WO2008080679A2 - Method for determining a rotational speed value - Google Patents

Method for determining a rotational speed value Download PDF

Info

Publication number
WO2008080679A2
WO2008080679A2 PCT/EP2007/062151 EP2007062151W WO2008080679A2 WO 2008080679 A2 WO2008080679 A2 WO 2008080679A2 EP 2007062151 W EP2007062151 W EP 2007062151W WO 2008080679 A2 WO2008080679 A2 WO 2008080679A2
Authority
WO
WIPO (PCT)
Prior art keywords
signal
internal combustion
speed
combustion engine
crankshaft
Prior art date
Application number
PCT/EP2007/062151
Other languages
German (de)
French (fr)
Other versions
WO2008080679A3 (en
Inventor
Joerg Breuninger
Haris Hamedovic
Franz Raichle
Wolfgang Fischer
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP07822440A priority Critical patent/EP2104784A2/en
Publication of WO2008080679A2 publication Critical patent/WO2008080679A2/en
Publication of WO2008080679A3 publication Critical patent/WO2008080679A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/2449Error correction using hard-stored calibration data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0097Electrical control of supply of combustible mixture or its constituents using means for generating speed signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • G01D18/001Calibrating encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M15/00Testing of engines
    • G01M15/04Testing internal-combustion engines
    • G01M15/11Testing internal-combustion engines by detecting misfire
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/489Digital circuits therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1006Engine torque losses, e.g. friction or pumping losses or losses caused by external loads of accessories

Definitions

  • the present invention relates to a device, a computer program and a method for determining a rotational speed value of a torque representing a torque of a shaft signal, in particular a signal of a transmitter wheel of a crankshaft of an internal combustion engine associated transmitter.
  • the speed signal provides information of central importance for engine control, diagnosis and optimization of the operating behavior with regard to a wide variety of criteria.
  • the speed signal is typically measured by means of a donor wheel mounted on the crankshaft, which has a certain number of markings by alternately attaching teeth and tooth gaps and usually a Geberradlücke.
  • the individual markings are detected by means of a sensor, so that angle increments and a zero position of the crankshaft identified by a transmitter wheel gap or the like can be detected.
  • By measuring the elapsed time between two successive markings one obtains the so-called tooth sides, which are converted into corresponding speed values.
  • Fluctuations in the speed signal are primarily due to two factors, namely the gas torque resulting from compression and combustion and the oscillating masses of an internal combustion engine.
  • the oscillating masses of an internal combustion engine are in particular the pistons, piston pins, piston ring packages and the oscillating portion of the connecting rods. Their influence on the angular acceleration depends quadratically on the speed.
  • a speed signal u.a. Information about combustion characteristics of the
  • An object of the present invention is to compensate for the influence of oscillating masses directly on the speed signal.
  • the correction function can be any function with which the speed signal is converted.
  • the signal is determined from an angle-discrete encoder signal and the correction function is angularly discrete, wherein the discretization of the speed signal in the correction function is the same.
  • angle discrete is understood in this context that both the
  • Speed signal and the correction function to discrete crankshaft angles are present.
  • the discretization can also be, for example, an interpolation to crankshaft angles at which there is no signal of a speed sensor exist.
  • the correction function is preferably determined by a simulation of the oscillating masses of the internal combustion engine and stored in the form of a series of numbers in a control unit of the internal combustion engine. As a result, it is not necessary to determine the correction terms online during operation. It is preferably provided that the correction function is a multiplication with a discrete angle-dependent correction factor. The respective speed value or value of the angular speed to a discrete crankshaft angle is thus determined with a constant and from the operating point of the internal combustion engine multiplied independent correction factor.
  • the correction factor is stored as an angle-dependent series in a memory of a control unit.
  • a gas torque of the internal combustion engine is determined from the transformed speed signal. Since the speed signal is compensated for the influence of the oscillating masses, the rotational inertia of the crankshaft is no longer dependent on the crankshaft angle but constant. As a result, the gas torque can be determined directly from the speed signal. If the transformed speed signal is transmitted via e.g. integrated compression torque curve determined from an adiabatic model of the internal combustion engine, in addition, the influence of the compression can be eliminated, so that only the proportion of the torque resulting from the combustion during the power stroke, can be determined.
  • control unit or internal combustion engine which is set up to carry out a method according to the invention and a computer program with program code for carrying out all steps according to a method according to the invention, when the program is executed in a computer.
  • FIG. 1 is a block diagram of a method according to the invention.
  • FIG. 2 is a graph of a correction value over the crankshaft angle
  • Fig. 3 is a diagram of a speed signal and a corrected by the correction value of Fig. 2 speed signal.
  • an instantaneous speed of a crankshaft of an internal combustion engine is present as a time series at discrete crankshaft angles.
  • the speed signal is determined by an inductive sensor, for example, which cooperates with a fixedly mounted on the crankshaft sensor wheel.
  • the sender wheel has markings in the form of a sequence of teeth and tooth gaps, wherein the tooth pitch is usually 6 °, the distance between two similarly oriented tooth flanks is therefore 6 ° over the circumferential angle of the encoder disc.
  • the electrical signal of the encoder which is transmitted to the control unit, is a rectangular signal representing the geometric course of teeth and tooth spaces on the circumference of the sensor wheel. From the signal of the encoder, an instantaneous speed or a momentary angular speed of the crankshaft to the crankshaft angles, which are associated with a rising or falling edge of the electrical signal of the encoder, can be determined. The speed signal is thus available as an angle-discrete row at defined crankshaft angles.
  • the angle-discrete signal of the encoder assigned to the sender wheel of the crankshaft of the internal combustion engine is now corrected for the influence of oscillating masses of the crankshaft by multiplying the angle-discrete signal by an angle-dependent correction value K.
  • Oscillating masses of the crankshaft are the pistons of the engine and proportionally the connecting rods between the crankshaft and the piston.
  • the correction value K is determined as angle-dependent to the crankshaft angles, to each of which an instantaneous speed is present, these are in customary in the prior art combinations of encoder wheel and encoder and subsequent signal evaluation of one of the tooth flanks of the encoder wheel associated crankshaft angle, so for example crankshaft angle of 3, 9, 15, 21, etc., crankshaft.
  • the correction value K is calculated offline using a model of the internal combustion engine, which takes into account internal combustion engine parameters such as oscillating and rotating mass fractions and the engine geometry, and stored in a memory of a control unit of the internal combustion engine.
  • Fig. 2 shows at the block diagram of the method for correcting the measured speed values ⁇ meM ( ⁇ ; ).
  • Values K (Cp 1 ) are stored in a memory of the control unit so that they only have to be read out and not have to be calculated online.
  • FIG. 2 shows an exemplary embodiment of the values of the correction factor K via the crankshaft angle ⁇ .
  • the correction values K (Cp 1 ) are present at discrete interpolation points which are assigned to the tooth sides of the transmitter wheel, but can also be present at intermediate values, the rotational speed or angular velocity values being interpolated between the crankshaft angles ⁇ determined by the tooth pitch.
  • a correction value of 1 means that the measured speed signal (p mess ( ⁇ ; ) is multiplied by the factor 1, ie remains unchanged.
  • Fig. 3 shows as a dashed curve the measured value of the angular velocity ⁇ mess ( ⁇ j and as a solid curve the corrected value of the angular velocity
  • An index of 40 thus means here a crankshaft angle of cp 0 + 40 x 6 °, with a cp 0 of 3 ° as in the previously mentioned example of 3 °, 9 °, etc., the index 40 thus corresponds to a crankshaft angle of 243 °.
  • the measured speed value deviates from the corrected speed value.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

The invention relates to a method for determining a rotational speed value of a signal representing a current rotational speed of a shaft, particularly of a signal of a transmitter associated with a transmitter wheel of a crankshaft of an internal combustion engine, wherein a correction function is applied to the signal, compensating the influence of oscillating masses at least partially.

Description

Beschreibung description
Titel Verfahren zur Bestimmung eines DrehzahlwertesTitle Procedure for determining a speed value
Stand der TechnikState of the art
Die vorliegende Erfindung betrifft eine Vorrichtung, ein Computerprogramm und ein Verfah- ren zur Bestimmung eines Drehzahlwertes eines eine Momentdrehzahl einer Welle repräsentierenden Signals, insbesondere eines Signals eines einem Geberrad einer Kurbelwelle einer Brennkraftmaschine zugeordneten Gebers.The present invention relates to a device, a computer program and a method for determining a rotational speed value of a torque representing a torque of a shaft signal, in particular a signal of a transmitter wheel of a crankshaft of an internal combustion engine associated transmitter.
Bei modernen Brennkraftmaschinen liefert das Drehzahlsignal Informationen von zentraler Be- deutung für die Motorsteuerung, Diagnose sowie Optimierung des Betriebsverhaltens bezüglich verschiedenster Kriterien. Das Drehzahlsignal wird üblicherweise mit Hilfe eines an der Kurbelwelle angebrachten Geberrades gemessen, das eine bestimmte Anzahl an Markierungen durch abwechselndes Anbringen von Zähnen und Zahnlücken sowie üblicherweise eine Geberradlücke aufweist. Die einzelnen Markierungen werden mittels eines Sensors erfasst, so dass Winkelinkremente sowie eine durch eine Geberradlücke oder dergleichen ausgewiesene Nullstellung der Kurbelwelle erkannt werden kann. Durch Messung der verstrichenen Zeit zwischen zwei aufeinander folgenden Markierungen erhält man die so genannten Zahnseiten, die in entsprechende Drehzahlwerte umgerechnet werden.In modern internal combustion engines, the speed signal provides information of central importance for engine control, diagnosis and optimization of the operating behavior with regard to a wide variety of criteria. The speed signal is typically measured by means of a donor wheel mounted on the crankshaft, which has a certain number of markings by alternately attaching teeth and tooth gaps and usually a Geberradlücke. The individual markings are detected by means of a sensor, so that angle increments and a zero position of the crankshaft identified by a transmitter wheel gap or the like can be detected. By measuring the elapsed time between two successive markings, one obtains the so-called tooth sides, which are converted into corresponding speed values.
Schwankungen des Drehzahlsignals entstehen primär durch zwei Einflussgrößen, nämlich das durch Kompression und Verbrennung entstehende Gasdrehmoment sowie die oszillierenden Massen einer Brennkraftmaschine. Die oszillierenden Massen einer Brennkraftmaschine sind insbesondere die Kolben, Kolbenbolzen, Kolbenringpakete und der oszillierende Anteil der Pleuel. Ihr Einfluss auf die Winkelbeschleunigung hängt quadratisch von der Drehzahl ab. In der Regel soll aus einem Drehzahlsignal u.a. Informationen über Verbrennungsmerkmale derFluctuations in the speed signal are primarily due to two factors, namely the gas torque resulting from compression and combustion and the oscillating masses of an internal combustion engine. The oscillating masses of an internal combustion engine are in particular the pistons, piston pins, piston ring packages and the oscillating portion of the connecting rods. Their influence on the angular acceleration depends quadratically on the speed. As a rule, a speed signal u.a. Information about combustion characteristics of the
Brennkraftmaschine bzw. einzelner Zylinder der Brennkraftmaschine gewonnen werden. Daher stellt der Einfluss dieser oszillierenden Massen zur Bestimmung der genannten Größen eine Störung dar, die berücksichtigt bzw. kompensiert werden soll. Aus der DE 44 456 84 sowie der DE 19 941 171 ist es bekannt, das Gasdrehmoment zu berechnen, indem aus der Drehzahl das gesamte Drehmoment der Kurbelwelle zuerst bestimmt wird und dann von diesem das separat berechnete Drehmoment aufgrund der oszillierenden Massen abgezogen wird. Es ist jedoch kein Verfahren bekannt, bei dem der Einfluss oszillie- render Massen direkt auf dem Drehzahlsignal kompensiert wird.Internal combustion engine or individual cylinder of the internal combustion engine can be obtained. Therefore, the influence of these oscillating masses for determining the quantities mentioned represents a disturbance that should be taken into account or compensated. From DE 44 456 84 and DE 19 941 171 it is known to calculate the gas torque by the entire torque of the crankshaft is first determined from the speed and then subtracted from this separately calculated torque due to the oscillating masses. However, no method is known in which the influence of oscillating masses is compensated directly on the speed signal.
Offenbarung der ErfindungDisclosure of the invention
Eine Aufgabe der vorliegenden Erfindung ist es, den Einfluss oszillierender Massen direkt auf dem Drehzahlsignal zu kompensieren.An object of the present invention is to compensate for the influence of oscillating masses directly on the speed signal.
Dieses Problem wird gelöst durch ein Verfahren zur Bestimmung eines Drehzahlwertes eines eine Momentandrehzahl einer Welle repräsentierenden Signals, insbesondere eines Signals eines einem Geberrad einer Kurbelwelle einer Brennkraftmaschine zugeordneten Gebers, wobei auf das Signal eine Korrekturfunktion, die den Einfluss oszillierender Massen zumindest teilweise kompensiert, angewandt wird. Es wird also unmittelbar das Drehzahlsignal ohne den Umweg einer Momentenberechnung mittels einer Kennlinie oder eines Kennfeldes so umgerechnet bzw. transformiert, dass der Einfluss der oszillierenden Massen in diesem Drehzahlsignal eliminiert wird. Dies ist von Vorteil, da bei vielen Funktionen heutiger Motorsteuerungen Merkmale wie z.B. Verbrennungsmerkmale direkt aus dem Drehzahlsignal berechnet werden, also ohne Umweg über das Drehmoment ermittelt werden. Die Korrekturfunktion kann eine beliebige Funktion sein, mit der das Drehzahlsignal umgerechnet wird. Vorzugsweise ist vorgesehen, dass das Signal aus einem winkeldiskreten Gebersignal ermittelt wird und die Korrekturfunktion winkeldiskret ist, wobei die Diskretisierung des Drehzahlsignals in der Korrekturfunk- tion gleich ist. Unter winkeldiskret wird in diesem Zusammenhang verstanden, dass sowohl dasThis problem is solved by a method for determining a rotational speed value of a signal representing an instantaneous rotational speed of a shaft, in particular a signal of an encoder assigned to a transducer wheel of a crankshaft of an internal combustion engine, wherein a correction function which at least partially compensates for the influence of oscillating masses is applied to the signal , Thus, the speed signal without the detour of a torque calculation by means of a characteristic curve or a characteristic field is directly converted or transformed in such a way that the influence of the oscillating masses in this speed signal is eliminated. This is advantageous since in many functions of today's motor control features such as e.g. Combustion features are calculated directly from the speed signal, that are determined without detour via the torque. The correction function can be any function with which the speed signal is converted. Preferably, it is provided that the signal is determined from an angle-discrete encoder signal and the correction function is angularly discrete, wherein the discretization of the speed signal in the correction function is the same. Under angle discrete is understood in this context that both the
Drehzahlsignal als auch die Korrekturfunktion zu diskreten Kurbelwellenwinkeln vorliegen. Die Diskretisierung kann auch z.B. eine Interpolation zu Kurbelwellenwinkeln, an denen kein Signal eines Drehzahlgebers vorliegt, bestehen. Die Korrekturfunktion wird vorzugsweise durch eine Simulation der oszillierenden Massen der Brennkraftmaschine ermittelt und in Form einer Zahlenreihe in einem Steuergerät der Brennkraftmaschine abgelegt. Dadurch ist es nicht notwendig, die Korrekturterme online während des Betriebes zu ermitteln. Vorzugsweise ist vorgesehen, dass die Korrekturfunktion eine Multiplikation mit einem diskreten winkelabhängigen Korrekturfaktor ist. Der jeweilige Drehzahlwert bzw. Wert der Winkelgeschwindigkeit zu einem diskreten Kurbelwellenwinkel wird also mit einem konstanten und vom Betriebs- punkt der Brennkraftmaschine unabhängigen Korrekturfaktor multipliziert. Vorzugsweise ist dazu vorgesehen, dass der Korrekturfaktor als winkelabhängige Reihe in einem Speicher eines Steuergerätes abgelegt ist.Speed signal and the correction function to discrete crankshaft angles are present. The discretization can also be, for example, an interpolation to crankshaft angles at which there is no signal of a speed sensor exist. The correction function is preferably determined by a simulation of the oscillating masses of the internal combustion engine and stored in the form of a series of numbers in a control unit of the internal combustion engine. As a result, it is not necessary to determine the correction terms online during operation. It is preferably provided that the correction function is a multiplication with a discrete angle-dependent correction factor. The respective speed value or value of the angular speed to a discrete crankshaft angle is thus determined with a constant and from the operating point of the internal combustion engine multiplied independent correction factor. Preferably, it is provided that the correction factor is stored as an angle-dependent series in a memory of a control unit.
Zusätzlich kann vorgesehen sein, dass aus dem transformierten Drehzahlsignal ein Gasdrehmoment der Brennkraftmaschine ermittelt wird. Da das Drehzahlsignal um den Einfluss der oszillierenden Massen kompensiert ist, ist das Drehträgheitsmoment der Kurbelwelle nicht mehr Kurbelwellenwinkel-abhängig sondern konstant. Dadurch kann das Gasdrehmoment unmittelbar aus dem Drehzahlsignal ermittelt werden. Wird das transformierte Drehzahlsignal über ein z.B. aus einem adiabatischen Modell der Brennkraftmaschine ermittelten Kompressionsdrehmomentverlauf integriert, so kann zusätzlich der Einfluss der Kompression eliminiert werden, so dass nur der Anteil des Drehmoments, der aus der Verbrennung während des Arbeitstaktes herrührt, ermittelt werden kann.In addition, it can be provided that a gas torque of the internal combustion engine is determined from the transformed speed signal. Since the speed signal is compensated for the influence of the oscillating masses, the rotational inertia of the crankshaft is no longer dependent on the crankshaft angle but constant. As a result, the gas torque can be determined directly from the speed signal. If the transformed speed signal is transmitted via e.g. integrated compression torque curve determined from an adiabatic model of the internal combustion engine, in addition, the influence of the compression can be eliminated, so that only the proportion of the torque resulting from the combustion during the power stroke, can be determined.
Das eingangs genannte Problem wird auch gelöst durch eine Vorrichtung, insbesondere Steuergerät oder Brennkraftmaschine, die zur Durchführung eines erfindungsgemäßen Verfahrens eingerichtet ist sowie ein Computerprogramm mit Programmcode zur Durchführung aller Schritte nach einem erfindungsgemäßen Verfahren, wenn das Programm in einem Computer ausgeführt wird.The problem mentioned at the outset is also solved by a device, in particular control unit or internal combustion engine, which is set up to carry out a method according to the invention and a computer program with program code for carrying out all steps according to a method according to the invention, when the program is executed in a computer.
Kurze Beschreibung der ZeichnungenBrief description of the drawings
Nachfolgend wird ein Ausführungsbeispiel der vorliegenden Erfindung anhand der beiliegenden Zeichnungen näher erläutert. Dabei zeigen:Hereinafter, an embodiment of the present invention will be explained in more detail with reference to the accompanying drawings. Showing:
Fig. 1 ein Blockdiagramm eines erfindungsgemäßen Verfahrens;1 is a block diagram of a method according to the invention;
Fig. 2 ein Diagramm eines Korrekturwertes über den Kurbelwellenwinkel;FIG. 2 is a graph of a correction value over the crankshaft angle; FIG.
Fig. 3 ein Diagramm eines Drehzahlsignals sowie eines um den Korrekturwert der Fig. 2 korrigierten Drehzahlsignals.Fig. 3 is a diagram of a speed signal and a corrected by the correction value of Fig. 2 speed signal.
Ausführungsform der Erfindung - A -Embodiment of the invention - A -
Für das nachfolgende Ausführungsbeispiel wird davon ausgegangen, dass eine Momentandrehzahl einer Kurbelwelle einer Brennkraftmaschine als Zeitreihe zu diskreten Kurbelwellenwin- keln vorliegt. Üblicherweise wird das Drehzahlsignal durch einen zum Beispiel induktiven Geber ermittelt, der mit einem an der Kurbelwelle fest angebrachten Geberrad zusammenwirkt. Das Geberrad weist Markierungen in Form einer Abfolge von Zähnen und Zahnlücken auf, wobei die Zahnteilung üblicherweise 6° beträgt, der Abstand zweier gleichartig orientierten Zahnflanken beträgt also 6° über den Umfangswinkel der Geberscheibe. Derartige Geberscheiben weisen üblicherweise 60-2=58 Zähne auf, wobei eine Geberradlücke durch Weglassen zweier Zähne gebildet wird. Das elektrische Signal des Gebers, das an das Steuergerät übermit- telt wird, ist ein Rechtecksignal, das den geometrischen Verlauf von Zähnen und Zahnlücken auf dem Umfang des Geberrades repräsentiert. Aus dem Signal des Gebers kann eine Momentandrehzahl bzw. eine Momentanwinkelgeschwindigkeit der Kurbelwelle zu den Kurbelwellenwinkeln, die einer steigenden bzw. fallenden Flanke des elektrischen Signals des Gebers zugeordnet sind, ermittelt werden. Das Drehzahlsignal liegt also als winkeldiskrete Reihe zu defϊ- nierten Kurbelwellenwinkeln vor.For the following exemplary embodiment, it is assumed that an instantaneous speed of a crankshaft of an internal combustion engine is present as a time series at discrete crankshaft angles. Usually, the speed signal is determined by an inductive sensor, for example, which cooperates with a fixedly mounted on the crankshaft sensor wheel. The sender wheel has markings in the form of a sequence of teeth and tooth gaps, wherein the tooth pitch is usually 6 °, the distance between two similarly oriented tooth flanks is therefore 6 ° over the circumferential angle of the encoder disc. Such encoder discs usually have 60-2 = 58 teeth, wherein a Geberradlücke is formed by omitting two teeth. The electrical signal of the encoder, which is transmitted to the control unit, is a rectangular signal representing the geometric course of teeth and tooth spaces on the circumference of the sensor wheel. From the signal of the encoder, an instantaneous speed or a momentary angular speed of the crankshaft to the crankshaft angles, which are associated with a rising or falling edge of the electrical signal of the encoder, can be determined. The speed signal is thus available as an angle-discrete row at defined crankshaft angles.
Das winkeldiskrete Signal des dem Geberrad der Kurbelwelle der Brennkraftmaschine zugeordneten Gebers wird nun um den Einfluss oszillierender Massen der Kurbelwelle korrigiert, indem das winkeldiskrete Signal mit einem winkelabhängigen Korrekturwert K multipliziert wird. Oszillierende Massen der Kurbelwelle sind die Kolben der Brennkraftmaschine sowie anteilig die Pleuelstangen zwischen Kurbelwelle und dem Kolben. Der Korrekturwert K wird winkelabhängig zu den Kurbelwellenwinkeln bestimmt, zu denen jeweils eine Momentandrehzahl vorliegt, dies sind bei im Stand der Technik gebräuchlichen Kombinationen von Geberrad und Geber sowie nachfolgender Signalauswertung die einer der Zahnflanken des Geberrades zugeordneten Kurbelwellenwinkel, also beispielsweise Kurbelwellenwinkel von 3, 9, 15, 21 usf. Grad Kurbelwelle. Der Korrekturwert K wird mit Hilfe eines Modells der Brennkraftmaschine, die Brennkraftmaschinenparameter wie oszillierende und rotierende Massenanteile sowie die Motorgeometrie berücksichtigt, einmal offline berechnet und in einem Speicher eines Steuergerätes der Brennkraftmaschine abgelegt. Die Kurbelwellenwinkel-abhängigen Korrek- turwerte K (Cp1) werden vorteilhaft periodisch über eine Periode von 2π bzw. 360° ermittelt. E- benso ist es aber auch möglich, die Korrekturwerte über ein komplettes Arbeitsspiel der Brennkraftmaschine, sprich 4π oder 720° zu ermitteln. Es gilt also K(Cp1) = K(cpj+2π) bzw. K(Cp1) = K(Φl+4π). Fig. 2 zeigt am Blockdiagramm des Verfahrens zur Korrektur der gemessenen Drehzahlwerte φmeM; ) . In einem ersten Schritt 1 wird ein Momentanwert zu einem Kurbelwellenwinkel Cp1 der gemessenen Wert der Winkelgeschwindigkeit φmess; ) ermittelt. Das nachfolgende Aus- führungsbeispiel ist dargestellt für Winkelgeschwindigkeiten φ , für Drehzahlen n ist die Formulierung durch die Beziehung φ = 2%n bis auf den konstanten Faktor 2π identisch. In einem anschließenden Schritt 2 wird für den Kurbelwellenwinkel φi, zu dem der gemessenen Winkelgeschwindigkeit φmess; ) vorliegt, der Korrekturwert K(Cp1) ermittelt. In einem Schritt 4 wird die gemessene Winkelgeschwindigkeit φmess; ) multipliziert mit dem Korrekturwert K(Cp1), wobei man einen korrigierten Wert der Winkelgeschwindigkeit (pkor; ) in Schritt 3 erhält. DieThe angle-discrete signal of the encoder assigned to the sender wheel of the crankshaft of the internal combustion engine is now corrected for the influence of oscillating masses of the crankshaft by multiplying the angle-discrete signal by an angle-dependent correction value K. Oscillating masses of the crankshaft are the pistons of the engine and proportionally the connecting rods between the crankshaft and the piston. The correction value K is determined as angle-dependent to the crankshaft angles, to each of which an instantaneous speed is present, these are in customary in the prior art combinations of encoder wheel and encoder and subsequent signal evaluation of one of the tooth flanks of the encoder wheel associated crankshaft angle, so for example crankshaft angle of 3, 9, 15, 21, etc., crankshaft. The correction value K is calculated offline using a model of the internal combustion engine, which takes into account internal combustion engine parameters such as oscillating and rotating mass fractions and the engine geometry, and stored in a memory of a control unit of the internal combustion engine. The crankshaft angle-dependent correction values K (Cp 1 ) are advantageously determined periodically over a period of 2π or 360 °. However, it is also possible to determine the correction values via a complete operating cycle of the internal combustion engine, ie 4π or 720 °. So K (Cp 1 ) = K (cpj + 2π) or K (Cp 1 ) = K ( Φl + 4π). Fig. 2 shows at the block diagram of the method for correcting the measured speed values φ meM; ). In a first step 1, an instantaneous value to a crankshaft angle Cp 1 of the measured value of the angular velocity φ mess; ) is determined. The following embodiment is shown for angular velocities φ, for rotational speeds n the formulation is identical by the relation φ = 2% n up to the constant factor 2π. In a subsequent step 2, the correction value K (Cp 1 ) is determined for the crankshaft angle φi for which the measured angular velocity φ mess; ) is present. In a step 4, the measured angular velocity φ meas; ) multiplied by the correction value K (Cp 1 ), obtaining a corrected value of the angular velocity (p kor; ) in step 3)
Werte K(Cp1) sind in einem Speicher des Steuergerätes abgelegt, so dass diese nur ausgelesen und nicht Online berechnet werden müssen.Values K (Cp 1 ) are stored in a memory of the control unit so that they only have to be read out and not have to be calculated online.
Fig. 2 zeigt ein Ausführungsbeispiel der Werte des Korrekturfaktors K über den Kurbelwel- lenwinkel φ. Die Korrekturwerte K(Cp1) an diskreten Stützstellen, die den Zahnseiten des Geberrades zugeordnet sind, vorliegen, können aber auch zu Zwischenwerten vorliegen, wobei die Drehzahl bzw. Winkelgeschwindigkeitswerte zwischen den durch die Zahnteilung bestimmten Kurbelwellenwinkeln φ interpoliert werden. Ein Korrekturwert von 1 bedeutet, dass das gemessene Drehzahlsignal (pmess; ) mit dem Faktor 1 multipliziert wird, also unverändert erhalten bleibt.FIG. 2 shows an exemplary embodiment of the values of the correction factor K via the crankshaft angle φ. The correction values K (Cp 1 ) are present at discrete interpolation points which are assigned to the tooth sides of the transmitter wheel, but can also be present at intermediate values, the rotational speed or angular velocity values being interpolated between the crankshaft angles φ determined by the tooth pitch. A correction value of 1 means that the measured speed signal (p mess; ) is multiplied by the factor 1, ie remains unchanged.
Fig. 3 zeigt als gestrichelte Kurve den gemessenen Wert der Winkelgeschwindigkeit φmess (φj und als durchgezogene Kurve den korrigierten Wert der WinkelgeschwindigkeitFig. 3 shows as a dashed curve the measured value of the angular velocity φ mess (φj and as a solid curve the corrected value of the angular velocity
Φfor: ) för ^e Dauer eines Arbeitsspieles zwischen cp =0° Kurbelwellenwinkel und cp =720° Kurbelwellenwinkel. Auf der Abszisse der Fig. 3 ist der Index der Drehzahlmesswerte dargestellt. Wie zuvor erläutert liegen die Drehzahlmesswerte zu konkreten Stützstellen zum Beispiel cp =3°, 9°, 15° usw., also mit einem Inkrement von 6° vor. Ein Index von 40 bedeutet hier also einen Kurbelwellenwinkel von cp0 + 40 x 6°, bei einem cp0 von 3° wie in der zuvor als Beispiel genannten Reihe von 3°, 9° etc. entspricht der Index 40 also einem Kurbelwellenwinkel von 243°. Wie aus Fig. 3 zu erkennen ist, weicht der gemessene Drehzahlwert von dem korrigierten Drehzahlwert ab. Φ f o r (Ψ:)r ^ e duration of a working cycle between cp = 0 ° of the crankshaft angle, and cp = 720 ° crank angle. The abscissa of FIG. 3 shows the index of the rotational speed measured values. As previously explained, the speed measurement values for specific interpolation points are, for example, cp = 3 °, 9 °, 15 ° etc., ie with an increment of 6 °. An index of 40 thus means here a crankshaft angle of cp 0 + 40 x 6 °, with a cp 0 of 3 ° as in the previously mentioned example of 3 °, 9 °, etc., the index 40 thus corresponds to a crankshaft angle of 243 °. As can be seen from Fig. 3, the measured speed value deviates from the corrected speed value.

Claims

Ansprüche claims
1. Verfahren zur Bestimmung eines Drehzahlwertes eines eine Momentandrehzahl einer Welle repräsentierenden Signals, insbesondere eines Signals eines einem Geberrad einer Kurbelwelle einer Brennkraftmaschine zugeordneten Gebers, dadurch gekennzeichnet, dass auf das Signal eine Korrekturfunktion, die den Einfluss oszillierender Massen zumindest teilweise kompensiert, angewandt wird.1. A method for determining a speed value of an instantaneous speed of a shaft signal representing, in particular a signal of a donor wheel of a crankshaft of an internal combustion engine associated encoder, characterized in that the signal is applied a correction function that at least partially compensates the influence of oscillating masses.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Signal aus einem winkeldiskreten Gebersignal ermittelt wird und die Korrekturfunktion winkeldiskret ist, wobei die Dis- kretisierung des Drehzahlsignals und der Korrekturfunktion gleich ist.2. The method according to claim 1, characterized in that the signal is determined from an angle-discrete encoder signal and the correction function is angularly discrete, wherein the discreting the rotational speed signal and the correction function is the same.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Korrekturfunktion eine Multiplikation mit einem diskreten winkelabhängigen Korrekturfaktor ist.3. The method according to claim 1 or 2, characterized in that the correction function is a multiplication with a discrete angle-dependent correction factor.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Korrekturfaktor als winkelabhängige Reihe in einem Speicher abgelegt ist.4. The method according to any one of claims 1 to 3, characterized in that the correction factor is stored as an angle-dependent series in a memory.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass aus dem transformierten Drehzahlsignal ein Gasdrehmoment ermittelt wird.5. The method according to any one of claims 1 to 4, characterized in that from the transformed speed signal, a gas torque is determined.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass das transformierte Drehzahlsignal über ein Kompressionsdrehmoment integriert wird.6. The method according to any one of claims 1 to 5, characterized in that the transformed speed signal is integrated via a compression torque.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass das Kompressionsdrehmoment aus einem Modell, insbesondere einem adiabatischen Modell, der Brennkraftmaschine ermittelt wird.7. The method according to claim 6, characterized in that the compression torque from a model, in particular an adiabatic model, the internal combustion engine is determined.
8. Vorrichtung, insbesondere Steuergerät oder Brennkraftmaschine, die zur Durchführung eines8. Device, in particular control unit or internal combustion engine, to carry out a
Verfahrens nach einem der Ansprüche 1 bis 7 eingerichtet ist.Method according to one of claims 1 to 7 is set up.
9. Computerprogramm mit Programmcode zur Durchführung aller Schritte nach einem der Ansprüche 1 bis 7, wenn das Programm in einem Computer ausgeführt wird. A computer program with program code for carrying out all the steps according to one of claims 1 to 7, when the program is executed in a computer.
PCT/EP2007/062151 2006-12-27 2007-11-09 Method for determining a rotational speed value WO2008080679A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP07822440A EP2104784A2 (en) 2006-12-27 2007-11-09 Method for determining a rotational speed value

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006061579A DE102006061579A1 (en) 2006-12-27 2006-12-27 Sensor signal rotational speed value determining method for internal-combustion engine, involves applying function to signal, and determining signal, where function is angle-discrete, so that discretization of signal and function is equal
DE102006061579.4 2006-12-27

Publications (2)

Publication Number Publication Date
WO2008080679A2 true WO2008080679A2 (en) 2008-07-10
WO2008080679A3 WO2008080679A3 (en) 2009-01-15

Family

ID=39393387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/062151 WO2008080679A2 (en) 2006-12-27 2007-11-09 Method for determining a rotational speed value

Country Status (3)

Country Link
EP (1) EP2104784A2 (en)
DE (1) DE102006061579A1 (en)
WO (1) WO2008080679A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011091942A1 (en) * 2010-01-27 2011-08-04 Robert Bosch Gmbh Method and control device for determining a future rotational speed

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009001905A1 (en) 2009-03-26 2010-09-30 Robert Bosch Gmbh Method for determining crank angle-dependent effects on speed signal of internal-combustion engine, involves detecting speed signal over crank angle at multiple revolutions of crankshaft

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19540674A1 (en) * 1995-10-31 1997-05-07 Siemens Ag Correcting tolerances of sensor wheel used in angular velocity measurement of shaft in internal combustion engine
US5771483A (en) * 1995-06-08 1998-06-23 Renault Internal combustion engine torque measurement device and method
DE19941172A1 (en) * 1999-08-30 2001-03-08 Bosch Gmbh Robert Engine torque calculation method uses evaluation of rev characteristic for engine crankshaft over operating cycle of engine cylinder with correction of calculated value for combustion chamber gas filling
WO2002093178A2 (en) * 2001-05-11 2002-11-21 Siemens Aktiengesellschaft Method for detecting rotational speed

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4445684C2 (en) 1994-12-21 2000-06-21 Fraunhofer Ges Forschung Procedure for determining torques, work and performance on internal combustion engines
DE19941171B4 (en) 1999-08-30 2006-12-14 Robert Bosch Gmbh Method for determining the torque applied by an internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5771483A (en) * 1995-06-08 1998-06-23 Renault Internal combustion engine torque measurement device and method
DE19540674A1 (en) * 1995-10-31 1997-05-07 Siemens Ag Correcting tolerances of sensor wheel used in angular velocity measurement of shaft in internal combustion engine
DE19941172A1 (en) * 1999-08-30 2001-03-08 Bosch Gmbh Robert Engine torque calculation method uses evaluation of rev characteristic for engine crankshaft over operating cycle of engine cylinder with correction of calculated value for combustion chamber gas filling
WO2002093178A2 (en) * 2001-05-11 2002-11-21 Siemens Aktiengesellschaft Method for detecting rotational speed

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011091942A1 (en) * 2010-01-27 2011-08-04 Robert Bosch Gmbh Method and control device for determining a future rotational speed
CN102713247A (en) * 2010-01-27 2012-10-03 罗伯特·博世有限公司 Method and control device for determining a future rotational speed
US9926903B2 (en) 2010-01-27 2018-03-27 Seg Automotive Germany Gmbh Method and control unit for determining a future rotational speed

Also Published As

Publication number Publication date
DE102006061579A1 (en) 2008-07-03
WO2008080679A3 (en) 2009-01-15
EP2104784A2 (en) 2009-09-30

Similar Documents

Publication Publication Date Title
EP0563347B1 (en) Process for adapting mechanical tolerances of a pick-up wheel
DE19540674C2 (en) Adaptation procedure for correcting tolerances of an encoder wheel
DE3316484C2 (en) Device for the automatic diagnosis of an externally driven 4-stroke internal combustion engine
EP1272858B1 (en) Method for compensating the rotational shapelessness during detection of the revolutions per minute
DE4445684C2 (en) Procedure for determining torques, work and performance on internal combustion engines
DE102005060937A1 (en) Engine power calibration systems
DE4133752A1 (en) ENGINE CONTROL DEVICE
DE4215581B4 (en) System for controlling a solenoid-controlled fuel metering device
DE102015102249B4 (en) Method and device for determining the power distribution of an internal combustion engine from the measured on the crankshaft rotational irregularity course
DE3424692A1 (en) Method and measuring arrangement for analysing periodic or quasi-periodic signals, in particular sound signals in the case of machines and systems
EP1470325B1 (en) Method for determining and compensating the geometric errors of a rotary encoder
DE19941171B4 (en) Method for determining the torque applied by an internal combustion engine
EP2203730A2 (en) Measuring device for detecting the operating state of a shaft, method and shaft arrangement comprising said measuring device
WO2008080679A2 (en) Method for determining a rotational speed value
DE10217560B4 (en) Method for determining and compensating geometrical errors of a rotary encoder wheel
EP0463537B1 (en) Method for off-bench determining of technical characteristics of combustion engines and their single cylinders, and apparatus making use of this method
EP2492475B1 (en) Method for automatic detection of a rotary encoder error of a combustion engine
DE3401020C2 (en) Method for checking characteristic data of an internal combustion engine and device for its implementation
DE102019105055B4 (en) Motor shaft arrangement, internal combustion engine
DE10256106B4 (en) Apparatus and method for estimating engine torque
DE102004039739A1 (en) Measurement of the rotational speed of a shaft, whereby two adjoining sensors are used to detect impulses from markings on the shaft with the known sensor separation and time between the impulses used to calculate the speed
DE3127264A1 (en) DEVICE FOR DETERMINING THE TRIGGER POINT OF AN ELECTRICAL SIGNAL
DE10154155A1 (en) Device for measuring angle/rotational speed of a motor vehicle's crankshaft in an internal combustion engine has a transmitter on the vehicle's crankshaft with circular marks each at an incremental distance from each other
EP0560921A1 (en) Process for recognizing abnormal combustion in a cylinder of an internal combustion engine.
DE3339231A1 (en) Device for determining the change in value of the speed of an internal combustion engine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007822440

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07822440

Country of ref document: EP

Kind code of ref document: A2