WO2008075728A1 - Method for changing optical spectrum, and apparatus for generating light with changed spectrum - Google Patents

Method for changing optical spectrum, and apparatus for generating light with changed spectrum Download PDF

Info

Publication number
WO2008075728A1
WO2008075728A1 PCT/JP2007/074458 JP2007074458W WO2008075728A1 WO 2008075728 A1 WO2008075728 A1 WO 2008075728A1 JP 2007074458 W JP2007074458 W JP 2007074458W WO 2008075728 A1 WO2008075728 A1 WO 2008075728A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
optical fiber
spectrum
light
glass
Prior art date
Application number
PCT/JP2007/074458
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoharu Hasegawa
Tatsuo Nagashima
Seiki Ohara
Naoki Sugimoto
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Publication of WO2008075728A1 publication Critical patent/WO2008075728A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/365Non-linear optics in an optical waveguide structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/355Non-linear optics characterised by the materials used
    • G02F1/3555Glasses

Definitions

  • the present invention relates to a method and a spectrally changed light generator for generating light whose spectrum has been changed from incident light (hereinafter sometimes referred to as spectrally changed light) using a nonlinear optical fiber having normal dispersion.
  • spectrally changed light whose spectrum has been changed from incident light (hereinafter sometimes referred to as spectrally changed light) using a nonlinear optical fiber having normal dispersion.
  • it is suitable for compact and highly efficient generation of C-band spectrum change light.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-90737
  • Non Patent Literature 1 Japanese Journal of Applied Physics Vol. 40 (2001) pp.L365
  • the fiber whose dispersion is controlled in the longitudinal direction of the optical fiber is generally unstable, and the dispersion value of the nonlinear fiber is also unstable.
  • the technology that imparts a frequency shift in the optical noise of about femtosecond force is also a method that is used in basic research of ultrafast spectroscopy and is not common.
  • silica-based nonlinear fibers that are widely used have small optical nonlinearities, and it is necessary to use extremely long fibers in order to obtain sufficient nonlinear effects, or the compactness of the module is impaired, and temperature, vibration, etc. There is a problem with external disturbances!
  • a film made of a material having high nonlinearity such as BiO or lead-containing quartz glass.
  • the power of all the white light described above is spectrum change light
  • the present invention aims to provide an optical spectrum change method and a spectrum change light generator capable of solving such problems.
  • the present invention is a method of generating light having an optical noise incident on one end of a nonlinear optical fiber and generating a spectrum-changed light from the other end.
  • the nonlinear optical fiber contains BiO at 40 mol% or less.
  • an optical spectrum changing method comprising an upper glass and having a group velocity dispersion of 160 ps / nm / km or more and 1 Ops / nm / km or less.
  • a device that generates light with an optical node entering one end of a nonlinear optical fiber and generating a spectrum-changed light from the other end, the optical fiber containing 40 mol% or more of BiO.
  • a spectrally varying light generator with a group velocity dispersion of 160ps / nm / km or more and 10ps / nm / km or less is provided.
  • a simple configuration using a general-purpose femtosecond laser as a light source and a highly nonlinear optical fiber that achieves both high nonlinearity and small group velocity dispersion compared to conventional nonlinear optical fibers are efficient for stable operation.
  • Infrared white femtosecond light having a flat spectrum can be obtained.
  • FIG. 1 is a block diagram for explaining the present invention.
  • FIG. 2 is an example of a conceptual diagram of a transverse section of a holey fiber used in the present invention.
  • FIG. 3 Scanning electron microscope (SEM) photograph of the transverse section of the holey fiber used in the present invention. It is an example.
  • FIG. 4 is a diagram showing a spectrum of femtosecond optical noise output from a nonlinear optical fiber.
  • FIG. 5 is a diagram showing a flowchart of a calculation program.
  • FIG. 6 A diagram showing a calculation result and a measurement result of a spectrum of femtosecond optical noise output from a nonlinear optical fiber.
  • FIG. 7 is a diagram showing a calculation result of a ratio of energy contained in a C band in femtosecond optical noise output from a nonlinear optical fiber. Explanation of symbols
  • FIG. 1 is a block diagram for explaining the present invention. The present invention is not limited to FIG.
  • a femtosecond pulse laser, an erbium-doped fiber amplifier (hereinafter also referred to as EDFA! /) And a nonlinear optical fiber are connected in sequence.
  • the femtosecond pulse laser is a general-purpose laser, and the center wavelength of the light pulse emitted from it is typically 1550 nm; 1560 nm, the pulse width is lOOfs ⁇ ; lps, the peak power is 10 W ⁇ ;
  • the optical node is usually transmitted after being attenuated by an attenuator (not shown) in order to suppress the occurrence of nonlinear effects in the transmission path.
  • An optical pulse is a pump light having a wavelength of 980 nm emitted from a pumping light source (not shown) and a coupler.
  • the net average power of light pulses incident on a nonlinear optical fiber is about 1 OmW to 10 W It is. If it exceeds 10 W, the pulse quality may deteriorate and the spectrum shape may be destroyed due to nonlinear effects during transmission or stimulated scattering due to acoustic phonon.
  • the peak power of the optical noise incident on the nonlinear optical fiber can be adjusted by changing the pump light input value to the EDFA.
  • the optical pulse amplified by the EDFA is incident on the nonlinear optical fiber, and the spectral width is expanded and converted into spectrally changed light.
  • the amount of spectral width expansion strongly depends on the input peak power of the optical pulse.
  • ⁇ ⁇ is 50 nm when the peak power is 50 W
  • 140 nm is typical when the peak power is 160 W.
  • the 10 dB width is the width of the 10 dB wavelength range, that is, the wavelength range where the 10 dB intensity is weaker than the maximum value of the spectrum intensity.
  • the center wavelength of the incident light pulse is 1550 nm to 1560 nm
  • the pulse width is 100 fs to lps
  • the peak power is 0 W to 1000 W
  • the 10 dB wavelength range of the spectrally changing light is wider than 1 530 nm
  • the power of light in the wavelength range from 1530 nm to 1565 nm in the Pectonore modified fluorescence is typically 50% or more of the spectrally modified light power.
  • nonlinear optical fiber hereinafter sometimes simply referred to as an optical fiber
  • the optical fiber is made of glass containing 40 mol% or more of BiO. Not like that
  • An example is a glass that becomes qualitative and has Ga O + In O + ZnO of 5% or more.
  • GVD group velocity dispersion
  • the spectrum width increases significantly, and the energy stays within the C band (wavelength range: 1530 to 1565 nm). May decrease the spectral smoothness, or may cause unstable femtosecond light propagation. Preferably, it is 20 ps / nm / km or less.
  • the G VD is less than ⁇ 160 ps / nm / km, the spectrum expansion of the femtosecond light pulse is insufficient, and it may not be possible to generate light in the entire C band.
  • GVD is typically over 50 ps / nm / km.
  • the third-order nonlinear coefficient (hereinafter also referred to as ⁇ or nonlinear constant) for light having a wavelength of 1550 nm of the optical fiber is preferably ⁇ ⁇ ⁇ ⁇ ⁇ - ⁇ ⁇ 1 or more. If it is less than 470W— ⁇ ⁇ 1 , the fiber length will be longer if the nonlinear effect is increased, and it will be more susceptible to disturbances such as temperature fluctuations and vibrations. More preferably, it is 625 W— ⁇ m— 1 or more.
  • the optical fiber is typically a holey fiber, for example, an air-clad fiber as shown in a conceptual cross-sectional view in FIG.
  • the air-clad optical fiber 10 includes six holes 11, an optical transmission glass 12, a hollow glass fiber 13, and a sheet glass 14.
  • the hollow portion of the hollow glass fiber 13 is composed of six holes 11 extending in the axial direction (perpendicular to the paper surface), and adjacent holes are partitioned by a sheet glass 14 existing between them. .
  • the number of holes 11 is not limited to six, but is preferably three or more. With two, there is a risk of insufficient light confinement in the air-clad optical fiber.
  • the number is preferably 12 or less, more preferably 9 or less.
  • the optical transmission glass 12 may be made of one kind of glass, or may be made of two or more kinds of glasses whose boundaries in the cross section are concentric.
  • the optical transmission glass 12 is the core of the optical fiber 10 itself.
  • the light transmission glass 12 is composed of an internal high refractive index glass and a low refractive index glass surrounding it, such as one having a higher refractive index in the center. .
  • the optical transmission glass 12 having such a structure adjusts the ⁇ and GVD, or when the optical fiber and the silica fiber are fusion-bonded, the waveguide structure is lost or the connection loss is large. Can be prevented or suppressed.
  • the hollow glass fiber 13 has a plate-like glass 1 at the center of the hollow portion formed by the air holes 11.
  • the optical transmission glass 12 is held through 4 and light is not expected to propagate through the glass.
  • the plate-like glass 14 holds the light transmission glass 12 at the center of the hollow portion, and the thickness thereof is preferably 0.05-1.5. If the length is less than 0 ⁇ 05 m, the glass sheet 14 may be damaged when the optical fiber 10 is cut, and the optical transmission glass 12 may not be held. Typically 0 ⁇ ; 1 m or more. If it exceeds 1.5 m, light leakage from the light transmission glass 12 to the plate glass 14 becomes so large that light confinement may be insufficient. Preferably less than 0. ⁇ ⁇ m! ⁇ Deme ⁇ ⁇ .
  • the holes 11 are defined by the light transmission glass 12, the hollow glass fiber 13, and the plate-like glass 14, and at least a portion in contact with the holes 11 of the light transmission glass 12 and the holes 11 of the hollow glass fiber 13.
  • the contacting portion and the plate-like glass 14 are preferably made of glass having the same composition, or made of glass having the same composition.
  • the plate glass 14 is preferably the exemplified glass.
  • optical transmission glass 12 is not such a glass, stable thermal molding may be difficult due to different thermal properties between the glasses.
  • the diameter (d) of the inscribed circle in the cross section of the optical transmission glass 12 is usually 0.2 to 10 and typically 0.5 to 4 111.
  • the diameter (d ′) of the circumscribed circle in the cross section of the hollow portion of the hollow glass fiber 13 is preferably (l + 2 1/2 ) d or more. If it is less than (l + 2 1/2 ) d, light confinement becomes insufficient, and propagation loss may increase. More preferably 3d or more, particularly preferably 4d or more. On the other hand, d ′ is preferably 16d or less. If it exceeds 16d, the strength of the optical fiber 10 will decrease, foreign matter will easily enter the holes 11, and the glass sheet 14 may be destroyed when trying to cut the optical fiber 10. Is concerned.
  • the outer diameter of the hollow glass fiber 13 is preferably 125 ⁇ 2 m when the optical fiber 10 is fused with a quartz optical fiber (SMF) standardized by ITU-T Recommendation G. 652! /, .
  • SMF quartz optical fiber
  • Obtained glass that is O 1%, ZnO 4.48%, BaO 4.23%, CeO 0.5%,
  • the raw materials were mixed and mixed to prepare a 250 g mixed raw material.
  • This compounded raw material is placed in a platinum crucible and melted by holding at 1000 ° C for 2 hours in the atmosphere, and the resulting molten glass is poured into a plate shape, and then kept at 370 ° C for 4 hours and then cooled to room temperature. Slow cooling was performed.
  • a glass plate having a thickness of 1 mm and a size of 20 mm x 20 mm was prepared from the glass thus obtained, and a sample plate obtained by mirror-polishing both surfaces of the glass plate was measured for refractive index with respect to light having a wavelength of 1550 nm. It was 2.111 as measured using a model 2010 prism force bra.
  • the glass has an oblique side of 40 mm, a short side of 20 mm, and an angle between the oblique side and the short side of 60.
  • the glass material dispersion D (unit: ps / nm m) is as follows.
  • the wavelength ( ⁇ ) of the sample block is 492 ⁇ ; the refractive index n at 1710 nm is the maximum ⁇ using a precise refractive index measuring device GMR-1 manufactured by Carneux Optical Co., Ltd.
  • the air-clad nonlinear optical fiber was produced as follows. First, a rod glass having six holes formed, a diameter of 28 mm, and a length of 130 mm was redrawn at 418 ° C. to obtain a glass rod having a diameter of 3.5 mm. Next, one end of the glass rod was sealed, placed in a glass tube having an outer diameter of 15 mm and an inner diameter of 6 mm with the sealing portion down, and then the lower end of the glass tube was sealed.
  • the space between the glass rod and the glass tube is depressurized at 60 kPa, and the six holes of the glass rod are heated to 425 ° C while being pressurized and expanded at 30 to 40 kPa. Were simultaneously drawn to obtain a preform with a diameter of 5 mm.
  • optical fiber A A nonlinear optical fiber having a fiber diameter of 1.25 ⁇ m and a thickness of the plate glass of 0 ⁇ 25 ⁇ m was obtained (hereinafter referred to as optical fiber A).
  • FIG. 1 A scanning electron microscope (SEM) photograph of a cross section of optical fiber A is shown in FIG. The inserted photo is an enlarged photo of the hollow part.
  • GVD of optical fiber A with respect to light having a wavelength of 1550 nm was measured by homodyne interferometry using an Agilent 8190A and found to be 20 ⁇ 10 ps / nm / km. That is, the absolute value was 20 ⁇ 10 ps / nm / km.
  • the absolute value of GVD could be made significantly smaller than the material dispersion Dm calculated by the above equation (1).
  • the nonlinear constant ⁇ was calculated for optical fiber A by four-wave mixing, and it was 700 soil 70W— ⁇ m— 1 .
  • spectrum changing light was generated as follows using an optical fiber A having a length of 46 cm.
  • the femtosecond light output to an IMRA fiber laser (trade name: femtolite) that outputs a femtosecond optical pulse with a center wavelength of 1560 nm, a pulse width of 500 fs, an average output of 4 mW, and a repetition frequency of 48 MHz.
  • An attenuator that attenuates the noise by 15 dB was connected.
  • a separately prepared excitation light source (optical output: 200 mW) for generating 980 nm excitation light and the above-mentioned
  • the tenator was connected to a force bra, and the femtosecond light noise and the excitation light were combined by the force bra.
  • the force plastic was connected to the EDFA, and femtosecond light pulses were amplified up to 250W.
  • the 10 dB wavelength range of the femtosecond optical pulse output from the optical fiber A was 1495 to 1615 nm, and the 10 dB width was 120 nm.
  • the spectral broadening of the femtosecond light pulse incident on optical fiber A was 13 nm with a 10 dB width.
  • the proportion of the energy of light in the C band in the output femtosecond optical pulse was Wavelength conversion efficiency.
  • Table 1 shows the relationship between the peak power (unit: W) and the wavelength conversion efficiency (unit:%) of the femtosecond optical pulse incident on optical fiber A.
  • the peak power is 83-50W
  • the 10dB wavelength range is wider than the C band.
  • the 10dB wavelength range stays within the C band.
  • a highly efficient red light whose optical power in the C band is 50% or more of the total optical power.
  • the peak power capable of generating an outer white femtosecond pulse (spectrum changing light) was 50 to 67W.
  • the numerical calculation according to the present invention was performed as described below for the case where femtosecond light having a wavelength of 1550 nm near the center of the C band was incident.
  • the nonlinear Schrodinger equation is an equation (2.3.35) published by Yoshioka Shoten by G. P. Agrawar.
  • FIG. 5 shows the flowchart of the calculation program.
  • the wavelength conversion efficiency (energy included in the C band) when a femtosecond optical pulse with a center wavelength of 1550 nm and a pulse width of 500 fs is incident on an optical fiber having a length of 50 cm and a ⁇ of 8 OOW— ⁇ nT 1 Fig. 7 shows the calculation results for the ratio of 1).
  • the wavelength conversion efficiency is 50% or more when the peak power is S40W or less. However, below 20W, the 10dB wavelength range does not reach the entire C band. Therefore, in this embodiment, the peak power of the incident femtosecond pulsed light that generates a highly efficient white femtosecond optical pulse is 20W to 40W.
  • Example 1 is GVD—a force that can be said to have changed the peak power with a constant S, and in this example, the GVD was changed with a constant peak voltage, and the same numerical calculation as in Example 2 was performed. That is, a femtosecond optical pulse with a center wavelength of 1560 nm and a peak power of 50 W, propagation loss of 2 dB / m, length of 50 cm, ⁇ force S800W— ⁇ m— ⁇ , and GVD of 80 to 160 ps / nm / km The numerical calculation of the lOdB width (unit: nm) of the spectrally changed light when entering the optical fiber was performed in the same manner as in Example 2 using the split “step” Fourier method. The results are shown in Table 2. This femtosecond optical pulse is close to the femtosecond optical pulse of Example 1.
  • a bismuth oxide glass with a GVD of 280 ps / nm / km and a ⁇ of 1100 W 1 km— 1 was prepared, and good results were obtained in Example 1.
  • the 10 dB wavelength range was from 1531 to 1582 nm, which did not cover the C band.
  • the pulse width of spectrum change light has increased to 3 ps or more, but such an increase in pulse width is undesirable for high-speed optical communications.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

This invention provides a method for changing a spectrum of optical pulses which can realize energy conversion in a C band with high efficiency with a nonquartz-type nonlinear optical fiber. The method comprises introducing optical pulses into one end of a nonlinear optical fiber and generating light with changed waveforms from the other end of the nonlinear optical fiber. The nonlinear optical fiber is formed of glass containing not less than 40% by mole of Bi2O3, and the group velocity dispersion is not more than -10ps/nm/km. There is also provided an apparatus for generating light with a changed spectrum, wherein optical pulses are introduced into one end of a nonlinear optical fiber and light with a changed spectrum are generated from the other end of the nonlinear optical fiber, the nonlinear optical fiber is formed of glass containing not less than 40% by mole of Bi2O3, and the group velocity dispersion is not more than -10ps/nm/km.

Description

明 細 書  Specification
光スペクトル変化方法およびスペクトル変化光発生装置  Optical spectrum changing method and spectrum changing light generator
技術分野  Technical field
[0001] 本発明は正常分散を有する非線形光ファイバを用いて入射光からスペクトルが変 化した光(以下、スペクトル変化光ということがある。)を発生させる方法およびスぺタト ル変化光発生装置に関し、特に Cバンドのスペクトル変化光の発生をコンパクトかつ 高効率で行うのに好適である。  [0001] The present invention relates to a method and a spectrally changed light generator for generating light whose spectrum has been changed from incident light (hereinafter sometimes referred to as spectrally changed light) using a nonlinear optical fiber having normal dispersion. In particular, it is suitable for compact and highly efficient generation of C-band spectrum change light.
背景技術  Background art
[0002] 非線形性を有する媒質に強い光を入射すると、自己位相変調効果により新たな周 波数成分が生じ白色光が生成される。特に光ファイバでは強!/、光閉じ込めと長レ、作 用長により顕著な白色光発生が報告されている(非特許文献 1参照)。  [0002] When strong light is incident on a non-linear medium, a new frequency component is generated due to the self-phase modulation effect, and white light is generated. In particular, strong white light generation has been reported for optical fibers due to strong! /, Optical confinement and length, and working length (see Non-Patent Document 1).
しかし、通常の石英系光ファイバを用いた白色光発生では複数の非線形効果が重 なって現れるため、生成されるスペクトルが断続的で複雑であり実用的でない。この 問題を解決するべぐ任意の波長を効率よく切り出し平滑なスペクトルを生成するよう に光ファイバの長手方向に分散を制御し、かつ、入射ノ レス内に分散に応じた周波 数シフトを付与した光源を用いる方法が提案されている(特許文献 1参照)。  However, in the generation of white light using a normal silica-based optical fiber, multiple nonlinear effects appear to overlap, so that the generated spectrum is intermittent and complex, which is not practical. The dispersion was controlled in the longitudinal direction of the optical fiber so as to efficiently cut out an arbitrary wavelength to solve this problem and generate a smooth spectrum, and a frequency shift corresponding to the dispersion was given in the incident nozzle. A method using a light source has been proposed (see Patent Document 1).
[0003] 特許文献 1 :特開平 10— 90737号公報  Patent Document 1: Japanese Patent Laid-Open No. 10-90737
非特許文献 1 Japanese Journal of Applied Physics Vol. 40 (2001) pp . L365  Non Patent Literature 1 Japanese Journal of Applied Physics Vol. 40 (2001) pp.L365
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] しかしながら、光ファイバの長手方向に分散を制御したファイバは作製方法が一般 的でなぐ非線形ファイバの分散の値も不安定である。また、フェムト秒力もピコ秒程 度の光ノ ルス内に周波数シフトを付与する技術は、超高速分光の基礎研究に使わ れる手段であり、同様に一般的でない。また、広く用いられる石英系非線形ファイバ は光非線形性が小さく充分な非線形効果を得るためには著しく長尺なファイバを用 いる必要がある、またはモジュールとしてのコンパクトさを損ない、温度、振動などの 外部擾乱に弱レ、と!/、う問題がある。 [0004] However, the fiber whose dispersion is controlled in the longitudinal direction of the optical fiber is generally unstable, and the dispersion value of the nonlinear fiber is also unstable. In addition, the technology that imparts a frequency shift in the optical noise of about femtosecond force is also a method that is used in basic research of ultrafast spectroscopy and is not common. In addition, silica-based nonlinear fibers that are widely used have small optical nonlinearities, and it is necessary to use extremely long fibers in order to obtain sufficient nonlinear effects, or the compactness of the module is impaired, and temperature, vibration, etc. There is a problem with external disturbances!
[0005] 一方で、 Bi Oや鉛含有石英ガラスなど高非線形性を有する材料により作られたフ [0005] On the other hand, a film made of a material having high nonlinearity such as BiO or lead-containing quartz glass.
2 3  twenty three
アイバは群速度分散が大きぐ広帯域な光非線形性を得ることが困難であった。近年 、光通信技術の発達を受け、 1530〜1565nmの Cバンドにおける光技術は成熟度 を増している。しかし、上述のように Cバンド内に効率よくエネルギー変換可能な広帯 域超短パルス光源を従来の非線形光ファイバと汎用の技術を用いて得ることは困難 である。  It was difficult for Aiba to obtain broadband optical nonlinearity with large group velocity dispersion. In recent years, with the development of optical communication technology, the optical technology in the C band of 1530 to 1565 nm has increased in maturity. However, as described above, it is difficult to obtain a wide-band ultrashort pulse light source that can efficiently convert energy within the C band using conventional nonlinear optical fibers and general-purpose technology.
以上で述べた白色光はいずれもスペクトル変化光である力 本発明はこのような問 題を解決できる光スペクトル変化方法およびスペクトル変化光発生装置の提供を目 的とする。  The power of all the white light described above is spectrum change light The present invention aims to provide an optical spectrum change method and a spectrum change light generator capable of solving such problems.
課題を解決するための手段  Means for solving the problem
[0006] 本発明は、光ノ ルスを非線形光ファイバの一端に入射して他の一端からスペクトル が変化した光を発生させる方法であって、非線形光ファイバが Bi Oを 40モル%以 [0006] The present invention is a method of generating light having an optical noise incident on one end of a nonlinear optical fiber and generating a spectrum-changed light from the other end. The nonlinear optical fiber contains BiO at 40 mol% or less.
2 3  twenty three
上含有するガラスからなり、その群速度分散が 160ps/nm/km以上 1 Ops/n m/km以下である光スペクトル変化方法を提供する。  Provided is an optical spectrum changing method comprising an upper glass and having a group velocity dispersion of 160 ps / nm / km or more and 1 Ops / nm / km or less.
また、非線形光ファイバの一端に光ノ^レスを入射して他の一端からスペクトルが変 化した光を発生させる装置であって、その光ファイバが Bi Oを 40モル%以上含有  In addition, a device that generates light with an optical node entering one end of a nonlinear optical fiber and generating a spectrum-changed light from the other end, the optical fiber containing 40 mol% or more of BiO.
2 3  twenty three
するガラスからなり、群速度分散が 160ps/nm/km以上 10ps/nm/km以 下であるスペクトル変化光発生装置を提供する。  A spectrally varying light generator with a group velocity dispersion of 160ps / nm / km or more and 10ps / nm / km or less is provided.
発明の効果  The invention's effect
[0007] 汎用のフェムト秒レーザーを光源とした簡便な構成と、従来の非線形光ファイバに 比して高い非線形性と小さな群速度分散を両立した高非線形光ファイバにより、安定 動作可能な効率の良い平坦なスペクトルを有する赤外白色フェムト秒ノ ルス光を得 ることが可能になる。  [0007] A simple configuration using a general-purpose femtosecond laser as a light source and a highly nonlinear optical fiber that achieves both high nonlinearity and small group velocity dispersion compared to conventional nonlinear optical fibers are efficient for stable operation. Infrared white femtosecond light having a flat spectrum can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0008] [図 1]本発明を説明するためのブロック図である。  FIG. 1 is a block diagram for explaining the present invention.
[図 2]本発明で用いられるホーリーファイバの横断面の概念図の一例である。  FIG. 2 is an example of a conceptual diagram of a transverse section of a holey fiber used in the present invention.
[図 3]本発明で用いられるホーリーファイバの横断面の走査電子顕微鏡(SEM)写真 の一例である。 [Fig. 3] Scanning electron microscope (SEM) photograph of the transverse section of the holey fiber used in the present invention. It is an example.
[図 4]非線形光ファイバから出力されたフェムト秒光ノ ルスのスペクトルを示す図であ [図 5]計算プログラムのフローチャートを示す図である。  FIG. 4 is a diagram showing a spectrum of femtosecond optical noise output from a nonlinear optical fiber. FIG. 5 is a diagram showing a flowchart of a calculation program.
[図 6]非線形光ファイバから出力されたフェムト秒光ノ ルスのスペクトルの計算結果と 実測結果を示す図である。  [Fig. 6] A diagram showing a calculation result and a measurement result of a spectrum of femtosecond optical noise output from a nonlinear optical fiber.
[図 7]非線形光ファイバから出力されたフェムト秒光ノ ルスにおける Cバンドに含まれ るエネルギーの割合の計算結果を示す図である。 符号の説明  FIG. 7 is a diagram showing a calculation result of a ratio of energy contained in a C band in femtosecond optical noise output from a nonlinear optical fiber. Explanation of symbols
[0009] 10 :エアクラッド型光ファイバ(ホーリーファイバ)  [0009] 10: Air-clad optical fiber (holey fiber)
11 :空孔  11: Hole
12 :光伝送ガラス  12: Optical transmission glass
13 :中空ガラスファイバ  13: Hollow glass fiber
14 :板状ガラス  14: Plate glass
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0010] 図 1は本発明を説明するためのブロック図である。なお、本発明は図 1に限定されな い。 FIG. 1 is a block diagram for explaining the present invention. The present invention is not limited to FIG.
図 1のスペクトル変化光発生装置においてはフェムト秒パルスレーザー、エルビウム 添加ファイバ増幅装置(以下、 EDFAとも!/、う)および非線形光ファイバが順次接続さ れている。  In the spectrum changing light generator shown in Fig. 1, a femtosecond pulse laser, an erbium-doped fiber amplifier (hereinafter also referred to as EDFA! /) And a nonlinear optical fiber are connected in sequence.
フェムト秒パルスレーザーは汎用のものでよぐそこから発せられる光パルスの中心 波長は 1550nm〜; 1560nm、パルス幅は lOOfs〜; lps、ピークパワーは 10W〜; 100 0Wがそれぞれ典型的である。  The femtosecond pulse laser is a general-purpose laser, and the center wavelength of the light pulse emitted from it is typically 1550 nm; 1560 nm, the pulse width is lOOfs ~; lps, the peak power is 10 W ~;
前記光ノ^レスは伝送路途中での非線形効果発生を抑止するために通常はアツテ ネータ(図示せず)によって減衰された後伝送される。  The optical node is usually transmitted after being attenuated by an attenuator (not shown) in order to suppress the occurrence of nonlinear effects in the transmission path.
[0011] 光パルスは、図示しない励起光光源から発せられた波長 980nmの励起光とカプラ [0011] An optical pulse is a pump light having a wavelength of 980 nm emitted from a pumping light source (not shown) and a coupler.
(図示せず)により合波され、 EDFAに入射する。  (Not shown) is combined and enters the EDFA.
非線形光ファイバに入射する光パルスの正味の平均パワーは 1 OmW〜 10W程度 である。 10W超では伝送中の非線形効果または音響フオノンによる誘導散乱効果に より、パルス品質が低下し、スペクトル形状が崩れるおそれがある。非線形光ファイバ に入射する光ノ ルスのピークパワーは EDFAへの励起光入力値を変化させて調整 できる。 The net average power of light pulses incident on a nonlinear optical fiber is about 1 OmW to 10 W It is. If it exceeds 10 W, the pulse quality may deteriorate and the spectrum shape may be destroyed due to nonlinear effects during transmission or stimulated scattering due to acoustic phonon. The peak power of the optical noise incident on the nonlinear optical fiber can be adjusted by changing the pump light input value to the EDFA.
[0012] EDFAによって増幅された光パルスは非線形光ファイバに入射し、スペクトル幅が 拡大されスペクトル変化光に変換される。スペクトル幅の拡大量は光パルスの入力ピ ークパワーに強く依存し、スペクトル幅を 10dB幅(Δ λ )で表したときピークパワーが 50Wのときは Δ λは 50nm、 160Wのときは 140nmがそれぞれ典型的である。ここ で 10dB幅とは、 10dB波長範囲すなわちスペクトル強度の最大値よりも 10dB強度が 弱い波長範囲の幅である。  [0012] The optical pulse amplified by the EDFA is incident on the nonlinear optical fiber, and the spectral width is expanded and converted into spectrally changed light. The amount of spectral width expansion strongly depends on the input peak power of the optical pulse. When the spectral width is expressed as 10 dB width (Δ λ), Δ λ is 50 nm when the peak power is 50 W, and 140 nm is typical when the peak power is 160 W. Is. Here, the 10 dB width is the width of the 10 dB wavelength range, that is, the wavelength range where the 10 dB intensity is weaker than the maximum value of the spectrum intensity.
[0013] 入射する光パルスの中心波長が 1550nm〜1560nm、パルス幅が 100fs〜lps、 ピークパワー力 0W〜1000Wである場合、スペクトル変化光の 10dB波長範囲は 1 530nm〜; 1565nmよりも広く、スぺクトノレ変ィ匕光中の 1530nm〜; 1565nmの波長範 囲の光のパワーはスペクトル変化光パワーの 50%以上であることが典型的である。  [0013] When the center wavelength of the incident light pulse is 1550 nm to 1560 nm, the pulse width is 100 fs to lps, and the peak power is 0 W to 1000 W, the 10 dB wavelength range of the spectrally changing light is wider than 1 530 nm; The power of light in the wavelength range from 1530 nm to 1565 nm in the Pectonore modified fluorescence is typically 50% or more of the spectrally modified light power.
[0014] 次に、本発明における非線形光ファイバ(以下、単に光ファイバということがある。 ) について説明する。  Next, the nonlinear optical fiber (hereinafter sometimes simply referred to as an optical fiber) in the present invention will be described.
光ファイバは Bi Oを 40モル%以上含有するガラスからなる。そのようなものでない  The optical fiber is made of glass containing 40 mol% or more of BiO. Not like that
2 3  twenty three
と光非線形性が不足するためにスペクトル変化光のスペクトルが充分な幅を有しなレ、 おそれがある、または、適度な正常分散を有せず変調不安定性により光伝播が不安 定になる力、スペクトル変化光のスペクトル幅がはなはだしく広がるために Cバンド内へ の波長変換が低効率となるおそれがある。  Because of the lack of optical nonlinearity, there is a risk that the spectrum of the spectrum-changing light will not have a sufficient width, or there is no appropriate normal dispersion, and the instability of light propagation due to modulation instability In addition, since the spectral width of the spectrum-changing light is significantly widened, wavelength conversion into the C band may be inefficient.
[0015] そのようなガラスとして、下記酸化物基準のモル%表示で、 Bi O 40—75%, B [0015] As such glass, Bi O 40-75%, B
2 3 2 2 3 2
O 12〜45%、Ga O 1— 20%, In O 1— 20%, ZnO 0〜20%、 BaO 0〜O 12-45%, Ga O 1-20%, In O 1-20%, ZnO 0-20%, BaO 0-
3 2 3 2 3 3 2 3 2 3
15%、 SiO +A1 O +GeO 0—15%, MgO + CaO + SrO 0—15%, SnO +  15%, SiO + A1 O + GeO 0—15%, MgO + CaO + SrO 0—15%, SnO +
2 2 3 2 2 2 2 3 2 2
TeO +TiO +ZrO +Ta O +Y O +WO 0—10%, CeO 0—5%,力、ら本TeO + TiO + ZrO + Ta O + Y O + WO 0—10%, CeO 0—5%, force, etc.
2 2 2 2 5 2 3 3 2 2 2 2 2 5 2 3 3 2
質的になり、 Ga O +In O +ZnOが 5%以上であるガラスが例示される。  An example is a glass that becomes qualitative and has Ga O + In O + ZnO of 5% or more.
2 3 2 3  2 3 2 3
[0016] 光ファイバの群速度分散(以下、 GVDともいう)がー 10ps/nm/km超ではスぺク トル幅が著しく拡大し Cバンド(波長範囲: 1530〜 1565nm)内にとどまるエネルギー の割合が低くなる、スペクトルの平滑性が損なわれる、またはフェムト秒ノ ルス光の伝 播が不安定になるおそれがある。好ましくは— 20ps/nm/km以下である。また、 G VDがー 160ps/nm/km未満ではフェムト秒光パルスのスペクトル拡大が不十分 であり、 Cバンド全域の光を発生させることができなくなるおそれがある。 GVDは典型 的には 50ps/nm/km以上である。 [0016] When the group velocity dispersion (hereinafter also referred to as GVD) of optical fibers exceeds -10 ps / nm / km, the spectrum width increases significantly, and the energy stays within the C band (wavelength range: 1530 to 1565 nm). May decrease the spectral smoothness, or may cause unstable femtosecond light propagation. Preferably, it is 20 ps / nm / km or less. In addition, if the G VD is less than −160 ps / nm / km, the spectrum expansion of the femtosecond light pulse is insufficient, and it may not be possible to generate light in the entire C band. GVD is typically over 50 ps / nm / km.
[0017] 光ファイバの波長 1550nmの光に対する 3次非線形係数(以下、 γまたは非線形 定数ともいう)は ΑΥΟλν—^π 1以上であることが好ましい。 470W— ^π 1未満では、 非線形効果を大きくしょうとするとファイバ長が長くなり、温度変動、振動等の外乱の 影響を受けやすくなる。より好ましくは 625W— ^m— 1以上である。 [0017] The third-order nonlinear coefficient (hereinafter also referred to as γ or nonlinear constant) for light having a wavelength of 1550 nm of the optical fiber is preferably フ ァ イ バ λν- ^ π 1 or more. If it is less than 470W— ^ π 1 , the fiber length will be longer if the nonlinear effect is increased, and it will be more susceptible to disturbances such as temperature fluctuations and vibrations. More preferably, it is 625 W— ^ m— 1 or more.
[0018] 光ファイバはホーリーファイバが典型的であり、たとえば図 2に横断面の概念図を示 すようなエアクラッド型ファイバが挙げられる。  [0018] The optical fiber is typically a holey fiber, for example, an air-clad fiber as shown in a conceptual cross-sectional view in FIG.
エアクラッド型光ファイバ 10は、 6個の空孔 11、光伝送ガラス 12、中空ガラスフアイ バ 13および板状ガラス 14からなる。  The air-clad optical fiber 10 includes six holes 11, an optical transmission glass 12, a hollow glass fiber 13, and a sheet glass 14.
中空ガラスファイバ 13の中空部はその軸方向(紙面に垂直の方向)に延びる 6個の 空孔 11からなり、隣り合う空孔同士はそれらの間に存在する板状ガラス 14によって 仕切られている。  The hollow portion of the hollow glass fiber 13 is composed of six holes 11 extending in the axial direction (perpendicular to the paper surface), and adjacent holes are partitioned by a sheet glass 14 existing between them. .
[0019] 空孔 11の数は 6個に限定されないが、 3個以上であることが好ましい。 2個ではエア クラッド型光ファイバにおける光の閉じ込めが不十分になるおそれがある。また、その 数は好ましくは 12個以下、より好ましくは 9個以下である。  [0019] The number of holes 11 is not limited to six, but is preferably three or more. With two, there is a risk of insufficient light confinement in the air-clad optical fiber. The number is preferably 12 or less, more preferably 9 or less.
[0020] 光伝送ガラス 12は 1種類のガラスからなるものであってもよいし、横断面における境 界が同心円状である 2種類以上のガラスからなるものであってもよい。  [0020] The optical transmission glass 12 may be made of one kind of glass, or may be made of two or more kinds of glasses whose boundaries in the cross section are concentric.
前者の場合、光伝送ガラス 12は光ファイバ 10のコアそのものである。  In the former case, the optical transmission glass 12 is the core of the optical fiber 10 itself.
後者の場合の例としては、光伝送ガラス 12が内部の高屈折率ガラスとそれを取り囲 む低屈折率ガラスからなるものなど、その中央に屈折率がより高い部分を有するもの 力 S挙げられる。光伝送ガラス 12をこのような構造とすることにより前記 γや GVDを調 整すること、または、この光ファイバと石英ファイバとを融着接続する際に導波路構造 が消失したり接続損失が大きくなることを防止もしくは抑制することが可能になる。  As an example of the latter case, the light transmission glass 12 is composed of an internal high refractive index glass and a low refractive index glass surrounding it, such as one having a higher refractive index in the center. . The optical transmission glass 12 having such a structure adjusts the γ and GVD, or when the optical fiber and the silica fiber are fusion-bonded, the waveguide structure is lost or the connection loss is large. Can be prevented or suppressed.
[0021] 中空ガラスファイバ 13は、空孔 11によって形成される中空部の中央に板状ガラス 1 4を介して光伝送ガラス 12を保持するものであり、そのガラス内部を光が伝播すること は予定されていない。 [0021] The hollow glass fiber 13 has a plate-like glass 1 at the center of the hollow portion formed by the air holes 11. The optical transmission glass 12 is held through 4 and light is not expected to propagate through the glass.
[0022] 板状ガラス 14は光伝送ガラス 12を中空部中央に保持するものであり、その厚みは 好ましくは 0. 05—1. 5 111である。 0· 05 m未満では光ファイバ 10を切断したとき に板状ガラス 14が破損し光伝送ガラス 12を保持できなくなるおそれがある。典型的 には 0· ; 1 m以上である。 1. 5 m超では光伝送ガラス 12から板状ガラス 14への光 の漏れが大きくなつて光の閉じ込めが不十分になるおそれがある。好ましくは 0. δ μ m以! ^でめ ·ο。  [0022] The plate-like glass 14 holds the light transmission glass 12 at the center of the hollow portion, and the thickness thereof is preferably 0.05-1.5. If the length is less than 0 · 05 m, the glass sheet 14 may be damaged when the optical fiber 10 is cut, and the optical transmission glass 12 may not be held. Typically 0 ·; 1 m or more. If it exceeds 1.5 m, light leakage from the light transmission glass 12 to the plate glass 14 becomes so large that light confinement may be insufficient. Preferably less than 0. δ μm! ^ Deme · ο.
[0023] 空孔 11は光伝送ガラス 12、中空ガラスファイバ 13および板状ガラス 14によって画 されているが、少なくとも光伝送ガラス 12の空孔 11と接する部分、中空ガラスフアイ ノ 13の空孔 11と接する部分および板状ガラス 14は同一組成のガラスからなる、また は同一組成のガラスからなることが好ましい。  The holes 11 are defined by the light transmission glass 12, the hollow glass fiber 13, and the plate-like glass 14, and at least a portion in contact with the holes 11 of the light transmission glass 12 and the holes 11 of the hollow glass fiber 13. The contacting portion and the plate-like glass 14 are preferably made of glass having the same composition, or made of glass having the same composition.
[0024] 板状ガラス 14は前記例示ガラスであることが好ましぐ光伝送ガラス 12についても 同様である。  The same applies to the optical transmission glass 12 in which the plate glass 14 is preferably the exemplified glass.
光伝送ガラス 12がこのようなガラスでないと、ガラス間の熱的性質が異なるために安 定した成形が困難になるおそれがある。  If the optical transmission glass 12 is not such a glass, stable thermal molding may be difficult due to different thermal properties between the glasses.
[0025] 光伝送ガラス 12の横断面の内接円の直径(d)は通常 0. 2〜; 10 であり、典型的 には 0· 5〜4 111である。 [0025] The diameter (d) of the inscribed circle in the cross section of the optical transmission glass 12 is usually 0.2 to 10 and typically 0.5 to 4 111.
中空ガラスファイバ 13の中空部の横断面の外接円の直径(d' )は、(l + 21/2) d以 上であることが好ましい。 (l + 21/2) d未満では光の閉じ込めが不十分になり伝播損 失が大きくなるおそれがある。より好ましくは 3d以上、特に好ましくは 4d以上である。 一方、 d'は 16d以下であることが好ましい。 16d超では、光ファイバ 10の強度が低下 する、空孔 11に異物が混入しやすくなる、光ファイバ 10を切断しょうとしたときに板状 ガラス 14を破壊するおそれがある、などの問題の発生が懸念される。 The diameter (d ′) of the circumscribed circle in the cross section of the hollow portion of the hollow glass fiber 13 is preferably (l + 2 1/2 ) d or more. If it is less than (l + 2 1/2 ) d, light confinement becomes insufficient, and propagation loss may increase. More preferably 3d or more, particularly preferably 4d or more. On the other hand, d ′ is preferably 16d or less. If it exceeds 16d, the strength of the optical fiber 10 will decrease, foreign matter will easily enter the holes 11, and the glass sheet 14 may be destroyed when trying to cut the optical fiber 10. Is concerned.
中空ガラスファイバ 13の外径は、光ファイバ 10を ITU— T勧告 G. 652で標準化さ れた石英光ファイバ (SMF)と融着する場合、 125 ± 2 mであることが好まし!/、。 実施例  The outer diameter of the hollow glass fiber 13 is preferably 125 ± 2 m when the optical fiber 10 is fused with a quartz optical fiber (SMF) standardized by ITU-T Recommendation G. 652! /, . Example
[0026] 以下、本発明を実施例により具体的に説明するが、本発明の解釈はこれらの実施 例によって何ら制限されない。 [0026] Hereinafter, the present invention will be specifically described by way of examples. However, the interpretation of the present invention is not limited to these examples. There is no limitation by example.
(実施例 1)  (Example 1)
モノレ0 /0表示の糸且成力 Bi O 53. 23%, B O 27. 61%, Ga O 8. 96%, In Yarn且成force Monore 0/0 Display Bi O 53. 23%, BO 27. 61%, Ga O 8. 96%, In
2 3 2 3 2 3  2 3 2 3 2 3
O 1%、 ZnO 4.48%、 BaO 4. 23%、 CeO 0. 5%、であるガラスカ得られる Obtained glass that is O 1%, ZnO 4.48%, BaO 4.23%, CeO 0.5%,
2 3 2 2 3 2
ように原料を調合、混合して 250gの調合原料を作製した。この調合原料を白金ルツ ボに入れ大気雰囲気中で 1000°Cに 2時間保持して溶解し、得られた溶融ガラスを 板状に流し出し、引続き 370°Cに 4時間保持後常温まで冷却する徐冷を行った。  The raw materials were mixed and mixed to prepare a 250 g mixed raw material. This compounded raw material is placed in a platinum crucible and melted by holding at 1000 ° C for 2 hours in the atmosphere, and the resulting molten glass is poured into a plate shape, and then kept at 370 ° C for 4 hours and then cooled to room temperature. Slow cooling was performed.
[0027] このようにして得られたガラスから厚み lmm、大きさ 20mm X 20mmのガラス板を 作製し、その両面を鏡面研磨して得られたサンプル板について、波長 1550nmの光 に対する屈折率をメトリコン社製モデル 2010プリズム力ブラを用いて測定したところ 2 . 111であった。 [0027] A glass plate having a thickness of 1 mm and a size of 20 mm x 20 mm was prepared from the glass thus obtained, and a sample plate obtained by mirror-polishing both surfaces of the glass plate was measured for refractive index with respect to light having a wavelength of 1550 nm. It was 2.111 as measured using a model 2010 prism force bra.
[0028] また、前記ガラスから斜辺が 40mm、短辺が 20mm、斜辺と短辺の間の角度が 60 。 である厚み 10mmの直角三角形のプリズムを作製し、斜辺面と長辺面を鏡面研磨 したサンプルブロックについて、次のようにしてガラスの材料分散 D (単位: ps/nm m  [0028] Further, the glass has an oblique side of 40 mm, a short side of 20 mm, and an angle between the oblique side and the short side of 60. For a sample block with a 10 mm thick right triangle prism mirror-polished on the hypotenuse and long sides, the glass material dispersion D (unit: ps / nm m) is as follows.
/km)を算出した。すなわち、サンプルブロックの波長(λ )492〜; 1710nmにおける 屈折率 n を、カルニユー光学工業社製精密屈折率測定装置 GMR— 1を用いて最 λ  / km) was calculated. That is, the wavelength (λ) of the sample block is 492˜; the refractive index n at 1710 nm is the maximum λ using a precise refractive index measuring device GMR-1 manufactured by Carneux Optical Co., Ltd.
小偏角法により求めた。この η を(1)式のセルマイヤーの多項式にフイッテングさせ λ  Obtained by the small declination method. Fitting this η to the Selmeier polynomial in equation (1)
、フイッテングパラメータ ρ 、 ρ 、 ρおよび ρを決めた。  The fitting parameters ρ, ρ, ρ and ρ were determined.
1 2 3 4  1 2 3 4
η =ρ +ρ · λ / {λ — ρ )+ρ · λ (1)  η = ρ + ρ · λ / (λ — ρ) + ρ · λ (1)
λ 1 2 3 4  λ 1 2 3 4
(1)式で表される η を用いて(2)式から波長 1550nmにおける D を算出したところ  When D at a wavelength of 1550 nm was calculated from equation (2) using η represented by equation (1)
X m  X m
— I70ps/ nm/kmであつ 7こ。  — 7 at I70ps / nm / km.
D =-1015(l/c)-d2n /άλ2 (2) D = -10 15 (l / c) -d 2 n / άλ 2 (2)
m ん  m
[0029] 先に述べたと同様にして得られた溶融ガラスを、内径が 28mm、高さが 120mmで ある SUS310S製の茶筒状モールド (底面を有する円筒状モールド)に流し出し、徐 冷してガラス棒を得た。  [0029] The molten glass obtained in the same manner as described above was poured into a SUS310S tea cylinder mold (cylindrical mold having a bottom surface) having an inner diameter of 28 mm and a height of 120 mm, and slowly cooled to glass. Got a stick.
このガラス棒にプロソニック社製超音波加工機 USM— 3CNCを用いて内径 4mm の貫通孔 6個を形成した。なお、これら 6個の孔の中心軸はガラス棒の中心軸から 5 mm離れ、また隣り合う孔同士の間隔が lmmとなるようにした。 [0030] このガラス棒を用い、次のようにして前記エアクラッド型非線形光ファイバを作製し た。まず、 6個の孔が形成され直径が 28mm、長さが 130mmのロッドガラスを 418°C でリドローし、直径 3· 5mmのガラスロッドを得た。次に、このガラスロッドの一端を封じ 、その封止部を下にして外径が 15mm、内径が 6mmのガラス管の中に入れ、その後 ガラス管の下端を封じた。 Six through-holes with an inner diameter of 4 mm were formed on this glass rod using an ultrasonic machine USM-3CNC manufactured by Prosonic. The central axis of these six holes was 5 mm away from the central axis of the glass rod, and the distance between adjacent holes was lmm. [0030] Using the glass rod, the air-clad nonlinear optical fiber was produced as follows. First, a rod glass having six holes formed, a diameter of 28 mm, and a length of 130 mm was redrawn at 418 ° C. to obtain a glass rod having a diameter of 3.5 mm. Next, one end of the glass rod was sealed, placed in a glass tube having an outer diameter of 15 mm and an inner diameter of 6 mm with the sealing portion down, and then the lower end of the glass tube was sealed.
ガラスロッドとガラス管の間の空間を 60kPaで減圧し、ガラスロッドの 6個の孔を 3 0〜40kPaで加圧して膨張させるようにしながら 425°Cに加熱してガラスロッドとガラ ス管とを同時にリドローし、直径 5mmのプリフォームを得た。  The space between the glass rod and the glass tube is depressurized at 60 kPa, and the six holes of the glass rod are heated to 425 ° C while being pressurized and expanded at 30 to 40 kPa. Were simultaneously drawn to obtain a preform with a diameter of 5 mm.
[0031] このプリフォームを、孔を 5kPaで加圧しながら線引き温度 425°C、線引き速度 6m m/minの条件で線引きし、前記 dが 2· 8 m、前記 d'力 7. 3 m、ファイバ径が 1 25 μ m、前記板状ガラスの厚みが 0· 25 μ mである非線形光ファイバを得た(以下、 光ファイバ Aという)。  [0031] This preform was drawn under the conditions of a drawing temperature of 425 ° C and a drawing speed of 6 mm / min while pressurizing the hole at 5 kPa, d was 2.8 m, d 'force was 7.3 m, A nonlinear optical fiber having a fiber diameter of 1.25 μm and a thickness of the plate glass of 0 · 25 μm was obtained (hereinafter referred to as optical fiber A).
光ファイバ Aの横断面の走査電子顕微鏡(SEM)写真を図 3に示す。揷入写真は 中空部の拡大写真である。  A scanning electron microscope (SEM) photograph of a cross section of optical fiber A is shown in FIG. The inserted photo is an enlarged photo of the hollow part.
[0032] 光ファイバ Aの、波長 1550nmの光に対する GVDを Agilent社製 8190Aを用いて ホモダイン干渉法により測定したところ一 20 ± 10ps/nm/kmであった。すなわち、 その絶対値は 20 ± 10ps/nm/kmであった。中空部を有するようにすることにより 前述の式(1)によって算出された材料分散 Dmより GVDの絶対値を著しく小さくする ことができた。 [0032] GVD of optical fiber A with respect to light having a wavelength of 1550 nm was measured by homodyne interferometry using an Agilent 8190A and found to be 20 ± 10 ps / nm / km. That is, the absolute value was 20 ± 10 ps / nm / km. By having a hollow part, the absolute value of GVD could be made significantly smaller than the material dispersion Dm calculated by the above equation (1).
また、光ファイバ Aについて四光波混合により非線形定数 γを算出したところ、 700 土 70W— ^m— 1であった。 In addition, the nonlinear constant γ was calculated for optical fiber A by four-wave mixing, and it was 700 soil 70W— ^ m— 1 .
[0033] また、 46cmの長さを有する光ファイバ Aを用いて次のようにしてスペクトル変化光を 発生させた。 [0033] In addition, spectrum changing light was generated as follows using an optical fiber A having a length of 46 cm.
中心波長が 1560nm、パルス幅が 500fs、平均出力が 4mW、繰り返し周波数が 4 8MHzであるフェムト秒光パルスを出力する IMRA社製ファイバレーザー(商品名: フェムトライト)に、その出力されたフェムト秒光ノ ルスを 15dB減衰させるアツテネータ を接続した。  The femtosecond light output to an IMRA fiber laser (trade name: femtolite) that outputs a femtosecond optical pulse with a center wavelength of 1560 nm, a pulse width of 500 fs, an average output of 4 mW, and a repetition frequency of 48 MHz. An attenuator that attenuates the noise by 15 dB was connected.
[0034] 別に用意した 980nmの励起光を発生する励起光源(光出力:200mW)と前記アツ テネータとを力ブラにつなぎこみ、前記フェムト秒光ノ ルスと前記励起光とを力ブラに より合波した。 [0034] A separately prepared excitation light source (optical output: 200 mW) for generating 980 nm excitation light and the above-mentioned The tenator was connected to a force bra, and the femtosecond light noise and the excitation light were combined by the force bra.
力プラは EDFAに接続され、フェムト秒光パルスは最大 250Wまで増幅された。  The force plastic was connected to the EDFA, and femtosecond light pulses were amplified up to 250W.
[0035] 増幅されたフェムト秒光ノ ルスは光ファイバ Aに入射された力 接続損失などによつ て伝送中に光パワーが一部損なわれた。そのために、その入射された正味のフェムト 秒光パルスのパワーは最大で 120Wであった。 [0035] The optical power of the amplified femtosecond optical noise was partially lost during transmission due to the force connection loss incident on the optical fiber A or the like. Therefore, the power of the incident net femtosecond optical pulse was 120 W at maximum.
[0036] 光ファイバ Aから出力されたフェムト秒光パルスのスペクトルを横河電機社製光スぺ クトラムアナライザ AQ6317によって測定した。図 4にスペクトルの測定結果を示す。 また、その時間波形をアルネア社製オートコリレータ HAC150によって測定した。 [0036] The spectrum of the femtosecond optical pulse output from the optical fiber A was measured with an optical spectrum analyzer AQ6317 manufactured by Yokogawa Electric Corporation. Figure 4 shows the spectrum measurement results. Moreover, the time waveform was measured by an autocorrelator HAC150 manufactured by Arnea.
[0037] 光ファイバ Aから出力されたフェムト秒光パルスの 10dB波長範囲は 1495〜1615 nm、 10dB幅は 120nmであった。なお、光ファイバ Aに入射したフェムト秒光パルス のスペクトル広がりは 10dB幅にして 13nmであった。 [0037] The 10 dB wavelength range of the femtosecond optical pulse output from the optical fiber A was 1495 to 1615 nm, and the 10 dB width was 120 nm. The spectral broadening of the femtosecond light pulse incident on optical fiber A was 13 nm with a 10 dB width.
また、光ファイバ Aへ入射するフェムト秒光ノ ルスと光ファイバ Aから出力されたフエ ムト秒光ノ ルスの時間波形に変化は見られず良質な赤外白色フェムト秒ノ^レスを得 ること力 Sでさた。  In addition, there is no change in the time waveform of the femtosecond optical noise incident on the optical fiber A and the femtosecond optical noise output from the optical fiber A, and a high-quality infrared white femtosecond noise is obtained. It was covered with force S.
また、光ファイバ Aから出力されたフェムト秒光パルスにおいて全エネルギーの 45 %がじバンド内に存在していた(以下、出力されたフェムト秒光パルス中の Cバンド内 の光のエネルギーの割合を波長変換効率とレ、う)。  In addition, 45% of the total energy in the femtosecond optical pulse output from the optical fiber A was present in the same band (hereinafter, the proportion of the energy of light in the C band in the output femtosecond optical pulse was Wavelength conversion efficiency.
[0038] 励起光源の出力を下げると、光ファイバ Aから出力されたフェムト秒ノ ルスのスぺク トルはその幅は狭くなる力 S、前記波長変換効率は増大する。  [0038] When the output of the pumping light source is lowered, the spectrum of the femtosecond noise output from the optical fiber A is reduced in force S, and the wavelength conversion efficiency is increased.
10dB波長範囲が Cバンドよりも広くなるような条件下で波長変換効率が最大になる 条件を探索したところ、光ファイバ Aに入射するフェムト秒光ノ ルスのピークパワーが 50Wのときに波長変換効率が最大の 61 %になった。図 4はこの条件でのスペクトル である。  When searching for conditions that maximize the wavelength conversion efficiency under conditions where the 10 dB wavelength range is wider than the C band, the wavelength conversion efficiency was obtained when the peak power of the femtosecond optical noise incident on optical fiber A was 50 W. Reached the maximum of 61%. Figure 4 shows the spectrum under these conditions.
表 1は、光ファイバ Aに入射するフェムト秒光パルスのピークパワー(単位: W)と波 長変換効率(単位:%)の関係を示す。ピークパワーが 83〜50Wでは 10dB波長範 囲が Cバンドよりも広ぐ 25〜42Wでは 10dB波長範囲は Cバンド内にとどまった。本 実施例において Cバンド内の光パワーが全光パワーの 50%以上である高効率な赤 外白色フェムト秒パルス(スペクトル変化光)を生成できるピークパワーは 50〜67W であった。 Table 1 shows the relationship between the peak power (unit: W) and the wavelength conversion efficiency (unit:%) of the femtosecond optical pulse incident on optical fiber A. When the peak power is 83-50W, the 10dB wavelength range is wider than the C band. At 25-42W, the 10dB wavelength range stays within the C band. In this example, a highly efficient red light whose optical power in the C band is 50% or more of the total optical power. The peak power capable of generating an outer white femtosecond pulse (spectrum changing light) was 50 to 67W.
[0039] [表 1]
Figure imgf000012_0001
[0039] [Table 1]
Figure imgf000012_0001
[0040] (実施例 2) [0040] (Example 2)
本発明に係る数値計算を、 Cバンドの中央付近である 1550nmの波長であるフエム ト秒ノ ルス光を入射した場合について以下に述べるようにして行った。  The numerical calculation according to the present invention was performed as described below for the case where femtosecond light having a wavelength of 1550 nm near the center of the C band was incident.
すなわち、スプリット'ステップ'フーリエ法を用いて、非線形光ファイバ内を伝播する ノ レス光の時間発展を記述する非線形シュレディンガー方程式の数値計算を行った 。ここに非線形シュレディンガー方程式とは、 G. P.アグラワール著 非線形ファイバ 一光学 原書第 2版 吉岡書店発行に記載の式(2. 3. 35)である。  That is, using the split 'step' Fourier method, we performed a numerical calculation of the nonlinear Schrödinger equation describing the time evolution of the Norres light propagating in the nonlinear optical fiber. Here, the nonlinear Schrodinger equation is an equation (2.3.35) published by Yoshioka Shoten by G. P. Agrawar.
図 5に計算プログラムのフローチャートを示す。  Figure 5 shows the flowchart of the calculation program.
[0041] GVD= - 25 ps/nm/km、 γ = 800W— ^m— 1、伝播損失は 2dB/m、入射パ ノレスの中心波長は 1560nm、ピークパワーは 120Wの条件で計算した結果を実施例 1の実測結果とともに図 6に示すが、計算結果は実測結果をよく再現している。 [0041] GVD =-25 ps / nm / km, γ = 800 W— ^ m— 1 , propagation loss 2 dB / m, incident panel center wavelength 1560 nm, peak power 120 W As shown in Fig. 6 together with the actual measurement result of Example 1, the calculation result closely reproduces the actual measurement result.
[0042] 中心波長 1550nm、パルス幅 500fsのフェムト秒光パルスを、長さが 50cm、 γが 8 OOW—^nT1である光ファイバに入射したときの波長変換効率(Cバンドに含まれるェ ネルギ一の割合)の計算結果を図 7に示す。 [0042] The wavelength conversion efficiency (energy included in the C band) when a femtosecond optical pulse with a center wavelength of 1550 nm and a pulse width of 500 fs is incident on an optical fiber having a length of 50 cm and a γ of 8 OOW— ^ nT 1 Fig. 7 shows the calculation results for the ratio of 1).
ピークパワー力 S40W以下のとき波長変換効率は 50%以上となる。ただし、 20W以 下では 10dB波長範囲が Cバンド全域に至らない。したがって、本実施例において高 効率な白色フェムト秒光パルスを生成する入射フェムト秒パルス光のピークパワーは 20W〜40Wである。  The wavelength conversion efficiency is 50% or more when the peak power is S40W or less. However, below 20W, the 10dB wavelength range does not reach the entire C band. Therefore, in this embodiment, the peak power of the incident femtosecond pulsed light that generates a highly efficient white femtosecond optical pulse is 20W to 40W.
[0043] (実施例 3) [0043] (Example 3)
実施例 1は GVD—定でピークパワーを変化させたものと言える力 S、本実施例ではピ 一クパヮ一一定で GVDを変化させ実施例 2と同様の数値計算を行った。すなわち、 中心波長 1560nm、ピークパワー 50Wのフェムト秒光パルスを、伝播損失が 2dB/ m、長さが 50cm、 γ力 S800W— ^m—丄、 GVDが一 80〜一 160ps/nm/kmである 光ファイバに入射したときのスペクトル変化光の lOdB幅(単位: nm)の数値計算を、 実施例 2と同様にしてスプリット'ステップ'フーリエ法を用いて行った。結果を表 2に 示す。なお、このフェムト秒光パルスは実施例 1のフェムト秒光パルスと近い。 Example 1 is GVD—a force that can be said to have changed the peak power with a constant S, and in this example, the GVD was changed with a constant peak voltage, and the same numerical calculation as in Example 2 was performed. That is, a femtosecond optical pulse with a center wavelength of 1560 nm and a peak power of 50 W, propagation loss of 2 dB / m, length of 50 cm, γ force S800W— ^ m— 丄, and GVD of 80 to 160 ps / nm / km The numerical calculation of the lOdB width (unit: nm) of the spectrally changed light when entering the optical fiber was performed in the same manner as in Example 2 using the split “step” Fourier method. The results are shown in Table 2. This femtosecond optical pulse is close to the femtosecond optical pulse of Example 1.
[表 2]
Figure imgf000013_0001
この数値計算結果から、 GVDがー 140psZnm/kmの場合には 10dB幅は Cバン ドをカバーしているが、 160ps/nm/kmの場合には 10dB幅は Cバンドをカバー していないことがわかる。
[Table 2]
Figure imgf000013_0001
From this numerical calculation result, when GVD is -140psZnm / km, 10dB width covers C band, but when 160V / nm / km, 10dB width does not cover C band. Recognize.
[0045] (比較例) [0045] (Comparative example)
GVDが一 280ps/nm/km、 γが 1100W 1 km—1である酸化ビスマス系ガラスを 用意して、実施例 1において良好な結果が得られた 50〜67Wのピークパワーでスぺ タトル変化光を発生させたところ、 10dB波長範囲は 1531〜; 1582nmであり、 Cバン ドをカバーしなかった。また、スペクトル変化光のパルス幅は 3ps以上に伸びたが、こ のようなパルス幅の伸びは高速光通信にとって好ましくない。 A bismuth oxide glass with a GVD of 280 ps / nm / km and a γ of 1100 W 1 km— 1 was prepared, and good results were obtained in Example 1. As a result, the 10 dB wavelength range was from 1531 to 1582 nm, which did not cover the C band. In addition, the pulse width of spectrum change light has increased to 3 ps or more, but such an increase in pulse width is undesirable for high-speed optical communications.
産業上の利用可能性  Industrial applicability
[0046] 波長多重光通信、医療用観測機器 (コヒーレントトモグラフィーなど)、超高速分光、 赤外分光などの広帯域超短パルス光源に利用できる。 なお、 2006年 12月 21曰に出願された曰本特許出願 2006— 344183号の明細書 、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開 示として、取り入れるものである。 [0046] It can be used for wide-band ultrashort pulse light sources such as wavelength division multiplexing, medical observation equipment (coherent tomography, etc.), ultrafast spectroscopy, and infrared spectroscopy. It should be noted that the entire contents of the specification, claims, drawings and abstract of Japanese Patent Application No. 2006-344183, filed on December 21, 2006, are incorporated herein by reference. As it is incorporated.

Claims

請求の範囲  The scope of the claims
光ノルスを非線形光ファイバの一端に入射して他の一端力 スペクトルが変化した 光を発生させる方法であって、非線形光ファイバが Bi Oを 40モル%以上含有する  This is a method of generating light with an optical nors incident on one end of a nonlinear optical fiber and the other end force spectrum changing. The nonlinear optical fiber contains 40 mol% or more of BiO.
2 3  twenty three
ガラスからなり、その群速度分散が 160ps/nm/km以上 10ps/nm/km以 下であることを特徴とする光スペクトル変化方法。 A method of changing an optical spectrum, comprising glass and having a group velocity dispersion of 160 ps / nm / km or more and 10 ps / nm / km or less.
前記群速度分散が 50ps/nm/km以上である請求項 1に記載の光スぺクトノレ 変化方法。  2. The optical spectrum changing method according to claim 1, wherein the group velocity dispersion is 50 ps / nm / km or more.
非線形光ファイバの波長 1550nmの光に対する 3次非線形係数が 470W— ^π 1 以上である請求項 1または 2に記載の光スペクトル変化方法。 3. The optical spectrum changing method according to claim 1, wherein the third-order nonlinear coefficient for light having a wavelength of 1550 nm of the nonlinear optical fiber is 470 W— ^ π 1 or more.
非線形光ファイバがホーリーファイバである請求項 1、 2または 3に記載の光スぺタト ル変化方法。  The method of changing an optical spectrum according to claim 1, 2 or 3, wherein the nonlinear optical fiber is a holey fiber.
前記 Bi Oを 40モル%以上含有するガラス力 下記酸化物基準のモル%表示で、 Glass power containing 40 mol% or more of BiO
2 3 twenty three
Bi O 40〜75%、 B O 12〜45%、 Ga O 1~20%, In O 1~20%, ZnO Bi O 40-75%, B O 12-45%, Ga O 1-20%, In O 1-20%, ZnO
2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3
0—20%, BaO 0—15%, SiO +A1 O +GeO 0—15%, MgO + CaO + Sr  0—20%, BaO 0—15%, SiO + A1 O + GeO 0—15%, MgO + CaO + Sr
2 2 3 2  2 2 3 2
O 0〜; 15%、 SnO +TeO +TiO +ZrO +Ta O +Y O +WO 0〜; 10%、 C  O 0 ~; 15%, SnO + TeO + TiO + ZrO + Ta O + Y O + WO 0 ~; 10%, C
2 2 2 2 2 5 2 3 3  2 2 2 2 2 5 2 3 3
eO 0—5%,力、ら本質的になり、 Ga O +In O +ZnOが 5%以上である請求項 1eO 0—5%, force, essentially, Ga O + In O + ZnO is 5% or more
2 2 3 2 3 2 2 3 2 3
〜4の!/、ずれかに記載の光スペクトル変化方法。  The optical spectrum changing method as described in ~ /!
非線形光ファイバの一端に光ノ ルスを入射して他の一端力 スペクトルが変化した 光を発生させる装置であって、その光ファイバが Bi Oを 40モル%以上含有するガラ  A device that generates light whose optical spectrum is changed by the incidence of optical noise on one end of a non-linear optical fiber, and the optical fiber contains 40 mol% or more of BiO.
2 3  twenty three
スからなり、群速度分散が 160ps/nm/km以上 10ps/nm/km以下である スペクトル変化光発生装置。 Spectral light generator with group velocity dispersion of 160ps / nm / km or more and 10ps / nm / km or less.
前記光パルスの波長力 s1550nm〜1560nm、 ノ ノレス幅が 100fs〜lps、ピークパ ヮ一力 0W〜1000Wであり、そのような光パルスを発生することができるフェムト秒 パルスレーザーを有する請求項 6に記載のスペクトル変化光発生装置。 The optical pulse has a wavelength power s of 1550 nm to 1560 nm, a non-less width of 100 fs to lps, a peak power of 0 W to 1000 W, and a femtosecond pulse laser capable of generating such an optical pulse. The spectral change light generator described.
前記フェムト秒パルスレーザーと前記光ファイバの間にそれらと接続されているエル ビゥム添加ファイバ増幅装置を有する請求項 7に記載のスペクトル変化光発生装置。  8. The spectrum change light generator according to claim 7, further comprising an erbium-doped fiber amplifier connected between the femtosecond pulse laser and the optical fiber.
PCT/JP2007/074458 2006-12-21 2007-12-19 Method for changing optical spectrum, and apparatus for generating light with changed spectrum WO2008075728A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-344183 2006-12-21
JP2006344183A JP2010054522A (en) 2006-12-21 2006-12-21 Method for changing optical spectrum, and apparatus for generating light with changed spectrum

Publications (1)

Publication Number Publication Date
WO2008075728A1 true WO2008075728A1 (en) 2008-06-26

Family

ID=39536356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/074458 WO2008075728A1 (en) 2006-12-21 2007-12-19 Method for changing optical spectrum, and apparatus for generating light with changed spectrum

Country Status (2)

Country Link
JP (1) JP2010054522A (en)
WO (1) WO2008075728A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106669A1 (en) * 2005-03-31 2006-10-12 Sumitomo Electric Industries, Ltd. Light source device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006106669A1 (en) * 2005-03-31 2006-10-12 Sumitomo Electric Industries, Ltd. Light source device

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EBENDROFF-HEIDEPRIEM H. ET AL.: "Heavy metal oxide glass holey fibers with high nonlinearity", OPTICAL FIBER COMMUNICATION CONFERENCE, 2005. TECHNICAL DIGEST. OFC/NFOEC, vol. 4, March 2005 (2005-03-01), pages ABSTR. NO. OTHA3 *
GOPINATH J.T. ET AL.: "Novel highly nonlinear bismuth oxide fiber for supercontinuum generation", LASERS AND ELECTRO-OPTICS SOCIETY, 2004. LEOS 2004. THE 17TH ANNUAL MEETING OF THE IEEE, vol. 2, November 2004 (2004-11-01), pages 483 - 484, XP010748885, DOI: doi:10.1109/LEOS.2004.1363323 *
KIKUCHI K. ET AL.: "Highly nonlinear bismuth oxide-based glass fibers for all-optical signal processing", ELECTRONICS LETTERS, vol. 38, no. 4, February 2002 (2002-02-01), pages 166 - 167 *

Also Published As

Publication number Publication date
JP2010054522A (en) 2010-03-11

Similar Documents

Publication Publication Date Title
Eidam et al. Fiber chirped-pulse amplification system emitting 3.8 GW peak power
Chen et al. Picosecond fiber MOPA pumped supercontinuum source with 39 W output power
Fang et al. An All-Fiber 2-$\mu $ m Wavelength-Tunable Mode-Locked Laser
JPWO2006093141A1 (en) Broadband optical amplifier
EP1801643A1 (en) Broad-band light source
De Matos et al. All-fiber format compression of frequency chirped pulses in air-guiding photonic crystal fibers
US20040028356A1 (en) Nonlinear optical device
JP2007279704A (en) Optical fiber and broadband light source
Liu et al. > 100 W GHz femtosecond burst mode all-fiber laser system at 1.0 µm
Szpulak et al. Chalcogenide As $ _ {2} $ S $ _ {3} $ Suspended Core Fiber for Mid-IR Wavelength Conversion Based on Degenerate Four-Wave Mixing
Shi et al. 1.06$\mu $ m Picosecond Pulsed, Normal Dispersion Pumping for Generating Efficient Broadband Infrared Supercontinuum in Meter-Length Single-Mode Tellurite Holey Fiber With High Raman Gain Coefficient
JPWO2006035722A1 (en) Nonlinear fiber, wavelength conversion method, and wavelength converter
Chen et al. Coherent supercontinuum generation in step-index heavily Ge-doped silica fibers with all normal dispersion
CA2928720A1 (en) Supercontinuum system with microstructured photonic crystal fibers based on fluoride glass
Chaudhari et al. Chalcogenide core photonic crystal fibers for zero chromatic dispersion in the C-band
WO2008075728A1 (en) Method for changing optical spectrum, and apparatus for generating light with changed spectrum
Yuan et al. Generation of multiple mid-infrared wavelengths by soliton fission in a photonic crystal fiber
Wang et al. Dual-wavelength self-Q-switched mode-locked waveguide lasers based on Nd: LGGG cladding waveguides
Levy et al. Four-wave mixing in integrated silicon nitride waveguides
Wu Tapered silicon core fibres for optical parametric amplification and wavelength conversion in the telecom band
Wang et al. Coherent near-Mid-IR supercontinuum generation in highly nonlinear multi-cladding liquid-core fiber designed for flat normal dispersion
Ponzo et al. Flat, broadband supercontinuum generation at low pulse energies in a dispersion-tailored lead-silicate fibre
Leea et al. Low-loss terahertz pulse transmission through commercially available porous tubes with PTFE
Li et al. The tapered tellurite microstructure optical fiber for the super-continuum generation
Li et al. Highly Efficient Nanosecond 1.7 µm Fiber Gas Raman Laser by H2-filled Hollow-Core Photonic Crystal Fibers. Crystals 2021, 11, 32

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07850928

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP