WO2008074322A2 - A bearing and method for transferring forces through a bearing of a wind turbine - Google Patents

A bearing and method for transferring forces through a bearing of a wind turbine Download PDF

Info

Publication number
WO2008074322A2
WO2008074322A2 PCT/DK2007/000545 DK2007000545W WO2008074322A2 WO 2008074322 A2 WO2008074322 A2 WO 2008074322A2 DK 2007000545 W DK2007000545 W DK 2007000545W WO 2008074322 A2 WO2008074322 A2 WO 2008074322A2
Authority
WO
WIPO (PCT)
Prior art keywords
rolling elements
bearing
row
wind turbine
rolling
Prior art date
Application number
PCT/DK2007/000545
Other languages
French (fr)
Other versions
WO2008074322A3 (en
Inventor
Jesper Lykkegaard Andersen
Original Assignee
Vestas Wind Systems A/S
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vestas Wind Systems A/S filed Critical Vestas Wind Systems A/S
Priority to DE602007008609T priority Critical patent/DE602007008609D1/en
Priority to EP07846415A priority patent/EP2094981B1/en
Priority to CN2007800466885A priority patent/CN101568735B/en
Priority to AT07846415T priority patent/ATE478267T1/en
Publication of WO2008074322A2 publication Critical patent/WO2008074322A2/en
Publication of WO2008074322A3 publication Critical patent/WO2008074322A3/en
Priority to US12/486,193 priority patent/US20090257697A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/51Cages for rollers or needles formed of unconnected members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/50Other types of ball or roller bearings
    • F16C19/505Other types of ball or roller bearings with the diameter of the rolling elements of one row differing from the diameter of those of another row
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/37Loose spacing bodies
    • F16C33/3706Loose spacing bodies with concave surfaces conforming to the shape of the rolling elements, e.g. the spacing bodies are in sliding contact with the rolling elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/50Bearings
    • F05B2240/52Axial thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/50Bearings
    • F05B2240/54Radial bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/40Movement of component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2250/00Geometry
    • F05B2250/40Movement of component
    • F05B2250/41Movement of component with one degree of freedom
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2300/00Application independent of particular apparatuses
    • F16C2300/10Application independent of particular apparatuses related to size
    • F16C2300/14Large applications, e.g. bearings having an inner diameter exceeding 500 mm
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to a bearing according to the preamble of claim 1, and a method for transferring forces through a bearing of a wind turbine.
  • the balls and/or rollers of the bearings carries loads applied to their supporting structures, comprising bearing rings, and provides low friction movement around the rotating axial axis of the bearing.
  • bearings have distinct load paths for the rolling elements and are capable of carrying simultaneous moments and radial and axial loads.
  • Hardened surfaces on inner and outer rings provide points of contact between stationary and moving elements of the bearing.
  • German patent application DE 195 10 182 Al discloses, for use in a wind turbine, a yaw roller bearing where rollers (fig. 3, item 7) are positioned in an 45 degree angle relative to the resulting axial forces.
  • German patent application DE 102 57 195 Al discloses a general purpose cross roller bearing, where one or more ball elements are inserted in the row of roller elements to adjust the gap between roller elements.
  • a disadvantage of the described bearings is that for large scale wind turbine bearings carrying great loads, inertia forces between adjacent roller elements results in increased deterioration of the bearing and a reduction of its lifetime. Further roller contact angles, which is not in the direction of the loading compromises the life expectancy. As an example the maximum moment on a modern 3 MW wind turbine is approximately 8,000 kNm.
  • the invention relates to a bearing with at least one row of rolling elements, where at least one of said at least one row of rolling elements comprise a plurality of first rolling elements adapted for substantially transferring axial forces, and a plurality of second rolling elements adapted for substantially transferring radial forces, wherein at least one of said at least one row of rolling elements comprises means for separating rolling elements, wherein said means for separating rolling elements comprises one or more cages for retaining said rolling elements, where said one or more cages comprise a pocket adapted for allowing the rolling element to be displaced in the longitudinal direction of said row of elements.
  • the rolling elements are separated and retained in a desired position in relation to adjacent rolling elements and in relation to the total construction of the bearing, and the pocket that allows the rolling element to be displaced in the longitudinal direction of said row of elements, thereby reducing friction of the bearing, in particular by relatively small angular movements of the bearing.
  • said first rolling elements have a rotational axis directed substantially perpendicular to the rotational axis of said bearing.
  • said second rolling elements have a rotational axis directed substantially in parallel to the rotational axis of said bearing.
  • said first rolling elements are different from said second rolling elements.
  • said bearing comprises at least two rows of rolling elements.
  • the rolling elements may have any arbitrary profile, however according to one aspect of the invention the rolling elements are substantially cylindrical rollers such as crowned rollers or ball rollers.
  • the bearing can be designed to transfer maximal load in desired directions and hereby utilizing maximal capacity of the bearing to specific purposes.
  • said rolling elements make contact with supporting structures such as bearing rings on raceways. It is herby ensured that the contact between rolling elements and supporting structures is on hardened structures designed to be able to handle the resulting moments and forces and designed to minimize wear and tear on said supporting structures.
  • the ratio between the number of said first rolling elements and the number of said second rolling elements is in the range from 1 :2 to 1:50, more preferred in the range from 1:5 to 1:20 such as 1:8.
  • the bearing can be designed to transfer the actual radial and axial forces acting on the bearing also taking into account the relationship in size between said forces.
  • Another aspect of the invention relates to a wind turbine comprising a bearing as outlined above.
  • the bearing is very suitable for heavy duty bearings for wind turbines, especially bearings which are often subjected to small angular movements.
  • said bearing is a pitch bearing for pitching one or more blades of said wind turbine in relation to a hub of said wind turbine.
  • the said pitch bearing can be designed to handle the forces acting on a wind turbine rotor blade to hub connection ensuring that the control of the pitch of the rotor blade can be done easily and accurate.
  • the bearing can be designed and optimized to specific operational parameters such as working range.
  • working range is meant the angle range at which said bearing is used e.g. a non-full rotational range such as 90 degrees.
  • pitch motions are often in the range of 20 degrees, and small corrections of the pitch angle, i.e. pitch motions of up to 5 degrees, are common.
  • said bearing is a yaw bearing for yawing a nacelle of said wind turbine in relation to a tower of said wind turbine.
  • longitudinal direction of said row of elements is meant the direction of rolling for the rolling elements i.e. the direction of its raceway.
  • a circular bearing that is a direction that is tangential to the periphery (circular arch) of the bearing.
  • the wider diameter of the pocket dj compared to the diameter of the rolling element d r allows a higher range of rolling motion for the rolling element before reaching the walls of said cage, instead of sliding due to different velocity of raceways for axial and radial rollers respectively.
  • the invention also relates to a method for transferring forces through a comprising the steps of providing the bearing with at least one row of rolling elements, where at least one of said at least one row of rolling elements comprises a plurality of first rolling elements adapted for substantially transferring axial forces, and a plurality of second rolling elements adapted for substantially transferring radial forces, further comprising the additional step of providing at least one of said at least one row of rolling elements with means for separating rolling elements, wherein said means for separating rolling elements comprises one or more cages for retaining said rolling elements, where said one or more cages comprise a pocket adapted for allowing the rolling element to be displaced in the longitudinal direction of said row of elements.
  • fig. 1 illustrates a large modern wind turbine including three wind turbine blades in the wind turbine rotor
  • fig. 2 illustrates schematically forces and moment acting on a wind turbine rotor blade pitch bearing
  • fig. 3 illustrates a part of a cross section of a pitch bearing comprising ball rollers as known in the art
  • fig. 4a illustrates schematically the principle of a conventional single row bearing comprising spacers
  • fig. 4b illustrates schematically the principle of a conventional single row bearing comprising a cage
  • fig. 5 illustrates a part of a cross section of a wind turbine pitch bearing comprising rollers as known in the art
  • fig. 6 illustrates schematically the principle of one embodiment of the invention as a crossed roller bearing comprising a combination of spacers and cages,
  • fig. 7a illustrates schematically the principle of a bearing according to one embodiment of the invention with a cage comprising a pocket
  • fig. 7b illustrates schematically the principle of another embodiment of the invention as a crossed roller bearing comprising a combination of spacers and cages comprising a pocket,
  • fig. 8 illustrates schematically the principle of a bearing according to another embodiment of the invention comprising two rows of crossed rollers comprising spacers and cages comprising a pocket, and
  • fig. 9 illustrates for one embodiment of the invention a bearing according to the invention.
  • Fig. 1 illustrates a modern wind turbine 1 with a tower 2 and a wind turbine nacelle 3 positioned on top of the tower.
  • the wind turbine rotor comprising at least one blade such as three wind turbine blades 5 as illustrated, is connected to the hub 4 through pitch mechanisms 6.
  • Each pitch mechanism includes a blade bearing and individual pitch actuating means which allows the blade to pitch.
  • the pitch process is controlled by a pitch controller.
  • wind over a certain level will activate the rotor and allow it to rotate in a substantially perpendicular direction to the wind.
  • the rotation movement is converted to electric power which usually is supplied to the utility grid as will be known by skilled persons within the area.
  • Fig. 2 illustrates a front view of a wind turbine hub 4.
  • Wind turbine rotor blades 5 are connected to the hub 4 through a pitch mechanism 6 comprising pitch bearings that supports the rotor blades 5 to forces acting in both axial (longitudinal) and radial direction as well as to moments M as indicated on the figure.
  • Fig. 3 schematically illustrates parts of a cross section of one embodiment of a double row ball bearing as used in wind turbines 1 known in the art.
  • the bearing comprise a nose bearing ring 8, a split C-bearing ring 9 and two rows of ball rolling elements 10 managing bending moments and axial and radial forces.
  • the directions of the applied moment and forces are indicated by arrows on the figure.
  • bearing comprise through holes 11 for attachment to its supporting structures by attachment means such as screws, studs, bolts or rivets.
  • Fig. 4a illustrates schematically the principle of spacers 12 used in one embodiment of a conventional roller bearing.
  • Spacers 12 are located in between rolling elements 13 and are formed as to substantially fit the shape of its adjacent rolling elements.
  • rolling elements 13 are formed as crowned rollers i.e. rollers whose diameter is intentionally larger in the middle than at the ends. Crowning of the rolling elements is expected to reduce roller edge loading.
  • This type of roller bearings can support high loads. In many embodiments this type of bearings can be taken apart and can therefore be fitted and dismantled more easily.
  • Spacers 12 can be made of various wear well materials such as aluminum, brass, stainless steel, chrome steel, bronze, synthetic materials etc. and is used to separate and position the rolling elements 13 at substantially equal intervals around the bearing raceways 14 in order to maximize efficiency and minimize wear. Furthermore spacers 12 reduce vibratory impulses which might be imposed by the surfaces of the races.
  • Fig. 4b illustrates schematically the principle of a cage 15 comprising rolling elements 13 used in one embodiment of a conventional roller bearing.
  • Cages 15 have the same purpose of separating and positioning as said spacers 12 and can be made of the same said materials.
  • Fig. 5 illustrates schematically parts of cross sections of one embodiment of a 3-row roller pitch bearing 16 as used in wind turbines 1 known in the art.
  • the bearing comprise a nose bearing ring 8, a split C-bearing ring 9, rows of rolling elements managing axial forces 17 and rows of rolling elements managing radial forces 18 and where axial and radial rolling elements are positioned substantially perpendicular to each other.
  • Rolling elements 17, 18 are comprised in cages 15.
  • Bearing raceways 14 on nose bearing ring 8 and C-bearing rings 9 ensure that wear and tear from the contact between rolling elements 17, 18 and bearing rings 8, 9 is minimized resulting in a prolonged lifetime for the bearing.
  • the opposite lay-out is equally possible, i.e. the nose bearing ring / C-bearing rings can be used both as outer ring and inner ring.
  • bearing comprise through holes 11 for attachment of its supporting structures by attachment means such as screws, studs, bolts or rivets.
  • Fig. 6 illustrates for one embodiment of the invention the principle of a cross roller bearing 16 where a single row of rolling elements comprise rolling elements that manage axial forces 17 and rolling elements that manage radial forces 18 in combination.
  • a number of rolling elements are exchanged by substantially perpendicular positioned radial rolling elements 18.
  • Spacers 12 between two axial rolling elements 17 is not modified and has a similar form compared to a conventional bearing
  • a special formed cage 15 supporting one or more rolling elements 18 is formed as to fit the shapes of its adjacent rolling elements 17.
  • spacers 12 and/or cages 15 are used to separate and position some or all rolling elements 17, 18.
  • every second rolling element is an axial rolling element 17 and every other second rolling element is a radial rolling element 18 i.e. the ratio between the number of rolling elements managing axial forces 17 and the number of rolling elements managing radial forces 18 is 1:1.
  • the ratios between the number of rolling elements managing axial forces and the number of rolling elements managing radial forces are more than 1:1, preferred in the range from 1:2 to 1:50, more preferred in the range from 1:5 to 1:20 such as 1:8 i.e. the number of axial rolling elements 17 is greater than the number of radial rolling elements 18.
  • said ratio is determined depending on demands to loadings, moments and deflections in axial and radial direction respectively that the bearing must be able to manage.
  • the velocity of the center of the radial rolling elements 18 may be different than the velocity of the center of the axial rolling elements 16 e.g. due to different length in raceways 14. As the radial rolling elements are held in position by cages this may result in a partly sliding instead of rolling motion for said radial rolling elements.
  • Fig. 7a and fig. 7b illustrates for another embodiment of the invention the principal construction of one row of a bearing comprising axial rolling elements 17 separated by spacers 12 and cages 15 comprising radial rolling elements 18.
  • Fig. 7a illustrates a frontal view of one cage 15 comprising one radial rolling element 18 and where the cage 15 is constructed in a way that it includes a pocket 19 i.e. room for free play for the radial roller 18 in the direction of movement as indicated by arrows.
  • the diameter d; of the pocket 19 in the cage 15 is wider than the diameter d r of the radial rolling element 18.
  • the wider diameter of dj compared to d r enables a higher degree of rolling motion for the radial rolling element 18 instead of sliding due to the velocity of the center of the radial rolling elements 18 may be different than the velocity of the center of the axial rolling elements 16 e.g. due to different length in raceways 14.
  • the bearing may be a pitch bearing having a diameter of 1 m to 5 m. With a pitch bearing diameter of 2 m, a pitch motion of e.g.
  • Fig. 7b illustrates part of one row of a bearing comprising axial rolling elements 17, spacers 12 separating said axial rolling elements 17, and radial rolling elements 18 comprised in cages 15 comprising pockets 19 enabling free move for the radial rolling element 18.
  • Fig. 8 illustrates parts of a cross section of a pitch bearing according to one embodiment of the invention.
  • the bearing comprises a nose bearing ring 8, a split C-bearing ring 9 and rows of rolling elements 17, 18 managing both axial and radial forces together with spacers 12 and cages 15, where said axial and radial rolling elements 17, 18 are positioned substantially perpendicular to each other.
  • the ratio between the number of axial and radial rolling elements 17, 18 can be e.g. in the range between 1 :1 to 1:100, preferred in the range from 1:2 to 1:50, more preferred in the range from 1 :5 to 1:20 such as 1:8 i.e. the number of axial rolling elements 17 is greater than the number of radial rolling elements 18.
  • bearing comprise through holes 11 for attachment on its supporting structures by attachment means such as screws, studs, bolts or rivets.
  • bearing raceways 14 on nose and C-bearing rings 8, 9 ensure that wear and tear from the contact between rolling elements 17, 18 and bearing rings 8, 9 is minimized.
  • Fig. 9 illustrates schematically one embodiment of the invention where a row of rolling elements 13 comprises both axial and radial rolling elements 17, 18 and is forming a full 360 degree circle.
  • the ratio between the number of axial and radial rolling elements 17, 18 is 1:4.
  • Rolling elements managing axial forces 18. Rolling elements managing radial forces

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Rolling Contact Bearings (AREA)
  • Wind Motors (AREA)
  • Mounting Of Bearings Or Others (AREA)

Abstract

The invention relates to a bearing with at least one row of rolling elements, where at least one of said at least one row of rolling elements comprise a plurality of first rolling elements adapted for substantially transferring axial forces, and a plurality of second rolling elements adapted for substantially transferring radial forces. To minimize friction, at least one of said at least one row of rolling elements comprises means for separating rolling elements, wherein said means for separating rolling elements comprises one or more cages for retaining said rolling elements, where said one or more cages comprise a pocket adapted for allowing the rolling element to be displaced in the longitudinal direction of said row of elements. The invention also relates to a method for transferring forces through a bearing of a wind turbine.

Description

A BEARING AND METHOD FOR TRANSFERRING FORCES THROUGH A BEARING OF A WIND TURBINE
Background of the invention The invention relates to a bearing according to the preamble of claim 1, and a method for transferring forces through a bearing of a wind turbine.
Description of the related art
In general, larger wind turbines use special configuration, four-point contact ball bearings or crossed roller bearings for applications throughout the wind turbine. This is the case for pitch and yaw bearings especially.
The balls and/or rollers of the bearings carries loads applied to their supporting structures, comprising bearing rings, and provides low friction movement around the rotating axial axis of the bearing.
The mentioned types of bearings have distinct load paths for the rolling elements and are capable of carrying simultaneous moments and radial and axial loads. Hardened surfaces on inner and outer rings provide points of contact between stationary and moving elements of the bearing.
German patent application DE 195 10 182 Al discloses, for use in a wind turbine, a yaw roller bearing where rollers (fig. 3, item 7) are positioned in an 45 degree angle relative to the resulting axial forces.
A disadvantage of the mentioned type of roller bearing is that, as pitch bearings primarily are influenced by axial loads, rollers positioned in a 45 degree angle are not loaded in their primarily direction and the load on each separate roller and on the bearing construction itself is therefore is increased. German patent application DE 102 57 195 Al discloses a general purpose cross roller bearing, where one or more ball elements are inserted in the row of roller elements to adjust the gap between roller elements.
A disadvantage of the described bearings is that for large scale wind turbine bearings carrying great loads, inertia forces between adjacent roller elements results in increased deterioration of the bearing and a reduction of its lifetime. Further roller contact angles, which is not in the direction of the loading compromises the life expectancy. As an example the maximum moment on a modern 3 MW wind turbine is approximately 8,000 kNm.
It is an object of the invention to provide technique without the above mentioned disadvantages and especially it is an object to simplify the construction of the bearings and hereby increase their operational reliability.
The invention
The invention relates to a bearing with at least one row of rolling elements, where at least one of said at least one row of rolling elements comprise a plurality of first rolling elements adapted for substantially transferring axial forces, and a plurality of second rolling elements adapted for substantially transferring radial forces, wherein at least one of said at least one row of rolling elements comprises means for separating rolling elements, wherein said means for separating rolling elements comprises one or more cages for retaining said rolling elements, where said one or more cages comprise a pocket adapted for allowing the rolling element to be displaced in the longitudinal direction of said row of elements.
Hereby it is achieved that the rolling elements are separated and retained in a desired position in relation to adjacent rolling elements and in relation to the total construction of the bearing, and the pocket that allows the rolling element to be displaced in the longitudinal direction of said row of elements, thereby reducing friction of the bearing, in particular by relatively small angular movements of the bearing. By using separate rolling elements for transferring axial and radial forces respectively in a bearing it is ensured that the bearing can be dimensioned properly in order to transfer forces acting on the bearing.
It is also ensured that said separate rolling elements of a bearing are substantially only transferring forces that it is designed to whereby wear and tear on the bearing is minimized.
Furthermore it is ensured that the number of rows of rolling elements can be minimized whereby the construction of the bearing is simplified and even further the production and installation costs can be reduced.
In another aspect of the invention said first rolling elements have a rotational axis directed substantially perpendicular to the rotational axis of said bearing. Hereby it is ensured that said first rolling elements are transferring moments and primarily axial forces acting on structures attached to the bearing and that the bearing can be designed to handle said moments and forces.
In another aspect of the invention said second rolling elements have a rotational axis directed substantially in parallel to the rotational axis of said bearing. Hereby it is ensured that said second rolling elements are transferring primarily radial forces acting on structures attached to the bearing and that the bearing can be designed to handle said forces.
In another aspect of the invention said first rolling elements are different from said second rolling elements. Hereby it is ensured that axial and radial forces acting on the bearing are transferred to the bearing supporting structures substantially by separate elements whereby the design of the bearing and the bearing supporting structures can be simplified. In another aspect of the invention said bearing comprises at least two rows of rolling elements. Hereby it is ensured that the bearing structure can be better stabilized and optimized regarding distribution of moments and forces acting on the bearing, slip in the bearing etc.
The rolling elements may have any arbitrary profile, however according to one aspect of the invention the rolling elements are substantially cylindrical rollers such as crowned rollers or ball rollers. Hereby it is ensured that the bearing can be designed to transfer maximal load in desired directions and hereby utilizing maximal capacity of the bearing to specific purposes.
In another aspect of the invention said rolling elements make contact with supporting structures such as bearing rings on raceways. It is herby ensured that the contact between rolling elements and supporting structures is on hardened structures designed to be able to handle the resulting moments and forces and designed to minimize wear and tear on said supporting structures.
In another aspect of the invention the ratio between the number of said first rolling elements and the number of said second rolling elements is in the range from 1 :2 to 1:50, more preferred in the range from 1:5 to 1:20 such as 1:8. Hereby it is ensured that the bearing can be designed to transfer the actual radial and axial forces acting on the bearing also taking into account the relationship in size between said forces.
Another aspect of the invention relates to a wind turbine comprising a bearing as outlined above. The bearing is very suitable for heavy duty bearings for wind turbines, especially bearings which are often subjected to small angular movements.
In another aspect of the invention said bearing is a pitch bearing for pitching one or more blades of said wind turbine in relation to a hub of said wind turbine. Hereby it is ensured that the said pitch bearing can be designed to handle the forces acting on a wind turbine rotor blade to hub connection ensuring that the control of the pitch of the rotor blade can be done easily and accurate. Furthermore it is ensured that the bearing can be designed and optimized to specific operational parameters such as working range. By working range is meant the angle range at which said bearing is used e.g. a non-full rotational range such as 90 degrees. As an example pitch motions are often in the range of 20 degrees, and small corrections of the pitch angle, i.e. pitch motions of up to 5 degrees, are common.
In another aspect of the invention said bearing is a yaw bearing for yawing a nacelle of said wind turbine in relation to a tower of said wind turbine. Hereby it is ensured that the said yaw bearing can be designed to handle the forces acting on a wind turbine nacelle to tower connection ensuring that the control of the yaw of the nacelle can be done easily and accurate.
By longitudinal direction of said row of elements is meant the direction of rolling for the rolling elements i.e. the direction of its raceway. For a circular bearing that is a direction that is tangential to the periphery (circular arch) of the bearing.
The wider diameter of the pocket dj compared to the diameter of the rolling element dr allows a higher range of rolling motion for the rolling element before reaching the walls of said cage, instead of sliding due to different velocity of raceways for axial and radial rollers respectively.
Especially it is ensured for bearings with motion back and forth around some average point, such as a pitch bearing where motion is not a repeated 360 degree turn, that the radial rolling element retained in said cage comprising a pocket can roll freely within the limits of the pocket. Furthermore the invention also relates to a method for transferring forces through a comprising the steps of providing the bearing with at least one row of rolling elements, where at least one of said at least one row of rolling elements comprises a plurality of first rolling elements adapted for substantially transferring axial forces, and a plurality of second rolling elements adapted for substantially transferring radial forces, further comprising the additional step of providing at least one of said at least one row of rolling elements with means for separating rolling elements, wherein said means for separating rolling elements comprises one or more cages for retaining said rolling elements, where said one or more cages comprise a pocket adapted for allowing the rolling element to be displaced in the longitudinal direction of said row of elements.
Hereby an advantageous method is obtained in that relatively large loads may be transferred with relatively low friction, especially for small angular movements of the bearing.
Figures
The invention will be described in the following with reference to the figures in which
fig. 1 illustrates a large modern wind turbine including three wind turbine blades in the wind turbine rotor,
fig. 2 illustrates schematically forces and moment acting on a wind turbine rotor blade pitch bearing
fig. 3 illustrates a part of a cross section of a pitch bearing comprising ball rollers as known in the art, fig. 4a illustrates schematically the principle of a conventional single row bearing comprising spacers,
fig. 4b illustrates schematically the principle of a conventional single row bearing comprising a cage,
fig. 5 illustrates a part of a cross section of a wind turbine pitch bearing comprising rollers as known in the art,
fig. 6 illustrates schematically the principle of one embodiment of the invention as a crossed roller bearing comprising a combination of spacers and cages,
fig. 7a illustrates schematically the principle of a bearing according to one embodiment of the invention with a cage comprising a pocket,
fig. 7b illustrates schematically the principle of another embodiment of the invention as a crossed roller bearing comprising a combination of spacers and cages comprising a pocket,
fig. 8 illustrates schematically the principle of a bearing according to another embodiment of the invention comprising two rows of crossed rollers comprising spacers and cages comprising a pocket, and
fig. 9 illustrates for one embodiment of the invention a bearing according to the invention.
Detailed description
Fig. 1 illustrates a modern wind turbine 1 with a tower 2 and a wind turbine nacelle 3 positioned on top of the tower. The wind turbine rotor, comprising at least one blade such as three wind turbine blades 5 as illustrated, is connected to the hub 4 through pitch mechanisms 6. Each pitch mechanism includes a blade bearing and individual pitch actuating means which allows the blade to pitch. The pitch process is controlled by a pitch controller.
As indicated on the figure, wind over a certain level will activate the rotor and allow it to rotate in a substantially perpendicular direction to the wind. The rotation movement is converted to electric power which usually is supplied to the utility grid as will be known by skilled persons within the area.
Fig. 2 illustrates a front view of a wind turbine hub 4. Wind turbine rotor blades 5 are connected to the hub 4 through a pitch mechanism 6 comprising pitch bearings that supports the rotor blades 5 to forces acting in both axial (longitudinal) and radial direction as well as to moments M as indicated on the figure.
Fig. 3 schematically illustrates parts of a cross section of one embodiment of a double row ball bearing as used in wind turbines 1 known in the art.
The bearing comprise a nose bearing ring 8, a split C-bearing ring 9 and two rows of ball rolling elements 10 managing bending moments and axial and radial forces. The directions of the applied moment and forces are indicated by arrows on the figure.
Furthermore the bearing comprise through holes 11 for attachment to its supporting structures by attachment means such as screws, studs, bolts or rivets.
Fig. 4a illustrates schematically the principle of spacers 12 used in one embodiment of a conventional roller bearing. Spacers 12 are located in between rolling elements 13 and are formed as to substantially fit the shape of its adjacent rolling elements. In one embodiment of the invention rolling elements 13 are formed as crowned rollers i.e. rollers whose diameter is intentionally larger in the middle than at the ends. Crowning of the rolling elements is expected to reduce roller edge loading.
This type of roller bearings can support high loads. In many embodiments this type of bearings can be taken apart and can therefore be fitted and dismantled more easily.
Spacers 12 can be made of various wear well materials such as aluminum, brass, stainless steel, chrome steel, bronze, synthetic materials etc. and is used to separate and position the rolling elements 13 at substantially equal intervals around the bearing raceways 14 in order to maximize efficiency and minimize wear. Furthermore spacers 12 reduce vibratory impulses which might be imposed by the surfaces of the races.
Fig. 4b illustrates schematically the principle of a cage 15 comprising rolling elements 13 used in one embodiment of a conventional roller bearing.
Cages 15 have the same purpose of separating and positioning as said spacers 12 and can be made of the same said materials.
Fig. 5 illustrates schematically parts of cross sections of one embodiment of a 3-row roller pitch bearing 16 as used in wind turbines 1 known in the art.
The bearing comprise a nose bearing ring 8, a split C-bearing ring 9, rows of rolling elements managing axial forces 17 and rows of rolling elements managing radial forces 18 and where axial and radial rolling elements are positioned substantially perpendicular to each other. Rolling elements 17, 18 are comprised in cages 15.
Bearing raceways 14 on nose bearing ring 8 and C-bearing rings 9 ensure that wear and tear from the contact between rolling elements 17, 18 and bearing rings 8, 9 is minimized resulting in a prolonged lifetime for the bearing. Of course the opposite lay-out is equally possible, i.e. the nose bearing ring / C-bearing rings can be used both as outer ring and inner ring.
Furthermore the bearing comprise through holes 11 for attachment of its supporting structures by attachment means such as screws, studs, bolts or rivets.
The directions of the applied axial and radial forces are indicated by arrows on the figure.
Fig. 6 illustrates for one embodiment of the invention the principle of a cross roller bearing 16 where a single row of rolling elements comprise rolling elements that manage axial forces 17 and rolling elements that manage radial forces 18 in combination.
Compared to a conventional bearing comprising only rolling elements that manage axial forces 17, a number of rolling elements are exchanged by substantially perpendicular positioned radial rolling elements 18. Spacers 12 between two axial rolling elements 17 is not modified and has a similar form compared to a conventional bearing A special formed cage 15 supporting one or more rolling elements 18 is formed as to fit the shapes of its adjacent rolling elements 17.
For another embodiment of the invention, spacers 12 and/or cages 15 are used to separate and position some or all rolling elements 17, 18.
For one embodiment of the invention every second rolling element is an axial rolling element 17 and every other second rolling element is a radial rolling element 18 i.e. the ratio between the number of rolling elements managing axial forces 17 and the number of rolling elements managing radial forces 18 is 1:1. For other preferred embodiments of the invention the ratios between the number of rolling elements managing axial forces and the number of rolling elements managing radial forces are more than 1:1, preferred in the range from 1:2 to 1:50, more preferred in the range from 1:5 to 1:20 such as 1:8 i.e. the number of axial rolling elements 17 is greater than the number of radial rolling elements 18.
For a bearing according to the present invention, said ratio is determined depending on demands to loadings, moments and deflections in axial and radial direction respectively that the bearing must be able to manage.
In a rotating bearing of the invented type, the velocity of the center of the radial rolling elements 18 may be different than the velocity of the center of the axial rolling elements 16 e.g. due to different length in raceways 14. As the radial rolling elements are held in position by cages this may result in a partly sliding instead of rolling motion for said radial rolling elements.
Fig. 7a and fig. 7b illustrates for another embodiment of the invention the principal construction of one row of a bearing comprising axial rolling elements 17 separated by spacers 12 and cages 15 comprising radial rolling elements 18.
Fig. 7a illustrates a frontal view of one cage 15 comprising one radial rolling element 18 and where the cage 15 is constructed in a way that it includes a pocket 19 i.e. room for free play for the radial roller 18 in the direction of movement as indicated by arrows. The diameter d; of the pocket 19 in the cage 15 is wider than the diameter dr of the radial rolling element 18. The wider diameter of dj compared to dr enables a higher degree of rolling motion for the radial rolling element 18 instead of sliding due to the velocity of the center of the radial rolling elements 18 may be different than the velocity of the center of the axial rolling elements 16 e.g. due to different length in raceways 14. Hereby the radial rolling element 18 can move freely over a distance range before reaching the walls of its surrounding cage 15. It is currently expected that the maximum play will be the diameter of the radial rolling element (i.e. d; = 2*dr), but in many cases the play will be in the interval of 0.1 - 0.5 (i.e. dj = 1.1 *dr to 1.5*dr), and often the play will be approximately 0,25 (i.e. dj = 1.25*dr). As an example the bearing may be a pitch bearing having a diameter of 1 m to 5 m. With a pitch bearing diameter of 2 m, a pitch motion of e.g. 5 degrees equals a distance of less than 9 cm, which the rolling elements must travel. With the mentioned play, the radial rolling elements may travel at least a part of this distance freely. Fig. 7b illustrates part of one row of a bearing comprising axial rolling elements 17, spacers 12 separating said axial rolling elements 17, and radial rolling elements 18 comprised in cages 15 comprising pockets 19 enabling free move for the radial rolling element 18.
Fig. 8 illustrates parts of a cross section of a pitch bearing according to one embodiment of the invention.
The bearing comprises a nose bearing ring 8, a split C-bearing ring 9 and rows of rolling elements 17, 18 managing both axial and radial forces together with spacers 12 and cages 15, where said axial and radial rolling elements 17, 18 are positioned substantially perpendicular to each other. The ratio between the number of axial and radial rolling elements 17, 18 can be e.g. in the range between 1 :1 to 1:100, preferred in the range from 1:2 to 1:50, more preferred in the range from 1 :5 to 1:20 such as 1:8 i.e. the number of axial rolling elements 17 is greater than the number of radial rolling elements 18.
The directions of the applied axial and radial forces are indicated by arrows on the figure. Furthermore the bearing comprise through holes 11 for attachment on its supporting structures by attachment means such as screws, studs, bolts or rivets.
As can be seen on the figure hardened bearing raceways 14 on nose and C-bearing rings 8, 9 ensure that wear and tear from the contact between rolling elements 17, 18 and bearing rings 8, 9 is minimized.
Fig. 9 illustrates schematically one embodiment of the invention where a row of rolling elements 13 comprises both axial and radial rolling elements 17, 18 and is forming a full 360 degree circle. For this embodiment the ratio between the number of axial and radial rolling elements 17, 18 is 1:4.
The skilled person will find no difficulty in assessing a suitable number of rolling elements for a given application. For a pitch bearing having a diameter in the range of 1 to 5 m, the number of rolling elements in each row would typically be from 50 to 500 rolling elements per row. Similarly it will be straight forward for the skilled person to establish suitable dimensions of the rolling elements for a given application. For pitch bearings of the mentioned size, suitable dimensions are from 30 mm to 150 mm in length and diameter.
List
1. Wind turbine
2. Tower 3. Nacelle
4. Hub
5. Rotor blade
6. Pitch mechanism
7. Pitch bearing 8. Nose bearing ring
9. Split C-bearing ring
10. Ball rolling elements
11. Through holes
12. Spacers 13. Rolling elements
14. Bearing raceway
15. Cage
16. Cross roller pitch bearing
17. Rolling elements managing axial forces 18. Rolling elements managing radial forces
19. Pocket in cage

Claims

Claims
1. A bearing with at least one row of rolling elements, where at least one of said at least one row of rolling elements comprise a plurality of first rolling elements adapted for substantially transferring axial forces, and a plurality of second rolling elements adapted for substantially transferring radial forces, characterized in that at least one of said at least one row of rolling elements comprises means for separating rolling elements, wherein said means for separating rolling elements comprises one or more cages for retaining said rolling elements, where said one or more cages comprise a pocket adapted for allowing the rolling element to be displaced in the longitudinal direction of said row of elements.
2. A bearing according to claim 1, wherein said first rolling elements have a rotational axis directed substantially perpendicular to the rotational axis of said bearing.
3. A bearing according to claim 1, wherein said second rolling elements have a rotational axis directed substantially in parallel to the rotational axis of said bearing.
4. A bearing according to claim 1, wherein said first rolling elements are different from said second rolling elements.
5. A bearing according to claim 1, wherein said bearing comprises at least two rows of rolling elements.
6. A bearing according to any of the preceding claims, wherein said rolling elements are substantially cylindrical rollers such as crowned rollers or ball rollers.
7. A bearing according to any of the preceding claims, wherein said rolling elements make contact with supporting structures such as bearing rings on raceways.
8. A bearing according to any of the preceding claims, wherein the ratio between the number of said first rolling elements and the number of said second rolling elements is in the range from 1 :2 to 1 :50, more preferred in the range from 1 :5 to 1 :20 such as 1:8.
9. A wind turbine comprising a bearing according to any of the preceding claims.
10. A wind turbine according to claim 9, wherein said bearing is a pitch bearing for pitching one or more blades of said wind turbine in relation to a hub of said wind turbine.
11. A wind turbine according to claim 9, wherein said bearing is a yaw bearing for yawing a nacelle of said wind turbine in relation to a tower of said wind turbine.
12. A method for transferring forces through a bearing comprising the steps of providing the bearing with at least one row of rolling elements, where at least one of said at least one row of rolling elements comprises a plurality of first rolling elements adapted for substantially transferring axial forces, and a plurality of second rolling elements adapted for substantially transferring radial forces, characterized in the additional step of providing at least one of said at least one row of rolling elements with means for separating rolling elements, wherein said means for separating rolling elements comprises one or more cages for retaining said rolling elements, where said one or more cages comprise a pocket adapted for allowing the rolling element to be displaced in the longitudinal direction of said row of elements.
PCT/DK2007/000545 2006-12-18 2007-12-14 A bearing and method for transferring forces through a bearing of a wind turbine WO2008074322A2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE602007008609T DE602007008609D1 (en) 2006-12-18 2007-12-14 BEARINGS AND METHOD FOR TRANSFERRING FORCES THROUGH A BEARING OF A WIND TURBINE
EP07846415A EP2094981B1 (en) 2006-12-18 2007-12-14 A bearing and method for transferring forces through a bearing of a wind turbine
CN2007800466885A CN101568735B (en) 2006-12-18 2007-12-14 A bearing and method for transferring forces through a bearing of a wind turbine
AT07846415T ATE478267T1 (en) 2006-12-18 2007-12-14 BEARINGS AND METHOD FOR TRANSMITTING FORCES THROUGH A BEARING OF A WIND TURBINE
US12/486,193 US20090257697A1 (en) 2006-12-18 2009-06-17 Bearing And Method For Transferring Forces Through A Bearing Of A Wind Turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DKPA200601659 2006-12-18
DKPA200601659 2006-12-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/486,193 Continuation US20090257697A1 (en) 2006-12-18 2009-06-17 Bearing And Method For Transferring Forces Through A Bearing Of A Wind Turbine

Publications (2)

Publication Number Publication Date
WO2008074322A2 true WO2008074322A2 (en) 2008-06-26
WO2008074322A3 WO2008074322A3 (en) 2008-08-14

Family

ID=39339774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DK2007/000545 WO2008074322A2 (en) 2006-12-18 2007-12-14 A bearing and method for transferring forces through a bearing of a wind turbine

Country Status (7)

Country Link
US (1) US20090257697A1 (en)
EP (1) EP2094981B1 (en)
CN (1) CN101568735B (en)
AT (1) ATE478267T1 (en)
DE (1) DE602007008609D1 (en)
ES (1) ES2350322T3 (en)
WO (1) WO2008074322A2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010009793A1 (en) * 2008-07-25 2010-01-28 Rothe Erde Gmbh Roller bearing, particularly large-diameter rolling ring bearing with no center
WO2010045913A2 (en) * 2008-10-21 2010-04-29 Aerodyn Energiesysteme Gmbh Bearing housing for mounting the rotor shaft of a wind energy plant
CN101725632A (en) * 2008-10-10 2010-06-09 通用电气公司 Bearing with alternative load path for extreme loads
EP2196668A2 (en) * 2008-12-15 2010-06-16 General Electric Company Wind turbine and method of assembling the same
WO2011051538A1 (en) * 2009-10-29 2011-05-05 Mervento Oy Wind power station
US8876477B2 (en) 2010-03-29 2014-11-04 Vestas Wind Systems A/S Wind turbine and a pitch bearing for a wind turbine
US9188107B2 (en) 2013-08-30 2015-11-17 General Electric Company Wind turbine bearings
EP3001052A4 (en) * 2013-05-20 2016-03-30 Thk Co Ltd Double-row roller bearing
WO2017025343A1 (en) * 2015-08-07 2017-02-16 Thyssenkrupp Rothe Erde Gmbh Roller bearing assembly and blade bearing for a wind turbine
WO2020025094A1 (en) 2018-08-02 2020-02-06 Vestas Wind Systems A/S Pitch bearing
CN113202696A (en) * 2017-04-21 2021-08-03 感风有限公司 Wind turbine nacelle and system, nacelle-carrier system, assembly and disassembly method
EP3788256B1 (en) 2018-04-30 2022-12-07 Vestas Wind Systems A/S A rotor for a wind turbine with a pitch bearing unit

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9062710B2 (en) * 2013-02-05 2015-06-23 Schaeffler Technologies AG & Co. KG Combined load rolling bearing
JP5763292B2 (en) * 2009-07-27 2015-08-12 Ntn株式会社 Slewing bearing
US8203230B2 (en) * 2010-06-29 2012-06-19 General Electric Company Yaw bearing system
DE102011000769A1 (en) 2011-02-16 2012-08-16 Rothe Erde Gmbh Axial radial roller bearings, in particular for the storage of rotor blades on a wind turbine
FR2973087B1 (en) * 2011-03-25 2014-04-18 Defontaine BEARING HAS THREE ROWS AND MORE ROLLING BODIES
US20130084034A1 (en) * 2011-10-03 2013-04-04 Schaeffler Technologies AG & Co. KG Bearing with high-load radial and axial capabilites including a thermal compensation element as needed
JP5613649B2 (en) * 2011-12-02 2014-10-29 株式会社三共製作所 Cross roller bearing
EP2679816B1 (en) 2012-06-27 2015-08-19 ALSTOM Renewable Technologies A pitch system for a wind turbine rotor
CN103362951B (en) * 2013-08-09 2016-06-22 戴瑞炎 A kind of double-deck bearing
CN104895726B (en) * 2015-07-02 2017-10-27 国电联合动力技术有限公司 A kind of tidal power unit and its pitch variable bearings
US10598159B2 (en) 2016-05-06 2020-03-24 General Electric Company Wind turbine bearings
DE102018107172A1 (en) * 2018-03-26 2019-09-26 Liebherr-Components Biberach Gmbh Actuator for adjusting the pitch angle of a rotor blade of a wind turbine and wind turbine with such an actuator
CN111322197B (en) * 2018-12-17 2021-10-08 新疆金风科技股份有限公司 Wind generating set and variable-pitch bearing assembly
DE102020211033A1 (en) * 2020-09-02 2022-03-03 Aktiebolaget Skf Rolling bearing, especially a large diameter rolling bearing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19510182A1 (en) 1994-07-14 1996-01-18 Schaeffler Waelzlager Kg Roller bearing rotary linkage
DE10257195A1 (en) 2001-12-07 2003-06-18 Harmonic Drive Systems Crossed-roller bearing has at least one spherical body between rollers to enable circumferential intervals between rollers to be adjusted

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1254409A (en) * 1969-11-28 1971-11-24 Hoesch Ag Improvements in or relating to rotary roller bearings
US3963285A (en) * 1973-10-09 1976-06-15 Skf Industries, Inc. Cage control of skew angle in roller bearings
JPS58180839A (en) * 1982-04-16 1983-10-22 Natl Aerospace Lab Support for bearing
FR2615575B1 (en) * 1987-05-22 1994-01-14 Glaenzer Spicer BEARING WITH INTERSECREED TAPERED ROLLERS, AND APPLICATION TO A MOTOR HUB
DE3800729C2 (en) * 1988-01-13 1995-06-29 Skf Linearsysteme Gmbh Cage for a roller bearing that performs linear or rotary movements
JP2948955B2 (en) * 1991-08-29 1999-09-13 日本トムソン株式会社 Cage of finite linear motion rolling guide unit
JP2001027249A (en) * 1999-07-14 2001-01-30 Minebea Co Ltd Bearing retainer and rolling bearing
DE10335415B4 (en) * 2003-08-02 2006-08-03 Ab Skf roller bearing
EP1724480A4 (en) * 2004-02-25 2009-04-29 Ntn Toyo Bearing Co Ltd Thrust needle bearing
US7075192B2 (en) * 2004-04-19 2006-07-11 Northern Power Systems, Inc. Direct drive wind turbine
US7086834B2 (en) * 2004-06-10 2006-08-08 General Electric Company Methods and apparatus for rotor blade ice detection
ES2441016T5 (en) * 2005-07-05 2023-02-13 Vestas Wind Sys As A pitch bearing for a wind turbine and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19510182A1 (en) 1994-07-14 1996-01-18 Schaeffler Waelzlager Kg Roller bearing rotary linkage
DE10257195A1 (en) 2001-12-07 2003-06-18 Harmonic Drive Systems Crossed-roller bearing has at least one spherical body between rollers to enable circumferential intervals between rollers to be adjusted

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010009793A1 (en) * 2008-07-25 2010-01-28 Rothe Erde Gmbh Roller bearing, particularly large-diameter rolling ring bearing with no center
CN101725632A (en) * 2008-10-10 2010-06-09 通用电气公司 Bearing with alternative load path for extreme loads
WO2010045913A2 (en) * 2008-10-21 2010-04-29 Aerodyn Energiesysteme Gmbh Bearing housing for mounting the rotor shaft of a wind energy plant
WO2010045913A3 (en) * 2008-10-21 2010-12-23 Aerodyn Energiesysteme Gmbh Bearing housing for mounting the rotor shaft of a wind energy plant
EP2196668A2 (en) * 2008-12-15 2010-06-16 General Electric Company Wind turbine and method of assembling the same
EP2196668A3 (en) * 2008-12-15 2013-03-06 General Electric Company Wind turbine and method of assembling the same
CN102713268B (en) * 2009-10-29 2015-11-25 默文图公司 Wind power station
WO2011051538A1 (en) * 2009-10-29 2011-05-05 Mervento Oy Wind power station
CN102713268A (en) * 2009-10-29 2012-10-03 默文图公司 Wind power station
US8847422B2 (en) 2009-10-29 2014-09-30 Mervento Oy Wind power station
US8876477B2 (en) 2010-03-29 2014-11-04 Vestas Wind Systems A/S Wind turbine and a pitch bearing for a wind turbine
EP3179120A1 (en) * 2013-05-20 2017-06-14 THK Co., Ltd. Double-row roller bearing
EP3001052A4 (en) * 2013-05-20 2016-03-30 Thk Co Ltd Double-row roller bearing
KR101623694B1 (en) 2013-05-20 2016-05-23 티에치케이 가부시끼가이샤 Double-row roller bearing
EP3346150A1 (en) * 2013-05-20 2018-07-11 THK Co., Ltd. Double-row roller bearing
US9188107B2 (en) 2013-08-30 2015-11-17 General Electric Company Wind turbine bearings
DK179076B1 (en) * 2013-08-30 2017-10-09 Gen Electric Vindmøllelejer
WO2017025343A1 (en) * 2015-08-07 2017-02-16 Thyssenkrupp Rothe Erde Gmbh Roller bearing assembly and blade bearing for a wind turbine
CN113202696A (en) * 2017-04-21 2021-08-03 感风有限公司 Wind turbine nacelle and system, nacelle-carrier system, assembly and disassembly method
EP3788256B1 (en) 2018-04-30 2022-12-07 Vestas Wind Systems A/S A rotor for a wind turbine with a pitch bearing unit
WO2020025094A1 (en) 2018-08-02 2020-02-06 Vestas Wind Systems A/S Pitch bearing

Also Published As

Publication number Publication date
WO2008074322A3 (en) 2008-08-14
EP2094981A2 (en) 2009-09-02
DE602007008609D1 (en) 2010-09-30
CN101568735A (en) 2009-10-28
ES2350322T3 (en) 2011-01-21
US20090257697A1 (en) 2009-10-15
EP2094981B1 (en) 2010-08-18
CN101568735B (en) 2012-02-01
ATE478267T1 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
EP2094981B1 (en) A bearing and method for transferring forces through a bearing of a wind turbine
US8282353B2 (en) Bearing unit for a long rotor blade of a wind power installation, wind power installation comprising one such rotor blade bearing arrangement, and method for operating one such wind power installation
KR100967640B1 (en) Slewing bearing structure
EP1745221B1 (en) Locating bearing assembly for wind turbine gearbox shaft
US8459872B2 (en) Bearing with alternative load path for extreme loads
US9422976B2 (en) Axial-radial rolling contact bearing, in particular for supporting rotor blades on a wind turbine
JP2008545089A (en) Wind turbine pitch bearing and use thereof
DK2715162T4 (en) Large roller bearing
EP2434150B1 (en) A three row roller bearing, in particular for a wind turbine
US20140003944A1 (en) Pitch system for a wind turbine rotor
KR102396667B1 (en) Rotary connection for rotor blades of wind turbines
US20220010839A1 (en) Large rolling bearing
JP4745438B2 (en) Swivel structure and horizontal wind turbine using the same
WO2013088201A1 (en) Bearing, wind energy converter and method of manufacturing a bearing
JP2009275860A (en) Revolving bearing
JP2006090346A (en) Double row automatic aligning roller bearing and main shaft supporting structure of wind power generator
JP2009287706A (en) Rolling bearing
CN116234991A (en) Bearing device
JP2006090345A (en) Double row automatic aligning roller bearing and main shaft supporting structure of wind power generator
WO2015057127A1 (en) A wind turbine comprising a multi row bearing

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780046688.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07846415

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007846415

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE