WO2008075562A1 - Ground digital broadcast retransmission device - Google Patents

Ground digital broadcast retransmission device Download PDF

Info

Publication number
WO2008075562A1
WO2008075562A1 PCT/JP2007/073513 JP2007073513W WO2008075562A1 WO 2008075562 A1 WO2008075562 A1 WO 2008075562A1 JP 2007073513 W JP2007073513 W JP 2007073513W WO 2008075562 A1 WO2008075562 A1 WO 2008075562A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
segment
equivalent baseband
baseband signal
circuit
Prior art date
Application number
PCT/JP2007/073513
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshikazu Narikiyo
Masahiro Okano
Kenichi Tsuchida
Masayuki Takada
Kazuhiko Shibuya
Original Assignee
Nippon Hoso Kyokai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39536195&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2008075562(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Hoso Kyokai filed Critical Nippon Hoso Kyokai
Priority to BRPI0717164A priority Critical patent/BRPI0717164B1/en
Publication of WO2008075562A1 publication Critical patent/WO2008075562A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/02Arrangements for relaying broadcast information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/38Transmitter circuitry for the transmission of television signals according to analogue transmission standards

Definitions

  • the present invention relates to a retransmission apparatus for terrestrial digital broadcast, and relates to a retransmission apparatus for receiving a segment of a partial reception unit of terrestrial digital television transmission or a terrestrial digital audio broadcast and retransmitting the received signal. .
  • Terrestrial digital television broadcasting in Japan adopts the ISDB-T (Integrated Services Digit Broadcasting-Terrestrial) method and the Orthogonal Frequenc y Division Multiplex (OFDM) modulation method, and has 13 segments. Broadcast transmission data as (total bandwidth 6 MHz)!
  • the mobile and mobile broadcast segments need to be able to receive well in outdoor buildings, in buildings, in underground malls, etc.
  • a retransmitter is needed to retransmit the
  • the following four methods are known as a method of retransmitting terrestrial digital broadcast. That is, the first retransmission method is realized by a single frequency network in which signals of the same content are transmitted from multiple transmitting stations or relay stations using the same frequency when retransmitting all 13 segments. (See, for example, Patent Documents 1, 2, and 3).
  • the second retransmission method is realized by a dual frequency network that performs frequency conversion on the received signal received by the relay station and retransmits on a frequency other than the reception frequency when retransmitting all 13 segments. (See, for example, Non-Patent Document 1).
  • the third retransmission method is to construct a network that performs only partial reception, extract only the partial reception unit with a filter, and retransmit only the partial reception unit (eg, See, for example, Patent Document 4).
  • the fourth retransmission method by constructing a network that performs only partial reception, only the partial reception unit is extracted with a filter, Fourier transformation is performed, and a plurality of segments are connected by processing in the frequency domain to re-execute. Send (see, for example, Patent Document 5).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 10-75262
  • Patent Document 2 Japanese Patent Application Laid-Open No. 10-75263
  • Patent Document 3 Japanese Patent Application Laid-Open No. 10-28105
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2005-341195
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2006-109283
  • Non-patent literature 1 Aiichiro Taketake et al., "Study on 1-frequency digital terrestrial broadcasting relay by OFDM", Proceedings of the 1995 Annual Conference of the Television Society, p. 277-p. 278
  • the first and second retransmission methods described above retransmit transmission data of the entire 13 segments using a bandwidth of 6 MHz per channel in the case of digital terrestrial television broadcasting.
  • this retransmission method it is sufficient to retransmit only one segment of the partial reception unit, even when retransmitting to an outdoor building behind a building, in a building, in an underground mall, etc., for mobile and mobile objects.
  • the entire 13 Mhz signal bandwidth of 6 MHz per channel must be retransmitted.
  • a bandwidth of 48 MHz (6 MHz x 8 channels) for eight channels. In this case, there is a problem that it is difficult to secure such a band because the current domestic transmission allocation frequencies are crowded.
  • the third retransmission method described above is to extract only the partial reception unit and retransmit the power. Since the band to be retransmitted is 6 MHz per channel, in the case of 8 channels, 48 MHz is finally obtained. There is a problem similar to the first and second retransmission methods described above in that the bandwidth is required. In addition, there is also a problem that there is a possibility that the characteristics of fixed reception near the retransmission point may be degraded.
  • the fourth retransmission method described above concatenates and retransmits a plurality of segments.
  • the power S which requires processing in the frequency domain, is to be subjected to Fourier transform and inverse Fourier transform, and the delay time from signal reception to retransmission is increased, and the circuit size is also increased. There was a problem that.
  • the present invention has been made to solve the problem of power, and the purpose thereof is to shorten the delay time that can not be assigned unnecessary frequency in the terrestrial digital broadcast re-transmission device.
  • the aim is to provide a mobile and mobile broadcast retransmitter that can be miniaturized.
  • the terrestrial digital broadcast retransmitter extracts only partial receivers of terrestrial digital broadcast waves with a filter, and performs digital terrestrial processing in the time domain only by using a plurality of terrestrial digital broadcasts.
  • the partial receiver of the wave is connected to each adjacent segment and retransmitted as one terrestrial digital broadcast wave. This makes it possible to retransmit with less bandwidth than performing Fourier transform or inverse Fourier transform.
  • the terrestrial digital broadcast retransmission apparatus receives a plurality of terrestrial digital broadcasts composed of a plurality of segments, extracts one segment from each of these terrestrial digital broadcast waves, and A plurality of digital processing units each corresponding to a part of a plurality of tuners, a part of a plurality of tuners, and a part of a plurality of tuners in a terrestrial digital broadcast retransmitting apparatus that combines extracted segments and retransmits as terrestrial digital broadcast waves.
  • the tuner part selects one broadcast wave of the plurality of received terrestrial digital broadcast waves, and transmits the signal of RF band of this broadcast wave in the IF band.
  • Reception conversion means for converting into a signal
  • AD conversion means for converting the IF signal converted by the reception conversion means into a digital IF signal
  • quadrature demodulation means for performing quadrature demodulation on the IF signal and outputting an equivalent baseband signal
  • the digital processing unit is configured to generate one segment from the equivalent baseband signal output by the quadrature demodulation means of the tuner part.
  • a quadrature modulation unit that performs quadrature modulation on the equivalent baseband signal added and combined by the adding unit, and outputs a digital IF signal; DA conversion means for converting the digital IF signal output by the quadrature modulation means into an analog IF signal, and RF band for retransmitting the analog IF signal converted by the DA conversion means as a terrestrial digital broadcast wave And transmitting and converting means for converting the signals into signals and amplifying the converted signals.
  • a retransmission apparatus capable of achieving a short delay time and a reduction in size, which can not be used for frequency allocation, in a retransmission apparatus for digital terrestrial broadcasting. it can.
  • FIG. 1 is a block diagram showing a configuration (example 1) of a terrestrial digital broadcast retransmission apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the configuration and numbers of segments in the ISDB-T system.
  • FIG. 3 is a diagram showing an example of the configuration of a reception channel and a transmission channel.
  • FIG. 4 is a block diagram showing a configuration (example 2) of a retransmission apparatus for terrestrial digital broadcast according to an embodiment of the present invention.
  • FIG. 5 is a diagram for explaining the processing of the GI replacement circuit of FIG. 4;
  • FIG. 6 is a block diagram showing the configuration of a terrestrial digital broadcast retransmitter according to an embodiment of the present invention (Example 3).
  • FIG. 7 is a block diagram showing the configuration of a terrestrial digital broadcast retransmitter according to an embodiment of the present invention (Example 4).
  • FIG. 8 is a pattern diagram showing the arrangement of SP.
  • FIG. 9 is a block diagram showing the configuration of a terrestrial digital broadcast retransmission apparatus according to an embodiment of the present invention (Example 5).
  • FIG. 10 is a block diagram showing a configuration (example 6) of a terrestrial digital broadcast retransmission apparatus according to an embodiment of the present invention.
  • FIG. 11 Configuration of terrestrial digital broadcast retransmitting apparatus according to an embodiment of the present invention (Example 7) ) Is a block diagram showing FIG.
  • FIG. 12 is a block diagram showing a configuration (example 8) of a terrestrial digital broadcast retransmission apparatus according to an embodiment of the present invention.
  • FIG. 13 is a block diagram showing a configuration (example 9) of a terrestrial digital broadcast retransmission apparatus according to an embodiment of the present invention.
  • FIG. 14 is a block diagram showing a configuration (Example 10) of a terrestrial digital broadcast retransmission apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing the configuration and numbers of ISDB-T segment.
  • the 5600 or more subcarriers that constitute an OFDM signal are divided into 13 groups, and each one is referred to as a segment.
  • the segments are distinguished by segment numbers 0 to 12; segment 0 is a segment of the partial reception unit, and data for mobile's mobile broadcasting is allocated.
  • These 13 segments correspond to one channel, and the bandwidth is 6 MHz.
  • the broadcaster is allocated one channel of 6 MHz bandwidth consisting of 13 segments, and each broadcaster broadcasts the ISDB-T OFDM signal in the allocated one channel.
  • FIG. 3 is a diagram showing an example of concatenating each one-segment portion of eight channels as a configuration example of a reception channel and a transmission channel in a terrestrial digital broadcast retransmitter.
  • one of eight channels UHF13, 14, 15, 16, 17, 18, 19, 20, 20 channels
  • the terrestrial digital broadcast retransmitter receives the plurality of terrestrial digital broadcast waves, extracts the partial reception unit of segment number 0 from the respective terrestrial digital broadcast waves, and connects and connects the respective partial reception units.
  • It is a device that transmits a signal as a retransmitted signal on a vacant RF signal, for example, UHF 53ch.
  • the terrestrial digital broadcast retransmitting apparatus is to receive digital terrestrial television broadcasts without performing Fourier transform for each channel system, and connect and retransmit the extracted individual component receiving units.
  • the terrestrial digital broadcast retransmission apparatus according to the second embodiment performs reception processing without performing Fourier transform for each channel as in the first embodiment, but GI (Guard Interval) is attached to each extracted partial reception unit. Change and retransmit.
  • the terrestrial digital broadcast retransmitting apparatus according to the third embodiment is configured to retransmit each extracted partial receiving section in synchronization with each symbol timing.
  • the terrestrial digital broadcast retransmitting apparatus is for receiving to each extracted partial reception unit.
  • the terrestrial digital broadcast retransmitting apparatus according to the fifth embodiment is configured to retransmit each of the extracted respective section receiving sections in synchronization with each other.
  • the retransmitter of the terrestrial digital broadcast according to the embodiment 10 adds the TS (Transport Stream) signal which is uniquely generated separately from the terrestrial digital television broadcast and transmits it together with the terrestrial digital television broadcast. And each use the method of! To 5 examples.
  • FIG. 1 is a block diagram showing a configuration (Example 1) of a terrestrial digital broadcast re-transmission apparatus according to an embodiment of the present invention.
  • the retransmission apparatus 1 includes a receiving antenna unit 100, N tuner parts 200 (200-1, 200-2, 2,..., 200 N), N digital data processing units 311 (311-1, 311- 2, ⁇ ⁇ ⁇ , 311—N), Caro calculation circuit 400, Retransmission unit 500, and Transmission antenna unit 600. Note that since the tuner part 200 and the digital processing unit 311 are configured by N systems, and the respective systems are configured by the same circuit, only one system will be described below.
  • the tuner part 200 is composed of a reception conversion circuit 201, an AD conversion circuit 202 and an orthogonal demodulation circuit 203, and the digital processing part 311 is composed of an LPF (Low Pass Filter) circuit 301 and a segment placement circuit 302.
  • the retransmission unit 500 is composed of an orthogonal modulation circuit 501, a DA conversion circuit 502, and a transmission conversion circuit 503. Note that N ⁇ 13 (the same applies below).
  • Terrestrial digital broadcasting received by receiving antenna unit 100 is divided by a distributor (not shown). It is distributed to the number of terrestrial digital broadcast waves (N waves).
  • N waves terrestrial digital broadcast waves
  • the reception conversion circuit 201 of the tuner part 200 uses the input RF signal once at an intermediate frequency (for example, in a home receiver) After converting it to 57 MHz, and passing it through a surface acoustic wave (SAW) filter, it converts the frequency again to a low frequency (for example, 4 MHz, which is half of the Fast Fourier Transform (FFT) frequency).
  • FFT Fast Fourier Transform
  • the AD conversion circuit 202 inputs the signal frequency-converted by the reception conversion circuit 201, and A / D converts it into a digital signal at a sampling frequency (for example, 16 MHz which is twice the FFT frequency).
  • the quadrature demodulation circuit 203 receives the digital signal A / D converted by the AD conversion circuit 202, quadrature demodulates it, and converts it into an equivalent baseband signal.
  • the LPF circuit 301 of the digital processing unit 311 receives the equivalent baseband signal converted by the orthogonal demodulation circuit 203, and extracts only the signal of the one-segment part (partial reception unit) by filter processing.
  • the segment arrangement circuit 302 receives the signal of the one-segment portion extracted by the LPF circuit 301, and performs frequency conversion to a segment arranged when connecting to one equivalent baseband signal.
  • Adder circuit 400 receives the equivalent baseband signal of the one-segment portion digitally processed by N-system digital processing unit 311, and adds and combines these equivalent baseband signals.
  • Quadrature modulation circuit 501 of retransmission section 500 receives the equivalent baseband signal added and combined by addition circuit 400, and performs quadrature modulation to convert it.
  • the D / A conversion circuit 502 inputs the digital signal converted by the quadrature modulation circuit 501, and uses the same sampling frequency as the A / D conversion circuit 202 (for example, 16 MHz which is 4 times 4 MHz). / A convert to generate a low frequency (for example, 4 MHz) signal.
  • the transmission conversion circuit 503 receives the low frequency signal D / A converted by the D / A conversion circuit 502, once performs frequency conversion to an intermediate frequency (for example, the frequency 37.15 MHz of the IF signal), and retransmits it. The frequency is converted to an RF signal again and amplified to a desired transmission power.
  • the RF signal frequency-converted and amplified by the transmission conversion circuit 503 in this way is retransmitted via the transmission antenna unit 600.
  • Example 2 will be described.
  • the second embodiment eliminates the error of the frequency component due to the jitter contained in the local frequency when the reception conversion circuit 201 performs the frequency conversion, and prevents the inter-carrier interference in the addition circuit 400 and the LPF circuit 301. To remove distortion of the signal caused by the filtering process.
  • FIG. 4 is a block diagram showing a configuration (example 2) of a terrestrial digital broadcast re-transmission apparatus according to an embodiment of the present invention.
  • the retransmission apparatus 2 includes a reception antenna unit 100 (not shown), N tuner parts 200, N digital processing units 312, an adder circuit 400, a retransmission unit 500, and a transmission antenna unit 600 (see FIG. Not shown).
  • the digital processing unit 312 is configured by N systems, and since each system is configured by the same circuit, only one system will be described below. Also, the digital processing unit 312 includes an LPF circuit 301, a frequency error correction circuit 303, a symbol synchronization detection circuit 304, a GI replacement circuit 305, and a segment arrangement circuit 302.
  • the digital processing unit 312 of the force retransmission apparatus 2 which is the same as that of the antenna section 600 includes the frequency error correction circuit 303 and the symbol synchronization detection circuit 304 in addition to the configuration of the digital processing unit 311 of the retransmission apparatus 1.
  • GI replacement circuit 305 is different.
  • the LPF circuit 301 extracts only the signal of the one segment part (partial reception part) by filter processing.
  • the output of the LPF circuit 301 is divided into two, one of which is input to the frequency error correction circuit 303, and the other to the symbol synchronization detection circuit 304.
  • the symbol synchronization detection circuit 304 receives the signal of the one segment portion extracted by the LPF circuit 301, detects the frequency error amount of the signal of the one segment portion and the head position of the symbol, and corrects the frequency error amount as frequency error correction. It is output to the circuit 303, and the head position information of the symbol is output to the GI replacement circuit 305.
  • an OFDM symbol is composed of a guard period and an effective symbol period, and a signal of the guard period is cyclically copied from a part behind the effective symbol.
  • the symbol synchronization detection circuit 304 uses this configuration to determine a guard correlation, and detects the frequency error amount and the head position of the symbol. Specifically, the input signal (a signal consisting of a guard period and an effective symbol period) and a signal obtained by delaying this input signal by the effective symbol period are multiplied, and these signals are multiplied.
  • the guard correlation of both signals is determined by determining the moving average of the guard period width.
  • the symbol boundary ie, the top position of the symbol.
  • the correlation (Sii) between the I axis data of the input signal (equivalent baseband signal) and the I axis data delayed by the effective symbol period (Sii), and the I axis data of the input signal delayed by the effective symbol period The correlation (Siq) with the Q axis data is determined respectively, and the frequency error amount is detected based on these correlation values.
  • Frequency error correction circuit 303 receives the signal of the one-segment portion from LPF circuit 301, receives the frequency error amount from symbol synchronization detection circuit 304, and receives the frequency error of the input one-segment signal. Make corrections using the amount of error.
  • the reception conversion circuit 201 since jitter is included in the local frequency used when performing frequency conversion, An error may occur in the frequency components, and the addition circuit 400 may cause inter-carrier interference when combining the signals of the one segment of each channel.
  • This frequency error correction circuit 303 can prevent inter-carrier interference due to frequency component error in frequency conversion.
  • GI replacement circuit 305 receives the corrected one-segment signal from frequency error correction circuit 303, receives symbol head position information from symbol synchronization detection circuit 304, and applies the input one-segment signal. Then, based on the input symbol head position information, a signal of 1 symbol length is extracted and GI replacement is performed.
  • FIG. 5 is a diagram for explaining the process of the GI replacement circuit 305.
  • GI replacement circuit 305 uses the fact that the signal of the guard period of the OFDM symbol composed of the guard period and the effective symbol period is copied to the back of the effective symbol, and is used for the input one segment signal. On the other hand, distortion of the head portion of a signal of 1 symbol length is eliminated by the following processing.
  • GI replacement circuit 305 specifies the symbol head position based on the input symbol head position information (1), and extracts a signal of effective symbol length starting from the position of GI / 2 from there (see (1)). 2).
  • the signals between the beginning of the extracted effective symbol length signal and the G 1/2 position are arranged at the rear and rearranged (3), and the rearranged signals are arranged according to the GI ratio set in advance. Add the rear to the top as GI (4). In this way, a new signal of one symbol length is obtained.
  • the LPF circuit 301 distortion may occur at the beginning and the end of the one symbol length due to the filtering process.
  • This GI replacement circuit 305 can remove signal distortion caused by filtering.
  • the segment arrangement circuit 302 receives the signal of the one-segment portion whose GI has been replaced by the GI replacement circuit 305, and is placed when being coupled to one equivalent baseband signal. Perform frequency conversion to segments.
  • the second embodiment As described above, according to the terrestrial digital broadcast retransmitting apparatus 2 of the second embodiment, the second embodiment
  • the frequency error correction circuit 303 eliminates the error of the frequency component caused by the jitter contained in the local frequency when the reception conversion circuit 201 performs frequency conversion, and prevents the inter-carrier interference in the addition circuit 400. Can. Also, the signal generated by the filtering process of the LPF circuit 301 by the GI replacement circuit 305 It is possible to remove distortion at the head and back of one symbol length of. As a result, in the receiving apparatus that receives the retransmission signal from the retransmission apparatus 2, the accuracy of symbol synchronization is improved, the frequency error correction amount becomes accurate, and degradation in the retransmission apparatus 2 can be reduced.
  • the third embodiment eliminates the error of the frequency component caused by the jitter contained in the local frequency when the reception conversion circuit 201 performs the frequency conversion, prevents the inter-carrier interference in the addition circuit 400, and It retransmits the signal of the one segment part at the symbol timing.
  • FIG. 6 is a block diagram showing a configuration (example 3) of a terrestrial digital broadcast re-transmission apparatus according to an embodiment of the present invention.
  • the retransmission apparatus 3 includes a reception antenna unit 100 (not shown), N tuner parts 200, N digital processing units 313, a delay time adjustment circuit 307-3, an adder circuit 400, a retransmission unit 500, And a transmitting antenna unit 600 (not shown).
  • the digital processing unit 313 is configured by N systems, and since each system is configured by the same circuit, only one system will be described below.
  • the digital processing unit 313 includes an LPF circuit 301, a frequency error correction circuit 303, a symbol synchronization detection circuit 304, a digital delay circuit 306, and a segment arrangement circuit 302.
  • the receiving antenna unit 100, the tuner part 200, the adder circuit 400, the retransmission unit 500, and the transmission antenna of both apparatuses are compared.
  • the digital processing unit 313 of the retransmission apparatus 3 has the same configuration as the digital processing unit 312 of the retransmission apparatus 2, the retransmission apparatus 3 further includes a delay unit 600. The difference is that the time adjustment circuit 307-3 is provided.
  • FIG. 6 the same parts as in FIG. 4 will be assigned the same reference numerals as in FIG. 4 and detailed explanations thereof will be omitted.
  • the symbol synchronization detection circuit 304 receives the signal of the one-segment portion extracted by the LPF circuit 301, detects the frequency error amount of the signal of the one-segment portion and the head position of the symbol by guard correlation, and calculates the frequency error amount. It is output to the frequency error correction circuit 303, and the top position information of the symbol is output to the delay time adjustment circuit 307-3.
  • the delay time adjustment circuit 307-3 is a symbol of each of the digital processing units 313-;
  • Each head of the symbol detection circuit 304 receives the head position information of the symbol, and based on the reception timing of any equivalent base band signal, each head of the equivalent base band signal of each channel is made to coincide with each other. Calculate the delay time of
  • Digital delay circuit 306 of each system receives the one-segment signal whose frequency error has been corrected by frequency error correction circuit 303, and inputs the delay time calculated by delay time adjustment circuit 307-3.
  • the error corrected signal is delayed by the delay time. Since the tuner processing by the tuner part 200 and the digital processing by the digital processing unit 313 are performed for each channel, there is a possibility that the symbol timing of each channel may be deviated. By the digital delay circuit 306 and the delay time adjustment circuit 307-3, it is possible to adjust the symbol timing of the signal of the segment of each system.
  • the segment arrangement circuit 302 receives the signal of the one-segment portion delayed by the digital delay circuit 306, and performs frequency conversion to a segment arranged when connecting to one equivalent baseband signal.
  • the frequency error correction circuit 303 eliminates the error of the frequency component caused by the jitter contained in the local frequency when the reception conversion circuit 201 performs frequency conversion, and prevents the inter-carrier interference in the addition circuit 400. Can.
  • the digital delay circuit 306 and the delay time adjustment circuit 307-3 it is possible to adjust the symbol timing of the signal of the one segment part of each system. Since this makes it possible to align the symbol start positions of the equivalent baseband signals, when combining as one equivalent baseband signal in the adder circuit 400, the symbol synchronization timings of all 13 segments are aligned and retransmitted. It becomes possible. As a result, in the receiving apparatus that receives the retransmission signal from the retransmission apparatus 3, the accuracy of symbol synchronization is improved, and the frequency error correction amount becomes accurate.
  • This embodiment 4 eliminates the error of the frequency component due to the jitter contained in the local frequency when the reception conversion circuit 201 performs the frequency conversion, prevents the inter-carrier interference in the addition circuit 400, and One segment signal The symbol timings are retransmitted at the same timing so that the symbol start position of and the SP pattern match.
  • FIG. 7 is a block diagram showing a configuration (example 4) of a terrestrial digital broadcast re-transmission apparatus according to an embodiment of the present invention.
  • the retransmission apparatus 4 includes a receiving antenna unit 100 (not shown), N tuner parts 200, N digital processing units 314, a delay time adjustment circuit 307-4, an adder circuit 400, a retransmission unit 500, And a transmitting antenna unit 600 (not shown).
  • the digital processing unit 314 is configured by N systems, and since each system is configured by the same circuit, only one system will be described below.
  • the digital processing unit 314 includes an LPF circuit 301, a frequency error correction circuit 303, a symbol synchronization detection circuit 304, an FFT circuit 308, an SP pattern detection circuit 309, a digital delay circuit 306, and a segment arrangement circuit 302. Comparing the retransmission apparatus 3 of the third embodiment shown in FIG. 6 with the retransmission apparatus 4, the receiving antenna unit 100, the tuner part 200, the adder circuit 400, the retransmission unit 500, and the transmission antenna unit are both devices. In addition to the configuration of the digital processing unit 313 of the retransmitting apparatus 3, the digital processing unit 314 of the force retransmitting apparatus 4 that is identical to the l /! Point 600 has an F FT circuit 308 and an SP pattern detection circuit 309.
  • the delay time adjustment circuit 307-4 having a configuration different from that of the delay time adjustment circuit 307-3 of the retransmission apparatus 3.
  • FIG. 7 parts common to FIG. 6 will be assigned the same reference numerals as in FIG. 6, and detailed descriptions thereof will be omitted.
  • the symbol synchronization detection circuit 304 receives the signal of the one-segment portion extracted by the LPF circuit 301, detects the frequency error amount of the signal of the one-segment portion and the head position of the symbol by guard correlation, and calculates the frequency error amount. It is output to the frequency error correction circuit 303, and the top position information of the symbol is output to the delay time adjustment circuit 307-4. In addition, a timing signal indicating the start of the effective symbol period is generated for the signal of the one segment portion, and is output to the FFT circuit 308.
  • Frequency error correction circuit 303 receives the signal of the one segment from LPF circuit 301, receives the frequency error amount from symbol synchronization detection circuit 304, and uses the frequency error amount for the frequency error in the one segment signal.
  • the corrected and frequency error-corrected one segment signal is output to the digital delay circuit 306 and the FFT circuit 308.
  • the FFT circuit 308 receives the frequency error corrected signal of the one segment from the frequency error correction circuit 303, receives the timing signal of the effective symbol from the symbol synchronization detection circuit 304, and performs Fourier transform to obtain the time domain signal. Converts the signal of the effective symbol in the one segment part to the signal in the frequency domain.
  • the SP pattern detection circuit 309 receives the signal of the one-segment portion in the frequency domain from the FFT circuit 308, and determines which pattern among the SP arrangement patterns (all four patterns) of the ISDB-T system. To detect.
  • FIG. 8 is a pattern diagram showing the arrangement of SP. As shown in FIG. 8, four SP patterns 1 to 4 exist in the SP pattern of the ISDB-T method.
  • the SP pattern detection circuit 309 detects any one of the four SP patterns 1 to 4 with respect to the input signal in the one-segment portion of the frequency domain.
  • the delay time adjustment circuit 307-4 receives the head position information of the symbol from the symbol synchronization detection circuit 304 of the digital processing unit 314 of each system, respectively, and receives the SP pattern from the SP pattern detection circuit 309. The information is input, and the delay time of each system is calculated based on the reception timing of any equivalent baseband signal so that the symbol start positions and the SP patterns of all equivalent baseband signals match.
  • the digital delay circuit 306 of each system receives the one-segment signal whose frequency error has been corrected by the frequency error correction circuit 303, and inputs the delay time calculated by the delay time adjustment circuit 307-4.
  • the error corrected signal is delayed by the delay time. Since the tuner processing by the tuner part 200 and the digital processing by the digital processing unit 314 are performed for each channel, there is a possibility that the symbol timing of each channel may be deviated.
  • the digital delay circuit 306 and the delay time adjustment circuit 307-4 the symbol timing of the signal of the segment of each system is matched so that the start position of the symbol and the SP pattern coincide.
  • the segment placement circuit 302 receives the signal of the one-segment portion delayed by the digital delay circuit 306, and performs frequency conversion to a segment placed when connecting to one equivalent baseband signal.
  • the fourth embodiment is an embodiment of the present invention. Force S to get the same effect as 1 Further, the frequency error correction circuit 303 eliminates the error of the frequency component caused by the jitter contained in the local frequency when the reception conversion circuit 201 performs frequency conversion, and prevents the inter-carrier interference in the addition circuit 400. Can.
  • the digital delay circuit 306 and the delay time adjustment circuit 307-4 it is possible to match the symbol timing and the SP pattern of the signal of the one segment part of each system.
  • the digital delay circuit 306 and the delay time adjustment circuit 307-4 it is possible to match the symbol timing and the SP pattern of the signal of the one segment part of each system.
  • the symbol synchronization accuracy is improved, the frequency error correction amount is accurate, and the equalization processing is performed when the equalization processing is performed. It is possible to use SP.
  • Example 5 will be described.
  • the fifth embodiment eliminates the error of the frequency component caused by the jitter contained in the local frequency when the reception conversion circuit 201 performs frequency conversion, prevents the inter-carrier interference in the addition circuit 400, and It retransmits the signal at the beginning of the frame by aligning it with the signal at the one segment segment.
  • FIG. 9 is a block diagram showing a configuration (Example 5) of a terrestrial digital broadcast re-transmission apparatus according to an embodiment of the present invention.
  • the retransmission apparatus 5 includes a receiving antenna unit 100 (not shown), N tuner parts 200, N digital processing units 315, a delay time adjustment circuit 307-5, an adder circuit 400, a retransmission unit 500, And a transmitting antenna unit 600 (not shown).
  • the digital processing unit 315 is configured by N systems, and since each system is configured by the same circuit, only one system will be described below.
  • the digital processing unit 315 includes an LPF circuit 301, a frequency error correction circuit 303, a symbol synchronization detection circuit 304, an FFT circuit 308, a frame synchronization detection circuit 310, a digital delay circuit 306, and a segment arrangement circuit 302. Comparing the retransmission apparatus 4 of the fourth embodiment shown in FIG. 7 with this retransmission apparatus 5, the reception antenna unit 100, the tuner part 200, the adder circuit 400, the retransmission unit 500, and the transmission antenna unit are both devices.
  • the digital processing unit 315 of the retransmission apparatus 5 is the same as the digital signal processing apparatus of the retransmission apparatus 5 except for the SP pattern detection circuit 309 in the digital processing unit 314 of the retransmission apparatus 4.
  • the transmitting device 5 is different in that it includes a delay time adjusting circuit 307-5 having a configuration different from that of the delay time adjusting circuit 307-4 of the retransmission device 4.
  • a delay time adjusting circuit 307-5 having a configuration different from that of the delay time adjusting circuit 307-4 of the retransmission device 4.
  • Frame synchronization detection circuit 310 receives the signal of the one-segment portion in the frequency domain from FFT circuit 308, and transmits a signal from the TMCC (Transmission and Multiplexing Configuration Control) signal included in this ISDB-T system signal to the frame head position. Detect and demodulate. Then, the detected frame head position information is output to the delay time adjustment circuit 307-5.
  • TMCC Transmission and Multiplexing Configuration Control
  • the delay time adjustment circuit 307-5 receives the symbol head position information from the symbol synchronization detection circuit 304 of each system of the digital processing units 315-;!-N, and receives the frame head position information from the frame synchronization detection circuit 310. Are input, and the delay time of each system is calculated based on the reception timing of any equivalent baseband signal so that the symbol start position and frame start position of all equivalent baseband signals coincide.
  • the digital delay circuit 306 of each system receives the signal of the one segment portion whose frequency error has been corrected by the frequency error correction circuit 303, and inputs the delay time calculated by the delay time adjustment circuit 307-5.
  • the error corrected signal is delayed by the delay time. Since the tuner processing by the tuner part 200 and the digital processing by the digital processing unit 315 are performed for each channel, there is a possibility that frame timing of each channel may be deviated.
  • the digital delay circuit 306 and the delay time adjustment circuit 307-5 it is possible to match the symbol timings of the signals of the segment of each system so that the frame start positions coincide with each other. In this case, when the frame start position matches, the symbol start position and the SP pattern also match.
  • the segment arrangement circuit 302 receives the signal of the one-segment portion delayed by the digital delay circuit 306, and performs frequency conversion to a segment arranged when connecting to one equivalent baseband signal.
  • the fifth embodiment As described above, according to the terrestrial digital broadcast retransmitting apparatus 5 of the fifth embodiment, the fifth embodiment
  • the frequency error correction circuit 303 When frequency conversion is performed by the conversion circuit 201, an error in frequency components caused by jitter contained in the local frequency can be eliminated, and inter-carrier interference in the addition circuit 400 can be prevented.
  • the digital delay circuit 306 and the delay time adjustment circuit 307-5 it is possible to adjust the frame top position of the signal of the one segment part of each system.
  • the receiving apparatus that receives the retransmission signal from the retransmission apparatus 5
  • the accuracy of symbol synchronization is improved
  • the frequency error correction amount becomes accurate, and when performing equalization processing, the adjacent segment is generated. It is possible to use the SP of
  • a TS signal uniquely generated separately from terrestrial digital television broadcasting is added using the method of the first embodiment, and is transmitted together with terrestrial digital television broadcasting. That is, signals of N partial receivers in N digital terrestrial digital broadcasting to be received and M unique TS signals are connected in one channel (band 6 MHz) and transmitted. Note that N + M ⁇ 13 (the same applies below).
  • FIG. 10 is a block diagram showing a configuration (example 6) of the terrestrial digital broadcast re-transmission apparatus according to the embodiment of the present invention.
  • the retransmission apparatus 6 includes a reception antenna unit 100, N tuner parts 200, N digital processing units 311, M modulation units 721, an adder circuit 400, a retransmission unit 500, and a transmission antenna unit 600.
  • the modulation section 721 is configured by an M system, and each system is configured by the same circuit, only one system will be described below.
  • the modulation unit 721 includes an OFDM modulation circuit 701, an OFDM framing processing circuit 702, an inverse Fourier transform circuit 703, a GI addition circuit 704, and a segment arrangement circuit 705.
  • the retransmission apparatus 6 Comparing the retransmission apparatus 1 according to the first embodiment shown in FIG. 1 with the retransmission apparatus 6, the receiving antenna unit 100, the tuner part 200, the digital processing unit 311, the adder circuit 400, and the retransmitting apparatus 6 both
  • the retransmission apparatus 6 is identical in that it includes the transmitting section 500 and the transmitting antenna section 600, but in addition to the configuration of the retransmission apparatus 1, the M modulation sections 721 are further added. It differs in the point which it has.
  • FIG. 10 parts common to FIG. 1 will be assigned the same reference numerals as in FIG. 1 and detailed explanations thereof will be omitted.
  • the modulation section 721 has its own TS such as autonomous broadcasting, community broadcasting, commercials, and independent production.
  • the OFDM modulation circuit 701 of the modulation unit 721 adds an error correction code to the input unique TS signal, and performs QPSK (Quadrature Phase Shift Keying) modulation, Carrier modulation is performed according to the rate and purpose such as 16 QAM (Quadrature Amplitude Modulation) modulation and 64 QAM modulation, and various interleaving processing is performed.
  • QPSK Quadrature Phase Shift Keying
  • OFDM framing processing circuit 702 receives the signal modulated by OFDM modulation circuit 701 and adds a pilot carrier, AC (Auxiliary Channel) and TMCC in the same arrangement as the partial reception unit of terrestrial digital broadcasting. Perform OFDM framing processing.
  • a pilot carrier AC (Auxiliary Channel) and TMCC in the same arrangement as the partial reception unit of terrestrial digital broadcasting.
  • the inverse Fourier transform circuit 703 inputs a signal that has been subjected to OFDM framing processing by the OFDM framing processing circuit 702, and inverse Fourier transforms carrier data of one symbol of the signal into a time domain signal.
  • the GI addition circuit 704 receives the time domain signal that has been inverse Fourier transformed by the inverse Fourier transformation circuit 703, and performs addition of GI according to a preset GI ratio.
  • the segment arrangement circuit 705 receives the signal to which GI is added by the GI addition circuit 704, and performs frequency conversion to a segment arranged when connecting to one equivalent baseband signal.
  • the segment placement circuit 705 is functionally identical to the segment placement circuit 302.
  • Adder circuit 400 receives the equivalent baseband signal of the one-segment portion digitally processed by N-system digital processing unit 311, and the equivalent baseband signal of the unique TS signal modulated by M-system modulation unit 721. Signals are input, and these equivalent baseband signals are added and synthesized.
  • the sixth embodiment is the same as the sixth embodiment.
  • Example 7 uses the method of the second embodiment to connect the signals of the N partial receivers in N digital terrestrial digital broadcasting to be received and the M unique TS signals into one channel. Sending.
  • FIG. 11 is a block diagram showing a configuration (example 7) of the terrestrial digital broadcast re-transmission apparatus according to the embodiment of the present invention.
  • the retransmission apparatus 7 includes a reception antenna unit 100, N tuner parts 200, N digital processing units 312, M modulation units 721, an adder circuit 400, a retransmission unit 500, and a transmission antenna unit 600.
  • the reception antenna unit 100, the tuner part 200, the digital processing unit 312, the adder circuit 400, the retransmission unit 500, and the transmission antenna unit 600 are the same as those of the retransmission apparatus 2 in the second embodiment. I omit explanation. In addition, since the modulator 721 is the same as that of the retransmission apparatus 6 in the sixth embodiment, the description will be omitted.
  • the same effect as that of the second embodiment can be obtained, and independently generated separately from the terrestrial digital television broadcasting.
  • the added TS signal can be transmitted along with digital terrestrial television broadcasting.
  • signals of N partial receivers in N digital terrestrial digital broadcasting to be received and M unique TS signals are connected in one channel.
  • it transmits the signals of the partial reception unit of each channel and the symbol timing of the unique TS signal at the same time.
  • FIG. 12 is a block diagram showing a configuration (example 8) of the terrestrial digital broadcast re-transmission apparatus according to the embodiment of the present invention.
  • the retransmission apparatus 8 includes N receiving antennas 100, N A tuner part 200, N digital processing units 313, M modulation units 723, a delay time adjustment circuit 307-8, an adder circuit 400, a retransmission unit 500, and a transmission antenna unit 600.
  • the modulation unit 723 is configured by M systems, and since each system is configured by the same circuit, only one system will be described below.
  • the modulation unit 723 is composed of an OFDM modulation circuit 701, an OFDM framing processing circuit 702, an inverse Fourier transform circuit 703, a GI addition circuit 704, a digital delay circuit 706, and a segment arrangement circuit 705. Comparing the retransmission apparatus 3 of the third embodiment shown in FIG. 6 with the retransmission apparatus 8, the reception antenna unit 100, the tuner part 200, the digital processing unit 313, the adder circuit 400, and the retransmission signal in both apparatuses are compared.
  • the power retransmitting apparatus 8 which is the same in that it includes the section 500 and the transmitting antenna section 600 is that it includes M modulation sections 723 and the delay time adjustment circuit 307-3 of the retransmitting apparatus 3 The difference is that different delay time adjustment circuits 307-8 are provided.
  • FIG. 12 parts common to FIG. 3 are assigned the same reference numerals as in FIG. 3, and detailed descriptions thereof will be omitted.
  • the OFDM modulation circuit 701 the OFDM framing processing circuit 702 and the inverse Fourier transform circuit 703 of the modulation section 723 are the same as those of the modulation section 721 of the retransmission apparatus 6 shown in FIG. Is omitted.
  • GI addition circuit 704 of modulation section 723 receives the time domain signal that has been inverse Fourier transformed by inverse Fourier transformation circuit 703, and performs addition of GI according to a preset GI ratio. Also, the head position information of the symbol is output to the delay time adjustment circuit 307-8.
  • the delay time adjustment circuit 307-8 receives the head position information of the symbol from the symbol synchronization detection circuit 304 of each system of the digital processing unit 313-;!-N, and the modulation unit 723- of each system.
  • the head position information of the symbols is input from the GI appending circuit 704 of ⁇ M, respectively, and the symbol head timings of equivalent baseband signals of the respective systems coincide with each other on the basis of the reception timing of any equivalent baseband signal. Calculate the delay time of each system.
  • Digital delay circuit 706 of each system in modulation section 723 receives the signal of the time domain to which GI is added by GI addition circuit 704, and inputs the delay time calculated by delay time adjustment circuit 307-8. , Delay by the delay time.
  • the segment placement circuit 705 receives the signal delayed by the digital delay circuit 706, and It performs frequency conversion to the segment placed when linking to one equivalent baseband signal.
  • Adder circuit 400 receives the equivalent baseband signal of the one-segment portion digitally processed by N series of digital processing unit 313, and the equivalent baseband of the unique TS signal modulated by M series of modulation unit 723. Signals are input, and these equivalent baseband signals are added and synthesized.
  • the same effect as that of the third embodiment can be obtained, and independently generated separately from the terrestrial digital television broadcasting.
  • the added TS signal can be transmitted along with digital terrestrial television broadcasting.
  • Example 9 uses the method of the embodiment 4 to connect signals of N partial receivers in M digital terrestrial broadcasting of N waves to be received and M unique TS signals into one channel. In particular, it transmits together the symbol timing and the SP pattern in the signal of the partial reception unit of each channel and the unique TS signal.
  • FIG. 13 is a block diagram showing a configuration (example 9) of a terrestrial digital broadcast re-transmission apparatus according to an embodiment of the present invention.
  • This retransmission apparatus 9 includes a reception antenna unit 100, N tuner parts 200, N digital processing units 314, M modulation units 723, delay time adjustment circuit 307-9, adder circuit 400, retransmission unit And 500, and a transmitting antenna unit 600.
  • the modulation unit 723 is configured by M systems, and since each system is configured by the same circuit, only one system will be described below. Comparing the retransmission apparatus 4 of the fourth embodiment shown in FIG.
  • FIG. 13 the same parts as in FIG. 7 will be assigned the same reference numerals as in FIG. 7, and detailed descriptions thereof will be omitted. Also, since the OFDM modulation circuit 701, the OFDM framing processing circuit 702 and the inverse Fourier transform circuit 703 of the modulation section 723 are the same as those of the modulation section 723 of the retransmission apparatus 8 shown in FIG. Is omitted.
  • the GI addition circuit 704 of the modulation unit 723 receives the time domain signal inverse-Fourier-transformed by the inverse Fourier transform circuit 703, and performs GI addition in accordance with a preset GI ratio. Also, the start position information of the symbol and the SP pattern information are output to the delay time adjustment circuit 307-9.
  • the delay time adjustment circuit 307-9 receives the head position information and the SP pattern information of the symbol from the digital processing unit 314 of each system, respectively, and receives the modulation pattern 723 of each system.
  • the head position information and the SP pattern information of the symbol are input from the GI addition circuit 704 of M, respectively, and the symbol head timing of the equivalent baseband signal of each system based on the reception timing of one of the equivalent baseband signals. And the delay time of each system is calculated so that the SP pattern matches.
  • Digital delay circuit 706 of each system in modulation section 723 receives the signal of the time domain to which GI is added by GI addition circuit 704, and inputs the delay time calculated by delay time adjustment circuit 307-9. , Delay by the delay time.
  • the segment placement circuit 705 receives the signal delayed by the digital delay circuit 706, and
  • Adder circuit 400 receives the equivalent baseband signal of the one-segment portion digitally processed by digital processing unit 314 of N channels, and is modulated by modulation unit 723 of M channels.
  • the equivalent baseband signal of the original TS signal is input, and these equivalent baseband signals are added and synthesized.
  • Example 10 will be described.
  • signals of N partial receivers in received N digital terrestrial digital broadcasting and M unique TS signals are connected in one channel.
  • the transmission is performed, in particular, by matching the start position of the frame in the signal of the partial reception unit of each channel and the unique TS signal.
  • FIG. 14 is a block diagram showing a configuration (example 10) of the terrestrial digital broadcast re-transmission apparatus according to the embodiment of the present invention.
  • the retransmission apparatus 10 includes a reception antenna unit 100, N tuner parts 200, N digital processing units 315, M modulation units 723, delay time adjustment circuit 307-10, adder circuit 400, retransmission It comprises a section 500 and a transmitting antenna section 600.
  • the modulation unit 723 is configured by M systems, and since each system is configured by the same circuit, only one system will be described below. Comparing the retransmission apparatus 5 of the fifth embodiment shown in FIG.
  • the force retransmitting apparatus 10 which is identical in that the transmitting section 500 and the transmitting antenna section 600 are provided includes M modulation sections 723 and a delay time adjusting circuit 307-5 of the retransmitting apparatus 5. And a delay time adjustment circuit 307-10 having a different configuration. Also, in the ninth embodiment shown in FIG. Comparing the retransmission device 9 with the retransmission device 10, the retransmission device 10 is different from the digital processing unit 314 of the retransmission device 9 and the digital processing unit 315 and the delay of the delay time adjustment circuit 307-9. The difference is that the time adjustment circuit 307-10 is provided.
  • FIG. 14 the same parts as in FIG. 9 will be assigned the same reference numerals as in FIG. 9, and detailed descriptions thereof will be omitted. Also, since the OFDM modulation circuit 701, the OFDM framing processing circuit 702 and the inverse Fourier transform circuit 703 of the modulation section 723 are the same as those of the modulation section 723 of the retransmission apparatus 9 shown in FIG. I omit it.
  • the GI addition circuit 704 of the modulation unit 723 receives the time domain signal that has been inverse Fourier transformed by the inverse Fourier transformation circuit 703, and performs GI addition in accordance with a preset GI ratio. Also, the head position information of the frame is output to the delay time adjustment circuit 307-10.
  • the delay time adjustment circuit 307-10 receives the head position information of the frame from the digital processing units 315 to! N of each system, and adds GI of the modulation units 723 to! The delay time of each system is input so that the frame start timings of equivalent baseband signals of the respective systems coincide with each other by inputting the head position information of the frame from the circuit 704 and referring to the reception timing of any equivalent baseband signal.
  • Digital delay circuit 706 of each system in modulation section 723 receives the signal of the time domain to which GI is added by GI addition circuit 704, and inputs the delay time calculated by delay time adjustment circuit 307-10. And delay by the delay time.
  • the segment placement circuit 705 receives the signal delayed by the digital delay circuit 706, and
  • Adder circuit 400 receives the equivalent baseband signal of the one-segment portion digitally processed by digital processing unit 315 of N channels, and the equivalent baseband of the unique TS signal modulated by modulation unit 723 of M channels. Signals are input, and these equivalent baseband signals are added and synthesized.
  • the same effect as that of the fifth embodiment can be obtained, and it is uniquely generated separately from the terrestrial digital television broadcast.
  • the receiving antenna unit 100 is constituted by one antenna, but it may be constituted by a plurality of antennas which necessarily need to be one.
  • each tuner part 200 inputs terrestrial digital broadcast received by any one of a plurality of antennas.
  • the reception conversion circuit 201 of the tuner part 200 converts the input signal into an intermediate frequency and passes through the SAW filter as a reception method by an intermediate frequency, and then the frequency is changed to a low frequency again.
  • Force to convert is not limited to this.
  • Low IF (Low Intermediate Frequency) method which directly converts an input signal to a low intermediate frequency signal of 0.5 to 0.5 MHz; converts the input signal to a high frequency (for example, 2 GHz), and converts the SAW filter into one. After passing, it uses a double 'conversion (double conversion) method to convert to a low frequency (for example 1 MHz) and a direct conversion method to convert the input signal directly to an equivalent baseband signal. It is also good.
  • Double conversion double conversion

Abstract

Provided is a retransmission device for broadcast to a portable/mobile device which has a short delay time without allocating an unnecessary frequency and can be realized as a small-size device. The retransmission device (1) of the ground digital broadcast includes; N tuner units (200); N digital processing units (311); an addition circuit (400); and a retransmission unit (500). Each of the tuner units (200) selects one channel from a plurality of received channels of the ground digital broadcast waves and outputs a base band signal equivalent to the channel. Each of the digital processing units (311) extracts only a partial reception portion from 13 segments of the equivalent base band signal by an LPF circuit (301) and arranges it on a segment upon concatenation by a segment arrangement circuit (302). An addition circuit (400) inputs an equivalent base band signal of the partial reception portion from each of the digital processing units (311) and adds and combines them so as to transmit the obtained result as a ground digital broadcast wave of the one channel via the retransmission unit (500).

Description

明 細 書  Specification
地上デジタル放送の再送信装置  Terrestrial digital broadcast retransmitter
技術分野  Technical field
[0001] 本発明は、地上デジタル放送の再送信装置に関わり、地上デジタルテレビジョン放 送の部分受信部のセグメントまたは地上デジタル音声放送を受信し、その受信した 信号を再送信する再送信装置に関する。  The present invention relates to a retransmission apparatus for terrestrial digital broadcast, and relates to a retransmission apparatus for receiving a segment of a partial reception unit of terrestrial digital television transmission or a terrestrial digital audio broadcast and retransmitting the received signal. .
背景技術  Background art
[0002] 日本の地上デジタルテレビジョン放送は、 ISDB— T (Integrated Services Digit al Broadcasting— Terrestrial)方式ど呼 (ュれ oOFDM (Orthogonal Frequenc y Division Multhiplex)変調方式を採用しており、 13個のセグメント(合計帯域幅 6 MHz)として送信データを放送して!/、る。  [0002] Terrestrial digital television broadcasting in Japan adopts the ISDB-T (Integrated Services Digit Broadcasting-Terrestrial) method and the Orthogonal Frequenc y Division Multiplex (OFDM) modulation method, and has 13 segments. Broadcast transmission data as (total bandwidth 6 MHz)!
[0003] 家庭内に設けられたテレビは、固定されたアンテナによりこの 13セグメントを一括し て受信するが、携帯電話機や PDA (Personal Digital Assistant)等の携帯 '移動 体向けの放送では、この 13セグメントのうちの中央の 1セグメントのみを受信する、い わゆる部分受信を行う。  [0003] Televisions provided in the home receive these 13 segments in a batch by means of fixed antennas, but in the case of broadcasting for mobile phones, such as mobile phones and PDAs (Personal Digital Assistants), this 13 Receives only the middle one of the segments, so-called partial reception.
[0004] ここで、携帯 ·移動体向け放送のセグメントは、屋外のビル陰、ビル内、地下街等に おいても良好に受信できるようにする必要があり、そのためには、部分受信部のセグ メントを再送信する再送信装置が必要となる。  [0004] Here, the mobile and mobile broadcast segments need to be able to receive well in outdoor buildings, in buildings, in underground malls, etc. A retransmitter is needed to retransmit the
[0005] 従来、地上デジタル放送の再送信方法として、以下の 4つが知られている。すなわ ち、第 1の再送信方法は、 13セグメント全てを再送信するに際し、複数の送信所また は中継所から同一の周波数を用いて同一内容の信号を送信する単一周波数ネット ワークにより実現するものである(例えば、特許文献 1 , 2, 3を参照)。第 2の再送信方 法は、 13セグメント全てを再送信するに際し、中継局で受信した受信信号に対して 周波数変換を行い、受信周波数とは別の周波数で送信する二周波数ネットワークに より実現するものである(例えば、非特許文献 1を参照)。  Conventionally, the following four methods are known as a method of retransmitting terrestrial digital broadcast. That is, the first retransmission method is realized by a single frequency network in which signals of the same content are transmitted from multiple transmitting stations or relay stations using the same frequency when retransmitting all 13 segments. (See, for example, Patent Documents 1, 2, and 3). The second retransmission method is realized by a dual frequency network that performs frequency conversion on the received signal received by the relay station and retransmits on a frequency other than the reception frequency when retransmitting all 13 segments. (See, for example, Non-Patent Document 1).
[0006] また、第 3の再送信方法は、部分受信のみを行うネットワークを構築することにより、 部分受信部のみをフィルタで抽出し、部分受信部のみを再送信するものである(例え ば、特許文献 4を参照)。第 4の再送信方法は、部分受信のみを行うネットワークを構 築することにより、部分受信部のみをフィルタで抽出し、フーリエ変換を行い周波数領 域の処理により複数個のセグメントを連結して再送信するものである(例えば、特許文 献 5を参照)。 [0006] In addition, the third retransmission method is to construct a network that performs only partial reception, extract only the partial reception unit with a filter, and retransmit only the partial reception unit (eg, See, for example, Patent Document 4). In the fourth retransmission method, by constructing a network that performs only partial reception, only the partial reception unit is extracted with a filter, Fourier transformation is performed, and a plurality of segments are connected by processing in the frequency domain to re-execute. Send (see, for example, Patent Document 5).
[0007] 特許文献 1 :特開平 10— 75262号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 10-75262
特許文献 2:特開平 10— 75263号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 10-75263
特許文献 3 :特開平 10— 28105号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 10-28105
特許文献 4:特開 2005— 341195号公報  Patent Document 4: Japanese Patent Application Laid-Open No. 2005-341195
特許文献 5:特開 2006— 109283号公報  Patent Document 5: Japanese Patent Application Laid-Open No. 2006-109283
非特許文献 1:都竹愛一郎他、「OFDMによる地上デジタル放送一二周波放送中継 の検討一」、 1995年テレビジョン学会年次大会予稿集 277頁〜 278頁  Non-patent literature 1: Aiichiro Taketake et al., "Study on 1-frequency digital terrestrial broadcasting relay by OFDM", Proceedings of the 1995 Annual Conference of the Television Society, p. 277-p. 278
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problem that invention tries to solve
[0008] 前述した第 1及び第 2の再送信方法は、地上デジタルテレビジョン放送の場合、 13 セグメント全体の送信データを 1チャンネル当たり 6MHzの帯域幅を使って再送信す るものである。し力もながら、この再送信方法では、屋外のビル陰、ビル内、地下街等 の携帯 ·移動体向けに再送信するときであっても、部分受信部の 1セグメントのみを再 送信すれば済むにもかかわらず、 1チャンネル当たり 13セグメントの信号帯域幅 6M Hz全体を再送信しなければならない。例えば、二周波数によって 8チャンネル分の 再送信を行う場合、 8チャンネル分のチャンネル幅 48MHz (6 MHz X 8チャンネル) の帯域を確保する必要がある。この場合、現状の国内の送信割当周波数は混み合 つているので、このような帯域を確保することは困難であるという問題があった。  [0008] The first and second retransmission methods described above retransmit transmission data of the entire 13 segments using a bandwidth of 6 MHz per channel in the case of digital terrestrial television broadcasting. However, with this retransmission method, it is sufficient to retransmit only one segment of the partial reception unit, even when retransmitting to an outdoor building behind a building, in a building, in an underground mall, etc., for mobile and mobile objects. Nevertheless, the entire 13 Mhz signal bandwidth of 6 MHz per channel must be retransmitted. For example, when retransmitting eight channels by two frequencies, it is necessary to secure a bandwidth of 48 MHz (6 MHz x 8 channels) for eight channels. In this case, there is a problem that it is difficult to secure such a band because the current domestic transmission allocation frequencies are crowded.
[0009] また、前述した第 3の再送信方法は、部分受信部のみを抽出して再送信するもので ある力 再送信する帯域は 1チャンネルあたり 6MHzであるため、結局 8チャンネルの 場合 48MHzの帯域が必要である点において前述の第 1及び第 2の再送信方法と同 様の問題があった。また、再送信点付近にある固定受信の特性を劣化させるおそれ があるという問題もあった。  Further, the third retransmission method described above is to extract only the partial reception unit and retransmit the power. Since the band to be retransmitted is 6 MHz per channel, in the case of 8 channels, 48 MHz is finally obtained. There is a problem similar to the first and second retransmission methods described above in that the bandwidth is required. In addition, there is also a problem that there is a possibility that the characteristics of fixed reception near the retransmission point may be degraded.
[0010] また、前述した第 4の再送信方法は、複数個のセグメントを連結して再送信するもの である力 S、周波数領域での処理を必要とするためフーリエ変換及び逆フーリエ変換 を行うことになり、信号を受信してから再送信するまでの遅延時間が大きくなると共に 、回路規模も大きくなるという問題があった。 [0010] Moreover, the fourth retransmission method described above concatenates and retransmits a plurality of segments. The power S, which requires processing in the frequency domain, is to be subjected to Fourier transform and inverse Fourier transform, and the delay time from signal reception to retransmission is increased, and the circuit size is also increased. There was a problem that.
[0011] そこで、本発明は力、かる問題を解決するためになされたものであり、その目的は、地 上デジタル放送の再送信装置において、無駄な周波数割り当てをすることなぐ遅延 時間が短くかつ小型化を実現可能な、携帯 ·移動体向け放送の再送信装置を提供 することにある。 Therefore, the present invention has been made to solve the problem of power, and the purpose thereof is to shorten the delay time that can not be assigned unnecessary frequency in the terrestrial digital broadcast re-transmission device. The aim is to provide a mobile and mobile broadcast retransmitter that can be miniaturized.
課題を解決するための手段  Means to solve the problem
[0012] 上記課題を解決するため、本発明による地上デジタル放送の再送信装置は、地上 デジタル放送波の部分受信部のみをフィルタで抽出し、時間領域におけるデジタノレ 処理だけで、複数の地上デジタル放送波の部分受信部を隣接する各セグメントに連 結して 1つの地上デジタル放送波として再送信する。これにより、フーリエ変換ゃ逆フ 一リエ変換を行うことなぐ少ない帯域幅で再送信することができる。  [0012] In order to solve the above problems, the terrestrial digital broadcast retransmitter according to the present invention extracts only partial receivers of terrestrial digital broadcast waves with a filter, and performs digital terrestrial processing in the time domain only by using a plurality of terrestrial digital broadcasts. The partial receiver of the wave is connected to each adjacent segment and retransmitted as one terrestrial digital broadcast wave. This makes it possible to retransmit with less bandwidth than performing Fourier transform or inverse Fourier transform.
[0013] すなわち、本発明による地上デジタル放送の再送信装置は、複数のセグメントによ り構成される地上デジタル放送を複数波受信し、これらの地上デジタル放送波から一 つのセグメントをそれぞれ抜き出し、この抜き出したセグメントを連結して地上デジタ ル放送波として再送信する地上デジタル放送の再送信装置にお!/、て、複数のチュー ナ一部、前記チューナ一部にそれぞれ対応した複数のデジタル処理部、加算部、及 び再送信部を備え、前記チューナ一部は、前記受信した地上デジタル放送の複数 波のうちの一つの放送波を選択し、この放送波の RF帯の信号を IF帯の信号に変換 する受信変換手段と、前記受信変換手段により変換された IF信号をデジタル IF信号 に変換する AD変換手段と、前記 AD変換手段により変換されたデジタル IF信号に 直交復調を施し、等価ベースバンド信号を出力する直交復調手段とを有し、前記デ ジタル処理部は、前記チューナ一部の直交復調手段により出力された等価ベースバ ンド信号から一つのセグメントを抜き出すフィルタ手段と、前記フィルタ手段により抜き 出された一つのセグメントの等価ベースバンド信号を、複数のセグメントを連結するた めの位置に周波数変換するセグメント配置手段とを有し、前記加算部は、前記複数 のデジタル処理部のセグメント配置手段により周波数変換されたそれぞれの 1つのセ グメントの等価ベースバンド信号を加算合成する手段を有し、前記再送信部は、前記 加算部により加算合成された等価ベースバンド信号に直交変調を施し、デジタル IF 信号を出力する直交変調手段と、前記直交変調手段により出力されたデジタル IF信 号をアナログ IF信号に変換する DA変換手段と、前記 DA変換手段により変換された アナログ IF信号を、地上デジタル放送波として再送信するための RF帯の信号に変 換し、該変換した信号を増幅する送信変換手段とを有することを特徴とする。 That is, the terrestrial digital broadcast retransmission apparatus according to the present invention receives a plurality of terrestrial digital broadcasts composed of a plurality of segments, extracts one segment from each of these terrestrial digital broadcast waves, and A plurality of digital processing units each corresponding to a part of a plurality of tuners, a part of a plurality of tuners, and a part of a plurality of tuners in a terrestrial digital broadcast retransmitting apparatus that combines extracted segments and retransmits as terrestrial digital broadcast waves. , Adding part, and re-transmitting part, the tuner part selects one broadcast wave of the plurality of received terrestrial digital broadcast waves, and transmits the signal of RF band of this broadcast wave in the IF band. Reception conversion means for converting into a signal, AD conversion means for converting the IF signal converted by the reception conversion means into a digital IF signal, and digital signals converted by the AD conversion means And quadrature demodulation means for performing quadrature demodulation on the IF signal and outputting an equivalent baseband signal, and the digital processing unit is configured to generate one segment from the equivalent baseband signal output by the quadrature demodulation means of the tuner part. Filter means for extracting the signal, and segment arrangement means for frequency converting the equivalent baseband signal of one segment extracted by the filter means to a position for connecting a plurality of segments, and the addition unit , One set of each frequency-converted by the segment arrangement unit of the plurality of digital processing units. A quadrature modulation unit that performs quadrature modulation on the equivalent baseband signal added and combined by the adding unit, and outputs a digital IF signal; DA conversion means for converting the digital IF signal output by the quadrature modulation means into an analog IF signal, and RF band for retransmitting the analog IF signal converted by the DA conversion means as a terrestrial digital broadcast wave And transmitting and converting means for converting the signals into signals and amplifying the converted signals.
発明の効果  Effect of the invention
[0014] 以上のように、本発明によれば、地上デジタル放送の再送信装置において、無駄 な周波数割り当てをすることなぐ遅延時間が短くかつ小型化を実現可能な再送信 装置を実現することができる。  As described above, according to the present invention, it is possible to realize a retransmission apparatus capable of achieving a short delay time and a reduction in size, which can not be used for frequency allocation, in a retransmission apparatus for digital terrestrial broadcasting. it can.
図面の簡単な説明  Brief description of the drawings
[0015] [図 1]本発明の実施の形態による地上デジタル放送の再送信装置の構成 (実施例 1) を示すブロック図である。  FIG. 1 is a block diagram showing a configuration (example 1) of a terrestrial digital broadcast retransmission apparatus according to an embodiment of the present invention.
[図 2]ISDB— T方式のセグメントの構成と番号を示す図である。  FIG. 2 is a diagram showing the configuration and numbers of segments in the ISDB-T system.
[図 3]受信チャンネルと送信チャンネルの構成例を示す図である。  FIG. 3 is a diagram showing an example of the configuration of a reception channel and a transmission channel.
[図 4]本発明の実施の形態による地上デジタル放送の再送信装置の構成 (実施例 2) を示すブロック図である。  FIG. 4 is a block diagram showing a configuration (example 2) of a retransmission apparatus for terrestrial digital broadcast according to an embodiment of the present invention.
[図 5]図 4の GI付け換え回路の処理を説明する図である。  FIG. 5 is a diagram for explaining the processing of the GI replacement circuit of FIG. 4;
[図 6]本発明の実施の形態による地上デジタル放送の再送信装置の構成 (実施例 3) を示すブロック図である。  FIG. 6 is a block diagram showing the configuration of a terrestrial digital broadcast retransmitter according to an embodiment of the present invention (Example 3).
[図 7]本発明の実施の形態による地上デジタル放送の再送信装置の構成 (実施例 4) を示すブロック図である。  FIG. 7 is a block diagram showing the configuration of a terrestrial digital broadcast retransmitter according to an embodiment of the present invention (Example 4).
[図 8]SPの配列を示すパターン図である。  FIG. 8 is a pattern diagram showing the arrangement of SP.
[図 9]本発明の実施の形態による地上デジタル放送の再送信装置の構成 (実施例 5) を示すブロック図である。  FIG. 9 is a block diagram showing the configuration of a terrestrial digital broadcast retransmission apparatus according to an embodiment of the present invention (Example 5).
[図 10]本発明の実施の形態による地上デジタル放送の再送信装置の構成 (実施例 6 )を示すブロック図である。  FIG. 10 is a block diagram showing a configuration (example 6) of a terrestrial digital broadcast retransmission apparatus according to an embodiment of the present invention.
[図 11]本発明の実施の形態による地上デジタル放送の再送信装置の構成 (実施例 7 )を示すブロック図である。 [FIG. 11] Configuration of terrestrial digital broadcast retransmitting apparatus according to an embodiment of the present invention (Example 7) ) Is a block diagram showing FIG.
[図 12]本発明の実施の形態による地上デジタル放送の再送信装置の構成 (実施例 8 )を示すブロック図である。  FIG. 12 is a block diagram showing a configuration (example 8) of a terrestrial digital broadcast retransmission apparatus according to an embodiment of the present invention.
[図 13]本発明の実施の形態による地上デジタル放送の再送信装置の構成 (実施例 9 )を示すブロック図である。  FIG. 13 is a block diagram showing a configuration (example 9) of a terrestrial digital broadcast retransmission apparatus according to an embodiment of the present invention.
[図 14]本発明の実施の形態による地上デジタル放送の再送信装置の構成 (実施例 1 0)を示すブロック図である。  FIG. 14 is a block diagram showing a configuration (Example 10) of a terrestrial digital broadcast retransmission apparatus according to an embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、本発明を実施するための最良の形態について図面を用いて詳細に説明す る。本発明の実施の形態は、地上デジタルテレビジョン放送を受信し、再送信する再 送信装置を例にして説明する。  Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings. The embodiment of the present invention will be described by taking a re-transmission apparatus for receiving and re-transmitting digital terrestrial television broadcasting as an example.
[0017] 図 2は、 ISDB— T方式のセグメントの構成と番号を示す図である。 ISDB— T方式 では、 OFDM信号を構成する 5600本余りのサブキャリアを 13のグループに分割し、 その 1つ 1つをセグメントと称している。セグメントは 0〜; 12のセグメント番号で区別さ れており、セグメント番号 0のセグメントは部分受信部のセグメントであり、携帯'移動 体向け放送用のデータが割り付けられている。この 13セグメントは 1チャンネルに相 当し、帯域幅は 6MHzである。放送事業者には、 13セグメントから構成される帯域幅 6MHzの 1チャンネルが割り当てられ、各放送事業者は、それぞれ割り当てられたこ の 1チャンネルの中で ISDB— T方式の OFDM信号を放送する。  [0017] FIG. 2 is a diagram showing the configuration and numbers of ISDB-T segment. In the ISDB-T scheme, the 5600 or more subcarriers that constitute an OFDM signal are divided into 13 groups, and each one is referred to as a segment. The segments are distinguished by segment numbers 0 to 12; segment 0 is a segment of the partial reception unit, and data for mobile's mobile broadcasting is allocated. These 13 segments correspond to one channel, and the bandwidth is 6 MHz. The broadcaster is allocated one channel of 6 MHz bandwidth consisting of 13 segments, and each broadcaster broadcasts the ISDB-T OFDM signal in the allocated one channel.
[0018] 図 3は、地上デジタル放送の再送信装置において、受信チャンネル及び送信チヤ ンネルの構成例として、 8チャンネルの各ワンセグ部分を連結する例を示す図である 。図 3に示すように、複数の放送事業者には、 8つのチャンネル(UHF13, 14, 15, 16, 17, 18, 19, 20ch)のうちのいずれ力、 1チャンネルがそれぞれ割り当てられてい るものとする。地上デジタル放送の再送信装置は、これらの複数の地上デジタル放 送波を受信し、それぞれの地上デジタル放送波からセグメント番号 0の部分受信部を 抜き出し、それぞれの部分受信部を連結し、連結した信号を再送信信号として、空い ている RF信号例えば UHF53chで送信する装置である。  [0018] FIG. 3 is a diagram showing an example of concatenating each one-segment portion of eight channels as a configuration example of a reception channel and a transmission channel in a terrestrial digital broadcast retransmitter. As shown in Fig. 3, one of eight channels (UHF13, 14, 15, 16, 17, 18, 19, 20, 20 channels) and one channel are allocated to a plurality of broadcasters. I assume. The terrestrial digital broadcast retransmitter receives the plurality of terrestrial digital broadcast waves, extracts the partial reception unit of segment number 0 from the respective terrestrial digital broadcast waves, and connects and connects the respective partial reception units. It is a device that transmits a signal as a retransmitted signal on a vacant RF signal, for example, UHF 53ch.
[0019] 以下、地上デジタル放送の再送信装置について、実施例;!〜 10により具体的に説 明する。実施例 1による地上デジタル放送の再送信装置は、地上デジタルテレビジョ ン放送をチャンネルの系統毎にフーリエ変換することなく受信処理し、抽出した各部 分受信部を連結して再送信するものである。実施例 2による地上デジタル放送の再 送信装置は、実施例 1のように系統毎にフーリエ変換することなく受信処理するもの であるが、抽出した各部分受信部に対し GI (Guard Interval)の付け換えを行って 再送信するものである。実施例 3による地上デジタル放送の再送信装置は、抽出した 各部分受信部に対しそれぞれのシンボルタイミングを合わせて再送信するものである 。実施例 4による地上デジタル放送の再送信装置は、抽出した各部分受信部に対し 信するものである。実施例 5による地上デジタル放送の再送信装置は、抽出した各部 分受信部に対しそれぞれのフレームタイミングを合わせて再送信するものである。実 施例 6〜; 10による地上デジタル放送の再送信装置は、地上デジタルテレビジョン放 送とは別に独自に生成した TS (Transport Stream)信号を付加して、地上デジタ ルテレビジョン放送と共に送信するものであり、それぞれ実施例;!〜 5の手法を用いる ものである。 Hereinafter, the re-transmission apparatus for digital terrestrial broadcasting will be described more specifically by the embodiments; Light up. The terrestrial digital broadcast retransmitting apparatus according to the first embodiment is to receive digital terrestrial television broadcasts without performing Fourier transform for each channel system, and connect and retransmit the extracted individual component receiving units. . The terrestrial digital broadcast retransmission apparatus according to the second embodiment performs reception processing without performing Fourier transform for each channel as in the first embodiment, but GI (Guard Interval) is attached to each extracted partial reception unit. Change and retransmit. The terrestrial digital broadcast retransmitting apparatus according to the third embodiment is configured to retransmit each extracted partial receiving section in synchronization with each symbol timing. The terrestrial digital broadcast retransmitting apparatus according to the fourth embodiment is for receiving to each extracted partial reception unit. The terrestrial digital broadcast retransmitting apparatus according to the fifth embodiment is configured to retransmit each of the extracted respective section receiving sections in synchronization with each other. According to the embodiments 6 to 10, the retransmitter of the terrestrial digital broadcast according to the embodiment 10 adds the TS (Transport Stream) signal which is uniquely generated separately from the terrestrial digital television broadcast and transmits it together with the terrestrial digital television broadcast. And each use the method of! To 5 examples.
実施例 1  Example 1
[0020] まず、実施例 1について説明する。図 1は、本発明の実施の形態による地上デジタ ル放送の再送信装置の構成(実施例 1)を示すブロック図である。この再送信装置 1 は、受信アンテナ部 100、 N個のチューナ一部 200 (200— 1 , 200— 2, · · · , 200 N)、 N固のデジタノレ処理咅 311 (311— 1 , 311 - 2, · · · , 311— N)、カロ算回路 4 00、再送信部 500、及び送信アンテナ部 600から構成される。尚、チューナ一部 20 0及びデジタル処理部 311は N系統により構成され、それぞれの系統は同じ回路で 構成されるので、以下、 1系統のみについて説明する。また、チューナ一部 200は、 受信変換回路 201、 AD変換回路 202及び直交復調回路 203から構成され、デジタ ル処理部 31 1は、 LPF (Low Pass Filter)回路 301及びセグメント配置回路 302か ら構成され、再送信部 500は、直交変調回路 501、 DA変換回路 502及び送信変換 回路 503から構成される。尚、 N≤13である(以下同じ)。  First, the first embodiment will be described. FIG. 1 is a block diagram showing a configuration (Example 1) of a terrestrial digital broadcast re-transmission apparatus according to an embodiment of the present invention. The retransmission apparatus 1 includes a receiving antenna unit 100, N tuner parts 200 (200-1, 200-2, 2,..., 200 N), N digital data processing units 311 (311-1, 311- 2, · · ·, 311—N), Caro calculation circuit 400, Retransmission unit 500, and Transmission antenna unit 600. Note that since the tuner part 200 and the digital processing unit 311 are configured by N systems, and the respective systems are configured by the same circuit, only one system will be described below. Further, the tuner part 200 is composed of a reception conversion circuit 201, an AD conversion circuit 202 and an orthogonal demodulation circuit 203, and the digital processing part 311 is composed of an LPF (Low Pass Filter) circuit 301 and a segment placement circuit 302. The retransmission unit 500 is composed of an orthogonal modulation circuit 501, a DA conversion circuit 502, and a transmission conversion circuit 503. Note that N≤13 (the same applies below).
[0021] 受信アンテナ部 100により受信した地上デジタル放送は、分配器(図示せず)により 地上デジタル放送波数分 (N波分)に分配される。チューナ一部 200が分配された地 上デジタル放送である RF信号を入力すると、チューナ一部 200の受信変換回路 20 1は、入力した RF信号を、一度中間周波数 (例えば、家庭用受信機で使用している 5 7MHz)に変換し、 SAW (Surface Acoustic Wave)フィルタを通過させた後、低周 波数(例えば、 FFT (Fast Fourier Transform)周波数の半分である 4MHz)に再 度周波数を変換する。これにより、各系統毎に予め設定されたチャンネルのみが選 択される。 Terrestrial digital broadcasting received by receiving antenna unit 100 is divided by a distributor (not shown). It is distributed to the number of terrestrial digital broadcast waves (N waves). When an RF signal that is a terrestrial digital broadcast to which the tuner part 200 is distributed is input, the reception conversion circuit 201 of the tuner part 200 uses the input RF signal once at an intermediate frequency (for example, in a home receiver) After converting it to 57 MHz, and passing it through a surface acoustic wave (SAW) filter, it converts the frequency again to a low frequency (for example, 4 MHz, which is half of the Fast Fourier Transform (FFT) frequency). As a result, only channels set in advance for each system are selected.
[0022] AD変換回路 202は、受信変換回路 201により周波数変換された信号を入力し、サ ンプリング周波数(例えば、 FFT周波数の 2倍である 16MHz)でデジタル信号に A /D変換する。直交復調回路 203は、 AD変換回路 202により A/D変換されたデジ タル信号を入力し、直交復調して等価ベースバンド信号に変換する。  The AD conversion circuit 202 inputs the signal frequency-converted by the reception conversion circuit 201, and A / D converts it into a digital signal at a sampling frequency (for example, 16 MHz which is twice the FFT frequency). The quadrature demodulation circuit 203 receives the digital signal A / D converted by the AD conversion circuit 202, quadrature demodulates it, and converts it into an equivalent baseband signal.
[0023] デジタル処理部 311の LPF回路 301は、直交復調回路 203により変換された等価 ベースバンド信号を入力し、フィルタ処理によってワンセグ部分(部分受信部)の信号 のみを抜き出す。セグメント配置回路 302は、 LPF回路 301により抜き出されたワン セグ部分の信号を入力し、 1つの等価ベースバンド信号に連結する際に配置される セグメントへの周波数変換を行う。  The LPF circuit 301 of the digital processing unit 311 receives the equivalent baseband signal converted by the orthogonal demodulation circuit 203, and extracts only the signal of the one-segment part (partial reception unit) by filter processing. The segment arrangement circuit 302 receives the signal of the one-segment portion extracted by the LPF circuit 301, and performs frequency conversion to a segment arranged when connecting to one equivalent baseband signal.
[0024] 加算回路 400は、 N系統のデジタル処理部 311によりデジタル処理されたワンセグ 部分の等価ベースバンド信号を入力し、これらの等価ベースバンド信号を加算合成 する。  Adder circuit 400 receives the equivalent baseband signal of the one-segment portion digitally processed by N-system digital processing unit 311, and adds and combines these equivalent baseband signals.
[0025] 再送信部 500の直交変調回路 501は、加算回路 400により加算合成された等価べ ースバンド信号を入力し、直交変調して変換する。 DA変換回路 502は、直交変調回 路 501により変換されたデジタル信号を入力し、 AD変換回路 202と同じサンプリング 周波数(例えば、 4MHzの 4倍である 16MHz)を使って、入力したデジタル信号を D /A変換して低周波数 (例えば 4MHz)の信号を生成する。送信変換回路 503は、 D A変換回路 502により D/A変換された低周波数の信号を入力し、一度中間周波数 (例えば、 IF信号の周波数 37. 15MHz)に周波数変換した後、再送信するための R F信号に再度周波数変換し、所望の送信電力に増幅する。このように送信変換回路 503により周波数変換され増幅された RF信号は、送信アンテナ部 600を介して再送 信される。 Quadrature modulation circuit 501 of retransmission section 500 receives the equivalent baseband signal added and combined by addition circuit 400, and performs quadrature modulation to convert it. The D / A conversion circuit 502 inputs the digital signal converted by the quadrature modulation circuit 501, and uses the same sampling frequency as the A / D conversion circuit 202 (for example, 16 MHz which is 4 times 4 MHz). / A convert to generate a low frequency (for example, 4 MHz) signal. The transmission conversion circuit 503 receives the low frequency signal D / A converted by the D / A conversion circuit 502, once performs frequency conversion to an intermediate frequency (for example, the frequency 37.15 MHz of the IF signal), and retransmits it. The frequency is converted to an RF signal again and amplified to a desired transmission power. The RF signal frequency-converted and amplified by the transmission conversion circuit 503 in this way is retransmitted via the transmission antenna unit 600. Believed.
[0026] 以上のように、実施例 1による地上デジタル放送の再送信装置 1によれば、地上デ ジタル放送の携帯 ·移動体向けサービス放送である部分受信部のみをフィルタで抽 出し、フーリエ変換及び逆フーリエ変換することなぐ時間領域におけるデジタル処 理だけで、複数の地上デジタル放送波の部分受信部を隣接する各セグメントに連結 して 1つの RF信号として再送信するようにした。これにより、屋外のビル陰、ビル内、 地下街等の受信装置に向けて、無駄な周波数を割り当てることなく少ない帯域幅(1 チャンネル = 6MHz)で再送信することができる。また、再送信される本線系のデー タに対してフーリエ変換及び逆フーリエ変換する必要がなぐこれらの回路が不要で あるから、遅延時間が短ぐかつ簡易な小型化を実現することができる。  As described above, according to the terrestrial digital broadcast retransmission apparatus 1 of the first embodiment, only the partial reception unit, which is a mobile-mobile service broadcast of terrestrial digital broadcast, is extracted using a filter, and Fourier transform is performed. And by digital processing only in the time domain that does not perform inverse Fourier transform, partial reception units of multiple terrestrial digital broadcast waves are connected to adjacent segments and retransmitted as one RF signal. As a result, it is possible to retransmit in a small bandwidth (1 channel = 6 MHz) to a receiving apparatus outside a building, inside a building, in an underground mall or the like without assigning unnecessary frequencies. Further, since it is unnecessary to carry out the Fourier transform and the inverse Fourier transform on the data of the main line system to be retransmitted, the delay time can be shortened and the miniaturization can be simplified.
実施例 2  Example 2
[0027] 次に、実施例 2について説明する。この実施例 2は、受信変換回路 201が周波数変 換を行う際にローカル周波数に含まれるジッタに起因した周波数成分の誤差をなくし 、加算回路 400でのキャリア間干渉を防止すると共に、 LPF回路 301のフィルタ処理 により生じる信号の歪みを除去するものである。  Next, Example 2 will be described. The second embodiment eliminates the error of the frequency component due to the jitter contained in the local frequency when the reception conversion circuit 201 performs the frequency conversion, and prevents the inter-carrier interference in the addition circuit 400 and the LPF circuit 301. To remove distortion of the signal caused by the filtering process.
[0028] 図 4は、本発明の実施の形態による地上デジタル放送の再送信装置の構成(実施 例 2)を示すブロック図である。この再送信装置 2は、受信アンテナ部 100 (図示せず) 、 N個のチューナ一部 200、 N個のデジタル処理部 312、加算回路 400、再送信部 5 00、及び送信アンテナ部 600 (図示せず)から構成される。尚、デジタル処理部 312 は N系統により構成され、それぞれの系統は同じ回路で構成されるので、以下、 1系 統のみについて説明する。また、デジタル処理部 312は、 LPF回路 301、周波数誤 差補正回路 303、シンボル同期検出回路 304、 GI付け換え回路 305及びセグメント 配置回路 302から構成される。図 1に示した実施例 1の再送信装置 1とこの再送信装 置 2とを比較すると、両装置共に、受信アンテナ部 100、チューナ一部 200、加算回 路 400、再送信部 500及び送信アンテナ部 600を備えている点で同一である力 再 送信装置 2のデジタル処理部 312は、再送信装置 1のデジタル処理部 311の構成に 加えて、周波数誤差補正回路 303、シンボル同期検出回路 304及び GI付け換え回 路 305を備えている点で相違する。以下、図 4において、図 1と共通する部分には図 1と同一の符号を付し、その詳しい説明は省略する。 FIG. 4 is a block diagram showing a configuration (example 2) of a terrestrial digital broadcast re-transmission apparatus according to an embodiment of the present invention. The retransmission apparatus 2 includes a reception antenna unit 100 (not shown), N tuner parts 200, N digital processing units 312, an adder circuit 400, a retransmission unit 500, and a transmission antenna unit 600 (see FIG. Not shown). The digital processing unit 312 is configured by N systems, and since each system is configured by the same circuit, only one system will be described below. Also, the digital processing unit 312 includes an LPF circuit 301, a frequency error correction circuit 303, a symbol synchronization detection circuit 304, a GI replacement circuit 305, and a segment arrangement circuit 302. Comparing the retransmission apparatus 1 according to the first embodiment shown in FIG. 1 with the retransmission apparatus 2, the receiving antenna unit 100, the tuner part 200, the addition circuit 400, the retransmission unit 500, and the transmission in both apparatuses are compared. The digital processing unit 312 of the force retransmission apparatus 2 which is the same as that of the antenna section 600 includes the frequency error correction circuit 303 and the symbol synchronization detection circuit 304 in addition to the configuration of the digital processing unit 311 of the retransmission apparatus 1. And GI replacement circuit 305 is different. Hereinafter, in FIG. 4, the same parts as FIG. 1 are shown. The same reference numerals as in 1 are attached and the detailed description is omitted.
[0029] デジタル処理部 312がチューナ一部 200により選択されたチャンネルの等価べ一 スバンド信号を入力すると、 LPF回路 301は、フィルタ処理によってワンセグ部分(部 分受信部)の信号のみを抜き出す。 LPF回路 301の出力は 2分配され、一方が周波 数誤差補正回路 303に入力され、他方がシンボル同期検出回路 304に入力される。  When the digital processing unit 312 inputs the equivalent baseband signal of the channel selected by the tuner part 200, the LPF circuit 301 extracts only the signal of the one segment part (partial reception part) by filter processing. The output of the LPF circuit 301 is divided into two, one of which is input to the frequency error correction circuit 303, and the other to the symbol synchronization detection circuit 304.
[0030] シンボル同期検出回路 304は、 LPF回路 301により抜き出されたワンセグ部分の 信号を入力し、ワンセグ部分の信号の周波数誤差量及びシンボルの先頭位置を検 出し、周波数誤差量を周波数誤差補正回路 303に出力し、シンボルの先頭位置情 報を GI付け換え回路 305に出力する。  The symbol synchronization detection circuit 304 receives the signal of the one segment portion extracted by the LPF circuit 301, detects the frequency error amount of the signal of the one segment portion and the head position of the symbol, and corrects the frequency error amount as frequency error correction. It is output to the circuit 303, and the head position information of the symbol is output to the GI replacement circuit 305.
[0031] シンボル同期を検出する一例を以下に示す。一般に、 OFDMシンボルは、ガード 期間及び有効シンボル期間で構成され、ガード期間の信号が有効シンボルの後ろ の一部から巡回的に複写されている。シンボル同期検出回路 304は、この構成を利 用してガード相関を求め、周波数誤差量及びシンボルの先頭位置を検出する。具体 的には、入力した信号 (ガード期間及び有効シンボル期間から構成される信号)と、こ の入力信号を有効シンボル期間だけ遅延させた信号とにつレ、て、これらの信号を乗 算してガード期間幅の移動平均を求めることにより両信号のガード相関を求める。そ して、求めたガード相関の値がピークとなる箇所をシンボルの境界(すなわちシンポ ルの先頭位置)として検出する。また、入力した信号 (等価ベースバンド信号)の I軸 データと有効シンボル期間だけ遅延させた I軸データとの相関(Sii)、及び、入力した 信号の I軸データと有効シンボル期間だけ遅延させた Q軸データとの相関(Siq)をそ れぞれ求め、これらの相関値に基づいて周波数誤差量を検出する。尚、シンボルの 先頭位置及び周波数誤差量の検出手法の詳細については、 "関隆史他、「OFDM におけるガード期間を利用した新しい周波数同期方式の検討」、テレビジョン学会技 術報告、 1995年 8月 24日"を参照されたい。  An example of detecting symbol synchronization is shown below. In general, an OFDM symbol is composed of a guard period and an effective symbol period, and a signal of the guard period is cyclically copied from a part behind the effective symbol. The symbol synchronization detection circuit 304 uses this configuration to determine a guard correlation, and detects the frequency error amount and the head position of the symbol. Specifically, the input signal (a signal consisting of a guard period and an effective symbol period) and a signal obtained by delaying this input signal by the effective symbol period are multiplied, and these signals are multiplied. The guard correlation of both signals is determined by determining the moving average of the guard period width. Then, a point where the obtained guard correlation value reaches a peak is detected as the symbol boundary (ie, the top position of the symbol). Also, the correlation (Sii) between the I axis data of the input signal (equivalent baseband signal) and the I axis data delayed by the effective symbol period (Sii), and the I axis data of the input signal delayed by the effective symbol period The correlation (Siq) with the Q axis data is determined respectively, and the frequency error amount is detected based on these correlation values. For details of the detection method of the symbol head position and the amount of frequency error, see “Seki Takafumi et al.,“ Examination of a new frequency synchronization method using guard period in OFDM ”, Technical Report of the Institute of Television Engineers, August 1995 Please refer to the 24th.
[0032] 周波数誤差補正回路 303は、 LPF回路 301からワンセグ部分の信号を入力し、シ ンボル同期検出回路 304から周波数誤差量を入力し、入力したワンセグ部分の信号 における周波数誤差を、入力した周波数誤差量を用いて補正する。受信変換回路 2 01では、周波数変換を行う際に用いるローカル周波数にジッタが含まれることから、 周波数成分に誤差が生じてしまい、加算回路 400では各チャンネルのワンセグ部分 の信号を合成する際にキャリア間干渉を引き起こしてしまう可能性がある。この周波 数誤差補正回路 303により、周波数変換の際の周波数成分誤差に起因したキャリア 間干渉を防止することができる。 Frequency error correction circuit 303 receives the signal of the one-segment portion from LPF circuit 301, receives the frequency error amount from symbol synchronization detection circuit 304, and receives the frequency error of the input one-segment signal. Make corrections using the amount of error. In the reception conversion circuit 201, since jitter is included in the local frequency used when performing frequency conversion, An error may occur in the frequency components, and the addition circuit 400 may cause inter-carrier interference when combining the signals of the one segment of each channel. This frequency error correction circuit 303 can prevent inter-carrier interference due to frequency component error in frequency conversion.
[0033] GI付け換え回路 305は、周波数誤差補正回路 303から補正されたワンセグ部分の 信号を入力し、シンボル同期検出回路 304からシンボル先頭位置情報を入力し、入 力したワンセグ部分の信号に対し、入力したシンボル先頭位置情報を基準にして 1シ ンボル長の信号を抽出して GIの付け換えを行う。  GI replacement circuit 305 receives the corrected one-segment signal from frequency error correction circuit 303, receives symbol head position information from symbol synchronization detection circuit 304, and applies the input one-segment signal. Then, based on the input symbol head position information, a signal of 1 symbol length is extracted and GI replacement is performed.
[0034] 図 5は、 GI付け換え回路 305の処理を説明する図である。 GI付け換え回路 305は 、ガード期間及び有効シンボル期間で構成された OFDMシンボルのうちのガード期 間の信号が有効シンボルの後部に複写されていることを利用して、入力したワンセグ 部分の信号に対し、 1シンボル長の信号における先頭部分の歪みを以下の処理によ り除去する。まず、 GI付け換え回路 305は、入力したシンボル先頭位置情報に基づ いてシンボル先頭位置を特定し(1)、そこから GI/2の位置を始点として、有効シン ボル長の信号を抽出する(2)。そして、抽出した有効シンボル長の信号の先頭から G 1/2の位置までの間の信号を後部に配列して並び替え(3)、予め設定された GI比 に応じて、並び替えた信号の後部を先頭に GIとして付加する(4)。このようにして、新 たな 1シンボル長の信号を得る。 LPF回路 301では、フィルタ処理により 1シンボル長 の先頭及び後ろの箇所に歪みが生じる可能性がある。この GI付け換え回路 305によ り、フィルタ処理に起因した信号の歪みを除去することができる。  FIG. 5 is a diagram for explaining the process of the GI replacement circuit 305. GI replacement circuit 305 uses the fact that the signal of the guard period of the OFDM symbol composed of the guard period and the effective symbol period is copied to the back of the effective symbol, and is used for the input one segment signal. On the other hand, distortion of the head portion of a signal of 1 symbol length is eliminated by the following processing. First, GI replacement circuit 305 specifies the symbol head position based on the input symbol head position information (1), and extracts a signal of effective symbol length starting from the position of GI / 2 from there (see (1)). 2). Then, the signals between the beginning of the extracted effective symbol length signal and the G 1/2 position are arranged at the rear and rearranged (3), and the rearranged signals are arranged according to the GI ratio set in advance. Add the rear to the top as GI (4). In this way, a new signal of one symbol length is obtained. In the LPF circuit 301, distortion may occur at the beginning and the end of the one symbol length due to the filtering process. This GI replacement circuit 305 can remove signal distortion caused by filtering.
[0035] 図 4に戻って、セグメント配置回路 302は、 GI付け換え回路 305により GIが付け替 えられたワンセグ部分の信号を入力し、 1つの等価ベースバンド信号に連結する際に 配置されるセグメントへの周波数変換を行う。  Returning to FIG. 4, the segment arrangement circuit 302 receives the signal of the one-segment portion whose GI has been replaced by the GI replacement circuit 305, and is placed when being coupled to one equivalent baseband signal. Perform frequency conversion to segments.
[0036] 以上のように、実施例 2による地上デジタル放送の再送信装置 2によれば、実施例  As described above, according to the terrestrial digital broadcast retransmitting apparatus 2 of the second embodiment, the second embodiment
1と同様の効果を得ること力 Sできる。また、周波数誤差補正回路 303によって、受信変 換回路 201が周波数変換を行う際にローカル周波数に含まれるジッタに起因した周 波数成分の誤差をなくし、加算回路 400でのキャリア間干渉を防止することができる。 また、 GI付け換え回路 305によって、 LPF回路 301のフィルタ処理により生じる信号 の 1シンボル長の先頭及び後ろの箇所の歪みを除去することができる。この結果、再 送信装置 2からの再送信信号を受信する受信装置において、シンボル同期の精度が 向上し、周波数誤差補正量が正確になり、再送信装置 2内の劣化を低減することが できる。 Force S to get the same effect as 1 Further, the frequency error correction circuit 303 eliminates the error of the frequency component caused by the jitter contained in the local frequency when the reception conversion circuit 201 performs frequency conversion, and prevents the inter-carrier interference in the addition circuit 400. Can. Also, the signal generated by the filtering process of the LPF circuit 301 by the GI replacement circuit 305 It is possible to remove distortion at the head and back of one symbol length of. As a result, in the receiving apparatus that receives the retransmission signal from the retransmission apparatus 2, the accuracy of symbol synchronization is improved, the frequency error correction amount becomes accurate, and degradation in the retransmission apparatus 2 can be reduced.
実施例 3  Example 3
[0037] 次に、実施例 3について説明する。この実施例 3は、受信変換回路 201が周波数変 換を行う際にローカル周波数に含まれるジッタに起因した周波数成分の誤差をなくし 、加算回路 400でのキャリア間干渉を防止すると共に、各系統のワンセグ部分の信号 に対しシンボルタイミングを合わせて再送信するものである。  Next, the third embodiment will be described. The third embodiment eliminates the error of the frequency component caused by the jitter contained in the local frequency when the reception conversion circuit 201 performs the frequency conversion, prevents the inter-carrier interference in the addition circuit 400, and It retransmits the signal of the one segment part at the symbol timing.
[0038] 図 6は、本発明の実施の形態による地上デジタル放送の再送信装置の構成(実施 例 3)を示すブロック図である。この再送信装置 3は、受信アンテナ部 100 (図示せず) 、 N個のチューナ一部 200、 N個のデジタル処理部 313、遅延時間調整回路 307— 3、加算回路 400、再送信部 500、及び送信アンテナ部 600 (図示せず)から構成さ れる。尚、デジタル処理部 313は N系統により構成され、それぞれの系統は同じ回路 で構成されるので、以下、 1系統のみについて説明する。また、デジタル処理部 313 は、 LPF回路 301、周波数誤差補正回路 303、シンボル同期検出回路 304、デジタ ル遅延回路 306及びセグメント配置回路 302から構成される。図 4に示した実施例 2 の再送信装置 2とこの再送信装置 3とを比較すると、両装置共に、受信アンテナ部 10 0、チューナ一部 200、加算回路 400、再送信部 500及び送信アンテナ部 600を備 えている点で同一であるが、再送信装置 3のデジタル処理部 313は、再送信装置 2 のデジタル処理部 312とは異なる構成になっており、再送信装置 3は、さらに遅延時 間調整回路 307— 3を備えている点で相違する。以下、図 6において、図 4と共通す る部分には図 4と同一の符号を付し、その詳しい説明は省略する。  FIG. 6 is a block diagram showing a configuration (example 3) of a terrestrial digital broadcast re-transmission apparatus according to an embodiment of the present invention. The retransmission apparatus 3 includes a reception antenna unit 100 (not shown), N tuner parts 200, N digital processing units 313, a delay time adjustment circuit 307-3, an adder circuit 400, a retransmission unit 500, And a transmitting antenna unit 600 (not shown). The digital processing unit 313 is configured by N systems, and since each system is configured by the same circuit, only one system will be described below. The digital processing unit 313 includes an LPF circuit 301, a frequency error correction circuit 303, a symbol synchronization detection circuit 304, a digital delay circuit 306, and a segment arrangement circuit 302. Comparing the retransmission apparatus 2 of the second embodiment shown in FIG. 4 with this retransmission apparatus 3, the receiving antenna unit 100, the tuner part 200, the adder circuit 400, the retransmission unit 500, and the transmission antenna of both apparatuses are compared. Although the digital processing unit 313 of the retransmission apparatus 3 has the same configuration as the digital processing unit 312 of the retransmission apparatus 2, the retransmission apparatus 3 further includes a delay unit 600. The difference is that the time adjustment circuit 307-3 is provided. Hereinafter, in FIG. 6, the same parts as in FIG. 4 will be assigned the same reference numerals as in FIG. 4 and detailed explanations thereof will be omitted.
[0039] シンボル同期検出回路 304は、 LPF回路 301により抜き出されたワンセグ部分の 信号を入力し、ガード相関によりワンセグ部分の信号の周波数誤差量及びシンボル の先頭位置を検出し、周波数誤差量を周波数誤差補正回路 303に出力し、シンポ ルの先頭位置情報を遅延時間調整回路 307— 3に出力する。  The symbol synchronization detection circuit 304 receives the signal of the one-segment portion extracted by the LPF circuit 301, detects the frequency error amount of the signal of the one-segment portion and the head position of the symbol by guard correlation, and calculates the frequency error amount. It is output to the frequency error correction circuit 303, and the top position information of the symbol is output to the delay time adjustment circuit 307-3.
[0040] 遅延時間調整回路 307— 3は、各系統のデジタル処理部 313— ;!〜 Nのシンボル 同期検出回路 304からシンボルの先頭位置情報をそれぞれ入力し、いずれかの等 価ベースバンド信号の受信タイミングを基準にして、各系統の等価ベースバンド信号 のシンボル先頭タイミングが一致するように、各系統の遅延時間を算出する。 [0040] The delay time adjustment circuit 307-3 is a symbol of each of the digital processing units 313-; Each head of the symbol detection circuit 304 receives the head position information of the symbol, and based on the reception timing of any equivalent base band signal, each head of the equivalent base band signal of each channel is made to coincide with each other. Calculate the delay time of
[0041] 各系統のデジタル遅延回路 306は、周波数誤差補正回路 303により周波数誤差 補正されたワンセグ部分の信号を入力し、遅延時間調整回路 307— 3により算出さ れた遅延時間を入力し、周波数誤差補正された信号を遅延時間分だけ遅延させる。 チューナ一部 200によるチューナー処理及びデジタル処理部 313によるデジタル処 理は、系統毎に行われるため、各系統のシンボルタイミングにずれが生じる可能性が ある。このデジタル遅延回路 306及び遅延時間調整回路 307— 3により、各系統のヮ ンセグ部分の信号のシンボルタイミングを合わせることができる。  Digital delay circuit 306 of each system receives the one-segment signal whose frequency error has been corrected by frequency error correction circuit 303, and inputs the delay time calculated by delay time adjustment circuit 307-3. The error corrected signal is delayed by the delay time. Since the tuner processing by the tuner part 200 and the digital processing by the digital processing unit 313 are performed for each channel, there is a possibility that the symbol timing of each channel may be deviated. By the digital delay circuit 306 and the delay time adjustment circuit 307-3, it is possible to adjust the symbol timing of the signal of the segment of each system.
[0042] セグメント配置回路 302は、デジタル遅延回路 306により遅延処理されたワンセグ 部分の信号を入力し、 1つの等価ベースバンド信号に連結する際に配置されるセグメ ントへの周波数変換を行う。  The segment arrangement circuit 302 receives the signal of the one-segment portion delayed by the digital delay circuit 306, and performs frequency conversion to a segment arranged when connecting to one equivalent baseband signal.
[0043] 以上のように、実施例 3による地上デジタル放送の再送信装置 3によれば、実施例 1と同様の効果を得ること力 Sできる。また、周波数誤差補正回路 303によって、受信変 換回路 201が周波数変換を行う際にローカル周波数に含まれるジッタに起因した周 波数成分の誤差をなくし、加算回路 400でのキャリア間干渉を防止することができる。  As described above, according to the terrestrial digital broadcast retransmitting apparatus 3 of the third embodiment, the same effect as that of the first embodiment can be obtained S. Further, the frequency error correction circuit 303 eliminates the error of the frequency component caused by the jitter contained in the local frequency when the reception conversion circuit 201 performs frequency conversion, and prevents the inter-carrier interference in the addition circuit 400. Can.
[0044] さらに、デジタル遅延回路 306及び遅延時間調整回路 307— 3によって、各系統の ワンセグ部分の信号のシンボルタイミングを合わせることができる。これにより、各等価 ベースバンド信号のシンボル先頭位置を揃えることができるため、加算回路 400にお いて 1つの等価ベースバンド信号として連結した際、全 13セグメントのシンボル同期 のタイミングを揃えて再送信することが可能となる。この結果、再送信装置 3からの再 送信信号を受信する受信装置において、シンボル同期の精度が向上し、周波数誤 差補正量が正確になる。  Further, by the digital delay circuit 306 and the delay time adjustment circuit 307-3, it is possible to adjust the symbol timing of the signal of the one segment part of each system. Since this makes it possible to align the symbol start positions of the equivalent baseband signals, when combining as one equivalent baseband signal in the adder circuit 400, the symbol synchronization timings of all 13 segments are aligned and retransmitted. It becomes possible. As a result, in the receiving apparatus that receives the retransmission signal from the retransmission apparatus 3, the accuracy of symbol synchronization is improved, and the frequency error correction amount becomes accurate.
実施例 4  Example 4
[0045] 次に、実施例 4について説明する。この実施例 4は、受信変換回路 201が周波数変 換を行う際にローカル周波数に含まれるジッタに起因した周波数成分の誤差をなくし 、加算回路 400でのキャリア間干渉を防止すると共に、各系統のワンセグ部分の信号 のシンボル先頭位置及び SPパターンが一致するように、シンボルタイミングを合わせ て再送信するものである。 Next, the fourth embodiment will be described. This embodiment 4 eliminates the error of the frequency component due to the jitter contained in the local frequency when the reception conversion circuit 201 performs the frequency conversion, prevents the inter-carrier interference in the addition circuit 400, and One segment signal The symbol timings are retransmitted at the same timing so that the symbol start position of and the SP pattern match.
[0046] 図 7は、本発明の実施の形態による地上デジタル放送の再送信装置の構成(実施 例 4)を示すブロック図である。この再送信装置 4は、受信アンテナ部 100 (図示せず) 、 N個のチューナ一部 200、 N個のデジタル処理部 314、遅延時間調整回路 307— 4、加算回路 400、再送信部 500、及び送信アンテナ部 600 (図示せず)から構成さ れる。尚、デジタル処理部 314は N系統により構成され、それぞれの系統は同じ回路 で構成されるので、以下、 1系統のみについて説明する。また、デジタル処理部 314 は、 LPF回路 301、周波数誤差補正回路 303、シンボル同期検出回路 304、 FFT 回路 308、 SPパターン検出回路 309、デジタル遅延回路 306及びセグメント配置回 路 302から構成される。図 6に示した実施例 3の再送信装置 3とこの再送信装置 4とを 比較すると、両装置共に、受信アンテナ部 100、チューナ一部 200、加算回路 400、 再送信部 500及び送信アンテナ部 600を備えて!/、る点で同一である力 再送信装置 4のデジタル処理部 314は、再送信装置 3のデジタル処理部 313の構成に加えて、 F FT回路 308及び SPパターン検出回路 309を備えている点、及び、再送信装置 3の 遅延時間調整回路 307— 3とは異なる構成の遅延時間調整回路 307— 4を備えてい る点で相違する。以下、図 7において、図 6と共通する部分には図 6と同一の符号を 付し、その詳しい説明は省略する。  FIG. 7 is a block diagram showing a configuration (example 4) of a terrestrial digital broadcast re-transmission apparatus according to an embodiment of the present invention. The retransmission apparatus 4 includes a receiving antenna unit 100 (not shown), N tuner parts 200, N digital processing units 314, a delay time adjustment circuit 307-4, an adder circuit 400, a retransmission unit 500, And a transmitting antenna unit 600 (not shown). The digital processing unit 314 is configured by N systems, and since each system is configured by the same circuit, only one system will be described below. The digital processing unit 314 includes an LPF circuit 301, a frequency error correction circuit 303, a symbol synchronization detection circuit 304, an FFT circuit 308, an SP pattern detection circuit 309, a digital delay circuit 306, and a segment arrangement circuit 302. Comparing the retransmission apparatus 3 of the third embodiment shown in FIG. 6 with the retransmission apparatus 4, the receiving antenna unit 100, the tuner part 200, the adder circuit 400, the retransmission unit 500, and the transmission antenna unit are both devices. In addition to the configuration of the digital processing unit 313 of the retransmitting apparatus 3, the digital processing unit 314 of the force retransmitting apparatus 4 that is identical to the l /! Point 600 has an F FT circuit 308 and an SP pattern detection circuit 309. And the delay time adjustment circuit 307-4 having a configuration different from that of the delay time adjustment circuit 307-3 of the retransmission apparatus 3. Hereinafter, in FIG. 7, parts common to FIG. 6 will be assigned the same reference numerals as in FIG. 6, and detailed descriptions thereof will be omitted.
[0047] シンボル同期検出回路 304は、 LPF回路 301により抜き出されたワンセグ部分の 信号を入力し、ガード相関によりワンセグ部分の信号の周波数誤差量及びシンボル の先頭位置を検出し、周波数誤差量を周波数誤差補正回路 303に出力し、シンポ ルの先頭位置情報を遅延時間調整回路 307— 4に出力する。また、ワンセグ部分の 信号につ!/、て有効シンボル期間の開始を示すタイミング信号を生成し、 FFT回路 30 8に出力する。  The symbol synchronization detection circuit 304 receives the signal of the one-segment portion extracted by the LPF circuit 301, detects the frequency error amount of the signal of the one-segment portion and the head position of the symbol by guard correlation, and calculates the frequency error amount. It is output to the frequency error correction circuit 303, and the top position information of the symbol is output to the delay time adjustment circuit 307-4. In addition, a timing signal indicating the start of the effective symbol period is generated for the signal of the one segment portion, and is output to the FFT circuit 308.
[0048] 周波数誤差補正回路 303は、 LPF回路 301からワンセグ部分の信号を入力し、シ ンボル同期検出回路 304から周波数誤差量を入力し、ワンセグ部分の信号における 周波数誤差を周波数誤差量を用いて補正し、周波数誤差補正したワンセグ部分の 信号をデジタル遅延回路 306及び FFT回路 308に出力する。 [0049] FFT回路 308は、周波数誤差補正回路 303から周波数誤差補正されたワンセグ部 分の信号を入力し、シンボル同期検出回路 304から有効シンボルのタイミング信号を 入力し、フーリエ変換により、時間領域のワンセグ部分における有効シンボルの信号 を周波数領域の信号に変換する。 Frequency error correction circuit 303 receives the signal of the one segment from LPF circuit 301, receives the frequency error amount from symbol synchronization detection circuit 304, and uses the frequency error amount for the frequency error in the one segment signal. The corrected and frequency error-corrected one segment signal is output to the digital delay circuit 306 and the FFT circuit 308. The FFT circuit 308 receives the frequency error corrected signal of the one segment from the frequency error correction circuit 303, receives the timing signal of the effective symbol from the symbol synchronization detection circuit 304, and performs Fourier transform to obtain the time domain signal. Converts the signal of the effective symbol in the one segment part to the signal in the frequency domain.
[0050] SPパターン検出回路 309は、 FFT回路 308から周波数領域のワンセグ部分の信 号を入力し、 ISDB— T方式の SPの配置パターン(全 4パターン)のうちのどのパター ンであるかを検出する。  The SP pattern detection circuit 309 receives the signal of the one-segment portion in the frequency domain from the FFT circuit 308, and determines which pattern among the SP arrangement patterns (all four patterns) of the ISDB-T system. To detect.
[0051] 図 8は、 SPの配列を示すパターン図である。図 8に示すように、 ISDB— T方式の S Pパターンには SPパターン 1〜4の 4つが存在する。 SPパターン検出回路 309は、入 力した周波数領域のワンセグ部分の信号に対し、 4つの SPパターン 1〜4のうちのい ずれかのパターンを検出する。  FIG. 8 is a pattern diagram showing the arrangement of SP. As shown in FIG. 8, four SP patterns 1 to 4 exist in the SP pattern of the ISDB-T method. The SP pattern detection circuit 309 detects any one of the four SP patterns 1 to 4 with respect to the input signal in the one-segment portion of the frequency domain.
[0052] 遅延時間調整回路 307— 4は、各系統のデジタル処理部 314— ;!〜 Nのシンボル 同期検出回路 304からシンボルの先頭位置情報をそれぞれ入力し、 SPパターン検 出回路 309から SPパターン情報をそれぞれ入力し、全ての等価ベースバンド信号の シンボル先頭位置及び SPパターンが一致するように、いずれかの等価ベースバンド 信号の受信タイミングを基準にして各系統の遅延時間を算出する。  The delay time adjustment circuit 307-4 receives the head position information of the symbol from the symbol synchronization detection circuit 304 of the digital processing unit 314 of each system, respectively, and receives the SP pattern from the SP pattern detection circuit 309. The information is input, and the delay time of each system is calculated based on the reception timing of any equivalent baseband signal so that the symbol start positions and the SP patterns of all equivalent baseband signals match.
[0053] 各系統のデジタル遅延回路 306は、周波数誤差補正回路 303により周波数誤差 補正されたワンセグ部分の信号を入力し、遅延時間調整回路 307— 4により算出さ れた遅延時間を入力し、周波数誤差補正された信号を遅延時間分だけ遅延させる。 チューナ一部 200によるチューナー処理及びデジタル処理部 314によるデジタル処 理は、系統毎に行われるため、各系統のシンボルタイミングにずれが生じる可能性が ある。このデジタル遅延回路 306及び遅延時間調整回路 307— 4により、各系統のヮ ンセグ部分の信号のシンボルタイミングを、シンボルの先頭位置及び SPパターンが 一致するように合わせることカでさる。  The digital delay circuit 306 of each system receives the one-segment signal whose frequency error has been corrected by the frequency error correction circuit 303, and inputs the delay time calculated by the delay time adjustment circuit 307-4. The error corrected signal is delayed by the delay time. Since the tuner processing by the tuner part 200 and the digital processing by the digital processing unit 314 are performed for each channel, there is a possibility that the symbol timing of each channel may be deviated. By the digital delay circuit 306 and the delay time adjustment circuit 307-4, the symbol timing of the signal of the segment of each system is matched so that the start position of the symbol and the SP pattern coincide.
[0054] セグメント配置回路 302は、デジタル遅延回路 306により遅延処理されたワンセグ 部分の信号を入力し、 1つの等価ベースバンド信号に連結する際に配置されるセグメ ントへの周波数変換を行う。  The segment placement circuit 302 receives the signal of the one-segment portion delayed by the digital delay circuit 306, and performs frequency conversion to a segment placed when connecting to one equivalent baseband signal.
[0055] 以上のように、実施例 4による地上デジタル放送の再送信装置 4によれば、実施例 1と同様の効果を得ること力 Sできる。また、周波数誤差補正回路 303によって、受信変 換回路 201が周波数変換を行う際にローカル周波数に含まれるジッタに起因した周 波数成分の誤差をなくし、加算回路 400でのキャリア間干渉を防止することができる。 As described above, according to the terrestrial digital broadcast retransmitter 4 of the fourth embodiment, the fourth embodiment is an embodiment of the present invention. Force S to get the same effect as 1 Further, the frequency error correction circuit 303 eliminates the error of the frequency component caused by the jitter contained in the local frequency when the reception conversion circuit 201 performs frequency conversion, and prevents the inter-carrier interference in the addition circuit 400. Can.
[0056] さらに、デジタル遅延回路 306及び遅延時間調整回路 307— 4によって、各系統の ワンセグ部分の信号のシンボルタイミング及び SPパターンを合わせることができる。こ れにより、加算回路 400において 1つの等価ベースバンド信号として連結した際、全 13セグメントのシンボル同期のタイミングを揃えると共に SPパターンを揃えて再送信 することが可能となる。この結果、再送信装置 4からの再送信信号を受信する受信装 置において、シンボル同期の精度が向上し、周波数誤差補正量が正確になり、かつ 、等化処理を行う際に隣のセグメントの SPを使用することが可能となる。 Further, by the digital delay circuit 306 and the delay time adjustment circuit 307-4, it is possible to match the symbol timing and the SP pattern of the signal of the one segment part of each system. As a result, when concatenated as one equivalent baseband signal in the adder circuit 400, it is possible to align the symbol synchronization timings of all 13 segments and align and retransmit SP patterns. As a result, in the receiver that receives the retransmission signal from the retransmission device 4, the symbol synchronization accuracy is improved, the frequency error correction amount is accurate, and the equalization processing is performed when the equalization processing is performed. It is possible to use SP.
実施例 5  Example 5
[0057] 次に、実施例 5について説明する。この実施例 5は、受信変換回路 201が周波数変 換を行う際にローカル周波数に含まれるジッタに起因した周波数成分の誤差をなくし 、加算回路 400でのキャリア間干渉を防止すると共に、各系統のワンセグ部分の信号 に対しフレームの先頭位置を合わせて再送信するものである。  Next, Example 5 will be described. The fifth embodiment eliminates the error of the frequency component caused by the jitter contained in the local frequency when the reception conversion circuit 201 performs frequency conversion, prevents the inter-carrier interference in the addition circuit 400, and It retransmits the signal at the beginning of the frame by aligning it with the signal at the one segment segment.
[0058] 図 9は、本発明の実施の形態による地上デジタル放送の再送信装置の構成(実施 例 5)を示すブロック図である。この再送信装置 5は、受信アンテナ部 100 (図示せず) 、 N個のチューナ一部 200、 N個のデジタル処理部 315、遅延時間調整回路 307— 5、加算回路 400、再送信部 500、及び送信アンテナ部 600 (図示せず)から構成さ れる。尚、デジタル処理部 315は N系統により構成され、それぞれの系統は同じ回路 で構成されるので、以下、 1系統のみについて説明する。また、デジタル処理部 315 は、 LPF回路 301、周波数誤差補正回路 303、シンボル同期検出回路 304、 FFT 回路 308、フレーム同期検出回路 310、デジタル遅延回路 306及びセグメント配置 回路 302から構成される。図 7に示した実施例 4の再送信装置 4とこの再送信装置 5と を比較すると、両装置共に、受信アンテナ部 100、チューナ一部 200、加算回路 400 、再送信部 500及び送信アンテナ部 600を備えている点で同一であるが、再送信装 置 5のデジタル処理部 315は、再送信装置 4のデジタル処理部 314における SPパタ ーン検出回路 309の代わりにフレーム同期検出回路 310を備えている点、及び、再 送信装置 5は、再送信装置 4の遅延時間調整回路 307— 4とは異なる構成の遅延時 間調整回路 307— 5を備えている点で相違する。以下、図 9において、図 7と共通す る部分には図 7と同一の符号を付し、その詳しい説明は省略する。 FIG. 9 is a block diagram showing a configuration (Example 5) of a terrestrial digital broadcast re-transmission apparatus according to an embodiment of the present invention. The retransmission apparatus 5 includes a receiving antenna unit 100 (not shown), N tuner parts 200, N digital processing units 315, a delay time adjustment circuit 307-5, an adder circuit 400, a retransmission unit 500, And a transmitting antenna unit 600 (not shown). The digital processing unit 315 is configured by N systems, and since each system is configured by the same circuit, only one system will be described below. The digital processing unit 315 includes an LPF circuit 301, a frequency error correction circuit 303, a symbol synchronization detection circuit 304, an FFT circuit 308, a frame synchronization detection circuit 310, a digital delay circuit 306, and a segment arrangement circuit 302. Comparing the retransmission apparatus 4 of the fourth embodiment shown in FIG. 7 with this retransmission apparatus 5, the reception antenna unit 100, the tuner part 200, the adder circuit 400, the retransmission unit 500, and the transmission antenna unit are both devices. The digital processing unit 315 of the retransmission apparatus 5 is the same as the digital signal processing apparatus of the retransmission apparatus 5 except for the SP pattern detection circuit 309 in the digital processing unit 314 of the retransmission apparatus 4. The point it has, and The transmitting device 5 is different in that it includes a delay time adjusting circuit 307-5 having a configuration different from that of the delay time adjusting circuit 307-4 of the retransmission device 4. Hereinafter, in FIG. 9, the same parts as in FIG. 7 will be assigned the same reference numerals as in FIG. 7, and detailed descriptions thereof will be omitted.
[0059] フレーム同期検出回路 310は、 FFT回路 308から周波数領域のワンセグ部分の信 号を入力し、この ISDB—T方式の信号に含まれる TMCC (Transmission and Mu ltiplexing Configuration Control)信号からフレーム先頭位置を検出し、復調す る。そして、検出したフレーム先頭位置情報を遅延時間調整回路 307— 5に出力す る。ここで、 ISDB— T方式の TMCC信号にはフレーム情報が付加されているため、 TMCC信号を監視することにより、フレーム先頭位置を検出することができる。  Frame synchronization detection circuit 310 receives the signal of the one-segment portion in the frequency domain from FFT circuit 308, and transmits a signal from the TMCC (Transmission and Multiplexing Configuration Control) signal included in this ISDB-T system signal to the frame head position. Detect and demodulate. Then, the detected frame head position information is output to the delay time adjustment circuit 307-5. Here, since frame information is added to the TMCC signal of the ISDB-T system, it is possible to detect the frame head position by monitoring the TMCC signal.
[0060] 遅延時間調整回路 307— 5は、各系統のデジタル処理部 315— ;!〜 Nのシンボル 同期検出回路 304からシンボル先頭位置情報をそれぞれ入力し、フレーム同期検出 回路 310からフレーム先頭位置情報をそれぞれ入力し、全ての等価ベースバンド信 号のシンボル先頭位置及びフレーム先頭位置が一致するように、いずれかの等価べ ースバンド信号の受信タイミングを基準にして各系統の遅延時間を算出する。  The delay time adjustment circuit 307-5 receives the symbol head position information from the symbol synchronization detection circuit 304 of each system of the digital processing units 315-;!-N, and receives the frame head position information from the frame synchronization detection circuit 310. Are input, and the delay time of each system is calculated based on the reception timing of any equivalent baseband signal so that the symbol start position and frame start position of all equivalent baseband signals coincide.
[0061] 各系統のデジタル遅延回路 306は、周波数誤差補正回路 303により周波数誤差 補正されたワンセグ部分の信号を入力し、遅延時間調整回路 307— 5により算出さ れた遅延時間を入力し、周波数誤差補正された信号を遅延時間分だけ遅延させる。 チューナ一部 200によるチューナー処理及びデジタル処理部 315によるデジタル処 理は、系統毎に行われるため、各系統のフレームタイミングにずれが生じる可能性が ある。このデジタル遅延回路 306及び遅延時間調整回路 307— 5により、各系統のヮ ンセグ部分の信号のシンボルタイミングを、フレーム先頭位置が一致するように合わ せること力 Sできる。この場合、フレーム先頭位置が一致すると、シンボル先頭位置及 び SPパターンも一致する。  The digital delay circuit 306 of each system receives the signal of the one segment portion whose frequency error has been corrected by the frequency error correction circuit 303, and inputs the delay time calculated by the delay time adjustment circuit 307-5. The error corrected signal is delayed by the delay time. Since the tuner processing by the tuner part 200 and the digital processing by the digital processing unit 315 are performed for each channel, there is a possibility that frame timing of each channel may be deviated. By the digital delay circuit 306 and the delay time adjustment circuit 307-5, it is possible to match the symbol timings of the signals of the segment of each system so that the frame start positions coincide with each other. In this case, when the frame start position matches, the symbol start position and the SP pattern also match.
[0062] セグメント配置回路 302は、デジタル遅延回路 306により遅延処理されたワンセグ 部分の信号を入力し、 1つの等価ベースバンド信号に連結する際に配置されるセグメ ントへの周波数変換を行う。  The segment arrangement circuit 302 receives the signal of the one-segment portion delayed by the digital delay circuit 306, and performs frequency conversion to a segment arranged when connecting to one equivalent baseband signal.
[0063] 以上のように、実施例 5による地上デジタル放送の再送信装置 5によれば、実施例  As described above, according to the terrestrial digital broadcast retransmitting apparatus 5 of the fifth embodiment, the fifth embodiment
1と同様の効果を得ること力 Sできる。また、周波数誤差補正回路 303によって、受信変 換回路 201が周波数変換を行う際にローカル周波数に含まれるジッタに起因した周 波数成分の誤差をなくし、加算回路 400でのキャリア間干渉を防止することができる。 Force S to get the same effect as 1 Also, the frequency error correction circuit 303 When frequency conversion is performed by the conversion circuit 201, an error in frequency components caused by jitter contained in the local frequency can be eliminated, and inter-carrier interference in the addition circuit 400 can be prevented.
[0064] さらに、デジタル遅延回路 306及び遅延時間調整回路 307— 5によって、各系統の ワンセグ部分の信号のフレーム先頭位置を合わせることができる。これにより、加算回 路 400において 1つの等価ベースバンド信号として連結した際、全 13セグメントのフ レーム同期のタイミングを揃えると共に、シンボル同期のタイミング及び SPパターンも 揃えて再送信することが可能となる。この結果、再送信装置 5からの再送信信号を受 信する受信装置において、シンボル同期の精度が向上し、周波数誤差補正量が正 確になり、かつ、等化処理を行う際に隣のセグメントの SPを使用することが可能となるFurther, by the digital delay circuit 306 and the delay time adjustment circuit 307-5, it is possible to adjust the frame top position of the signal of the one segment part of each system. Thereby, when concatenating as one equivalent baseband signal in addition circuit 400, it is possible to align the frame synchronization timing of all 13 segments, and also align and retransmit the symbol synchronization timing and the SP pattern. . As a result, in the receiving apparatus that receives the retransmission signal from the retransmission apparatus 5, the accuracy of symbol synchronization is improved, the frequency error correction amount becomes accurate, and when performing equalization processing, the adjacent segment is generated. It is possible to use the SP of
Yes
実施例 6  Example 6
[0065] 次に、実施例 6について説明する。この実施例 6は、実施例 1の手法を用いて、地 上デジタルテレビジョン放送とは別に独自に生成した TS信号を付加して、地上デジ タルテレビジョン放送と共に送信するものである。すなわち、受信する N波の地上デ ジタル放送における N個の部分受信部の信号と M個の独自 TS信号とを、 1つのチヤ ンネル内(帯域 6MHz)に連結して送信するものである。尚、 N + M≤ 13である(以 下同じ)。  A sixth embodiment will now be described. In this sixth embodiment, a TS signal uniquely generated separately from terrestrial digital television broadcasting is added using the method of the first embodiment, and is transmitted together with terrestrial digital television broadcasting. That is, signals of N partial receivers in N digital terrestrial digital broadcasting to be received and M unique TS signals are connected in one channel (band 6 MHz) and transmitted. Note that N + M≤13 (the same applies below).
[0066] 図 10は、本発明の実施の形態による地上デジタル放送の再送信装置の構成(実 施例 6)を示すブロック図である。この再送信装置 6は、受信アンテナ部 100、 N個の チューナ一部 200、 N個のデジタル処理部 311、 M個の変調部 721、加算回路 400 、再送信部 500、及び送信アンテナ部 600から構成される。尚、変調部 721は M系 統により構成され、それぞれの系統は同じ回路で構成されるので、以下、 1系統のみ について説明する。また、変調部 721は、 OFDM変調回路 701、 OFDMフレーム化 処理回路 702、逆フーリエ変換回路 703、 GI付加回路 704及びセグメント配置回路 705から構成される。図 1に示した実施例 1の再送信装置 1とこの再送信装置 6とを比 較すると、両装置共に、受信アンテナ部 100、チューナ一部 200、デジタル処理部 3 11、加算回路 400、再送信部 500及び送信アンテナ部 600を備えている点で同一 であるが、再送信装置 6は、再送信装置 1の構成に加えてさらに M個の変調部 721を 備えている点で相違する。以下、図 10において、図 1と共通する部分には図 1と同一 の符号を付し、その詳しい説明は省略する。 FIG. 10 is a block diagram showing a configuration (example 6) of the terrestrial digital broadcast re-transmission apparatus according to the embodiment of the present invention. The retransmission apparatus 6 includes a reception antenna unit 100, N tuner parts 200, N digital processing units 311, M modulation units 721, an adder circuit 400, a retransmission unit 500, and a transmission antenna unit 600. Configured Here, since the modulation section 721 is configured by an M system, and each system is configured by the same circuit, only one system will be described below. The modulation unit 721 includes an OFDM modulation circuit 701, an OFDM framing processing circuit 702, an inverse Fourier transform circuit 703, a GI addition circuit 704, and a segment arrangement circuit 705. Comparing the retransmission apparatus 1 according to the first embodiment shown in FIG. 1 with the retransmission apparatus 6, the receiving antenna unit 100, the tuner part 200, the digital processing unit 311, the adder circuit 400, and the retransmitting apparatus 6 both The retransmission apparatus 6 is identical in that it includes the transmitting section 500 and the transmitting antenna section 600, but in addition to the configuration of the retransmission apparatus 1, the M modulation sections 721 are further added. It differs in the point which it has. Hereinafter, in FIG. 10, parts common to FIG. 1 will be assigned the same reference numerals as in FIG. 1 and detailed explanations thereof will be omitted.
[0067] 変調部 721に自治放送、コミュニティー放送、コマーシャル、自主制作等の独自 TS  [0067] The modulation section 721 has its own TS such as autonomous broadcasting, community broadcasting, commercials, and independent production.
(例えば MPEG (Moving Picture Experts Group)—TS)信号を入力すると、変 調部 721の OFDM変調回路 701は、入力した独自 TS信号に誤り訂正符号を付加し 、 QPSK (Quadrature Phase Shift Keying)変調、 16QAM (Quadrature Amp litude Modulation)変調、 64QAM変調等のレートや目的に合わせたキャリア変調 を行い、各種インターリーブ処理を施す。  When a signal is input (for example, MPEG (Moving Picture Experts Group)-TS), the OFDM modulation circuit 701 of the modulation unit 721 adds an error correction code to the input unique TS signal, and performs QPSK (Quadrature Phase Shift Keying) modulation, Carrier modulation is performed according to the rate and purpose such as 16 QAM (Quadrature Amplitude Modulation) modulation and 64 QAM modulation, and various interleaving processing is performed.
[0068] OFDMフレーム化処理回路 702は、 OFDM変調回路 701により変調された信号 を入力し、地上デジタル放送の部分受信部と同じ配置にパイロットキャリア、 AC (Au xiliary Channel)及び TMCCを付加して OFDMフレーム化処理を行う。  OFDM framing processing circuit 702 receives the signal modulated by OFDM modulation circuit 701 and adds a pilot carrier, AC (Auxiliary Channel) and TMCC in the same arrangement as the partial reception unit of terrestrial digital broadcasting. Perform OFDM framing processing.
[0069] 逆フーリエ変換回路 703は、 OFDMフレーム化処理回路 702により OFDMフレー ム化処理された信号を入力し、その信号の 1シンボル分のキャリアデータを時間領域 の信号に逆フーリエ変換する。 GI付加回路 704は、逆フーリエ変換回路 703により 逆フーリエ変換された時間領域の信号を入力し、予め設定された GI比に応じて GIの 付加を行う。セグメント配置回路 705は、 GI付加回路 704により GIが付加された信号 を入力し、 1つの等価ベースバンド信号に連結する際に配置されるセグメントへの周 波数変換を行う。このセグメント配置回路 705は、機能的にセグメント配置回路 302と 同一でめる。  [0069] The inverse Fourier transform circuit 703 inputs a signal that has been subjected to OFDM framing processing by the OFDM framing processing circuit 702, and inverse Fourier transforms carrier data of one symbol of the signal into a time domain signal. The GI addition circuit 704 receives the time domain signal that has been inverse Fourier transformed by the inverse Fourier transformation circuit 703, and performs addition of GI according to a preset GI ratio. The segment arrangement circuit 705 receives the signal to which GI is added by the GI addition circuit 704, and performs frequency conversion to a segment arranged when connecting to one equivalent baseband signal. The segment placement circuit 705 is functionally identical to the segment placement circuit 302.
[0070] 加算回路 400は、 N系統のデジタル処理部 311によりデジタル処理されたワンセグ 部分の等価ベースバンド信号を入力し、 M系統の変調部 721により変調が施された 独自 TS信号の等価ベースバンド信号を入力し、これらの等価ベースバンド信号を加 算合成する。  Adder circuit 400 receives the equivalent baseband signal of the one-segment portion digitally processed by N-system digital processing unit 311, and the equivalent baseband signal of the unique TS signal modulated by M-system modulation unit 721. Signals are input, and these equivalent baseband signals are added and synthesized.
[0071] 以上のように、実施例 6による地上デジタル放送の再送信装置 6によれば、実施例  As described above, according to the terrestrial digital broadcast retransmitting apparatus 6 of the sixth embodiment, the sixth embodiment is the same as the sixth embodiment.
1と同様の効果を得ることができると共に、地上デジタルテレビジョン放送とは別に独 自に生成した TS信号を付加して、地上デジタルテレビジョン放送と共に送信すること ができる。  The same effect as in (1) can be obtained, and a TS signal independently generated separately from digital terrestrial television broadcasting can be added and transmitted together with digital terrestrial television broadcasting.
実施例 Ί [0072] 次に、実施例 7について説明する。この実施例 7は、実施例 2の手法を用いて、受 信する N波の地上デジタル放送における N個の部分受信部の信号と M個の独自 TS 信号とを、 1つのチャンネル内に連結して送信するものである。 Example Ί Next, Example 7 will be described. This seventh embodiment uses the method of the second embodiment to connect the signals of the N partial receivers in N digital terrestrial digital broadcasting to be received and the M unique TS signals into one channel. Sending.
[0073] 図 11は、本発明の実施の形態による地上デジタル放送の再送信装置の構成(実 施例 7)を示すブロック図である。この再送信装置 7は、受信アンテナ部 100、 N個の チューナ一部 200、 N個のデジタル処理部 312、 M個の変調部 721、加算回路 400 、再送信部 500、及び送信アンテナ部 600から構成される。図 4に示した実施例 2の 再送信装置 2とこの再送信装置 7とを比較すると、再送信装置 7が、再送信装置 2の 構成に加えてさらに変調部 721を備えている点で相違する。また、図 10に示した実 施例 6の再送信装置 6とこの再送信装置 7とを比較すると、再送信装置 7が、再送信 装置 6のデジタル処理部 311とは異なる構成のデジタル処理部 312を備えている点 で相違する。  FIG. 11 is a block diagram showing a configuration (example 7) of the terrestrial digital broadcast re-transmission apparatus according to the embodiment of the present invention. The retransmission apparatus 7 includes a reception antenna unit 100, N tuner parts 200, N digital processing units 312, M modulation units 721, an adder circuit 400, a retransmission unit 500, and a transmission antenna unit 600. Configured Comparing the retransmission apparatus 2 of the second embodiment shown in FIG. 4 with the retransmission apparatus 7, the difference is that the retransmission apparatus 7 further includes a modulator 721 in addition to the configuration of the retransmission apparatus 2. Do. Further, comparing the retransmission device 6 of the sixth embodiment shown in FIG. 10 with the retransmission device 7, the retransmission device 7 is a digital processing unit having a configuration different from the digital processing unit 311 of the retransmission device 6. It differs in that it has 312.
[0074] 受信アンテナ部 100、チューナ一部 200、デジタル処理部 312、加算回路 400、再 送信部 500及び送信アンテナ部 600は、実施例 2における再送信装置 2のものと同 一であるので、説明を省略する。また、変調部 721は、実施例 6における再送信装置 6のものと同一であるので、説明を省略する。  The reception antenna unit 100, the tuner part 200, the digital processing unit 312, the adder circuit 400, the retransmission unit 500, and the transmission antenna unit 600 are the same as those of the retransmission apparatus 2 in the second embodiment. I omit explanation. In addition, since the modulator 721 is the same as that of the retransmission apparatus 6 in the sixth embodiment, the description will be omitted.
[0075] 以上のように、実施例 7による地上デジタル放送の再送信装置 7によれば、実施例 2と同様の効果を得ることができると共に、地上デジタルテレビジョン放送とは別に独 自に生成した TS信号を付加して、地上デジタルテレビジョン放送と共に送信すること ができる。  As described above, according to the terrestrial digital broadcast retransmitting apparatus 7 of the seventh embodiment, the same effect as that of the second embodiment can be obtained, and independently generated separately from the terrestrial digital television broadcasting. The added TS signal can be transmitted along with digital terrestrial television broadcasting.
実施例 8  Example 8
[0076] 次に、実施例 8について説明する。この実施例 8は、実施例 3の手法を用いて、受 信する N波の地上デジタル放送における N個の部分受信部の信号と M個の独自 TS 信号とを、 1つのチャンネル内に連結して送信するものであり、特に、各系統の部分 受信部の信号及び独自 TS信号におけるシンボルタイミングを合わせて送信するもの である。  Next, an eighth embodiment will be described. In this eighth embodiment, using the method of the third embodiment, signals of N partial receivers in N digital terrestrial digital broadcasting to be received and M unique TS signals are connected in one channel. In particular, it transmits the signals of the partial reception unit of each channel and the symbol timing of the unique TS signal at the same time.
[0077] 図 12は、本発明の実施の形態による地上デジタル放送の再送信装置の構成(実 施例 8)を示すブロック図である。この再送信装置 8は、受信アンテナ部 100、 N個の チューナ一部 200、 N個のデジタル処理部 313、 M個の変調部 723、遅延時間調整 回路 307— 8、加算回路 400、再送信部 500、及び送信アンテナ部 600から構成さ れる。尚、変調部 723は M系統により構成され、それぞれの系統は同じ回路で構成さ れるので、以下、 1系統のみについて説明する。また、変調部 723は、 OFDM変調 回路 701、 OFDMフレーム化処理回路 702、逆フーリエ変換回路 703、 GI付加回 路 704、デジタル遅延回路 706及びセグメント配置回路 705から構成される。図 6に 示した実施例 3の再送信装置 3とこの再送信装置 8とを比較すると、両装置共に、受 信アンテナ部 100、チューナ一部 200、デジタル処理部 313、加算回路 400、再送 信部 500及び送信アンテナ部 600を備えている点で同一である力 再送信装置 8は 、 M個の変調部 723を備えている点、及び再送信装置 3の遅延時間調整回路 307 —3とは異なる構成の遅延時間調整回路 307— 8を備えている点で相違する。以下、 図 12において、図 3と共通する部分には図 3と同一の符号を付し、その詳しい説明は 省略する。また、変調部 723の OFDM変調回路 701、 OFDMフレーム化処理回路 702及び逆フーリエ変換回路 703は、図 10に示した再送信装置 6の変調部 721のも のと同一であるので、その詳しい説明は省略する。 FIG. 12 is a block diagram showing a configuration (example 8) of the terrestrial digital broadcast re-transmission apparatus according to the embodiment of the present invention. The retransmission apparatus 8 includes N receiving antennas 100, N A tuner part 200, N digital processing units 313, M modulation units 723, a delay time adjustment circuit 307-8, an adder circuit 400, a retransmission unit 500, and a transmission antenna unit 600. The modulation unit 723 is configured by M systems, and since each system is configured by the same circuit, only one system will be described below. The modulation unit 723 is composed of an OFDM modulation circuit 701, an OFDM framing processing circuit 702, an inverse Fourier transform circuit 703, a GI addition circuit 704, a digital delay circuit 706, and a segment arrangement circuit 705. Comparing the retransmission apparatus 3 of the third embodiment shown in FIG. 6 with the retransmission apparatus 8, the reception antenna unit 100, the tuner part 200, the digital processing unit 313, the adder circuit 400, and the retransmission signal in both apparatuses are compared. The power retransmitting apparatus 8 which is the same in that it includes the section 500 and the transmitting antenna section 600 is that it includes M modulation sections 723 and the delay time adjustment circuit 307-3 of the retransmitting apparatus 3 The difference is that different delay time adjustment circuits 307-8 are provided. Hereinafter, in FIG. 12, parts common to FIG. 3 are assigned the same reference numerals as in FIG. 3, and detailed descriptions thereof will be omitted. Further, since the OFDM modulation circuit 701, the OFDM framing processing circuit 702 and the inverse Fourier transform circuit 703 of the modulation section 723 are the same as those of the modulation section 721 of the retransmission apparatus 6 shown in FIG. Is omitted.
[0078] 変調部 723の GI付加回路 704は、逆フーリエ変換回路 703により逆フーリエ変換さ れた時間領域の信号を入力し、予め設定された GI比に応じて GIの付加を行う。また 、シンボルの先頭位置情報を遅延時間調整回路 307— 8に出力する。  GI addition circuit 704 of modulation section 723 receives the time domain signal that has been inverse Fourier transformed by inverse Fourier transformation circuit 703, and performs addition of GI according to a preset GI ratio. Also, the head position information of the symbol is output to the delay time adjustment circuit 307-8.
[0079] 遅延時間調整回路 307— 8は、各系統のデジタル処理部 313— ;!〜 Nのシンボル 同期検出回路 304からシンボルの先頭位置情報をそれぞれ入力し、各系統の変調 部 723— ;!〜 Mの GI付加回路 704からシンボルの先頭位置情報をそれぞれ入力し、 いずれかの等価ベースバンド信号の受信タイミングを基準にして、各系統の等価べ ースバンド信号のシンボル先頭タイミングが一致するように、各系統の遅延時間を算 出する。  [0079] The delay time adjustment circuit 307-8 receives the head position information of the symbol from the symbol synchronization detection circuit 304 of each system of the digital processing unit 313-;!-N, and the modulation unit 723- of each system. The head position information of the symbols is input from the GI appending circuit 704 of ~ M, respectively, and the symbol head timings of equivalent baseband signals of the respective systems coincide with each other on the basis of the reception timing of any equivalent baseband signal. Calculate the delay time of each system.
[0080] 変調部 723における各系統のデジタル遅延回路 706は、 GI付加回路 704により GI が付加された時間領域の信号を入力し、遅延時間調整回路 307— 8により算出され た遅延時間を入力し、遅延時間分だけ遅延させる。  Digital delay circuit 706 of each system in modulation section 723 receives the signal of the time domain to which GI is added by GI addition circuit 704, and inputs the delay time calculated by delay time adjustment circuit 307-8. , Delay by the delay time.
[0081] セグメント配置回路 705は、デジタル遅延回路 706により遅延させた信号を入力し、 1つの等価ベースバンド信号に連結する際に配置されるセグメントへの周波数変換を 行う。 The segment placement circuit 705 receives the signal delayed by the digital delay circuit 706, and It performs frequency conversion to the segment placed when linking to one equivalent baseband signal.
[0082] 加算回路 400は、 N系統のデジタル処理部 313によりデジタル処理されたワンセグ 部分の等価ベースバンド信号を入力し、 M系統の変調部 723により変調が施された 独自 TS信号の等価ベースバンド信号を入力し、これらの等価ベースバンド信号を加 算合成する。  Adder circuit 400 receives the equivalent baseband signal of the one-segment portion digitally processed by N series of digital processing unit 313, and the equivalent baseband of the unique TS signal modulated by M series of modulation unit 723. Signals are input, and these equivalent baseband signals are added and synthesized.
[0083] 以上のように、実施例 8による地上デジタル放送の再送信装置 8によれば、実施例 3と同様の効果を得ることができると共に、地上デジタルテレビジョン放送とは別に独 自に生成した TS信号を付加して、地上デジタルテレビジョン放送と共に送信すること ができる。  As described above, according to the terrestrial digital broadcast retransmitting apparatus 8 of the eighth embodiment, the same effect as that of the third embodiment can be obtained, and independently generated separately from the terrestrial digital television broadcasting. The added TS signal can be transmitted along with digital terrestrial television broadcasting.
[0084] また、各系統のワンセグ部分の信号及び独自 TS信号のシンボルタイミングを合わ せること力 Sできる。これにより、各等価ベースバンド信号のシンボル先頭位置を揃える ことができるため、加算回路 400において 1つの等価ベースバンド信号として連結し た際、シンボル同期のタイミングを揃えて送信することが可能となる。  In addition, it is possible to match the symbol timing of the signal of the one-segment portion of each channel and the unique TS signal S. Since this makes it possible to align the symbol head positions of the equivalent baseband signals, when combining as one equivalent baseband signal in the adder circuit 400, it is possible to align and transmit the symbol synchronization timing.
実施例 9  Example 9
[0085] 次に、実施例 9について説明する。この実施例 9は、実施例 4の手法を用いて、受 信する N波の地上デジタル放送における N個の部分受信部の信号と M個の独自 TS 信号とを、 1つのチャンネル内に連結して送信するものであり、特に、各系統の部分 受信部の信号及び独自 TS信号におけるシンボルタイミング及び SPパターンを合わ せて送信するものである。  Next, Example 9 will be described. This embodiment 9 uses the method of the embodiment 4 to connect signals of N partial receivers in M digital terrestrial broadcasting of N waves to be received and M unique TS signals into one channel. In particular, it transmits together the symbol timing and the SP pattern in the signal of the partial reception unit of each channel and the unique TS signal.
[0086] 図 13は、本発明の実施の形態による地上デジタル放送の再送信装置の構成(実 施例 9)を示すブロック図である。この再送信装置 9は、受信アンテナ部 100、 N個の チューナ一部 200、 N個のデジタル処理部 314、 M個の変調部 723、遅延時間調整 回路 307— 9、加算回路 400、再送信部 500、及び送信アンテナ部 600から構成さ れる。尚、変調部 723は M系統により構成され、それぞれの系統は同じ回路で構成さ れるので、以下、 1系統のみについて説明する。図 5に示した実施例 4の再送信装置 4とこの再送信装置 9とを比較すると、両装置共に、受信アンテナ部 100、チューナー 部 200、デジタル処理部 314、加算回路 400、再送信部 500及び送信アンテナ部 6 00を備えている点で同一である力 S、再送信装置 9は、 M個の変調部 723を備えてい る点、及び再送信装置 4の遅延時間調整回路 307— 4とは異なる構成の遅延時間調 整回路 307— 9を備えている点で相違する。また、図 12に示した実施例 8の再送信 装置 8とこの再送信装置 9とを比較すると、再送信装置 9は、再送信装置 8のデジタル 処理部 313及び遅延時間調整回路 307— 8とは異なる構成のデジタル処理部 314 及び遅延時間調整回路 307— 9を備えている点で相違する。以下、図 13において、 図 7と共通する部分には図 7と同一の符号を付し、その詳しい説明は省略する。また 、変調部 723の OFDM変調回路 701、 OFDMフレーム化処理回路 702及び逆フー リエ変換回路 703は、図 12に示した再送信装置 8の変調部 723のものと同一である ので、その詳しい説明は省略する。 FIG. 13 is a block diagram showing a configuration (example 9) of a terrestrial digital broadcast re-transmission apparatus according to an embodiment of the present invention. This retransmission apparatus 9 includes a reception antenna unit 100, N tuner parts 200, N digital processing units 314, M modulation units 723, delay time adjustment circuit 307-9, adder circuit 400, retransmission unit And 500, and a transmitting antenna unit 600. The modulation unit 723 is configured by M systems, and since each system is configured by the same circuit, only one system will be described below. Comparing the retransmission apparatus 4 of the fourth embodiment shown in FIG. 5 with the retransmission apparatus 9, the reception antenna unit 100, the tuner unit 200, the digital processing unit 314, the adder circuit 400, and the retransmission unit 500 in both devices. And transmitting antenna unit 6 00, the same force S as in the point of having 00, the point that the retransmission device 9 has M modulation parts 723 and the delay time adjustment circuit 307-4 of the retransmission device 4 is different from the delay time adjustment circuit 307-4. The difference is that the time adjustment circuit 307-9 is provided. Further, when comparing the retransmission apparatus 8 of the eighth embodiment shown in FIG. 12 with the retransmission apparatus 9, the retransmission apparatus 9 corresponds to the digital processing unit 313 of the retransmission apparatus 8 and the delay time adjustment circuit 307-8. Are different in that they have digital processing units 314 and delay time adjustment circuits 307-9 of different configurations. Hereinafter, in FIG. 13, the same parts as in FIG. 7 will be assigned the same reference numerals as in FIG. 7, and detailed descriptions thereof will be omitted. Also, since the OFDM modulation circuit 701, the OFDM framing processing circuit 702 and the inverse Fourier transform circuit 703 of the modulation section 723 are the same as those of the modulation section 723 of the retransmission apparatus 8 shown in FIG. Is omitted.
[0087] 変調部 723の GI付加回路 704は、逆フーリエ変換回路 703により逆フーリエ変換さ れた時間領域の信号を入力し、予め設定された GI比に応じて GIの付加を行う。また 、シンボルの先頭位置情報及び SPパターン情報を遅延時間調整回路 307— 9に出 力する。 The GI addition circuit 704 of the modulation unit 723 receives the time domain signal inverse-Fourier-transformed by the inverse Fourier transform circuit 703, and performs GI addition in accordance with a preset GI ratio. Also, the start position information of the symbol and the SP pattern information are output to the delay time adjustment circuit 307-9.
[0088] 遅延時間調整回路 307— 9は、各系統のデジタル処理部 314— ;!〜 Nからシンポ ルの先頭位置情報及び SPパターン情報をそれぞれ入力し、各系統の変調部 723— ;!〜 Mの GI付加回路 704からシンボルの先頭位置情報及び SPパターン情報をそれ ぞれ入力し、いずれかの等価ベースバンド信号の受信タイミングを基準にして、各系 統の等価ベースバンド信号のシンボル先頭タイミング及び SPパターンが一致するよ うに、各系統の遅延時間を算出する。  The delay time adjustment circuit 307-9 receives the head position information and the SP pattern information of the symbol from the digital processing unit 314 of each system, respectively, and receives the modulation pattern 723 of each system. The head position information and the SP pattern information of the symbol are input from the GI addition circuit 704 of M, respectively, and the symbol head timing of the equivalent baseband signal of each system based on the reception timing of one of the equivalent baseband signals. And the delay time of each system is calculated so that the SP pattern matches.
[0089] 変調部 723における各系統のデジタル遅延回路 706は、 GI付加回路 704により GI が付加された時間領域の信号を入力し、遅延時間調整回路 307— 9により算出され た遅延時間を入力し、遅延時間分だけ遅延させる。  Digital delay circuit 706 of each system in modulation section 723 receives the signal of the time domain to which GI is added by GI addition circuit 704, and inputs the delay time calculated by delay time adjustment circuit 307-9. , Delay by the delay time.
[0090] セグメント配置回路 705は、デジタル遅延回路 706により遅延させた信号を入力し、  The segment placement circuit 705 receives the signal delayed by the digital delay circuit 706, and
1つの等価ベースバンド信号に連結する際に配置されるセグメントへの周波数変換を 行う。  It performs frequency conversion to the segment placed when linking to one equivalent baseband signal.
[0091] 加算回路 400は、 N系統のデジタル処理部 314によりデジタル処理されたワンセグ 部分の等価ベースバンド信号を入力し、 M系統の変調部 723により変調が施された 独自 TS信号の等価ベースバンド信号を入力し、これらの等価ベースバンド信号を加 算合成する。 [0091] Adder circuit 400 receives the equivalent baseband signal of the one-segment portion digitally processed by digital processing unit 314 of N channels, and is modulated by modulation unit 723 of M channels. The equivalent baseband signal of the original TS signal is input, and these equivalent baseband signals are added and synthesized.
[0092] 以上のように、実施例 9による地上デジタル放送の再送信装置 9によれば、実施例  As described above, according to the terrestrial digital broadcast re-transmission apparatus 9 of the ninth embodiment,
4と同様の効果を得ることができると共に、地上デジタルテレビジョン放送とは別に独 自に生成した TS信号を付加して、地上デジタルテレビジョン放送と共に送信すること ができる。  The same effect as in (4) can be obtained, and a TS signal independently generated separately from digital terrestrial television broadcasting can be added and transmitted together with digital terrestrial television broadcasting.
[0093] また、各系統のワンセグ部分の信号及び独自 TS信号のシンボルタイミング及び SP パターンを合わせることができる。これにより、各等価ベースバンド信号のシンボル先 頭位置及び SPパターンを揃えることができるため、加算回路 400において 1つの等 価ベースバンド信号として連結した際、シンボル同期のタイミングを揃えると共に SP ノ ターンを揃えて送信することが可能となる。  In addition, it is possible to match the symbol timing and the SP pattern of the signal of the one segment part of each channel and the unique TS signal. This makes it possible to align the symbol head position and the SP pattern of each equivalent baseband signal, and therefore, when concatenating as one equivalent baseband signal in the adder circuit 400, the symbol synchronization timing is aligned and the SP pattern is adjusted. It becomes possible to arrange and transmit.
実施例 10  Example 10
[0094] 次に、実施例 10について説明する。この実施例 10は、実施例 5の手法を用いて、 受信する N波の地上デジタル放送における N個の部分受信部の信号と M個の独自 TS信号とを、 1つのチャンネル内に連結して送信するものであり、特に、各系統の部 分受信部の信号及び独自 TS信号におけるフレーム先頭位置を合わせて送信するも のである。  Next, Example 10 will be described. In this embodiment 10, using the method of the embodiment 5, signals of N partial receivers in received N digital terrestrial digital broadcasting and M unique TS signals are connected in one channel. The transmission is performed, in particular, by matching the start position of the frame in the signal of the partial reception unit of each channel and the unique TS signal.
[0095] 図 14は、本発明の実施の形態による地上デジタル放送の再送信装置の構成(実 施例 10)を示すブロック図である。この再送信装置 10は、受信アンテナ部 100、 N個 のチューナ一部 200、 N個のデジタル処理部 315、 M個の変調部 723、遅延時間調 整回路 307— 10、加算回路 400、再送信部 500、及び送信アンテナ部 600から構 成される。尚、変調部 723は M系統により構成され、それぞれの系統は同じ回路で構 成されるので、以下、 1系統のみについて説明する。図 9に示した実施例 5の再送信 装置 5とこの再送信装置 10とを比較すると、両装置共に、受信アンテナ部 100、チュ ーナ一部 200、デジタル処理部 315、加算回路 400、再送信部 500及び送信アンテ ナ部 600を備えている点で同一である力 再送信装置 10は、 M個の変調部 723を備 えている点、及び再送信装置 5の遅延時間調整回路 307— 5とは異なる構成の遅延 時間調整回路 307— 10を備えている点で相違する。また、図 13に示した実施例 9の 再送信装置 9とこの再送信装置 10とを比較すると、再送信装置 10は、再送信装置 9 のデジタル処理部 314及び遅延時間調整回路 307— 9とは異なる構成のデジタル処 理部 315及び遅延時間調整回路 307— 10を備えている点で相違する。以下、図 14 において、図 9と共通する部分には図 9と同一の符号を付し、その詳しい説明は省略 する。また、変調部 723の OFDM変調回路 701、 OFDMフレーム化処理回路 702 及び逆フーリエ変換回路 703は、図 13に示した再送信装置 9の変調部 723のものと 同一であるので、その詳しい説明は省略する。 FIG. 14 is a block diagram showing a configuration (example 10) of the terrestrial digital broadcast re-transmission apparatus according to the embodiment of the present invention. The retransmission apparatus 10 includes a reception antenna unit 100, N tuner parts 200, N digital processing units 315, M modulation units 723, delay time adjustment circuit 307-10, adder circuit 400, retransmission It comprises a section 500 and a transmitting antenna section 600. The modulation unit 723 is configured by M systems, and since each system is configured by the same circuit, only one system will be described below. Comparing the retransmission apparatus 5 of the fifth embodiment shown in FIG. 9 with this retransmission apparatus 10, the receiving antenna unit 100, the tuner part 200, the digital processing unit 315, the adder circuit 400, The force retransmitting apparatus 10 which is identical in that the transmitting section 500 and the transmitting antenna section 600 are provided includes M modulation sections 723 and a delay time adjusting circuit 307-5 of the retransmitting apparatus 5. And a delay time adjustment circuit 307-10 having a different configuration. Also, in the ninth embodiment shown in FIG. Comparing the retransmission device 9 with the retransmission device 10, the retransmission device 10 is different from the digital processing unit 314 of the retransmission device 9 and the digital processing unit 315 and the delay of the delay time adjustment circuit 307-9. The difference is that the time adjustment circuit 307-10 is provided. Hereinafter, in FIG. 14, the same parts as in FIG. 9 will be assigned the same reference numerals as in FIG. 9, and detailed descriptions thereof will be omitted. Also, since the OFDM modulation circuit 701, the OFDM framing processing circuit 702 and the inverse Fourier transform circuit 703 of the modulation section 723 are the same as those of the modulation section 723 of the retransmission apparatus 9 shown in FIG. I omit it.
[0096] 変調部 723の GI付加回路 704は、逆フーリエ変換回路 703により逆フーリエ変換さ れた時間領域の信号を入力し、予め設定された GI比に応じて GIの付加を行う。また 、フレームの先頭位置情報を遅延時間調整回路 307— 10に出力する。  The GI addition circuit 704 of the modulation unit 723 receives the time domain signal that has been inverse Fourier transformed by the inverse Fourier transformation circuit 703, and performs GI addition in accordance with a preset GI ratio. Also, the head position information of the frame is output to the delay time adjustment circuit 307-10.
[0097] 遅延時間調整回路 307— 10は、各系統のデジタル処理部 315— ;!〜 Nからフレー ムの先頭位置情報をそれぞれ入力し、各系統の変調部 723— ;!〜 Mの GI付加回路 704からフレームの先頭位置情報をそれぞれ入力し、いずれかの等価ベースバンド 信号の受信タイミングを基準にして、各系統の等価ベースバンド信号のフレーム先頭 タイミングが一致するように、各系統の遅延時間を算出する。  [0097] The delay time adjustment circuit 307-10 receives the head position information of the frame from the digital processing units 315 to! N of each system, and adds GI of the modulation units 723 to! The delay time of each system is input so that the frame start timings of equivalent baseband signals of the respective systems coincide with each other by inputting the head position information of the frame from the circuit 704 and referring to the reception timing of any equivalent baseband signal. Calculate
[0098] 変調部 723における各系統のデジタル遅延回路 706は、 GI付加回路 704により GI が付加された時間領域の信号を入力し、遅延時間調整回路 307— 10により算出さ れた遅延時間を入力し、遅延時間分だけ遅延させる。  Digital delay circuit 706 of each system in modulation section 723 receives the signal of the time domain to which GI is added by GI addition circuit 704, and inputs the delay time calculated by delay time adjustment circuit 307-10. And delay by the delay time.
[0099] セグメント配置回路 705は、デジタル遅延回路 706により遅延させた信号を入力し、  The segment placement circuit 705 receives the signal delayed by the digital delay circuit 706, and
1つの等価ベースバンド信号に連結する際に配置されるセグメントへの周波数変換を 行う。  It performs frequency conversion to the segment placed when linking to one equivalent baseband signal.
[0100] 加算回路 400は、 N系統のデジタル処理部 315によりデジタル処理されたワンセグ 部分の等価ベースバンド信号を入力し、 M系統の変調部 723により変調が施された 独自 TS信号の等価ベースバンド信号を入力し、これらの等価ベースバンド信号を加 算合成する。  [0100] Adder circuit 400 receives the equivalent baseband signal of the one-segment portion digitally processed by digital processing unit 315 of N channels, and the equivalent baseband of the unique TS signal modulated by modulation unit 723 of M channels. Signals are input, and these equivalent baseband signals are added and synthesized.
[0101] 以上のように、実施例 10による地上デジタル放送の再送信装置 10によれば、実施 例 5と同様の効果を得ることができると共に、地上デジタルテレビジョン放送とは別に 独自に生成した TS信号を付加して、地上デジタルテレビジョン放送と共に送信する こと力 Sでさる。 As described above, according to the terrestrial digital broadcast retransmitter 10 of the tenth embodiment, the same effect as that of the fifth embodiment can be obtained, and it is uniquely generated separately from the terrestrial digital television broadcast. Add TS signal and transmit along with digital terrestrial television broadcasting That power S.
[0102] また、各系統のワンセグ部分の信号及び独自 TS信号のフレーム先頭位置を合わ せること力 Sできる。これにより、各等価ベースバンド信号のフレーム先頭位置を揃える ことができるため、加算回路 400において 1つの等価ベースバンド信号として連結し た際、フレーム同期のタイミングを揃えると共に、シンボル同期のタイミング及び SPパ ターンも揃えて再送信することが可能となる。  In addition, it is possible to match the positions of the frame start positions of the signal of the one segment part of each system and the unique TS signal. This makes it possible to align the frame start positions of the equivalent baseband signals, and therefore, when concatenating as one equivalent baseband signal in the adder circuit 400, the timing of frame synchronization is aligned, and the timing of symbol synchronization and SP It will be possible to re-send the turns as well.
[0103] 以上、実施例を挙げて本発明を説明したが、本発明は前記実施例に限定されるも のではなぐその技術思想を逸脱しない範囲で種々変形可能である。例えば、前記 実施例では、受信アンテナ部 100が 1つのアンテナにより構成されているが、必ずし も 1つである必要はなぐ複数のアンテナにより構成されるようにしてもよい。この場合 、各チューナ一部 200は、複数のアンテナのうちのいずれか一つのアンテナにより受 信した地上デジタル放送を入力する。  The present invention has been described above with reference to examples, but the present invention can be variously modified without departing from the technical concept of the present invention, which is not limited to the examples. For example, in the embodiment described above, the receiving antenna unit 100 is constituted by one antenna, but it may be constituted by a plurality of antennas which necessarily need to be one. In this case, each tuner part 200 inputs terrestrial digital broadcast received by any one of a plurality of antennas.
[0104] また、前記実施例では、チューナ一部 200の受信変換回路 201が、中間周波数に よる受信方式として、入力信号を中間周波数に変換し SAWフィルタを通過させた後 、低周波数に再度周波数変換するようにした力 これに限定されるものではない。例 えば、入力信号を 0. 5〜; 1. 0MHz程度の低中間周波数信号に直接変換する Low IF (低中間周波数)方式、入力信号を一度高い周波数 (例えば 2GHz)に変換して SAWフィルタを通過させた後、低い周波数(例えば 1MHz)に変換するダブル'コン バージョン (二重変換)方式、入力信号を等価ベースバンド信号に直接変換するダイ レクト ·コンバージョン(直接変換)方式を用いるようにしてもよい。尚、中間周波数によ る受信方式の詳細については、 "羽鳥光俊監修、「1セグ放送教科書」、株式会社ィ ンプレス R&D発行"を参照された!/、。  Further, in the above embodiment, the reception conversion circuit 201 of the tuner part 200 converts the input signal into an intermediate frequency and passes through the SAW filter as a reception method by an intermediate frequency, and then the frequency is changed to a low frequency again. Force to convert is not limited to this. For example, Low IF (Low Intermediate Frequency) method, which directly converts an input signal to a low intermediate frequency signal of 0.5 to 0.5 MHz; converts the input signal to a high frequency (for example, 2 GHz), and converts the SAW filter into one. After passing, it uses a double 'conversion (double conversion) method to convert to a low frequency (for example 1 MHz) and a direct conversion method to convert the input signal directly to an equivalent baseband signal. It is also good. For details on the reception method using the intermediate frequency, see “Study of Hatori Mitsutoshi,“ 1Seg Broadcast Textbook ”, Press R & D, Inc. issued!”.
[0105] また、上記実施例では、地上デジタル放送を対象としたが、地上デジタル音声放送 につ!/、ても適用すること力 Sできる。 Further, in the above embodiment, although terrestrial digital broadcasting is targeted, it is also possible to apply S / S to terrestrial digital audio broadcasting.

Claims

請求の範囲  The scope of the claims
複数のセグメントにより構成される地上デジタル放送を複数波受信し、これらの地上 デジタル放送波から一つのセグメントをそれぞれ抜き出し、この抜き出したセグメント を連結して地上デジタル放送波として再送信する地上デジタル放送の再送信装置に おいて、  Terrestrial digital broadcasting that receives a plurality of terrestrial digital broadcasts composed of a plurality of segments, extracts one segment from each of these terrestrial digital broadcast waves, connects the extracted segments, and retransmits them as a terrestrial digital broadcast wave. In the retransmitter,
複数のチューナ一部、前記チューナ一部にそれぞれ対応した複数のデジタル処理 部、加算部、及び再送信部を備え、  A plurality of tuners, a plurality of digital processing units respectively corresponding to the tuners, an adder, and a retransmission unit;
前記チューナ一部は、  The tuner part is
前記受信した地上デジタル放送の複数波のうちの一つの放送波を選択し、この放 送波の RF帯の信号を IF帯の信号に変換する受信変換手段と、  Reception conversion means for selecting one of the plurality of received terrestrial digital broadcast waves and converting the RF band signal of this broadcast wave into an IF band signal;
前記受信変換手段により変換された IF信号をデジタル IF信号に変換する AD変換 手段と、  AD conversion means for converting the IF signal converted by the reception conversion means into a digital IF signal;
前記 AD変換手段により変換されたデジタル IF信号に直交復調を施し、等価べ一 スバンド信号を出力する直交復調手段とを有し、  Quadrature demodulation means for performing quadrature demodulation on the digital IF signal converted by the AD conversion means, and outputting an equivalent baseband signal;
前記デジタル処理部は、  The digital processing unit
前記チューナ一部の直交復調手段により出力された等価ベースバンド信号から一 つのセグメントを抜き出すフィルタ手段と、  Filter means for extracting one segment from the equivalent baseband signal output by the quadrature demodulation means of the tuner part;
前記フィルタ手段により抜き出された一つのセグメントの等価ベースバンド信号を、 複数のセグメントを連結するための位置に周波数変換するセグメント配置手段とを有 し、  And segment arranging means for frequency converting the equivalent baseband signal of one segment extracted by the filter means to a position for connecting a plurality of segments,
前記加算部は、  The adding unit is
前記複数のデジタル処理部のセグメント配置手段により周波数変換されたそれぞ れの 1つのセグメントの等価ベースバンド信号を加算合成する手段を有し、  And a unit for adding and combining the equivalent baseband signals of each one of the segments frequency-converted by the segment arrangement unit of the plurality of digital processing units,
前記再送信部は、  The retransmission unit is
前記加算部により加算合成された等価ベースバンド信号に直交変調を施し、デジ タル IF信号を出力する直交変調手段と、  Quadrature modulation means for performing quadrature modulation on the equivalent baseband signal added and synthesized by the addition section and outputting a digital IF signal;
前記直交変調手段により出力されたデジタル IF信号をアナログ IF信号に変換する DA変換手段と、 前記 DA変換手段により変換されたアナログ IF信号を、地上デジタル放送波として 再送信するための RF帯の信号に変換し、該変換した信号を増幅する送信変換手段 とを有することを特徴とする再送信装置。 DA conversion means for converting the digital IF signal output by the quadrature modulation means into an analog IF signal; And transmitting and converting means for converting the analog IF signal converted by the D / A converting means into an RF band signal for retransmitting as a terrestrial digital broadcast wave, and amplifying the converted signal. Transmitter.
[2] 請求項 1に記載の地上デジタル放送の再送信装置にお!/、て、 [2] In the terrestrial digital broadcast retransmitting apparatus according to claim 1,!
前記デジタル処理部は、  The digital processing unit
前記チューナ一部の直交復調手段により出力された等価ベースバンド信号から一 つのセグメントを抜き出すフィルタ手段と、  Filter means for extracting one segment from the equivalent baseband signal output by the quadrature demodulation means of the tuner part;
前記フィルタ手段により抜き出された一つのセグメントの等価ベースバンド信号につ V、て、シンボル同期のためのシンボルタイミング及び周波数誤差量を検出するシンポ ル同期検出手段と、  Symbol synchronization detection means for detecting a symbol timing for symbol synchronization and a frequency error amount for the equivalent baseband signal of one segment extracted by the filter means;
前記フィルタ手段により抜き出された一つのセグメントの等価ベースバンド信号と、 前記シンボル同期検出手段により検出された周波数誤差量とを用いて周波数誤差を 補正する周波数誤差補正手段と、  Frequency error correction means for correcting a frequency error using the equivalent baseband signal of one segment extracted by the filter means and the frequency error amount detected by the symbol synchronization detection means;
前記周波数誤差補正手段により補正された 1セグメントの等価ベースバンド信号と、 前記シンボル同期検出手段により検出されたシンボルタイミングとを用いて、前記等 価ベースバンド信号から 1シンボル長を抜き出し、抜き出した 1シンボル長の両端から ガードインターバル長の半分のそれぞれの位置を第 1及び第 2の位置とし、前記両端 力、らガードインターバル長のそれぞれの位置を第 3及び第 4の位置とした場合に、第 1の位置から第 3の位置までの間の信号及び第 2の位置から第 4の位置までの間の 信号を新たなガードインターバルとして付け換えるガードインターバル付け換え手段 と、  One symbol length is extracted from the equivalent baseband signal using the equivalent baseband signal of one segment corrected by the frequency error correction means and the symbol timing detected by the symbol synchronization detection means 1 From the both ends of the symbol length When the positions of half of the guard interval length are the first and second positions and the positions of the both ends force and the guard interval length are the third and fourth positions, Guard interval changing means for changing a signal between the first position and the third position and a signal between the second position and the fourth position as a new guard interval;
前記ガードインターバル付け換え手段によりガードインターバルが付け換えられた 1 セグメントの等価ベースバンド信号を、複数のセグメントを連結するための位置に周 波数変換するセグメント配置手段とを有することを特徴とする再送信装置。  And segment arranging means for frequency converting the equivalent baseband signal of one segment whose guard interval has been changed by the guard interval changing means to a position for connecting a plurality of segments. apparatus.
[3] 請求項 1に記載の地上デジタル放送の再送信装置にお!/、て、 [3] In the terrestrial digital broadcast retransmitting apparatus according to claim 1,!
さらに、前記複数のデジタル処理部における等価ベースバンド信号に対し、タイミン グを合わせるための遅延時間を調整する遅延時間調整部を備え、  The digital signal processing apparatus further includes a delay time adjustment unit that adjusts a delay time for adjusting the timing of the equivalent baseband signals in the plurality of digital processing units.
前記デジタル処理部は、 前記チューナ一部の直交復調手段により出力された等価ベースバンド信号から一 つのセグメントを抜き出すフィルタ手段と、 The digital processing unit Filter means for extracting one segment from the equivalent baseband signal output by the quadrature demodulation means of the tuner part;
前記フィルタ手段により抜き出された一つのセグメントの等価ベースバンド信号につ V、て、シンボル同期のためのシンボルタイミング及び周波数誤差量を検出するシンポ ル同期検出手段と、  Symbol synchronization detection means for detecting a symbol timing for symbol synchronization and a frequency error amount for the equivalent baseband signal of one segment extracted by the filter means;
前記フィルタ手段により抜き出された一つのセグメントの等価ベースバンド信号と、 前記シンボル同期検出手段により検出された周波数誤差量とを用いて周波数誤差を 補正する周波数誤差補正手段と、  Frequency error correction means for correcting a frequency error using the equivalent baseband signal of one segment extracted by the filter means and the frequency error amount detected by the symbol synchronization detection means;
前記周波数誤差補正手段により補正された 1セグメントの等価ベースバンド信号と、 前記遅延時間調整部により調整された遅延時間とを用いて、前記 1セグメントの等価 ベースバンド信号を前記遅延時間だけ遅延させる遅延部と、  A delay for delaying the equivalent baseband signal of one segment by the delay time using the equivalent baseband signal of one segment corrected by the frequency error correction means and the delay time adjusted by the delay time adjustment unit. Department,
前記遅延部により遅延した 1セグメントの等価ベースバンド信号を、複数のセグメン トを連結するための位置に周波数変換するセグメント配置手段とを有し、  Segment arranging means for frequency-converting the equivalent baseband signal of one segment delayed by the delay unit to a position for connecting a plurality of segments;
前記遅延時間調整部は、  The delay time adjustment unit
前記複数のデジタル処理部のシンボル同期検出手段によりそれぞれ検出されたシ ンボルタイミングを用いて、前記デジタル処理部におけるそれぞれの等価ベースバン ド信号のタイミングに合わせるように、それぞれの遅延時間を算出する手段を有する ことを特徴とする再送信装置。  Means for calculating each delay time to match the timing of each equivalent baseband signal in the digital processing unit using the symbol timing detected by the symbol synchronization detection means of the plurality of digital processing units. Retransmission apparatus characterized by having.
請求項 1に記載の地上デジタル放送の再送信装置にお!/、て、  In the terrestrial digital broadcast retransmitting apparatus according to claim 1,!
さらに、前記複数のデジタル処理部におけるそれぞれの等価ベースバンド信号に 対し、タイミングを合わせるための遅延時間を調整する遅延時間調整部を備え、 前記デジタル処理部は、  The digital processing unit further includes a delay time adjustment unit that adjusts a delay time for adjusting timing with respect to each equivalent baseband signal in each of the plurality of digital processing units.
前記チューナ一部の直交復調手段により出力された等価ベースバンド信号から一 つのセグメントを抜き出すフィルタ手段と、  Filter means for extracting one segment from the equivalent baseband signal output by the quadrature demodulation means of the tuner part;
前記フィルタ手段により抜き出された一つのセグメントの等価ベースバンド信号につ V、て、シンボル同期のためのシンボルタイミング及び周波数誤差量を検出するシンポ ル同期検出手段と、  Symbol synchronization detection means for detecting a symbol timing for symbol synchronization and a frequency error amount for the equivalent baseband signal of one segment extracted by the filter means;
前記フィルタ手段により抜き出された一つのセグメントの等価ベースバンド信号と、 前記シンボル同期検出手段により検出された周波数誤差量とを用いて周波数誤差を 補正する周波数誤差補正手段と、 An equivalent baseband signal of one segment extracted by the filter means; Frequency error correction means for correcting a frequency error using the frequency error amount detected by the symbol synchronization detection means;
前記周波数誤差補正手段により補正された一つのセグメントの等価ベースバンド信 号につ!/、て、時間領域の信号から周波数領域の信号に変換する FFT手段と、 前記 FFT手段により変換された周波数領域の信号について、 SPパターンを検出 する SPパターン検出手段と、  The equivalent baseband signal of one segment corrected by the frequency error correction means! /, FFT means for converting the time domain signal to the frequency domain signal, and the frequency domain converted by the FFT means SP pattern detection means for detecting an SP pattern for
前記周波数誤差補正手段により補正された 1セグメントの等価ベースバンド信号と、 前記遅延時間調整部により調整された遅延時間とを用いて、前記 1セグメントの等価 ベースバンド信号を前記遅延時間だけ遅延させる遅延部と、  A delay for delaying the equivalent baseband signal of one segment by the delay time using the equivalent baseband signal of one segment corrected by the frequency error correction means and the delay time adjusted by the delay time adjustment unit. Department,
前記遅延部により遅延した 1セグメントの等価ベースバンド信号を、複数のセグメン トを連結するための位置に周波数変換するセグメント配置手段とを有し、  Segment arranging means for frequency-converting the equivalent baseband signal of one segment delayed by the delay unit to a position for connecting a plurality of segments;
前記遅延時間調整部は、  The delay time adjustment unit
前記複数のデジタル処理部のシンボル同期検出手段によりそれぞれ検出されたシ ンボルタイミングと、前記複数のデジタル処理部の SPパターン検出手段によりそれぞ れ検出された SPパターンとを用いて、前記デジタル処理部におけるそれぞれの等価 ベースバンド信号のシンボルタイミング及び SPパターンを合わせるように、それぞれ の遅延時間を算出する手段を有することを特徴とする再送信装置。  The digital processing unit using symbol timing detected by the symbol synchronization detection unit of the plurality of digital processing units and an SP pattern detected by SP pattern detection units of the plurality of digital processing units. A retransmission apparatus characterized by comprising means for calculating respective delay times so as to match symbol timings and SP patterns of respective equivalent baseband signals.
[5] 請求項 1に記載の地上デジタル放送の再送信装置にお!/、て、 [5] In the terrestrial digital broadcast re-transmission device according to claim 1,!
さらに、前記複数のデジタル処理部におけるそれぞれの等価ベースバンド信号に 対し、タイミングを合わせるための遅延時間を調整する遅延時間調整部を備え、 前記デジタル処理部は、  The digital processing unit further includes a delay time adjustment unit that adjusts a delay time for adjusting timing with respect to each equivalent baseband signal in each of the plurality of digital processing units.
前記チューナ一部の直交復調手段により出力された等価ベースバンド信号から一 つのセグメントを抜き出すフィルタ手段と、  Filter means for extracting one segment from the equivalent baseband signal output by the quadrature demodulation means of the tuner part;
前記フィルタ手段により抜き出された一つのセグメントの等価ベースバンド信号につ V、て、シンボル同期のためのシンボルタイミング及び周波数誤差量を検出するシンポ ル同期検出手段と、  Symbol synchronization detection means for detecting a symbol timing for symbol synchronization and a frequency error amount for the equivalent baseband signal of one segment extracted by the filter means;
前記フィルタ手段により抜き出された一つのセグメントの等価ベースバンド信号と、 前記シンボル同期検出手段により検出された周波数誤差量とを用いて周波数誤差を 補正する周波数誤差補正手段と、 The frequency error is calculated using the equivalent baseband signal of one segment extracted by the filter means and the frequency error amount detected by the symbol synchronization detection means. Frequency error correction means for correcting;
前記周波数誤差補正手段により補正された一つのセグメントの等価ベースバンド信 号につ!/、て、この時間領域の信号から周波数領域の信号に変換する FFT手段と、 前記 FFT手段により変換された周波数領域の信号についての TMCC信号を用い て、フレーム同期のためのフレームタイミングを検出するフレーム同期検出手段と、 前記周波数誤差補正手段により補正された 1セグメントの等価ベースバンド信号と、 前記遅延時間調整部により調整された遅延時間とを用いて、前記 1セグメントの等価 ベースバンド信号を前記遅延時間だけ遅延させる遅延部と、  The equivalent baseband signal of one segment corrected by the frequency error correction means! /, FFT means for converting the time domain signal to the frequency domain signal, and the frequency converted by the FFT means Frame synchronization detection means for detecting frame timing for frame synchronization using a TMCC signal for an area signal, an equivalent baseband signal of one segment corrected by the frequency error correction means, and the delay time adjustment unit A delay unit for delaying the equivalent baseband signal of the one segment by the delay time using the delay time adjusted by
前記遅延部により遅延した 1セグメントの等価ベースバンド信号を、複数のセグメン トを連結するための位置に周波数変換するセグメント配置手段とを有し、  Segment arranging means for frequency-converting the equivalent baseband signal of one segment delayed by the delay unit to a position for connecting a plurality of segments;
前記遅延時間調整部は、  The delay time adjustment unit
前記複数のデジタル処理部のシンボル同期検出手段によりそれぞれ検出されたシ ンボルタイミングと、前記複数のデジタル処理部のフレーム同期検出手段によりそれ ぞれ検出されたフレームタイミングとを用いて、前記デジタル処理部におけるそれぞ れの等価ベースバンド信号のフレームタイミングを合わせるように、それぞれの遅延 時間を算出する手段を有することを特徴とする再送信装置。  The digital processing unit using symbol timings detected by the symbol synchronization detection unit of the plurality of digital processing units and frame timings detected by the frame synchronization detection unit of the plurality of digital processing units. A re-transmission apparatus characterized by comprising means for calculating respective delay times so as to match frame timings of respective equivalent baseband signals.
請求項 1から 5までの!/、ずれか一項に記載の再送信装置にお!/、て、  The re-transmission device according to any one of claims 1 to 5!
さらに、複数の変調部を備え、  Furthermore, a plurality of modulation units are provided,
前記変調部は、  The modulation unit is
独自 TS信号を入力し、 OFDM変調を施す OFDM変調手段と、  OFDM modulation means that inputs original TS signal and performs OFDM modulation,
前記 OFDM変調手段により OFDM変調された信号に対し、 OFDMフレーム化を 施す OFDMフレーム化手段と、  OFDM framing means for applying OFDM framing to the signal OFDM-modulated by the OFDM modulation means;
前記 OFDMフレーム化手段により OFDMフレーム化された信号について、周波数 領域の信号から時間領域の信号に変換する逆フーリエ変換手段と、  Inverse Fourier transform means for converting a signal in the frequency domain into a signal in the time domain for the OFDM framed signal by the OFDM framing means;
前記逆フーリエ変換手段により変換された時間領域の信号に、ガードインターバル を付加するガードインターバル付加手段と、  Guard interval adding means for adding a guard interval to the time domain signal transformed by the inverse Fourier transform means;
前記ガードインターバル付加手段によりガードインターバルが付加された信号 (独 自 TS信号の等価ベースバンド信号)を、複数のセグメントを連結するための位置に 周波数変換するセグメント配置手段とを有し、 The signal to which the guard interval is added by the guard interval adding means (equivalent baseband signal of a unique TS signal) is placed at a position for connecting a plurality of segments. Segment arrangement means for frequency conversion;
前記加算部は、  The adding unit is
前記複数のデジタル処理部のセグメント配置手段により周波数変換されたそれぞ れの 1つのセグメントの等価ベースバンド信号と、前記複数の変調部のセグメント配置 手段により周波数変換されたそれぞれの独自 TS信号の等価ベースバンド信号とを 加算合成する手段を有することを特徴とする再送信装置。  Equivalent baseband signal of one segment of each of the frequency converted by the segment arrangement unit of the plurality of digital processing units, and equivalent of each unique TS signal of which frequency conversion is performed by the segment arrangement unit of the plurality of modulation units A retransmission apparatus characterized by comprising means for adding and synthesizing a baseband signal.
請求項 1から 6までの!/、ずれか一項に記載の再送信装置にお!/、て、  The retransmission device according to any one of claims 1 to 6 /!
前記デジタル処理部のフィルタ手段により抜き出される一つのセグメントを、携帯' 移動体向け放送の部分受信部のセグメントまたは地上デジタル音声放送のセグメン トとすることを特徴とする再送信装置。  A retransmission apparatus characterized in that one segment extracted by the filter means of the digital processing unit is a segment of a partial reception unit of a mobile broadcast for a mobile unit or a segment of terrestrial digital audio broadcasting.
PCT/JP2007/073513 2006-12-18 2007-12-05 Ground digital broadcast retransmission device WO2008075562A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
BRPI0717164A BRPI0717164B1 (en) 2006-12-18 2007-12-05 digital terrestrial broadcasting relay

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-340012 2006-12-18
JP2006340012A JP4425267B2 (en) 2006-12-18 2006-12-18 Digital terrestrial broadcast retransmission equipment

Publications (1)

Publication Number Publication Date
WO2008075562A1 true WO2008075562A1 (en) 2008-06-26

Family

ID=39536195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073513 WO2008075562A1 (en) 2006-12-18 2007-12-05 Ground digital broadcast retransmission device

Country Status (8)

Country Link
JP (1) JP4425267B2 (en)
AR (1) AR064378A1 (en)
BR (1) BRPI0717164B1 (en)
CL (1) CL2007003663A1 (en)
MY (1) MY146881A (en)
PE (1) PE20081091A1 (en)
SG (1) SG161284A1 (en)
WO (1) WO2008075562A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4939987B2 (en) * 2007-03-20 2012-05-30 株式会社東芝 Terrestrial digital broadcast apparatus and terrestrial digital broadcast retransmission method
JP4909231B2 (en) * 2007-10-03 2012-04-04 日本放送協会 Terrestrial digital broadcast wave receiver
EP2413599A1 (en) * 2009-03-27 2012-02-01 Sony Corporation Transmission device, transmission method, receiving device, and receiving method
US8180277B2 (en) * 2009-05-04 2012-05-15 Sudharshan Srinivasan Smartphone for interactive radio
JP5284500B2 (en) * 2011-03-16 2013-09-11 株式会社東芝 Linked transmission system and linked transmission method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264527A (en) * 2002-03-12 2003-09-19 Mega Chips Corp Device and method for detecting ofdm frequency error, and ofdm receiver
JP2006024992A (en) * 2004-07-06 2006-01-26 Matsushita Electric Ind Co Ltd Method and device of ofdm demodulation
WO2006011424A1 (en) * 2004-07-28 2006-02-02 Matsushita Electric Industrial Co., Ltd. Diversity type receiver apparatus and receiving method
JP2006041982A (en) * 2004-07-28 2006-02-09 Matsushita Electric Ind Co Ltd Receiving device, receiving method and receiving program using the receiving device and recording medium with the program stored therein
JP2006287672A (en) * 2005-04-01 2006-10-19 Seiko Epson Corp Ofdm demodulator and ofdm demodulating method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003264527A (en) * 2002-03-12 2003-09-19 Mega Chips Corp Device and method for detecting ofdm frequency error, and ofdm receiver
JP2006024992A (en) * 2004-07-06 2006-01-26 Matsushita Electric Ind Co Ltd Method and device of ofdm demodulation
WO2006011424A1 (en) * 2004-07-28 2006-02-02 Matsushita Electric Industrial Co., Ltd. Diversity type receiver apparatus and receiving method
JP2006041982A (en) * 2004-07-28 2006-02-09 Matsushita Electric Ind Co Ltd Receiving device, receiving method and receiving program using the receiving device and recording medium with the program stored therein
JP2006287672A (en) * 2005-04-01 2006-10-19 Seiko Epson Corp Ofdm demodulator and ofdm demodulating method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NARIKIYO Z. ET AL.: "1seg o Renketsu shite Saisoshin suru Hoho Oyobi Sono Gap-Filler Sochi", IEICE TECHNICAL REPORT, vol. 106, no. 350, 9 November 2006 (2006-11-09), pages 41 - 44 *

Also Published As

Publication number Publication date
AR064378A1 (en) 2009-04-01
CL2007003663A1 (en) 2008-07-11
BRPI0717164A2 (en) 2013-10-15
MY146881A (en) 2012-10-15
SG161284A1 (en) 2010-05-27
PE20081091A1 (en) 2008-08-15
BRPI0717164B1 (en) 2019-12-31
JP4425267B2 (en) 2010-03-03
JP2008153958A (en) 2008-07-03

Similar Documents

Publication Publication Date Title
CA2344117C (en) Method and system for tiered digital television terrestrial broadcasting services using multi-bit-stream frequency interleaved ofdm
US7317930B2 (en) Wireless transmission/reception system
JP4410652B2 (en) Digital broadcast signal retransmitter
US20030012305A1 (en) Adjusting a receiver
US8804866B2 (en) Digital broadcast receiving apparatus and digital broadcast receiving method
CN1860753A (en) Orthogonal frequency division multiplexing receiver
JP4409556B2 (en) Digital terrestrial broadcast signal retransmission device
WO2008075562A1 (en) Ground digital broadcast retransmission device
EP2179530A1 (en) Method and apparatus to jointly synchronize a legacy sdars signal with overlay modulation
JP4447051B2 (en) Digital terrestrial broadcast retransmission equipment
JP2000201130A (en) Two-frequency network system and its transmitter
CN1205580A (en) Diversity receiver unit of quadrature frequency allocation multiplex signals
JP4315012B2 (en) Wireless receiver
JP4356471B2 (en) Wireless camera device
JPWO2008111126A1 (en) Multi-Carrier communication device
KR100602255B1 (en) A orthogonal fequency division multiplexing system multiple using DVB-T and DAB
JP6061296B2 (en) Wireless transmitter, wireless receiver, wireless communication system, and wireless communication method
KR100525848B1 (en) Single Frequency Network System of Digital Television Transmission using Studio-Transmitter Link for an Analog Broadcasting
KR100710327B1 (en) Data structure and method for charged mobile-type broadcasting, and mobile-type broadcasting receiver
JP2022135189A (en) Communication device and communication method
KR100820826B1 (en) Broadcasting receiver and processing method
US20090175368A1 (en) Multiple Resolution Mode Orthogonal Frequency Division Multiplexing System and Method
JP2024020167A (en) Demodulator, receiver and demodulation method
JP2000244443A (en) Bst-ofdm signal generation and distribution device
KR20070024034A (en) Synchronizing system for ofdm repeater and synchronizing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07850137

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0717164

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090415