燥して、 鉄含有チタン塩アル力 リ中和物 a 20を得た。 A round bottom flask equipped with a stirrer was charged with 1 000 g of pure water and then heated to 60 ° C. Titanium tetrachloride aqueous solution (titanium concentration: 6% by mass) 2 00 g and ammonia water (28%) diluted 5 times with pure water 2 05 7 g Over time, dripping and neutralization were performed. Next, in this slurry, an aqueous solution of iron chloride (Fe C 1 3 · H 2 0 (manufactured by Wako Pure Chemical Industries, Ltd.)) is used, and the titanium salt alkali neutralized product in the slurry is converted to TiO 2 1 It added so that it might be set to 0.07 mass part as an iron atom with respect to 00 mass part, 60 degreeC and stirring mixing were performed for 1 hour, and the liquid mixture was obtained. Next, this mixed solution was heated at 110 ° C. for 24 hours to evaporate and remove water to obtain a solid, and the obtained solid was washed twice with pure water and filtered twice. The solid was dried at 110 ° C. for 24 hours to obtain an iron-containing titanium salt aluminum neutralized product a20.
(加熱処理)  (Heat treatment)
' 該鉄含有チタン塩アルカリ中和物 a 1に代えて、 該鉄含有チタン塩ァ ルカリ中和物 a 20とする以外は実施例 1 と同様の方法で行い、 加熱処 理物 b 2 0を得た。 該加熱処理物 b 2 0の比表面積は 3 00 m2/ g , X線回折分析によるアナターゼの( 1 0 1 )ピークの半値幅は 2 0 = 1. 4 5° 、 鉄含有量は 0. 0 7質量%であった。 'In the same manner as in Example 1 except that the iron-containing titanium salt alkali neutralized product a 20 was used instead of the iron-containing titanium salt alkali neutralized product a 1, and the heat-treated product b 20 was Obtained. The heat-treated product b 20 has a specific surface area of 300 m 2 / g, an anatase (1 0 1) peak half-width of 2 0 = 1.45 ° by X-ray diffraction analysis, and an iron content of 0. 0 7% by mass.
(焼成)  (Baking)
該加熱処理物 b 1に代えて、 該加熱処理物 b 20とする以外は、 実施 例 1 と同様の方法で行い、 鉄含有硫黄導入酸化チタン c 20を得た。 こ の鉄含有硫黄導入酸化チタン c 2 0の特性と、 光触媒性能の測定結果を 第 6表に示す。  An iron-containing sulfur-introduced titanium oxide c20 was obtained in the same manner as in Example 1 except that the heat-treated product b1 was used instead of the heat-treated product b1. Table 6 shows the characteristics of this iron-containing sulfur-introduced titanium oxide c 20 and the measurement results of its photocatalytic performance.
[実施例 2 1 ] 撹拌機を備えた丸底フラスコに、 純水 1 000 gを入れ、 次いで、 6 0°Cに加熱した。 四塩化チタン水溶液 (チタン濃度: 6質量%) 20 00 gと、 アンモニア水 (28%) を純水で 5倍希釈した液 2057 gを、 中和等量となるように、 両者を 3時間かけて、 滴下、 中和を行つ た。 この液を 1 1 0°Cにて、 24時間加熱して水を蒸発除去したのち、 得られた固形物を、 純水で洗浄し、 濾過するという操作を 2回繰り返し た。 濾過後の粉末を、 1 1 0°C、 24時間乾燥した。 [Example 2 1] A round bottom flask equipped with a stirrer was charged with 1 000 g of pure water and then heated to 60 ° C. Titanium tetrachloride aqueous solution (titanium concentration: 6% by mass) 20 00 g and ammonia water (28%) diluted 5 times with pure water 2057 g, both of which take 3 hours to neutralize Then, dripping and neutralization were performed. This liquid was heated at 110 ° C. for 24 hours to evaporate and remove water, and then the obtained solid was washed with pure water and filtered twice. The filtered powder was dried at 110 ° C. for 24 hours.
次いで、この粉末 1 00 gを純水 5000 gに分散させたスラリーに、 塩化鉄 (F e C 13 · H20 (株式会社和光純薬製) ) 水溶液を、 スラリ 一中のチタン塩アル力リ中和物を T i 02換算したときの 1 00質量部 に対して鉄原子として 0. 07質量部となるように添加し、 60°C、 1 時間撹拌混合を行い、 混合液を得た。 次いで、 この混合液を 1 10°Cに て、 24時間加熱して水を蒸発除去し、 固形物を得、 得られた固形物の 純水洗浄およびろ過を 2回繰り返し、 ろ過後の固形物を 1 10°C、 24 時間で乾燥して、 鉄含有チタン塩アルカリ中和物 a 2 1を得た。 Next, an aqueous solution of iron chloride (Fe C 1 3 · H 2 0 (manufactured by Wako Pure Chemical Industries, Ltd.)) was added to a slurry in which 100 g of this powder was dispersed in 5000 g of pure water. was added Chikarari neutralized product such that 0.07 parts by iron atoms per 1 00 parts by weight when T i 0 2 converted, subjected to stirring and mixing 60 ° C, 1 hour, the mixture Obtained. The mixture is then heated to 1 10 ° C. for 24 hours to evaporate and remove water to obtain a solid, and the resulting solid is washed twice with pure water and filtered twice. Was dried at 110 ° C. for 24 hours to obtain an iron-containing titanium salt alkali neutralized product a 2 1.
(加熱処理)  (Heat treatment)
該鉄含有チタン塩アルカリ中和物 a 1に代えて、 該鉄含有チタン塩ァ ルカリ中和物 a 2 1とする以外は実施例 1と同様の方法で行い、 加熱処 理物 b 2 1を得た。 該加熱処理物 b 2 1の比表面積は 300m2/g、 X線回折分析によるアナターゼの( 10 1)ピークの半値幅は 20 = 1. 42。 、 鉄含有量は 0. 07質量%であった。 The same procedure as in Example 1 was conducted except that the iron-containing titanium salt alkali neutralized product a 2 1 was used instead of the iron-containing titanium salt alkali neutralized product a 1, and the heat-treated product b 2 1 was used. Obtained. The specific surface area of the heat-treated product b 2 1 is 300 m 2 / g, and the half width of the (10 1) peak of anatase by X-ray diffraction analysis is 20 = 1.42. The iron content was 0.07% by mass.
(焼成)  (Baking)
該加熱処理物 b 1に代えて、 該加熱処理物 b 2 1とする以外は、 実施 例 1と同様の方法で行い、 鉄含有硫黄導入酸化チタン c 2 1を得た。 こ の鉄含有硫黄導入酸化チタン c 2 1の特性と、 光触媒性能の測定結果を 第 6表に示す。 第 6表 An iron-containing sulfur-introduced titanium oxide c 2 1 was obtained in the same manner as in Example 1 except that the heat-treated product b 2 1 was used instead of the heat-treated product b 1. Table 6 shows the characteristics of this iron-containing sulfur-introduced titanium oxide c 21 and the photocatalytic performance measurement results. Table 6
Figure imgf000077_0001
産業上の利用可能性
Figure imgf000077_0001
Industrial applicability
本発明によれば、 可視光での高い光触媒活性を有する酸化チタンを製 造することができる。  According to the present invention, titanium oxide having high photocatalytic activity with visible light can be produced.

Claims

請求の範囲 The scope of the claims
1 . 金属含有原料酸化チタンと硫黄化合物との混合物を焼成し、 金属含 有硫黄導入酸化チタンを得る焼成工程を有し、 1. having a firing step of firing a mixture of a metal-containing raw material titanium oxide and a sulfur compound to obtain a metal-containing sulfur-introduced titanium oxide;
該金属含有原料酸化チタン中の金属含有量が、 T i 0 2換算したとき の該金属含有原料酸化チタン 1 0 0質量部に対して、金属原子として 0 3〜0 . 1 5質量部であること、 The metal content in the metal-containing raw material titanium oxide is 0.3 to 0.15 parts by mass as metal atoms with respect to 100 parts by mass of the metal-containing raw material titanium oxide when converted to Ti 0 2 thing,
を特徴とする金属含有硫黄導入酸化チタンの製造方法。 The manufacturing method of the metal containing sulfur introduction | transduction titanium oxide characterized by these.
2 . 金属含有チタン塩加水分解/アル力リ中和物と硫黄化合物との混合 物を得る焼成原料混合物調製工程と、 該金属含有チタン塩加水分解ノア ルカリ中和物と該硫黄化合物との混合物を、 焼成し、 金属含有硫黄導入 酸化チタンを得る焼成工程と、 を有し、  2. A step of preparing a calcined raw material mixture to obtain a mixture of a metal-containing titanium salt hydrolyzed / alkaline neutralized product and a sulfur compound, and a mixture of the metal-containing titanium salt hydrolyzed neutral potassium neutralized product and the sulfur compound. Firing step to obtain metal-containing sulfur-introduced titanium oxide, and
該焼成原料混合物調製工程が、 チタン塩を加水分解またはアルカリ中 和して、 チタン塩加水分解ノアルカリ中和物含有スラリーを調製する加 水分解 アルカリ中和処理と、 該チタン塩加水分解 Zアル力リ中和物含 有スラリーに、 金属化合物を加え、 撹拌して、 金属含有チタン塩加水分 解 Zアル力リ中和物を得る金属化合物撹拌混合処理と、 を行う工程であ り、  The firing raw material mixture preparation step includes hydrolysis or alkali neutralization of a titanium salt to prepare a slurry containing a titanium salt hydrolysis-no-alkali neutralized product, an alkali neutralization treatment, and the titanium salt hydrolysis Z-al force. A metal compound is added to the slurry containing the re-neutralized product and stirred to obtain a metal-containing titanium salt hydrolyzed Z-al force re-neutralized product and a metal compound stirring and mixing process.
該金属化合物撹拌混合処理で該金属化合物を加える量が、 T i 0 2換 算したときの該チタン塩加水分解 アルカリ中和物 1 0 0質量部に対し て、 金属原子として 0 . 0 3〜0 . 1 5質量部となる量であり、 且つ、 該加水分解 Zアル力リ中和処理を行う前から該金属化合物撹拌 混合処理を行った後までの間に、 硫黄化合物を混合すること、 を特徴とする金属含有硫黄導入酸化チタンの製造方法。 The amount of addition of the metal compound with the metal compound stirred mixing process is, in respect to the titanium salt hydrolysis alkali neutralization product 1 0 0 parts by weight when T i 0 2 conversion calculation, 0.0 3 metal atom 0.1 5 parts by mass, and mixing the sulfur compound between before the hydrolysis and Z-force neutralization treatment and after the metal compound stirring and mixing treatment, The manufacturing method of the metal containing sulfur introduction | transduction titanium oxide characterized by these.
3 . 金属含有チタン塩加水分解/アルカリ中和物の加熱処理物と硫黄化 合物との混合物を得る焼成原料混合物調製工程と、 該加熱処理物と該硫 黄化合物との混合物を、 焼成し、 金属含有硫黄導入酸化チタンを得る焼 成工程と、 を有し、 3. a baking raw material mixture preparation step for obtaining a mixture of a metal-containing titanium salt hydrolyzed / alkali neutralized heat-treated product and a sulfur compound; Calcining a mixture with a yellow compound to obtain a metal-containing sulfur-introduced titanium oxide, and
該焼成原料混合物調製工程が、 チタン塩を加水分解またはアル力リ中 和して、 チタン塩加水分解 zアル力リ中和物含有スラリ一を調製する加 水分解 Zアルカリ中和処理と、 該チタン塩加水分解 Zアルカリ中和物含 有スラリーに、 金属化合物を加え、 撹拌して、 金属含有チタン塩加水分 解/アル力リ中和物を得る金属化合物撹拌混合処理と、 該金属含有チタ ン塩ノアルカリ中和物を加熱処理して、 加熱処理物を得る加熱処理と、 を行う工程であり、  The calcination raw material mixture preparation step includes hydrolyzing Z alkali neutralization treatment, wherein the titanium salt is hydrolyzed or neutralized to prepare a slurry containing the titanium salt hydrolyzed z al force neutralized product. Titanium salt hydrolysis Z metal alkali added to the slurry containing a neutralized product, stirring to obtain a metal-containing titanium salt hydrolyzed / Al force neutralized product, and the metal-containing titanium Heat treatment of the neutralized alkali salt product to obtain a heat-treated product, and
該金属化合物撹拌混合処理で該金属化合物を加える量が、 丁 1 〇2換 算したときの該チタン塩加水分解 アルカリ中和物 1 0 0質量部に対し て、 金属原子として 0 . 0 3〜0 . 1 5質量部となる量であり、 且つ、 該加水分解 Zアル力リ中和処理を行う前から該加熱処理を行つ た後までの間に、 硫黄化合物を混合すること、 The amount of addition of the metal compound with the metal compound stirred mixing process is, in respect to the titanium salt hydrolysis alkali neutralization product 1 0 0 parts by weight when the T1 〇 2 conversion calculation, 0.0 3 metal atom 0.15 parts by mass, and mixing the sulfur compound between before the hydrolysis and Z neutralization treatment and after the heat treatment,
を特徴とする金属含有硫黄導入酸化チタンの製造方法。 A process for producing a metal-containing sulfur-introduced titanium oxide characterized by
4 . 金属含有チタン塩加水分解 Zアル力リ中和物と硫黄化合物との混合 物を得る焼成原料混合物調製工程と、 該金属含有チタン塩加水分解 ア ルカリ中和物と該硫黄化合物との混合物を、 焼成し、 金属含有硫黄導入 酸化チタンを得る焼成工程と、 を有し、  4. Metal-containing titanium salt hydrolyzed Z-alkali neutralized product and sulfur compound to obtain a mixture of the calcined raw material, and a mixture of the metal-containing titanium salt hydrolyzed alkali neutralized product and the sulfur compound Firing step to obtain metal-containing sulfur-introduced titanium oxide, and
該焼成原料混合物調製工程が、 金属化合物の存在下で、 チタン塩を加 水分解またはアル力リ中和して、 金属含有チタン塩加水分解ノアルカリ 中和物を得る加水分解 アルカリ中和処理を行う工程であり、  In the firing raw material mixture preparation step, hydrolysis and alkali neutralization treatment is performed by hydrolyzing or neutralizing titanium salt in the presence of a metal compound to obtain a metal-containing titanium salt hydrolyzed neutralized product. Process,
該加水分解 Zアル力リ中和処理で存在させる該金属化合物の量が、 τ i O 2換算したときのチタン塩 1 0 0質量部に対して、 金属原子として 0 . 0 3〜0 . 1 5質量部となる量であり、 The amount of the metal compound to be present in the hydrolysis Z-al force neutralization treatment is from 0.03 to 0.1 as a metal atom with respect to 100 parts by mass of the titanium salt when converted to τ i O 2 . 5 parts by mass
且つ、 該加水分解 アルカリ中和処理を行う前から該加水分解 アル 力リ中和処理を行った後までの間に、 硫黄化合物を混合すること、 を特徴とする金属含有硫黄導入酸化チタンの製造方法。 And before the hydrolysis and alkali neutralization treatment, A method for producing a metal-containing sulfur-introduced titanium oxide, comprising mixing a sulfur compound before and after performing a force neutralization treatment.
5 . 金属含有チタン塩加水分解 アルカリ中和物の加熱処理物と硫黄化 合物との混合物を得る焼成原料混合物調製工程と、 該加熱処理物と該硫 黄化合物との混合物を、 焼成し、 金属含有硫黄導入酸化チタンを得る焼 成工程と、 を有し、  5. Hydrolysis of metal-containing titanium salt A calcined raw material mixture preparation step for obtaining a mixture of a heat-treated product of alkali neutralized product and a sulfur compound, and a mixture of the heat-treated product and the sulfur compound are calcined, A sintering step for obtaining a metal-containing sulfur-introduced titanium oxide,
該焼成原料混合物調製工程が、 金属化合物の存在下で、 チタン塩を加 水分解またはアル力リ中和して、 チタン塩加水分解 Zアル力リ中和物を 得る加水分解 Zアル力リ中和処理と、 該金属含有チタン塩加水分解/ァ ルカリ中和物を加熱処理して、 加熱処理物を得る加熱処理と、 を行うェ 程であり、  The firing raw material mixture preparation step includes hydrolyzing or neutralizing titanium salt in the presence of a metal compound to obtain a titanium salt hydrolyzed Z-alloy neutralized product. A heat treatment to obtain a heat-treated product by heat-treating the metal-containing titanium salt hydrolyzed / alkali neutralized product,
該チタン塩加水分解/アル力リ中和処理で存在させる該金属化合物の 量が、 T i o 2換算したときのチタン塩 1 0 0質量部に対して、 金属原 子として 0 . 0 3〜0 . 1 5質量部となる量であり、 0 The amount of the metal compound be present in the titanium salt hydrolysis / Al Chikarari neutralization process, with respect to the titanium salt 1 0 0 parts by weight when T io 2 terms, as the metal atom. 0 3-0 1 The amount is 5 parts by mass,
且つ、 該加水分解 Zアルカリ中和処理を行う前から該加熱処理を行つ た後までの間に、 硫黄化合物を混合すること、  And mixing the sulfur compound between before the hydrolysis Z alkali neutralization treatment and after the heat treatment,
を特徴とする金属含有硫黄導入酸化チタンの製造方法。 The manufacturing method of the metal containing sulfur introduction | transduction titanium oxide characterized by these.
6 . 金属含有チタン塩加水分解 アルカリ中和物と硫黄化合物との混合 物を得る焼成原料混合物調製工程と、 該金属含有チタン塩加水分解 ア ルカリ中和物と該硫黄化合物との混合物を、 焼成し、 金属含有硫黄導入 酸化チタンを得る焼成工程と、 を有し、 6. Metal-containing titanium salt hydrolysis Firing raw material mixture preparation step for obtaining a mixture of alkali neutralized product and sulfur compound, and metal-containing titanium salt hydrolyzed alkali neutralized product and sulfur compound mixture are calcined. And a metal-containing sulfur-introduced titanium oxide obtaining step,
該焼成原料混合物調製工程が、 金属化合物の存在下で、 該チタン塩を 加水分解またはアル力リ中和して、 金属含有チタン塩加水分解ノアルカ リ中和物含有スラリーを調製する加水分解 Zアル力リ中和処理と、 該金 属含有チタン塩加水分解 アルカリ中和物含有スラリーに、 金属化合物 を加え、 撹拌して、 金属含有チタン塩加水分解ノアルカリ中和物を得る 金属化合物撹拌混合処理と、 を行う工程であり、 The calcining raw material mixture preparation step comprises hydrolyzing or neutralizing the titanium salt in the presence of a metal compound to prepare a metal-containing titanium salt hydrolyzed neutralized product-containing slurry. Metal neutralization treatment and metal-containing titanium salt hydrolyzed alkali neutralized product-containing slurry Add a metal compound and stir to obtain a metal-containing titanium salt hydrolyzed neutralized product And a metal compound stirring and mixing process,
該加水分解ノアルカリ中和処理で存在させる該金属化合物及び該金属 化合物撹拌混合処理で加える該金属化合物の合計量が、 T i o 2換算し たときのチタン塩 1 0 0質量部に対して、金属原子として 0 . 0 3〜0 . 1 5質量部となる量であり、 The total amount of the metal compound to be present in the hydrolysis-no-alkali neutralization treatment and the metal compound to be added in the metal compound stirring and mixing treatment is 100 parts by mass of titanium salt when converted to Tio 2. The amount is 0.03 to 0.15 parts by mass as an atom,
且つ、 該加水分解ノアルカリ中和処理を行う前から該金属化合物撹拌 混合処理を行った後までの間に、 硫黄化合物を混合すること、 を特徴とする金属含有硫黄導入酸化チタンの製造方法。  A method for producing a metal-containing sulfur-introduced titanium oxide, comprising mixing a sulfur compound before performing the hydrolysis-no-alkali neutralization treatment and after performing the metal compound stirring and mixing treatment.
7 . 金属含有チタン塩加水分解 Zアル力リ中和物の加熱処理物と硫黄化 合物との混合物を得る焼成原料混合物調製工程と、 該加熱処理物と該硫 黄化合物との混合物を、 焼成し、 金属含有硫黄導入酸化チタンを得る焼 成工程と、 を有し、  7. Hydrolysis of metal-containing titanium salt Z-alkaline neutralized heat-treated product and sulfur compound to obtain a mixture of a calcined raw material mixture, a mixture of the heat-treated product and the sulfur compound, Calcining to obtain a metal-containing sulfur-introduced titanium oxide, and
該焼成原料混合物調製工程が、 金属化合物の存在下で、 該チタン塩を 加水分解またはアル力リ中和して、 金属含有チタン塩加水分解/アル力 リ中和物含有スラ リーを調製する加水分解 Zアルカリ中和処理と、 該金 属含有チタン塩加水分解ノアルカリ中和物含有スラリ一に、 金属化合物 を加え、 撹拌して、 金属含有チタン塩加水分解 Zアルカリ中和物を得る 金属化合物撹拌混合処理と、 該金属含有チタン塩加水分解 Zアル力リ中 和物を加熱処理し、 加熱処理物を得る加熱処理と、 を行う工程であり、 該加水分解ノアルカリ中和処理で存在させる該金属化合物及ぴ該金属 化合物撹拌混合処理で加える該金属化合物の合計量が、 T i O 2換算し たときのチタン塩 1 0 0質量部に対して、金属原子として 0 . 0 3〜0 . 1 5質量部となる量であり、 The firing raw material mixture preparation step includes hydrolyzing the titanium salt in the presence of a metal compound or neutralizing the aluminum salt to prepare a metal-containing titanium salt hydrolyzed / alteric acid neutralized material-containing slurry. Decomposition Z alkali neutralization treatment and metal-containing titanium salt hydrolyzed neutralized neutralized product-containing slurry Add metal compound and stir to obtain metal-containing titanium salt hydrolyzed Z alkali neutralized product Metal compound stirrer And a heat treatment for obtaining a heat-treated product by subjecting the metal-containing titanium salt hydrolyzed Z-alkaline neutral product to a heat treatment, wherein the metal is present in the hydrolysis-no-alkali neutralization treatment. the total amount of the compound及Pi the metal compound stirred mixture is added in the process the metal compound, relative to titanium salt 1 0 0 parts by weight when T i O 2 converted, 0 as the metal atom. 0 3 to 0.1 5 parts by mass
且つ、 該加水分解 Zアル力リ中和処理を行う前から該加熱処理を行つ た後までの間に、 硫黄化合物を混合すること、  And mixing the sulfur compound between before the hydrolysis and the neutralization treatment until after the heat treatment,
を特徴とする金属含有硫黄導入酸化チタンの製造方法。 The manufacturing method of the metal containing sulfur introduction | transduction titanium oxide characterized by these.
8. 前記焼成工程を行った後、 更に、 前記焼成工程で得られた前記金属 含有硫黄導入酸化チタンに、 金属を導入して、 金属含有硫黄導入酸化チ タンを得る金属再導入工程を行うことを特徴とする請求項 1〜 7いずれ か 1項記載の金属含有硫黄導入酸化チタンの製造方法。 8. After performing the firing step, further performing a metal reintroduction step of introducing metal into the metal-containing sulfur-introduced titanium oxide obtained in the calcining step to obtain a metal-containing sulfur-introduced titanium oxide. The method for producing a metal-containing sulfur-introduced titanium oxide according to any one of claims 1 to 7.
9. 前記金属再導入工程を行った後、 更に、 前記金属再導入工程で得ら れた金属含有硫黄導入酸化チタンと硫黄化合物とを混合し、 焼成して、 硫黄を導入し、 金属含有硫黄導入酸化チタンを得る硫黄再導入工程を行 うこと、又は前記金属再導入工程と該硫黄再導入工程とを繰り返すこと、 を特徴とする請求項 8記載の金属含有硫黄導入酸化チタンの製造方法。  9. After performing the metal reintroduction step, the metal-containing sulfur-introduced titanium oxide obtained in the metal reintroduction step and the sulfur compound are mixed, calcined, sulfur is introduced, and the metal-containing sulfur 9. The method for producing a metal-containing sulfur-introduced titanium oxide according to claim 8, wherein a sulfur reintroduction step for obtaining the introduced titanium oxide is performed, or the metal reintroduction step and the sulfur reintroduction step are repeated.
1 0. 前記加熱処理の加熱処理温度が、 20 0〜 3 50°Cであることを 特徴とする請求項 3、 5又は 7いずれか 1項記載の金属含有硫黄導入酸 化チタンの製造方法。 10. The method for producing a metal-containing sulfur-introduced titanium oxide according to claim 3, wherein the heat treatment temperature of the heat treatment is 200 to 350 ° C. 10.
1 1. 前記チタン塩が、 四塩化チタンであることを特徴とする請求項 2 〜 7いずれか 1項記載の金属含有硫黄導入酸化チタンの製造方法。  1 1. The method for producing a metal-containing sulfur-introduced titanium oxide according to any one of claims 2 to 7, wherein the titanium salt is titanium tetrachloride.
1 2. 前記金属化合物が、 鉄元素を含有する金属化合物であることを特 徴とする請求項 2〜 1 1いずれか 1項記載の金属含有硫黄導入酸化チタ ンの製造方法。  1 2. The method for producing a metal-containing sulfur-introduced titanium oxide according to any one of claims 2 to 11, wherein the metal compound is a metal compound containing an iron element.
1 3. 前記金属含有原料酸化チタン、 前記チタン塩加水分解/アルカリ 中和物又は前記加熱処理物の鉄含有量が 0. 0 3〜0. 1 5質量%、 結 晶構造の主体がアナターゼ型、 比表面積が 1 50〜400 m2Z g、 X 線回折分析によるアナターゼの(1 0 1 ) ピークの半値幅が、 2 Θ = 1 · 2〜 1. 5° であることを特徴とする請求項 1〜 1 2いずれか 1項記載 の金属含有硫黄導入酸化チタンの製造方法。 1 3. Iron content of the metal-containing raw material titanium oxide, the titanium salt hydrolyzed / alkali neutralized product or the heat-treated product is 0.03 to 0.15% by mass, and the crystal structure is mainly anatase type The specific surface area is 150 to 400 m 2 Z g, and the half width of the (1 0 1) peak of anatase by X-ray diffraction analysis is 2 Θ = 1 · 2 to 1.5 ° Item 1 A method for producing a metal-containing sulfur-introduced titanium oxide according to any one of Items 1 to 12.
1 4. 金属含有量が 0. 03〜0. 1 5質量%、 硫黄含有量が 0. 02 〜0. 1質量%、 比表面積が 6 0〜: I 2 0 m2Z g、 結晶構造の主体が アナターゼ型である酸化チタンであり、 該酸化チタン中の硫黄原子が、 酸化チタンのチタンサイ トに導入され、 金属が酸化チタン内部に含まれ ていること、 を特徴とする金属含有硫黄導入酸化チタン。 1 4. Metal content is 0.03 ~ 0.15 mass%, sulfur content is 0.02 ~ 0.1 mass%, specific surface area is 60 ~: I 20 m 2 Z g, crystal structure The main component is an anatase type titanium oxide, and the sulfur atom in the titanium oxide is A metal-containing sulfur-introduced titanium oxide, which is introduced into a titanium oxide titanium site and contains metal inside the titanium oxide.
1 5 . 酸化チタンに含まれる全金属量に対する酸化チタン内部に存在す る金属量の割合が、 1 5 %以上 9 0 %以下であることを特徴とする請求 項 1 4に記載の金属含有硫黄導入酸化チタン。  15. The metal-containing sulfur according to claim 14, wherein the ratio of the amount of metal present in the titanium oxide to the total amount of metal contained in the titanium oxide is 15% or more and 90% or less. Introduced titanium oxide.
1 6 . 前記金属が鉄であることを特徴とする請求項 1 4または 1 5いず れか 1項記載の金属含有硫黄導入酸化チタン。  16. The metal-containing sulfur-introduced titanium oxide according to any one of claims 14 and 15, wherein the metal is iron.
PCT/JP2007/075344 2006-12-26 2007-12-21 Method for producing metal-containing sulfur-introduced titanium oxide and metal-containing sulfur-introduced titanium oxide WO2008081957A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006349265 2006-12-26
JP2006-349264 2006-12-26
JP2006349264 2006-12-26
JP2006-349265 2006-12-26

Publications (1)

Publication Number Publication Date
WO2008081957A1 true WO2008081957A1 (en) 2008-07-10

Family

ID=39588634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/075344 WO2008081957A1 (en) 2006-12-26 2007-12-21 Method for producing metal-containing sulfur-introduced titanium oxide and metal-containing sulfur-introduced titanium oxide

Country Status (2)

Country Link
JP (2) JP2008179529A (en)
WO (1) WO2008081957A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104963A (en) * 2008-10-31 2010-05-13 Toho Titanium Co Ltd Sulfur-containing titanium oxide compound, method for manufacturing sulfur-containing titanium oxide compound, and dispersion of sulfur-containing titanium oxide compound
CN113972381A (en) * 2021-10-22 2022-01-25 广东技术师范大学 Sulfur electrode electrochemical reaction dual-function catalyst and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142695A1 (en) * 2018-01-16 2019-07-25 昭和電工株式会社 Oxygen reduction catalyst

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003190811A (en) * 2001-12-27 2003-07-08 Sumitomo Chem Co Ltd Photocatalytic body, method for manufacturing the same, and photocatalytic body coating agent obtained by using the same
WO2005014170A1 (en) * 2003-08-08 2005-02-17 Kabushiki Kaisha Toyota Chuo Kenkyusho Photocatalyst material being activated by visible light, raw material for the same and method for producing the same
WO2005087372A1 (en) * 2004-03-12 2005-09-22 Toho Titanium Co., Ltd. Titanium oxide photocatalyst and method for preparation thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003190811A (en) * 2001-12-27 2003-07-08 Sumitomo Chem Co Ltd Photocatalytic body, method for manufacturing the same, and photocatalytic body coating agent obtained by using the same
WO2005014170A1 (en) * 2003-08-08 2005-02-17 Kabushiki Kaisha Toyota Chuo Kenkyusho Photocatalyst material being activated by visible light, raw material for the same and method for producing the same
WO2005087372A1 (en) * 2004-03-12 2005-09-22 Toho Titanium Co., Ltd. Titanium oxide photocatalyst and method for preparation thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OHNO T. ET AL.: "Sensitization of photocatalytic activity of S- or N-doped TiO2 particles by adsorbing Fe3+ cations", APPLIED CATALYSIS A: GENERAL, ELSEVIER B.V., vol. 302, no. 1, 21 March 2006 (2006-03-21), pages 62 - 68 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010104963A (en) * 2008-10-31 2010-05-13 Toho Titanium Co Ltd Sulfur-containing titanium oxide compound, method for manufacturing sulfur-containing titanium oxide compound, and dispersion of sulfur-containing titanium oxide compound
CN113972381A (en) * 2021-10-22 2022-01-25 广东技术师范大学 Sulfur electrode electrochemical reaction dual-function catalyst and preparation method thereof
CN113972381B (en) * 2021-10-22 2023-03-31 广东技术师范大学 Sulfur electrode electrochemical reaction bifunctional catalyst and preparation method thereof

Also Published As

Publication number Publication date
JP2008179530A (en) 2008-08-07
JP2008179529A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
Fagan et al. Improved high temperature stability of anatase TiO2 photocatalysts by N, F, P co-doping
Zaleska Doped-TiO2: a review
JP4353978B2 (en) Method for producing titanium oxide photocatalyst
Nilchi et al. Sol-gel preparation of nanoscale TiO2/SiO2 composite for eliminating of Con Red azo dye
Jang et al. Formation of crystalline TiO2− xNx and its photocatalytic activity
Wang et al. Preparation and characterization of TiO2 nanoparticles by two different precipitation methods
EP3339249B1 (en) Method for producing titanium oxide fine particles
JP4540069B2 (en) Composition for forming titanium oxide photocatalyst coating film, method for producing the same, coating film for photocatalyst, and coated product for photocatalyst
JP4436910B2 (en) Photocatalyst containing titanium oxide, its production method and use
AU2003210015B2 (en) Ultrafine particulate titanium oxide with low chlorine and low rutile content, and production process thereof
EP3048082B1 (en) Ultrafine particles of titanium dioxide and method for producing same
JPWO2005092797A1 (en) Anatase type titanium oxide powder and method for producing the same
WO2011043496A2 (en) Copper ion-modified titanium oxide and process for producing the same, and photocatalyst
WO2008081957A1 (en) Method for producing metal-containing sulfur-introduced titanium oxide and metal-containing sulfur-introduced titanium oxide
Gomez et al. Bi-phasic titanium dioxide nanoparticles doped with nitrogen and neodymium for enhanced photocatalysis
JP5030735B2 (en) N- and / or S-doped tubular titanium oxide particles and method for producing the same
JP2008179528A (en) Manufacture method of titanium oxide
JP5383156B2 (en) Sulfur-containing titanium oxide compound, method for producing sulfur-containing titanium oxide compound, sulfur-containing titanium oxide compound dispersion, and method for producing sulfur-containing titanium oxide compound dispersion
JP4084463B2 (en) Titanium oxide powder for photocatalyst
JP4351936B2 (en) Method for producing titanium oxide photocatalyst
JP4386788B2 (en) Method for producing titanium oxide photocatalyst
JP4849566B2 (en) Method for producing sulfur-containing titanium oxide and method for producing sulfur-containing titanium oxide dispersion
WO2019189307A1 (en) Titanium oxide particles and manufacturing method therefor
RU2565193C1 (en) Method of producing nanosized titanium dioxide
JP4841506B2 (en) Method for producing metal oxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07860541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07860541

Country of ref document: EP

Kind code of ref document: A1