WO2008076639A1 - Fluorochemical urethane compounds having pendent silyl groups - Google Patents
Fluorochemical urethane compounds having pendent silyl groups Download PDFInfo
- Publication number
- WO2008076639A1 WO2008076639A1 PCT/US2007/086446 US2007086446W WO2008076639A1 WO 2008076639 A1 WO2008076639 A1 WO 2008076639A1 US 2007086446 W US2007086446 W US 2007086446W WO 2008076639 A1 WO2008076639 A1 WO 2008076639A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- compound
- groups
- alkylene
- compounds
- Prior art date
Links
- 150000003673 urethanes Chemical class 0.000 title abstract description 13
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 title description 2
- 150000001875 compounds Chemical class 0.000 claims abstract description 76
- -1 stain Substances 0.000 claims abstract description 71
- 239000000203 mixture Substances 0.000 claims abstract description 70
- 239000008199 coating composition Substances 0.000 claims abstract description 18
- 230000000269 nucleophilic effect Effects 0.000 claims description 38
- 125000002947 alkylene group Chemical group 0.000 claims description 36
- 239000005056 polyisocyanate Substances 0.000 claims description 31
- 229920001228 polyisocyanate Polymers 0.000 claims description 31
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 claims description 28
- 125000000217 alkyl group Chemical group 0.000 claims description 26
- NIXOWILDQLNWCW-UHFFFAOYSA-M acrylate group Chemical group C(C=C)(=O)[O-] NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 24
- 125000004432 carbon atom Chemical group C* 0.000 claims description 24
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 21
- 229910052731 fluorine Inorganic materials 0.000 claims description 21
- 239000011737 fluorine Substances 0.000 claims description 21
- 239000002904 solvent Substances 0.000 claims description 19
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 17
- 125000005010 perfluoroalkyl group Chemical group 0.000 claims description 16
- 125000003118 aryl group Chemical group 0.000 claims description 14
- 239000007795 chemical reaction product Substances 0.000 claims description 14
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical group [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 claims description 13
- 238000006845 Michael addition reaction Methods 0.000 claims description 12
- 229910000077 silane Inorganic materials 0.000 claims description 10
- 238000006957 Michael reaction Methods 0.000 claims description 8
- 125000006551 perfluoro alkylene group Chemical group 0.000 claims description 8
- 229920005862 polyol Polymers 0.000 claims description 8
- 125000000732 arylene group Chemical group 0.000 claims description 6
- 150000003077 polyols Chemical class 0.000 claims description 6
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims 2
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 claims 1
- 229920001774 Perfluoroether Polymers 0.000 claims 1
- 125000004423 acyloxy group Chemical group 0.000 claims 1
- 229910052736 halogen Inorganic materials 0.000 claims 1
- 150000002367 halogens Chemical class 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 16
- 239000000919 ceramic Substances 0.000 abstract description 8
- 239000011521 glass Substances 0.000 abstract description 6
- 239000005871 repellent Substances 0.000 abstract description 5
- 230000002940 repellent Effects 0.000 abstract description 4
- 239000002689 soil Substances 0.000 abstract description 3
- 238000000576 coating method Methods 0.000 description 41
- 239000011248 coating agent Substances 0.000 description 27
- 238000006243 chemical reaction Methods 0.000 description 25
- CBOIHMRHGLHBPB-UHFFFAOYSA-N hydroxymethyl Chemical compound O[CH2] CBOIHMRHGLHBPB-UHFFFAOYSA-N 0.000 description 22
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 21
- 238000012360 testing method Methods 0.000 description 19
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 16
- 239000004417 polycarbonate Substances 0.000 description 16
- 229920000515 polycarbonate Polymers 0.000 description 16
- 238000000034 method Methods 0.000 description 15
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 14
- 239000012299 nitrogen atmosphere Substances 0.000 description 14
- 238000002360 preparation method Methods 0.000 description 14
- JYVATDLODMRIPD-UHFFFAOYSA-N ethyl carbamate silane Chemical compound [SiH4].CCOC(N)=O JYVATDLODMRIPD-UHFFFAOYSA-N 0.000 description 12
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 12
- 239000007787 solid Substances 0.000 description 12
- 239000012948 isocyanate Substances 0.000 description 11
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 11
- 239000000463 material Substances 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 239000003921 oil Substances 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- 125000001931 aliphatic group Chemical group 0.000 description 9
- 239000003054 catalyst Substances 0.000 description 9
- 239000010702 perfluoropolyether Substances 0.000 description 9
- 239000011541 reaction mixture Substances 0.000 description 9
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical class CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 8
- UKLDJPRMSDWDSL-UHFFFAOYSA-L [dibutyl(dodecanoyloxy)stannyl] dodecanoate Chemical compound CCCCCCCCCCCC(=O)O[Sn](CCCC)(CCCC)OC(=O)CCCCCCCCCCC UKLDJPRMSDWDSL-UHFFFAOYSA-L 0.000 description 8
- 239000012975 dibutyltin dilaurate Substances 0.000 description 8
- 230000008034 disappearance Effects 0.000 description 8
- 125000001153 fluoro group Chemical group F* 0.000 description 8
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 8
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 7
- 238000003760 magnetic stirring Methods 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 210000002268 wool Anatomy 0.000 description 7
- TZZGHGKTHXIOMN-UHFFFAOYSA-N 3-trimethoxysilyl-n-(3-trimethoxysilylpropyl)propan-1-amine Chemical compound CO[Si](OC)(OC)CCCNCCC[Si](OC)(OC)OC TZZGHGKTHXIOMN-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 125000000524 functional group Chemical group 0.000 description 6
- DCAYPVUWAIABOU-UHFFFAOYSA-N hexadecane Chemical compound CCCCCCCCCCCCCCCC DCAYPVUWAIABOU-UHFFFAOYSA-N 0.000 description 6
- 238000002329 infrared spectrum Methods 0.000 description 6
- 150000002513 isocyanates Chemical class 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 5
- 125000002723 alicyclic group Chemical group 0.000 description 5
- 239000002585 base Substances 0.000 description 5
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 description 5
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 5
- ZFSLODLOARCGLH-UHFFFAOYSA-N isocyanuric acid Chemical compound OC1=NC(O)=NC(O)=N1 ZFSLODLOARCGLH-UHFFFAOYSA-N 0.000 description 5
- DVYVMJLSUSGYMH-UHFFFAOYSA-N n-methyl-3-trimethoxysilylpropan-1-amine Chemical compound CNCCC[Si](OC)(OC)OC DVYVMJLSUSGYMH-UHFFFAOYSA-N 0.000 description 5
- 125000000962 organic group Chemical group 0.000 description 5
- KAVGMUDTWQVPDF-UHFFFAOYSA-N perflubutane Chemical compound FC(F)(F)C(F)(F)C(F)(F)C(F)(F)F KAVGMUDTWQVPDF-UHFFFAOYSA-N 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 4
- 238000005481 NMR spectroscopy Methods 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 238000003618 dip coating Methods 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- 239000010410 layer Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 4
- MRIKSZXJKCQQFT-UHFFFAOYSA-N (3-hydroxy-2,2-dimethylpropyl) prop-2-enoate Chemical compound OCC(C)(C)COC(=O)C=C MRIKSZXJKCQQFT-UHFFFAOYSA-N 0.000 description 3
- FUVKFLJWBHVMHX-UHFFFAOYSA-N 1,1,2,2,3,3,4,4,4-nonafluorobutane-1-sulfonamide Chemical compound NS(=O)(=O)C(F)(F)C(F)(F)C(F)(F)C(F)(F)F FUVKFLJWBHVMHX-UHFFFAOYSA-N 0.000 description 3
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 3
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 3
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 241001422033 Thestylus Species 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 3
- TUOBEAZXHLTYLF-UHFFFAOYSA-N [2-(hydroxymethyl)-2-(prop-2-enoyloxymethyl)butyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(CC)COC(=O)C=C TUOBEAZXHLTYLF-UHFFFAOYSA-N 0.000 description 3
- HVVWZTWDBSEWIH-UHFFFAOYSA-N [2-(hydroxymethyl)-3-prop-2-enoyloxy-2-(prop-2-enoyloxymethyl)propyl] prop-2-enoate Chemical compound C=CC(=O)OCC(CO)(COC(=O)C=C)COC(=O)C=C HVVWZTWDBSEWIH-UHFFFAOYSA-N 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- 125000003277 amino group Chemical group 0.000 description 3
- OHJMTUPIZMNBFR-UHFFFAOYSA-N biuret Chemical compound NC(=O)NC(N)=O OHJMTUPIZMNBFR-UHFFFAOYSA-N 0.000 description 3
- 235000013877 carbamide Nutrition 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000012141 concentrate Substances 0.000 description 3
- 230000007062 hydrolysis Effects 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000004576 sand Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 150000004756 silanes Chemical class 0.000 description 3
- 239000004575 stone Substances 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- 150000003606 tin compounds Chemical class 0.000 description 3
- GFNDFCFPJQPVQL-UHFFFAOYSA-N 1,12-diisocyanatododecane Chemical compound O=C=NCCCCCCCCCCCCN=C=O GFNDFCFPJQPVQL-UHFFFAOYSA-N 0.000 description 2
- AGJCSCSSMFRMFQ-UHFFFAOYSA-N 1,4-bis(2-isocyanatopropan-2-yl)benzene Chemical compound O=C=NC(C)(C)C1=CC=C(C(C)(C)N=C=O)C=C1 AGJCSCSSMFRMFQ-UHFFFAOYSA-N 0.000 description 2
- SGUVLZREKBPKCE-UHFFFAOYSA-N 1,5-diazabicyclo[4.3.0]-non-5-ene Chemical compound C1CCN=C2CCCN21 SGUVLZREKBPKCE-UHFFFAOYSA-N 0.000 description 2
- SYNPRNNJJLRHTI-UHFFFAOYSA-N 2-(hydroxymethyl)butane-1,4-diol Chemical class OCCC(CO)CO SYNPRNNJJLRHTI-UHFFFAOYSA-N 0.000 description 2
- BHWUCEATHBXPOV-UHFFFAOYSA-N 2-triethoxysilylethanamine Chemical compound CCO[Si](CCN)(OCC)OCC BHWUCEATHBXPOV-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- WQDUMFSSJAZKTM-UHFFFAOYSA-N Sodium methoxide Chemical compound [Na+].[O-]C WQDUMFSSJAZKTM-UHFFFAOYSA-N 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- 238000012644 addition polymerization Methods 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 125000000129 anionic group Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 125000005518 carboxamido group Chemical group 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 125000001309 chloro group Chemical group Cl* 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- WJTCGQSWYFHTAC-UHFFFAOYSA-N cyclooctane Chemical group C1CCCCCCC1 WJTCGQSWYFHTAC-UHFFFAOYSA-N 0.000 description 2
- 125000005442 diisocyanate group Chemical group 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 150000002118 epoxides Chemical class 0.000 description 2
- 238000007306 functionalization reaction Methods 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 125000005842 heteroatom Chemical group 0.000 description 2
- PGFXOWRDDHCDTE-UHFFFAOYSA-N hexafluoropropylene oxide Chemical compound FC(F)(F)C1(F)OC1(F)F PGFXOWRDDHCDTE-UHFFFAOYSA-N 0.000 description 2
- 125000004836 hexamethylene group Chemical group [H]C([H])([*:2])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[*:1] 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000006384 oligomerization reaction Methods 0.000 description 2
- 150000002921 oxetanes Chemical class 0.000 description 2
- 125000005429 oxyalkyl group Chemical group 0.000 description 2
- 125000005702 oxyalkylene group Chemical group 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 150000003141 primary amines Chemical class 0.000 description 2
- 239000011253 protective coating Substances 0.000 description 2
- 238000007151 ring opening polymerisation reaction Methods 0.000 description 2
- 238000007142 ring opening reaction Methods 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 229940124530 sulfonamide Drugs 0.000 description 2
- 150000003456 sulfonamides Chemical class 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 125000000383 tetramethylene group Chemical group [H]C([H])([*:1])C([H])([H])C([H])([H])C([H])([H])[*:2] 0.000 description 2
- UMGDCJDMYOKAJW-UHFFFAOYSA-N thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 2
- 239000013638 trimer Substances 0.000 description 2
- WYTZZXDRDKSJID-UHFFFAOYSA-N (3-aminopropyl)triethoxysilane Chemical compound CCO[Si](OCC)(OCC)CCCN WYTZZXDRDKSJID-UHFFFAOYSA-N 0.000 description 1
- LGPAKRMZNPYPMG-UHFFFAOYSA-N (3-hydroxy-2-prop-2-enoyloxypropyl) prop-2-enoate Chemical compound C=CC(=O)OC(CO)COC(=O)C=C LGPAKRMZNPYPMG-UHFFFAOYSA-N 0.000 description 1
- KYVBNYUBXIEUFW-UHFFFAOYSA-N 1,1,3,3-tetramethylguanidine Chemical compound CN(C)C(=N)N(C)C KYVBNYUBXIEUFW-UHFFFAOYSA-N 0.000 description 1
- MYWOJODOMFBVCB-UHFFFAOYSA-N 1,2,6-trimethylphenanthrene Chemical compound CC1=CC=C2C3=CC(C)=CC=C3C=CC2=C1C MYWOJODOMFBVCB-UHFFFAOYSA-N 0.000 description 1
- ZIZJPRKHEXCVLL-UHFFFAOYSA-N 1,3-bis(6-isocyanatohexyl)-1,3-diazetidine-2,4-dione Chemical compound O=C=NCCCCCCN1C(=O)N(CCCCCCN=C=O)C1=O ZIZJPRKHEXCVLL-UHFFFAOYSA-N 0.000 description 1
- PCHXZXKMYCGVFA-UHFFFAOYSA-N 1,3-diazetidine-2,4-dione Chemical compound O=C1NC(=O)N1 PCHXZXKMYCGVFA-UHFFFAOYSA-N 0.000 description 1
- VGHSXKTVMPXHNG-UHFFFAOYSA-N 1,3-diisocyanatobenzene Chemical compound O=C=NC1=CC=CC(N=C=O)=C1 VGHSXKTVMPXHNG-UHFFFAOYSA-N 0.000 description 1
- 239000005059 1,4-Cyclohexyldiisocyanate Substances 0.000 description 1
- YNGDWRXWKFWCJY-UHFFFAOYSA-N 1,4-Dihydropyridine Chemical class C1C=CNC=C1 YNGDWRXWKFWCJY-UHFFFAOYSA-N 0.000 description 1
- OHLKMGYGBHFODF-UHFFFAOYSA-N 1,4-bis(isocyanatomethyl)benzene Chemical compound O=C=NCC1=CC=C(CN=C=O)C=C1 OHLKMGYGBHFODF-UHFFFAOYSA-N 0.000 description 1
- ALQLPWJFHRMHIU-UHFFFAOYSA-N 1,4-diisocyanatobenzene Chemical compound O=C=NC1=CC=C(N=C=O)C=C1 ALQLPWJFHRMHIU-UHFFFAOYSA-N 0.000 description 1
- CDMDQYCEEKCBGR-UHFFFAOYSA-N 1,4-diisocyanatocyclohexane Chemical compound O=C=NC1CCC(N=C=O)CC1 CDMDQYCEEKCBGR-UHFFFAOYSA-N 0.000 description 1
- SBJCUZQNHOLYMD-UHFFFAOYSA-N 1,5-Naphthalene diisocyanate Chemical compound C1=CC=C2C(N=C=O)=CC=CC2=C1N=C=O SBJCUZQNHOLYMD-UHFFFAOYSA-N 0.000 description 1
- FWWWRCRHNMOYQY-UHFFFAOYSA-N 1,5-diisocyanato-2,4-dimethylbenzene Chemical compound CC1=CC(C)=C(N=C=O)C=C1N=C=O FWWWRCRHNMOYQY-UHFFFAOYSA-N 0.000 description 1
- ATOUXIOKEJWULN-UHFFFAOYSA-N 1,6-diisocyanato-2,2,4-trimethylhexane Chemical compound O=C=NCCC(C)CC(C)(C)CN=C=O ATOUXIOKEJWULN-UHFFFAOYSA-N 0.000 description 1
- BOBMDNIYRSTZLQ-UHFFFAOYSA-N 1-[diethoxy(methyl)silyl]propan-2-amine Chemical compound CCO[Si](C)(CC(C)N)OCC BOBMDNIYRSTZLQ-UHFFFAOYSA-N 0.000 description 1
- UTHDGOQKIWLLCO-UHFFFAOYSA-N 1-hydroxyhexyl prop-2-enoate Chemical compound CCCCCC(O)OC(=O)C=C UTHDGOQKIWLLCO-UHFFFAOYSA-N 0.000 description 1
- LFSYUSUFCBOHGU-UHFFFAOYSA-N 1-isocyanato-2-[(4-isocyanatophenyl)methyl]benzene Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=CC=C1N=C=O LFSYUSUFCBOHGU-UHFFFAOYSA-N 0.000 description 1
- ZIXLMPXXNUVJQK-UHFFFAOYSA-N 1-isocyanato-3-(3-isocyanatobutyl)benzene Chemical compound O=C=NC(C)CCC1=CC=CC(N=C=O)=C1 ZIXLMPXXNUVJQK-UHFFFAOYSA-N 0.000 description 1
- JDVGUTQQCHTCMZ-UHFFFAOYSA-N 1-isocyanato-4-(1-isocyanatoethyl)benzene Chemical compound O=C=NC(C)C1=CC=C(N=C=O)C=C1 JDVGUTQQCHTCMZ-UHFFFAOYSA-N 0.000 description 1
- LLQUNEIBEACDQW-UHFFFAOYSA-N 1-isocyanato-4-[(2-isocyanatocyclohexyl)methyl]benzene Chemical compound O=C=NC1CCCCC1CC1=CC=C(N=C=O)C=C1 LLQUNEIBEACDQW-UHFFFAOYSA-N 0.000 description 1
- WZQYLKIRNOXHAG-UHFFFAOYSA-N 1-tributoxysilylpropan-1-amine Chemical compound CCCCO[Si](OCCCC)(OCCCC)C(N)CC WZQYLKIRNOXHAG-UHFFFAOYSA-N 0.000 description 1
- YHVSHKVTYHHOSC-UHFFFAOYSA-N 1-tributoxysilylpropan-2-amine Chemical compound CCCCO[Si](CC(C)N)(OCCCC)OCCCC YHVSHKVTYHHOSC-UHFFFAOYSA-N 0.000 description 1
- REDHIHUACWEXBN-UHFFFAOYSA-N 1-triethoxysilylethanamine Chemical compound CCO[Si](OCC)(OCC)C(C)N REDHIHUACWEXBN-UHFFFAOYSA-N 0.000 description 1
- JBHRGAHUHVVXQI-UHFFFAOYSA-N 1-triethoxysilylpropan-1-amine Chemical compound CCO[Si](OCC)(OCC)C(N)CC JBHRGAHUHVVXQI-UHFFFAOYSA-N 0.000 description 1
- HXJZEGBVQCRLOD-UHFFFAOYSA-N 1-triethoxysilylpropan-2-amine Chemical compound CCO[Si](CC(C)N)(OCC)OCC HXJZEGBVQCRLOD-UHFFFAOYSA-N 0.000 description 1
- BPBYHTCPEJUYNG-UHFFFAOYSA-N 1-trimethoxysilylethanamine Chemical compound CO[Si](OC)(OC)C(C)N BPBYHTCPEJUYNG-UHFFFAOYSA-N 0.000 description 1
- OPWQHYSPLFFRMU-UHFFFAOYSA-N 1-trimethoxysilylpropan-1-amine Chemical compound CCC(N)[Si](OC)(OC)OC OPWQHYSPLFFRMU-UHFFFAOYSA-N 0.000 description 1
- KBRVQAUYZUFKAJ-UHFFFAOYSA-N 1-trimethoxysilylpropan-2-amine Chemical compound CO[Si](OC)(OC)CC(C)N KBRVQAUYZUFKAJ-UHFFFAOYSA-N 0.000 description 1
- OFZOOXNQZZDXRT-UHFFFAOYSA-N 1-tripropoxysilylpropan-2-amine Chemical compound CCCO[Si](CC(C)N)(OCCC)OCCC OFZOOXNQZZDXRT-UHFFFAOYSA-N 0.000 description 1
- RWXMAAYKJDQVTF-UHFFFAOYSA-N 2-(2-hydroxyethoxy)ethyl prop-2-enoate Chemical compound OCCOCCOC(=O)C=C RWXMAAYKJDQVTF-UHFFFAOYSA-N 0.000 description 1
- YATYDCQGPUOZGZ-UHFFFAOYSA-N 2-(2-hydroxypropoxy)propan-1-ol;prop-2-enoic acid Chemical compound OC(=O)C=C.CC(O)COC(C)CO YATYDCQGPUOZGZ-UHFFFAOYSA-N 0.000 description 1
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 1
- VETIYACESIPJSO-UHFFFAOYSA-N 2-[2-(2-hydroxyethoxy)ethoxy]ethyl prop-2-enoate Chemical compound OCCOCCOCCOC(=O)C=C VETIYACESIPJSO-UHFFFAOYSA-N 0.000 description 1
- NQOGBCBPDVTBFM-UHFFFAOYSA-N 2-[2-(2-hydroxypropoxy)propoxy]propan-1-ol;prop-2-enoic acid Chemical compound OC(=O)C=C.CC(O)COC(C)COC(C)CO NQOGBCBPDVTBFM-UHFFFAOYSA-N 0.000 description 1
- GTEXIOINCJRBIO-UHFFFAOYSA-N 2-[2-(dimethylamino)ethoxy]-n,n-dimethylethanamine Chemical compound CN(C)CCOCCN(C)C GTEXIOINCJRBIO-UHFFFAOYSA-N 0.000 description 1
- QUASZQPLPKGIJY-UHFFFAOYSA-N 2-[2-[2-(2-hydroxyethoxy)ethoxy]ethoxy]ethyl prop-2-enoate Chemical compound OCCOCCOCCOCCOC(=O)C=C QUASZQPLPKGIJY-UHFFFAOYSA-N 0.000 description 1
- FDSUVTROAWLVJA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol;prop-2-enoic acid Chemical compound OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OC(=O)C=C.OCC(CO)(CO)COCC(CO)(CO)CO FDSUVTROAWLVJA-UHFFFAOYSA-N 0.000 description 1
- TXZZSVASDZFPQY-UHFFFAOYSA-N 2-tributoxysilylethanamine Chemical compound CCCCO[Si](CCN)(OCCCC)OCCCC TXZZSVASDZFPQY-UHFFFAOYSA-N 0.000 description 1
- QHQNYHZHLAAHRW-UHFFFAOYSA-N 2-trimethoxysilylethanamine Chemical compound CO[Si](OC)(OC)CCN QHQNYHZHLAAHRW-UHFFFAOYSA-N 0.000 description 1
- UNKZGKRGTGCFKH-UHFFFAOYSA-N 2-tripropoxysilylethanamine Chemical compound CCCO[Si](CCN)(OCCC)OCCC UNKZGKRGTGCFKH-UHFFFAOYSA-N 0.000 description 1
- JCMNMOBHVPONLD-UHFFFAOYSA-N 3,3,4,4,5,5,6,6,6-nonafluorohexan-1-ol Chemical compound OCCC(F)(F)C(F)(F)C(F)(F)C(F)(F)F JCMNMOBHVPONLD-UHFFFAOYSA-N 0.000 description 1
- WJIOHMVWGVGWJW-UHFFFAOYSA-N 3-methyl-n-[4-[(3-methylpyrazole-1-carbonyl)amino]butyl]pyrazole-1-carboxamide Chemical compound N1=C(C)C=CN1C(=O)NCCCCNC(=O)N1N=C(C)C=C1 WJIOHMVWGVGWJW-UHFFFAOYSA-N 0.000 description 1
- UAHAMNBFDHWCPU-UHFFFAOYSA-N 3-tributoxysilylpropan-1-amine Chemical compound CCCCO[Si](CCCN)(OCCCC)OCCCC UAHAMNBFDHWCPU-UHFFFAOYSA-N 0.000 description 1
- XUZVALKTSQQLCH-UHFFFAOYSA-N 3-tripropoxysilylpropan-1-amine Chemical compound CCCO[Si](CCCN)(OCCC)OCCC XUZVALKTSQQLCH-UHFFFAOYSA-N 0.000 description 1
- JRQLZCFSWYQHPI-UHFFFAOYSA-N 4,5-dichloro-2-cyclohexyl-1,2-thiazol-3-one Chemical compound O=C1C(Cl)=C(Cl)SN1C1CCCCC1 JRQLZCFSWYQHPI-UHFFFAOYSA-N 0.000 description 1
- ZMSQJSMSLXVTKN-UHFFFAOYSA-N 4-[2-(2-morpholin-4-ylethoxy)ethyl]morpholine Chemical compound C1COCCN1CCOCCN1CCOCC1 ZMSQJSMSLXVTKN-UHFFFAOYSA-N 0.000 description 1
- HVCNXQOWACZAFN-UHFFFAOYSA-N 4-ethylmorpholine Chemical compound CCN1CCOCC1 HVCNXQOWACZAFN-UHFFFAOYSA-N 0.000 description 1
- NDWUBGAGUCISDV-UHFFFAOYSA-N 4-hydroxybutyl prop-2-enoate Chemical compound OCCCCOC(=O)C=C NDWUBGAGUCISDV-UHFFFAOYSA-N 0.000 description 1
- CEKGELWTDRCMNF-UHFFFAOYSA-N 5,5-dihydroxyimidazolidine-2,4-dione Chemical group OC1(O)NC(=O)NC1=O CEKGELWTDRCMNF-UHFFFAOYSA-N 0.000 description 1
- OCIFJWVZZUDMRL-UHFFFAOYSA-N 6-hydroxyhexyl prop-2-enoate Chemical compound OCCCCCCOC(=O)C=C OCIFJWVZZUDMRL-UHFFFAOYSA-N 0.000 description 1
- IFRWXUXQRPUMST-UHFFFAOYSA-N C(C=C)(=O)O.C(CC(C)O)O.C(C=C)(=O)OCC(O)CO Chemical compound C(C=C)(=O)O.C(CC(C)O)O.C(C=C)(=O)OCC(O)CO IFRWXUXQRPUMST-UHFFFAOYSA-N 0.000 description 1
- 229920001747 Cellulose diacetate Polymers 0.000 description 1
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- 229910016855 F9SO2 Inorganic materials 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 238000004566 IR spectroscopy Methods 0.000 description 1
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910007156 Si(OH)4 Inorganic materials 0.000 description 1
- 229910008051 Si-OH Inorganic materials 0.000 description 1
- 229910008326 Si-Y Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical class [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910002808 Si–O–Si Inorganic materials 0.000 description 1
- 229910006358 Si—OH Inorganic materials 0.000 description 1
- 229910006773 Si—Y Inorganic materials 0.000 description 1
- 108091092920 SmY RNA Proteins 0.000 description 1
- 241001237710 Smyrna Species 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- XRMBQHTWUBGQDN-UHFFFAOYSA-N [2-[2,2-bis(prop-2-enoyloxymethyl)butoxymethyl]-2-(prop-2-enoyloxymethyl)butyl] prop-2-enoate Chemical compound C=CC(=O)OCC(COC(=O)C=C)(CC)COCC(CC)(COC(=O)C=C)COC(=O)C=C XRMBQHTWUBGQDN-UHFFFAOYSA-N 0.000 description 1
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 description 1
- IUHFWCGCSVTMPG-UHFFFAOYSA-N [C].[C] Chemical group [C].[C] IUHFWCGCSVTMPG-UHFFFAOYSA-N 0.000 description 1
- LTIPUQSMGRSZOQ-UHFFFAOYSA-N [C].[C].[O] Chemical group [C].[C].[O] LTIPUQSMGRSZOQ-UHFFFAOYSA-N 0.000 description 1
- KXBFLNPZHXDQLV-UHFFFAOYSA-N [cyclohexyl(diisocyanato)methyl]cyclohexane Chemical compound C1CCCCC1C(N=C=O)(N=C=O)C1CCCCC1 KXBFLNPZHXDQLV-UHFFFAOYSA-N 0.000 description 1
- GPDWNEFHGANACG-UHFFFAOYSA-L [dibutyl(2-ethylhexanoyloxy)stannyl] 2-ethylhexanoate Chemical compound CCCCC(CC)C(=O)O[Sn](CCCC)(CCCC)OC(=O)C(CC)CCCC GPDWNEFHGANACG-UHFFFAOYSA-L 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 239000011260 aqueous acid Substances 0.000 description 1
- 239000007900 aqueous suspension Substances 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical class C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- IYRWEQXVUNLMAY-UHFFFAOYSA-N carbonyl fluoride Chemical group FC(F)=O IYRWEQXVUNLMAY-UHFFFAOYSA-N 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000008280 chlorinated hydrocarbons Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- CQAZHDHHROTUHL-UHFFFAOYSA-N cyclohexane;methanol;prop-2-enoic acid Chemical compound OC.OC.OC(=O)C=C.C1CCCCC1 CQAZHDHHROTUHL-UHFFFAOYSA-N 0.000 description 1
- KQWGXHWJMSMDJJ-UHFFFAOYSA-N cyclohexyl isocyanate Chemical compound O=C=NC1CCCCC1 KQWGXHWJMSMDJJ-UHFFFAOYSA-N 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 125000004386 diacrylate group Chemical group 0.000 description 1
- 239000012973 diazabicyclooctane Substances 0.000 description 1
- JGFBRKRYDCGYKD-UHFFFAOYSA-N dibutyl(oxo)tin Chemical compound CCCC[Sn](=O)CCCC JGFBRKRYDCGYKD-UHFFFAOYSA-N 0.000 description 1
- KIQKWYUGPPFMBV-UHFFFAOYSA-N diisocyanatomethane Chemical compound O=C=NCN=C=O KIQKWYUGPPFMBV-UHFFFAOYSA-N 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000003670 easy-to-clean Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- NLFBCYMMUAKCPC-KQQUZDAGSA-N ethyl (e)-3-[3-amino-2-cyano-1-[(e)-3-ethoxy-3-oxoprop-1-enyl]sulfanyl-3-oxoprop-1-enyl]sulfanylprop-2-enoate Chemical compound CCOC(=O)\C=C\SC(=C(C#N)C(N)=O)S\C=C\C(=O)OCC NLFBCYMMUAKCPC-KQQUZDAGSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- SBRXLTRZCJVAPH-UHFFFAOYSA-N ethyl(trimethoxy)silane Chemical compound CC[Si](OC)(OC)OC SBRXLTRZCJVAPH-UHFFFAOYSA-N 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000000806 fluorine-19 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 239000008240 homogeneous mixture Substances 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- UJNZOIKQAUQOCN-UHFFFAOYSA-N methyl(diphenyl)phosphane Chemical compound C=1C=CC=CC=1P(C)C1=CC=CC=C1 UJNZOIKQAUQOCN-UHFFFAOYSA-N 0.000 description 1
- XWZZZMXGYMXMQX-UHFFFAOYSA-N methyl-bis(4-methylphenyl)phosphane Chemical compound C=1C=C(C)C=CC=1P(C)C1=CC=C(C)C=C1 XWZZZMXGYMXMQX-UHFFFAOYSA-N 0.000 description 1
- JAHMEIUBFPYPIM-UHFFFAOYSA-N methyl-tris(propan-2-ylperoxy)silane Chemical compound CC(C)OO[Si](C)(OOC(C)C)OOC(C)C JAHMEIUBFPYPIM-UHFFFAOYSA-N 0.000 description 1
- BFXIKLCIZHOAAZ-UHFFFAOYSA-N methyltrimethoxysilane Chemical compound CO[Si](C)(OC)OC BFXIKLCIZHOAAZ-UHFFFAOYSA-N 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910000096 monohydride Inorganic materials 0.000 description 1
- 150000002780 morpholines Chemical class 0.000 description 1
- MEACNHPYSUFTMA-UHFFFAOYSA-N n'-(1-triethoxysilylethyl)ethane-1,2-diamine Chemical compound CCO[Si](OCC)(OCC)C(C)NCCN MEACNHPYSUFTMA-UHFFFAOYSA-N 0.000 description 1
- UEYZSVNIFMNMKZ-UHFFFAOYSA-N n'-(1-triethoxysilylpropan-2-yl)ethane-1,2-diamine Chemical compound CCO[Si](OCC)(OCC)CC(C)NCCN UEYZSVNIFMNMKZ-UHFFFAOYSA-N 0.000 description 1
- YBAMSCJIINMXPI-UHFFFAOYSA-N n'-(1-trimethoxysilylethyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)C(C)NCCN YBAMSCJIINMXPI-UHFFFAOYSA-N 0.000 description 1
- XRAYTRHUIGYKJR-UHFFFAOYSA-N n'-(1-trimethoxysilylpropan-2-yl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CC(C)NCCN XRAYTRHUIGYKJR-UHFFFAOYSA-N 0.000 description 1
- RVTQZLMIVBKMFP-UHFFFAOYSA-N n'-(1-tripropoxysilylethyl)ethane-1,2-diamine Chemical compound CCCO[Si](OCCC)(OCCC)C(C)NCCN RVTQZLMIVBKMFP-UHFFFAOYSA-N 0.000 description 1
- UZGUKNWYSKQNHJ-UHFFFAOYSA-N n'-(1-tripropoxysilylpropan-2-yl)ethane-1,2-diamine Chemical compound CCCO[Si](OCCC)(OCCC)CC(C)NCCN UZGUKNWYSKQNHJ-UHFFFAOYSA-N 0.000 description 1
- HNHARWVJLKJURT-UHFFFAOYSA-N n'-(2-triethoxysilylethyl)ethane-1,2-diamine Chemical compound CCO[Si](OCC)(OCC)CCNCCN HNHARWVJLKJURT-UHFFFAOYSA-N 0.000 description 1
- ITBJJJXGNILUKA-UHFFFAOYSA-N n'-(2-triethoxysilylethyl)propane-1,3-diamine Chemical compound CCO[Si](OCC)(OCC)CCNCCCN ITBJJJXGNILUKA-UHFFFAOYSA-N 0.000 description 1
- FPFKERZHIGFTEI-UHFFFAOYSA-N n'-(2-trimethoxysilylethyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCNCCN FPFKERZHIGFTEI-UHFFFAOYSA-N 0.000 description 1
- MPVWTKVPRCGUAA-UHFFFAOYSA-N n'-(2-trimethoxysilylethyl)propane-1,3-diamine Chemical compound CO[Si](OC)(OC)CCNCCCN MPVWTKVPRCGUAA-UHFFFAOYSA-N 0.000 description 1
- LENBHCYFEWUNBE-UHFFFAOYSA-N n'-(2-tripropoxysilylethyl)ethane-1,2-diamine Chemical compound CCCO[Si](OCCC)(OCCC)CCNCCN LENBHCYFEWUNBE-UHFFFAOYSA-N 0.000 description 1
- LCWRALGVVHJJLK-UHFFFAOYSA-N n'-(2-tripropoxysilylethyl)propane-1,3-diamine Chemical compound CCCO[Si](OCCC)(OCCC)CCNCCCN LCWRALGVVHJJLK-UHFFFAOYSA-N 0.000 description 1
- INJVFBCDVXYHGQ-UHFFFAOYSA-N n'-(3-triethoxysilylpropyl)ethane-1,2-diamine Chemical compound CCO[Si](OCC)(OCC)CCCNCCN INJVFBCDVXYHGQ-UHFFFAOYSA-N 0.000 description 1
- PHQOGHDTIVQXHL-UHFFFAOYSA-N n'-(3-trimethoxysilylpropyl)ethane-1,2-diamine Chemical compound CO[Si](OC)(OC)CCCNCCN PHQOGHDTIVQXHL-UHFFFAOYSA-N 0.000 description 1
- PXEPBRRYHKUTDN-UHFFFAOYSA-N n'-(3-tripropoxysilylpropyl)ethane-1,2-diamine Chemical compound CCCO[Si](OCCC)(OCCC)CCCNCCN PXEPBRRYHKUTDN-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 125000004433 nitrogen atom Chemical group N* 0.000 description 1
- 239000012038 nucleophile Substances 0.000 description 1
- OTLDLKLSNZMTTA-UHFFFAOYSA-N octahydro-1h-4,7-methanoindene-1,5-diyldimethanol Chemical compound C1C2C3C(CO)CCC3C1C(CO)C2 OTLDLKLSNZMTTA-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 150000001282 organosilanes Chemical class 0.000 description 1
- 125000005824 oxyalkoxy group Chemical group 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 125000005003 perfluorobutyl group Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)* 0.000 description 1
- 125000005007 perfluorooctyl group Chemical group FC(C(C(C(C(C(C(C(F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)F)(F)* 0.000 description 1
- 125000005009 perfluoropropyl group Chemical group FC(C(C(F)(F)F)(F)F)(F)* 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920002285 poly(styrene-co-acrylonitrile) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- BDAWXSQJJCIFIK-UHFFFAOYSA-N potassium methoxide Chemical compound [K+].[O-]C BDAWXSQJJCIFIK-UHFFFAOYSA-N 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000007763 reverse roll coating Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical group FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- RWRDLPDLKQPQOW-UHFFFAOYSA-N tetrahydropyrrole Substances C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 125000004014 thioethyl group Chemical group [H]SC([H])([H])C([H])([H])* 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- KSBAEPSJVUENNK-UHFFFAOYSA-L tin(ii) 2-ethylhexanoate Chemical compound [Sn+2].CCCCC(CC)C([O-])=O.CCCCC(CC)C([O-])=O KSBAEPSJVUENNK-UHFFFAOYSA-L 0.000 description 1
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 1
- RUELTTOHQODFPA-UHFFFAOYSA-N toluene 2,6-diisocyanate Chemical compound CC1=C(N=C=O)C=CC=C1N=C=O RUELTTOHQODFPA-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- IMFACGCPASFAPR-UHFFFAOYSA-N tributylamine Chemical compound CCCCN(CCCC)CCCC IMFACGCPASFAPR-UHFFFAOYSA-N 0.000 description 1
- GNQQPTRATSISPA-UHFFFAOYSA-N triethoxy(2-ethylbutyl)silane Chemical compound CCO[Si](OCC)(OCC)CC(CC)CC GNQQPTRATSISPA-UHFFFAOYSA-N 0.000 description 1
- ALVYUZIFSCKIFP-UHFFFAOYSA-N triethoxy(2-methylpropyl)silane Chemical compound CCO[Si](CC(C)C)(OCC)OCC ALVYUZIFSCKIFP-UHFFFAOYSA-N 0.000 description 1
- DENFJSAFJTVPJR-UHFFFAOYSA-N triethoxy(ethyl)silane Chemical compound CCO[Si](CC)(OCC)OCC DENFJSAFJTVPJR-UHFFFAOYSA-N 0.000 description 1
- CPUDPFPXCZDNGI-UHFFFAOYSA-N triethoxy(methyl)silane Chemical compound CCO[Si](C)(OCC)OCC CPUDPFPXCZDNGI-UHFFFAOYSA-N 0.000 description 1
- RFXMNCFJFSYLMT-UHFFFAOYSA-N triethyl 2-ethylbutyl silicate Chemical compound CCO[Si](OCC)(OCC)OCC(CC)CC RFXMNCFJFSYLMT-UHFFFAOYSA-N 0.000 description 1
- XYJRNCYWTVGEEG-UHFFFAOYSA-N trimethoxy(2-methylpropyl)silane Chemical compound CO[Si](OC)(OC)CC(C)C XYJRNCYWTVGEEG-UHFFFAOYSA-N 0.000 description 1
- HQYALQRYBUJWDH-UHFFFAOYSA-N trimethoxy(propyl)silane Chemical compound CCC[Si](OC)(OC)OC HQYALQRYBUJWDH-UHFFFAOYSA-N 0.000 description 1
- YFTHZRPMJXBUME-UHFFFAOYSA-N tripropylamine Chemical compound CCCN(CCC)CCC YFTHZRPMJXBUME-UHFFFAOYSA-N 0.000 description 1
- JABYJIQOLGWMQW-UHFFFAOYSA-N undec-4-ene Chemical compound CCCCCCC=CCCC JABYJIQOLGWMQW-UHFFFAOYSA-N 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/73—Polyisocyanates or polyisothiocyanates acyclic
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F7/00—Compounds containing elements of Groups 4 or 14 of the Periodic Table
- C07F7/02—Silicon compounds
- C07F7/08—Compounds having one or more C—Si linkages
- C07F7/18—Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
- C07F7/1804—Compounds having Si-O-C linkages
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F290/00—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
- C08F290/02—Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
- C08F290/06—Polymers provided for in subclass C08G
- C08F290/067—Polyurethanes; Polyureas
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/2805—Compounds having only one group containing active hydrogen
- C08G18/288—Compounds containing at least one heteroatom other than oxygen or nitrogen
- C08G18/2885—Compounds containing at least one heteroatom other than oxygen or nitrogen containing halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/67—Unsaturated compounds having active hydrogen
- C08G18/671—Unsaturated compounds having only one group containing active hydrogen
- C08G18/672—Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen
- C08G18/673—Esters of acrylic or alkyl acrylic acid having only one group containing active hydrogen containing two or more acrylate or alkylacrylate ester groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/77—Polyisocyanates or polyisothiocyanates having heteroatoms in addition to the isocyanate or isothiocyanate nitrogen and oxygen or sulfur
- C08G18/78—Nitrogen
- C08G18/7806—Nitrogen containing -N-C=0 groups
- C08G18/7818—Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups
- C08G18/7831—Nitrogen containing -N-C=0 groups containing ureum or ureum derivative groups containing biuret groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/81—Unsaturated isocyanates or isothiocyanates
- C08G18/8141—Unsaturated isocyanates or isothiocyanates masked
- C08G18/815—Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen
- C08G18/8158—Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen
- C08G18/8175—Polyisocyanates or polyisothiocyanates masked with unsaturated compounds having active hydrogen with unsaturated compounds having only one group containing active hydrogen with esters of acrylic or alkylacrylic acid having only one group containing active hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/83—Chemically modified polymers
- C08G18/837—Chemically modified polymers by silicon containing compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
Definitions
- the present invention relates to fluorochemical urethane compounds and coating compositions derived therefrom, which may be used in treating substrates, in particular substrates having a hard surface such as ceramics or glass, to render them water, oil, stain, and soil repellent.
- compositions for treating substrates to render them oil and water repellent
- substrates in particular substrates having a hard surface such as ceramics, glass and stone, in order to render them water- repellent, oil-repellent, and easy to clean
- glass and plastic as a hard surface, particularly in the optical field, in order to render them stain, dirt and dust resistant.
- such compositions and methods employing them can yield coatings that have improved properties.
- compositions should be conveniently be applied in an easy and safe way and are compatible with existing manufacturing methods.
- the compositions will fit easily into the manufacturing processes that are practiced to produce the substrates to be treated.
- the present invention provides fluorochemical urethane compounds of the formula wherein R f is a fluorine-containing group, comprising a perfluoroalkyl group, perfluorooxyalkyl group, perfluoroalkylene group and/or a perfluorooxyalkylene group,
- R 1 is the residue of a polyisocyanate, having a valence of x+y
- R 2 is a silane-containing moiety derived from the Michael reaction between an acryloyl group and an aminosilane
- x and y are each independently at least 1
- z is 1 or 2.
- this invention relates to chemical compositions comprising one or more compounds (where z is 1) or oligomers (where z is 2) and mixtures thereof having at least one fluorine-containing group and at least one silane-containing moiety derived from the Michael reaction between a nucleophilic acryloyl compound (such as an acrylated polyol having at least one isocyanate-reactive hydroxy group) and an aminosilane.
- a nucleophilic acryloyl compound such as an acrylated polyol having at least one isocyanate-reactive hydroxy group
- oligomer means a polymer molecule consisting of only a few, i.e. up to an average of 10, but preferably up to an average of 5, repeating (polymerized) or repeatable units.
- Each repeating unit comprises a residue of a polyisocyanate that is derived from the reaction of at least one nucleophilic, fluorine- containing compound, aminosilane and polyisocyanate, wherein the fluorine-containing moiety is selected from the group consisting of perfluoroalkyl, perfluoroalkylene, perfluorooxyalkyl, and perfluorooxyalkylene.
- the oligomer may be terminated with one or more perfluoroalkyl groups, one or more perfluorooxyalkyl groups, and/or one of more silyl groups.
- These compounds or oligomers may comprise the Michael reaction product of an aminosilane with a fluorine-containing urethane compound having pendent acryloyl groups; said urethane compound comprising the reaction product of a polyisocyanate, a nucleophilic fluorochemical compound having one or two nucleophilic, isocyanate- reactive functional groups, and a nucleophilic acryloyl compound.
- the compounds may comprise the Michael reaction product of an aminosilane with a nucleophilic acryloyl compound, and subsequent reaction product with the polyisocyanate and the fluorine-containing nucleophilic compound.
- Alkyl means a linear or branched, cyclic or acylic, saturated monovalent hydrocarbon radical having from one to about twelve carbon atoms, e.g., methyl, ethyl, 1 -propyl, 2- propyl, pentyl, and the like.
- Acryloyl means an acrylate, thioacrylate or acrylamide.
- Alkylene means a linear saturated divalent hydrocarbon radical having from one to about twelve carbon atoms or a branched saturated divalent hydrocarbon radical having from three to about twelve carbon atoms, e.g., methylene, ethylene, propylene, 2- methylpropylene, pentylene, hexylene, and the like.
- Alkoxy means an alkyl having a terminal oxygen atom, e.g. CH3-O-, C2H5-O-, and the like.
- Alkylene means an alkylene radical defined above with an aromatic group attached to the alkylene radical, e.g., benzyl, 1-naphthylethyl, and the like.
- “Cured chemical composition” means that the chemical composition is dried or solvent has evaporated from the chemical composition from ambient temperature or higher until dryness.
- the composition may further be crosslinked as result of siloxane bonds formed between the urethane compounds.
- Nucleophilic fluorine-containing compound means a compound having one or two nucleophilic, isocyanate -reactive functional group, such as a hydroxyl group or an amine group, and a perfluoroalkyl, perfluoroalkylene, perfluorooxyalkyl or perfiuorooxyalkylene group, e.g. CF 9 SO 2 N(CH 3 )CH 2 CH 2 OH, C 4 F 9 CH 2 CH 2 OH,
- Fruorochemical urethane compounds refers to compounds of Formula I, and will include those having urethane linkages per se, or alternatively urea and/or thiourea linkages.
- Hard substrate means any rigid material that maintains its shape, e.g., glass, ceramic, concrete, natural stone, wood, metals, plastics, and the like.
- Oxyalkoxy has essentially the meaning given above for alkoxy except that one or more oxygen atoms may be present in the alkyl chain and the total number of carbon atoms present may be up to 50, e.g. CH 3 CH 2 OCH 2 CH 2 O-, C 4 H 9 OCH 2 CH 2 OCH 2 CH 2 O-,
- Oxyalkyl has essentially the meaning given above for alkyl except that one or more oxygen heteroatoms may be present in the alkyl chain, these heteroatoms being separated from each other by at least one carbon, e.g., CH 3 CH 2 OCH 2 CH 2 -, CH 3 CH 2 OCH 2 CH 2 OCH(CH 3 )CH 2 -, C 4 F 9 CH 2 OCH 2 CH 2 -, and the like.
- Oxyalkylene has essentially the meaning given above for alkylene except that one or more oxygen heteroatoms may be present in the alkylene chain, these heteroatoms being separated from each other by at least one carbon, e.g., -CH 2 OCH 2 O-, -CH 2 CH 2 OCH 2 CH 2 -,
- Halo means fluoro, chloro, bromo, or iodo, preferably fluoro and chloro.
- Perfluoroalkyl has essentially the meaning given above for “alkyl” except that all or essentially all of the hydrogen atoms of the alkyl radical are replaced by fluorine atoms and the number of carbon atoms is from 1 to about 12, e.g. perfluoropropyl, perfluorobutyl, perfluorooctyl, and the like.
- Perfluoroalkylene has essentially the meaning given above for “alkylene” except that all or essentially all of the hydrogen atoms of the alkylene radical are replaced by fluorine atoms, e.g., perfluoropropylene, perfluorobutylene, perfluorooctylene, and the like
- Perfluorooxyalkyl has essentially the meaning given above for “oxyalkyl” except that all or essentially all of the hydrogen atoms of the oxyalkyl radical are replaced by fluorine atoms and the number of carbon atoms is from 3 to about 100, e.g.
- CF 3 CF 2 OCF 2 CF 2 - CF 3 CF 2 O(CF 2 CF 2 O) 3 CF 2 CF 2 -
- C 3 F 7 O(CF(CF 3 )CF 2 O) S CF(CF 3 )CF 2 - where s is (for example) from about 1 to about 50, and the like.
- Perfluorooxyalkylene has essentially the meaning given above for “oxyalkylene” except that all or essentially all of the hydrogen atoms of the oxyalkylene radical are replaced by fluorine atoms, and the number of carbon atoms is from 3 to about 100, e.g., -CF 2 OCF 2 -, or -[CF 2 -CF 2 -O] r -[CF(CF 3 )-CF 2 -O] s -; wherein r and s are (for example) integers of 1 to 50.
- Perfluorinated group means an organic group wherein all or essentially all of the carbon bonded hydrogen atoms are replaced with fluorine atoms, e.g. perfluoroalkyl, perfluorooxyalkyl, and the like.
- Polyfunctional isocyanate compound or “polyisocyanate” means a compound containing an average of greater than one, preferably two or more isocyanate groups, --NCO, attached to a multivalent organic group, e.g. hexamethylene diisocyanate, the biuret and isocyanurate of hexamethylene diisocyanate, and the like.
- Nucleophilic acryloyl compound means an organic compound with at least one primary or secondary nucleophilic, isocyanate-reactive groups per molecule, and at least one acryloyl group, including acrylate and acrylamide groups.
- Mathael addition refers to an addition reaction wherein an aminosilane undergoes 1 ,4 addition to an acryloyl group.
- the present invention provides fluorochemical urethane compounds of formula, described supra. z (I), wherein
- R f is a fluorine-containing group, comprising a perfluoroalkyl group, perfluorooxyalkyl group, perfluoroalkylene group and/or a perfluorooxyalkylene group,
- R 1 is the residue of a polyisocyanate, having a valence of x+y,
- R 2 is a silane-containing moiety derived from the Michael reaction between an acryloyl group and an aminosilane, x and y are each independently at least 1 , and z is 1 or 2
- R 2 is derived by Michael addition of an aminosilane to an acryloyl group, as in the following formula:
- X 1 is -O- or -S-
- X 2 is -O,-S-or -NR 4 -, where R 4 is H or Ci-C 4 alkyl
- R 3 is a polyvalent alkylene or arylene groups, or combinations thereof, said alkylene groups optionally containing one or more catenary oxygen atoms;
- R 5 is Ci-C 4 alkyl, or -R 6 -Si(Y p )(R 7 ) 3 - P ;
- R 6 is a divalent alkylene group, said alkylene groups optionally containing one or more catenary oxygen atoms;
- Y is a hydrolysable group
- R 7 is a monovalent alkyl or aryl group, p is 1, 2 or 3, preferably 3, and q is 1 to 5, preferably 2 to 5.
- siloxane refers to -Si-O-Si- bonds to which are attached to compounds of Formula I.
- Y hydrolysis or displacement of the hydrolysable
- a coating prepared from the coating composition that includes compounds of Formula I includes the compounds per se, as well as siloxane derivatives resulting from bonding to the surface of a preselected substrate and intermolecular crosslinking by siloxane formation.
- the coatings can also include unreacted or uncondensed "Si-Y" groups.
- the composition may further contain non-silane materials such as oligomeric perfluorooxyalkyl monohydrides, starting materials and perfluorooxyalkyl alcohols and esters.
- the invention provides a coating composition comprising the compound of Formula I, a solvent, and optionally water and an acid.
- the coating composition comprises an aqueous suspension or dispersion of the compounds.
- the compositions of the present invention preferably include water.
- the present invention provides a method of coating comprising the steps of providing contacting a substrate with a coating composition comprising the compound of Formula I and a solvent.
- the coating composition may further comprise water and an acid.
- the method comprises contacting a substrate with a coating composition comprising the silane of Formula I and a solvent, and subsequently contacting the substrate with an aqueous acid.
- Polyisocyanate compounds useful in preparing the fluorochemical compounds of the present invention comprise isocyanate radicals attached to the multivalent organic group (R 1 ) that can comprise a multivalent aliphatic, alicyclic, or aromatic moiety; or a multivalent aliphatic, alicyclic or aromatic moiety attached to a biuret, an isocyanurate, or a uretdione, or mixtures thereof.
- R 1 multivalent organic group
- Preferred polyfunctional isocyanate compounds contain an average of at least two isocyanate (-NCO) radicals.
- Compounds containing at least two -NCO radicals are preferably comprised of di- or trivalent aliphatic, alicyclic, araliphatic, or aromatic groups to which the -NCO radicals are attached. Aliphatic di- or trivalent groups are preferred.
- suitable polyisocyanate compounds include isocyanate functional derivatives of the polyisocyanate compounds as defined herein.
- derivatives include, but are not limited to, those selected from the group consisting of ureas, biurets, allophanates, dimers and trimers (such as uretdiones and isocyanurates) of isocyanate compounds, and mixtures thereof.
- Any suitable organic polyisocyanate, such as an aliphatic, alicyclic, araliphatic, or aromatic polyisocyanate may be used either singly or in mixtures of two or more.
- the aliphatic polyisocyanate compounds generally provide better light stability than the aromatic compounds.
- Aromatic polyisocyanate compounds are generally more economical and reactive toward nucleophiles than are aliphatic polyisocyanate compounds.
- Suitable aromatic polyisocyanate compounds include, but are not limited to, those selected from the group consisting of 2,4-toluene diisocyanate (TDI), 2,6-toluene diisocyanate, an adduct of TDI with trimethylolpropane (available as
- DesmodurTM CB from Bayer Corporation, Pittsburgh, Pa.
- the isocyanurate trimer of TDI available as DesmodurTM IL from Bayer Corporation, Pittsburgh, Pa.
- diphenylmethane 4,4'-diisocyanate (MDI) diphenylmethane 2,4'-diisocyanate, 1,5-diisocyanato- naphthalene, 1 ,4-phenylene diisocyanate, 1, 3 -phenylene diisocyanate, l-methyoxy-2,4- phenylene diisocyanate, l-chlorophenyl-2,4-diisocyanate, and mixtures thereof.
- useful alicyclic polyisocyanate compounds include, but are not limited to, those selected from the group consisting of dicyclohexylmethane diisocyanate (Hi 2 MDI, commercially available as DesmodurTM available from Bayer Corporation, Pittsburgh, Pa.), 4,4'-isopropyl-bis(cyclohexylisocyanate), isophorone diisocyanate (IPDI), cyclobutane-l,3-diisocyanate, cyclohexane 1,3-diisocyanate, cyclohexane 1 ,4-diisocyanate
- Hi 2 MDI dicyclohexylmethane diisocyanate
- DesmodurTM available from Bayer Corporation, Pittsburgh, Pa.
- IPDI isophorone diisocyanate
- cyclobutane-l,3-diisocyanate cyclohexane 1,3-diisocyanate
- CHDI 1 ,4-cyclohexanebis(methylene isocyanate)
- BDI dimmer acid diisocyanate
- H 6 XDI l,3-bis(isocyanatomethyl)cyclohexane
- useful aliphatic polyisocyanate compounds include, but are not limited to, those selected from the group consisting of tetramethylene 1 ,4-diisocyanate, hexamethylene 1 ,4-diisocyanate, hexamethylene 1,6-diisocyanate (HDI), octamethylene 1,8-diisocyanate, 1,12-diisocyanatododecane, 2,2,4-trimethyl-hexamethylene diisocyanate (TMDI), 2-methyl-l,5-pentamethylene diisocyanate, dimer diisocyanate, the urea of hexamethylene diisocyanate, the biuret of hexamethylene 1,6-diisocyanate (HDI) (DesmodurTMN-100 and N-3200 from Bayer Corporation, Pittsburgh, Pa.), the isocyanurate of HDI (available as Desmodur N-3300 and Desmodur N-3600 from Bayer Corporation, Pittsburgh, Pa.
- araliphatic polyisocyanates include, but are not limited to, those selected from the group consisting of m-tetramethyl xylylene diisocyanate (m- TMXDI), p-tetramethyl xylylene diisocyanate (p-TMXDI), 1,4-xylylene diisocyanate (XDI), 1,3-xylylene diisocyanate, p-(l-isocyanatoethyl)phenyl isocyanate, m-(3- isocyanatobutyl)phenyl isocyanate, 4-(2-isocyanatocyclohexyl-methyl)phenyl isocyanate, and mixtures thereof.
- m- TMXDI m-tetramethyl xylylene diisocyanate
- p-TMXDI p-tetramethyl xylylene diisocyanate
- XDI 1,4-xylylene diisocyan
- Preferred polyisocyanates include those selected from the group consisting of tetramethylene 1 ,4-diisocyanate, hexamethylene 1,4-diisocyanate, hexamethylene 1,6-diisocyanate (HDI), octamethylene 1,8-diisocyanate, 1,12- diisocyanatododecane, and the like, and mixtures thereof.
- Fluorochemical compositions of the present invention comprising compounds or oligomers made with preferred polyisocyanates impart both high water and hexadecane receding dynamic contact angles. High water receding dynamic contact angle together with high hexadecane receding dynamic contact angle is typically predictive of good water-repellency and oil-repellency properties.
- the fluorochemical urethane comprises, in part, the reaction product of a fluorochemical compound having a mono- or difunctional perfluorinated group, and at least one nucleophilic, isocyanate-reactive functional group.
- a fluorochemical compound having a mono- or difunctional perfluorinated group and at least one nucleophilic, isocyanate-reactive functional group.
- Such compounds include those of the formula: R ⁇ -[Q(X 2 Hy 2 , (III) where R f 1 is a monovalent perfluoroalkyl or a perfluorooxyalkyl group (where z is 1), or a divalent perfluoroalkylene or a perfluorooxyalkylene group (where z is 2), Q is a covalent bond, or a polyvalent alkylene group of valency z, said alkylene optionally containing one or more catenary (in-chain) nitrogen or oxygen atoms, and optionally containing one or more sul
- R f of Formula I is of the Formula IV.
- R f 1 is a monovalent perfluoroalkyl or a perfluorooxyalkyl group (where z is 1), or a divalent perfluoroalkylene or a perfluorooxyalkylene group (where z is 2), Q is a covalent bond, or a polyvalent alkylene group of valency z, said alkylene optionally containing one or more catenary (in-chain) nitrogen or oxygen atoms, and optionally containing one or more sulfonamide, carboxamido, or carboxy functional groups;
- X 2 is -O-, -NR 4 - or -S- , where R 4 is H or Ci-C 4 alkyl, y is 1 or 2, and z is 1 or 2.
- the R f 1 groups of Formula III and IV can contain straight chain, branched chain, or cyclic fluorochemical groups or any combination thereof.
- the Rf 1 groups can be mono- or divalent, and can optionally contain one or more catenary oxygen atoms in the carbon- carbon chain so as to form a carbon-oxygen-carbon chain (i.e. a perfluorooxyalkylene group).
- Fully-fluorinated groups are generally preferred, but hydrogen or other halo atoms can also be present as substituents, provided that no more than one atom of either is present for every two carbon atoms.
- any Regroup contain at least about 40% fluorine by weight, more preferably at least about 50% fluorine by weight.
- the terminal portion of the monovalent Regroup is generally fully-fluorinated, preferably containing at least three fluorine atoms, e.g., CF 3 -, CF 3 CF 2 -, CF 3 CF 2 CF 2 -, (CFs) 2 N-, (CF 3 ) 2 CF-, SF 5 CF 2 -.
- monovalent perfluoroalkyl groups i.e., those of the formula C n F 2n+1 -
- divalent perfluoroalkylene groups i.e., those of the formula -C n F 2n -
- Useful perfluorooxyalkyl and perfluorooxyalkylene Rf 1 groups correspond to the formula:
- W is F for monovalent perfluorooxyalkyl, and an open valence ("-") for divalent perfluorooxyalkylene
- Rf 3 represents a perfluoroalkylene group
- Rf 4 represents a perfluoroalkyleneoxy group consisting of perfluoroalkyleneoxy groups having 1, 2, 3 or 4 carbon atoms or a mixture of such perfluoroalkyleneoxy groups
- R f 5 represents a perfluoroalkylene group and q is 0 or 1.
- the perfluoroalkylene groups Rf 3 and Rf 5 in formula (IV) may be linear or branched and may comprise 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms.
- a typical monovalent perfluoroalkyl group is CF 3 -CF 2 -CF 2 - and a typical divalent perfluoroalkylene is-CF 2 -CF 2 -CF 2 -, -CF 2 - Or -CF(CF 3 )CF 2 -.
- perfluoroalkyleneoxy groups R f 4 include:-CF 2 -CF 2 -O-, -CF(CF 3 )-CF 2 -O-, -CF 2 -CF(CF 3 )-O-, -CF 2 -CF 2 -CF 2 -O-, -CF 2 -O-, -CF(CF 3 )-O-, and-CF2-CF 2 -CF2-CF 2 -O.
- the perfluoroalkyleneoxy group Rf 4 may be comprised of the same perfluorooxyalkylene units or of a mixture of different perfluorooxyalkylene units.
- the perfluorooxyalkylene group can be present in a random configuration, alternating configuration or they can be present as blocks.
- Typical examples of perfluorinated poly(oxyalkylene) groups include:
- a preferred perfluorooxyalkyl group that corresponds to formula (V) is CF 3 -CF 2 -CF2-O-[CF(CF 3 )-CF 2 O] S -CF(CF 3 )CF2- wherein s is an integer of 2 to 25.
- Perfluorooxyalkyl and perfluoroxyalkylene compounds can be obtained by oligomerization of hexafluoropropylene oxide that results in a terminal carbonyl fluoride group. This carbonyl fluoride may be converted into an acid, ester or alcohol by reactions well known to those skilled in the art. The carbonyl fluoride or acid, ester or alcohol derived therefrom may then be reacted further to introduce the desired isocyanate reactive groups according to known procedures.
- fluorochemical monofunctional compounds preferably monoalcohols and monoamines are contemplated.
- Representative examples of useful fluorochemical monofunctional compounds include the following:
- fluorinated polyols include Rf 1 SO 2 N(CH 2 CH 2 OH) 2 such as N-bis(2-hydroxyethyl)perfluorobutylsulfonamide; R f 1 OC 6 H 4 SO 2 N(CH 2 CH 2 OH) 2 ;
- R f 1 SO 2 N(R )CH 2 CH(OH)CH 2 OH such as C 6 FisSO 2 N(C 3 H 7 )CH 2 CH(OH)CH 2 OH;
- R f 1 OCH 2 CH(OH)CH 2 OH such as C 4 F 9 OCH 2 CH(OH)CH 2 OH;
- R f 1 CH 2 CH 2 CH 2 OCH 2 CH(OH)CH 2 OH such as C 5 Fii(CH 2 ) 3 OCH 2 CH(OH)CH 2 OH; R f 1 CH 2 CH 2 CH 2 OC 2 H 4 OCH 2 CH(OH)CH 2 OHj R f 1 CH 2 CH 2 (CH 3 )OCH 2 CH(OH)CH 2 OH; R f 1 (CH 2 ) 4 SC 3 H 6 CH(CH 2 OH)CH 2 OH; R f 1 (CH 2 ) 4 SCH 2 CH(CH 2 OH) 2 ; R f 1 (CH 2 ) 4 SC 3 H 6 OCH 2 CH(OH)CH 2 OH; R f 1 CH 2 CH(C 4 H 9 )SCH 2 CH(OH)CH 2 OH; R f 1 CH 2 OCH 2 CH(OH)CH 2 OHj R f 1 CHlCH(OH)CH 2 SCH 2 CH 2 OH; R f 1 CH 2 CH(OH)CH 2 SCH 2 CH 2 OH
- Preferred fluorinated polyols include N-bis(2-hydroxyethyl) perfluorobutylsulfonamide; fluorinated oxetane polyols made by the ring-opening polymerization of fluorinated oxetane such as Poly-3-FoxTM (available from Omnova Solutions, Inc., Akron Ohio); polyetheralcohols prepared by ring opening addition polymerization of a fluorinated organic group substituted epoxide with a compound containing at least two hydroxyl groups as described in U.S. Pat. No.
- More preferred polyols comprised of at least one fluorine-containing group include N-bis(2-hydroxyethyl)perfluorobutylsulfonamide; 1 ,4-bis( 1 -hydroxy- 1,1- dihydroperfiuoropropoxy)perfluoro-n-butane (HOCH 2 CF 2 CF 2 ⁇ (CF 2 ) 4 ⁇ CF 2 CF 2 CH 2 ⁇ H) and CF 3 CF 2 CF 2 -O-[CF(CF 3 )CF 2 O] n -CF(CF 3 )-, wherein n is an integer of 3 to 25.
- This perfluorinated polyether group can be derived from an oligomerization of hexafluoropropylene oxide. Such perfluorinated polyether groups are preferred in particular because of their benign environmental properties.
- the fluorochemical urethane comprises, in part, the reaction product of a nucleophilic acryloyl compound having an isocyanate-reactive, nucleophilic functional group and least one acryloyl group (hereinafter a "nucleophilic acryloyl compound").
- the acryloyl moiety may be an acrylate or acrylamide, and the nucleophilic functional group may be an amino or hydroxy group.
- the nucleophilic acryloyl compound is a polyacryl compound having a hydroxyl group and at least two acryloyl groups. Such compounds include those of the formula:
- X 1 is -O- or -S-, preferably -O-;
- X 2 is -O ,-S-or -NR 4 -, preferably -O-, where R 4 is H or Ci-C 4 alkyl, R 3 is a polyvalent alkylene or arylene groups, or combinations thereof, said alkylene groups optionally containing one or more catenary oxygen atoms; and q is 1 to 5.
- q is greater than 1.
- the resulting multiple acryloyl groups allow the addition of multiple silane groups to the urethane compound.
- the molar ratio of silane groups to -NH-C(O)-X 1 - groups may be greater than 1 : 1 , or greater than 2:1.
- HX 1 - is not directly connected to an aromatic ring, such as with a phenolic compound.
- nucleophilic acryloyl compounds include, for example, acrylate compounds selected from the group consisting of (a) monoacryloyl containing compounds such as hydroxyethyl acrylate, glycerol monoacrylate 1,3-butylene glycol monoacrylate, 1,4- butanediol monoacrylate, 1 ,6-hexanediol monoacrylate, alkoxylated aliphatic monoacrylate, cyclohexane dimethanol monoacrylate, alkoxylated hexanediol monoacrylate, alkoxylated neopentyl glycol monoacrylate, caprolactone modified neopentylglycol hydroxypivalate acrylate, caprolactone modified neopentylglycol hydroxypivalate monoacrylate, diethylene glycol monoacrylate, dipropylene glycol monoacrylate, ethoxylated bisphenol-A monoacrylate, hydroxypivalaldehyde modified
- acrylate materials include dihydroxyhydantoin moiety-containing polyacrylates, for example, as described in U.S. 4,262,072 (Wendling et al).
- exemplary nucleophilic acryloyl compounds it will be understood that the corresponding acrylamides may be used. Further, the indicated hydroxyl groups may be substituted by the corresponding thiol group.
- the fluorochemical urethane compounds comprise, in part, the Michael reaction product of an aminosilane with an acryloyl group.
- the aminosilane may be reacted with the nucleophilic acryloyl compound to form a Michael adduct, which may subsequently be reacted with the polyisocyanate (either before or after functionalization by the nucleophilic fluorochemical compound.
- the nucleophilic acryloyl compound is first reacted with the polyisocyanate (again, before or after reaction with the nucleophilic fluorochemical compound, to form a urethane compound having pendent acryloyl groups, to which is added the aminosilane by Michael addition.
- Preferred aminosilanes may be represented by the general formula:
- R 5 is H, Ci-C 4 alkyl, or -R 6 -Si(Y p )(R 7 ) 3 - P ;
- R 6 is a divalent alkylene group, said alkylene groups optionally containing one or more catenary oxygen atoms; Y is a hydrolysable group,
- R 7 is a monovalent alkyl or aryl group, p is 1, 2 or 3, preferably 3.
- Bonds thus formed are water resistant and can provide enhanced durability of the stain-release properties imparted by the chemical compositions of the present invention
- primary amines may also compete with the Michael addition of the aminosilane to the acryloyl groups.
- R 5 H is not preferred, although 20 mole percent of such primary aminosilanes may be used.
- aminosilanes useful in the practice of this invention are described in U.S. Pat. No. 4,378,250 and include aminoethyltriethoxysilane, ⁇ -aminoethyltrimethoxysilane, ⁇ -aminoethyltriethoxysilane, ⁇ -aminoethyltributoxysilane, ⁇ -aminoethyltripropoxysilane, ⁇ -amino-ethyltrimethoxysilane, ⁇ -aminoethyltriethoxysilane, ⁇ - aminopropyltrimethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ - aminopropyltriethoxysilane, ⁇ -aminopropyltributoxysilane, ⁇ - aminopropyltripropoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ - aminopropyltriethoxy
- the fluorochemical compounds can be made by simple blending of the nucleophilic acryloyl compound(s), fluorine-containing nucleophilic compound(s), and the polyisocyanate compound(s), to produce a urethane compound of the formula:
- R f is a fluorine-containing group, comprising a monovalent perfluoroalkyl or a perfluorooxyalkyl group, or a divalent perfluoroalkylene or a perfluorooxyalkylene group,
- R 1 is the residue of a polyisocyanate
- X 1 is -O- or -S-
- X 2 is -O,-S-or -NR 4 -, where R 4 is H or Ci-C 4 alkyl, R 3 is a divalent alkylene or arylene groups, or combinations thereof, said alkylene groups optionally containing one or more catenary oxygen atoms; x is 1 or 2, z is 1 or 2, and q is 1 to 5.
- the order of blending or the ordering of the steps is non-limiting and can be modified so as to produce a desired fluorochemical urethane compounds.
- the polyisocyanate compound(s), the fluorine-containing nucleophilic compound (III) are first reacted with some portion of the isocyanate groups whereby pendent fluorine-containing groups are thereby bonded to the isocyanate functional urethane compounds.
- nucleophilic acryloyl compound(s) This is followed by reaction with the nucleophilic acryloyl compound(s) with some portion of the remaining isocyanate groups, followed by Michael addition of the aminosilane to the pendent acryloyl groups.
- nucleophilic fluorochemical compound is an amine
- the reactive components and a solvent are charged to a dry reaction vessel in immediate succession or as pre-made mixtures.
- a catalyst is optionally added, and the reaction mixture is heated at a temperature, and for a time sufficient for the reaction to occur.
- Progress of the reaction can be determined by monitoring the disappearance of the isocyanate peak in the IR.
- the nucleophilic compound R ⁇ -Q(X 2 H) 2 (III) is used in an amount sufficient to react with 5 to 50 mole percent of the available isocyanate functional groups.
- compound III is used to react with 10 to 30 mole percent of the isocyanate groups.
- the remaining isocyanate groups, about 50 to 95 mole percent, preferably 70 to 90 mole percent is functionalized by the nucleophilic acryloyl compound (VI), followed by Michael addition of the aminosilane (VII), resulting in a urethane compound having both pendent fluorochemical groups and pendent acryloyl groups.
- the aminosilane (VII) and the nucleophilic acryloyl compound (VI) may be pre-reacted, and then this Michael adduct of Formula IX is reacted with the remaining isocyanate groups.
- the fluorochemical urethane, corresponding to Formula I generally has essentially no remaining isocyanate groups by IR.
- a catalyst level of up to about 0.5 percent by weight of the reaction mixture may be used to effect the condensation reactions with the isocyanates, but typically about 0.00005 to about 0.5 percent by weight may be used, 0.02 to 0.1 percent by weight being preferred.
- a catalyst is not necessary.
- Suitable catalysts include, but are not limited to, tertiary amine and tin compounds.
- useful tin compounds include tin II and tin IV salts such as stannous octoate, dibutyltin dilaurate, dibutyltin diacetate, dibutyltin di-2-ethylhexanoate, and dibutyltinoxide.
- tertiary amine compounds examples include triethylamine, tributylamine, triethylenediamine, tripropylamine, bis(dimethylaminoethyl) ether, morpholine compounds such as ethyl morpholine, and 2,2'-dimorpholinodiethyl ether, 1,4- diazabicyclo[2.2.2]octane (DABCO, Aldrich Chemical Co., Milwaukee, Wis.), and 1,8- diazabicyclo[5.4.0.]undec-7-ene (DBU, Aldrich Chemical Co., Milwaukee, Wis.). Tin compounds are preferred. If an acid catalyst is used, it is preferably removed from the product or neutralized after the reaction.
- suitable catalysts for the Michael reaction is a base of which the conjugated acid preferably has a pKa between 12 and 14. Most preferably used bases are organic.
- Examples of such bases are 1 ,4-dihydropyridines, methyl diphenylphosphane, methyl di-p-tolylphosphane, 2-allyl-N-alkyl imidazolines, tetra-t-butylammonium hydroxide, DBU (l,8-diazabicyclo[5.4.0]undec-7-ene) and DBN (1,5- diazabicyclo[4.3.0]non-5-ene), potassium methoxide, sodium methoxide, sodium hydroxide, and the like.
- a preferred catalyst in connection with this invention is DBU and tetramethylguanidine.
- compositions according to the present invention may be coated on a substrate and at least partially cured to provide a coated article.
- the polymerized coating may form a protective coating that provides at least one of mar resistance, graffiti resistance, stain resistance, adhesive release, low refractive index, and water repellency.
- Coated articles according to the present invention include, for example, eyeglass lenses, mirrors, windows, adhesive release liners, and anti-graffiti films.
- Suitable substrates include, for example, glass (e.g., windows and optical elements such as, for example, lenses and mirrors), ceramic (e.g., ceramic tile), cement, stone, painted surfaces (e.g., automobile body panels, boat surfaces), metal (e.g., architectural columns), paper (e.g., adhesive release liners), cardboard (e.g., food containers), thermosets, thermoplastics (e.g., polycarbonate, acrylics, polyolefms, polyurethanes, polyesters, polyamides, polyimides, phenolic resins, cellulose diacetate, cellulose triacetate, polystyrene, and styrene-acrylonitrile copolymers), and combinations thereof.
- the substrate may be a film, sheet, or it may have some other form.
- the substrate may comprise a transparent or translucent display element, optionally having a ceramer hardcoat thereon.
- a coating composition comprising a mixture of the fluorochemical urethane compounds and a solvent.
- the coating compositions of the present invention comprise solvent suspensions, dispersions or solutions of the fluorochemical compounds of the present invention.
- the coating compositions When applied as coatings, the coating compositions impart oil- and water-repellency properties, and/or stain-release and stain- resistance characteristics to any of a wide variety of substrates.
- the fluorochemical compounds can be dissolved, suspended, or dispersed in a variety of solvents to form coating compositions suitable for use in coating onto a substrate.
- the solvent solutions can contain from about 0.1 to about 50 percent, or even up to about 90 percent, by weight non- volatile solids (based on the total weight of the solid components).
- Coating compositions preferably contain from about 0.1 to about 10 weight percent fluorochemical urethane compounds, based on the total solids.
- the amount of fluorochemical urethane compounds used in the coating is about 0.1 to about 5 weight percent, most preferably from about 0.2 to about 1 weight percent, of the total solids.
- Suitable solvents include alcohols, esters, glycol ethers, amides, ketones, hydrocarbons, hydrofluorocarbons, hydrofluoroethers, chlorohydrocarbons, chlorocarbons, and mixtures thereof.
- compositions of the present invention can be prepared shortly before use by diluting a concentrate of one or more of the compounds of Formula I.
- the concentrate will generally comprise a concentrated solution of the fluorochemical urethane in an organic solvent.
- the concentrate should be stable for several weeks, preferably at least 1 month, more preferably at least 3 months. It has been found that the compounds can be readily dissolved in an organic solvent at high concentrations.
- the coating compositions of this invention optionally contain silsesquioxanes.
- the silsesquioxanes may be blended with the coating composition, or alternatively and coating of the compounds of Formula I may be coated on a previously applied coating of the silsesquioxanes.
- Useful silsesquioxanes include co- condensates of diorganooxysilanes (or hydrosylates thereof) of the formula R 1 ⁇ Si(OR 1 *) 2 with organosilanes (or hydrosylates thereof) of the formula R 10 Si ⁇ 3/2 where each R 10 is an alkyl group of 1 to 6 carbon atoms or an aryl group and R 11 represents an alkyl radical with 1 to 4 carbon atoms.
- Preferred silsesquioxanes are neutral or anionic silsesquioxanes, prior to addition to the composition.
- Useful silsesquioxanes can be made by the techniques described in U.S. Pat. Nos.
- the silsesquioxanes may be prepared by adding silanes to a mixture of water, a buffer, a surface active agent and optionally an organic solvent, while agitating the mixture under acidic or basic conditions. It is preferable to add the quantity of silane uniformly and slowly in order to achieve a narrow particle size of 200 to 500 Angstroms. The exact amount of silane that can be added depends on the substituent R and whether an anionic or cationic surface-active agent is used. Co-condensates of the silsesquioxanes in which the units can be present in block or random distribution are formed by the simultaneous hydrolysis of the silanes.
- the amount of tetraorganosilanes, including tetralkoxysilanes and hydrosylates thereof (e.g. of the formula Si(OH) 4 ) present is less than 10 wt.%, preferably less than 5 wt.%, more preferably less than 2 wt.% relative to the weight of the silsesquioxane.
- silanes are useful in preparing the silsesquioxanes of the present invention: methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxyoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, isobutyltrimethoxysilane, isobutyltriethoxysilane, 2-ethylbutyltriethoxysilane, and 2- ethylbutoxytriethoxysilane.
- the composition may be applied to the substrate by conventional techniques such as, for example, spraying, knife coating, notch coating, reverse roll coating, gravure coating, dip coating, bar coating, flood coating, dip coating or spin coating.
- the composition may be applied to any thickness to provide the desired level of water, oil, stain, and soil repellency.
- the composition is applied to the substrate as a relatively thin layer resulting in a dried cured layer having a thickness in a range of from about 40 nm to about 60nm, although thinner and thicker (e.g., having a thickness up to 100 micrometers or more) layers may also be used.
- any optional solvent is typically at least partially removed (e.g., using a forced air oven), and the composition is then at least partially cured to form a durable coating.
- a preferred coating method for application of a fluorochemical urethane silane of the present invention includes dip coating.
- a substrate to be coated can typically be contacted with the treating composition at room temperature (typically, about 20 to about 25 0 C).
- the mixture can be applied to substrates that are preheated at a temperature of for example between 60 and 15O 0 C. This is of particular interest for industrial production, where e.g. ceramic tiles can be treated immediately after the baking oven at the end of the production line.
- the treated substrate can be dried and cured at ambient or elevated temperature, e.g. at 40 to 300 0 C and for a time sufficient to dry. The process may also require a polishing step to remove excess material.
- the present invention provides a protective coating on substrate that is relatively durable, and more resistant to contamination and easier to clean than the substrate surface itself.
- the present invention provides in one embodiment a method and composition for use in preparing a coated article comprising a substrate, preferably a hard substrate, and an antisoiling coating of greater than a monolayer (which is typically greater than about 15 Angstroms thick deposited thereon.
- an antisoiling coating of the present invention is at least about 20 Angstroms thick, and more preferably, at least about 30 Angstroms thick.
- the thickness of the coating is less than 10 micrometers, preferably less than 5 micrometers.
- the coating material is typically present in an amount that does not substantially change the appearance and optical characteristics of the article.
- IR spectra were run on a Thermo-Nicolet, Avatar 370 FTIR, obtainable from Thermo Electron Corporation, Waltham, MA.
- Polycarbonate plaques (10 cm by 10 cm) were coated with coating compositions comprising fluorochemical urethane compositions according to this invention using the dip coating process.
- each polycarbonate plaque was first immersed into a SHP 401 primer at a rate of 90 cm per minute rate. Once the entire plaque was immersed in the primer, the plaque was removed from the primer a rate of 90 cm per minute rate and was allowed to air dry at room temperature for 10 minutes. The dried plaque was then immersed into a solution of SHC- 1200 or a solution of SHC- 1200 containing 0.3 weight percent of a fluorochemical urethane silane prepared according to this invention. The plaque was immersed in to the coating solution at a rate of 90 cm per minute and withdrawn out at 19 cm per minute, air dried at room temperature for 20 minutes and finally heated in an oven for 30 minutes at 130 0 C.
- Coated polycarbonate plaques were prepared as described above. A line was drawn across the surface of a coated polycarbonate plaque using a SharpieTM Fine Point, Series 30000 permanent marker (available from Sanford, a division of Newell Rubbermaid) The samples were rated for appearance and for the ability to repel a black Sharpie marker.
- a coated polycarbonate plaque i.e., test sample prepared as described above was secured using vinyl tape and rubber bands onto ajar , with an 87 mm inner diameter (VWR 36318-860, commercially available from VWR Bristol, CT), containing 50 grams of unused 20-30 mesh Ottawa sand (obtained from VWR, Bristol, CT).
- VWR DS-500E obtained from VWR Bristol, CT
- the shaker was operated oscillating at a rate of 225 rpm for 10 minutes.
- the abrasion resistance of the coated and cured polycarbonate plaques were tested cross-web to the coating direction by use of a mechanical device capable of oscillating a steel wool sheet adhered to a stylus across the film's surface.
- the stylus oscillated over a 90 mm wide sweep width at a rate of 315 mm/sec (3.5 wipes/sec) wherein a "wipe" is defined as a single travel of 90 mm.
- the stylus had a flat, cylindrical base geometry with a diameter of 3.2 cm.
- the stylus was designed to enable attachment of additional weights to increase the force exerted by the steel wool normal to the film's surface.
- the samples were tested at a 50Og load for 25 wipes.
- the #0000 steel wool sheets were "Magic Sand-Sanding Sheets" available from Hut Products, Fulton, MO.
- the #0000 has a specified grit equivalency of 600-1200 grit sandpaper.
- the 3.2 cm steel wool discs were die cut from the sanding sheets and adhered to the 3.2 cm stylus base with 3M Brand Scotch Permanent Adhesive Transfer tape.
- the contact angles were measured on the wear track after the steel wool abrasion, and on an area of the plaque adjacent to the wear track that was not effected by the steel wool track (i.e., before steel wool testing).
- the contact angle measurements were made using the "method for Measuring Contact Angles" as described below.
- the reported data represents the average of measurements done on three plaques. Three drops were placed on each plaque, with contact angle measured on the right and the left sides of each of the drops.
- the coated polycarbonate plaques (prepared as described above) were treated with IPA, which was allowed to evaporate, before being subjected to measurement of water contact angles. Measurements were made using as-received reagent-grade hexadecane and de-ionized water filtered through a filtration system (obtained from Millipore Corporation Billerica, MA), on a video contact angle analyzer (available as product number VCA- 2500XE from AST Products Billerica, MA). Reported values are the averages of measurements on at least three drops measured on the right and the left sides of the drops. Drop volumes were 5 ⁇ L for static measurements.
- Hexamethylene diisocyanate (DesmodurTM NlOO) was obtained from Bayer Polymers LLC of Pittsburgh, Pennsylvania.
- HFPO-C(O)N(H)CH?CH?OH was prepared by a procedure similar to that described in U.S. Publication No. 2004-0077775, entitled "Fluorochemical Composition Comprising a Fluorochemical Polymer and Treatment of a Fibrous Substrate Therewith".
- Pentaervthritol Triacrylate was obtained from Sartomer Company of Warrington, PA under trade name SR444C.
- Poly(methyl methacrylate) Primer (SHPTM 401) was obtained from GE Silicones of Waterford, NY.
- Methylsilsesquioxane solution (SHCTM 1200) was obtained from GE Silicones of Waterford, NY.
- N-methyl Aminopropyltrimethoxy silane (MAPTMS) was obtained from Union Carbide Chemicals and Plastics Co. of Danbury, CT.
- Bis(propyl-3 -trimethoxysilane) amine was obtained from Gelest, Morrisville, PA.
- Aminopropyltrimethoxy silane, (APTMS) was obtained from Sigma-Aldrich, Milwaukee, WI.
- HSA Hydroxyethyl acrylate
- DBTDL Dibutyltin dilaurate
- Polycarbonate Plaques were molded by Minnesota Mold & Engineering, Vadnais Heights, MN (from GE LexanTM 101, Mount Vernon, IN).
- Example 1 a) Preparation of [DESN100/0.15 HFPOC(O)N(H)CH 2 CH 2 OH/0.90 HEA] intermediate A 200 mL round bottom flask equipped with stirring bar was charged with 12.5g
- a 200 mL round bottom flask equipped with stirring bar was charged with 12.5 g (0.0654 eq, 1.0 mole fraction) DESNlOO, 1.6 mg DBTDL, 0.05 g BHT, and 44.0 g THF to form a mixture.
- the flask was placed in a 55 0 C bath and 25.80 g (0.0196 eq, 0.30 mole fraction, 1314 molecular weight) HFPOC(O)N(H)CH 2 CH 2 OH was added to the mixture over 10 minutes via a pressure equalizing dropping funnel.
- Two hours after the addition was complete 5.70 g (0.0491 eq, 0.75 mole fraction) hydroxyethyl acrylate was added and the mixture was allowed to react overnight. After reaction overnight, the IR spectrum of a sample had no peaks corresponding to a NCO group at 2265 cm "1 .
- the reaction product was diluted by addition of 11.44g of THF to adjust its composition to 50% solids.
- a 200 mL round bottom flask equipped with stirring bar was charged with 12.5 g (0.0654 eq, 1.0 mole fraction) DESNlOO, 1.6 mg DBTDL, 0.05g BHT, and 35.24 g THF to form a mixture.
- the flask was placed in a 55 0 C bath and 12.9 g (0.0098eq, 0.15 mole fraction, 1314 molecular weight) HFPOC(O)N(H)CH 2 CH 2 OH was added to the mixture over 10 minutes via a pressure equalizing dropping funnel. Two hours after the addition was complete, 4.13g (0.0098 eq, 0.15 mole fraction) PET 3 A was added to the mixture.
- the number of equivalents of bis(trimethoxysilylpropyl)amine used was determined by first assuming that PET 3 A of 420.94 OH equivalent weight used was 70% Pentaerythritol Triacrylate (298/421.4) and 30% Pentaerythritol Tetraacrylate. Next, the number of acrylate moieties present per mole of OH equivalent was determined by calculating the following equation: [the sum for all components of (number of acrylate moieties present in component)(hydroxyl equivalent weight of the total species)(component's fraction of the total species)] / molecular weight of component.
- a 200 mL round bottom flask equipped with stirring bar was charged with 12.5 g (0.0654 eq, 1.0 mole fraction) DESNlOO, 1.6 mg DBTDL, 0.05g BHT, and 35.24 g THF to form a mixture.
- the flask was placed in a 55 0 C bath and 12.9 g (0.0098eq, 0.15 mole fraction, 1314 molecular weight) HFPOC(O)N(H)CH 2 CH 2 OH was added to the mixture over 10 minutes via a pressure equalizing dropping funnel. Two hours after the addition was complete, 8.26 (0.0196 eq, 0.30 mole fraction) PET 3 A was added to the mixture.
- Example 1-7 materials were used to prepare coatings on polycarbonate plaques according to the "Method for Forming Coatings on Polycarbonate Plaques" described above. The performance of the resulting coatings were then evaluated using Taber Haze
- Table 1 summarizes the results of Taber Haze Test, Ink Repellency Test and Ink Repellency Durability Test for coatings made using SHC- 1200 with no added fluorochemical urethane silane and Example 1-7 materials.
- Table 2 summarizes the results of Steel Wool Test for coatings made using SHC- 1200 with no added fluorochemical urethane silane and Example 1-7 materials.
- Table 3 summarizes the results of Solvent Test for coatings made using SHC-1200 with no added fluorochemical urethane silane and Example 1-3 materials.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- General Chemical & Material Sciences (AREA)
- Paints Or Removers (AREA)
- Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
- Polyethers (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/445,143 US7825272B2 (en) | 2006-12-20 | 2007-12-05 | Fluorochemical urethane compounds having pendent silyl groups |
CN200780046960XA CN101563383B (en) | 2006-12-20 | 2007-12-05 | Fluorochemical urethane compounds having pendent silyl groups |
EP07854938A EP2121789A1 (en) | 2006-12-20 | 2007-12-05 | Fluorochemical urethane compounds having pendent silyl groups |
JP2009543033A JP5415960B2 (en) | 2006-12-20 | 2007-12-05 | Fluorochemical urethane compounds having pendant silyl groups |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US87103406P | 2006-12-20 | 2006-12-20 | |
US60/871,034 | 2006-12-20 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008076639A1 true WO2008076639A1 (en) | 2008-06-26 |
Family
ID=39185843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2007/086446 WO2008076639A1 (en) | 2006-12-20 | 2007-12-05 | Fluorochemical urethane compounds having pendent silyl groups |
Country Status (5)
Country | Link |
---|---|
US (1) | US7825272B2 (en) |
EP (1) | EP2121789A1 (en) |
JP (1) | JP5415960B2 (en) |
CN (1) | CN101563383B (en) |
WO (1) | WO2008076639A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110081496A1 (en) * | 2009-10-06 | 2011-04-07 | 3M Innovative Properties Company | Perfluoropolyether Coating Composition for Hard Surfaces |
WO2014025716A1 (en) * | 2012-08-09 | 2014-02-13 | 3M Innovative Properties Company | Photocurable compositions |
EP2982702A4 (en) * | 2013-04-04 | 2016-12-14 | Asahi Glass Co Ltd | Fluorine-containing ether compound, fluorine-containing ether composition, and coating solution, as well as substrate having surface layer, and method for manufacturing same |
WO2021209327A1 (en) * | 2020-04-13 | 2021-10-21 | Akzo Nobel Coatings International B.V. | Fluorinated, alkoxysilyl-functional polymer for anti-stain and anti-scratch coatings |
RU2799553C1 (en) * | 2020-04-13 | 2023-07-06 | Акцо Нобель Коатингс Интернэшнл Б.В. | Fluorinated, alkoxysilil functionalized polymer for non-soiled and non-scratch coatings |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI450043B (en) * | 2008-03-11 | 2014-08-21 | 3M Innovative Properties Co | Phototools having a protective layer |
US8901263B2 (en) * | 2008-12-11 | 2014-12-02 | 3M Innovative Properties Company | Amide-linked perfluoropolyether thiol compounds and processes for their preparation and use |
US9096712B2 (en) | 2009-07-21 | 2015-08-04 | 3M Innovative Properties Company | Curable compositions, method of coating a phototool, and coated phototool |
US8420281B2 (en) | 2009-09-16 | 2013-04-16 | 3M Innovative Properties Company | Epoxy-functionalized perfluoropolyether polyurethanes |
KR101781659B1 (en) | 2009-09-16 | 2017-09-25 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Fluorinated coating and phototools made therewith |
KR101768237B1 (en) | 2009-09-16 | 2017-08-14 | 쓰리엠 이노베이티브 프로퍼티즈 컴파니 | Fluorinated coating and phototools made therewith |
CN103992242B (en) * | 2014-05-17 | 2017-09-29 | 北京航空航天大学 | A kind of fluorinated isocyanates and its preparation method with the copolymer emulsion of acrylate |
CN107849329B (en) * | 2015-08-07 | 2021-11-09 | 大金工业株式会社 | Composition, coating film, fluorine-containing coating film, and laminate |
US10544260B2 (en) | 2017-08-30 | 2020-01-28 | Ppg Industries Ohio, Inc. | Fluoropolymers, methods of preparing fluoropolymers, and coating compositions containing fluoropolymers |
JPWO2020111010A1 (en) * | 2018-11-28 | 2021-10-21 | Agc株式会社 | Fluorine-containing ether compounds, compositions and articles |
KR102672966B1 (en) * | 2019-09-26 | 2024-06-10 | 다이킨 고교 가부시키가이샤 | Silane compounds containing fluoropolyether groups |
US20230151149A1 (en) * | 2020-05-14 | 2023-05-18 | 3M Innovative Properties Company | Polymerizable Compositions and Compounds Comprising Perfluorinated Group, Hydrolysable Silane Group, and (Meth)Acryl Group |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0666290A1 (en) * | 1994-02-08 | 1995-08-09 | Dow Corning Corporation | Abrasion-resistant coating |
EP1564233A1 (en) * | 2004-02-11 | 2005-08-17 | E. I. du Pont de Nemours and Company | Polyurethaneurea resins with trialkoxysilane groups and processes for the production thereof |
WO2006102383A1 (en) * | 2005-03-23 | 2006-09-28 | 3M Innovative Properties Company | Perfluoropolyether urethane additives having (meth)acryl groups and hardcoats |
Family Cites Families (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1004132B (en) | 1952-02-14 | 1957-03-14 | Koerting Radio Werke G M B H | Flat structure made of thermoplastic plastics subject to tensile stress, in particular belt, tape, belt |
US3250808A (en) | 1963-10-31 | 1966-05-10 | Du Pont | Fluorocarbon ethers derived from hexafluoropropylene epoxide |
CH106968D (en) | 1965-01-21 | 1900-01-01 | ||
US4508916A (en) | 1979-04-11 | 1985-04-02 | Minnesota Mining And Manufacturing Company | Curable substituted urethane acrylates |
US4262072A (en) | 1979-06-25 | 1981-04-14 | Minnesota Mining And Manufacturing Company | Poly(ethylenically unsaturated alkoxy) heterocyclic protective coatings |
DE3004824A1 (en) | 1980-02-09 | 1981-08-20 | Bayer Ag, 5090 Leverkusen | POLESTABILIZING TEXTILE IMPREGNANT |
US4378250A (en) | 1981-07-31 | 1983-03-29 | Treadway Gerald D | Organosilicone coating compositions |
DE3307420A1 (en) | 1983-03-03 | 1984-09-13 | Bayer Ag, 5090 Leverkusen | TEXTILE EQUIPMENT |
CA1327856C (en) | 1989-09-05 | 1994-03-15 | Barry R. Knowlton | Method of enhancing the soil- and stain-resistance characteristics of polyamide and wool fabrics, the fabrics so treated, and treating composition |
US5314980A (en) | 1993-01-19 | 1994-05-24 | Minnesota Mining And Manufacturing Company | Epoxy coating compositions with metal-containing stabilizers |
DE19730245B4 (en) | 1997-07-15 | 2007-08-30 | W.L. Gore & Associates Gmbh | Coating material, coated material and method of making the same |
US7351471B2 (en) | 2000-12-06 | 2008-04-01 | 3M Innovative Properties Company | Fluoropolymer coating compositions with multifunctional fluoroalkyl crosslinkers for anti-reflective polymer films |
US6803109B2 (en) | 2001-03-09 | 2004-10-12 | 3M Innovative Properties Company | Water-and oil-repellency imparting urethane oligomers comprising perfluoroalkyl moieties |
US6649272B2 (en) | 2001-11-08 | 2003-11-18 | 3M Innovative Properties Company | Coating composition comprising fluorochemical polyether silane polycondensate and use thereof |
US7078454B2 (en) | 2002-04-17 | 2006-07-18 | 3M Innovative Properties Company | Repellent fluorochemical compositions |
US7094829B2 (en) | 2002-05-24 | 2006-08-22 | 3M Innovative Properties Company | Fluorochemical composition comprising a fluorinated polymer and treatment of a fibrous substrate therewith |
US6844373B2 (en) * | 2002-05-28 | 2005-01-18 | Alcatel | Composition comprising fluorinated, radiation-curable dyes for surface energy control |
US20040147188A1 (en) | 2003-01-28 | 2004-07-29 | 3M Innovative Properties Company | Fluorochemical urethane composition for treatment of fibrous substrates |
US7533514B2 (en) | 2003-04-25 | 2009-05-19 | Boston Scientific Scimed, Inc. | Method and apparatus for automated handling of medical devices during manufacture |
WO2005023822A1 (en) | 2003-08-21 | 2005-03-17 | 3M Innovative Properties Company | Perfluoropolyether amide-linked phosphonates, phosphates, and derivatives thereof |
US7652115B2 (en) | 2003-09-08 | 2010-01-26 | 3M Innovative Properties Company | Fluorinated polyether isocyanate derived silane compositions |
US7803894B2 (en) | 2003-12-05 | 2010-09-28 | 3M Innovatie Properties Company | Coating compositions with perfluoropolyetherisocyanate derived silane and alkoxysilanes |
ITMI20040106A1 (en) | 2004-01-27 | 2004-04-27 | Solvay Solexis Spa | POLIURETANI |
EP1593728B1 (en) | 2004-05-03 | 2012-05-09 | Rohm And Haas Company | Michael addition compositions |
US7342080B2 (en) | 2004-05-07 | 2008-03-11 | 3M Innovative Properties Company | Polymerizable compositions, methods of making the same, and composite articles therefrom |
US7473734B2 (en) | 2005-05-02 | 2009-01-06 | Rohm And Haas Company | Michael addition compositions |
US7294731B1 (en) | 2006-08-28 | 2007-11-13 | 3M Innovative Properties Company | Perfluoropolyether silanes and use thereof |
US8002886B2 (en) | 2006-12-15 | 2011-08-23 | 3M Innovative Properties Company | Fluorochemical urethane compounds having pendent silyl groups used for surface treatment |
US7745653B2 (en) * | 2007-03-08 | 2010-06-29 | 3M Innovative Properties Company | Fluorochemical compounds having pendent silyl groups |
US8015970B2 (en) | 2007-07-26 | 2011-09-13 | 3M Innovative Properties Company | Respirator, welding helmet, or face shield that has low surface energy hard-coat lens |
-
2007
- 2007-12-05 CN CN200780046960XA patent/CN101563383B/en not_active Expired - Fee Related
- 2007-12-05 EP EP07854938A patent/EP2121789A1/en not_active Withdrawn
- 2007-12-05 JP JP2009543033A patent/JP5415960B2/en not_active Expired - Fee Related
- 2007-12-05 US US12/445,143 patent/US7825272B2/en not_active Expired - Fee Related
- 2007-12-05 WO PCT/US2007/086446 patent/WO2008076639A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0666290A1 (en) * | 1994-02-08 | 1995-08-09 | Dow Corning Corporation | Abrasion-resistant coating |
EP1564233A1 (en) * | 2004-02-11 | 2005-08-17 | E. I. du Pont de Nemours and Company | Polyurethaneurea resins with trialkoxysilane groups and processes for the production thereof |
WO2006102383A1 (en) * | 2005-03-23 | 2006-09-28 | 3M Innovative Properties Company | Perfluoropolyether urethane additives having (meth)acryl groups and hardcoats |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102686685B (en) * | 2009-10-06 | 2015-11-25 | 3M创新有限公司 | For the PFPE coating composition of hard surface |
WO2011043973A1 (en) * | 2009-10-06 | 2011-04-14 | 3M Innovative Properties Company | Perfluoropolyether coating composition for hard surfaces |
US8268067B2 (en) * | 2009-10-06 | 2012-09-18 | 3M Innovative Properties Company | Perfluoropolyether coating composition for hard surfaces |
CN102686685A (en) * | 2009-10-06 | 2012-09-19 | 3M创新有限公司 | Perfluoropolyether coating composition for hard surfaces |
US20110081496A1 (en) * | 2009-10-06 | 2011-04-07 | 3M Innovative Properties Company | Perfluoropolyether Coating Composition for Hard Surfaces |
WO2014025716A1 (en) * | 2012-08-09 | 2014-02-13 | 3M Innovative Properties Company | Photocurable compositions |
CN104737075A (en) * | 2012-08-09 | 2015-06-24 | 3M创新有限公司 | Photocurable compositions |
US9217920B2 (en) | 2012-08-09 | 2015-12-22 | 3M Innovative Properties Company | Photocurable compositions |
EP2982702A4 (en) * | 2013-04-04 | 2016-12-14 | Asahi Glass Co Ltd | Fluorine-containing ether compound, fluorine-containing ether composition, and coating solution, as well as substrate having surface layer, and method for manufacturing same |
KR20220153686A (en) * | 2020-04-13 | 2022-11-18 | 아크조노벨코팅스인터내셔널비.브이. | Fluorinated alkoxysilyl-functional polymers for antifouling and scratch resistant coatings |
WO2021209327A1 (en) * | 2020-04-13 | 2021-10-21 | Akzo Nobel Coatings International B.V. | Fluorinated, alkoxysilyl-functional polymer for anti-stain and anti-scratch coatings |
RU2799553C1 (en) * | 2020-04-13 | 2023-07-06 | Акцо Нобель Коатингс Интернэшнл Б.В. | Fluorinated, alkoxysilil functionalized polymer for non-soiled and non-scratch coatings |
KR102582958B1 (en) | 2020-04-13 | 2023-09-25 | 아크조노벨코팅스인터내셔널비.브이. | Fluorinated alkoxysilyl-functional polymers for stain- and scratch-resistant coatings |
US12049537B2 (en) | 2020-04-13 | 2024-07-30 | Akzo Nobel Coatings International B.V. | Fluorinated, alkoxysilyl-functional polymer for anti-stain and anti-scratch coatings |
Also Published As
Publication number | Publication date |
---|---|
JP2010513547A (en) | 2010-04-30 |
US7825272B2 (en) | 2010-11-02 |
CN101563383A (en) | 2009-10-21 |
CN101563383B (en) | 2012-08-15 |
US20100105828A1 (en) | 2010-04-29 |
EP2121789A1 (en) | 2009-11-25 |
JP5415960B2 (en) | 2014-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7825272B2 (en) | Fluorochemical urethane compounds having pendent silyl groups | |
EP2125835B1 (en) | Fluorochemical urethane compounds having pendent silyl groups used for surface treatment | |
EP2178940B1 (en) | Fluorochemical urethane compounds having pendent silyl groups | |
EP2164887B1 (en) | Fluorochemical urethane-silane compounds and aqueous compositions thereof | |
EP2164912B1 (en) | Fluorochemical urethane compounds and aqueous compositions thereof | |
EP2134729B1 (en) | Fluorochemical compounds having pendent silyl groups | |
US7097910B2 (en) | Coating composition comprising fluorochemical polyether silane polycondensate and use thereof | |
WO2005061572A1 (en) | Coating compositions with perfluoropolyetherisocyanate derived silane and alkoxysilanes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200780046960.X Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07854938 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12445143 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 2009543033 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2007854938 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007854938 Country of ref document: EP |