WO2008072756A1 - Reaction force presentation method and force presentation system - Google Patents

Reaction force presentation method and force presentation system Download PDF

Info

Publication number
WO2008072756A1
WO2008072756A1 PCT/JP2007/074188 JP2007074188W WO2008072756A1 WO 2008072756 A1 WO2008072756 A1 WO 2008072756A1 JP 2007074188 W JP2007074188 W JP 2007074188W WO 2008072756 A1 WO2008072756 A1 WO 2008072756A1
Authority
WO
WIPO (PCT)
Prior art keywords
tool
sensor
data
reaction force
model
Prior art date
Application number
PCT/JP2007/074188
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuyuki Nagata
Mitsunori Tada
Hidetake Iwasaki
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Bl Autotec, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology, Bl Autotec, Ltd. filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to JP2008549389A priority Critical patent/JP5177560B2/en
Publication of WO2008072756A1 publication Critical patent/WO2008072756A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user

Definitions

  • the present invention relates to a haptics presentation system capable of reproducing and reproducing haptics mainly used for teaching and training.
  • Haptics are a combination of tactile sensor information and motion information.
  • this is a katsu sense presentation system that can measure and reproduce operation data (operation force and movement) when a person actually operates an object.
  • operation data operation force and movement
  • a system that can record and play back operation data of tools handled by humans.
  • Patent Document 1 (Patent No. 3802483 No. Koyuki) Calligraphy learning support system
  • Patent Document 2 Japanese Patent Laid-Open No. 2005-287656 Acupuncture training system using force and touch
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-189297
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2000-259074
  • Patent Document 5 Japanese Unexamined Patent Publication No. 10-91327) Drawing device
  • Patent Document 6 Japanese Patent Application Laid-Open No. 2004-213351
  • Katsu sense presentation device and Katsu sense presentation system
  • Patent Document 7 Japanese Patent Application Laid-Open No. 2002-132138 Stiff puncture simulator
  • Patent Document 7 is an old training model.
  • Patent Documents 1 to 6 disclose a training method for manipulating an object in a converter virtual space, presenting a reaction force in a low-minded space, but when manipulating an object for actual operation data. There is no function.
  • the inventor of the present invention has invented an operation tool equipped with a finger-fitted kap sensor that improves the input accuracy of operation data or presents a force sense.
  • Patent Document 8 Patent No. 3261653
  • Patent Document 9 Patent No. 3 4 0 9 1 60
  • Patent Document 1 (Patent No. 3 6 2 4 3 7 4)
  • Patent Document 10 provides a reaction force function when an object is operated in i-space and a function for recording actual operation data (movement and force when an existing object is operated). It is possible to say and play back operation data when an object is operated with a finger, and there is no function to record and play back tool operation data.
  • the operating force acting on the tool can be measured by the resultant force of the fingertip sensor, and the finger movement can be measured. You can't even measure tool movement.
  • the movement of the tool cannot be measured from the movement of the finger. For example, when a person holds a pen, the grasping restraint along the central axis of the pen is indefinite, and the movement of the pen in the central axis direction cannot be measured.
  • the specific reaction force mechanism disclosed in Patent Document 10 is as follows.
  • the invention disclosed in Patent Document 10 is a knot presentation device that includes a knot sensor, a manipulator, a base, and a control device that can be worn on a finger, and the base is fixed to an external fixation.
  • the above-mentioned mapper has an active joint composed of an actuator and an angle detection sensor, a passive joint composed of only an angle detection sensor, and a link.
  • the actuator and the angle detection sensor are selectively attached to the link and the link pivot supporting portion and the link and base pivot mounting portion, respectively, which constitute the link mechanism, and measure the movement of the link mechanism by the angle detection sensor.
  • the haptic presentation device that is controlled by the control device and difficult to present the haptic to the fingertip is difficult.
  • the above-mentioned actuator may be a DC ⁇ motor or an AC W) motor.
  • the angle detection sensor may be a potentiometer or an encoder.
  • the present knot presentation device is composed of a kull sensor 1, a / h manipulator 2, and a base 3 that can be fitted to a human finger.
  • FIG. 21 shows the configuration of the katsu sensor 1 used in the katsu presentation device of the present invention.
  • the force sensor 1 includes a finger sack 20, an elastic structure 21, a finger cover 22, and a link coupling portion 23.
  • the reference numerals described in FIGS. 20 to 21 refer to the reference numerals described in Patent Document 10 and are not related to the reference numerals of the present invention.
  • the elastic structure 21 has a structure that is easily distorted with respect to a specific haptic component.
  • Figure 22 shows an example of the elastic structure 21.
  • a base 30 and a peripheral ring 31 are connected via three beams 3 2, and a strain gauge 33 is attached to each surface of the beam 3 2.
  • the beam 32 When an external force is applied to the elastic structure 21, the beam 32 is distorted according to the external force component. By converting this strain into an electrical signal by the strain gauge 33, the sense component can be taken out as an electrical signal of the strain gauge 33.
  • the strain stiffness matrix representing the relationship between the six-axis force (force and moment in three directions) acting on the elastic structure 21 and the output of the distortion stage of each beam is obtained in advance by calibration.
  • the strain Stillness Matrix is a matrix that converts the strain gauge output of each beam into a knot. Using the strain stiffness matrix, the 6-axis force acting on the elastic structure 21 can be calculated from the output signal of the strain gauge.
  • the finger cover 2 2 is the part that actually touches the object, and is connected to the peripheral ring 3 1 of the elastic structure 2 1 via the mounting block 2 4.
  • the link connection 3 ⁇ 4 2 3 is connected to the finger cover 2 2, and is connected to the manipulator 2 of the haptic device.
  • the number of active joints is equal to or greater than the number of les and sensation components presented. It becomes. Therefore, the number of active joints required is 3 or more when only 3 axis forces are presented to the fingertip, and the number of active joints required is 6 or more at the age of presenting all 6 axis forces. Become.
  • the arrangement of the degrees of freedom of the active joints was presented by the tip of the small manipulator 2! /, Placed so that motion can be generated in all directions of the haptic component.
  • the passive joint is required when the tip of the / JN manipulator 2 cannot follow the human finger 51 »only with the degree of freedom of the active joint.
  • the number of passive joints is the difference between the number of degrees of freedom of human fingers and the number of active joints equal to the degree of freedom of human fingers.
  • the basic principle of the knot presentation device of the present invention is as follows.
  • a force is applied to the human fingertip 1 2 according to the number of active joints. Can do.
  • the force applied to the fingertip 12 by the / JN3 ⁇ 4Maepiulator 2 is detected by a 6-axis knuckle sensor attached to the fingertip.
  • the target force given by the computer and the force applied to the human fingertip 1 2 by the manipulator 2 are fed back while feeding back the output of the 6-axis motion sensor 1 /
  • the MAUPULATOR 2 By controlling the MAUPULATOR 2, it is possible to present a sensation to the human fingertip 1 2.
  • a virtual object 10 Inside the plan, there is a virtual object 10 and an ideal finger 9 (hereinafter referred to as a virtual finger) force S that operates the virtual object 10.
  • the virtual finger 9 can freely move in the virtual world of the computer screen ⁇ according to the movement of the fingertip of the haptic device.
  • a human inserts a finger into the katsu sensor 1 of the katsu presentation device and moves the finger.
  • the fingertip position'fingertip speed is calculated using the angle data of the angle detection sensor 5 of the coupler 2.
  • the virtual finger 9 Exercise.
  • the virtual finger 9 is manipulated by a human finger 12 wearing a knot presentation device.
  • the gauge calculates the sense of force acting on the virtual finger 9 when moving the virtual finger 9 force S virtual world or operating the virtual object 10. This calculated force is given as a target value for force control of the manipulator 2.
  • the target force calculated by the computer is compared with the 6-axis motion sensor of the motion display device; the command value given to the actuator 4 of the M manipulator 2 so that the difference is zero. Is calculated due to the total loss.
  • the calculated command value is output from the meter to the servo driver of the actuator 4, and the actuator 4 is driven so that the motion data of the 6-axis motion sensor 1 at the fingertip is converged to the target force.
  • the virtual finger 9 inside the computer is manipulated by the movement of the finger, and the computer calculates the haptic that acts on the virtual finger 9 according to the movement of the virtual finger 9 and uses that sensation as the target force / manipulator 2
  • force-controlling it is possible to make it feel as if the virtual object is difficult to operate at the fingertip of the operation W and that it is operating.
  • a conventional katsuomi presentation system consists of a haptic interface, an object model (object model / library), an environmental model model / library), a virtual space, and a display device.
  • the Haboutique interface often uses a small robot arm composed of multiple links and joints, and the movement of the Haboutique interface and the movement of objects in the virtual space are linked.
  • a person can operate an object in the virtual space by holding the tip of the haptic interface in his hand.
  • the system has a means to place pre-built object models and difficult models in the virtual space.
  • the operation uses the haptic interface while looking at the objects in the virtual space displayed on the display device. To manipulate objects in virtual space. At this time, the system uses virtual objects and virtual ⁇ By determining the transversal force, calculating the transversal force, and controlling the torque generated by the actuator of the Haboutique interface, the worm is presented to the person.
  • Patent Document 1 Japanese Patent No. 3802483
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2000-259074
  • Patent Document 8 Japanese Patent No. 3261653
  • Patent Document 9 Japanese Patent No. 3409160
  • Patent Document 10 Japanese Patent No. 3624374 Disclosure of Invention
  • An object of the present invention is to provide a haptic presentation system that can reproduce haptics. For example, since the operation data of tools handled by humans can be taken and reproduced, it is possible to take advantage of the actual environment (including fleas and training models) used for the blasphemy training. By presenting this to the trainer, we propose a system that enables more practical training and acquisition. This will enable skills.
  • the virtual model construction status is the result of operating the haptic interface when the environmental factors or tool factors are changed.
  • a reaction force presentation method characterized in that the reaction force is to be output and presented.
  • a haptic interface equipped with a tool-type haptic sensor and a haptic presentation system equipped with a control device
  • a haptic interface with a tool-type sensor is composed of a tool-type sensor and a manipulator connected to the tool-type sensor,
  • the tool type sensor has a tool sensor part and a handle, and a tool sensor part between the tool function part and the grip part.
  • the manipulator can measure the three-dimensional motion of the tool-type sensor and It has the function of presenting the sensation to the spleen that has been drawn by the user and holds the disgusting tool type sensation sensor,
  • the control device consists of an actual measurement operation unit, data storage unit, model estimator, object model database, ⁇ model database, virtual space operation unit consisting of object model, ⁇ model and interaction operation unit, overlay processing unit and display unit And
  • the control device presents a function for manipulating the virtual model in the virtual cage based on the chrysanthemum value by manipulation of the haptic interface and the manipulation when manipulating the haptic interface. It has a function to calculate the corrected katsu sense,
  • the actual operation amount obtained by the operation of the haptic interface is directly input as an operation amount to the i model that has already been constructed, and virtual objects in the virtual space or
  • the reaction force is calculated by calculating the interaction between the virtual object and the virtual environment, and the reaction force data obtained from the difficult ij value by the operation of the tool ⁇ 3 ⁇ 4 sensor is superimposed and processed by the processing unit.
  • the modified reaction force created by the haptics interface and the actual environment Presenting a sense of force that reflects the reaction force received, or presenting a corrected sense of force is difficult or the age at which the tool was changed depends on the amount of interaction modification that takes into account the amount of interaction modification.
  • Offer The difference between the reaction force that the virtual model receives due to the rule operation amount and the difference between the reaction force received from the real environment and the correction reaction force that takes into account the change factor is calculated.
  • a katsu sense presentation system that uses glue to present a katsu sense to the operation.
  • a tool sensor equipped with a 6-axis force sensor has a frequency that means that the handle or the grip part can be attached to and detached from the 6-axis sensor body (3 ) Katsukan system.
  • the present invention makes it possible to present a reaction force using an actual tool by actually operating a tool-type sensor in which the sensor is incorporated in an actual tool.
  • V Reproducibility such as training is improved.
  • the present invention it is possible to present tactile augmented reality by superimposing chrysanthemum data and model data.
  • the writing comfort of the pen and the sharpness of the scalpel can be changed in actual operations, soft objects can be presented hard, and hard objects can be presented softly.
  • the present invention it is possible to conceal the secrets of the skill of a master, such as collecting data on brush strokes of humans, female judgments of famous doctors, and extracting and abstracting the liver for using the tool. In the future, it can be applied to skill training such as surgery 'skill transfer' and l3 ⁇ 4 of tools handled by hand.
  • the haptics presentation system of the present invention is capable of mechanical interaction between the tool and «
  • FIG.5 3D display of handwriting and pen pressure (3-axis force) using a pen-type 6-axis force sensor
  • FIG.11 Shows the coupling of the writing instrument type two-on-senser body and the gripping part
  • FIG.12 A drawing showing an example of a writing instrument tip
  • FIG.13 Shows the state of attaching the tool-type katsu sensor to the arm
  • Force presentation device Reproduces X, Y, Z position information
  • Kaku SENSOR Measures the trainee's ability and displays the difference from the teacher's model
  • FIG.14 n example of three-dimensional display of frost and pen pressure (3-axis force) using a pen-type 6-axis force sensor Handwriting and pen pressure (3-axis force) recorded using a pen-type 6-axis force sensor N examples are shown with 3D display and different angles. It is an image display that is rotated clockwise with 111 as 0 °, with the vertical bar of Katakana character “i” as the axis.
  • n2 Display shaken by 36 °
  • n3 Display shaken 72 °
  • FIG. 15 Three-dimensional display of «and pen pressure (3-axis force) using a pen-type 6-axis force sensor w example Handwriting and pen pressure (3-axis force) recorded using a pen-type 6-axis force sensor An example is shown with a 3D display and a different angle. This is an image display rotated clockwise with 1 as 0 °, with the katakana character “i” as the axis.
  • Virtual space model used in [17] records data push Potan 'Regeneration (Virtual environment model) non 0
  • FIG. 19 (a) Shows the data at the time of button data playback, and represents the displacement of the virtual button when the user operates the haptic interface and presses the virtual button.
  • FIG. 19 (b) This shows the data at the time of button data playback, and represents the force presented to the user by the haptics interface.
  • FIG. 19 (c): Shows data during button data playback, showing the relationship between the virtual button operation displacement and the presentation force.
  • Patent Document 1 0 Disclosure of finger-mounted 6-axis force sensor
  • Patent Document 10 Example of a sensory sensor bullet ⁇ raw structure BEST MODE FOR CARRYING OUT THE INVENTION
  • a model virtual model can be constructed by inputting operation data of an expert through a haptic interface equipped with a kart sensor, and an actual result obtained by using a tool-type sensor by a trainee.
  • the modified reaction force is composed of the difference between the operation data and the data obtained by manipulating the virtual model in the virtual space, and output to the Haboutique interface.
  • the modified reaction force created by the Haboutine interface and the reaction force from the real environment In combination, it is presented as a sensation to the operation.
  • the motion sensor three or six axes can be used. The 6-axis has better reproducibility accuracy. The following explanation will focus on the six axes.
  • the present invention further applies this force sense to a tool model (for example, a human training model for medical training) using a tool-type sensor.
  • the reaction force is configured to reflect the difference from the actual applied object and output to the haptic interface, and the operation is controlled It is presented as a sense. Furthermore, by inputting a cow that is different from the constructed situation of the constructed virtual model, it is possible to present the training of an object in another situation for the operation 1 while using the same model.
  • the knot presentation system of the present invention includes a knotting interface and a control device including a tool type six-axis kart sensor, and operates the tool type kart sensor including a six-axis kart sensor.
  • the three-dimensional motion data of the tool type motion sensor and the data related to the force applied to the tool motion sensor from the real environment can be input to the control device, while the tool type motion sensor from the control device.
  • the reaction force can be presented.
  • the control device can operate the model in the virtual space based on the input data from the haptic interface, and provides an interaction calculation process and a superposition process. The difficulty of
  • the haptic interface consists of a small arm and a tool sensor. Maneuvering W is performed by hand-operating a haptic interface tool-type sensor.
  • the tool motion sensor is constructed using the actual tool used for the hand and tool to measure the mechanical interaction between the tool and the heel.
  • Figure 2 shows an example of a tool-type force sensor.
  • Figure 2. Pen type 6-axis motion sensor uses a commercially available pole pen at the tip and a pen tip (in this example, ZEBM ne: fc ⁇ pole pen JB! — A KNOCK pen tip was used. By attaching a pencil, marker, or other ballpoint pen tip to the tip adapter, a 6-axis motion sensor can be configured for various writing instruments.
  • the female 6-axis force sensor shown in Fig. 2 (b) has a commercially available female handle and blade. (This example shows the shape of the blade shape No. 21 and the handle of the handle blade No. 4 with Matsukichi Medical Instruments. And using an adapter to attach to the starter frame.
  • the 6-axis force sensor force S of various medical instruments can be configured.
  • various tools can be attached to the tool-type 6-axis sensor using the adapter.
  • the / J arm was a modified version of PHA ToM manufactured by Sen sAb e Te c hno logies.
  • Figure 2 shows the external appearance of the tool-type sensor equipped with a 6-axis force sensor.
  • the tool-type force sensor can be used with the one proposed in Japanese Patent Application No. 2 0 0 6-2 0 5 7 8 0.
  • a gripping tool for a 6-axis kull sensor composed of a sensor body A, a gripping part B, and a part C in a cage used to obtain operation information using a tower.
  • the part B and the healthy part C have a connecting structure that can be attached to and detached from the sensor body A, and the ream and crane are attached to the gripping part B or the hook part C, or
  • the additional connectors D and E, the gripping parts B and Z or the part C, are gripping tools for a six-axis carousel sensor provided in plural depending on the type of tool. See Figures 9-13.
  • the sensor used in the present invention is a six-axis force sensor.
  • the force sensor used in the present invention is suitable for a thin force S.
  • the outer diameter of the housing # 3 ⁇ 4 is about 1 O mm thick, and the outer diameter can be made less than 2 O mm.
  • the following is an example of the sensing part of a 6-axis force sensor using a strain gauge.
  • the sensing part of the 6-axis force sensor is an elastic structure that is easily distorted with respect to specific force components (force and moment). And flanges are connected via three beams, and strain gauges are attached to each side of the beam. When an external force is applied to this elastic structure, the beam is distorted, and this strain is converted into an electrical signal by a strain gauge, whereby the force component can be extracted as an electrical signal of the strain gauge.
  • An optical sensor unit can be used instead of the strain gauge as an element for detecting the strain of the 6-axis force sensor elastic structure.
  • This elastic structure can be made less than 2 mm thick.
  • the strain stiffness matrix representing the relationship between the six-axis force (force and moment in the three-axis direction) acting on the elastic structure and the output of the strain gauge of each beam is obtained in advance by calibration.
  • the strain Stillness Matrix is a matrix that converts the strain gauge output of each beam into force. Acts on elastic structure from strain gauge output signal using strain stiffness matrix Yes 6-axis force can be calculated.
  • the elastic structure is housed in a casing, and a projection for connecting to the link mechanism is provided to form a link connection, and a signal extraction cable is attached to form a 6-axis motion sensor body.
  • the cable is connected to an external amplifier or the like.
  • the case has a substantially cylindrical shape, so that one handle for drawing operation can be attached, and the functional part of the tool such as the knife edge of a knife can be attached to the other surface.
  • the mounting surface should be a flat surface with a screw hole, and can be screwed with the mating flat flange. As mounting brackets, protruding ribs, threaded portions, etc. can be appropriately determined. It is also possible to create unevenness on the mounting surface for alignment with the other party and for preventing rotation.
  • the sensitive surface of the elastic structure is the surface to which the tool is attached.
  • the other side is fixed, 'If3 ⁇ 4 the input surface.
  • the motion-capture sensor can collect 3D spatial information, and the haptic sensor can present position information to the trainee.
  • the gripping part is the part that is actually held to the effect, and the part that corresponds to the handle of the private tool. This gripping part can also be used for processing a handle of an actually used tool. You can also create a shape similar to the pattern of an actual ⁇ equipment.
  • Pencils, pole pens, fountain pens, etc. usually use a variety of pens, but the patterns can be handled with standard patterns. Of course, it can also be manufactured from ⁇ .
  • the gripping part and the sensor body can be structured such that a standard gripping part can be directly coupled to the mounting surface of the sensor body part.
  • which is produced by processing the handle, can be handled by using a connector to connect the tip of the handle and the sensor body.
  • the length of the gripping part is within a range in which the length force S of the actual jig can be secured, and the length excluding the length of the region and the sensor body is subjected to processing such as cutting.
  • the functional part that is the actual part of the tool such as the pen tip of the writing tool, has a unique shape according to each tool, so it is not possible to form a joint structure directly on the functional part. It is not practical, and it is preferable to connect to the sensor main body through a connector.
  • the part that actually functions is secured, and the rear end part is cut and processed into a shape that fits the connector connection within the range that can secure the length close to the actual length of the tool.
  • the knife for ⁇ has various forces Even if the bladed part is 40 to 5 O mm, it is the part that is actually about 2 O mm from the tip part. It is desirable to be able to secure a sufficient force with a bladed part S, so a sufficient length can be secured including the part covered by the connector.
  • the connector should have a shape that fits the mounting surface of the sensor body. For example, 3 ⁇ 4 ⁇ of plane matching between planes has a plane.
  • the interlocking structure in which the surfaces of the flat flanges are brought into contact with each other and screwed together can prevent the gripping part and the tip side from wobbling and increase the fixing system, and it is easy to improve information accuracy.
  • the flange portion can be made thinner and the restriction on the position where the finger is actually pressed can be reduced.
  • the private part can devise a connection structure that matches the shape of each part. For parts with similar shapes, such as a knife for machining, process the H part It is possible to make a series!
  • a round bar, a flat bar and the like that can be used in common can be provided with a dedicated product having a joint structure with the sensor body.
  • a gripping part with a flange fixed to the tip of a round bar it is preferable to interpose a connector, like the working unit side, in the case of having a pallet for various uses such as a round hexagonal bar and a flat bar of different sizes. Even with this ⁇ , the handle can be processed into a shape suitable for the continuous structure.
  • the structure that connects the handle and the heel part is inserted between the split molds and pressed against the split mold with the receiving recesses and fixed, or the base is inserted into the hollow of the cylindrical split mold. Suitable for tightening, screwing, etc.! «Can be used.
  • the operating force data is sent to the amplifier and CPU via the cable and stored. Since the gripping part and the key part can be exchanged, it is possible to collect total data by making preparations according to 3 ⁇ 41 of various work tools required for one work.
  • the entire data required for one ⁇ I can be collected, and simulator development data can be obtained. It can also be installed in Haptec Interface, a telemedicine tool.
  • FIGS. 9, 10, 11, and 12 show examples of these tool-type force sensors.
  • Figure 9 uses a ⁇ I scalpel as a possible tool.
  • FIGS. 10 to 12 show an example of a pen 3 ⁇ 4J sense sensor. These codes are used as they are.
  • Fig. 13 shows an example in which these tool-type kake sensors are attached to the / h3 ⁇ 4 arm. As this / h3 ⁇ 4 arm, the same one as shown in Patent Document 10 can be used.
  • Fig. 4 shows the basic system configuration of the kaku presentation system.
  • the basic system is the input / output device described above, the Haboutique interface, the actual measurement calculation unit, the data recording unit, the model estimator, the model database ( ⁇ model database, the object model database), the virtual space calculation unit, the actual data model data calculation Part and a display part.
  • Data can be displayed in various formats by measuring and accumulating operation data by operating the above-mentioned tool-type sensor. For example, the operation data and the data of the past can be compared and displayed by displaying the operation data and the previously stated data in an overlapping manner. Visualizing operation data is indispensable for extracting skills tips.
  • Figure 5 shows an example of a three-dimensional display of fog and pen pressure (three-axis force) taken using a pen-type six-axis force sensor.
  • 1-2-2 Objects based on real data. Model building
  • the haptic presentation system of the present invention is positioned as a “next generation force presentation device” that records and reproduces the mechanical interaction between the body, the tool and the environment, and the configuration of the system is described.
  • the haptic presentation system of the present invention is that the mechanical interaction between the tool and the environment can be ruled out. 1) Visualization of the technique, 2) Construction of the object / environment model based on the actual measurement, 3) Extension of the haptic sense Reality can be presented.
  • Fig. 6 is a system diagram of virtual model construction by fungus ij. Manipulation is performed by using a tool-type sensor.
  • a pen type sensor attached to the tip of a haptic interface can be used to write characters on paper, or a female type sensor attached to the tip of a haptic interface can use a knife type sensor. Cut an object with a sensor, or press a button or switch on the tip link of a haptic interface.
  • the actual measurement calculation unit of the system measures the transversal force applied to the pen, scalpel, or tip link and the movement of the pen, scalpel, tip link during the creation of the object, and records them in the data storage device.
  • the reaction force that the object in the virtual space receives from the environment is calculated by the interaction calculation,
  • the reaction force is presented to Maneuver W by the Itku interface.
  • the physical properties of the object ⁇ in the real space can be reflected on the model of the virtual space on the spot and presented to the maneuver ⁇ .
  • the operation is transferred to an object different from the object previously used.
  • the physical characteristics I ⁇ raw of an object are different from the physical characteristics ( ⁇ raw of the object model boundary model previously described.
  • the panel panel coefficient is non-linear and is a function of the button push amount ⁇ X.
  • the panel coefficient of the textiles registered in the past is km (Ax).
  • the / net coefficient of the actual button is kr ( ⁇ ).
  • the reaction force f r felt when a person presses the real button is given by equation (1).
  • f r is the reaction force felt when a person presses the button.
  • is the amount of pressing of the button.
  • ⁇ X is measured by the haptic interface.
  • control unit generates a force f h corresponding to the push amount ⁇ X of the button by the equation (2) and presents it with gratitude.
  • the force fm felt by the operation is the sum of the reaction force fh generated by the Haboutique interface and the reaction force actually received from the button ⁇ r, and the panel coefficient kr ( ⁇ ) Despite pressing the actual button, you can feel as if you are pressing the button of the panel coefficient km ( ⁇ ), which was recognized in the past.
  • the panel features of the buttons and switches around you (not the raw «
  • Kikunori data and virtual data can be superimposed not only by pressing the button, but also by correcting the frictional characteristics between the pen and paper when writing characters with the pen, to improve the writing comfort of S (J This can be realized, or the impedance characteristics when cutting an object with a knife can be modified to create a different cutting sensation, for example, the impedance characteristics when a human skin is touched with a knife are recorded in advance.
  • FIG. 8 is a system configuration diagram that realizes superimposition of measured data 'virtual data'.
  • Manipulation is performed on difficult objects using a haptic interface.
  • a pen type sensor attached to the tip of a optic interface can be used to write text on paper, or a female sensor attached to the tip of a haptic interface can be used as a knife type sensor. Cut the object with the sensor or press the button or switch with the tip link of the pttic interface.
  • the actual measurement calculation unit of the control unit of the system measures the worm power applied to the pen, scalpel, or tip link and the movement of the pen, scalpel, tip link during the operation of the material, and the data is stored in the data storage device. Is done.
  • the lotus movement of the two / le-type motion sensor which is the operation of the Haboutique interface, is also used to operate the object model in the virtual space, and the interaction computing power between the object and the chain in the virtual space s rows Is called.
  • the following two methods for superimposing difficult IJ data and thought data there are the following two methods for superimposing difficult IJ data and thought data.
  • reaction force calculated from the model and the fungus IJ in the overlay process
  • modified reaction force is calculated by directly comparing the reaction force.
  • buttons press This is a method that does not estimate the physical parameters of the actual sentence.
  • the amount of button press . ⁇ X is input to the virtual space from the haptic interface and calculated by the formula 111 (4) in the virtual space interaction calculation. Is input.
  • the reaction force fr when the actual button measured by the control unit is pressed is input to the superposition processing unit (Fig. 8 (a)).
  • the reaction force f h is calculated by equation (5) and input to the haptic interface as an interaction correction amount.
  • the haptic interface can present the reaction force fh in Eq. (5) to the maneuver.
  • the maneuver is the reaction force fh generated by the haptic interface, and the sum of the reaction force fr actually received from the button is the reaction force. feel.
  • the second is an object calculated from the model in the overlay process.
  • the ⁇ physical parameter and the physical parameter calculated in real time by the model estimator using the chrysanthemum data are compared and corrected.
  • the force is calculated.
  • the push amount ⁇ X when the button is actually pressed in the haptic interface is punishable.
  • the amount of indentation ⁇ that has been shojed is input to the virtual space, the button panel count kni (A X) is calculated by the virtual space interaction calculation, and input to the overlay process.
  • the panel estimator kr (A x) of the real buttons is calculated by the model estimator using the Kikuchi rule data from the haptic interface and input to the overlay process (Fig. 8 (b)).
  • the button push amount ⁇ ⁇ is input to the overlay process (Fig. 8 (a)).
  • the reaction force fh is calculated by the calculation of equation (6) and input to the haptic interface as an interaction correction amount.
  • the haptic interface has the reaction force fh in equation (6) By presenting to the operation, the operation feels as the reaction force the sum of the reaction force fh generated by the haptic interface and the reaction force fr actually received from the button.
  • FIG. 14 shows examples of the handwriting and pressure (triaxial force) displayed in 3D.
  • the data of subject ⁇ is shown in Fig. 14 with the viewpoint changed from ⁇ 1 to Q5
  • the data of subject w is shown in Figure 15 with the viewpoint changed to w1 to w5 .
  • the perspectives of both figures are the same, and the image display is the right rotation with 11 1 as 0 °, with the axis of the force Takana character “i” as the axis.
  • nl is displayed from the front with respect to the paper surface, (2) 11 2 is displayed at 3 6 °, (3) 11 3 is displayed at 7 2 °, (4) n 4 is 1 0 8 ° Waved display, (5) n 5 is 1 4 4 The same is true for w1 to w5.
  • Fig. 16 shows an example of the display using n2.
  • the strength and direction of writing pressure are displayed as a three-dimensional vector as a hairline, and the speed at which the brush is carried is represented by the spacing between the hairlines. The shorter the hairline spacing force S, the slower the brush strokes.
  • the * of subject n shown in Fig. 1.4 is a slow carrying with strong writing pressure
  • the subject S shown in Fig. 15 has a low writing pressure and fast carrying.
  • the direction in which the pen pressure is applied is also indicated by the hairline.
  • such an actual handwriting can be displayed by changing the viewpoint three-dimensionally, and can also be displayed in comparison with each other.
  • the model of the subject n is used as a model, it is possible to present a sense of comparison with the subject w.
  • paper with different conditions can be set to build model handwriting for subject n, and subject w can present a sense of movement under the cow.
  • the present invention it is possible to acquire operation data using a hand tool that is very close to the actual operation, in a model that is close to the actual experience while operating, and to train for the presentation of force compared with the model. Can do. Alternatively, you can improve your proficiency by leaving your operating staff.
  • the haptic presentation system proposed in the present invention is composed of a tool-type sensation sensor using a tool with a / 3 ⁇ 4 arm (see FIG. 3). This makes it possible to measure the mechanical interaction between the tool and the environment in addition to the ability to provide haptic data.
  • the haptic data when the ⁇ / button is pressed is expressed 3 ⁇ and reflected in the virtual space on the spot and presented to the operation Indicates.
  • Fig. 17 shows the virtual space model used in the push button data recording and playback experiment.
  • the press button is represented by a cylinder described by ⁇ r [mm] and height h [mm], and has a stroke s [mm] as an attribute.
  • Fig. 17 represent the proxy indicated as the action point of the tool sensor, and move in the virtual space in conjunction with the movement of the haptic interface. If you operate the two / le-type sensor and press the virtual space button with proxy, the button will be pressed within the stroke range of the button.
  • Figure 18 shows data that records the displacement and reaction force of the button when the button is pressed in the haptic interface.
  • Figure 1 8 is the Ha boutique interface key board This is the Force-Displacement curve when the (ELECOM TK-U12FYALBK) key is pressed.
  • the upper curve in Fig. 18 is the data when the key is pressed, and the lower curve is the data when the key is released. In this way, the Force-Displacement curve when the button is pressed becomes a different curve when the button is pressed and when it is released, and hysteresis is drawn.
  • the Force-Displacement curve was constructed by discretizing the displacement of the button at regular intervals and calculating the reaction force against the displacement by using the distance between the sampling data lines.
  • the maximum displacement of the Force ⁇ Displacement curve was used as the virtual button stroke.
  • the reaction force of the recorded button data was divided into the following five conditions (represented in Equations 7 to 11) based on the proxy and virtual button removal status, and ⁇ .
  • f f release—max
  • f the force that the haptic interface will present to the user, f press and f release are respectively
  • the force at the time of pressing and releasing from the Force-Displacement curve ( Figure 18)
  • Kp, ⁇ are servo gains
  • is the displacement after reaching the bottom of the button
  • Vc is the speed in the direction of pressing the button
  • frelease-max is the maximum value of frelease.
  • Figure 19 shows the data during button data playback.
  • Fig. 19 (a) shows the displacement of the virtual button when the user manipulates the virtual interface and presses the virtual button
  • Fig. 19 (b) shows the force presented to the user by the Haboutique interface
  • Fig. 19 ( c) shows the relationship between the virtual button operation displacement and the presentation force.
  • the peak in Fig. 9 (b) is when proxy reaches the bottom of the button. The feeling of data reproduction was satisfactory when proxy was within the stroke range of the button.
  • buttons press data used as an example of “virtual model construction based on actual measurement”.
  • the playback results are all online based on the data.
  • the button data in front of me was reflected in the virtual space and presented to the user.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • User Interface Of Digital Computer (AREA)
  • Manipulator (AREA)
  • Position Input By Displaying (AREA)

Abstract

A reaction force presentation method compares a virtual model built in a computer to an actually measured output value obtained from Haptic interface having a tool-type force sensor so as to obtain a difference and presents the difference to an actual article operation tool. The method calculates a difference between a reaction force applied to the virtual model in accordance with an operation amount and a reaction force applied to the actual operation tool and presents the difference as a reaction force. A force presentation system capable of recording and reproducing Haptics is also disclosed.

Description

明細書  Specification
反力提示方法、 およびカ覚提示システム  Reaction force presentation method and katsu sense presentation system
技術分野  Technical field
本発明は、 教習や訓練に主に用いられるハプテイクス (Haptics) の言 と再生がで きるカ覚提示システムに関する。 ハプテイクス (Haptics) とは、 触覚センサの情報と 運動情報の組み合わせのことをいう。  The present invention relates to a haptics presentation system capable of reproducing and reproducing haptics mainly used for teaching and training. Haptics are a combination of tactile sensor information and motion information.
具体的には、実際に人が物を操作したときの操作データ (操作力と運動)が計測'再 生できるカ覚提示システムである。特に、人が手で扱うツールの操作データが記録 ·再 生できるシステムに関する。 背景技術  Specifically, this is a katsu sense presentation system that can measure and reproduce operation data (operation force and movement) when a person actually operates an object. In particular, it relates to a system that can record and play back operation data of tools handled by humans. Background art
18世紀の産業革命により始まった工場制 «ェ業は、 高度な製品を安価に供給する 流れを作り、現在の科学技術の進歩と実生活に著し V、改革をもたらした。これは技能者 の技を «に置き換える歴史でもあった。 しかしながら、物やサービス全て力 S 化さ れたわけでなく、人間が灘より優秀な分野は、現在でも分析と纖化への努力力 S紘镜 されている。観化を当面困難な技能は、人への伝承に、その訓練法等力 S継続研究され ている。  The factory system that began with the industrial revolution in the 18th century created a trend to supply advanced products at a low cost, and markedly advanced the current scientific and technological progress and real life. This was also the history of replacing the skill of a technician with «. However, not all goods and services have been developed, and areas where humans are better than ever are still making efforts to analyze and incubate. Skills that are difficult to visualize for the time being are handed down to the passing on to people.
従来から手先を使用した技能の訓練、修得に関する教習具や訓^ g置は種々提案され ている。手本ゃ歸者の形を視覚的にまねることはできても、力のいれ具合まで修得す. ることは難しい。近年、熟練者の操作データを取得してモデルを構築する発明や、構築 されたモデルと訓練者の操作とを比較する発明力 S験されている。 これらのモデルは、 コンピュータの中に対象物(人体)を再現した 想モデルであり、訓練者はディスプレ ィに表示された »を に仮想空間において操作具を操ってシュミレーションする。 また、人體造を詳細に再現した医療用マネキンなどの模型を使用する方法がある。従Conventionally, various training tools and lessons about skill training using hands have been proposed. Even though the model can visually imitate the shape of the eunuch, it is difficult to master the power. In recent years, there have been inventions for building models by acquiring operation data of skilled workers, and inventions for comparing the constructed models with the operations of trainees. These models are imaginary models that reproduce the object (human body) in the computer, and the trainer simulates by operating the operation tool in the virtual space from the »displayed on the display. There is also a method of using a model such as a medical mannequin that reproduces the details of human fabrication. Obedience
¾ ^されている発明では、模型を使ったとしても、 ^/との差が する。一方、本 発明者は操作データの入力精度を向上させる指装着型のカ覚センサゃカ覚センサを搭 載した操作具あるいはカ覚を^ fに提示する発明を験した。本発明では、訓練に使用 される (^物や訓練用模型を含む)の条件を加味した、カ覚を訓練者に提示する ことによって、 よりリアルな訓練、 修得ができるシステムを提案するものである。 具体的な、 先行文献は各種あるが例えば次の例をあげることができる。 ¾ In the invention being ^^, even if a model is used, there is a difference from ^ /. On the other hand, the present inventor has experimented with an operation tool equipped with a finger-mounted type kaku sensor that improves the accuracy of operation data input, or an invention that presents a knot to the camera. The present invention proposes a system that can provide more realistic training and learning by presenting the sense of kin to the trainee, taking into account the conditions used for training (including objects and training models). is there. There are various specific prior documents, but the following examples can be given.
特許文献 1 (特許第 3802483号公幸艮) 書道学習支援システム、  Patent Document 1 (Patent No. 3802483 No. Koyuki) Calligraphy learning support system,
特許文献 2 (特開 2005— 287656号公報)力触覚を活用した毈冶療訓練シス テム  Patent Document 2 (Japanese Patent Laid-Open No. 2005-287656) Acupuncture training system using force and touch
特許文献 3 (特開 2005— 189297号公報)力触覚を伴う葡治療訓練システ ム  Patent Document 3 (Japanese Patent Laid-Open No. 2005-189297) Acupuncture training system with force sensation
特許文献 4 (特開 2000— 259074号公幸艮) 道具某介型のカ覚提示システム 特許文献 5 (特開平 10— 91327 号公報) 描画装置  Patent Document 4 (Japanese Unexamined Patent Publication No. 2000-259074) A tool-introducing-type haptic presentation system Patent Document 5 (Japanese Unexamined Patent Publication No. 10-91327) Drawing device
特許文献 6 (特開 2004— 213351号公報)カ覚提示装置およぴカ覚提示シス テム  Patent Document 6 (Japanese Patent Application Laid-Open No. 2004-213351) Katsu sense presentation device and Katsu sense presentation system
特許文献 7 (特開 2002-132138号公幸艮) 硬麟穿刺シュミレータ 嫌己特許文献 7は、旧来の訓練用の モデルである。特許文献 1〜6は、 コンビュ ータ仮想空間で物体を操作する訓練手法が開示されて、低想空間での反力を提示して 、 るが、 実操作データ する物を操作したときの と力) の言 能はない。 本発明者は操作データの入力精度を向上させる指装着型のカ覚センサゃカ覚センサ を搭載した操作具あるいは力覚を雜に提示する発明を した。  Patent Document 7 (Japanese Patent Application Laid-Open No. 2002-132138) Stiff puncture simulator Patent Document 7 is an old training model. Patent Documents 1 to 6 disclose a training method for manipulating an object in a converter virtual space, presenting a reaction force in a low-minded space, but when manipulating an object for actual operation data. There is no function. The inventor of the present invention has invented an operation tool equipped with a finger-fitted kap sensor that improves the input accuracy of operation data or presents a force sense.
特許文献 8 (特許第 3261653号公報) 指装着型 6軸カ覚センサ 特許文献 9 (特許第 3 4 0 9 1 6 0号公報) 把握データ入力装置 Patent Document 8 (Patent No. 3261653) Finger-mounted 6-axis force sensor Patent Document 9 (Patent No. 3 4 0 9 1 60) Publication data input device
特許文献 1 0 (特許第 3 6 2 4 3 7 4号公報) カ覚提示装置 Patent Document 1 0 (Patent No. 3 6 2 4 3 7 4)
特許文献 1 0は、 i空間で物体を操作したときの反力提 能と、実操作データ (実 在する物を操作したときの運動と力)の記録機能を設けたものである。指で物体を操作 したときの操作データの言 と再生が可能なもので、ツールの操作データを記録'再生 する機能はない。具体的には、特許文献 1 0で開示した装置でツールを操った場合、指 先カ覚センサの合力により、ツールに作用する操作力の計測は可能であって、指の運動 は計測できる力 ツールの運動を計測することまではできない。 この発明は、指の運動 からはツールの運動を計測することはできない。例えば、人がペンを持った^ \ペン の中心軸に沿った方向の把持拘束は不定となり、ペンの中心軸方向の運動は計測するこ とができな 、。特許文献 1 0に開示された具体的な反力提 構は次のようなものであ る。  Patent Document 10 provides a reaction force function when an object is operated in i-space and a function for recording actual operation data (movement and force when an existing object is operated). It is possible to say and play back operation data when an object is operated with a finger, and there is no function to record and play back tool operation data. Specifically, when the tool is operated with the device disclosed in Patent Document 10, the operating force acting on the tool can be measured by the resultant force of the fingertip sensor, and the finger movement can be measured. You can't even measure tool movement. In this invention, the movement of the tool cannot be measured from the movement of the finger. For example, when a person holds a pen, the grasping restraint along the central axis of the pen is indefinite, and the movement of the pen in the central axis direction cannot be measured. The specific reaction force mechanism disclosed in Patent Document 10 is as follows.
特許文献 1 0に開示された発明は、指に装着できるカ覚センサ、マニピュレータ、ベ ースおよび制御装置を備えたカ覚提示装置であって、上記べースは、外部固 附に固 定可能又は上記力 示装置の使用者の手に装着可能であり、 上記マ-ピュレータは、 ァクチユエータと角度検出センサから成る能動関節、角度検出センサのみから成る受動 関節、およびリンクを備えており、上記ァクチユエータおよび角度検出センサは、夫々 リンク機構を構成するリンクとリンクの枢支部および上記リンクとベースの枢着部に 選択的に取り付けられており、上記角度検出センサにより上記リンク機構の動きを計測 することにより の 37元運動を計測できるとともに、上記カ覚センサにより人間の 指先の劍虫カを計測することができ、上記ァクチユエータは、指先に提示しようとする カ覚と上記カ覚センサの出力値との差に基づレ、て上記制御装置で制御され、カ覚を指先 に提示することを難とするカ覚提示装置を難する。 上記ァクチユエータは、直流 βモータ又は交流 W)モータとしてもよい。又、上記 角度検出センサは、 ポテンショメータ又はエンコーダとしてもよい。 The invention disclosed in Patent Document 10 is a knot presentation device that includes a knot sensor, a manipulator, a base, and a control device that can be worn on a finger, and the base is fixed to an external fixation. The above-mentioned mapper has an active joint composed of an actuator and an angle detection sensor, a passive joint composed of only an angle detection sensor, and a link. The actuator and the angle detection sensor are selectively attached to the link and the link pivot supporting portion and the link and base pivot mounting portion, respectively, which constitute the link mechanism, and measure the movement of the link mechanism by the angle detection sensor. In addition, it is possible to measure the 37 yuan movements of the human body, and to measure the worms on the human fingertips with the above-mentioned haptic sensor. Based on the difference between the haptic to be presented to the fingertip and the output value of the gustatory sensor, the haptic presentation device that is controlled by the control device and difficult to present the haptic to the fingertip is difficult. To do. The above-mentioned actuator may be a DC β motor or an AC W) motor. Further, the angle detection sensor may be a potentiometer or an encoder.
図 2 0に示すとおり、本カ覚提示装置は、人間の指にはめることのできるカ覚センサ 1、 /h マニピュレータ 2、 ベース 3から構成される。  As shown in FIG. 20, the present knot presentation device is composed of a kull sensor 1, a / h manipulator 2, and a base 3 that can be fitted to a human finger.
図 2 1に、本発明のカ覚提示装置で使用するカ覚センサ 1の構成を示す。カ覚センサ 1は、図 2 1に示すとおり、指サック 2 0、弾性構造体 2 1、指カバー 2 2、 リンク結 合部 2 3力ら構成される。なお、図 2 0〜 2 1に記載された符号は、特許文献 1 0に記 載された符号を援用するものであって、本願発明に関する符号とは関係しな ヽ。  FIG. 21 shows the configuration of the katsu sensor 1 used in the katsu presentation device of the present invention. As shown in FIG. 21, the force sensor 1 includes a finger sack 20, an elastic structure 21, a finger cover 22, and a link coupling portion 23. Note that the reference numerals described in FIGS. 20 to 21 refer to the reference numerals described in Patent Document 10 and are not related to the reference numerals of the present invention.
弾性構造体 2 1は、特定のカ覚成分に対して歪み易レ、構造をもっている。図 2 2に弾 性構造体 2 1の一例を示す。これは、基部 3 0と周辺リング 3 1を 3本のビーム 3 2を 介して連結したもので、 ビーム 3 2の各面には歪みゲージ 3 3が貼られている。  The elastic structure 21 has a structure that is easily distorted with respect to a specific haptic component. Figure 22 shows an example of the elastic structure 21. In this case, a base 30 and a peripheral ring 31 are connected via three beams 3 2, and a strain gauge 33 is attached to each surface of the beam 3 2.
この弾性構造体 2 1に外力がはたらくと、外力成分に応じてビーム 3 2が歪む。この 歪みを歪みゲージ 3 3により電気信号に変換することにより、カ覚成分を歪みゲージ 3 3の電気信号として取り出すことができる。  When an external force is applied to the elastic structure 21, the beam 32 is distorted according to the external force component. By converting this strain into an electrical signal by the strain gauge 33, the sense component can be taken out as an electrical signal of the strain gauge 33.
弾性構造体 2 1に作用する 6軸力(3方向の力とモーメント) と各ビームの歪みター ジの出力の関係を表す歪みスティフネス行列は予めキヤリブレーションにより求めら れている。歪みスティブネス行列とは、各ビームの歪みゲージの出力をカ覚に変換する 行列である。歪みスティフネス行列を用い、歪みゲージの出力信号から、弾性構造体 2 1に作用する 6軸力を計算により求めることができる。  The strain stiffness matrix representing the relationship between the six-axis force (force and moment in three directions) acting on the elastic structure 21 and the output of the distortion stage of each beam is obtained in advance by calibration. The strain Stillness Matrix is a matrix that converts the strain gauge output of each beam into a knot. Using the strain stiffness matrix, the 6-axis force acting on the elastic structure 21 can be calculated from the output signal of the strain gauge.
指カバー 2 2は、実際に物体と触れる部分で、取付けブロック 2 4を介して弾性構造 体 2 1の周辺リング 3 1と連結している。 リンク結^ ¾ 2 3は、指カバー 2 2と連結し ており、 カ覚提示装置の/ マニピュレータ 2と連結する。  The finger cover 2 2 is the part that actually touches the object, and is connected to the peripheral ring 3 1 of the elastic structure 2 1 via the mounting block 2 4. The link connection ¾ 2 3 is connected to the finger cover 2 2, and is connected to the manipulator 2 of the haptic device.
指先にカ覚を提示するためには、能動関節の数は提示したレ、カ覚成分と同数以 、要 となる。従って、指先に 3軸の力のみを提示する ¾ ^には、必要な能動関節の数は 3以 上となり、 6軸力全てを提示する齢には、 必要な能動関節の数は 6以上となる。 能動関節の自由度の配置は、小型マ二ピュレータ 2の先端が提示した!/、カ覚成分の全 ての方向に運動が生成できるように配置される。受動関節は、 /JN マニピュレータ 2の 先端が能動関節の自由度のみで人間の指の 51»に追従できないときに必要となる。受動 関節の数は、人間の指の自由度の数と、人間の指の自由度と一s る能動関節の数の差 となる。 In order to present a sensation at the fingertip, the number of active joints is equal to or greater than the number of les and sensation components presented. It becomes. Therefore, the number of active joints required is 3 or more when only 3 axis forces are presented to the fingertip, and the number of active joints required is 6 or more at the age of presenting all 6 axis forces. Become. The arrangement of the degrees of freedom of the active joints was presented by the tip of the small manipulator 2! /, Placed so that motion can be generated in all directions of the haptic component. The passive joint is required when the tip of the / JN manipulator 2 cannot follow the human finger 51 »only with the degree of freedom of the active joint. The number of passive joints is the difference between the number of degrees of freedom of human fingers and the number of active joints equal to the degree of freedom of human fingers.
そして、 これらの能動関節、受動関節によって、 リンク機構を構成するリンク 6を連 結している。  These active joints and passive joints connect the links 6 constituting the link mechanism.
本発明のカ覚提示装置の基本原理は以下の通りである。本カ覚提示装置のカ覚センサ 1の指サック 2 0に指 1 2を挿入し、 /J Mマ二ピュレータ 2を駆動すると、能動関節の 数に応じて人間の指先 1 2に力を加えることができる。この/ JN¾マエピユレータ 2が指 先 1 2に加えた力は、 指先に装着した 6軸カ覚センサにより検出される。  The basic principle of the knot presentation device of the present invention is as follows. When the finger 1 2 is inserted into the finger sack 2 0 of the kart sensor 1 of this knot presentation device and the / JM manipulator 2 is driven, a force is applied to the human fingertip 1 2 according to the number of active joints. Can do. The force applied to the fingertip 12 by the / JN¾Maepiulator 2 is detected by a 6-axis knuckle sensor attached to the fingertip.
計«内部に構築した仮想モデルに基づき、計算機により与えられる目標力と、 / マニピュレータ 2により人間の指先 1 2に加えられる力が等しくなるように、 6軸カ覚 センサ 1の出力をフィードバックしながら / マユピュレータ 2を制御することで、人 間の指先 1 2にカ覚を提示することができる。  Based on the virtual model built inside, the target force given by the computer and the force applied to the human fingertip 1 2 by the manipulator 2 are fed back while feeding back the output of the 6-axis motion sensor 1 / By controlling the MAUPULATOR 2, it is possible to present a sensation to the human fingertip 1 2.
計難の内部には、仮想物体 1 0と、その仮想物体 1 0を操作する 想的な指 9 (以 後、仮想指と呼ぶ)力 S構築されている。仮想指 9は、カ覚提示装置の指先の運動に応じ て計算機内咅 βの仮想、世界を自由に運動することができる。  Inside the plan, there is a virtual object 10 and an ideal finger 9 (hereinafter referred to as a virtual finger) force S that operates the virtual object 10. The virtual finger 9 can freely move in the virtual world of the computer screen β according to the movement of the fingertip of the haptic device.
人間は、カ覚提示装置のカ覚センサ 1に指を挿入し、指を動かす。 このとき、 マ -ピユレータ 2の角度検出センサ 5の角度データを用い、指先位置'指先速度が計算さ れる。その指先位置 ·指先獻のデータに応じて仮想指 9は計 «内部の仮想空間内を 運動する。その結果、仮想指 9はカ覚提示装置を装着した人間の指 1 2によって操られ る。 A human inserts a finger into the katsu sensor 1 of the katsu presentation device and moves the finger. At this time, the fingertip position'fingertip speed is calculated using the angle data of the angle detection sensor 5 of the coupler 2. Depending on the data of the fingertip position and fingertips, the virtual finger 9 Exercise. As a result, the virtual finger 9 is manipulated by a human finger 12 wearing a knot presentation device.
計籠は、 仮想指 9力 S仮想世界を運動したり、 仮想物体 1 0を操作しているときに、 仮想指 9に作用するカ覚を計算する。この計算されたカ覚は、 マニピュレータ 2の 力制御の目標値として与えられる。  The gauge calculates the sense of force acting on the virtual finger 9 when moving the virtual finger 9 force S virtual world or operating the virtual object 10. This calculated force is given as a target value for force control of the manipulator 2.
計算機により計算された目標力は、カ覚提示装置の 6軸カ覚センサ; Lのカ覚データと 比較され、その差がゼロとなるように、 / Mマニピュレータ 2のァクチユエータ 4に与 える指令値が計漏により計算される。計算された指令値は、計籠からァクチユエ一 タ 4のサーポドライバに出力され、指先の 6軸カ覚センサ 1のカ覚データが目標力に収 束するようァクチユエータ 4が駆動される。  The target force calculated by the computer is compared with the 6-axis motion sensor of the motion display device; the command value given to the actuator 4 of the M manipulator 2 so that the difference is zero. Is calculated due to the total loss. The calculated command value is output from the meter to the servo driver of the actuator 4, and the actuator 4 is driven so that the motion data of the 6-axis motion sensor 1 at the fingertip is converged to the target force.
'これより、指の運動により計算機内部の仮想、指 9を操り、計算機は仮想指 9の運動に 応じて仮想指 9に作用するカ覚を計算し、そのカ覚を目標力として/ マニピュレータ 2を力制御することで、操Wの指先にあたかも仮想物体が難し、操作しているかの ように感じさせることができる。  'From now on, the virtual finger 9 inside the computer is manipulated by the movement of the finger, and the computer calculates the haptic that acts on the virtual finger 9 according to the movement of the virtual finger 9 and uses that sensation as the target force / manipulator 2 By force-controlling, it is possible to make it feel as if the virtual object is difficult to operate at the fingertip of the operation W and that it is operating.
従来のカ覚提示システムは、図 1に示すようにハプティックインタフェース、物体モ デル(物体モデル ·ライプラリー)、環境モデル モデノレ ·ライブラリー)、仮想空 間、表示装置から構成されている。ハブティックインタフェースは複数のリンクとジョ イントで構成した小型ロボットアームを用いることが多く、ハブティックインタフエ一 スの動きと 想空間内の物体の動きは連動している。人はハプティックインタフェース の先端を手に持つて操作することにより、 想空間内の物体を操作することができる。 システムは、予め構築された物体モデルと難モデルを 想空間に配置する手段を有し. 操ィ«は表示装置に表示された仮想空間内の物体を見ながらハプテイツクインタフエ ースを用いて仮想空間の物体を操作する。このときシステムは仮想物体と仮想^^との 翻虫を判定して翻虫力を計算し、ハブティックインタフェースのァクチユエータの発生 トルクを制御することで、繊虫カを人に提示する。 As shown in Fig. 1, a conventional katsuomi presentation system consists of a haptic interface, an object model (object model / library), an environmental model model / library), a virtual space, and a display device. The Haboutique interface often uses a small robot arm composed of multiple links and joints, and the movement of the Haboutique interface and the movement of objects in the virtual space are linked. A person can operate an object in the virtual space by holding the tip of the haptic interface in his hand. The system has a means to place pre-built object models and difficult models in the virtual space. The operation uses the haptic interface while looking at the objects in the virtual space displayed on the display device. To manipulate objects in virtual space. At this time, the system uses virtual objects and virtual ^^ By determining the transversal force, calculating the transversal force, and controlling the torque generated by the actuator of the Haboutique interface, the worm is presented to the person.
従来のカ覚提示システムは、あくまで仮想空間の物体を操作するもので、 する物 体の操作データを言藤する機能はなレ、  Conventional katsu presentation systems only operate objects in the virtual space, and do not have a function to say the operation data of the objects.
本発明者は、さらに研究開発を続け、より精度を向上した指装着型の 6軸カ覚センサ (特願 2006— 205781号)及び 6軸カ覚センサ用把持型ツール(特願 2006 一 205780号) を提案した。 ·  The present inventor continued further research and development, and improved the accuracy of the finger-mounted 6-axis force sensor (Japanese Patent Application No. 2006-205781) and the 6-axis force sensor gripping tool (Japanese Patent Application No. 2005-205780) ) Was proposed. ·
[特許文献 1]特許第 3802483号公報  [Patent Document 1] Japanese Patent No. 3802483
[特許文献 2]特開 2005-287656号公報  [Patent Document 2] JP-A-2005-287656
[特許文献 3]特開 2005-189297号公報  [Patent Document 3] JP-A-2005-189297
[特許文献 4]特開 2000— 259074号公報  [Patent Document 4] Japanese Unexamined Patent Publication No. 2000-259074
[特許文献 5]特開平 10— 91327 号公報  [Patent Document 5] JP-A-10-91327
[特許文献 6]特開 2004-213351号公報  [Patent Document 6] JP 2004-213351 A
[特許文献 7]特開 2002-132138号公報  [Patent Document 7] JP 2002-132138 A
[特許文献 8]特許第 3261653号公報  [Patent Document 8] Japanese Patent No. 3261653
[特許文献 9]特許第 3409160号公報  [Patent Document 9] Japanese Patent No. 3409160
[特許文献 10]特許第 3624374号公報 発明の開示  [Patent Document 10] Japanese Patent No. 3624374 Disclosure of Invention
発明が角早決しようとする画  An image that the invention is about to make a quick decision
本発明は、 ハプテイクス (Haptics) の «と再生ができるカ覚提示システムを することを目的とする。例えば、人が手で扱うツールの操作データを講し再現できる ので、冒川練に使用される実環境(纖物や訓練用模型を含む) の射牛を加味した、カ覚 を訓練者に提示することによって、より実際に則した訓練、修得ができるシステムを提 案するものである。 これにより技能の が可能となる。 An object of the present invention is to provide a haptic presentation system that can reproduce haptics. For example, since the operation data of tools handled by humans can be taken and reproduced, it is possible to take advantage of the actual environment (including fleas and training models) used for the blasphemy training. By presenting this to the trainer, we propose a system that enables more practical training and acquisition. This will enable skills.
Ι¾ を角?決するための手段  Means for deciding Ι¾
( 1 )コンピュータ内部に構築した仮想モデルとツール 覚センサを備えたハプティ ックインタフエースから得られた難!!出力値とを比較して^を求めノ、プテイツクイ ンタフエースに該¾ ^を提示する反力提示方法であって、  (1) Difficulty obtained from a virtual model built inside a computer and a haptic interface equipped with a tool sense sensor !! Compare the output value to find ^, and present ¾ ^ to the tactics interface A reaction force presentation method,
操作量に応じて仮想モデルが受ける反力とハプテイツクインタフエースの先端に取 り付けたツール型カ覚センサが実 から受ける菊則された反力との ¾ ^を算出し、.該 ¾ ^を反力として提示することを樹軟とする反力提示方法。  Calculate ¾ ^ between the reaction force received by the virtual model according to the amount of operation and the reaction force that was actually applied to the tool-type motion sensor attached to the tip of the haptic interface. A reaction force presentation method that uses ^ as a reaction force.
( 2 )コンピュータ内部に構築した仮想モデルとツール型カ覚センサを備えたハプティ ックインタフエースから得られた菊則出力値とを比較して を求め、ハプテイツクイ ンタフエースに該^ «を提示する^!提示方法であって、  (2) Comparing the virtual model built inside the computer and the Kikunori output value obtained from the haptic interface with the tool-type katsu sensor, finds the value and presents it to the haptics interface. The presentation method,
仮想モデル構築状況とは環境因子あるいはツール因子を変更した状況でのハプティ ックインタフエースを操作した ¾ ^に、 想モデルが操作量によつて受けると算出され た量と実測値の を修正して出力して提示する反力とすることを特徴とする反カ提 示方法。  The virtual model construction status is the result of operating the haptic interface when the environmental factors or tool factors are changed. A reaction force presentation method characterized in that the reaction force is to be output and presented.
( 3 )ツール型カ覚センサを備えたハプティックインタフエース及び制御装置を備えた カ覚提示システムであって、  (3) A haptic interface equipped with a tool-type haptic sensor and a haptic presentation system equipped with a control device,
ツール型カ覚センサを備えたハプテイツクインタフエースは、ツール型カ覚センサと ツール型カ覚センサに連結されるマニピュレータから構成され、  A haptic interface with a tool-type sensor is composed of a tool-type sensor and a manipulator connected to the tool-type sensor,
ツール型カ覚センサは、ツール機能部と把歸 と、ツール機能部と把持部の間にカ覚 センサ本体を有しており、  The tool type sensor has a tool sensor part and a handle, and a tool sensor part between the tool function part and the grip part.
マニピュレータは、ツール型カ覚センサの 3次元運動を計測できるとともに、ァクチ ユエータに,画されて、嫌己ツール型カ覚センサを把持した操脾にカ覚を提示する機 能を有しており、 The manipulator can measure the three-dimensional motion of the tool-type sensor and It has the function of presenting the sensation to the spleen that has been drawn by the user and holds the disgusting tool type sensation sensor,
制御装置は、 実測演算部、 データ記憶部、 モデル推定器、 物体モデルデータベース、 纖モデルデータベース、物体モデルと謹モデルと相互作用演算部からなる仮想空間 演算部、重ね合わせ処理部及び表示部から構成され、  The control device consists of an actual measurement operation unit, data storage unit, model estimator, object model database, 纖 model database, virtual space operation unit consisting of object model, 謹 model and interaction operation unit, overlay processing unit and display unit And
該制御装置は、ハプテイツクインタフェースの操作による菊則値に基づ ヽて仮想纖 内の仮想モデルを操作する機能と、ハプテイツクインタフエースを操ィ钟る際に操 に対して提示する修正したカ覚を計算する機能を有し、  The control device presents a function for manipulating the virtual model in the virtual cage based on the chrysanthemum value by manipulation of the haptic interface and the manipulation when manipulating the haptic interface. It has a function to calculate the corrected katsu sense,
修正したカ覚の提示は、ハプテイツクインタフエースの操作によつて得られる実操作 量を予め既に構築されている iモデルに対して直接操作量として入力し、仮想空間内 の仮想物体同士あるいは仮想物体と仮想慮境との間の相互作用演算により反力を計算 し、ツール ϋ¾覚センサの操作による難 ij値から得られた反力データとを重ね合わせて 処理部にて重ね合わせ処理して差分を算出し、環境変化の因子やツールの変更の因子を 加味することなくその を修正反力として提示することで、ハプテイツクインタフエ ースによりつくられた修正反力と実環境から受ける反力をカ卩えた力覚を操 に提示 すること、あるいは、修正したカ覚の提示は、難変化あるいはツールを変更した齢 は、変化因子を加味した相互作用修正量を加味したカ覚を提示するものであって、仮想 モデルが势則操作量によって受ける反力と廳己難阪カとの差を修正量とし、実環境か ら受ける反力と変化因子を加味した修正反力をカ卩えて操 にカ覚を提示することを 糊敷とするカ覚提示システム。  In the presentation of the corrected katsu, the actual operation amount obtained by the operation of the haptic interface is directly input as an operation amount to the i model that has already been constructed, and virtual objects in the virtual space or The reaction force is calculated by calculating the interaction between the virtual object and the virtual environment, and the reaction force data obtained from the difficult ij value by the operation of the tool ϋ¾ sensor is superimposed and processed by the processing unit. By calculating the difference and presenting it as a modified reaction force without taking into account the factors of environmental changes or tool changes, the modified reaction force created by the haptics interface and the actual environment Presenting a sense of force that reflects the reaction force received, or presenting a corrected sense of force is difficult or the age at which the tool was changed depends on the amount of interaction modification that takes into account the amount of interaction modification. Offer The difference between the reaction force that the virtual model receives due to the rule operation amount and the difference between the reaction force received from the real environment and the correction reaction force that takes into account the change factor is calculated. A katsu sense presentation system that uses glue to present a katsu sense to the operation.
(4) 6軸カ覚センサを備えたツール 覚センサは、 6軸カ覚センサ本体に対してッ ール機能部あるレ、は把持部を着脱交換可能としたことを頻数とする( 3 )記載のカ覚提 示システム。 発明の効果 (4) A tool sensor equipped with a 6-axis force sensor has a frequency that means that the handle or the grip part can be attached to and detached from the 6-axis sensor body (3 ) Katsukan system. The invention's effect
本発明は、実際のツールにセンサを組み込んだツール型センサを実際に操作すること により、実際のツールを利用した状態の反力を提示することが可能となり、ツーノレを用 The present invention makes it possible to present a reaction force using an actual tool by actually operating a tool-type sensor in which the sensor is incorporated in an actual tool.
Vヽた訓練などの再現性を向上させることができる。 V Reproducibility such as training is improved.
特に、本発明は、菊則データとモデルデータを重畳することで、触覚の拡張現実感の 提示が可能となる。これにより、例えば実操作においてペンの書き心地やメスの切れ味 を変えたり、 柔ら力い物を硬く提示したり、 硬い物を柔らかく提示することができる。 In particular, according to the present invention, it is possible to present tactile augmented reality by superimposing chrysanthemum data and model data. As a result, for example, the writing comfort of the pen and the sharpness of the scalpel can be changed in actual operations, soft objects can be presented hard, and hard objects can be presented softly.
«能は技能訓練において、 極めて有用な機能である。 «Noh is a very useful function in skill training.
道具と纖の力学的相互作用を菊則することで、 物体と のィンピーダンス特性、 摩^ 、数、 のテクスチャといった物体- 間の物理パラメータを抽出することが でき、 これより、 物体: -環境間の物理特 I生を、 その場で仮想空間のモデルに反映するこ とが可能となる。  By applying chrysanthemum to the mechanical interaction between the tool and the heel, it is possible to extract physical parameters between the object, such as the impedance characteristics of the object, the texture, the number, and the texture. It is possible to reflect the physical characteristics in the virtual space model on the spot.
本発明により、 ,な人の筆運びや、名医のメスさばきなどのデータを嘗 し、その 道具を使うための肝を抽出 ·抽象化するなど、 名人の技の秘嘧にせまることができる。 今後、外科手術など手技の熟 トレーニング '技能伝達、手で扱う道具の l¾ などに適用できる。  According to the present invention, it is possible to conceal the secrets of the skill of a master, such as collecting data on brush strokes of humans, female judgments of famous doctors, and extracting and abstracting the liver for using the tool. In the future, it can be applied to skill training such as surgery 'skill transfer' and l¾ of tools handled by hand.
本発明のカ覚提示システムは、道具と «との間の力学的相互作用力菊 |ijできること であり、 1 ) 手技の可視化、 2 ) 菊則に基づく仮想モデル(物体モデル · «モデル) 構築、 3 ) 触覚の拡張現鶴提示が可能となる。 図面の簡単な説明  The haptics presentation system of the present invention is capable of mechanical interaction between the tool and «| ij, and 1) visualization of procedures, 2) virtual model (object model ·« model) construction based on chrysanthemum 3) Tactile extended present crane can be presented. Brief Description of Drawings
[図 1 ]従来のカ覚提示システム構成 [図 2]ツール ¾}覚センサの例 ― , [Figure 1] Conventional katsu presentation system configuration [Fig.2] Tool ¾} Example of a sense sensor ―,
[図 3 ]アーム連結ツール型センサの使用状態  [Fig.3] Usage status of arm connection tool type sensor
[図 4]カ覚提示システム基«成  [Figure 4] Kasaku presentation system foundation
[図 5]ペン型 6軸カ覚センサを用いた筆跡と筆圧 (3軸力) を立体表示した例  [Fig.5] 3D display of handwriting and pen pressure (3-axis force) using a pen-type 6-axis force sensor
[図 6 ]実測による仮想モデル構築システム図  [Figure 6] Virtual model construction system diagram based on actual measurements
[図 7 ]ボタン押し操作時の菊則データと仮想データの重ね合わせ例  [Fig.7] Example of overlaying virtual data and chrysanthemum data when button is pressed
[図 8 ]実測データ ·仮想データ重ね合わせシステム構成図  [Figure 8] Measured data · Virtual data overlay system configuration diagram
[図 9 ]メス型ツーノ rンサを示す  [Figure 9] Shows female type tool
[図 10]筆記具ツールの^ 図を示す  [Figure 10] Shown ^ figure of writing tool
[図 11]筆記具タイプツーノ ンサ本体と把持部の結合を示す  [Fig.11] Shows the coupling of the writing instrument type two-on-senser body and the gripping part
[図 12]筆記具先 例を示す図  [Fig.12] A drawing showing an example of a writing instrument tip
[図 13]ツール型カ覚センサをアームに取り付ける状態を示す  [Fig.13] Shows the state of attaching the tool-type katsu sensor to the arm
(1) モーションキヤプチャカ覚センサとしての利用  (1) Use as a motion capture sensor
カ覚センサ:モデルとなる師匠の力加減を計測  Force sensor: Measuring the power of a model teacher
(2) ハブティックカ覚センサとしての利用  (2) Use as a HABOUTIKA sensor
力提示装置: X, Y, Zの位置情報を再現  Force presentation device: Reproduces X, Y, Z position information
カ覚センサ:研修生の力加減を計測し、 先生のモデルとの差異を表示 Kaku SENSOR: Measures the trainee's ability and displays the difference from the teacher's model
[図 14]ペン型 6軸カ覚センサを用いた霜と筆圧 (3軸力) を立体表示した n例 ペン型 6軸カ覚センサを用いて記録した筆跡と筆圧(3軸力)を立体表示及び角度を 変えて表示して n例を示す。 カタカナ文字 「ィ」 の縦棒を軸として、 111を0° とし て右回転したィメージ表示である。 [Fig.14] n example of three-dimensional display of frost and pen pressure (3-axis force) using a pen-type 6-axis force sensor Handwriting and pen pressure (3-axis force) recorded using a pen-type 6-axis force sensor N examples are shown with 3D display and different angles. It is an image display that is rotated clockwise with 111 as 0 °, with the vertical bar of Katakana character “i” as the axis.
(1) nl :紙面に対して正面から表示  (1) nl: Displayed from the front of the page
(2) n2 : 36° 振った表示 (3) n3: 72° 振った表示 (2) n2: Display shaken by 36 ° (3) n3: Display shaken 72 °
(4) n4: 108° 振った表示  (4) n4: Display tilted by 108 °
(5) n5: 144° 振った表示  (5) n5: Display tilted by 144 °
[図 15]ペン型 6軸カ覚センサを用いた «と筆圧 (3軸力) を立体表示した w例 ペン型 6軸カ覚センサを用いて記録した筆跡と筆圧(3軸力)を立体表示及び角度を 変えて表示して w例を示す。 カタカナ文字 「ィ」 の »を軸として、 1を0° とし て右回転したィメ ジ表示である。  [Figure 15] Three-dimensional display of «and pen pressure (3-axis force) using a pen-type 6-axis force sensor w example Handwriting and pen pressure (3-axis force) recorded using a pen-type 6-axis force sensor An example is shown with a 3D display and a different angle. This is an image display rotated clockwise with 1 as 0 °, with the katakana character “i” as the axis.
(1) l :紙面に対して正面から表示  (1) l: Displayed from the front with respect to the page
(2) w2 ·· 36° 振った表示  (2) w2 36 ° display
(3) w3: 72° 振った表示  (3) w3: Display shaken 72 °
(4) w4: 108° 振った表示  (4) w4: Display tilted by 108 °
(5) w5: 144。 振った表示  (5) w5: 144. Waved display
[図 16]ペン型 6軸カ覚センサを用いた霧と筆圧(3軸力)を立体表示した n 2の 説明図  [Fig.16] Explanation of n 2 in a three-dimensional display of fog and pen pressure (3-axis force) using a pen-type 6-axis force sensor
[図 17]押しポタンのデータの記録'再生実験で使用した仮想空間モデル (Virtual environment model) を不 0 Virtual space model used in [17] records data push Potan 'Regeneration (Virtual environment model) non 0
[図 1 8 ]ハプティックインタフェースで記録したボタン押下データの Force - Displacement曲 (Recorded Force-Displacement Curve, ¾:不す。 [Figure 1 8] Force-Displacement song of button press data recorded with haptic interface (Recorded Force-Displacement Curve, ¾: Not.
[図 19 ( a ) ]ボタンデータ再生時のデータを示したものであつて、ユーザがハプテ イツクインタフエースを操り仮想ボタンを押したときの 想ボタンの変位を表す。 [Fig. 19 (a)] Shows the data at the time of button data playback, and represents the displacement of the virtual button when the user operates the haptic interface and presses the virtual button.
[図 19 (b) ]ボタンデータ再生時のデータを示したものであって、ハプテイツクイ ンタフェースによりユーザに提示された力を表す。 [図 1 9 ( c ):]ポタンデータ再生時のデータを示したものであって、仮想ボタンの操 作変位と提示力の関係を示したものを表す。 , [Fig. 19 (b)] This shows the data at the time of button data playback, and represents the force presented to the user by the haptics interface. [Fig. 19 (c):] Shows data during button data playback, showing the relationship between the virtual button operation displacement and the presentation force. ,
[図 2 0 ]特許文献 1 0開示カ覚提示装置  [FIG. 2 0] Patent Document 10
[図 2 1 ]特許文献 1 0開示指装着型 6軸カ覚センサの 成  [Fig. 2 1] Patent Document 1 0 Disclosure of finger-mounted 6-axis force sensor
[図 2 2 ]特許文献 1 0カ覚センサ弾†生構造体の一例 発明を実施するための最良の开態  [Fig. 2 2] Patent Document 10 Example of a sensory sensor bullet † raw structure BEST MODE FOR CARRYING OUT THE INVENTION
カ覚センサを備えたハプテイツクインタフエースを通して熟練者の操作データを入 力して模範となる仮想モデルを構築することができ、訓練者などがツール型センサを利 用して得られた実操作データと仮想空間内で仮想モデルを操作したデータとの差から 修正反力を構成して、ハブティックインタフェースに出力して、ハブティックインタフ エースにより作られる修正反力と実環境からの反力を合わせて操^ にカ覚として提 示するものである。 カ覚センサとしては、 3軸あるいは 6軸を用いることができる。 6 軸の方が良い再現性の精度に優れている。以下は 6軸を中心に説明する。本発明は、 さ らにこの力覚を籠物の模型(例えば医療トレーニング用の人 ί權型)に対してツール 型センサを適用するものであって、 ¾ ^物の模型の物性などをツーノレ型センサを操作し つつ難 IJすることができる構成であるので、実際に適用する纖物との差を反映して反 力を構成してハプテイツクインタフエースに出力して、操Wにカ覚として提示するも のである。さらに、構築された仮想モデルの構築された状況と異なる 牛を入力するこ とにより、同じ模型を用いながら操^1に対して別の状況の »物の訓練などを提示す ることができる。 A model virtual model can be constructed by inputting operation data of an expert through a haptic interface equipped with a kart sensor, and an actual result obtained by using a tool-type sensor by a trainee. The modified reaction force is composed of the difference between the operation data and the data obtained by manipulating the virtual model in the virtual space, and output to the Haboutique interface. The modified reaction force created by the Haboutine interface and the reaction force from the real environment In combination, it is presented as a sensation to the operation. As the motion sensor, three or six axes can be used. The 6-axis has better reproducibility accuracy. The following explanation will focus on the six axes. The present invention further applies this force sense to a tool model (for example, a human training model for medical training) using a tool-type sensor. Since it is a configuration that can be difficult IJ while operating the type sensor, the reaction force is configured to reflect the difference from the actual applied object and output to the haptic interface, and the operation is controlled It is presented as a sense. Furthermore, by inputting a cow that is different from the constructed situation of the constructed virtual model, it is possible to present the training of an object in another situation for the operation 1 while using the same model.
本発明のカ覚提示システムは、ツール型 6軸カ覚センサを備えたノヽプテイツクインタ フエース及び制御装置を備えており、 6軸カ覚センサを備えたツール型カ覚センサを操 作することにより、ツール型カ覚センサの 3次元の運動データと実環境からツール動 覚センサに加えられる力に関するデータを制御装置に入力することができ、一方、制御 装置からツール型カ覚センサに反力を提示することができる。制御装置は、ハプティッ クインタフエースからの入力データに基づレ、て仮想空間内のモデルを操作できること と、相互作用演算処理と重ね合わせ処理を設けて、既存の構築された仮想モデルとその 後の難 |Jデータとの を求めることと、ネ »«fm ^物の属性をブイ一ドバックし て、 修正反力を出力してカ覚を提示するものである。 The knot presentation system of the present invention includes a knotting interface and a control device including a tool type six-axis kart sensor, and operates the tool type kart sensor including a six-axis kart sensor. By doing so, the three-dimensional motion data of the tool type motion sensor and the data related to the force applied to the tool motion sensor from the real environment can be input to the control device, while the tool type motion sensor from the control device. The reaction force can be presented. The control device can operate the model in the virtual space based on the input data from the haptic interface, and provides an interaction calculation process and a superposition process. The difficulty of | J data and buoying back the attributes of the item »« fm ^, and outputting the reaction force to present the sense of motion.
1. ツール型 6軸カ覚センサを備えたハブティックインタフェースの基^成  1. Foundation of a Haboutique interface with a tool-type 6-axis force sensor
ハプティックインタフエースは、 小型アームとツール 覚センサから構成される。 操Wは、 ハプティックインタフエースのツール型カ覚センサを手にとって操作する。 ツール動覚センサは、道具と纖との間の力学的相互作用を実測するため、手賤具 に用いる実物のツールを用いて構成する。  The haptic interface consists of a small arm and a tool sensor. Maneuvering W is performed by hand-operating a haptic interface tool-type sensor. The tool motion sensor is constructed using the actual tool used for the hand and tool to measure the mechanical interaction between the tool and the heel.
ツール型カ覚センサの一例を図 2に示す。 図 2. (a)のペン型 6軸カ覚センサは、 先端 に、 アダプタを介して市販のポールペンを利用して、 ペン先 (本例は、 ZEBMネ: fc^のポ 一ルペン JB!— KNOCKのペン先を利用)を取り付けた。先端アダプタに鉛筆やマーカー、 他のボールペンのペン先を取り付けることで、様々な筆記具の 6軸カ覚センサカ構成で きる。 図 2(b)のメス型 6軸カ覚センサは、 市販のメスの柄と刃 (本例は、 松吉医科器 械擁の刃形状 No.21の刃と柄替刃ハンドル No.4の柄を利用) を利用して、 アダプタ を介して起ゎレヽ体に取り付けて構成した。アダプタに別の種類の刃や柄を取り付けるこ とで、様々な医療器具の 6軸カ覚センサ力 S構成できる。 この様に、ツール型 6軸カ覚セ ンサはアダプタを介して様々な のツールを取り付けることができる。 /J アームは S en sAb l eTe c hno l o g i e s 社 PHA ToMを改造したものを用いた。 図 2に 6軸カ覚センサを備えたツール型センサの使用状態の外観を示す。 ツール型カ覚センサは、特願 2 0 0 6 - 2 0 5 7 8 0号にて提案したものを用いるこ と力 Sできる。すなわち、 楼具を用いた操作情報を入手するために用いる灘におい て、センサ本体 Aと把持部 Bと 部 Cと力ら構成される 6軸カ覚センサ用把持型ツー ルであって、把持部 B及び健部 Cは、センサ本体 Aに対して着脱可能な連結構造を有 し、 該連,鶴造は、 把持部 Bあるいは倦部 Cに付属されて設けられているカゝ、 又は、 另 本のコネクター D、 Eであって、把持部 B及び Z又は 部 Cは、ツールの種類に応 じて、 複数備えられている 6軸カ覚センサ用把持型ツールである。 図 9〜1 3参照。 Figure 2 shows an example of a tool-type force sensor. Figure 2. (a) Pen type 6-axis motion sensor uses a commercially available pole pen at the tip and a pen tip (in this example, ZEBM ne: fc ^ pole pen JB! — A KNOCK pen tip was used. By attaching a pencil, marker, or other ballpoint pen tip to the tip adapter, a 6-axis motion sensor can be configured for various writing instruments. The female 6-axis force sensor shown in Fig. 2 (b) has a commercially available female handle and blade. (This example shows the shape of the blade shape No. 21 and the handle of the handle blade No. 4 with Matsukichi Medical Instruments. And using an adapter to attach to the starter frame. By attaching another type of blade or handle to the adapter, the 6-axis force sensor force S of various medical instruments can be configured. In this way, various tools can be attached to the tool-type 6-axis sensor using the adapter. The / J arm was a modified version of PHA ToM manufactured by Sen sAb e Te c hno logies. Figure 2 shows the external appearance of the tool-type sensor equipped with a 6-axis force sensor. The tool-type force sensor can be used with the one proposed in Japanese Patent Application No. 2 0 0 6-2 0 5 7 8 0. That is, it is a gripping tool for a 6-axis kull sensor composed of a sensor body A, a gripping part B, and a part C in a cage used to obtain operation information using a tower. The part B and the healthy part C have a connecting structure that can be attached to and detached from the sensor body A, and the ream and crane are attached to the gripping part B or the hook part C, or The additional connectors D and E, the gripping parts B and Z or the part C, are gripping tools for a six-axis carousel sensor provided in plural depending on the type of tool. See Figures 9-13.
[センサ本体 A]  [Sensor body A]
本発明に用いるセンサは 6軸カ覚センサである。本発明に用いるカ覚センサは、薄型 力 S適している。現状では、筐#¾の外形が厚さ約 1 O mmで外形が 2 O mm弱の径とす ることができた。  The sensor used in the present invention is a six-axis force sensor. The force sensor used in the present invention is suitable for a thin force S. At present, the outer diameter of the housing # ¾ is about 1 O mm thick, and the outer diameter can be made less than 2 O mm.
主に、 歪みゲージを用いた 6軸カ覚センサの感知部について、 以下に例示する。  The following is an example of the sensing part of a 6-axis force sensor using a strain gauge.
6軸カ覚センサの感知部は、弾性構造体であり特定の力成分(力とモーメント)に対 して歪み易い構造をもっている。 とフランジ部を 3本のビームを介して連結し、ビ ームの各面には歪みゲージを取り付ける。この弾性構造体に外力がはたらくと、ビーム が歪み、この歪みを歪みゲージにより電気信号に変換することにより、力成分を歪みゲ ージの電気信号として取り出すことができる。なお、 6軸カ覚センサ弾性構造体の歪み を検出する素子として、歪みゲージの代わりに光センサユニットを用いることもできる。 この弾性構造体は、 2 mm厚以下に作ることができる。  The sensing part of the 6-axis force sensor is an elastic structure that is easily distorted with respect to specific force components (force and moment). And flanges are connected via three beams, and strain gauges are attached to each side of the beam. When an external force is applied to this elastic structure, the beam is distorted, and this strain is converted into an electrical signal by a strain gauge, whereby the force component can be extracted as an electrical signal of the strain gauge. An optical sensor unit can be used instead of the strain gauge as an element for detecting the strain of the 6-axis force sensor elastic structure. This elastic structure can be made less than 2 mm thick.
弾性構造体に作用する 6軸力(3軸方向の力とモーメント)と各ビームの歪みゲージ の出力の関係を表す歪みスティフネス行列は予めキヤリプレーションにより求められ ている。歪みスティブネス行列とは、各ビームの歪みゲージの出力を力に変換する行列 である。歪みスティフネス行列を用い、歪みゲージの出力信号から、弾性構造体に作用 する 6軸力を計算により求めることができる。 The strain stiffness matrix representing the relationship between the six-axis force (force and moment in the three-axis direction) acting on the elastic structure and the output of the strain gauge of each beam is obtained in advance by calibration. The strain Stillness Matrix is a matrix that converts the strain gauge output of each beam into force. Acts on elastic structure from strain gauge output signal using strain stiffness matrix Yes 6-axis force can be calculated.
この弾性構造体を筐体に収容し、リンク機構に接続するための突起部を設けてリンク 結 とし、及び、信号取り出し用のケーブルを取り付けて、 6軸カ覚センサ本体を構 成する。 ケーブルは、外部の増幅器等に接続される。筐体は、略円筒形であって、一方 の画こ操作用の柄を取り付け可能とし、他方の面には 用のメスの刃先など用具の機 能部分を取り付け可能とする。取り付け面は、ネジ穴を設けた平面とし、相手方の平面 フランジとを突き合わせてネジ止めすることができる。取り付け用の咅附としては、突 出したリブ、ネジ部等適: ¾定することができる。 また、取り付け面には、相手方との 位置合わせ用及ぴ回り止めの凹凸を作成することも可言である。  The elastic structure is housed in a casing, and a projection for connecting to the link mechanism is provided to form a link connection, and a signal extraction cable is attached to form a 6-axis motion sensor body. The cable is connected to an external amplifier or the like. The case has a substantially cylindrical shape, so that one handle for drawing operation can be attached, and the functional part of the tool such as the knife edge of a knife can be attached to the other surface. The mounting surface should be a flat surface with a screw hole, and can be screwed with the mating flat flange. As mounting brackets, protruding ribs, threaded portions, etc. can be appropriately determined. It is also possible to create unevenness on the mounting surface for alignment with the other party and for preventing rotation.
名人などの力力 [1減などの情報を収集する目的で用いるモーションキヤプチャカ覚セ ンサ用として用いる^は、弾性構造体の受感面は用具を取り付ける面側となる。反対 側は固 として、 'If¾入力面とはならな 、。  The power of an expert etc. [In the case of ^ used as a motion sensor for the purpose of collecting information such as 1 reduction, the sensitive surface of the elastic structure is the surface to which the tool is attached. The other side is fixed, 'If¾ the input surface.
練習者など力 S訓練する:^に、名人等の雛形の力加減をフィードバックしながら本ッ ールを使用するハプテイツクカ覚センサ用に用 V、る は、弾性構造体の受感面は柄な どを取り付ける面側となる。 反対側は固 g¾となる  For trainers, etc.S Train: Use for the haptic cucumber sensor that uses this tool while feeding back the power of the master's model, etc. It is the surface side where the throat is attached. The other side is solid g¾
リンク機構に接続することにより、モーションキヤプチャカ覚センサでは、 3次元の 空間情報を収集することができ、ハプティックカ覚センサでは、訓練者への位置情報を 提示することが可能となる。  By connecting to the link mechanism, the motion-capture sensor can collect 3D spatial information, and the haptic sensor can present position information to the trainee.
[把聽 B]  [Grip B]
把持部は、 旨で実際に持つ部分で、ィ僕具の柄に相当する部分である。 この把持部 は、実際に用いられる ¾具の柄を加工して聰することもできる。また、実際の ί僕 具の柄に類した形状に作成することもできる。  The gripping part is the part that is actually held to the effect, and the part that corresponds to the handle of the private tool. This gripping part can also be used for processing a handle of an actually used tool. You can also create a shape similar to the pattern of an actual ί equipment.
用のメスなどは、実際に使用するものに近いことが望ましいので、実際の^ jに 用いられるメスの柄を加工して製造することが望ましレ、。 It is desirable that the knife for use is close to what is actually used, so the actual ^ j It is desirable to process and produce the female handle used.
鉛筆、ポールペン、万年筆などは、ペン先はいろんな觀を普段に使っているが、柄 は標準的な柄で対応することが可能である。もちろん、 ^から加工して製造すること もできる。  Pencils, pole pens, fountain pens, etc. usually use a variety of pens, but the patterns can be handled with standard patterns. Of course, it can also be manufactured from ^.
把持部とセンサ本体とは、標準的な把持部には、センサ本体部の取り付け面に直 » 結可能な構造とすることができる。 の柄を加工して製造する ^^は、柄の先端とセ ンサ本体を連結するためのコネクターを用いて対応することができる。  The gripping part and the sensor body can be structured such that a standard gripping part can be directly coupled to the mounting surface of the sensor body part. ^^, which is produced by processing the handle, can be handled by using a connector to connect the tip of the handle and the sensor body.
把持部の先端部には約 1 O mm厚のセンサ本#¾力 S接続され、その前に健用の機能 部カ接続され、鉛筆やポールペンなどの筆記具ではテーパ部から最先端まで 1 0〜2 0 mmgitであるので、把持部は先端から 2 0〜3 O mm以降となり、筆記具の持ち部分 としては十分な位置である。把持部の長さは、実際の條具の長さ力 S確保できる範囲で、 «部位、 センサ本体の長さを除いた長さにカット等の加工を施す。  About 1 O mm thick sensor book # ¾ force S is connected to the tip of the gripping part, and before that, a healthy functional part is connected, and for writing instruments such as pencils and pole pens, from the taper part to the most advanced 10 ~ Since it is 20 mmgit, the gripping part is 20 to 30 mm from the tip, which is a sufficient position for the holding part of the writing instrument. The length of the gripping part is within a range in which the length force S of the actual jig can be secured, and the length excluding the length of the region and the sensor body is subjected to processing such as cutting.
隠部 C]  Hidden part C]
に用いられる刃先 記具のペン先など賤具の実際の ί僕部である機能部は、 それぞれの用具に応じて特有の形状をしているので、機能部に直接接合構造を形成する ことは、現実的ではなく、接^ fflにコネクターを介して、センサ本体と連結することが 好ましい。 The functional part that is the actual part of the tool, such as the pen tip of the writing tool, has a unique shape according to each tool, so it is not possible to form a joint structure directly on the functional part. It is not practical, and it is preferable to connect to the sensor main body through a connector.
n部は、実際に機能する部分を確保し、勝具の実長に近い長さを確保できる範囲 で後端部を切除及ぴコネクターの接 に適合する形状に加工する。  For the n part, the part that actually functions is secured, and the rear end part is cut and processed into a shape that fits the connector connection within the range that can secure the length close to the actual length of the tool.
筆記具では、 1 0〜2 Omm 確保できれば筆嫌能は可能である。 ^^用のメス は様々である力 刃付き部が 4 0〜5 O mmのものであっても、先端部から 2 O mm程 度が実際に される部分であり、この例でも 3 0 mm¾gの刃付き部力 S確保できるこ とが望ましいので、コネクターによって覆われる部分も含めて、十分な長さを確保でき る。 With writing instruments, writing ability is possible if 10 to 2 Omm can be secured. The knife for ^^ has various forces Even if the bladed part is 40 to 5 O mm, it is the part that is actually about 2 O mm from the tip part. It is desirable to be able to secure a sufficient force with a bladed part S, so a sufficient length can be secured including the part covered by the connector. The
その他の «具としては、技能者が掴んで用いる手^!具一般に適用することができ る。  As other tools, it can be applied to hand tools generally used by technicians.
例えば、外科医、脳外科医、 眼科医、婦人科医、大工、調理師、仏師、彫刻家などが 用いる道具が挙げられる。  For example, tools used by surgeons, brain surgeons, ophthalmologists, gynecologists, carpenters, cooks, Buddhists, sculptors, etc.
外科医であれば、 用具であるメス一式、鉗子、縫^、 ピンセットなどが挙げら れる。検査用 βである内臓などの生 ί椎查用のサンプル採取具や、蘭器などは内科医 でも使用する必要がある。また、内視»ぴレーザーなどの治療器具を備えた内観も 挙げられる。 用具は、脳外科用、眼科用などその使用対象によって専用化している 器具もある。大工でも、細工が必要な指物用のノミ、鉋、あるいは宫大工などの細工道 具、 又、 包丁さばきなどが必要な調理觀も例示できる。  If you are a surgeon, you can use a set of scalpels, forceps, stitches, tweezers, and other tools. Physicians need to use sample collection tools for organs such as internal organs, which are β for testing, and orchids. In addition, an introspection provided with a therapeutic instrument such as an endoscopic laser is also mentioned. Some tools are specialized depending on the intended use, such as for brain surgery and ophthalmology. Carpenters can also exemplify fleas, fleas, or craft tools such as carpenter carpenters that require crafting, and cooking jars that require knife cutting.
[コネクター D、 E]  [Connector D, E]
に用いるメスの刃先部や抦をセンサ本体部に接続する際に用いるコネクターで ある。センサ本 ίΦ¾と把持部ゃ賤部はぐらつき^^びが無いようにしつかりと連結さ れる必要がある。 ぐらつきがあると、 データが不正確になる。  It is a connector used when connecting the blade edge and scissors of the female used for the sensor to the sensor body. The sensor head ίΦ¾ and the gripping part must be connected to each other so that there is no wobble. If there is wobble, the data will be inaccurate.
コネクタ一は、センサ本体側は、 -センサ本体の取り付け面に適合した形状とする。例 えば、平面同士の面突き合わせの ¾ ^は、平面を備える。平面フランジ同士の面を突き 合わせてネジ止めする連應構は、把持部や先端側のふらつきを防止して固定制度を高 めることができ、情報精度を向上させることが容易である。 また、柄側については、 フ ランジ部を薄くできて実際に指で押さえる位置の制限を小さくすることができる。そし て、 ネジ穴や位置決め ·回り止め用に係合用凹 ώなどを適宜備えることとする。  The connector should have a shape that fits the mounting surface of the sensor body. For example, ¾ ^ of plane matching between planes has a plane. The interlocking structure in which the surfaces of the flat flanges are brought into contact with each other and screwed together can prevent the gripping part and the tip side from wobbling and increase the fixing system, and it is easy to improve information accuracy. In addition, on the handle side, the flange portion can be made thinner and the restriction on the position where the finger is actually pressed can be reduced. In addition, it shall be provided with appropriate engagement holes for screw holes and positioning / rotation prevention.
ィ僕部側は、 それぞれのィ條部の形状にあわせた連結構造を工夫することができる。 用のメスなどある 形状が類似しているものは、 H部の方を加工して、共通の 連!^造とすることが可能である。 The private part can devise a connection structure that matches the shape of each part. For parts with similar shapes, such as a knife for machining, process the H part It is possible to make a series!
柄に相当する把持部は、丸棒、平棒など共通して使用可能なものは、センサ本体との 接合構造を備えた専用品を備えることができる。例えば、丸棒の先端にフランジを固定 した把持部などである。手術用のメスなどは丸 六角棒、大小のサイズの異なる平棒 など様々の用途に合わせてパリエーシヨンのあるものは、作業部側と同様に、コネクタ 一を介在させることが好ましい。 この ^でも、柄は加工して、連纏造部に適する形 状とすることができる。  For the gripping part corresponding to the handle, a round bar, a flat bar and the like that can be used in common can be provided with a dedicated product having a joint structure with the sensor body. For example, a gripping part with a flange fixed to the tip of a round bar. As for the surgical knife and the like, it is preferable to interpose a connector, like the working unit side, in the case of having a pallet for various uses such as a round hexagonal bar and a flat bar of different sizes. Even with this ^, the handle can be processed into a shape suitable for the continuous structure.
柄や條部を連結する構造は、割型の間に挿入して、受け凹部を形成した割型に赃 して押さえ込んで固^ る手段や、円筒割型の空隙に根本を挿入して外側から締め込む 手段、 螺着、 など適! «用することができる。  The structure that connects the handle and the heel part is inserted between the split molds and pressed against the split mold with the receiving recesses and fixed, or the base is inserted into the hollow of the cylindrical split mold. Suitable for tightening, screwing, etc.! «Can be used.
これらのパーツを糸且み立てた 6軸カ覚センサ用把持型ツールを、手に持つて操作する とその操作力データがケーブルを経由して増幅器、 C P Uへ送られて、 蓄積される。 把持部やィ條部は取り替えることができるので、ひとつの仕事に必要なさまざまな作 業具の ¾1に応じて、 蓆しておくことによって、 トータル的なデータを収集すること ができる。  When holding and operating a 6-axis force sensor gripping tool with these parts in hand, the operating force data is sent to the amplifier and CPU via the cable and stored. Since the gripping part and the key part can be exchanged, it is possible to collect total data by making preparations according to ¾1 of various work tools required for one work.
例えば、ひとつの^ Iに必要なデータの全体を収集することができることとなり、シ ユミュレータの開発データが得られる。また、遠隔医療用ツールであるハプテックイン タフエースに装備することができる。  For example, the entire data required for one ^ I can be collected, and simulator development data can be obtained. It can also be installed in Haptec Interface, a telemedicine tool.
これらのツール型カ覚センサの例を図 9、 1 0、 1 1、 1 2に示す。図 9は、 可 能なツールとして^ I用メスを用いたものである。図 1 0〜1 2は、ペン ¾J覚センサ の例を示す。 これらの符号は に示したものをそのまま援用している。図 1 3は、こ れらのツール型カ覚センサを/ h¾アームに取り付けた例を示す。この/ h¾アームは特許 文献 1 0に示したものと同様のものを利用することができる。 1一 2システム構成 Examples of these tool-type force sensors are shown in Figs. 9, 10, 11, and 12. Figure 9 uses a ^ I scalpel as a possible tool. FIGS. 10 to 12 show an example of a pen ¾J sense sensor. These codes are used as they are. Fig. 13 shows an example in which these tool-type kake sensors are attached to the / h¾ arm. As this / h¾ arm, the same one as shown in Patent Document 10 can be used. 1 1 2 System configuration
カ覚提示システムの基本システム構成を図 4に示す。基本システムは入出力デバィス である前述のハブティックインタフェース、実計測演算部、データ記録部、モデル推定 器、 モデノレデータベース (^^モデルデータベース、 物体モデルデータベース)、 仮想 空間演算部、実データーモデルデータ 演算部、および表示部から構成される。道具 と «の力学的相互作用を菊則することで、 以下のことが可能となる。  Fig. 4 shows the basic system configuration of the kaku presentation system. The basic system is the input / output device described above, the Haboutique interface, the actual measurement calculation unit, the data recording unit, the model estimator, the model database (^^ model database, the object model database), the virtual space calculation unit, the actual data model data calculation Part and a display part. By chrysaging the mechanical interaction between the tool and «, the following becomes possible.
1 - 2 - 1 熟練技能の可視化と蓄積 (手技のディジタル記録)  1-2-1 Visualization and accumulation of skilled skills (digital recording of skills)
前述のツール型カ覚センサを操作して操作データを計測して蓄積することにより、デ ータを様々な形式で表示することができる。例えば、操作データと過去に言 されたデ ータを重ねて表示することで、操 のデータと熟練者のデータの比較表示が可能とな る。技能のコッを抽出するためには、操作データの可視化は不可欠である。図 5は、ぺ ン型 6軸カ覚センサを用いて講した霧と筆圧 (3軸力) を立体表示した例である。 1 - 2 - 2 実データに基づく物体. モデル構築  Data can be displayed in various formats by measuring and accumulating operation data by operating the above-mentioned tool-type sensor. For example, the operation data and the data of the past can be compared and displayed by displaying the operation data and the previously stated data in an overlapping manner. Visualizing operation data is indispensable for extracting skills tips. Figure 5 shows an example of a three-dimensional display of fog and pen pressure (three-axis force) taken using a pen-type six-axis force sensor. 1-2-2 Objects based on real data. Model building
道具と纖の力学的相互作用を势厕することで、 物体と謹のィンピーダンス特 I1生、 Wi, m¾のテクスチャといった物体 -環境間の物理パラメーダを抽出することが できる。 これより、 物体 -環境間の物理 †生を、 その場で 想空間のモデルに反映する ことが可能となる。 By势厕mechanical interaction tools and纖, Inpidansu JP I 1 Raw object and謹, Wi, objects such as texture M¾ - it can extract physical Parameda between environments. This makes it possible to reflect the physical physics between the object and the environment on the model of the virtual space on the spot.
1 - 2 - 3 実測データと仮想データの重畳による拡張現実感の提示 (触覚の Augmented reality)  1-2-3 Presentation of augmented reality by superimposing measured data and virtual data (Tactile Augmented reality)
ツール操作時に、勢則データとモデノ 、ータを重畳することで、触覚の拡張現実感の 提示が可能となる。これにより、例えば実操作においてペンの書き心地やメスの切れ味 を変えたり、 柔らカ ^、物を硬く提示したり、 硬い物を柔らかく提示することができる。 «能は技能訓練にお V、て必須のアイテムになる。 1 - 3 It is possible to present augmented reality of tactile sensation by superimposing trend data and modeno data when operating the tool. As a result, for example, the writing comfort of the pen and the sharpness of the scalpel can be changed in actual operation, soft objects can be presented hard, or hard objects can be presented softly. «Noh is an essential item for skill training. 13
本発明のカ覚提示システムを身体'道具 ·環境の力学的相互作用を記録 &再生する「次 世代力提示装置」 と位置付け、その システムの構成について する。本発明の力 覚提示システムは、道具と環境との間の力学的相互作用が势則できることであり、 1) 手 技の可視化、 2) 実測に基づく物体 ·環境モデル構築、 3) 触覚の拡張現実感提示が可能 となる。  The haptic presentation system of the present invention is positioned as a “next generation force presentation device” that records and reproduces the mechanical interaction between the body, the tool and the environment, and the configuration of the system is described. The haptic presentation system of the present invention is that the mechanical interaction between the tool and the environment can be ruled out. 1) Visualization of the technique, 2) Construction of the object / environment model based on the actual measurement, 3) Extension of the haptic sense Reality can be presented.
2. 作用 2. Action
図 6は、菌 ijによる仮想モデル構築のシステム図である。操»はツール型カ覚セン サを用いて の^物に操作を加える。  Fig. 6 is a system diagram of virtual model construction by fungus ij. Manipulation is performed by using a tool-type sensor.
例えば、ハプテイツクインタフエースの先端に取り付けられたペン型カ覚センサで紙 の上に文字を書レヽたり、ハプテイツクインタフエースの先端に取り付けられたメス型カ 覚センサゃナイフ型カ覚センサで物を切ったり、ハプテイツクインタフエースの先端リ ンクでボタンやスィッチを押したりする。 このときシステムの実計測演算部により、物 f楊作時にペンやメスあるいは先端リンクに加わる翻虫力と、ペン,メス,先端リンクの 運動が計測され、 データ記憶装置に記録される。  For example, a pen type sensor attached to the tip of a haptic interface can be used to write characters on paper, or a female type sensor attached to the tip of a haptic interface can use a knife type sensor. Cut an object with a sensor, or press a button or switch on the tip link of a haptic interface. At this time, the actual measurement calculation unit of the system measures the transversal force applied to the pen, scalpel, or tip link and the movement of the pen, scalpel, tip link during the creation of the object, and records them in the data storage device.
このデータを用いて、モデル推定器によりペンと紙の間の摩擦特 I1生、メスやナイフで 物を切ったときのインピーダンス特 I"生 (岡 I胜、 粘性特 14)、 ボタンの剛性特' 14といった 物体ゃ纖の物理パラメータを計算する。こうして計算された物理パラメータを物体モ デ、 モデ'ノレとして物体モデルライブラリ一(物体モデ/ ^ータベース) 境モ デルライブラリー (纖モデノ ータベース) に登録する。 次に、物体モデルライブラ リ一^ ¾モデルライブラリ一に癒されているモデルを仮想空間に配置し、操Wが ハプティックインタフェースを用いて 想空間内の物体モデルを操作する。 Using this data, friction characteristics between the pen and paper using a model estimator I 1 life, impedance characteristics when cutting an object with a knife or knife I "raw (Oka I 胜, viscosity characteristics 14), button rigidity The physical parameters of the object such as “14” are calculated.The physical parameters calculated in this way are the object model, model object model library (object model / ^ data base) boundary model library () model database) Next, the model that is healed by the object model library ^ ¾ model library is placed in the virtual space, and Manipulation W manipulates the object model in the virtual space using the haptic interface.
このとき仮想空間の物体が環境から受ける反力を相互作用演算により計算し、ハプテ イツクインタフエースによりその反力を操Wに提示する。 これにより、実空間にある 物体^^の物理特性をその場で 想空間のモデルに反映し、操 {傅に提示することが できる。 At this time, the reaction force that the object in the virtual space receives from the environment is calculated by the interaction calculation, The reaction force is presented to Maneuver W by the Itku interface. As a result, the physical properties of the object ^^ in the real space can be reflected on the model of the virtual space on the spot and presented to the maneuver {傅.
2-1 データと仮想データの重ね合わせ]  2-1 Overlay of data and virtual data]
次に、ツール型カ覚センサを用いて、過去に された^物とは別の^物に操作 をカロえる。 このとき、 ¾ ^物の物理特 I·生は、過去に言 された物体モデ ^境モデル の物理特 (·生とは異なっているものとする。  Next, using a tool-type sensation sensor, the operation is transferred to an object different from the object previously used. At this time, it is assumed that the physical characteristics I · raw of an object are different from the physical characteristics (· raw of the object model boundary model previously described.
ハプティックインタフエースの先端でポタンを押す操作を例示する。一般にポタンの パネ係数は非線形でボタンの押し込み量 Δ Xの関数となる。図 7 (a)に示すように過去 に繊 '登録されたポタンのパネ係数を km (Ax) とする。 また、 図 7(b)に示すよう に実物のボタンの/ネ係数を kr (Δχ) とする。 このとき、 人が実物のボタンを押し たときに感じる反力 f rは式 (1) である。 ここで  The operation of pressing a button at the tip of the haptic interface is illustrated. In general, the panel panel coefficient is non-linear and is a function of the button push amount ΔX. As shown in Fig. 7 (a), the panel coefficient of the textiles registered in the past is km (Ax). Also, as shown in Fig. 7 (b), the / net coefficient of the actual button is kr (Δχ). At this time, the reaction force f r felt when a person presses the real button is given by equation (1). here
f rは人がボタンを押したときに感じる反力である。また、 Δχはポタンの押し込み量 である。 Δ Xはハプテイツクインタフエースにより計測される。  f r is the reaction force felt when a person presses the button. Δχ is the amount of pressing of the button. ΔX is measured by the haptic interface.
式 (1) f r =k r (Δχ)Δχ  Equation (1) f r = k r (Δχ) Δχ
ここで図 7 (c)に示すように、制御部で、 ポタンの押し込み量 Δ Xに応じた力 f hが 式 (2) で生成され謝 «に提示する。  Here, as shown in FIG. 7 (c), the control unit generates a force f h corresponding to the push amount ΔX of the button by the equation (2) and presents it with gratitude.
式 (2) f h = {km(A )~k r (A )}Ax  Formula (2) f h = {km (A) ~ k r (A)} Ax
すると操 が感じる力 f mは、式(3) に示すように、ハブティックインタフエ一 スにより生成される反力 f hと実際にボタンから受ける反力 ί rの和となり、パネ係数 kr (Δχ) の実ポタンを押しているにも力かわらず、 あた力も過去に識されたパネ係 数 km (Δχ) のボタンを押しているかのような感覚を することができる。  Then, as shown in Equation (3), the force fm felt by the operation is the sum of the reaction force fh generated by the Haboutique interface and the reaction force actually received from the button ίr, and the panel coefficient kr (Δχ) Despite pressing the actual button, you can feel as if you are pressing the button of the panel coefficient km (Δχ), which was recognized in the past.
式 (3) f m= f r + f h = km(Ax) Δ χ 一般に、身の回りにあるポタンやスィッチのパネ特 (·生 «|¾知ではない。 そこで、ハプ ティックインタフェースでボタンを押す操作の過程でリァ/レタイムにボタンのパネ係 数 k r (A x)を計算し、 式 (2) 力ら反力の修正量を計算して人に提示する。 Equation (3) fm = fr + fh = km (Ax) Δ χ In general, the panel features of the buttons and switches around you (not the raw «| ¾ knowledge. So, calculate the button panel coefficient kr (A x) in the rear / retime in the process of pressing the button in the haptic interface. (2) Calculate the correction amount of reaction force from force (2) and present it to the person.
上記菊則データと仮想データの重ね合わせは、ボタンを押 11¾作ばかりでなく、ペン で文字を書レヽたときのペンと紙の間の摩擦特性を ί 正して S(Jの書き心地を実現したり、 メスゃナイフで物を切るときのインピーダンス特性を修正して別の切断感覚を作り出 すことができる。例えば、人の皮膚をメスで^]つたときのインピーダンス特性を予め記 録しておき、医療トレーニング用の人 型を用いて外科 のトレーニングを行う際 に、マネキンの皮膚をメスで切ったときに、あたかも人の皮膚を切っているかのように させることが可能となる。  The above Kikunori data and virtual data can be superimposed not only by pressing the button, but also by correcting the frictional characteristics between the pen and paper when writing characters with the pen, to improve the writing comfort of S (J This can be realized, or the impedance characteristics when cutting an object with a knife can be modified to create a different cutting sensation, for example, the impedance characteristics when a human skin is touched with a knife are recorded in advance. In addition, when performing surgical training using a humanoid for medical training, it is possible to make the mannequin skin cut as if it was cut by a scalpel.
2 - 2 データ ·仮想データの重ね合わせを ¾¾aするシスデム構成]  2-2 Sysdem configuration that superimposes data and virtual data ¾¾a]
図 8は、 実測データ '仮想データの重ね合わせを実現するシステム構成図である。 操 は、ハプティックインタフエースを用いて難の 物に操作を加える。例え ばノ、プティックインタフェース先端に取り付けられたペン型カ覚センサで紙の上に文 字を書レ、たり、ハプテイツクインタフエース先端に取り付けられたメス型カ覚センサゃ ナイフ型カ覚センサで物を切ったりノ、プティックインタフエース先端リンクでポタン やスィッチを押したりする。 このときシステムの制御部の実計測演算部により、物 ί機 作時にペンやメスあるいは先端リンクに加わる擞虫力とペン、メス、先端リンクの運動 が計測され、そのデータはデータ記憶装置に識される。一方、ハブティックインタフ エースの操 であるツー/レ型カ覚センサの蓮動は、仮想空間内の物体モデルの操作に も用いられ、仮想空間内の物体と鎖との相互作用演算力 s行われる。 ここで難 IJデータ と 想データとの重ね合わせには次の二つの方法がある。  FIG. 8 is a system configuration diagram that realizes superimposition of measured data 'virtual data'. Manipulation is performed on difficult objects using a haptic interface. For example, a pen type sensor attached to the tip of a optic interface can be used to write text on paper, or a female sensor attached to the tip of a haptic interface can be used as a knife type sensor. Cut the object with the sensor or press the button or switch with the tip link of the pttic interface. At this time, the actual measurement calculation unit of the control unit of the system measures the worm power applied to the pen, scalpel, or tip link and the movement of the pen, scalpel, tip link during the operation of the material, and the data is stored in the data storage device. Is done. On the other hand, the lotus movement of the two / le-type motion sensor, which is the operation of the Haboutique interface, is also used to operate the object model in the virtual space, and the interaction computing power between the object and the chain in the virtual space s rows Is called. Here, there are the following two methods for superimposing difficult IJ data and thought data.
一つは、重ね合わせ処理において、モデルから計算された反力と菌 IJにより得られた 反力を直接比較して修正反力を計算するものである。 One was obtained from the reaction force calculated from the model and the fungus IJ in the overlay process The modified reaction force is calculated by directly comparing the reaction force.
いわゆる、実文豫物の物理パラメータの推定を行わない方法である。ボタン押しの例 で説明すると、 ハプテイツクインタフエースからボタンの押し込み量 . Δ Xが仮想空間 に入力され、仮想空間の相互作用演算で力 ί 111カ式(4) で計算され、重ね合わせ処理 に入力される。また、制御部により計測された実ポタンを押したときの反力 f rが重ね 合わせ処理部に入力される (図 8 ( a ))。  This is a method that does not estimate the physical parameters of the actual sentence. In the example of button press, the amount of button press .Δ X is input to the virtual space from the haptic interface and calculated by the formula 111 (4) in the virtual space interaction calculation. Is input. In addition, the reaction force fr when the actual button measured by the control unit is pressed is input to the superposition processing unit (Fig. 8 (a)).
式 (4) f m= k m (Δ χ) Δ χ  Equation (4) f m = km (Δ χ) Δ χ
重ね合わせ処理では、反力 f hが式(5) により計算され相互作用修正量としてハプ テイツクインタフエースに入力される。 ハプテイツクインタフエースは、 (5 ) 式の反 力 f hを操 に提示することで、操 はハプティックインタフエースにより生成さ れる反力 f hど実際にポタンから受ける反力 f rの和を反力として感じる。  In the superposition process, the reaction force f h is calculated by equation (5) and input to the haptic interface as an interaction correction amount. The haptic interface can present the reaction force fh in Eq. (5) to the maneuver. The maneuver is the reaction force fh generated by the haptic interface, and the sum of the reaction force fr actually received from the button is the reaction force. feel.
式 (5) f h = f m- f r  Equation (5) f h = f m- f r
二つめは、重ね合わせ処理において、モデルから計算された物体. ^^の物理パラメ ータと、菊 データを用いてモデル推定器によりリアルタイムで計算された物理パラメ ータを比較演算して修正反力を計算するものである。ボタン押しの例で説明すると、ハ プティックインタフエースで実際にボタンを押したときの押し込み量 Δ Xが紫則され る。 翔 IJされた押し込み量 Δ χは^ 想空間に入力され、 仮想空間の相互作用演算でボ タンのパネ計数 kni(A X )が計算され、 重ね合わせ処理に入力される。  The second is an object calculated from the model in the overlay process. The ^^ physical parameter and the physical parameter calculated in real time by the model estimator using the chrysanthemum data are compared and corrected. The force is calculated. In the example of button press, the push amount Δ X when the button is actually pressed in the haptic interface is punishable. The amount of indentation Δχ that has been shojed is input to the virtual space, the button panel count kni (A X) is calculated by the virtual space interaction calculation, and input to the overlay process.
また、ハプティックインタフエースによる菊則データを用いて、モデル推定器で実ボタ ンのパネ計数 kr(A x)が計算され、重ね合わせ処理に入力される(図 8 ( b ))。また、 ボタンの押し込み量 Δ χが重ね合わせ処理に入力される (図 8 ( a ))。 重ね合わせ処 理では、式(6 ) の演算により反力 f hが計算され相互作用修正量としてハプティック インタフェースに入力される。 ハプテイツクインタフエースは、 (6 ) 式の反力 f hを 操 に提示することで、操 はハプティックインタフエースにより生成される反力 f hと実際にボタンから受ける反力 f rの和を反力として感じる。 In addition, the panel estimator kr (A x) of the real buttons is calculated by the model estimator using the Kikuchi rule data from the haptic interface and input to the overlay process (Fig. 8 (b)). In addition, the button push amount Δ χ is input to the overlay process (Fig. 8 (a)). In the superposition process, the reaction force fh is calculated by the calculation of equation (6) and input to the haptic interface as an interaction correction amount. The haptic interface has the reaction force fh in equation (6) By presenting to the operation, the operation feels as the reaction force the sum of the reaction force fh generated by the haptic interface and the reaction force fr actually received from the button.
式 (6 ) f h = { km(A x) - k r (Δ χ)} Δ χ  Equation (6) f h = {km (A x)-k r (Δ χ)} Δ χ
[勢則データの表示例] [Display example of trend data]
ペン型 6軸カ覚センサを用いて被験者 ηと被験者 wの 2名によるカタカナ文字 「ィ」 手書きデータをサンプリングした。その筆跡と筆圧(3軸力)を立体表示した例を図 1 4と図 1 5に示す。被験者 ηのデータを η 1〜: Q 5に視点を変えて図 1 4に示し、被験 者 wのデータを w 1〜w 5に視点を変えて図 1 5に示す。両図の視点は同じであり、力 タカナ文字 「ィ」 の»を軸として、 11 1を0° として右回転したイメージ表示であ 'る。 (1 ) n lは、紙面に対して正面から表示、 ( 2) 11 2は3 6° 振った表示、 ( 3 ) 11 3は7 2° 振った表示、 (4) n 4は 1 0 8° 振った表示、 ( 5) n 5は 1 4 4。 振 つた表示であり、 w 1〜 w 5も同様である。 Using a pen-type 6-axis force sensor, handwritten data was sampled by Katakana characters “i” by two subjects, subject η and subject w. Figures 14 and 15 show examples of the handwriting and pressure (triaxial force) displayed in 3D. The data of subject η is shown in Fig. 14 with the viewpoint changed from η1 to Q5, and the data of subject w is shown in Figure 15 with the viewpoint changed to w1 to w5 . The perspectives of both figures are the same, and the image display is the right rotation with 11 1 as 0 °, with the axis of the force Takana character “i” as the axis. (1) nl is displayed from the front with respect to the paper surface, (2) 11 2 is displayed at 3 6 °, (3) 11 3 is displayed at 7 2 °, (4) n 4 is 1 0 8 ° Waved display, (5) n 5 is 1 4 4 The same is true for w1 to w5.
図 1 6に、 n 2を用いて表示説明例を示す。筆圧の強さと方向性は、ヘアラインとし て 3次元べクトル表示され、筆の運びスピードはヘアラインの間隔に表されている。へ ァラインの間隔力 S短いほど、 ゆっくりとした筆運びとなる。  Fig. 16 shows an example of the display using n2. The strength and direction of writing pressure are displayed as a three-dimensional vector as a hairline, and the speed at which the brush is carried is represented by the spacing between the hairlines. The shorter the hairline spacing force S, the slower the brush strokes.
図 1.4に示される被験者 nの * は、筆圧が強くゆっくりとした運びであり、図 1 5 に示される被験者 wの は、筆圧が弱く早い運ぴであること力 S解る。筆圧の加えられ る方向もそれぞれヘアラインにより表示されている。本発明では、このような実際の筆 跡を立体的に視点を変えて表示することができ、それぞれを比較して、表示することも できる。そして、被験者 nの をモデルとした場合に、被験者 wに対して、比較した のカ覚を提示することもできる。 あるいは、異なる条件の紙を設定して、被験者 n のモデル筆跡を構築することもでき、被験者 wは、その紙の^ (牛下で動作しているカ覚 を提示することができる。 したがって、本発明は、実際に極めて近い手道具をもちいて、操作しながら実体験に 近いモデ ^にて、操作データを取得することができ、そして、モデルと比較した力 覚提示うけて訓練することができる。あるいは、 自分の操作顧を残すことにより暂熟 度を することもできる。 The * of subject n shown in Fig. 1.4 is a slow carrying with strong writing pressure, and the subject S shown in Fig. 15 has a low writing pressure and fast carrying. The direction in which the pen pressure is applied is also indicated by the hairline. In the present invention, such an actual handwriting can be displayed by changing the viewpoint three-dimensionally, and can also be displayed in comparison with each other. Then, when the model of the subject n is used as a model, it is possible to present a sense of comparison with the subject w. Alternatively, paper with different conditions can be set to build model handwriting for subject n, and subject w can present a sense of movement under the cow. Therefore, according to the present invention, it is possible to acquire operation data using a hand tool that is very close to the actual operation, in a model that is close to the actual experience while operating, and to train for the presentation of force compared with the model. Can do. Alternatively, you can improve your proficiency by leaving your operating staff.
隨 Jに基づ <仮想物体モデル構築] 隨 Based on J <Virtual object model construction>
カ覚提示システムの »冓成を示し、 「手技の可視化」 の例として、 手書き文字筆圧 データの可視化を上記に示した。本発明で提案するカ覚提示システムは、 / ¾アームと のツールを用いたツール型カ覚センサから構成されている (図 3参照)。 これによ り、ハプティックデータの提 能に加え、麵の道具と環境との間の力学的相互作用 の実測が可能になる。カ覚提示システムの「実測に基づく仮想モデル構築」の例として、 ^/のボタンを押したときのハプテイツクデータを言 3^し、その場で仮想空間に反映し て操 に提示する例を示す。  As an example of “visualization of technique”, the visualization of handwritten text pressure data is shown above. The haptic presentation system proposed in the present invention is composed of a tool-type sensation sensor using a tool with a / ¾ arm (see FIG. 3). This makes it possible to measure the mechanical interaction between the tool and the environment in addition to the ability to provide haptic data. As an example of “virtual model construction based on actual measurement” of the katsu sense presentation system, the haptic data when the ^ / button is pressed is expressed 3 ^ and reflected in the virtual space on the spot and presented to the operation Indicates.
<娜纖モデル > <娜 纖 model>
押しポタンのデータの記録'再生実験で使用した仮想空間モデルを図 1 7に示す。押 しポタンは^ r [mm],高さ h [mm]で記述される円柱で表現し、 属性としてストローク s [mm]を持つ。  Fig. 17 shows the virtual space model used in the push button data recording and playback experiment. The press button is represented by a cylinder described by ^ r [mm] and height h [mm], and has a stroke s [mm] as an attribute.
図 1 7の点はツール 覚センサの作用点として示された proxyを表し、 ハプテイツ クインタフエースの運動に連動して仮想空間内を運動する。ツー/レ型カ覚センサを操作 して proxyで仮想空間のボタンを押すと、 ボタンのストローク範囲内でボタンは押し込 まれる。  The points in Fig. 17 represent the proxy indicated as the action point of the tool sensor, and move in the virtual space in conjunction with the movement of the haptic interface. If you operate the two / le-type sensor and press the virtual space button with proxy, the button will be pressed within the stroke range of the button.
くボタンデータのサンプリング > Button data sampling>
ハプテイツクインタフェースでボタンを押下したときのボタンの変位と反力を記録 したデータを図 1 8に示す。 図 1 8はハブティックインタフェースでキ^ "ボード (ELECOM TK-U12FYALBK)のキーを押したときの Force - Displacement曲線である。図 1 8 の上の曲線がキーを押したときのデータであり、下の曲線がキーを開放したときのデー タである。 この様に、 ボタンゃスィッチを押したときの Force- Displacement曲線は押 下時と開放時で異なった曲線となり、 ヒステリシスを描く。 Figure 18 shows data that records the displacement and reaction force of the button when the button is pressed in the haptic interface. Figure 1 8 is the Ha boutique interface key board This is the Force-Displacement curve when the (ELECOM TK-U12FYALBK) key is pressed. The upper curve in Fig. 18 is the data when the key is pressed, and the lower curve is the data when the key is released. In this way, the Force-Displacement curve when the button is pressed becomes a different curve when the button is pressed and when it is released, and hysteresis is drawn.
<サンプリングデータのモデル化 > <Modeling of sampling data>
記録された: Force-Displacement曲線は、 ボタンの変位を一定間隔で離散化し、 変位に 対する反力をサンプリングデータの線麟甫間により求め、仮想ボタンの反力モデルを構 築した。 また、 Force~Displacement曲線の最大変位を仮想ボタンのストロークとした。 <サンプリングデータの再生 >  Recorded: The Force-Displacement curve was constructed by discretizing the displacement of the button at regular intervals and calculating the reaction force against the displacement by using the distance between the sampling data lines. The maximum displacement of the Force ~ Displacement curve was used as the virtual button stroke. <Playback of sampling data>
記録されたポタンデータの提示反力は、 Proxy と仮想ボタンの撤虫状態、 體から、 以下の五つの条件 (式 7〜1 1に表す) に分けて提示した。  The reaction force of the recorded button data was divided into the following five conditions (represented in Equations 7 to 11) based on the proxy and virtual button removal status, and 體.
(1) Proxyとポタンが非 gj!虫  (1) Proxy and potan are non-gj! Insects
式 (7 ) f = 0  Equation (7) f = 0
(2) Proxyとポタン力 S纖虫、 力つポタン" SJ¾範囲内  (2) Proxy and potency S worm, powerful pot "within SJ¾ range
• Proxyの速度がポタン押下方向  • Proxy speed is the direction of pressing the button
式 ( 8 ) ■ f = f press  Formula (8) ■ f = f press
• Proxyの速度がボタン開放方向  • Proxy speed is the button opening direction
式 ( 9 . f = f release  Formula (9.f = f release
(3) Proxyとボタン;^翻虫、 力つボタンの底に到達  (3) Proxy and button; ^ reversal, reaching the bottom of the force button
• Proxyの速度がボタン押下方向  • Proxy speed is the direction of button press
式 (1 0 ) f =-K p Δ ρ -K v V c  Formula (1 0) f = -K p Δ ρ -K v V c
• Proxyの速度がボタン開放方向  • Proxy speed is the button opening direction
式 、丄 1 ) f = f release—max ここで f はハプテイツクインタフエースがユーザに提示する力、 f press、 f release はそれぞ;^想ポタンモデルの Force-Displacement曲線 (図 1 8 ) から得られる押下 時、および解放時の力、 Kp、 Κν、はサーボゲイン、 Δ ρはボタンの底に到達後の変位、 Vcはボタン押下方向の速度、 frelease— maxは freleaseの最大値を表す。 , 丄 1) f = f release—max Where f is the force that the haptic interface will present to the user, f press and f release are respectively; ^ the force at the time of pressing and releasing from the Force-Displacement curve (Figure 18) , Kp, Κν are servo gains, Δρ is the displacement after reaching the bottom of the button, Vc is the speed in the direction of pressing the button, and frelease-max is the maximum value of frelease.
図 1 9はボタンデータ再生時のデータを示したものである。 図 1 9 (a)はユーザがハ プテイツクインタフエースを操り仮想ボタンを押したときの仮想ボタンの変位、図 1 9 (b)はハブティックインタフェースによりユーザに提示された力、 図 1 9 (c)は仮想ボタ ンの操作変位と提示力の関係を示したものである。 図 1 9 (b)のピークは proxyがボタ ンの底に到達したときのもの。データ再生の感触は、 proxyがポタンのストローク範囲 内にある場合には満足のいくものであった。  Figure 19 shows the data during button data playback. Fig. 19 (a) shows the displacement of the virtual button when the user manipulates the virtual interface and presses the virtual button, Fig. 19 (b) shows the force presented to the user by the Haboutique interface, and Fig. 19 ( c) shows the relationship between the virtual button operation displacement and the presentation force. The peak in Fig. 9 (b) is when proxy reaches the bottom of the button. The feeling of data reproduction was satisfactory when proxy was within the stroke range of the button.
ハプテイツクレコーダの重要な猶の一つである、 「実測に基づく仮想モデル構築」 の例として行ったポタン押下データの言 3^ .再生の実 果は、データの言 から再生 はすべてオンラインで行っており、その場で、 目の前にあるポタンデータを仮想空間に 反映し、 ユーザに提示することができた。  One of the important delays of the haptic recorder, the word 3 ^ 3 of the button press data used as an example of “virtual model construction based on actual measurement”. The playback results are all online based on the data. On the spot, the button data in front of me was reflected in the virtual space and presented to the user.

Claims

請求の範囲 The scope of the claims
1 .コンピュータ内部に構築した抚想モデルのデータとツール型カ覚センサを備えたハ ブティックインタフェースから得られた菊則値データとを比較して を求め、ハ プティックインタフエースに該^^を提示するカ覚提示方法であって、  1.Compare the data of the imagination model built inside the computer with the Chrysanthemum rule value data obtained from the boutique interface equipped with a tool-type sensor, and find the ^^ in the haptic interface. A katsu sense presentation method to present,
操作量に応じて仮想モデルが受ける反力とハプテイツクインタフェース先端に取 り付けたツール 覚センサが実 から受ける反力との¾ ^を算出し、該¾ ^を 反力として提示することを «とする反力提示; W去。  Calculate ¾ ^ between the reaction force received by the virtual model according to the amount of operation and the reaction force actually received by the tool sensor attached to the tip of the haptic interface, and present ¾ ^ as the reaction force. «Reaction force presentation;
2.コンピュータ内部に構築した低想モデルのデータとツール型カ覚センサを備えたハ プティックインタフエースから得られた剪則値データとを比較して散を求めノ、 プティックインタフエースに該差分を提示するカ覚提示方法であって、  2.Compare the data of the low-profile model built inside the computer with the pruning value data obtained from the haptic interface equipped with the tool-type katsu sensor, and calculate the variance. A katsu sense presentation method for presenting a difference,
仮想、モデノレ構築状況とは環境因子あるレ、はツール因子を変更した状況でのハプテ ィックインタフエースを操作した:^に、假想モデルが操作量によって受けると算 出された量と実測値の差分を修正して出力して提示する反力とすることを特徵と する反力提示方法。  The virtual and modern construction status is an environmental factor, and the haptic interface was manipulated when the tool factor was changed: ^, the difference between the calculated amount and the measured value when the contemplation model is affected by the manipulated variable A reaction force presentation method characterized by the fact that the reaction force is to be output after being corrected.
3 .ツール型カ覚センサを備えたハプティックインタフエース及び制御装置を備えた力 覚提示システムであって、  3. A haptic interface equipped with a tool-type force sensor and a force sense presentation system equipped with a control device,
ツール動覚センサを備えたハプテイツクインタフエースは、ツール動覚センサ とツール型カ覚センサに連結されるマニピュレータから構成され、  A haptic interface with a tool motion sensor consists of a manipulator connected to a tool motion sensor and a tool-type motion sensor,
ツール型カ覚センサは、ツール機能部と把持部と、ツール機能部と把持部の間に力 覚センサ本体を有しており、  The tool-type force sensor has a tool function part and a grip part, and a force sensor body between the tool function part and the grip part.
マニピュレータは、ツール型カ覚センサの 3次元運動を計測できるとともに、ァク チユエータに,されて、ツール 覚センサを把持している操 にカ覚を提示 する機能を有しており、 制御装置は、菊則演算部、データ記'慮部、モデル推定器、物体モデノレデータペース、 モデルデータベース、物体モデルと環境モデルと相互作用演算部からなる仮想 空間演算部、 重ね合わせ処理部及び表示部から構成され、 The manipulator can measure the three-dimensional motion of the tool-type sensor, and has the function of presenting the sensory sense to the operation that is being performed by the actuator and holding the tool sensor. The control device consists of a chrysanthemum operation unit, a data storage unit, a model estimator, an object model data pace, a model database, a virtual space operation unit composed of an object model, an environment model, and an interaction operation unit, an overlay processing unit Consisting of parts
該制御装置は、ハプティックインタフェースの操作による難リ値に基づいて仮想環 境内の モデルを操作する機能と、ハプテイツクインタフエースを操作する際に 操 Miこ対して提示する修正したカ覚を計算する機能を有し、  The control device calculates the function to operate the model in the virtual environment based on the difficulty value by the operation of the haptic interface, and the corrected kart to be displayed in response to the operation when operating the haptic interface. Has the function to
修正したカ覚の提示は、ハプテイツクインタフエースの操作によって得られる実操 作量を予め構築されている仮想モデルに対して直接操作量として入力し、 想空間 内の仮想物体同士ある 、は仮想物体と仮想環境との間の力学的相互作用演算によ り反力を計算し、ツール型カ覚センサの操作による難赚から得られた反力データ とを重ね合わせて処理部にて重ね合わせ処理して ¾ ^を算出し、 «変化の因子や ツールの変更の因子を加味することなくその差分を修正反力として提示すること で、ハプテイツクインタフエースによりつくられた修正反力と実纖から受ける反 力を加えたカ覚を操^ に提示すること、あるいは、修正したカ覚の提示は、 « 変化あるレ、はツールを変更した ¾ ^は、変ィ匕因子を加味した相互作用修正量を加味 したカ覚を提示するものであって、仮想モデルが実測操作量によって受ける反力と 廳己翔 |J反力との差を修正量とし、実 から受ける反力と変化因子を加味した修 正反力を加えて操储にカ覚を提示することを赚とするカ覚提示システム。  In the presentation of the corrected katsu, the actual operation amount obtained by the operation of the haptic interface is directly input to the pre-built virtual model as the operation amount, and there are virtual objects in the virtual space. The reaction force is calculated by calculating the dynamic interaction between the virtual object and the virtual environment, and the reaction force data obtained from the difficulty of operating the tool-type kull sensor is overlaid on the processing unit. By calculating ¾ ^ and displaying the difference as a modified reaction without taking into account the factor of change or the factor of change of the tool, the modified reaction force created by the haptic interface Presenting the sense of sensation with reaction force received from the actual test to the maneuver, or presenting the corrected sense of sensation, «changed, or changed the tool ¾ ^ added a variable factor Adjusting the interaction correction amount The difference between the reaction force that the virtual model receives due to the measured manipulated variable and the J reaction force is the correction amount, and the correction reaction force that takes into account the reaction force actually received and the change factor In addition, a katsu sense presentation system that relies on presenting katsu senses to operations.
4.請求項 3記載のカ覚提示システムにおいて、ツール^覚センサを操作して操作デ ータを計測して »し、過去に «された擦作データと の操作データを重ねて 表示したり、過去に霄 された操作データと現在の操作データの を表示するこ とで、謝東者の教師操作データと操Wのデータを視覚的に比較表示することを可. 能とするカ覚提示システム。 4. In the knot presentation system according to claim 3, the operation data is measured by operating the tool ^ sensor, and the operation data with the past friction data is displayed in an overlapping manner. By displaying the operation data entered in the past and the current operation data, it is possible to visually compare and display Xiedong's teacher operation data and operation W data. system.
5.請求項 3記載のカ覚提示システムにおいて、実鐘に対してツール型カ覚センサを 操作して操作データを計測して記録することで、道具と の力学的相互作用を実 測することができ、 のインピーダンス特性 (粘弾性特性)、 摩 数、 の テクスチャの物理パラメータを計算により求めることができ、その物理パラメーダ をその場で仮想空間のモデルに反映することを可能とするカ覚提示システム。5. The haptic presentation system according to claim 3, wherein the mechanical interaction with the tool is measured by operating the tool-type haptic sensor on the real bell and measuring and recording the operation data. It is possible to calculate the physical characteristics of the impedance characteristics (viscoelastic characteristics), the number of frictions, and the textures of and to reflect the physical parameters in the virtual space model on the spot. system.
6. 6軸カ覚センサを備えたツール型カ覚センサは、 6軸カ覚センサ本体に対してツー ル機能部ある 、は把持部を着脱交換可能としたことを特徴とする請求項 3〜 5の いずれ力に記載のカ覚提示システム。 6. The tool-type motion sensor provided with the 6-axis motion sensor has a tool function portion or a gripping portion that is detachable and replaceable with respect to the 6-axis motion sensor main body. The katsu sense presentation system described in any one of 5 forces.
PCT/JP2007/074188 2006-12-13 2007-12-11 Reaction force presentation method and force presentation system WO2008072756A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008549389A JP5177560B2 (en) 2006-12-13 2007-12-11 Reaction force presentation method and force sense presentation system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-336138 2006-12-13
JP2006336138 2006-12-13

Publications (1)

Publication Number Publication Date
WO2008072756A1 true WO2008072756A1 (en) 2008-06-19

Family

ID=39511767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/074188 WO2008072756A1 (en) 2006-12-13 2007-12-11 Reaction force presentation method and force presentation system

Country Status (2)

Country Link
JP (1) JP5177560B2 (en)
WO (1) WO2008072756A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009187550A (en) * 2008-02-04 2009-08-20 Gwangju Inst Of Science & Technology Haptic interaction method in augmented reality and system thereof
JP2011238068A (en) * 2010-05-11 2011-11-24 Nippon Hoso Kyokai <Nhk> Virtual force sense presentation device and virtual force sense presentation program
JP2014109818A (en) * 2012-11-30 2014-06-12 Hiroshima Univ Force sense presentation system
JP2015127965A (en) * 2015-01-06 2015-07-09 三菱プレシジョン株式会社 Surgical simulation model generating method, surgical simulation method, and surgical simulator
JP2015146194A (en) * 2009-06-25 2015-08-13 サムスン エレクトロニクス カンパニー リミテッド Device and method for processing virtual world

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6010729B2 (en) * 2013-07-31 2016-10-19 株式会社栗本鐵工所 Force display system
KR20200070607A (en) * 2018-12-10 2020-06-18 (주)리얼감 Force feedback method and system using strength, machine-readable storage medium
US11396103B2 (en) * 2020-03-10 2022-07-26 Samsung Electronics Co., Ltd. Method and apparatus for manipulating a tool to control in-grasp sliding of an object held by the tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0181547U (en) * 1987-11-20 1989-05-31
JPH10177387A (en) * 1996-10-18 1998-06-30 Yamaha Corp Tactile force driving device, tactile force applying method and recording medium
JP2000259074A (en) * 1999-03-11 2000-09-22 Minolta Co Ltd Tool-mediating type inner force sense presenting system
JP3624374B2 (en) * 2000-12-12 2005-03-02 独立行政法人産業技術総合研究所 Force display device
JP3802483B2 (en) * 2002-12-26 2006-07-26 大日本印刷株式会社 Calligraphy learning support system, computer, program, and recording medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4273464B2 (en) * 2006-07-28 2009-06-03 独立行政法人産業技術総合研究所 Gripping tool for 6-axis force sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0181547U (en) * 1987-11-20 1989-05-31
JPH10177387A (en) * 1996-10-18 1998-06-30 Yamaha Corp Tactile force driving device, tactile force applying method and recording medium
JP2000259074A (en) * 1999-03-11 2000-09-22 Minolta Co Ltd Tool-mediating type inner force sense presenting system
JP3624374B2 (en) * 2000-12-12 2005-03-02 独立行政法人産業技術総合研究所 Force display device
JP3802483B2 (en) * 2002-12-26 2006-07-26 大日本印刷株式会社 Calligraphy learning support system, computer, program, and recording medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009187550A (en) * 2008-02-04 2009-08-20 Gwangju Inst Of Science & Technology Haptic interaction method in augmented reality and system thereof
JP2015146194A (en) * 2009-06-25 2015-08-13 サムスン エレクトロニクス カンパニー リミテッド Device and method for processing virtual world
JP2011238068A (en) * 2010-05-11 2011-11-24 Nippon Hoso Kyokai <Nhk> Virtual force sense presentation device and virtual force sense presentation program
JP2014109818A (en) * 2012-11-30 2014-06-12 Hiroshima Univ Force sense presentation system
JP2015127965A (en) * 2015-01-06 2015-07-09 三菱プレシジョン株式会社 Surgical simulation model generating method, surgical simulation method, and surgical simulator

Also Published As

Publication number Publication date
JP5177560B2 (en) 2013-04-03
JPWO2008072756A1 (en) 2010-04-02

Similar Documents

Publication Publication Date Title
US20180137782A1 (en) Virtual Tool Manipulation System
Dipietro et al. A survey of glove-based systems and their applications
WO2008072756A1 (en) Reaction force presentation method and force presentation system
Okamura Haptic feedback in robot-assisted minimally invasive surgery
Biggs et al. Haptic interfaces
CN106251751A (en) A kind of simulated medical surgery analogue system based on VR technology
JP3624374B2 (en) Force display device
Alhalabi et al. Medical training simulation for palpation of subsurface tumor using HIRO
Wei et al. Augmented optometry training simulator with multi-point haptics
US20170278432A1 (en) Medical procedure simulator
KR20110029313A (en) Hybrid medical simulation system and method
Suzuki et al. Simulator for virtual surgery using deformable organ models and force feedback system
Ershad et al. Adaptive surgical robotic training using real-time stylistic behavior feedback through haptic cues
Rosenberg et al. A haptic interface for virtual simulation of endoscopic surgery
Suzuki et al. Virtual surgery system using deformable organ models and force feedback system with three fingers
Yi et al. The implementation of haptic interaction in virtual surgery
Burdea Virtual reality and robotics in medicine
JP7467293B2 (en) Simulation system and simulation method
Burdea et al. Computerized hand diagnostic/rehabilitation system using a force feedback glove
Zhang et al. A virtual reality based arthroscopic surgery simulator
CN108687743A (en) Based on vibration and the touch feedback exoskeleton device pneumatically combined
CN2733316Y (en) Force harvesting device for surgical knives
WO2001088881A2 (en) Tools for endoscopic tutorial system
Liu et al. Force modeling for tooth preparation in a dental training system
Poon et al. A novel user-specific wearable controller for surgical robots

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850677

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008549389

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07850677

Country of ref document: EP

Kind code of ref document: A1