WO2008080307A1 - Gyroscope à fibre optique combinant une trajectoire optique à faible polarisation et une trajectoire optique de maintien de polarisation - Google Patents
Gyroscope à fibre optique combinant une trajectoire optique à faible polarisation et une trajectoire optique de maintien de polarisation Download PDFInfo
- Publication number
- WO2008080307A1 WO2008080307A1 PCT/CN2007/070035 CN2007070035W WO2008080307A1 WO 2008080307 A1 WO2008080307 A1 WO 2008080307A1 CN 2007070035 W CN2007070035 W CN 2007070035W WO 2008080307 A1 WO2008080307 A1 WO 2008080307A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polarization
- fiber
- optical path
- low
- maintaining
- Prior art date
Links
- 230000010287 polarization Effects 0.000 title claims abstract description 79
- 230000003287 optical effect Effects 0.000 title claims abstract description 76
- 239000013307 optical fiber Substances 0.000 title claims abstract description 22
- 238000012545 processing Methods 0.000 claims abstract description 11
- 239000000835 fiber Substances 0.000 claims description 133
- 238000000034 method Methods 0.000 claims description 13
- 238000005253 cladding Methods 0.000 claims description 6
- 230000008878 coupling Effects 0.000 claims description 6
- 238000010168 coupling process Methods 0.000 claims description 6
- 238000005859 coupling reaction Methods 0.000 claims description 6
- 230000010354 integration Effects 0.000 claims description 6
- 230000001419 dependent effect Effects 0.000 claims description 5
- 238000001914 filtration Methods 0.000 claims description 3
- 230000010363 phase shift Effects 0.000 claims description 3
- 238000012544 monitoring process Methods 0.000 claims description 2
- 230000008569 process Effects 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 229910000679 solder Inorganic materials 0.000 description 9
- 238000010586 diagram Methods 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 230000001629 suppression Effects 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- 238000000137 annealing Methods 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000006880 cross-coupling reaction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C19/00—Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
- G01C19/58—Turn-sensitive devices without moving masses
- G01C19/64—Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams
- G01C19/72—Gyrometers using the Sagnac effect, i.e. rotation-induced shifts between counter-rotating electromagnetic beams with counter-rotating light beams in a passive ring, e.g. fibre laser gyrometers
- G01C19/721—Details, e.g. optical or electronical details
- G01C19/722—Details, e.g. optical or electronical details of the mechanical construction
Definitions
- the invention relates to a fiber optic gyroscope, in particular to a low-cost, anti-interference and mass-produced fiber optic gyroscope using a low-bias and polarization-maintaining hybrid optical path.
- Fiber optic gyroscope is a kind of instrument capable of measuring angular velocity based on S ag n ac effect, mainly used in inertial measurement systems.
- the more mature and widely used ones are mainly interference-type digital closed-loop fiber optic gyroscopes.
- the light source After passing through the coupler and the Y-waveguide, the light source is divided into two beams of oppositely propagating light.
- the sensitive axis direction of the fiber optic ring has an angular velocity input, a Sagnac phase difference is generated between the two beams, and interference is generated, which is converted into a The electrical signal is processed and the corresponding input angular velocity is obtained.
- Fiber optic gyro has the advantages of small size, light weight, fast start-up, high reliability and long life, and is widely used in navigation and control systems.
- fiber-optic gyros at home and abroad mostly use polarization-maintaining fiber couplers as light source beam splitters.
- the optical path adopts a full polarization-preserving scheme, and the technology is relatively mature, and the fiber-optic gyro of the full polarization-preserving scheme has been mass-produced abroad.
- the polarization-maintaining optical path scheme requires high polarization retention characteristics and polarization stability characteristics of the light source and polarization-maintaining fiber coupler, and is easily affected by the external environment.
- the full polarization-maintaining optical path scheme requires high assembly process and shaft accuracy, and optical path cost. Higher, not conducive to mass production.
- the manufacturing process of the domestic polarization-maintaining fiber coupler is not very mature, it is necessary to study the fiber-optic gyro of the non-full polarization-maintaining optical path based on the single-mode fiber coupler, and strive to realize engineering and mass production as soon as possible, To meet the demand for fiber optic gyroscopes in navigation and control systems in China.
- a fiber optic gyro using a low-bias and polarization-maintaining hybrid optical path is provided, which reduces the influence of polarization crosstalk of the optical path, reduces the optical path cost, and reduces the cost.
- the assembly process improves production efficiency and assembly consistency, making it easy to mass produce.
- Another technical problem of the present invention solves the problem: through the signal processing and temperature compensation of the circuit, the all-digital closed-loop control is realized, the dynamic range is improved, the noise level is lowered, the scale factor performance of the fiber optic gyroscope is improved, and the temperature adaptability is improved. .
- the technical solution of the present invention is: a fiber optic gyroscope using a low-bias and polarization-maintaining hybrid optical path, consisting of an optical head and a circuit signal processing portion, wherein the optical pickup includes: a light source, a Y-waveguide, a detector, a coupler, and a fiber optic ring .
- the optical head adopts a low-bias and polarization-maintaining hybrid optical path, that is, the light source is a low-polarization light source, and a single-mode pigtail is coupled; the Y-wave input end adopts a single-mode optical fiber, and the Y-waveguide output
- the end fiber adopts a polarization maintaining fiber;
- the detector input pigtail is a single mode fiber;
- the coupler is a 2x2 polarization independent single mode fiber coupler; and the fiber ring is a polarization maintaining fiber.
- the signal processing part of the circuit adopts all-digital closed-loop control, and at least comprises a preamplifier, an A/D converter, an FPGA logic circuit, a D/A converter and a modulation driving circuit, after the interference signal passes through the detector and the preamplifier circuit, Converted to a voltage signal, and then converted to a digital signal by an A/D converter, digital demodulation, digital integration, and digital filtering are performed inside the FPGA logic circuit to generate a ladder high signal and a digital ladder Wave signal.
- the step height signal is the closed-loop output signal of the fiber optic gyroscope, and the subsequent temperature compensation can obtain the output of the fiber optic gyroscope.
- the offset modulation is random overmodulation, that is, the modulation waveform is a pseudo-random sequence, and the modulation depth is 2 ⁇ /3, and the frequency is a square wave signal twice the eigenfrequency of the optical fiber ring.
- the temperature modeling compensation is performed at the closed loop output end of the circuit signal processing part, that is, the temperature sensor is placed near the fiber ring, and the temperature data of the fiber ring is measured, and the temperature model of the fiber optic gyroscope is established as follows:
- ( ⁇ ) ⁇ -
- ⁇ is the fiber optic gyro output
- o in is the input angular rate
- ⁇ is the random drift
- T is the temperature
- ⁇ ⁇ is the temperature gradient
- Kij is the error coefficient
- the principle of the invention Through the in-depth study of the mechanism of the polarization characteristics of the hybrid optical path affecting the performance of the fiber optic gyroscope, according to the expression of the polarization error of the full polarization-maintaining optical path: Where d is the degree of polarization of the source, ⁇ is the polarization suppression ratio of the Y-waveguide, h is the polarization-maintaining parameter of the fiber, L is the length of the fiber-optic turns, and the product of h and L is the statistical effect of the polarization cross-coupling in the wire.
- the above formula requires the support of the polarization-maintaining coupler and cannot be adapted to the case of a single-mode coupler.
- the fiber optic gyro phase error caused by the polarization performance of the hybrid optical path using a single mode coupler is 0 e : 3 ⁇ 4 port as shown below:
- p is the ratio of the light wave of the light source's output light wave passing through the single-mode coupler to the Y-waveguide on the Y-waveguide suppression axis and the amplitude of the light wave on the input axis.
- the maximum value indicates the maximum intensity direction and minimum of the light wave before the Y-waveguide.
- the polarization degree of the light source can be improved, and a polarization-maintaining fiber coupler with a high extinction ratio is used, and the input shafts of the source pigtail, the coupler pigtail and the Y-wave pigtail are aligned.
- the cost of the polarization-maintaining coupler is relatively high, which is 40 times the cost of a single-mode coupler.
- the present invention adopts a low-polarization light source and a 2 ⁇ 2 polarization-independent single-mode fiber coupler, and the parameter p is close to 1, as long as the polarization suppression ratio ⁇ is sufficiently small, the phase error caused by polarization can be sufficiently small. And stable.
- the polarization of the input wave ⁇ waveguide is 0.06, and the variation range of the parameter ⁇ can be calculated.
- the phase error is only 1.06.
- the maximum phase error can be as small 1.06x10- 7 rad, thus reducing the 88.2%
- a non-full polarization-maintaining optical path based on a 2 X 2 polarization-independent single-mode fiber coupler and a low-polarization light source can also achieve a small phase error and a small phase error variation, meeting the requirements of various precision fiber optic gyroscopes. This shows that the use of low-polarization sources and polarization-independent couplers can effectively reduce polarization errors.
- the coupler will act as a bias. Even if unpolarized light passes through the coupler, the polarization of the light wave will increase to a larger value. In the worse case Will increase to 0.6, which will cause a phase error of up to 2x 10- 7 rad, which is unacceptable for higher precision fiber optic gyroscopes. Therefore, the present invention adopts a polarization-independent coupler to ensure that the polarization change of the light entering the Y-waveguide is minimized, thereby ensuring that the polarization error is stabilized at a relatively small value.
- the front optical path of the present invention adopts an unbiased optical path, that is, the light source adopts a low-polarization light source, and the detector, the Y-waveguide front end and the coupler each use a single-mode optical fiber, which can reduce polarization maintaining characteristics and polarization stability characteristics of subsequent optical components.
- the requirements, and greatly reduce the influence of polarization crosstalk of the optical path improve the resistance of the fiber optic gyroscope to temperature and mechanical interference; and the prior art front optical path is a polarization maintaining optical path, using a highly polarized light source ( Polarization degree >90%), the polarization of the subsequent optical components is maintained
- the characteristics and polarization stability characteristics are high, and it is easy to cause polarization crosstalk of the optical path.
- a 2x2 polarization-independent single-mode fiber coupler is used to reduce polarization crosstalk.
- the dead band phenomenon caused by the fixed modulation waveform can improve the linearity of the scale factor.
- Figure 1 is a schematic structural view of the present invention
- FIG. 2 is a schematic diagram of a random overmodulation waveform used in the present invention.
- FIG. 3 is a schematic diagram of an output of a front gyro of a fiber optic gyro temperature compensation
- Figure 4 is a schematic diagram of the output of the compensation gyro after using temperature
- Figure 5 is a block diagram of the implementation of the FPGA logic circuit in Figure 1.
- the optical path scheme of the present invention is constructed by a light source 101, a detector 102, a coupler 103, a Y-waveguide 104, and a fiber optic ring 105.
- the light source 101 preferably has a low-polarization light source with a wavelength of 1310 nm and a polarization degree of 5%.
- the pigtail is a single-mode pigtail coupling, the mode field diameter is 6.5 ⁇ 0.5 ⁇ , and the cladding diameter is 125 ⁇ .
- the optical source is used to reduce optical path loss and improve Signal to noise ratio.
- the light source 101 can also use a low-polarization light source with a wavelength of 850 nm. If the accuracy of the fiber optic gyroscope is not high, other sources of polarization, such as a light source with a polarization degree of 6-10%, can be selected.
- the fabrication process of the low-polarization light source is mainly based on the semiconductor energy band theory, the ridge waveguide structure is adopted in the process, the absorption region fabrication technology is combined, and the high anti-reflection coating technology is applied on the end surface to ensure the extinction ratio index of the light source die. Meet low polarization requirements.
- the detector 102 input pigtail is a single-mode fiber, and the reflection loss index requirement is: > 40dB.
- the pigtail of the detector adopts a polarization-maintaining fiber.
- the invention is a mixed-mode optical path, adopts a single-mode fiber coupler, and the detector also adopts single-mode pigtail coupling, so that the influence of polarization on the detection optical signal can be ignored, and the single-mode fiber can reduce the cost.
- the reflection loss specification requires ⁇ 40dB because the optical signal reflected from the detector back into the fiber ring is a noise signal that directly affects the performance of the fiber optic gyroscope.
- the end face of the optical fiber is subjected to oblique 10 degree processing to ensure that the reflection loss index satisfies the requirement, and the current end face (plane) of the coupling probe for communication is not processed, and the reflection loss thereof is
- the index is below 30 dB, typically between 20 and 30 dB, and is not suitable for use in the present invention.
- the coupler 103 is a 2 x 2 polarization-independent single-mode fiber coupler, requiring a polarization-dependent loss of PDL 0.03 dB, a fiber mode field diameter of 6.5 ⁇ 0.5 ⁇ , and a cladding diameter of 125 ⁇ .
- the above indicators are mainly to ensure the entire optical path mode field. match.
- the single mode fiber coupler is divided into two types: polarization independent and polarization dependent.
- the polarization dependent loss of the polarization dependent single mode fiber coupler is PDL ⁇ 0.1 dB, even greater than 0.15 dB, so it cannot be used in the present invention.
- the mode field diameter of a single-mode fiber used in a conventional single-mode coupler is 9 ⁇ 10.5 ⁇ , which cannot be used for a hybrid optical path with low bias and polarization maintaining.
- the 2 x 2 polarization-independent single-mode fiber coupler can be purchased on the market or can be fabricated by the following process: Parallel or twisted sintered taper method is used to set the annealing split ratio control point during the fiber fusion taper process ( 30 : 70), monitoring the arrival control point, while heating the torch annealing, the fiber holder of one end of the coupler cone is rotated by 90 degrees, and the polarization-independent single-mode coupler is prepared by controlling the angle of the rotating fiber.
- the equipment of the above process can adopt the fiber fusion taper system of Taiwan Ande Company.
- the input end of the ⁇ Waveguide 104 adopts a single mode fiber with a mode field diameter of 6.5 ⁇ 0.5 ⁇ and a cladding diameter of 125 ⁇ , and the output end fiber adopts a 80 ⁇ narrow-diameter ellipse.
- the principle of circular polarization-maintaining fiber is as follows: (1) The mode field diameter of the single-mode fiber is matched with the mode field of the waveguide chip, which is beneficial to fiber coupling, and the narrow-diameter fiber at the output end is mainly to ensure that the fiber specification is consistent with the fiber ring.
- the front optical path is a single-mode optical fiber
- the single-mode optical fiber at the input end of the Y-waveguide can appropriately reduce the cost, and reduce the Y-waveguide device coupling tail fiber fixed axis 1/3 work the amount.
- the input and output pigtails of the Y-waveguide device are usually 1 25 ⁇ ⁇ polarization-maintaining fiber.
- the fiber ring 105 is a 80 ⁇ thin-diameter oblate-polar polarization-maintaining fiber. After experiments, the above indicators can reduce the volume of the fiber ring and improve the bending resistance and life of the fiber ring.
- the length of the pigtail is controlled to be 0.30 m, which can reduce the influence of external environmental factors on the stress of the single mode fiber, thereby reducing the instability of the polarization, because the longer the fiber, the more susceptible it is to interference.
- the light source 101 is connected to the coupler 103 through a solder joint 106; the detector 102 is connected to the coupler 103 by a solder joint 107; the coupler 103 is connected to the Y waveguide 104 through a solder joint 1 10; the Y waveguide 104 passes through Solder joints 108 and 109 are connected to fiber optic ring 105.
- the single mode pigtail length of the light source 101, the detector 102, the coupler 103, and the Y waveguide 104 is controlled to be 0.30 m during the assembly process.
- the output of the output optical signal is monitored at the output of the coupler 103 at the open end of the coupler 103, requiring a degree of polarization (DOP) of 6%.
- DOP degree of polarization
- the end of the short end 1 1 1 of the coupler 103 was chopped, and the fiber was formed into two circles having a diameter of 10 mm, and fixed with a curing adhesive.
- the coupler's short-head polarization degree DOP ⁇ 6 % is mainly due to the polarization of the optical signal entering the Y-waveguide caused by the residual polarization of the single-mode fiber coupler and the optical path assembly process.
- the vibration is increased, and by adjusting the degree of polarization of the coupler's short-head optical signal, the degree of polarization of the optical signal entering the Y-waveguide can be compared.
- This polarization degree index excessively affects the optical path noise and reduces the gyro performance. Therefore, it is appropriate to control the degree of polarization to be ⁇ 6 %.
- the light source driving circuit in Fig. 1 18 requires that the temperature change of the control light source die cannot exceed O.rc, and the optical power of the light source cannot change by more than 3%.
- the digital closed-loop control portion of the present invention includes at least a preamplifier 12, an A/D converter 1 13, an FPGA logic circuit 14, a D/A converter 1 15 and a modulation drive circuit 17 .
- the interference signal passes through the detector 102 and the preamplifier circuit 1212, it is converted into a voltage signal, and then becomes a digital signal after passing through the A/D converter 113, and digital demodulation, digital integration, and digital are completed inside the FPGA logic circuit 14
- the filter obtains the closed loop output of the gyro, and then outputs the temperature compensation through the DSP chip 1 19; on the other hand, the closed loop output of the gyro is further integrated to generate a digital staircase wave, and the digital staircase wave is superimposed with the random overmodulated digital signal, and then passed through D/
- the A converter 1 15 and the modulation drive circuit 17 are applied as feedback signals to the Y-waveguide 104, introducing bias modulation and compensating for the Sagnac phase shift caused by the input, thereby
- the digital quantities converted by the A/D converter 1 13 are respectively stored in the positive period register and the negative period register, and then passed through the subtractor in the positive period register and the negative period register.
- the digital quantity is subtracted, the digital demodulation is completed, the digital closed-loop angular rate error signal is obtained, and the signal is stored in the angular rate error register, and the signal is added to the data in the step height register by the first adder to perform digital integration.
- the result of the integration is stored in the ladder high register, and the data in the ladder high register is sent to the DSP chip through the digital filtering link.
- the data in the step high register is added as the step height of the staircase wave through the data in the second adder and the digital staircase register, once again the number Integration, generating a digital staircase wave signal.
- the staircase wave signal is then superimposed with the random overmodulated digital signal by a third adder, and finally the superimposed digital signal is sent to the D/A converter 115.
- Figure 2 shows the random overmodulation waveform of the present invention with a modulation depth of 2 ⁇ /3 and a pseudo-random sequence with a period twice the eigenfrequency of the fiber loop.
- the dead zone caused by the fixed modulation waveform can be avoided by random modulation, and since the modulation depth is 2 ⁇ /3, a relatively high signal-to-noise ratio can be obtained.
- a digital quantity corresponding to the waveform is generated in the FPGA logic circuit 14 and then superimposed with the digital quantity of the feedback staircase wave, and applied to the ⁇ waveguide 104 by the D/A converter 151 and the modulation driving circuit 17 as a modulation signal, Implement random overmodulation.
- the temperature modeling of the present invention is implemented as follows: More than four temperature sensors 1 16 can be placed inside and outside the fiber optic ring 105, respectively, and the temperature and temperature gradient data of the fiber optic ring 105 can be measured.
- the established fiber optic gyro temperature model is:
- ⁇ Fiber optic gyro output
- oj in is the input angular rate
- ⁇ is the random drift
- ⁇ is the temperature
- ⁇ is the temperature gradient
- Kij is the error coefficient
- the fiber optic gyroscope is rate-adjusted by a single-axis rate turntable.
- the test is to input LJi for different rates, obtain different gyro output Qi, perform least squares fitting processing on the input and output data of the gyro, and obtain the coefficients K 0 ( Ti ) and ( Ti ) in ( 1 ).
- TJ performs the least squares fitting process on (2), and obtains the parameters KQQ, KOI and K 02.
- the least square fitting is applied to (3) Processing, get the parameters K 1 () , ⁇ and ⁇ 2 .
- the temperature model of the fiber optic gyroscope is usually:
- ⁇ the fiber optic gyro output and oj in is the input angular rate
- ⁇ is a random drift
- ⁇ is the temperature
- ⁇ is the error coefficient
- the above temperature model does not include the temperature gradient ⁇ !. Since the fiber optic gyroscope is sensitive to the temperature gradient, if only the absolute value of the temperature is compensated, the zero position of the gyroscope will fluctuate under different temperature gradients. The improvement of the temperature performance of the gyro is not obvious. However, if the temperature gradient is compensated, the drift of the fiber optic gyro in the full temperature range can be reduced, and the temperature adaptability of the fiber optic gyroscope can be improved.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Gyroscopes (AREA)
Description
采用低偏和保偏混合光路的光纤陀螺 技术领域
本发明涉及一种光纤陀螺, 特别是一种低成本、 抗干扰、 易 于批量生产的采用低偏和保偏混合光路的光纤陀螺。
背景技术
光纤陀螺是一种基于 S ag n ac效应的能够测量角速度的仪表, 主要用于惯性测量系统。 目前比较成熟而且大量使用的主要是干 涉式数字闭环光纤陀螺。 光源经过耦合器以及 Y波导后, 分为两 束相向传播的光, 当光纤环的敏感轴方向有角速度输入时, 在两 束光之间产生 Sagnac相位差, 并产生干涉, 通过探测器转换为电 信号并经过处理就可以获得对应的输入角速度。
光纤陀螺具有体积小、 重量轻、 启动快、 可靠性高、 寿命长 等优点, 而被广泛应用于导航、 控制等系统中。 目前, 国内外的 光纤陀螺大多采用保偏光纤耦合器用作光源分束器, 光路上采用 全保偏方案, 技术已经比较成熟, 而且国外已经批量生产全保偏 方案的光纤陀螺。 但是全保偏光路方案对光源和保偏光纤耦合器 的偏振保持特性及偏振稳定特性要求高, 容易受到外界环境的影 响, 另外全保偏光路方案对装配工艺和对轴精度要求高, 光路成 本较高, 不利于批量生产。 而且由于国内保偏光纤耦合器的制作 工艺还不是很成熟, 因此需要研究以单模光纤耦合器为基础的非 全保偏光路的光纤陀螺, 并争取尽快实现工程化和批量生产, 以
满足我国的导航、 控制等系统对光纤陀螺的需求。
发明内容
本发明的技术解决问题之一: 克服全保偏光路方案的不足, 提供一种采用低偏和保偏混合光路的光纤陀螺, 它减小了光路偏 振串扰的影响, 降低了光路成本, 筒化了装配工艺, 提高了生产 效率和装配一致性, 易于批量生产。
另外, 本发明另一技术解决问题: 通过电路的信号处理及温 度补偿, 实现了全数字闭环控制, 提高了动态范围, 降低了噪声 水平, 提高了光纤陀螺的标度因数性能, 以及温度适应性能。
本发明的技术解决方案是: 采用低偏和保偏混合光路的光纤 陀螺, 由光学表头和电路信号处理部分组成, 其中光学表头包括: 光源、 Y波导、 探测器、 耦合器和光纤环。 其特征在于: 所述的光 学表头采用低偏和保偏混合光路, 即所述的光源为低偏振光源, 单模尾纤耦合; 所述的 Y波导输入端采用单模光纤, Y波导输出 端光纤采用保偏光纤; 所述的探测器输入尾纤为单模光纤; 所述 的耦合器为 2x2偏振无关的单模光纤耦合器; 所述的光纤环为保 偏光纤。
所述的电路信号处理部分采用全数字闭环控制, 至少包含前 置放大器、 A/D转换器、 FPGA逻辑电路、 D/A转换器和调制驱动 电路, 干涉信号经过探测器及前放电路之后, 转换为电压信号, 再经过 A/D转换器变为数字信号, 在 FPGA逻辑电路内部完成数 字解调、 数字积分以及数字滤波等, 产生阶梯高信号和数字阶梯
波信号。 数字阶梯波与随机过调制数字信号相叠加后, 通过 D/A 转换器和调制驱动电路作为反馈信号施加到 Y波导上, 引入偏置 调制并补偿因输入引起的 Sagnac 相移, 从而实现全数字闭环控 制。 阶梯高信号即为光纤陀螺的闭环输出信号, 再经过后续的温 度补偿, 可获得光纤陀螺的输出。
所述的偏置调制为随机过调制, 即调制波形为伪随机序列, 且调制深度为 2π/3, 频率为光纤环本征频率 2倍的方波信号。
在所述的电路信号处理部分的闭环输出端进行温度建模补 偿, 即将温度传感器置于光纤环附近, 测量光纤环的温度数据, 建立光纤陀螺的温度模型为:
Ω = Κο+Κ^ ω in+ ε
(1 )
(2)
Κ-| (Τ) = Κ-| ο+Κ-| -|Τ+Κ-| 2 Α Τ
(3)
式中 Ω为光纤陀螺输出, o in为输入角速率, ε为随机漂移, T为温 度, Δ Τ 为温度梯度, Kij为误差系数。
本发明的原理: 通过对混合光路偏振特性影响光纤陀螺性能 的机理进行深入研究, 根据全保偏光路时偏振误差的表达式:
其中 d表示光源的偏振度, ε表示 Y波导的偏振抑制比, h 表示光纤的偏振保持参数, L表示光纤线圏的长度, h与 L之积表 示线圏中偏振交叉耦合的统计影响。
上式需要保偏耦合器的支持, 不能适应单模耦合器的情况。 使用了单模耦合器的混合光路的偏振性能引起的光纤陀螺相位误 差 0 e:¾口下式所示:
其中 p 表示光源的输出光波经过单模耦合器后输入到 Y波导的光 波在 Y波导抑制轴上的光波和输入轴上的光波振幅之比, 其最大 值表示 Y波导之前光波最大强度方向与最小强度方向振幅的比值, 表示为(1 +φ)/(1-φ), 为输入到 Υ波导的光波的偏振度, 最小值 表示为(Ι -ε^/ +φ), p2 = hL。 由上式可见, 为了降低偏振误差, 可以提高光源的偏振度, 同时采用高消光比的保偏光纤耦合器, 且保证光源尾纤、 耦合器尾纤和 Y波导尾纤的输入轴都对准。 但 是保偏耦合器成本比较高, 是单模耦合器成本的 40倍。 如果高偏 振度的 SLD光源和 2 x 2偏振无关的单模光纤耦合器一起使用, 则由于光源的输出无法对准地输入到 Y波导, 如果光源的偏振度 为 0. 8 , 的变化范围就达到了 81 , 相位误差的最大值是理想值 的 9倍。 为了低成本地解决这一问题, 本发明采用低偏振光源和 2 X 2偏振无关的单模光纤耦合器,参数 p 接近 1 , 只要偏振抑制比 ε足够小, 偏振引起的相位误差可以足够小, 并且稳定。 例如输 入 Υ波导的光波偏振度 为 0.06, 可计算出参数 ρ 的变化范围
在 1.13, 相位误差的变化仅为 1.06。 事实上 ε可以达到 10-6, 如 果偏振度 d为 0.8的光源和单模耦合器一起使用,则 p O.II ~9, 取 h = 10-5, L= 1000m, 则最大相位误差 e= 9x1(r7rad; 如果光 源偏振度 d降低为 0.05, 011为 0.06, 其它参数不变, p O.Sg- 1.13, 最大相位误差可以小至 1.06x10-7rad, 降低了 88.2%。 因 此采用 2 X 2偏振无关的单模光纤耦合器和低偏振光源为基础的非 全保偏光路, 同样可以获得较小的相位误差, 并且相位误差变化 较小, 满足了各种精度光纤陀螺的要求。 这说明了采用低偏振光 源和偏振无关耦合器可以有效降低偏振误差。
如果单模耦合器不是偏振无关的, 则该耦合器会起到起偏的 作用, 即使是非偏振光通过该耦合器, 光波的偏振度也会增加到 一个较大的值, 较坏的情况下会增加到 0.6, 它将引起最大达到 2x 10-7 rad的相位误差,这对于较高精度的光纤陀螺是无法接受的。 因而本发明采用偏振无关耦合器可以保证进入 Y波导光波的偏振 变化最小, 从而保证偏振误差稳定在一个相对较小的值。
本发明与现有技术相比的优点在于:
( 1 )本发明的前光路采用无偏光路, 即光源采用低偏振光源, 探测器、 Y波导前端及耦合器均采用单模光纤, 可以降低对后续光 学元器件的偏振保持特性及偏振稳定特性的要求, 并且在很大程 度上降低了光路偏振串扰的影响, 提高了光纤陀螺的抗温度变化 及力学干扰的性能; 而现有技术的前光路为保偏光路, 采用的是 高偏振光源 (偏振度>90% ) , 则对后续光学元器件的偏振保持
特性及偏振稳定特性要求高, 容易引起光路的偏振串扰。
(2) 采用了 2x2偏振无关的单模光纤耦合器, 降低了偏振 串扰。
(3) 由于前光路器件尾纤采用了单模光纤, 并且采用了低成 本的单模光纤耦合器, 因此降低了光路的成本。
(4) Y波导前光路焊接无需对轴, 降低了硬件成本, 提高了 生产效率
和装配一致性, 适合于大批量生产; 而保偏光纤的纤芯焊接前需 要精确对轴, 导致生产效率比较低, 而且装配一致性较差。
(5)采用全数字闭环控制, 提高了动态范围, 降低了对电子 元件的性能要求。
(6)采用过调制, 可以获得较高的信噪比, 而通过随机调制 可以避免
由于固定调制波形造成的死区现象, 并可以提高标度因数的线性 度。
(7) 通过建立光纤陀螺的温度模型, 且在 DSP内完成补偿 算法, 可以减小光纤陀螺全温范围内的零位波动, 提高光纤陀螺 的温度适应性。
附图说明
图 1为本发明的结构示意图;
图 2为本发明采用的随机过调制波形示意图;
图 3为光纤陀螺温度补偿前陀螺的输出示意图;
图 4为采用温度后补偿陀螺的输出示意图;
图 5为图 1 中的 FPGA逻辑电路实现框图。
图中: 101.光源, 102.探测器, 103.耦合器, 104. Y波导, 105.光纤环, 106. 光纤熔接焊点, 107. 光纤熔接焊点, 108. 光 纤熔接焊点, 109. 光纤熔接焊点, 110. 光纤熔接焊点, 111. 耦 合器的空头端, 112.前置放大器, 113.A/D转换器, 114. FPGA 逻辑电路, 115. D/A转换器, 116.温度传感 器, 117.调制驱动电路, 118.光源驱动电路, 119. DSP芯片。 具体实施方式
如图 1所示, 本发明的光路方案实施方式是由光源 101、 探 测器 102、 耦合器 103、 Y波导 104和光纤环 105构成。
光源 101优选为低偏振光源波长为 1310nm, 偏振度 5%, 其尾纤为单模尾纤耦合, 模场直径为 6.5±0.5μίι, 包层直径为 125μΓΠ, 采用上述光源减小光路损耗, 提高信噪比。 当然, 光源 101也可选用波长 850nm的低偏振光源, 如果对光纤陀螺的精度 要求不高, 则也可选用其他偏振度的光源, 比如偏振度 6— 10%的 光源。 低偏振光源的制作过程主要是基于半导体能带理论, 在工 艺上采用脊形波导结构, 结合吸收区制作工艺技术, 并且在端面 镀制高增透膜技术, 来保证光源管芯的消光比指标满足低偏振要 求。
探测器 102输入尾纤为单模光纤, 对反射损耗指标要求: > 40dB。 在现有的全保偏光路方案中, 探测器的尾纤采用保偏光纤,
本发明为混偏光路, 采用了单模光纤耦合器, 探测器也采用单模 尾纤耦合, 从而可以不考虑偏振对探测光信号的影响, 且采用单 模光纤可以降低成本。反射损耗指标要求≥40dB, 是因为从探测器 反射回到光纤环中的光信号是一种噪声信号, 会直接影响光纤陀 螺的性能。 因此, 本发明的探测器在进行光纤端面耦合时, 光纤 端面要进行斜 10度处理, 以保证反射损耗指标满足要求, 而目前 通信用探测器耦合光纤端面 (平面) 未进行处理, 其反射损耗指 标低于 30dB, 通常在 20~30dB, 不适于在本发明中使用。
耦合器 103为 2 x 2偏振无关的单模光纤耦合器,要求偏振相 关损耗 PDL 0.03dB, 光纤模场直径为 6.5± 0.5μΓΠ, 包层直径为 125μΓΠ, 上述指标主要是保证整个光路模场的匹配。 单模光纤耦 合器分为偏振无关和偏振相关两种, 偏振相关单模光纤耦合器的 偏振相关损耗 PDL≥0.1dB, 甚至大于 0.15dB, 所以不能用于本发 明。 普通单模耦合器所用单模光纤的模场直径为 9~10.5μίι, 不 能用于低偏和保偏的混合光路。 2 x 2偏振无关单模光纤耦合器可 在市场上购买, 也可采用如下工艺自行制作: 采用平行或扭结烧 结拉锥方式,在光纤熔融拉锥过程中,设定退火分光比控制点( 30: 70) , 监控到达控制点, 加热火炬退火的同时, 耦合器熔锥区一 端光纤夹具旋转 90度, 通过控制旋转光纤的角度, 来制备偏振无 关的单模耦合器。 上述工艺的设备可采用台湾安德越公司的光纤 熔融拉锥系统。 Υ波导 104输入端采用模场直径为 6.5±0.5μΓΠ、 包层直径为 125μΓΠ的单模光纤, 输出端光纤采用 80μΓΠ细径扁橢
圓形保偏光纤, 其原理为: ( 1 )采用该种单模光纤的模场直径与 波导芯片模场匹配, 有利于光纤耦合, 输出端采用细径光纤主要 是保证光纤规格与光纤环一致, 有利于熔接装配, 提高熔接质量 和效率; (2 ) 由于前光路为单模光纤, Y波导输入端采用单模光 纤可适当降低成本, 且减少 Y波导器件耦合尾纤定轴 1/3工作量。 而现有技术通常情况下, 都是采用的 Y波导器件输入和输出端尾 纤均为 1 25μ ΓΠ保偏光纤。
光纤环 105为 80 μΓΠ细径扁橢圓型保偏光纤, 经过实验, 上 述指标可以减小光纤环体积, 提高光纤环抗弯曲性能和寿命。
本发明中所有单模尾纤在光路装配中, 尾纤长度控制在 0.30m, 可减少外界环境因素对单模光纤应力的影响, 从而降低偏 振不稳定因素, 因为光纤越长越容易受到干扰。
光源 101通过熔接焊点 106与耦合器 103相连接;探测器 102 通过熔接焊点 107与耦合器 103相连接; 耦合器 103通过接焊点 1 10与 Y波导 104相连接; Y波导 104分别通过接焊点 108和 109 与光纤环 105相连接。 在装配过程中控制光源 101、 探测器 102、 耦合器 103、 Y波导 104的单模尾纤长度 0.30m。 当光源 101 与耦合器 103输入端连接后, 在耦合器 103输出空头端 1 1 1监测 输出光信号的偏振度, 要求偏振度(DOP ) 6 %。 将耦合器 103 的空头端 1 1 1的末端辗碎,并将光纤盘成两个直径为 10mm的圓, 用固化胶固定。 耦合器空头偏振度 DOP≤6 % , 主要是由于单模光 纤耦合器残余偏振和光路装配工艺造成进入 Y波导的光信号的偏
振度增大, 通过监测耦合器空头光信号的偏振度, 可比对进入 Y 波导的光信号偏振度。 该偏振度指标过大会影响光路噪声, 降低 陀螺性能。 因此偏振度要控制在≤6 %比较合适。
图 1 中光源驱动电路 1 18要求控制光源管芯的温度变化不能 超过 O.rc , 光源的光功率变化不能超过 3 %。
本发明的数字闭环控制部分至少包含前放 1 12、 A/D转换器 1 13、 FPGA逻辑电路 1 14、 D/A转换器 1 15和调制驱动电路 1 17。 干涉信号经过探测器 102及前放电路 1 12之后,转换为电压信号, 再经过 A/D转换器 1 13之后变为数字信号,在 FPGA逻辑电路 1 14 内部完成数字解调、 数字积分以及数字滤波获得陀螺的闭环输出, 再经过 DSP芯片 1 19进行温度补偿后输出; 另一方面将陀螺的闭 环输出进一步积分产生数字阶梯波, 数字阶梯波与随机过调制数 字信号相叠加后, 通过 D/A转换器 1 15和调制驱动电路 1 17作为 反馈信号施加到 Y波导 104上, 引入偏置调制并补偿因输入引起 的 Sagnac相移, 从而实现全数字闭环控制。
如图 5所示, FPGA逻辑电路的工作过程: A/D转换器 1 13 转换的数字量分别存放到正周期寄存器和负周期寄存器中, 然后 经过减法器将正周期寄存器和负周期寄存器中的数字量相减, 完 成数字解调, 获得数字闭环角速率误差信号, 将该信号存放到角 速率误差寄存器中, 该信号再经过第一加法器与阶梯高寄存器中 的数据相加, 进行数字积分, 积分的结果存放在阶梯高寄存器中, 阶梯高寄存器中的数据再经过数字滤波环节送给 DSP芯片 1 19进
行温度补偿, 最终获得能够满足实际需要的陀螺输出信号; 另一 方面将阶梯高寄存器中的数据作为阶梯波的阶梯高通过第二加法 器与数字阶梯波寄存器中的数据相加, 再一次数字积分, 产生数 字阶梯波信号。 然后该阶梯波信号与随机过调制数字信号通过第 三加法器相叠加, 最终将叠加后的数字信号送给 D/A转换器 1 15。
图 2所示为本发明的随机过调制波形, 调制深度为 2π/3, 而 且是一个伪随机序列, 周期为光纤环本征频率的 2倍。 通过随机 调制可以避免因固定调制波形造成的死区现象, 而且由于调制深 度为 2π/3,所以可以获得比较高的信噪比。在 FPGA逻辑电路 1 14 中产生该波形对应的数字量, 然后与反馈阶梯波的数字量相叠加, 通过 D/A转换器 1 15和调制驱动电路 1 17作为调制信号施加到 Υ 波导 104上, 实现随机过调制。
本发明的温度建模实现方式如下:可以将四只以上的温度传感 器 1 16分别放置在光纤环 105内侧和外侧, 测量光纤环 105的温 度以及温度梯度的数据。 建立的光纤陀螺温度模型为:
Ω = Ko+K^in+£ (1 ) Κ0(Τ)=Κοο+Κ01Τ+Κο2ΔΤ (2) Κι (Τ)=Κ10+Κ11Τ+Κ12ΔΤ (3) 式中 Ω为光纤陀螺输出, ojin为输入角速率, ε为随机漂移, Τ为温度, ΔΤ 为温度梯度, Kij为误差系数。
当温度梯度 ΔΤ为零时,在整个温度范围内选取不同的温度点 T 在每个温度点 η下,通过单轴速率转台对光纤陀螺进行速率标
定测试, 针对不同的速率输入 LJi , 获取不同的陀螺输出 Qi, 对陀 螺的输入输出数据进行最小二乘拟合处理, 获取( 1 ) 式中的系数 K0 ( Ti ) 与 ( Ti ) 。 利用每个温度点 Ti和不同的温度梯度 ATi 与 Κ。(TJ对(2 ) 式进行最小二乘拟和处理, 获取参数 KQQ、 KOI 与 K02。利用每个温度点 和不同的温度梯度 ATi与 K Ti )对(3 ) 式进行最小二乘拟合处理, 获取参数 K1 ()、 ^ 与 ^2。
建立上述 3个模型,在 DSP芯片 1 1 9中完成温度误差的补偿。 补偿前后陀螺的输出曲线分别如图 3和图 4所示。 通过对比 可以发现, 经过温度补偿后, 光纤陀螺在全温范围内零位的漂移 得到明显改善, 提高了光纤陀螺的温度适应性。 而现有技术中, 通常光纤陀螺的温度模型为:
Ω = Ko+K^in+£ (4) Κ0(Τ)=Κοο+Κ01Τ (5) K^^K^+KnT (6) 式中 Ω为光纤陀螺输出, ojin为输入角速率, ε为随机漂移, Τ为温度, ^为误差系数。
上述温度模型中不包含温度梯度△!"。 由于光纤陀螺对温度梯 度比较敏感, 如果只补偿温度绝对值的影响, 则会导致在不同的 温度梯度下, 陀螺的零位还是会发生波动, 对陀螺温度性能的改 善不是艮明显。 但是如果对温度梯度进行补偿, 则能减小光纤陀 螺在全温范围内零位的漂移, 提高光纤陀螺的温度适应性。
Claims
1、 采用低偏和保偏混合光路的光纤陀螺, 由光学表头和电路信号处理 部分组成, 其中光学表头包括: 光源、 Y波导、 探测器、 耦合器和光纤环, 其特征在于: 所述的光学表头采用低偏和保偏混合光路, 即所述的光源为低 偏振光源, 单模尾纤耦合; 所述的 Y波导输入端采用单模光纤, Y波导输出 端光纤采用保偏光纤; 所述的探测器输入尾纤为单模光纤; 所述的耦合器为
2 X 2偏振无关的单模光纤耦合器; 所述的光纤环为保偏光纤。
2、 根据权利要求 1所述的低偏和保偏混合光路的光纤陀螺, 其特征在 于: 所述的低偏振光源的波长为 1310nm, 偏振度≤5 % , 输出耦合为单模尾 纤, 模场直径为 6 ~ 7μηι, 包层直径为 125μηι。
3、 根据权利要求 1所述的低偏和保偏混合光路的光纤陀螺, 其特征在 于: 所述的 Υ波导输入端采用的单模光纤的模场直径为 6 ~ 7μηι、 包层直径 为 125μηι的单模光纤, 输出端保偏光纤采用 80μηι细径扁橢圓型保偏光纤。
4、 根据权利要求 1所述的低偏和保偏混合光路的光纤陀螺, 其特征在 于: 所述的探测器输入尾纤为单模光纤, 对反射损耗指标要求 >40dB。
5、 根据权利要求 1所述的低偏和保偏混合光路的光纤陀螺, 其特征在 于: 所述的 2 x 2偏振无关的单模光纤耦合器的偏振相关损耗 PDL 0.03dB, 光纤模场直径为 6 ~ 7μηι, 包层直径为 125μηι。
6、 根据权利要求 1所述的低偏和保偏混合光路的光纤陀螺, 其特征在 于: 所述的光纤环为 80μηι细径扁橢圓型保偏光纤。
7、 根据权利要求 1 ~ 6所述的低偏和保偏混合光路的光纤陀螺, 其特征 在于: 所述的所有器件的单模尾纤在光路装配中, 尾纤长度控制在 0.30m。
8、 根据权利要求 1或 2或 5所述的低偏和保偏混合光路的光纤陀螺, 其特征在于: 在所述的光源与耦合器输入端连接后, 在耦合器输出端空头监
测输出光信号的偏振度, 偏振度 D0P 6 % 。
9、 根据权利要求 1或 5所述的低偏和保偏混合光路的光纤陀螺, 其特 征在于: 所述的耦合器的空头处理方式是将输出端的末端辗碎, 并将光纤盘 成两个直径为 1 0mm的圓, 采用固化胶固定。
1 0、 根据权利要求 1所述的低偏和保偏混合光路的光纤陀螺, 其特征在 于: 所述的电路信号处理部分采用全数字闭环控制, 至少包含前置放大器、 A/D转换器、 FPGA逻辑电路、 D/A转换器和调制驱动电路, 干涉信号经过探 测器及前放电路之后, 转换为电压信号, 再经过 A/D转换器变为数字信号, 在 FPGA逻辑电路内部完成数字解调、 数字积分以及数字滤波获得陀螺的输 出, 另一方面 FPGA逻辑电路将陀螺的输出进一步积分产生数字阶梯波, 数 字阶梯波与随机过调制数字信号相叠加后,通过 D / A转换器和调制驱动电路 作为反馈信号施加到 Y 波导上, 引入偏置调制并补偿因输入引起的 Sagnac 相移, 从而实现全数字闭环控制。
1 1、 根据权利要求 1 0所述的低偏和保偏混合光路的光纤陀螺, 其特征 在于: 所述的偏置调制为随机过调制, 即调制波形为伪随机序列, 且调制深 度为 2π/ 3 , 频率为光纤环本征频率 2倍的方波信号。
12、 根据权利要求 1或 1 0所述的低偏和保偏混合光路的光纤陀螺, 其 特征在于:在所述的陀螺闭环输出并经过数字滤波后的数据进行温度建模补 偿, 即将温度传感器置于光纤环附近, 测量光纤环的温度数据, 建立光纤陀 螺的温度模型为:
Ω = Κο+Κ^ ω in+ ε (1 )
Κ0(Τ)=Κοο+ΚοιΤ+Κο2 Δ Τ (2)
Κι (Τ)=Κ10+Κ1 1Τ+Κ12 Δ Τ (3)
式中 Ω为光纤陀螺输出, oin为输入角速率, ε为随机漂移, T为温度, 为温度梯度, Κϋ为误差系数。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EA200800911A EA012960B1 (ru) | 2006-12-31 | 2007-05-21 | Волоконно-оптический гироскоп с использованием световода с низкой степенью поляризации и с сохранением поляризации излучения |
US12/093,301 US8102535B2 (en) | 2006-12-31 | 2007-05-21 | Fiber optic gyroscope using a low-polarization and polarization-maintaining hybrid light path |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200610171588.2 | 2006-12-31 | ||
CNB2006101715882A CN100494897C (zh) | 2006-12-31 | 2006-12-31 | 采用低偏和保偏混合光路的光纤陀螺 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008080307A1 true WO2008080307A1 (fr) | 2008-07-10 |
Family
ID=38697108
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2007/070035 WO2008080307A1 (fr) | 2006-12-31 | 2007-05-21 | Gyroscope à fibre optique combinant une trajectoire optique à faible polarisation et une trajectoire optique de maintien de polarisation |
Country Status (5)
Country | Link |
---|---|
US (1) | US8102535B2 (zh) |
CN (1) | CN100494897C (zh) |
EA (1) | EA012960B1 (zh) |
UA (1) | UA86696C2 (zh) |
WO (1) | WO2008080307A1 (zh) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108507558A (zh) * | 2018-03-28 | 2018-09-07 | 株洲菲斯罗克光电技术有限公司 | 一种轻量化三轴一体光纤陀螺仪 |
CN111811492A (zh) * | 2020-06-24 | 2020-10-23 | 北京思卓博瑞科技有限公司 | 抑制启动漂移的光纤陀螺 |
CN111862751A (zh) * | 2020-07-13 | 2020-10-30 | 中国人民解放军海军工程大学 | 一种可同轴旋转光纤陀螺仪实验装置 |
CN113409389A (zh) * | 2021-06-04 | 2021-09-17 | 北京自动化控制设备研究所 | 一种光纤陀螺y波导调制器端面角度检测方法 |
CN113532480A (zh) * | 2021-08-02 | 2021-10-22 | 瑞燃(上海)环境工程技术有限公司 | 一种提高干涉式光纤陀螺装配合格率的装配调试方法 |
CN114323242A (zh) * | 2021-11-19 | 2022-04-12 | 中国科学院上海光学精密机械研究所 | 基于偏振分解光纤干涉仪的全频段激光频率噪声的测量装置与方法 |
CN115031714A (zh) * | 2022-06-02 | 2022-09-09 | 中国船舶重工集团公司第七0七研究所 | 具有磁场漂移误差主动补偿功能的光纤陀螺及补偿方法 |
CN115790706A (zh) * | 2022-11-08 | 2023-03-14 | 哈尔滨工程大学 | 基于保偏光纤对轴旋转法的超高偏振消光比可控发生装置 |
Families Citing this family (61)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101339093B (zh) * | 2008-08-29 | 2010-06-09 | 苏州光环科技有限公司 | 光纤陀螺用光纤环质量的测量方法及其装置 |
CN101451841B (zh) * | 2008-12-31 | 2010-05-12 | 北京航天时代光电科技有限公司 | 一种消除死区的1.55μm波长高精度光纤陀螺仪 |
CN101825465B (zh) * | 2010-04-06 | 2012-01-18 | 北京大学 | 一种再入式干涉型光纤陀螺仪 |
CN102116624B (zh) * | 2010-07-13 | 2013-05-08 | 中国电子科技集团公司第二十六研究所 | 光纤陀螺用基于变调制态调制解调方法 |
CN102278984B (zh) * | 2011-05-23 | 2012-12-12 | 北京航空航天大学 | 高精度光纤陀螺系统噪声抑制的滤波方法及装置 |
US9091598B2 (en) | 2011-09-30 | 2015-07-28 | Honeywell International Inc. | Circuits for determining differential and average temperatures from resistive temperature devices |
US8781778B2 (en) * | 2011-09-30 | 2014-07-15 | Honeywell International Inc. | Systems and methods for thermal gradient compensation for ring laser gyroscopes |
CN102519489B (zh) * | 2011-12-16 | 2014-04-16 | 东南大学 | 一种基于温度及输入角速率的光纤陀螺标度因数建模方法 |
CN102538776B (zh) * | 2011-12-20 | 2014-09-17 | 中国科学院国家授时中心 | 基于量子效应的干涉型光纤陀螺仪 |
CN102607620A (zh) * | 2012-03-29 | 2012-07-25 | 扬州永阳光电科贸有限公司 | 反射式干涉型光纤传感器系统 |
CN102788595A (zh) * | 2012-07-27 | 2012-11-21 | 北京航空航天大学 | 基于Faraday效应的光纤陀螺频率特性评估方法与装置 |
CN102901495B (zh) * | 2012-10-19 | 2015-06-03 | 重庆华渝电气仪表总厂 | 一种角位移光纤陀螺仪 |
CN103149639B (zh) * | 2012-12-28 | 2014-09-17 | 宁波诺可电子科技发展有限公司 | 一种双向马赫-泽德干涉仪系统及其偏振态调节方法 |
SG11201504831UA (en) * | 2013-01-15 | 2015-07-30 | Agency Science Tech & Res | Optical alignment structure and method of determining alignment information |
CN103398709A (zh) * | 2013-08-20 | 2013-11-20 | 重庆华渝电气仪表总厂 | 一种光纤陀螺仪全保偏光路 |
CN103604444B (zh) * | 2013-11-26 | 2016-04-06 | 中国人民解放军国防科学技术大学 | 基于正弦波调制及二次谐波检测的光纤环本征频率测量装置及方法 |
CN103645592B (zh) * | 2013-12-13 | 2016-05-25 | 中国电子科技集团公司第四十一研究所 | 一种新型光纤陀螺用集成光波导器件 |
US9429426B2 (en) * | 2014-01-22 | 2016-08-30 | Northrop Grumman Systems Corporation | Adaptive inertial measurement system and method |
CN104359471B (zh) * | 2014-11-26 | 2017-03-01 | 湖北三江航天红峰控制有限公司 | 一种混偏光纤陀螺光路及消偏器的制备方法 |
CN104613985B (zh) * | 2015-02-12 | 2017-09-29 | 重庆华渝电气集团有限公司 | 提高导航系统中光纤陀螺互换性的方法 |
CN105277188B (zh) * | 2015-08-28 | 2018-03-20 | 华东师范大学 | Sagnac角速度测量系统及方法 |
CN105157693B (zh) * | 2015-09-22 | 2019-04-02 | 深圳大学 | 一种环形谐振腔及其谐振式光纤陀螺 |
CN106556387A (zh) * | 2015-09-25 | 2017-04-05 | 北京浦丹光电股份有限公司 | 一种光纤陀螺用光器件匹配方案 |
CN105180969B (zh) * | 2015-10-29 | 2018-01-02 | 中北大学 | 一种面向闭环检测的微陀螺批量动态测试方法 |
CN105444750B (zh) * | 2015-11-27 | 2018-05-22 | 湖北三江航天红峰控制有限公司 | 一种保偏光子晶体光纤陀螺及其制造方法 |
CN105547275B (zh) * | 2016-01-15 | 2018-10-09 | 北京航天时代光电科技有限公司 | 一种干涉型数字闭环光纤陀螺超光学测量量程的启动方法 |
GB2547043A (en) * | 2016-02-08 | 2017-08-09 | Atlantic Inertial Systems Ltd | Inertial measurement unit |
CN106338282B (zh) * | 2016-08-12 | 2019-03-05 | 湖北三江航天红峰控制有限公司 | 一种轻小型星载光纤陀螺光路 |
CN107764284A (zh) * | 2016-08-22 | 2018-03-06 | 北京计算机技术及应用研究所 | 光纤陀螺用光纤环温度性能的筛选系统 |
CN106323339A (zh) * | 2016-08-23 | 2017-01-11 | 中国航空工业集团公司西安飞行自动控制研究所 | 一种低强度噪声微小型闭环光纤陀螺的制造方法 |
CN106441368B (zh) * | 2016-10-25 | 2019-02-22 | 浙江大学 | 一种光纤陀螺光纤环温变特性测量方法及装置 |
CN110388909A (zh) * | 2018-04-19 | 2019-10-29 | 上海亨通光电科技有限公司 | 一种采用二次集成芯片的小型化光纤陀螺 |
CN110440784B (zh) * | 2018-05-04 | 2021-02-19 | 武汉长盈通光电技术股份有限公司 | 一种光路复用的多轴闭环光纤陀螺 |
CN109061230B (zh) * | 2018-08-30 | 2022-06-14 | 衡阳市衡山科学城科技创新研究院有限公司 | 一种多轴检测电路板串扰特性的评估方法及系统 |
CN109827560A (zh) * | 2018-11-19 | 2019-05-31 | 北京计算机技术及应用研究所 | 一种消除光纤陀螺死区的系统 |
CN109631871B (zh) * | 2018-12-09 | 2021-03-09 | 西安航天精密机电研究所 | 一种抑制光纤陀螺仪交叉耦合的随机调制及解调方法 |
CN110319827B (zh) * | 2019-07-17 | 2020-01-31 | 北京航空航天大学 | 一种光纤陀螺光源相对强度噪声自适应抑制装置 |
US10916843B1 (en) | 2019-10-29 | 2021-02-09 | Terrance O'Brien Woodbridge | Method and system to reduce the impact of electromagnetic pulses on cellular tower sites |
CN111121775B (zh) * | 2019-11-26 | 2021-10-01 | 中国科学院微小卫星创新研究院 | 一种用于卫星姿态控制的光纤陀螺组合装置 |
CN111562422A (zh) * | 2020-06-01 | 2020-08-21 | 南方电网调峰调频发电有限公司西部检修试验分公司 | 无源电子式电流互感器 |
CN111829499B (zh) * | 2020-06-15 | 2023-09-08 | 北京航空航天大学 | 一种基于光纤测温的高精度光纤陀螺系统及光纤环圈结构 |
CN111811493A (zh) * | 2020-06-24 | 2020-10-23 | 北京思卓博瑞科技有限公司 | 具有应力补偿的光纤陀螺 |
WO2022040726A1 (en) * | 2020-08-28 | 2022-03-03 | The Australian National University | Systems and methods for sagnac interferometry |
CN112082736B (zh) * | 2020-09-04 | 2022-07-15 | 哈尔滨工程大学 | 一种基于多功能光开关的保偏光纤环偏振串扰双向测量装置及方法 |
CN112083477B (zh) * | 2020-09-10 | 2024-03-19 | 北京大学 | 一种三分量旋转地震仪 |
CN112729333A (zh) * | 2020-11-25 | 2021-04-30 | 北京仿真中心 | 一种适用于硅微陀螺仪的分段多项式数字温度补偿方法 |
CN112684542A (zh) * | 2020-12-15 | 2021-04-20 | 中国电子科技集团公司第四十四研究所 | 一种双y分支光波导相位调制器 |
CN112985370A (zh) * | 2021-04-30 | 2021-06-18 | 瑞燃(上海)环境工程技术有限公司 | 一种抗辐照的宽谱高精度光纤陀螺仪 |
CN114184212B (zh) * | 2021-12-27 | 2023-09-26 | 北京计算机技术及应用研究所 | 一种惯性仪表零位温度补偿方法 |
CN114543785B (zh) * | 2022-02-18 | 2024-12-06 | 北京思卓博瑞科技有限公司 | 一种光纤陀螺及惯性导航系统 |
CN114935348B (zh) * | 2022-07-27 | 2022-09-23 | 中国船舶重工集团公司第七0七研究所 | 一种基于光开关阵列的光纤环圈性能测试方法与系统 |
CN115307618B (zh) * | 2022-08-01 | 2025-08-08 | 河北汉光重工有限责任公司 | 一种基于分段采样滤波的光纤陀螺闭环控制方法 |
CN115574799A (zh) * | 2022-08-17 | 2023-01-06 | 河北汉光重工有限责任公司 | 一种基于fpga具有温控功能的分体式光纤陀螺 |
CN115127535B (zh) * | 2022-09-01 | 2022-11-04 | 中国船舶重工集团公司第七0七研究所 | 基于模分复用的光纤陀螺及其精度提升方法 |
CN115987269B (zh) * | 2023-03-21 | 2023-06-20 | 北京永乐华航精密仪器仪表有限公司 | 一种用于光纤陀螺仪的抗干扰电路 |
CN116045944B (zh) * | 2023-03-30 | 2023-05-30 | 中国船舶集团有限公司第七〇七研究所 | 一种单环双敏感轴光纤陀螺 |
CN116045954B (zh) * | 2023-03-31 | 2023-06-09 | 中国船舶集团有限公司第七〇七研究所 | 光学陀螺用混合谐振腔及光学陀螺 |
CN116046023B (zh) * | 2023-03-31 | 2023-06-02 | 中国船舶集团有限公司第七〇七研究所 | 基于光子灯笼的光纤陀螺精度分析方法及系统 |
CN116045946B (zh) * | 2023-03-31 | 2023-06-09 | 中国船舶集团有限公司第七〇七研究所 | 光纤陀螺及降低其标度因数非线性度的方法 |
CN117606461B (zh) * | 2024-01-24 | 2024-04-19 | 广东奥斯诺工业有限公司 | 双环差分式超高转速光子芯片光纤陀螺 |
CN118392147B (zh) * | 2024-06-27 | 2024-08-20 | 北京航空航天大学 | 一种用于旋转导向装置的光纤陀螺转速测量系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0560564A (ja) * | 1991-08-30 | 1993-03-09 | Mitsubishi Precision Co Ltd | 光フアイバジヤイロ |
US5898496A (en) * | 1997-02-14 | 1999-04-27 | Allied Signal Inc | Optical signal noise reduction for fiber optic gyroscopses |
JP2004309466A (ja) * | 2003-03-27 | 2004-11-04 | Japan Aviation Electronics Industry Ltd | 光ファイバジャイロ |
US6990269B2 (en) * | 2002-11-01 | 2006-01-24 | Japan Aviation Electronics Industry Limited | Fiber optic gyroscope |
CN1804549A (zh) * | 2006-01-23 | 2006-07-19 | 北京航空航天大学 | 利用光褪色实现光纤陀螺抗辐照加固方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4669814A (en) * | 1982-08-02 | 1987-06-02 | Andrew Corporation | Single mode, single polarization optical fiber with accessible guiding region and method of forming directional coupler using same |
US5260768A (en) * | 1991-11-25 | 1993-11-09 | Litton Systems, Inc. | Fiber optic gyro with low-birefringence and PM networks |
JPH0626870A (ja) * | 1992-07-06 | 1994-02-04 | Sumitomo Electric Ind Ltd | 光ファイバジャイロ |
US5949930A (en) * | 1997-07-23 | 1999-09-07 | Litton Systems, Inc. | Apparatus and method for scale factor stabilization in interferometric fiber optic rotation sensors |
US6275512B1 (en) * | 1998-11-25 | 2001-08-14 | Imra America, Inc. | Mode-locked multimode fiber laser pulse source |
US7190462B2 (en) * | 2003-03-27 | 2007-03-13 | Japan Aviation Electronics Industry Limited | Fiber optic gyroscope having optical integrated circuit, depolarizer and fiber optic coil |
US7038783B2 (en) * | 2003-05-23 | 2006-05-02 | Honeywell International Inc. | Eigen frequency detector for Sagnac interferometers |
CN2682384Y (zh) | 2003-11-13 | 2005-03-02 | 赵允兴 | 光纤陀螺仪 |
JP2005172672A (ja) * | 2003-12-12 | 2005-06-30 | Tokimec Inc | 光ファイバジャイロ |
JP2007010896A (ja) | 2005-06-29 | 2007-01-18 | Fujikura Ltd | 偏波保持光ファイバ及び光ファイバジャイロ |
CN100498223C (zh) | 2006-09-30 | 2009-06-10 | 北京航空航天大学 | 具有信号差分放大的光纤陀螺前置放大和调制输出电路 |
-
2006
- 2006-12-31 CN CNB2006101715882A patent/CN100494897C/zh active Active
-
2007
- 2007-05-21 WO PCT/CN2007/070035 patent/WO2008080307A1/zh active Application Filing
- 2007-05-21 US US12/093,301 patent/US8102535B2/en active Active
- 2007-05-21 EA EA200800911A patent/EA012960B1/ru active IP Right Grant
- 2007-08-31 UA UAA200709784A patent/UA86696C2/ru unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0560564A (ja) * | 1991-08-30 | 1993-03-09 | Mitsubishi Precision Co Ltd | 光フアイバジヤイロ |
US5898496A (en) * | 1997-02-14 | 1999-04-27 | Allied Signal Inc | Optical signal noise reduction for fiber optic gyroscopses |
US6990269B2 (en) * | 2002-11-01 | 2006-01-24 | Japan Aviation Electronics Industry Limited | Fiber optic gyroscope |
JP2004309466A (ja) * | 2003-03-27 | 2004-11-04 | Japan Aviation Electronics Industry Ltd | 光ファイバジャイロ |
CN1804549A (zh) * | 2006-01-23 | 2006-07-19 | 北京航空航天大学 | 利用光褪色实现光纤陀螺抗辐照加固方法 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108507558A (zh) * | 2018-03-28 | 2018-09-07 | 株洲菲斯罗克光电技术有限公司 | 一种轻量化三轴一体光纤陀螺仪 |
CN108507558B (zh) * | 2018-03-28 | 2024-04-30 | 株洲菲斯罗克光电科技股份有限公司 | 一种轻量化三轴一体光纤陀螺仪 |
CN111811492A (zh) * | 2020-06-24 | 2020-10-23 | 北京思卓博瑞科技有限公司 | 抑制启动漂移的光纤陀螺 |
CN111862751A (zh) * | 2020-07-13 | 2020-10-30 | 中国人民解放军海军工程大学 | 一种可同轴旋转光纤陀螺仪实验装置 |
CN113409389A (zh) * | 2021-06-04 | 2021-09-17 | 北京自动化控制设备研究所 | 一种光纤陀螺y波导调制器端面角度检测方法 |
CN113409389B (zh) * | 2021-06-04 | 2024-06-11 | 北京自动化控制设备研究所 | 一种光纤陀螺y波导调制器端面角度检测方法 |
CN113532480A (zh) * | 2021-08-02 | 2021-10-22 | 瑞燃(上海)环境工程技术有限公司 | 一种提高干涉式光纤陀螺装配合格率的装配调试方法 |
CN113532480B (zh) * | 2021-08-02 | 2023-09-19 | 瑞燃(上海)环境工程技术有限公司 | 一种提高干涉式光纤陀螺装配合格率的装配调试方法 |
CN114323242A (zh) * | 2021-11-19 | 2022-04-12 | 中国科学院上海光学精密机械研究所 | 基于偏振分解光纤干涉仪的全频段激光频率噪声的测量装置与方法 |
CN114323242B (zh) * | 2021-11-19 | 2024-04-12 | 中国科学院上海光学精密机械研究所 | 基于偏振分解光纤干涉仪的全频段激光频率噪声的测量装置与方法 |
CN115031714A (zh) * | 2022-06-02 | 2022-09-09 | 中国船舶重工集团公司第七0七研究所 | 具有磁场漂移误差主动补偿功能的光纤陀螺及补偿方法 |
CN115790706A (zh) * | 2022-11-08 | 2023-03-14 | 哈尔滨工程大学 | 基于保偏光纤对轴旋转法的超高偏振消光比可控发生装置 |
Also Published As
Publication number | Publication date |
---|---|
CN100494897C (zh) | 2009-06-03 |
EA012960B1 (ru) | 2010-02-26 |
CN101008569A (zh) | 2007-08-01 |
US20100238450A1 (en) | 2010-09-23 |
UA86696C2 (en) | 2009-05-12 |
EA200800911A1 (ru) | 2008-08-29 |
US8102535B2 (en) | 2012-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008080307A1 (fr) | Gyroscope à fibre optique combinant une trajectoire optique à faible polarisation et une trajectoire optique de maintien de polarisation | |
CN111829499B (zh) | 一种基于光纤测温的高精度光纤陀螺系统及光纤环圈结构 | |
CN102183360A (zh) | 光学偏振器件偏振消光比的检测方法和检测装置 | |
CN105928501B (zh) | 一种集成光路结构光纤陀螺及其工作方法 | |
JP2012021982A (ja) | 温度感度を低減したファイバー電流センサー | |
CN209764932U (zh) | 偏振检偏式闭环全光纤电流互感器 | |
CN115014318B (zh) | 一种空芯微结构光纤陀螺 | |
CN110849345A (zh) | 一种基于多圈微纳光纤三维谐振腔的微型谐振式光学陀螺 | |
CN101694386A (zh) | 高灵敏度的光纤陀螺仪 | |
CN101968508B (zh) | 全光纤电流传感器及其偏振态调节方法 | |
CN101968507B (zh) | 光纤电压传感器及其调节方法 | |
CN114739376A (zh) | 基于二氧化硅波导偏振分束器的空芯光子晶体光纤陀螺 | |
CN111707860B (zh) | 一种光纤电压传感器敏感元件 | |
CN110426027A (zh) | 一种基于磁光开关的实现多圈绕行的光纤陀螺仪及其方法 | |
CN206696332U (zh) | 一种光学电流互感器 | |
CN116045956B (zh) | 光纤陀螺及其基于光偏振态感测旋转的方法 | |
CN101923102B (zh) | 基于马赫与泽德干涉仪的光纤加速度计 | |
CN108106817B (zh) | 一种提高y波导器件偏振性能测量准确性的方法 | |
CN111024058B (zh) | 一种基于电光效应开关的实现多次绕行的光纤陀螺仪及其方法 | |
CN108680151B (zh) | 一种开环光纤陀螺 | |
CN111443429A (zh) | 一种薄膜式光纤起偏器件 | |
Zhu et al. | Metrological traceability of high polarization extinction ratio (PER) based on precision coaxial rotating polarization-maintaining fiber | |
CN112098054B (zh) | 基于非平衡光纤干涉仪的窄线宽激光器频率漂移检测装置 | |
CN208333489U (zh) | 一种基于45°倾斜光纤光栅起偏器的开环光纤陀螺 | |
JP2001033492A (ja) | 光応用測定装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200800911 Country of ref document: EA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12093301 Country of ref document: US |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07721658 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC - FORM 1205A |