WO2008077919A1 - Dispositif d'emission-reception de signaux - Google Patents

Dispositif d'emission-reception de signaux Download PDF

Info

Publication number
WO2008077919A1
WO2008077919A1 PCT/EP2007/064418 EP2007064418W WO2008077919A1 WO 2008077919 A1 WO2008077919 A1 WO 2008077919A1 EP 2007064418 W EP2007064418 W EP 2007064418W WO 2008077919 A1 WO2008077919 A1 WO 2008077919A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna device
current
magnetic field
der
transmission
Prior art date
Application number
PCT/EP2007/064418
Other languages
English (en)
Inventor
Eric Leconte
Stephane Violleau
Michael Notarianni
Original Assignee
Valeo Securite Habitacle
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Securite Habitacle filed Critical Valeo Securite Habitacle
Priority to JP2009542087A priority Critical patent/JP5485698B2/ja
Priority to US12/520,788 priority patent/US8289012B2/en
Priority to EP07858034A priority patent/EP2115885B1/fr
Publication of WO2008077919A1 publication Critical patent/WO2008077919A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/40Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
    • H04B5/48Transceivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/42TPC being performed in particular situations in systems with time, space, frequency or polarisation diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils

Definitions

  • the present invention relates to a signal transmission / reception device adapted to cooperate with an antenna device (s) capable of transmitting this magnetic field and a method of implementation by the transmitting-receiving device.
  • a hands-free system makes it possible to access a vehicle and start it by means of a receiver-transmitter without having to use a mechanical key.
  • the antenna device communicates with a badge that acts as a receiver-transmitter to detect if it is located near the vehicle, and whether it is inside or outside the vehicle cabin . If the badge is nearby, the vehicle is unlocked when the vehicle user touches a doorknob for example. If the badge is inside the vehicle, the user is allowed to start the vehicle.
  • the communication between the antenna device and the badge is performed by means of low-frequency signals transmitted from the antenna device to the badge and by radiofrequency signals transmitted from the badge to the transmitting-receiving device.
  • the low frequency signals are sent with a given transmitted power corresponding to a transmitted magnetic field, the badge receiving a corresponding magnetic field whose power received is relative to the transmitted power.
  • a disadvantage of this state of the art is that the transmitted power is not accurately measured which can cause reception problems between the antenna device and the badge and therefore a problem of detection of the badge by the device. antennas.
  • the object of the invention is therefore to accurately measure the power emitted by the antenna device (s) so as to establish a reliable reception between the antenna device (s) and an identification object.
  • a signal transmission / reception device capable of cooperating with an antenna device (s) capable of transmitting a magnetic field, characterized in that it comprises for transmission:
  • a power stage for sending a symmetrical square voltage signal at the input of the antenna device (s) to supply it with a current enabling the emitted magnetic field to be generated
  • a current measurement stage for measuring the current flowing in the antenna device (s).
  • the symmetrical square voltage signal will make it possible to reduce the number of harmonics in the current measured in the antenna device (s) and will thus make it possible to obtain a determination of the magnetic field. emitted and therefore the transmitted power corresponding to the magnetic field received by the identification object more accurate without parasitic currents.
  • the device according to the invention has the following additional features.
  • the voltage signal has a duty cycle of 1/3. This eliminates rank harmonics multiples of 3 in the measured current signal and thus obtain a more accurate measurement of the current.
  • the power stage is with full bridge control. This is a simple way to provide symmetrical voltage.
  • the measurement stage is a peak detector. It is a simple way of measuring the current.
  • the antenna device (s) is an RLC circuit.
  • the latter makes it possible, from the supply voltage of the antenna device, to directly amplify the current of the antenna device to allow appropriate magnetic field emission without using voltage control.
  • the invention proposes a signal transmission-reception system comprising an antenna device (s) and a transmission-reception device according to any one of the preceding characteristics, the latter being able to cooperate with the antenna device (s).
  • the antenna device (s) is an RLC circuit.
  • the invention proposes a method of transmitting-receiving signals in the direction of an antenna device (s), characterized in that it comprises the steps of:
  • the invention proposes a motor vehicle characterized in that it comprises a transmission-reception device according to any one of the preceding characteristics and adapted to cooperate with an antenna device (s). ).
  • FIG. 1 is a top view of a vehicle with a hands-free system comprising a transceiver device according to a non-limiting embodiment of the invention
  • FIG. 2 is a representative diagram of a reception of an identification object cooperating with the transmission-reception device according to a non-limiting embodiment of the invention
  • FIG. 3 represents a frequency spectrum of a current flowing in an antenna device of the transmission-reception device according to a non-limiting embodiment of the invention
  • FIG. 4 is a non-limiting embodiment of a transmission-reception device according to the invention
  • FIG. 5 is a non-limiting embodiment of a power stage included in the transmission-reception device of FIG. 4;
  • FIG. 6 represents a first embodiment of a voltage signal applied to the antenna device of the transmission-reception device of FIG.
  • FIG. 7 represents a second embodiment of a voltage signal applied to the antenna device of the transmission-reception device of FIG. 4;
  • FIG. 8 represents a magnetic field in the space of which a component corresponds to a magnetic field emitted by the transmission-reception device according to a non-limiting embodiment of the invention;
  • FIG. 9 is a transmission-reception method implemented by the transmission-reception device according to a non-limiting embodiment of the invention.
  • FIG. 1 shows a vehicle V equipped with a signal transmission / reception device comprising:
  • a DER transmission-reception device making it possible to control an antenna device A and the antenna device A comprising, in a non-limiting example, a plurality of antennas, so-called external antennas AX and so-called internal antennas AI , all antennas cooperating with a receiver-transmitter ID, all forming a transmission-reception system.
  • the antenna device A comprising, in a non-limiting example, a plurality of antennas, so-called external antennas AX and so-called internal antennas AI , all antennas cooperating with a receiver-transmitter ID, all forming a transmission-reception system.
  • five so-called external antennas AX are represented, four of which are located outside the passenger compartment VH of the vehicle V, here on the door handles, and one AX5 in the bumper. VC rear of the vehicle.
  • two so-called internal antennas AI1, AI2 are located in the passenger compartment VH, here at the front and at the rear of the vehicle.
  • Each antenna is powered by low-frequency alternating current I by the DER transceiver device and emits a magnetic field, named Bel for indoor antennas and BeX for external antennas.
  • the external antennas AX make it possible to detect whether a receiver-transmitter ID receiver-transmitter is located near the vehicle V, in a non-limiting example at a distance less than 1, 5 m, while that AI indoor antennas detect whether the receiver-transmitter ID is in the passenger compartment VH of the vehicle.
  • the receiver-transmitter ID in this application, is an identification object ID carried by a user of the vehicle V, for example a badge, a key, a keyfob called "keyfob" etc.
  • the antennas A communicate with the ID badge by transmitting data by emitting a low frequency signal BF and the ID badge responds by emitting an RF radio frequency signal.
  • the low frequency signal BF is around 125 kHz and the radio frequency RF signal is around 433 MHz.
  • the antennas A determine whether the badge ID is allowed to open the doors of the vehicle, or whether it is allowed to start the vehicle.
  • the badge ID is allowed to open the doors, the user must for example touch a doorknob.
  • the handles include appropriate detectors.
  • the external antennas AX make it possible to determine a first zone of communication with the badge ID to authorize a vehicle access. This zone is defined by the magnetic field emitted by said antennas AX. External AX antennas must therefore guarantee at least a minimum distance from which the ID badge is authorized to access the vehicle.
  • the internal antennas AI make it possible to determine a second zone ZO for communication with the badge ID to authorize a start. This zone is defined by the magnetic field emitted by said antennas AI. The internal antennas AI must therefore guarantee a zone from which the badge ID is authorized to start the vehicle, this zone corresponding in the example taken to the passenger compartment VH of the vehicle V.
  • this zone ZO varies as a function of the variations in the magnetic field emitted Be, these variations being due in particular to the surrounding disturbances such as temperature variations, battery voltage variations of the vehicle etc. that affect the components of the antenna device.
  • the magnetic field emitted by these indoor antennas AI has a greater coverage than the passenger compartment VH but is limited by the metal carcass of the passenger compartment VH of the vehicle V and overflows through the openings of the windows.
  • FIG. 2 illustrates the position of the badge ID with respect to an antenna A, here internal AI, of the antenna device as a function of the magnetic field Be of this antenna A. It thus illustrates the evolution of the corresponding received magnetic field Br. It can be seen that the further the ID badge is located far from an antenna A emitting a magnetic field emitted Be, the lower the magnetic field received Br corresponding is weak. When the ID badge is at the same location as the antenna A, the received magnetic field Br is theoretically equal to the emitted magnetic field Be.
  • FIG. 2 shows a nominal magnetic field BO corresponding to the communication zone ZO in which an ID badge can communicate with an antenna A and the transmission-reception device DER.
  • the ID badge When the ID badge is outside this zone ZO (the magnetic field received Br is less than the nominal magnetic field received BO), the ID badge does not respond to the signals sent by the antenna device A or sends an RF response radio voluntarily wrong. This means that it is located outside the passenger compartment VH of the vehicle. In the opposite case, it responds by emitting an RF radio frequency signal.
  • this nominal magnetic field BO is determined so as to avoid the parasitic magnetic fields Bb originating from the radio disturbances as illustrated in FIG. 2 and its value is greater than the value of the parasitic magnetic fields.
  • the power of the low frequency signals BF is defined by the alternating current I supplying the antenna device A, this power determining the magnetic field emitted Be.
  • the emitted magnetic field Be of the antenna device A defines the zone ZO which has also been called the communication zone.
  • the antenna device A is tuned to the transmission frequency (the frequency being for example 125 kHz). This makes it possible to emit a larger magnetic field in amplitude at the transmission frequency, and to have a bandpass filter FL.
  • the bandpass filter FL thus makes it possible to reduce the amplitude of the harmonics h (except for the harmonic of rank 1). Indeed, at the emission, on the side of the antenna device A, the value of the current I flowing in the antenna device A is equal to the sum of the harmonics h which are present in the passband of the filter included in the Antenna device A.
  • all the harmonics will be available if the filter is broadband as shown in FL1 in FIG. 3, or only part of the harmonics if the filter is narrow band as represented in FL2. in Figure 3.
  • the value of the emitted field Be is a function of this current Irm with harmonics h.
  • the value of the current which is taken into account is equal only to the harmonic hl of rank 1 called fundamental.
  • the magnetic field received Br corresponds to the magnetic field emitted Be at the value of the fundamental only and not at the sum of the harmonics.
  • the transmission-reception device DER comprises:
  • all the elements of the transceiver device DER are on the same electronic card. This allows a faster and more reliable dialogue between these different elements. On the contrary, when these elements are separated, the communication links connecting them can be more easily disturbed and the flow rates of these links can be lower.
  • the identification badge ID is known to those skilled in the art, it is not described here.
  • the antenna device A is composed of a circuit RL.
  • the latter requires amplifying the supply voltage of the antenna device to allow appropriate magnetic field emission.
  • the antenna device A is composed of an RLC circuit.
  • the latter makes it possible, from the supply voltage of the antenna device A, which is here the battery voltage Ubat of the vehicle V, to directly amplify the current I flowing in the antenna device A, to enable a transmission of magnetic field, without using voltage control. It is therefore a simpler solution to implement to obtain amplification.
  • This RLC circuit also acts as a bandpass filter as seen previously.
  • the DC control device includes:
  • an emitter EM of signals for, in particular:
  • a calculating member CALC for example a microprocessor or an ASIC making it possible in particular to adapt the cyclic ratio ⁇ O of the symmetrical voltage UO applied to the antenna device A.
  • control device DC may further comprise the signal receiver RE, in particular to receive a response from the identification badge ID when it is inside the communication zone ZO.
  • the P power stage It provides the symmetrical square voltage UO and allows a measurement subsequently of the current I flowing in the antenna device A by reducing the effects of the parasitic currents due to the harmonics and therefore allows a precise generation and accurate measurement of the current.
  • switches S1 to S4 are in a non-limiting example of the MOSFET transistors.
  • the power stage P operates in the following manner as shown in FIG.
  • the two diagonals of the bridge S2-S3 and S1-S4 are controlled by two control signals delayed relative to each other by half a period thus making it possible to obtain symmetry.
  • f (x) ⁇ (4E / ⁇ n) .sin (n ⁇ ) .sin (n ( ⁇ / 2)).
  • Sin (2p + l) ⁇ x, with p 0, ..., ⁇ which gives the spectrum with the harmonics in Figure 7.
  • hl (4E / ⁇ ) .sin ⁇ O. sin ⁇ x
  • the value of the adjustable duty cycle ⁇ O makes it possible to adjust the value of the transmitted power Pe.
  • the symmetrical square voltage UO makes it possible on the one hand to adjust the transmitted power Pe to a desired value corresponding to the desired communication zone ZO (and thus to accurately generate the transmitted power Pe) and on the other hand to obtain an accurate measurement of the actual transmitted power Pe corresponding to the effective received power of the ID badge because the harmonics of even rank are suppressed.
  • the voltage UO comprises a duty cycle of 1/3 which corresponds to an offset of ⁇ / 3 of the voltage signal UC.
  • the multiple-order harmonics of 3 of the measured current Irm have been suppressed in addition to the even-order harmonics which considerably limits the number of harmonic within the bandwidth of the RLC filter of the antenna device A. Only the harmonics of rank 1 and 5 remain, the latter being negligible.
  • the current measuring stage or device is a peak amplitude detector. It is a simple way to measure the current I flowing in the antenna device A. It makes it possible to measure the maximum amplitude of the current, which is sufficient because the disturbing harmonics have been suppressed by the symmetrical control and the duty cycle. 1/3. Thus, this measurement will give the value of the fundamental of this current I. It is conventionally composed of a diode and a capacitor as illustrated in FIG. 4. It sends the value of the measured current Irm to the Calculation device CALC of the DC control device as shown in Figure 4. Of course, other means for measuring the current can be used.
  • the current measuring device C may be a digital sampling device or else a device which performs a rectification of current and then an average of the rectified current.
  • a current measurement Irm corresponding to the fundamental value of the current I flowing in the antenna device A is obtained.
  • the measured current Irm is therefore in this case representative of the amplitude of the fundamental of the emitted magnetic field. Therefore, it is possible to deduce the transmitted power Pe (and hence a magnetic field emitted Be) by the antenna device A corresponding precisely to the received power Pr, knowing that the emitted magnetic field Be is proportional to the measured current Irm.
  • a magnetic field B comprises three components in an orthogonal space x, y, z as illustrated in FIG. 8 which are the following.
  • the power Pe on transmission is thus precisely known, which will make it possible to control the zone of communication ZO between the antenna device A and the badge ID. It will be noted that it is possible to use the transmission / reception device DER described for an application in which the badge ID is initialized beforehand with a fixed threshold SO corresponding to a fixed received magnetic field (the communication zone ZO is controlled at the transmission) or for an application in which the badge ID is initialized with a threshold SO corresponding to a variable received magnetic field (control of the ZO communication zone on reception).
  • the duty cycle ⁇ O is set so as to obtain a theoretical current Ith corresponding to the nominal communication area. After each measurement of the real current I flowing in the antenna device corresponding to the nominal communication area, it is sufficient to calculate the threshold SO from this real current and send it to the ID badge. A comparison is made between the magnetic field received by the ID badge which is at a certain position and the threshold updated. In this second case also, when the cyclic ratio ⁇ O is equal to 1/3, it is sufficient to set the theoretical current Ith corresponding to the nominal communication area with the filter RLC or RL of the antenna device, for example by taking a resistance value R adequate. Then, the rest (measurement of the actual current, sending the threshold corresponding to the ID badge, comparison with the threshold updated) is carried out as described above.
  • the precise measurement of the current flowing in the antenna device A makes it possible to obtain an accurate measurement of the actual power emitted Pe (which takes into account the possible variations of its impedance Z) and to set the antenna device on an emitted power Pe exactly corresponding to the threshold SO of the ID badge when it is at the limit of the communication zone ZO.
  • the antenna device A and the badge ID can communicate without risk of error.
  • the ID badge can be detected without errors.
  • FIG. 8 illustrates the method implemented by the transmission-reception device DER, namely: sending a symmetrical voltage signal UO at the input of the antenna device A to supply it with a current enabling the field to be generated emitted magnetic, and
  • this determination is carried out simply by means of a measurement of current and thus avoids a servocontrol in complex voltage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Lock And Its Accessories (AREA)
  • Transmitters (AREA)
  • Near-Field Transmission Systems (AREA)

Abstract

L'invention concerne un dispositif d'émission-réception (DER) de signaux apte à coopérer avec un dispositif d'antenne(s) (A) apte à émettre un champ magnétique. Elle se caractérise en ce que le dispositif (DER) comporte pour l'émission : - un étage de puissance (P) pour envoyer un signal tension carré symétrique (UO) en entrée du dispositif d'antenne(s) (A) pour lui fournir un courant permettant de générer le champ magnétique émis, et - un étage de mesure de courant (C) pour mesurer le courant circulant dans le dispositif d'antenne(s) (A).

Description

DISPOSITIF dΕMISSION-RECEPTION DE SIGNAUX
Domaine de l'invention
La présente invention concerne un dispositif d'émission-réception de signaux apte à coopérer avec un dispositif d'antenne(s) apte à émettre ce champ magnétique et un procédé de mise en oeuvre par le dispositif d'émission- réception.
Elle trouve une application particulière pour un véhicule automobile équipé d'un système de détection mains libres.
Etat de la techn ique
Selon un état de la technique connu, il existe un dispositif d'émission- réception de signaux utilisé dans un système mains libres pour une application véhicule. Un système mains libres permet d'accéder à un véhicule et de le démarrer au moyen d'un récepteur-émetteur sans avoir recours à une clef mécanique. Le dispositif d'antennes communique avec un badge qui fait office de récepteur-émetteur afin de détecter s'il se situe à proximité du véhicule, et s'il se trouve à l'intérieur ou à l'extérieur de l'habitacle du véhicule. Si le badge se situe à proximité, le véhicule est déverrouillé lorsque l'utilisateur du véhicule touche une poignée de porte par exemple. Si le badge est à l'intérieur du véhicule, l'utilisateur est autorisé à démarrer le véhicule. La communication entre le dispositif d'antennes et le badge s'effectue grâce à des signaux basse fréquence émis du dispositif d'antennes vers le badge et grâce à des signaux radiofréquence émis du badge vers le dispositif d'émission-réception. Les signaux basse fréquence sont envoyés avec une puissance émise donnée correspondant à un champ magnétique émis, le badge recevant un champ magnétique correspondant dont la puissance reçue est relative à la puissance émise. Un inconvénient de cet état de la technique est que la puissance émise n'est pas mesurée précisément ce qui peut engendrer des problèmes de réception entre le dispositif d'antenne et le badge et par conséquent un problème de détection du badge par le dispositif d'antennes.
Objet de l'invention
L'invention a donc pour but une mesure précise de la puissance émise par le dispositif d'antenne(s) de manière à établir une réception fiable entre le dispositif d'antenne(s) et un objet d'identification.
Elle propose donc selon un premier objet un dispositif d'émission-réception de signaux apte à coopérer avec un dispositif d'antenne(s) apte à émettre un champ magnétique, caractérisé en ce qu'il comporte pour l'émission :
- un étage de puissance pour envoyer un signal tension carré symétrique en entrée du dispositif d'antenne(s) pour lui fournir un courant permettant de générer le champ magnétique émis, et
- un étage de mesure de courant pour mesurer le courant circulant dans le dispositif d'antenne(s).
Ainsi, comme on le verra en détail plus loin, le signal tension carré symétrique va permettre de réduire le nombre d'harmoniques dans le courant mesuré dans le dispositif d'antenne(s) et va permettre d'obtenir ainsi une détermination du champ magnétique émis et donc de la puissance émise correspondant au champ magnétique reçu par l'objet d'identification plus précise sans avoir de courants parasites.
Selon des modes de réalisation non limitatifs, le dispositif selon l'invention présente les caractéristiques supplémentaires suivantes.
Dans un mode de réalisation non limitatif, le signal tension comporte un rapport cyclique de 1/3. Cela permet de supprimer les harmoniques de rang multiples de 3 dans le signal courant mesuré et d'obtenir ainsi une mesure plus précise du courant.
Dans un mode de réalisation non limitatif, l'étage de puissance est avec commande à pont complet. C'est un moyen simple de fournir la tension symétrique.
Dans un mode de réalisation non limitatif, l'étage de mesure est un détecteur crête. C'est un moyen simple de mesure du courant.
Dans un mode de réalisation non limitatif, le dispositif d'antenne(s) est un circuit RLC. Ce dernier permet à partir de la tension d'alimentation du dispositif d'antennes d'amplifier directement le courant du dispositif d'antennes pour permettre une émission de champ magnétique approprié sans utiliser d'asservissement en tension.
Selon un deuxième objet de l'invention, l'invention propose un système d'émission-réception de signaux comprenant un dispositif d'antenne(s) et un dispositif d'émission-réception selon l'une quelconque des caractéristiques précédentes, ce dernier étant apte à coopérer avec le dispositif d'antenne(s).
Selon un mode de réalisation on limitatif, le dispositif d'antenne(s) est un circuit RLC.
Selon un troisième objet, l'invention propose un procédé d'émission-réception de signaux en direction d'un dispositif d'antenne(s), caractérisé en ce qu'il comporte les étapes de :
- envoyer un signal tension carré symétrique en entrée du dispositif d'antenne(s) pour lui fournir un courant permettant de générer le champ magnétique émis, et
- mesurer le courant circulant dans le dispositif d'antenne(s). Selon un quatrième objet de l'invention, l'invention propose un véhicule automobile caractérisé en ce qu'il comporte un dispositif d'émission-réception selon l'une quelconque des caractéristiques précédentes et apte à coopérer avec un dispositif d'antenne(s).
Brève description des figures
D'autres caractéristiques et avantages de la présente invention seront mieux compris à l'aide de la description en regard des dessins, donnés à titre d'exemples non limitatifs, parmi lesquels :
- la Figure 1 est une vue de dessus d'un véhicule muni d'un système mains libres comprenant un dispositif d'émission-réception selon un mode de réalisation non limitatif de l'invention;
- la Figure 2 est un diagramme représentatif d'une réception d'un objet d'identification coopérant avec le dispositif d'émission-réception selon un mode de réalisation non limitatif de l'invention;
- la Figure 3 représente un spectre de fréquence d'un courant circulant dans un dispositif d'antennes du dispositif d'émission-réception selon un mode de réalisation non limitatif de l'invention; - la Figure 4 est un mode de réalisation non limitatif d'un dispositif d'émission-réception selon l'invention;
- la Figure 5 est un mode de réalisation non limitatif d'un étage de puissance compris dans le dispositif d'émission-réception de la Figure 4;
- la Figure 6 représente un premier mode de réalisation d'un signal tension appliqué au dispositif d'antennes du dispositif d'émission-réception de la
Figure 4;
- la Figure 7 représente un deuxième mode de réalisation d'un signal tension appliqué au dispositif d'antennes du dispositif d'émission-réception de la Figure 4; - la Figure 8 représente un champ magnétique dans l'espace dont une composante correspond à un champ magnétique émis par le dispositif d'émission-réception selon un mode de réalisation non limitatif de l'invention; et - la Figure 9 est un procédé d'émission-réception mis en oeuvre par le dispositif d'émission-réception selon un mode de réalisation non limitatif de l'invention.
Description détaillée de modes de réalisation non lim itatifs de l'invention
Sur la Figure 1 , est représenté un véhicule V muni d'un dispositif d'émission- réception de signaux comportant :
- un dispositif d'émission-réception DER permettant de contrôler un dispositif d'antennes A et - le dispositif d'antennes A comprenant, dans un exemple non limitatif une pluralité d'antennes, des antennes dites extérieures AX et des antennes dites intérieures AI, toutes des antennes coopérant avec un récepteur- émetteur ID, le tout formant un système d'émission-réception. Dans l'exemple non limitatif de la Figure 1 , sont représentées cinq antennes dites extérieures AX dont quatre sont situées à l'extérieur de l'habitacle VH du véhicule V, ici sur les poignées des portières, et une AX5 dans le pare-choc arrière VC du véhicule. Par ailleurs deux antennes dites intérieures AIl, AI2 sont situées dans l'habitacle VH, ici à l'avant et à l'arrière du véhicule. Chaque antenne est alimentée en courant alternatif I basse fréquence par le dispositif d'émission-réception DER et émet un champ magnétique, nommé Bel pour les antennes intérieures et BeX pour les antennes extérieures. Au moyen de leur champ magnétique émis Be respectif, les antennes extérieures AX permettent de détecter si un récepteur-émetteur ID récepteur- émetteur se situe à proximité du véhicule V, dans un exemple non limitatif à une distance inférieure à 1 ,5 m, tandis que les antennes intérieures AI permettent de détecter si le récepteur-émetteur ID est dans l'habitacle VH du véhicule. Le récepteur-émetteur ID, dans cette application, est un objet d'identification ID porté par un utilisateur du véhicule V, par exemple un badge, une clef, un porte clef appelé en anglais «keyfob» etc. L'exemple du badge d'identification sera pris comme exemple dans la suite de la description. Au moyen du courant alternatif I, les antennes A communiquent avec le badge ID par transmission de données en émettant un signal basse fréquence BF et le badge ID répond en émettant un signal radiofréquence RF. Dans un exemple non limitatif, le signal basse fréquence BF se situe aux alentours de 125kHz et le signal radiofréquence RF se situe aux alentours de 433 MHz. On peut redescendre à 2OkHz pour le signal basse fréquence BF ou aller jusqu'au GigaHz pour le signal radiofréquence RF en fonction des bandes de fréquences disponibles pour différents pays (315MHz pour l'Asie, 868Mhz pour certains pays d'Europe ou 915Mhz en Amérique etc.). En fonction de la réponse, les antennes A déterminent si le badge ID est autorisé à ouvrir les portières du véhicule, ou s'il est autorisé à démarrer le véhicule. On notera que dans un exemple non limitatif, pour que le badge ID soit autorisé à ouvrir les portières, l'utilisateur doit par exemple toucher une poignée de porte. A cet effet, les poignées comprennent des détecteurs appropriés.
Les antennes extérieures AX permettent de déterminer une première zone de communication avec le badge ID pour autoriser un accès véhicule. Cette zone est définie par le champ magnétique émis par lesdites antennes AX. Les antennes extérieures AX doivent donc garantir au moins une distance minimale à partir de laquelle le badge ID est autorisé à accéder au véhicule. Les antennes intérieures AI permettent de déterminer une deuxième zone ZO de communication avec le badge ID pour autoriser un démarrage. Cette zone est définie par le champ magnétique émis par lesdites antennes AI. Les antennes intérieures AI doivent donc garantir une zone à partir de laquelle le badge ID est autorisé à démarrer le véhicule, cette zone correspondant dans l'exemple pris à l'habitacle VH du véhicule V. On notera que cette zone ZO varie en fonction des variations du champ magnétique émis Be, ces variations étant dues notamment aux perturbations environnantes telles que des variations de températures, des variations de tension batterie du véhicule etc. qui influent sur les composants du dispositif d'antennes. On notera que en pratique, le champ magnétique émis par ces antennes intérieures AI a une couverture plus grande que l'habitacle VH mais est limité par la carcasse métallique de l'habitacle VH du véhicule V et déborde par les ouvertures des fenêtres.
La Figure 2 illustre la position du badge ID par rapport à une antenne A, ici intérieure AI, du dispositif d'antennes en fonction du champ magnétique Be de cette antenne A. Elle illustre donc l'évolution du champ magnétique Br reçu correspondant. On peut voir que plus le badge ID se situe loin d'une antenne A émettant un champ magnétique émis Be, plus le champ magnétique reçu Br correspondant est faible. Lorsque le badge ID se trouve au même endroit que l'antenne A, le champ magnétique reçu Br est théoriquement égal au champ magnétique émis Be. Sur la Figure 2 est représenté un champ magnétique nominal BO correspondant à la zone ZO de communication dans laquelle un badge ID peut communiquer avec une antenne A et le dispositif d'émission-réception DER. Lorsque le badge ID est en dehors de cette zone ZO (le champ magnétique reçu Br est inférieur au champ magnétique reçu nominal BO), le badge ID ne répond pas aux signaux envoyés par le dispositif d'antennes A ou envoie une réponse radiofréquence RF volontairement erroné. Cela veut dire qu'il se situe à l'extérieur de l'habitacle VH du véhicule. Dans le cas contraire, il répond en émettant un signal radiofréquence RF. On notera que ce champ magnétique nominal BO est déterminé de manière à éviter les champs magnétiques parasites Bb provenant des perturbations radio comme illustré sur la Figure 2 et sa valeur est supérieure à la valeur des champs magnétiques parasites. La puissance des signaux basses fréquence BF est définie par le courant alternatif I alimentant le dispositif d'antennes A, cette puissance déterminant le champ magnétique émis Be.
On rappelle que le champ magnétique émis Be du dispositif d'antennes A définit la zone ZO que l'on a appelé également zone de communication.
1 d3
Dans un mode de réalisation non limitatif, le dispositif d'antennes A est accordé à la fréquence d'émission (la fréquence étant par exemple de 125kHz). Cela permet d'émettre un champ magnétique plus important en amplitude à la fréquence d'émission, et d'avoir un filtre passe-bande FL. Le filtre passe-bande FL permet ainsi de réduire l'amplitude des harmoniques h (sauf pour l'harmonique de rang 1). En effet, à l'émission, du côté du dispositif d'antennes A, la valeur du courant I circulant dans le dispositif d'antennes A est égale à la somme des harmoniques h qui sont présentes dans la bande passante du filtre compris dans le dispositif d'antennes A. Selon la sélectivité du filtre, on aura toutes les harmoniques si le filtre est large bande tel que représenté en FLl sur la Figure 3, ou une partie seulement des harmoniques si le filtre est bande étroite tel que représenté en FL2 sur la Figure 3. A l'émission donc, la valeur du champ émis Be est fonction de ce courant Irm avec des harmoniques h.
A la réception, du côté du badge ID, la valeur du courant qui est prise en compte est égale uniquement à l'harmonique hl de rang 1 appelé fondamental. En effet, le champ magnétique reçu Br correspond au champ magnétique émis Be à la valeur du fondamental uniquement et non à la somme des harmoniques.
Aussi, afin de déterminer précisément le champ magnétique émis Be par le dispositif d'antennes A correspondant au champ magnétique reçu par le badge ID, il est donc nécessaire de mesurer précisément la puissance émise Pe correspondante sur l'harmonique hl de rang 1. On doit par conséquent effectuer une mesure de courant I de manière à éliminer le plus possible les harmoniques autres que le fondamental hl . Ceci est effectué au moyen du dispositif d'émission-réception DER de signaux basse fréquence illustré à la Figure 4 qui permet de fournir une tension carré symétrique UO en entrée du dispositif d'antennes A, cette dernière permettant de supprimer des courants parasites dues aux autres harmoniques comme décrit plus loin. Le dispositif d'émission-réception DER comporte :
- un dispositif de commande DC,
- un étage de puissance P,
- un étage de mesure de courant C,
- un récepteur RE de signaux pour notamment recevoir une réponse du badge d'identification ID lorsqu'il est à l'intérieur de la zone de communication ZO. et coopère avec le dispositif d'antenne(s) A et avec le badge d'identification
ID, le tout formant un système d'émission-réception SYS.
On notera que selon un mode de réalisation non limitatif, tous les éléments du dispositif d'émission-réception DER se trouvent sur une même carte électronique. Cela permet un dialogue plus rapide et plus fiable entre ces différents éléments. Au contraire, lorsque ces éléments sont séparés, les liaisons de communication les reliant peuvent être plus facilement perturbés et les débits de ces liaisons peuvent être plus faibles.
Le badge d'identification ID étant connu de l'homme du métier, il n'est pas décrit ici.
Les autres éléments sont décrits plus en détail ci-après.
• Le dispositif d'antennes A. Dans un premier mode de réalisation non limitatif, le dispositif d'antennes A est composé d'un circuit RL. Ce dernier nécessite d'amplifier la tension d'alimentation du dispositif d'antennes pour permettre une émission de champ magnétique approprié. Dans un deuxième mode de réalisation non limitatif, le dispositif d'antennes A est composé d'un circuit RLC. Ce dernier permet à partir de la tension d'alimentation du dispositif d'antennes A, qui est ici la tension batterie Ubat du véhicule V, d'amplifier directement le courant I circulant dans le dispositif d'antennes A, pour permettre une émission de champ magnétique approprié, sans utiliser d'asservissement en tension. C'est donc une solution plus simple à mettre en oeuvre pour obtenir une amplification. Ce circuit RLC fait également office de filtre passe-bande comme vu précédemment.
• Le dispositif de commande DC comporte notamment :
- un émetteur EM de signaux pour notamment :
- émettre des signaux de commande en direction de l'étage de puissance P pour fournir la tension d'alimentation Ubat au dispositif d'antennes A,
- un organe de calcul CALC (par exemple un microprocesseur ou un ASIC) permettant notamment d'adapter le rapport cyclique αO de la tension symétrique UO appliquée au dispositif d'antennes A.
Dans un mode de réalisation non limitatif, le dispositif de commande DC peut en outre comporter le récepteur RE de signaux pour notamment recevoir une réponse du badge d'identification ID lorsqu'il est à l'intérieur de la zone de communication ZO.
• L'étage de puissance P. II fournit la tension carrée symétrique UO et permet une mesure par la suite du courant I circulant dans le dispositif d'antennes A en diminuant les effets des courants parasites dues aux harmoniques et donc permet par la suite une génération précise et une mesure précise de la puissance émise Pe du dispositif d'antennes A correspondante sur l'harmonique hl de rang 1 en supprimant des courants parasites dues aux autres harmoniques. Il est illustré à la Figure 5. Dans un mode de réalisation non limitatif, il fonctionne à pont en H avec commande à pont complet et est commandé par le dispositif de commande DC.
II comporte en particulier quatre interrupteurs Sl à S4.Ces interrupteurs sont dans un exemple non limitatif des transistors type MOSFET.
Afin de fournir la tension carrée symétrique UO, l'étage de puissance P fonctionne de la manière suivante tel qu'illustré à la Figure 6.
- Entre les intervalles tO-tl et t2-t3, soit tous les interrupteurs sont ouverts, soit les interrupteurs S2 et S4 sont fermés, soit les interrupteurs Sl et S3 sont fermés, les autres étant ouverts. La tension UO est nulle.
- Entre l'intervalle tl-t2, les interrupteurs S1-S4 sont fermés, les autres étant ouverts. La tension UO est positive.
- Entre l'intervalle t3-t4, les interrupteurs S2-S3 sont fermés, les autres étant ouverts. La tension UO est négative.
Les deux diagonales du pont S2-S3 et S1-S4 sont commandées par deux signaux de commande retardés l'un par rapport à l'autre d'une demi-période permettant ainsi d'obtenir la symétrie.
On obtient ainsi la tension carré symétrique UO de rapport cyclique αO voulue. Comme on peut le voir sur la Figure 6, la tension UO est symétrique par rapport au point PT, et dans ce cas, les harmoniques de rang pair du courant mesuré Irm ont été supprimées. En effet, lors d'une représentation en fréquence, une harmonique de rang n est représentée par le terme ancosnωt + bn sinnωt.
La tension UC est une fonction impaire, soit f(-x) = -f(x), son développement en série de Fourier ne comporte donc que des termes en sinus, les coefficients an étant nuls.
Ainsi, en sachant que Cn = I j Jr f(x) e "J-nωx dx et Cn = I 2 (an-jbn) on obtient Cn = j (2E/πn).sin (nπαO).sin(n(π/2)) et
bn = (4E/πn).sin (nπαO).sin(n(π/2))
avec ω = 2π/T, avec T la période et E l'amplitude de la tension d'alimentation Ubat du dispositif d'antennes.
La série de Fourier correspondant au signal tension symétrique UO est donc égale à : f(x) = Σ (4E/πn).sin (nπαθ).sin(n(π/2)).sin nωx, avec n = 1, ...∞, soit f(χ) = Σ (4E/(π(2p+l))).sin ((2p+l) παθ).sin((2p+l)(π/2)).sin (2p+l) ωx, avec p = 0, ...,∞ ce qui donne le spectre avec les harmoniques à la Figure 7.
La valeur du fondamental hl est donnée par : hl = (4E/π) .sin παO. sin ωx
ce qui donne le spectre avec les harmoniques à la Figure 6.
Par ailleurs, on notera que le fait d'avoir une tension carrée évite une dissipation d'énergie dans les transistors de l'étage de puissance P. En effet, il existe une consommation d'énergie calorifique uniquement lors des phases de transitions contrairement à une tension type sinusoïdale où la consommation est nettement plus importante. Cet étage de puissance P ne chauffe donc pas trop.
On notera que la valeur du rapport cyclique αO ajustable permet de régler la valeur de la puissance émise Pe.
Ainsi, la tension symétrique carré UO permet d'une part de régler la puissance émise Pe à une valeur voulue correspondant à la zone de communication ZO voulue (et donc de générer de façon précise la puissance émise Pe) et d'autre part d'obtenir une mesure précise de la puissance réelle émise Pe correspondant à la puissance reçue effective du badge ID car les harmoniques de rang pair sont supprimées.
Dans une variante non limitative, la tension UO comporte un rapport cyclique de 1/3 qui correspond à un décalage de π /3 du signal tension UC. Comme on peut le voir à la Figure 7, dans ce cas, les harmoniques de rang multiple de 3 du courant mesuré Irm ont été supprimées en plus des harmoniques de rang pair ce qui limite considérablement le nombre d'harmonique à l'intérieur de la bande passante du filtre RLC du dispositif d'antennes A. Il ne reste plus que les harmoniques de rang 1 et 5, cette dernière étant négligeable.
• L'étage de mesure de courant C.
Dans un premier mode de réalisation, l'étage ou dispositif de mesure de courant est un détecteur d'amplitude crête. C'est un moyen simple pour mesurer le courant I circulant dans le dispositif d'antennes A. Il permet de mesurer l'amplitude maximale du courant, ce qui suffit car les harmoniques gênantes ont été supprimées par la commande symétrique et le rapport cyclique de 1/3. Ainsi, cette mesure va donner la valeur du fondamental de ce courant I. Il est composé de manière classique d'une diode et d'une capacité tel qu'illustré à la Figure 4. II envoie la valeur du courant mesuré Irm à l'organe de calcul CALC du dispositif de commande DC tel qu'illustré à la Figure 4. Bien entendu d'autres moyens de mesure du courant peuvent être utilisés. Par exemple, le dispositif de mesure de courant C peut être un dispositif d'échantillonnage numérique ou encore un dispositif qui effectue un redressement de courant puis une moyenne du courant redressé.
Ainsi, grâce au dispositif d'émission-réception DER décrit, on obtient une mesure de courant Irm correspondant à la valeur du fondamental du courant I circulant dans le dispositif d'antennes A. Le courant mesuré Irm est donc dans ce cas représentatif de l'amplitude du fondamental du champ magnétique émis. Par conséquent, on peut en déduire la puissance émise Pe (et donc un champ magnétique émis Be) par le dispositif d'antennes A correspondant précisément à la puissance reçue Pr en sachant que le champ magnétique émis Be est proportionnel au courant mesuré Irm.
On rappelle que de manière connue de l'homme du métier, un champ magnétique B comporte trois composantes dans un espace orthogonal x, y, z telles qu'illustrées à la Figure 8 qui sont les suivantes.
Bμ= (Ae Im/2πd3) * cos θ,
Bθ = (Ae Im/4πd3) * sin θ, et Bφ = 0. avec Ae la surface effective d'une antenne par laquelle s'écoule le champ magnétique B, d la distance qui permet une mesure du champ magnétique B à partir du centre de l'antenne.
On rappelle également que Ae = Nw*A*μrod avec Nw le nombre de spires dans l'antenne, A la section transversale de la ferrite des spires, et μrod la perméabilité apparente de la ferrite.
On connaît ainsi précisément la puissance Pe à l'émission ce qui va permettre de contrôler la zone de communication ZO entre le dispositif d'antennes A et le badge ID. On notera que l'on peut utiliser le dispositif d'émission-réception DER décrit pour une application dans laquelle le badge ID est initialisé au préalable avec un seuil SO fixe correspondant à un champ magnétique reçu fixe (on contrôle la zone de communication ZO à l'émission) ou pour une application dans laquelle le badge ID est initialisé au préalable avec un seuil SO correspondant à un champ magnétique reçu variable (contrôle de la zone de communication ZO à la réception).
Dans le premier cas (seuil fixe), lorsque le rapport cyclique αO de la tension symétrique UO est variable, il suffit d'effectuer un asservissement en courant pour déterminer le rapport cyclique à appliquer par la suite qui va permettre d'obtenir un courant circulant dans le dispositif d'antennes correspondant au seuil fixe SO du badge ID. Il en est de même avec un rapport cyclique αO qui est au début égal à 1/3.
Dans le deuxième cas (seuil variable), on fixe le rapport cyclique αO de manière à obtenir un courant théorique Ith correspondant à la zone de communication nominale. Après chaque mesure du courant réel I circulant dans le dispositif d'antennes correspondant à la zone de communication nominale, il suffit de calculer le seuil SO à partir de ce courant réel et de l'envoyer au badge ID. Une comparaison s'effectue entre le champ magnétique reçu par le badge ID qui se trouve à une certaine position et le seuil réactualisé. Dans ce deuxième cas également, lorsque le rapport cyclique αO est égal à 1/3, il suffit de régler le courant théorique Ith correspondant à la zone de communication nominale avec le filtre RLC ou RL du dispositif d'antennes, par exemple en prenant une valeur de résistance R adéquate. Puis, le reste (mesure du courant réel, envoi du seuil correspondant au badge ID, comparaison avec le seuil réactualisé) s'effectue comme décrit précédemment.
Ainsi, la mesure précise du courant circulant dans le dispositif d'antennes A permet d'obtenir une mesure précise de la puissance réelle émise Pe (qui prend en compte les possibles variations de son impédance Z) et de régler le dispositif d'antennes sur une puissance émise Pe correspondant exactement au seuil SO du badge ID lorsqu'il se trouve à la limite de la zone de communication ZO. Le dispositif d'antennes A et le badge ID peuvent ainsi communiquer sans risque d'erreur. Et dans le cadre d'une application tel qu'un système mains libres, la détection du badge ID peut s'effectuer sans erreurs.
On notera que la Figure 8 illustre le procédé mis en oeuvre par le dispositif d'émission-réception DER, à savoir : - envoyer un signal tension symétrique UO en entrée du dispositif d'antennes A pour lui fournir un courant permettant de générer le champ magnétique émis, et
- mesurer le courant circulant dans le dispositif d'antennes A.
On notera que les exemples ont été pris avec un dispositif d'antennes A émettant des signaux basse fréquence et un objet d'identification ID émettant des signaux radiofréquence, mais bien entendu d'autres exemples peuvent être pris avec des émissions de signaux à d'autres fréquences.
Ainsi l'invention présente les avantages suivants :
- elle permet de déterminer précisément la valeur de la puissance émise et donc la valeur du champ magnétique émis correspondant au champ magnétique reçu,
- cette détermination s'effectue simplement au moyen d'une mesure de courant et évite ainsi un asservissement en tension complexe.

Claims

Revendications
1. Dispositif d'émission-réception (DER) de signaux apte à coopérer avec un dispositif d'antenne(s) (A) apte à émettre un champ magnétique (Be), caractérisé en ce qu'il comporte pour l'émission :
- un étage de puissance (P) pour envoyer un signal tension carré symétrique (UO) en entrée du dispositif d'antenne(s) (A) pour lui fournir un courant permettant de générer le champ magnétique émis (Be), et
- un étage de mesure de courant (C) pour mesurer le courant (I) circulant dans le dispositif d'antenne(s) (A).
2. Dispositif d'émission-réception (DER) selon la revendication 1, caractérisé en ce que le signal tension (UO) comporte un rapport cyclique de 1/3.
3. Dispositif d'émission-réception (DER) selon l'une des revendication 1 ou 2, caractérisé en ce que l'étage de puissance (P) est avec commande à pont complet.
4. Dispositif d'émission-réception(DER) selon l'une quelconque des revendications précédentes, caractérisé en ce que l'étage de mesure (C) est un détecteur crête (C).
5. Dispositif d'émission-réception (DER) selon l'une quelconque des revendications précédentes, caractérisé en ce que le dispositif d'antenne(s) (A) est un circuit RLC.
6. Système d'émission-réception (SYS) de signaux comprenant un dispositif d'antenne(s) (A) et un dispositif d'émission-réception (DER) selon l'une quelconque des revendications précédentes, ce dernier étant apte à coopérer avec le dispositif d'antenne(s) (A).
7. Système d'émission-réception (SYS) selon la revendication précédente, caractérisé en ce que le dispositif d'antenne(s) (A) est un circuit RLC.
8. Procédé d'émission-réception de signaux en direction d'un dispositif d'antenne(s) (A), caractérisé en ce qu'il comporte les étapes de : - envoyer un signal tension carré symétrique (UO) en entrée du dispositif d'antenne(s) (A) pour lui fournir un courant permettant de générer le champ magnétique émis (Be), et - mesurer le courant circulant dans le dispositif d'antenne(s).
9. Véhicule automobile (V) caractérisé en ce qu'il comporte un dispositif d'émission-réception (DER) selon l'une quelconque des revendications précédentes 1 à 5 et apte à coopérer avec un dispositif d'antenne(s) (A).
PCT/EP2007/064418 2006-12-22 2007-12-21 Dispositif d'emission-reception de signaux WO2008077919A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009542087A JP5485698B2 (ja) 2006-12-22 2007-12-21 信号送信/受信装置
US12/520,788 US8289012B2 (en) 2006-12-22 2007-12-21 Signal transmission/reception device
EP07858034A EP2115885B1 (fr) 2006-12-22 2007-12-21 Dispositif d'emission-reception de signaux

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0611323 2006-12-22
FR0611323A FR2910749B1 (fr) 2006-12-22 2006-12-22 Dispositif d'emission-reception de signaux pour vehicule automobile

Publications (1)

Publication Number Publication Date
WO2008077919A1 true WO2008077919A1 (fr) 2008-07-03

Family

ID=38179638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/064418 WO2008077919A1 (fr) 2006-12-22 2007-12-21 Dispositif d'emission-reception de signaux

Country Status (5)

Country Link
US (1) US8289012B2 (fr)
EP (1) EP2115885B1 (fr)
JP (1) JP5485698B2 (fr)
FR (1) FR2910749B1 (fr)
WO (1) WO2008077919A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009068758A1 (fr) * 2007-11-26 2009-06-04 Commissariat A L'energie Atomique Architecture de telemesure en champ proche pour capteur passif distant de type {r,l,c}
US20200012008A1 (en) * 2018-07-08 2020-01-09 Wayne State University Parity-time (pt)-symmetric wireless telemetric sensors and systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000044077A2 (fr) * 1999-01-21 2000-07-27 Bolt, Inc. Systeme permettant de mesurer l'impedance de transfert
US6208249B1 (en) * 1997-09-03 2001-03-27 Nec Corporation Passenger detection system
WO2003055005A1 (fr) * 2001-12-21 2003-07-03 Exaqt S.A. De C.V. Dispositif pour le pilotage des antennes d'émission des systèmes de détection électromagnétiques
US20040090234A1 (en) * 2002-11-08 2004-05-13 Macune Don T. Apparatus and method for resistivity well logging
GB2415785A (en) * 2004-07-02 2006-01-04 Ohm Ltd Electromagnetic surveying

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3477775B2 (ja) * 1993-12-24 2003-12-10 株式会社デンソー El表示装置
US6161070A (en) * 1996-02-23 2000-12-12 Nec Home Electronics, Inc. Passenger detection system
JP3329370B2 (ja) * 1997-09-03 2002-09-30 日本電気株式会社 乗員検知システム
JP3648396B2 (ja) * 1998-12-02 2005-05-18 トヨタ自動車株式会社 車両用のドアハンドル
US6879300B2 (en) * 2000-02-08 2005-04-12 Cms Partners, Inc. Wireless boundary proximity determining and animal containment system and method
JP2006180031A (ja) * 2004-12-21 2006-07-06 Hitachi Metals Ltd 送信アンテナおよびこれを備えた送信装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6208249B1 (en) * 1997-09-03 2001-03-27 Nec Corporation Passenger detection system
WO2000044077A2 (fr) * 1999-01-21 2000-07-27 Bolt, Inc. Systeme permettant de mesurer l'impedance de transfert
WO2003055005A1 (fr) * 2001-12-21 2003-07-03 Exaqt S.A. De C.V. Dispositif pour le pilotage des antennes d'émission des systèmes de détection électromagnétiques
US20040090234A1 (en) * 2002-11-08 2004-05-13 Macune Don T. Apparatus and method for resistivity well logging
GB2415785A (en) * 2004-07-02 2006-01-04 Ohm Ltd Electromagnetic surveying

Also Published As

Publication number Publication date
EP2115885A1 (fr) 2009-11-11
FR2910749B1 (fr) 2010-12-17
JP5485698B2 (ja) 2014-05-07
US20100148749A1 (en) 2010-06-17
US8289012B2 (en) 2012-10-16
EP2115885B1 (fr) 2012-11-07
FR2910749A1 (fr) 2008-06-27
JP2010514303A (ja) 2010-04-30

Similar Documents

Publication Publication Date Title
EP2143080B1 (fr) Procede de detection d'un objet d'identification dans un vehicule
EP1001117B1 (fr) Système pour sécuriser une transmission bidirectionnelle de données pour l'accès a un espace clos, en particulier pour l'accès a un véhicule
EP2523144B1 (fr) Procédé de détection d'un récépteur sans contact
US11237244B2 (en) Measuring angle of arrival on a constant and/or pre-known part of a BLE packet
FR3049065A1 (fr) Procede de determination de la position d'un equipement portable d'utilisateur autour d'un vehicule et dispositif de localisation associe
FR2814842A1 (fr) Procede d'emission et de reception, notamment pour la detection d'un generateur d'identification
FR2826731A1 (fr) Procede de localisation de capteurs montes chacun sur une roue de vehicule.
EP2115885B1 (fr) Dispositif d'emission-reception de signaux
EP1058214A1 (fr) Procédé de transmission bidirectionnelle de données, et système pour sa mise en oeuvre
EP0570289A1 (fr) Dispositif de détection du passage d'un mobile, à répondeur passif
FR2834344A1 (fr) Procede de detection d'un badge a l'interieur d'un vehicule equipe d'un systeme mains libres
WO2018154211A1 (fr) Détection de présence d'une main humaine sur un ouvrant de véhicule
FR3047085A1 (fr) Procede de localisation par ondes radio ultra haute frequence d'un dispositif portable d'acces et/ou de demarrage "mains libres" a un vehicule automobile et dispositif de localisation associe
EP1495541B1 (fr) Procede d'interpretation d'un ordre radio-electrique
EP2125450B1 (fr) Procede et systeme de detection d'un objet d'identification dans un vehicule
EP1363353B1 (fr) Véhicule muni d'un dispositif de transmission de signaux
WO2022269071A1 (fr) Procede de detection d'ouverture des ouvrants d'un vehicule automobile et dispositif de detection associe
EP1061211B1 (fr) Procédé pour sécuriser une transmission bidirectionnelle de données avec un identifiant et système pour sa mise en oeuvre
WO2023066736A1 (fr) Procédé d'activation d'une fonction d'un véhicule par ultra large bande avec un équipement portable d'utilisateur, système et dispositif d'activation d'une fonction associés
FR3088793A1 (fr) Procede et dispositif de detection d'un dispositif portable pour acces " mains libres " a un vehicule automobile
EP1178169B1 (fr) Procédé anti-piratage de commande à distance pour véhicule automobile et système pour sa mise en oeuvre
WO2022048817A1 (fr) Procédé d'activation d'une fonction d'un véhicule par ultra large bande avec un équipement portable d'utilisateur, système et dispositif d'activation d'une fonction associés
FR3007877A1 (fr) Procede de securisation d'un systeme d'acces et/ou de demarrage main libre d'un vehicule utilisant des signaux de test
FR2791834A1 (fr) Systeme pour securiser une transmission bidirectionnelle de donnees entre un identifiant et un identifieur
FR2834398A1 (fr) Procede d'emission d'une requete vers un badge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07858034

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007858034

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009542087

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12520788

Country of ref document: US