WO2008072527A1 - Intraocular pressure measuring device - Google Patents

Intraocular pressure measuring device Download PDF

Info

Publication number
WO2008072527A1
WO2008072527A1 PCT/JP2007/073512 JP2007073512W WO2008072527A1 WO 2008072527 A1 WO2008072527 A1 WO 2008072527A1 JP 2007073512 W JP2007073512 W JP 2007073512W WO 2008072527 A1 WO2008072527 A1 WO 2008072527A1
Authority
WO
WIPO (PCT)
Prior art keywords
intraocular pressure
eyeball
probe
phase difference
frequency
Prior art date
Application number
PCT/JP2007/073512
Other languages
French (fr)
Japanese (ja)
Inventor
Sadao Omata
Yoshinobu Murayama
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2008549263A priority Critical patent/JP5505684B2/en
Publication of WO2008072527A1 publication Critical patent/WO2008072527A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/16Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring intraocular pressure, e.g. tonometers
    • A61B3/165Non-contacting tonometers

Definitions

  • the present invention relates to an intraocular pressure measurement device, and more particularly to an intraocular pressure measurement device that measures intraocular pressure using ultrasonic waves.
  • Tonometers are widely used to measure intraocular pressure.
  • the tonometer blows air onto the eyeball, optically measures how the eyeball is distorted by the air pressure, and measures the intraocular pressure based on the magnitude of the distortion.
  • the tonometer blows air onto the eyeball, it is not accurate due to the influence of the pulsation of the air pressure.
  • air is directly injected into the eyeball tissue such as the cornea, a load is applied to the subject.
  • a probe is placed on the heel and appropriately pressurized, and the change in the depth of the anterior chamber at that time is detected by ultrasonic waves.
  • an ultrasonic wave is incident, a reflected sound bundle is detected, and the time axis within one sweep of the ultrasonic detection signal is converted into a distance by the biological sound velocity of the anterior ocular segment for a waveform called ultrasonic A mode.
  • the depth of the anterior chamber is detected by a general distance measurement principle.
  • the present inventor has developed a method capable of accurately measuring the hardness of an object using a phase shift method.
  • vibration is incident on the measurement object from the vibrator, the reflected wave from the measurement object is detected by the vibration detection sensor, and the measurement object is between the incident wave and the reflected wave according to the hardness of the measurement object.
  • the frequency of the generated phase difference using a phase shift circuit, the phase difference is compensated to zero, and the hardness of the measured object is obtained from the amount of frequency change that compensates for the phase difference to zero.
  • the force of measuring the hardness of an object to be measured is measured by a contact method in which vibration is input to the object to be measured and a reflected wave is detected.
  • Patent Document 1 Japanese Patent Laid-Open No. 8-322803
  • Patent Document 2 JP-A-9 145691 Disclosure of the invention
  • the tonometer applies air pressure to the eyeball, and also presses the eyeball through the eyelid in the method of Patent Document 1.
  • pressure is applied to the eyeball by an external force, and the magnitude of the intraocular pressure is determined from the distortion of the eyeball due to the pressure.
  • the hardness of the measurement object can be measured by inputting vibration to the measurement object and detecting the reflected wave.
  • the object to be measured is an eyeball
  • the hardness is related to the intraocular pressure, so this method makes it possible to measure the intraocular pressure without applying external force. multiply. Therefore, if the intraocular pressure can be measured without touching the eyeball, the burden on the subject can be reduced, which is convenient.
  • An object of the present invention is to provide an intraocular pressure measuring device capable of measuring intraocular pressure without contacting the eyeball.
  • vibration is incident on the eyeball in a non-contact manner, a reflected wave from the eyeball is detected, and whether or not the phase shift method can be applied to the phase difference generated between the incident wave and the reflected wave has been confirmed.
  • the tip shape of the probe facing the eyeball is adjusted, there is a correlation between the intraocular pressure and the frequency difference that compensates for the phase difference to zero. Based on this experiment, the following measures can be taken.
  • An intraocular pressure measurement device includes a probe having a transducer that makes ultrasonic waves incident on an eyeball in a non-contact manner, and a vibration detection sensor that detects a reflected wave from the eyeball.
  • a phase difference force S occurs between the input waveform to the transducer and the output waveform from the vibration detection sensor, connected to the probe in series with the amplifier, and a concave acoustic lens with a concave surface facing the eyeball.
  • the phase shift circuit that changes the frequency to compensate for the phase difference to zero, the relationship between the frequency change amount when the phase difference is compensated to zero and the intraocular pressure are obtained in advance, and the concave acoustic lens is attached to the eyeball.
  • the intraocular pressure measurement device preferably includes a probe moving mechanism that can vary the distance between the concave acoustic lens and the eyeball of the measurement object.
  • the intraocular pressure measurement device preferably includes curved surface shape changing means capable of changing the curved surface shape of the concave acoustic lens.
  • the intraocular pressure measurement apparatus uses a probe having a concave acoustic lens whose surface facing the eyeball is a concave surface, and separates the concave acoustic lens from the eyeball so as to face the eyeball. Is incident. Then, the relationship between the frequency change amount and the intraocular pressure when the phase difference is compensated to zero is obtained in advance, and the frequency change force that compensates the phase difference generated when the ultrasonic wave is incident on the eyeball to zero is calculated. calculate. Therefore, the intraocular pressure can be measured without touching the eyeball.
  • the distance between the concave acoustic lens and the eyeball of the measurement object can be varied, it is possible to detect the reflected wave by injecting vibration while focusing on the eyeball.
  • the curved surface shape of the concave acoustic lens can be varied, it is possible to detect the reflected wave by injecting the vibration while focusing on the eyeball.
  • FIG. 1 is a diagram showing a configuration of an intraocular pressure measurement device according to an embodiment of the present invention.
  • FIG. 2 is a diagram extracting and showing a configuration of a probe element, a concave acoustic lens, and a portion of an intraocular pressure measurement unit included in a main body part in an embodiment according to the present invention.
  • FIG. 3 is a diagram showing a state of selection of an oscillation frequency in which the circuit constant of the phase shift circuit is set in the embodiment according to the present invention.
  • FIG. 4 is a diagram showing the shape dimensions of the simulated objects A and B used to obtain the correspondence relationship between the amount of frequency change and the acoustic impedance in the embodiment according to the present invention.
  • FIG. 5 is a diagram showing a correspondence relationship between the amount of change in frequency and acoustic impedance in the embodiment according to the present invention.
  • FIG. 6 is a diagram showing a state of an eyeball model used for obtaining a correspondence relationship between a frequency change amount and intraocular pressure in the embodiment according to the present invention.
  • FIG. 7 shows the correspondence between frequency variation and intraocular pressure in the embodiment of the present invention.
  • the force described as mounting the probe on a movable table movable with respect to the floor may be used.
  • the probe may be mounted on a support base fixed in relation to the head of the subject.
  • the probe may be a force described as a laminate of a transducer and a vibration detection sensor, or any other arrangement method.
  • the vibrator and the vibration detection sensor may be arranged concentrically, or the vibrator and the vibration detection sensor may be separately arranged in parallel.
  • FIG. 1 is a diagram showing a configuration of the intraocular pressure measurement device 10.
  • FIG. 1 shows an eyeball 8 that is not a constituent element of the intraocular pressure measurement device 10 but is an intraocular pressure measurement target.
  • the intraocular pressure measurement device 10 is connected to the probe 20, a probe moving mechanism 30 for adjusting the position of the probe 20 with respect to the eyeball, and the probe 20 via a signal line.
  • a main body 60 that calculates and outputs the value.
  • the probe moving mechanism 30 includes a fixed base 32 fixed to the floor surface and a movable base 34 that can move linearly with respect to the fixed base 32, and a probe is attached to the movable base 34. Part 38 is provided.
  • a conversion mechanism between a rotational motion and a linear motion by a pinion and a rack can be used as the fixed base 32 and the movable base 34.
  • there is an operation node 36 force S connected to the pinion and by rotating the operation handle 36, the pinion provided on the fixed base 32 rotates, and the rack that meshes with this moves linearly.
  • Movable table with rack mounted 34 You can power to move.
  • a linear motor or the like that can be moved by controlling electric signals may be used as a mechanism between the fixed base 32 and the movable base 34! /.
  • the probe 20 is a probe having an elongated cylindrical shape, and is provided with a concave acoustic lens 22 and a probe element 24 on the tip side facing and spaced apart from the eyeball 8, and one end side of the probe element 24 is connected to the probe element 24.
  • the signal line to be connected is connected to the main body 60 on the other end side.
  • FIG. 2 is a diagram showing an extracted configuration of the probe element 24, the concave acoustic lens 22, and the intraocular pressure measurement unit 40 included in the main body 60.
  • the probe element 24 includes a transducer 26 that makes an ultrasonic wave incident on an eyeball 8 that is a measurement object via a concave acoustic lens 22, and a vibration detection sensor 28 that detects a reflected wave from the eyeball 8. And have.
  • the vibrator 26 and the vibration detection sensor 28 are stacked and connected in series, and the connection point is grounded.
  • two disk-shaped piezoelectric elements each provided with electrodes are stacked using two, and the middle two electrodes are integrated into a ground electrode, and the stacked upper surface side electrode and lower surface electrode are integrated.
  • One side of the side electrode is used as the input electrode of the vibrator 26, and the other side is used as the output electrode of the vibration detection sensor 28.
  • the surface on the input electrode side of the vibrator 26 is bonded and fixed to the flat back surface of the concave acoustic lens 22.
  • a commercially available PZT element can be used as the piezoelectric element.
  • the concave acoustic lens 22 focuses the ultrasonic wave radiated from the probe 24 on the measurement object, and efficiently collects the reflected waves radiated from the measurement object. It is an element that has a function to transmit to 24.
  • the concave acoustic lens 22 is formed in a concave surface having a predetermined curved surface on the surface facing the eyeball 8 as a measurement object, and the back surface on the opposite side of the concave surface is formed on, for example, a flat surface to connect to the probe element 24. Is done.
  • the concave acoustic lens 22 may be made of a suitable plastic material or ceramic, glass or the like molded into a predetermined shape.
  • the concave curved surface shape of the concave acoustic lens 22 is preferably a shape corresponding to the curved surface shape of the eyeball 8 to be measured.
  • the force S can be configured as a part of a spherical surface having a certain radius of curvature.
  • the radius of curvature can be the radius of curvature at a site suitable for measuring intraocular pressure, or the average radius of curvature of the eyeball.
  • the force S can be set to a radius of curvature of several millimeters.
  • the concave surface shape of the concave acoustic lens 22 can be formed into a fixed shape by molding an appropriate material as described above.
  • the concave acoustic lens 22 has a fixed end on the outer periphery of a cylindrical support portion.
  • This is a variable-shape concave acoustic lens that has a flexible curved membrane, injects pressurized fluid into the cylindrical support, and changes the shape of the concave surface by changing the fluid pressure.
  • the fluid it is preferable to use a fluid that easily propagates ultrasonic vibrations, and fluid silicone rubber can be used.
  • FIG. 2 shows the configuration of the intraocular pressure measurement unit 40.
  • the intraocular pressure measurement unit 40 includes a terminal 42 that receives an output signal corresponding to the reflected wave from the vibration detection sensor 28, a terminal 44 that outputs an input signal corresponding to the incident wave to the transducer 26, and the main body shown in FIG. A terminal 46 for outputting an intraocular pressure value to an output section such as a display screen of the section 60;
  • the inside of the intraocular pressure measurement unit 40 is configured as follows.
  • the terminal 42 connected to the vibration detection sensor 28 is connected to the amplifier 48 via an appropriate DC cut capacitor.
  • the amplifier 48 is an electronic circuit that appropriately amplifies the reflected wave signal detected by the vibration detection sensor 28, and a known amplifier circuit can be used.
  • phase shift circuit 50 The output of the amplifier 48 is input to the phase shift circuit 50, and the output of the phase shift circuit 50 is connected to the vibrator 26 via the terminal 44. Therefore, transducer 26—concave acoustic lens 2 2-(atmosphere) — (eyeball 8)-(atmosphere) —concave acoustic lens 22—vibration detection sensor 28—amplifier 48—phase shift circuit 50—closed loop of transducer 26 Composed. Therefore, by appropriately setting the contents of the phase shift circuit 50, the force S can be used to generate self-excited oscillation in this closed loop.
  • the function of the phase shift circuit 50 is to change the oscillation frequency of the closed loop when a phase difference occurs between the input signal input to the phase shift circuit 50 and the output signal output in this closed loop. Thus, the phase difference is compensated to zero. Then, the frequency when the phase difference is compensated to zero is output to the frequency change amount calculation unit 52.
  • This function detects the oscillation frequency f when the measurement object is not included in the closed loop and stores it once, and then detects the oscillation frequency f when the measurement object is included in the closed loop. This is also memorized once and the two memorized frequencies f and f are read.
  • the phase shift circuit 50 has a closed-loop frequency when a phase difference occurs between the output signal of the vibration detection sensor 28 and the input signal to the vibrator 26. To compensate for the phase difference to zero. Therefore, as for the frequency of the self-oscillation of the closed loop, the difference in the physical properties of the measurement object becomes easier when the frequency change amount when compensating for the phase difference to zero is large. Therefore, the circuit constants, which are the circuit contents of the phase shift circuit 50, are set so that the frequency change amount when the phase difference is compensated to zero becomes a stable and large oscillation frequency for the target closed loop.
  • FIG. 3 is a diagram showing a state of selection of an oscillation frequency at which the circuit constant of the phase shift circuit 50 is set.
  • FIG. 3 shows the frequency-phase characteristics of the probe element 24.
  • the characteristic of the probe element 24 has a plurality of peaks.
  • Peak B is the peak with the sharpest oscillation characteristics and stable oscillation. Conversely, due to its strong stability, there is almost no frequency change even if the phase difference is changed.
  • Peak C is unstable in oscillation. [0034] Therefore, it is assumed that the peak A causes the oscillation to be properly stabilized, and the force and the frequency change of an appropriate magnitude according to the change of the phase difference. It can be selected as a peak suitable for detection. That is, the circuit constant of the phase shift circuit 50 is set to be suitable around 350 kHz in the frequency band.
  • the intraocular pressure calculation unit 54 has a function of calculating intraocular pressure based on the frequency change amount output from the frequency change amount calculation unit 52.
  • the relationship between the frequency variation and the intraocular pressure is obtained in advance, and the frequency variation calculated by the frequency variation calculator 52 is applied to the relationship.
  • FIG. 4 to FIG. 7 are diagrams for explaining the state of an experiment for determining the relationship between the amount of change in frequency and the intraocular pressure for compensating for the phase difference generated when an ultrasonic wave is incident on the eyeball to zero. These figures show the frequency change amount A f of the frequency f force when there is no simulated object, with respect to the frequency f when the phase difference is compensated to zero by applying ultrasonic waves to the simulated object modeling the eyeball. Seeking
  • FIG. 4 is a diagram for explaining a state in which a relationship between ⁇ f and acoustic impedances of simulated objects A and B is obtained.
  • FIG. 4 shows the geometric dimensions of the simulated objects A and B.
  • the shapes of the simulated objects A and B approximate the outer shape of the eyeball 8, and have a curved surface that is gentler than the hemisphere. From the dimensions in Fig. 4, the radius of curvature at the tip of simulated objects A and B can be evaluated as about 4 mm to about 6 mm.
  • silicon rubber is mixed in an appropriate medium and the concentration is changed to 40%, 60%, 80%, and 100%. A sample was created.
  • the frequency change amount A f that is the change amount of the oscillation frequency between when the simulated objects A and B are present and not present was obtained.
  • Figure 5 shows the result of associating the calculated acoustic impedance with the calculated frequency change.
  • the frequencies of simulated objects A and B with different shapes are There is a correlation between the change A f and the acoustic impedance. According to Fig. 5, the correlation is almost linear, but the correlation varies depending on the shape of the simulated object!
  • FIG. 5 since there is a correlation between the frequency change amount A f when the phase shift method is used and the hardness of the measurement object, the component force, that is, the frequency change amount is described next.
  • Figures 6 and 7 show the experiment of correlating Af with the pressure corresponding to intraocular pressure.
  • a silicone rubber eyeball model 70 having a shape shown in FIG. 6 and having a cavity inside is used as a simulated object modeling the eyeball.
  • the eyeball model 70 is configured to include a base portion 72 and a curved surface portion 74 that can bulge and change its outer shape by pressurizing the inside, and the pressurizer 80 supplies water or an appropriate fluid to the inside of the eyeball model 70.
  • the shape of the curved surface portion 74 can be changed by injecting under pressure.
  • the pressure of the internal fluid in the curved surface portion 74 can be detected by a pressure gauge 82 such as a manometer.
  • FIG. 6 shows how the curved surface portion 74 expands and changes to curved surface portions 75 and 76 as the pressure is increased.
  • FIG. 7 is a diagram showing the relationship between the frequency variation A f and the pressure of the eyeball model 70 when the distance from the concave acoustic lens 22 to the tip of the eyeball model 70 is 2000 m, ie, 2 mm. . As can be seen from FIG. 7, there is a clear linearity between the pressure of the eyeball model 70 and the frequency change ⁇ f in the phase shift method.
  • the intraocular pressure of the eyeball 8 can be obtained by the intraocular pressure measurement device 10 shown in FIG.
  • the correspondence relationship of “A f—intraocular pressure” is stored in a format in which the intraocular pressure is output by inputting A f. Specifically, it may be stored in the form of a calculation formula that may be stored in the form of a conversion table such as a lookup table.
  • f is about 350 kHz because it is the frequency of peak A in Fig. 3.
  • the absence of the eyeball 8 can be realized by providing a sufficiently large space between the eyeball 8 and the tip of the concave acoustic lens 22.
  • the concave acoustic lens 22 is brought closer to the eyeball 8 using the probe moving mechanism 30.
  • the approaching distance is preferably a distance force between the eyeball 8 and the tip of the concave acoustic lens 22 and a representative radius of curvature of the concave acoustic lens 22.
  • a position where the variation in oscillation frequency at that time is reduced can be used as an interval for measurement. That is, if the distance between the eyeball 8 and the concave acoustic lens 22 is too narrow or too wide, the ultrasonic waves diverge or do not concentrate on the curved surface of the concave acoustic lens 22.
  • a f is about 100 Hz in the examples of Figs.
  • the intraocular pressure calculation unit 54 reads the pre-stored “A f—intraocular pressure” correspondence, and applies the frequency change amount A f given from the frequency change amount calculation unit 52 to the correspondence relationship. Calculates and outputs the intraocular pressure.

Abstract

An intraocular pressure measuring device (10) comprising a probe (20) provided with a concave acoustic lens (22) at the tip end side facing and spaced apart from an eyeball (8) and with a probe element (24) having a vibrator and a vibration detection sensor laminated therein, a probe moving mechanism (30) for regulating the position of the probe (20) respective to the eyeball (8), and a body unit (60) connected with the probe (20) to calculate and output an intraocular pressure. The body unit (60) includes a phase shift circuit connected in series with the probe (20) along with an amplifier to change its frequency, when the phase difference between an input waveform to the vibrator and an output waveform from the vibration detection sensor occurs, and compensate the phase difference to zero, and an intraocular pressure calculating unit that determines in advance the relation between a frequency change amount and an intraocular pressure when a phase difference is compensated to zero, and calculate an intraocular pressure from a frequency change amount compensating to zero an phase difference occurring when ultrasonic wave is allowed to enter an eyeball.

Description

明 細 書  Specification
眼圧測定装置  Tonometry device
技術分野  Technical field
[0001] 本発明は、眼圧測定装置に係り、特に超音波を用いて眼圧を測定する眼圧測定装 置に関する。  [0001] The present invention relates to an intraocular pressure measurement device, and more particularly to an intraocular pressure measurement device that measures intraocular pressure using ultrasonic waves.
背景技術  Background art
[0002] 眼圧を測定するために、広くトノメータが用いられる。トノメータは、眼球にエアーを 吹き付け、そのエアー圧により眼球が歪む様子を光学的に測定し、その歪の大小に より眼圧を測定する。  [0002] Tonometers are widely used to measure intraocular pressure. The tonometer blows air onto the eyeball, optically measures how the eyeball is distorted by the air pressure, and measures the intraocular pressure based on the magnitude of the distortion.
[0003] トノメータは、眼球にエアーを吹き付けるものであるので、エアー圧の拍動等の影響 を受けて精度がよくない。また、角膜等の眼球組織に直接的にエアーが噴射される ので、被験者に負荷を与える。そこで、例えば、特許文献 1には、瞼の上にプローブ を当てて適当に加圧し、そのときの前房部の深さの変化を、超音波によって検出する ことが行われる。ここでは、超音波を入射し、反射音束を検出して、超音波 Aモードと 呼ばれる波形について、超音波検出信号の 1掃引内の時間軸を眼球前眼部の生体 音速により距離に変換する一般的な距離計測原理により、前房部の深さを検出して いる。  [0003] Since the tonometer blows air onto the eyeball, it is not accurate due to the influence of the pulsation of the air pressure. In addition, since air is directly injected into the eyeball tissue such as the cornea, a load is applied to the subject. Thus, for example, in Patent Document 1, a probe is placed on the heel and appropriately pressurized, and the change in the depth of the anterior chamber at that time is detected by ultrasonic waves. Here, an ultrasonic wave is incident, a reflected sound bundle is detected, and the time axis within one sweep of the ultrasonic detection signal is converted into a distance by the biological sound velocity of the anterior ocular segment for a waveform called ultrasonic A mode. The depth of the anterior chamber is detected by a general distance measurement principle.
[0004] なお、本願発明者は、特許文献 2において開示されているように、位相シフト法を用 いて対象物の硬さを精度よく測定できる方法を開発している。この技術は、振動子か ら測定対象物に振動を入射し、測定対象物からの反射波を振動検出センサで検出 し、入射波と反射波との間に測定対象物の硬さに応じて生じる位相差を位相シフト回 路によって周波数を変化させることで位相差をゼロに補償し、その位相差をゼロに補 償する周波数変化量から測定物の硬さを求めるものである。この方法によれば、測定 対象物に接触して振動を入力し反射波を検出する接触式によって測定対象物の硬 さを測定すること力でさる。  [0004] As disclosed in Patent Document 2, the present inventor has developed a method capable of accurately measuring the hardness of an object using a phase shift method. In this technology, vibration is incident on the measurement object from the vibrator, the reflected wave from the measurement object is detected by the vibration detection sensor, and the measurement object is between the incident wave and the reflected wave according to the hardness of the measurement object. By changing the frequency of the generated phase difference using a phase shift circuit, the phase difference is compensated to zero, and the hardness of the measured object is obtained from the amount of frequency change that compensates for the phase difference to zero. According to this method, the force of measuring the hardness of an object to be measured is measured by a contact method in which vibration is input to the object to be measured and a reflected wave is detected.
[0005] 特許文献 1:特開平 8— 322803号公報  Patent Document 1: Japanese Patent Laid-Open No. 8-322803
特許文献 2:特開平 9 145691号公報 発明の開示 Patent Document 2: JP-A-9 145691 Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 上記のようにトノメータはエアー圧を眼球に与え、特許文献 1の方法においても瞼を 通して眼球を加圧する。このように、従来技術では、外力によって眼球に圧力を与え 、その圧力による眼球の歪から眼圧の大小を判断しているので、被検査者に負担を 力、ける。また、本願発明者による特許文献 2に記載の位相シフト法によれば、測定対 象物に振動を入力しその反射波を検出することで、測定対象物の硬さが測定できる 。測定対象物が眼球の場合は、その硬さは眼圧に関連付けられるので、この方法に よれば、外力をかけずに眼圧を測定できる力 眼球に接触し、その面では被測定者 に負担をかける。そこで、眼球に非接触のままで眼圧を測定できれば、被測定者の 負担を軽減でき、便利である。  [0006] As described above, the tonometer applies air pressure to the eyeball, and also presses the eyeball through the eyelid in the method of Patent Document 1. As described above, in the conventional technique, pressure is applied to the eyeball by an external force, and the magnitude of the intraocular pressure is determined from the distortion of the eyeball due to the pressure. Further, according to the phase shift method described in Patent Document 2 by the inventor of the present application, the hardness of the measurement object can be measured by inputting vibration to the measurement object and detecting the reflected wave. When the object to be measured is an eyeball, the hardness is related to the intraocular pressure, so this method makes it possible to measure the intraocular pressure without applying external force. multiply. Therefore, if the intraocular pressure can be measured without touching the eyeball, the burden on the subject can be reduced, which is convenient.
[0007] 本発明の目的は、眼球に非接触のままで眼圧を測定できる眼圧測定装置を提供 することである。  [0007] An object of the present invention is to provide an intraocular pressure measuring device capable of measuring intraocular pressure without contacting the eyeball.
課題を解決するための手段  Means for solving the problem
[0008] 本発明は、眼球に非接触で振動を入射し、眼球からの反射波を検出し、入射波と 反射波との間に生じる位相差について位相シフト法を適用できるかどうかを確かめた 実験に基づくものである。実験によれば、眼球に向かい合う探触子の先端形状をェ 夫すれば、位相差をゼロに補償する周波数差と眼圧との関係に相関が見られること が見出された。この実験に基づけば、以下のような手段をとることができる。  [0008] In the present invention, vibration is incident on the eyeball in a non-contact manner, a reflected wave from the eyeball is detected, and whether or not the phase shift method can be applied to the phase difference generated between the incident wave and the reflected wave has been confirmed. Based on experiments. According to experiments, it was found that if the tip shape of the probe facing the eyeball is adjusted, there is a correlation between the intraocular pressure and the frequency difference that compensates for the phase difference to zero. Based on this experiment, the following measures can be taken.
[0009] 本発明に係る眼圧測定装置は、非接触で眼球に超音波を入射する振動子と、眼球 からの反射波を検出する振動検出センサとを有する探触子と、探触子の先端に設け られ、眼球に向かい合う面が凹面である凹面音響レンズと、探触子に増幅器とともに 直列に接続され、振動子への入力波形と振動検出センサからの出力波形に位相差 力 S生じるときは、周波数を変化させてその位相差をゼロに補償する位相シフト回路と 、位相差をゼロに補償したときの周波数変化量と眼圧との関係を予め求めておき、凹 面音響レンズを眼球に離隔させて向かい合わせて眼球に超音波を入射したときに生 じる位相差をゼロに補償する周波数変化量力 眼圧を算出する眼圧算出部と、を備 えることを特 ί毁とする。 [0010] また、本発明に係る眼圧測定装置にお!/、て、凹面音響レンズと測定対象物の眼球 との間の距離を可変できる探触子移動機構を備えることが好ましい。 [0009] An intraocular pressure measurement device according to the present invention includes a probe having a transducer that makes ultrasonic waves incident on an eyeball in a non-contact manner, and a vibration detection sensor that detects a reflected wave from the eyeball. When a phase difference force S occurs between the input waveform to the transducer and the output waveform from the vibration detection sensor, connected to the probe in series with the amplifier, and a concave acoustic lens with a concave surface facing the eyeball. The phase shift circuit that changes the frequency to compensate for the phase difference to zero, the relationship between the frequency change amount when the phase difference is compensated to zero and the intraocular pressure are obtained in advance, and the concave acoustic lens is attached to the eyeball. A frequency variation force that compensates for the phase difference that occurs when ultrasound is incident on the eyeball facing away from each other, and an intraocular pressure calculation unit that calculates intraocular pressure. . [0010] In addition, the intraocular pressure measurement device according to the present invention preferably includes a probe moving mechanism that can vary the distance between the concave acoustic lens and the eyeball of the measurement object.
[0011] また、本発明に係る眼圧測定装置において、凹面音響レンズの曲面形状を可変で きる曲面形状可変手段を備えることが好ましい。 [0011] In addition, the intraocular pressure measurement device according to the present invention preferably includes curved surface shape changing means capable of changing the curved surface shape of the concave acoustic lens.
発明の効果  The invention's effect
[0012] 上記構成により、眼圧測定装置は、眼球に向かい合う面が凹面である凹面音響レ ンズを有する探触子を用い、凹面音響レンズを眼球に離隔させて向かい合わせて眼 球に超音波を入射する。そして、位相差をゼロに補償したときの周波数変化量と眼圧 との関係を予め求めておいて、眼球に超音波を入射したときに生じる位相差をゼロに 補償する周波数変化量力 眼圧を算出する。したがって、眼球に非接触のままで眼 圧を測定できる。  [0012] With the above configuration, the intraocular pressure measurement apparatus uses a probe having a concave acoustic lens whose surface facing the eyeball is a concave surface, and separates the concave acoustic lens from the eyeball so as to face the eyeball. Is incident. Then, the relationship between the frequency change amount and the intraocular pressure when the phase difference is compensated to zero is obtained in advance, and the frequency change force that compensates the phase difference generated when the ultrasonic wave is incident on the eyeball to zero is calculated. calculate. Therefore, the intraocular pressure can be measured without touching the eyeball.
[0013] また、凹面音響レンズと測定対象物の眼球との間の距離を可変できるので、眼球に 焦点を合わせて振動を入射し、反射波を検出できる。  [0013] Further, since the distance between the concave acoustic lens and the eyeball of the measurement object can be varied, it is possible to detect the reflected wave by injecting vibration while focusing on the eyeball.
[0014] また、凹面音響レンズの曲面形状を可変できるので、眼球に焦点を合わせて振動 を入射し、反射波を検出できる。 [0014] Further, since the curved surface shape of the concave acoustic lens can be varied, it is possible to detect the reflected wave by injecting the vibration while focusing on the eyeball.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明に係る実施の形態における眼圧測定装置の構成を示す図である。  FIG. 1 is a diagram showing a configuration of an intraocular pressure measurement device according to an embodiment of the present invention.
[図 2]本発明に係る実施の形態において、探触素子、凹面音響レンズ、本体部に含 まれる眼圧測定部の部分の構成について抜き出して示す図である。  FIG. 2 is a diagram extracting and showing a configuration of a probe element, a concave acoustic lens, and a portion of an intraocular pressure measurement unit included in a main body part in an embodiment according to the present invention.
[図 3]本発明に係る実施の形態において、位相シフト回路の回路定数が設定される 発振周波数の選定の様子を示す図である。  FIG. 3 is a diagram showing a state of selection of an oscillation frequency in which the circuit constant of the phase shift circuit is set in the embodiment according to the present invention.
[図 4]本発明に係る実施の形態において、周波数変化量と音響インピーダンスとの対 応関係を求めるために用いた模擬対象物 A, Bの形状寸法を示す図である。  FIG. 4 is a diagram showing the shape dimensions of the simulated objects A and B used to obtain the correspondence relationship between the amount of frequency change and the acoustic impedance in the embodiment according to the present invention.
[図 5]本発明に係る実施の形態において、周波数変化量と音響インピーダンスとの対 応関係を示す図である。  FIG. 5 is a diagram showing a correspondence relationship between the amount of change in frequency and acoustic impedance in the embodiment according to the present invention.
[図 6]本発明に係る実施の形態において、周波数変化量と眼圧との対応関係を求め るために用いた眼球モデルの様子を示す図である。  FIG. 6 is a diagram showing a state of an eyeball model used for obtaining a correspondence relationship between a frequency change amount and intraocular pressure in the embodiment according to the present invention.
[図 7]本発明に係る実施の形態において、周波数変化量と眼圧との対応関係を示す 図である。 FIG. 7 shows the correspondence between frequency variation and intraocular pressure in the embodiment of the present invention. FIG.
符号の説明  Explanation of symbols
[0016] 8 眼球、 10 眼圧測定装置、 20 探触子、 22 凹面音響レンズ、 24 探触素子、 26 振動子、 28 振動検出センサ、 30 探触子移動機構、 32 固定台、 34 可動台 、 36 操作ノヽンドル、 38 探触子取付部、 40 眼圧測定部、 42, 44, 46 端子、 48 増幅器、 50 位相シフト回路、 52 周波数変化量算出部、 54 眼圧算出部、 60 本体部、 70 眼球モデル、 72 ベース部分、 74, 75, 76 曲面部分、 80 加圧器、 82 圧力計。  [0016] 8 eyeballs, 10 intraocular pressure measuring device, 20 probe, 22 concave acoustic lens, 24 probe element, 26 transducer, 28 vibration detection sensor, 30 probe moving mechanism, 32 fixed base, 34 movable base , 36 Operation knob, 38 Probe mounting part, 40 Intraocular pressure measurement part, 42, 44, 46 terminals, 48 amplifier, 50 Phase shift circuit, 52 Frequency change calculation part, 54 Intraocular pressure calculation part, 60 Main body part , 70 eyeball model, 72 base part, 74, 75, 76 curved part, 80 pressurizer, 82 pressure gauge.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0017] 以下に図面を用いて本発明に係る実施の形態につき詳細に説明する。以下では、 被測定者に対し、探触子を近づける手段として、床に対して移動可能な可動台に探 触子を搭載するものとして説明する力 それ以外の方法によってもよい。例えば、被 測定者の頭部等に関連して固定された支持台に探触子を搭載するものとしてもよい 。また、以下において探触子は、振動子と振動検出センサとを積層したものとして説 明する力 それ以外の配置方法であってもよい。例えば振動子と振動検出センサとを 同心状に配置してもよぐまた、振動子と振動検出センサとを並列に別個に配置する ものとしてもよい。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Below, as a means for bringing the probe closer to the person to be measured, the force described as mounting the probe on a movable table movable with respect to the floor may be used. For example, the probe may be mounted on a support base fixed in relation to the head of the subject. In the following, the probe may be a force described as a laminate of a transducer and a vibration detection sensor, or any other arrangement method. For example, the vibrator and the vibration detection sensor may be arranged concentrically, or the vibrator and the vibration detection sensor may be separately arranged in parallel.
[0018] 図 1は、眼圧測定装置 10の構成を示す図である。図 1には、眼圧測定装置 10の構 成要素ではないが、眼圧測定対象の眼球 8が示されている。眼圧測定装置 10は、探 触子 20と、探触子 20の位置を眼球に対して調整するための探触子移動機構 30と、 探触子 20に信号線を介して接続され眼圧を算出し出力する本体部 60とを含んで構 成される。  FIG. 1 is a diagram showing a configuration of the intraocular pressure measurement device 10. FIG. 1 shows an eyeball 8 that is not a constituent element of the intraocular pressure measurement device 10 but is an intraocular pressure measurement target. The intraocular pressure measurement device 10 is connected to the probe 20, a probe moving mechanism 30 for adjusting the position of the probe 20 with respect to the eyeball, and the probe 20 via a signal line. And a main body 60 that calculates and outputs the value.
[0019] 探触子移動機構 30は、床面に固定される固定台 32と、固定台 32に対し直線的に 移動可能な可動台 34とを有し、可動台 34には探触子取付部 38が設けられる。固定 台 32と可動台 34とは、たとえばピニオンとラックによる回転運動と直線運動との間の 変換機構等を用いることができる。この場合には、ピニオンに接続される操作ノヽンド ノレ 36力 S設けられ、操作ハンドル 36を回転することで固定台 32に設けられたピニオン が回転し、これに嚙み合うラックが直線運動し、ラックが取り付けられている可動台 34 を移動させること力できる。もちろん、電気信号の制御によって移動可能なリニアモー タ等を固定台 32と可動台 34との間の機構として用いてもよ!/、。 The probe moving mechanism 30 includes a fixed base 32 fixed to the floor surface and a movable base 34 that can move linearly with respect to the fixed base 32, and a probe is attached to the movable base 34. Part 38 is provided. As the fixed base 32 and the movable base 34, for example, a conversion mechanism between a rotational motion and a linear motion by a pinion and a rack can be used. In this case, there is an operation node 36 force S connected to the pinion, and by rotating the operation handle 36, the pinion provided on the fixed base 32 rotates, and the rack that meshes with this moves linearly. , Movable table with rack mounted 34 You can power to move. Of course, a linear motor or the like that can be moved by controlling electric signals may be used as a mechanism between the fixed base 32 and the movable base 34! /.
[0020] 探触子 20は、細長い円筒状をなすプローブで、眼球 8に離隔して向かい合う先端 側に凹面音響レンズ 22と探触素子 24とが設けられ、探触素子 24に一端側が接続さ れる信号線は、他端側で上記の本体部 60に接続される。  [0020] The probe 20 is a probe having an elongated cylindrical shape, and is provided with a concave acoustic lens 22 and a probe element 24 on the tip side facing and spaced apart from the eyeball 8, and one end side of the probe element 24 is connected to the probe element 24. The signal line to be connected is connected to the main body 60 on the other end side.
[0021] 図 2は、探触素子 24、凹面音響レンズ 22、本体部 60に含まれる眼圧測定部 40の 部分の構成について抜き出して示す図である。  FIG. 2 is a diagram showing an extracted configuration of the probe element 24, the concave acoustic lens 22, and the intraocular pressure measurement unit 40 included in the main body 60.
[0022] 探触素子 24は、凹面音響レンズ 22を介して、測定対象物である眼球 8に対し超音 波を入射する振動子 26と、眼球 8からの反射波を検出する振動検出センサ 28とを有 する。図 2の例では、振動子 26と振動検出センサ 28とが直列に積層されて接続され 、接続点を接地して用いられている。具体的には、円板状の圧電素子の両面にそれ ぞれ電極を設けたものを 2つ用いて積み重ね、中間の電極 2つを一体化して接地電 極とし、積み重ねた上面側電極と下面側電極の一方側を振動子 26の入力電極とし、 他方側を振動検出センサ 28の出力電極とする。そして、図 2の例では、振動子 26の 入力電極側の面を凹面音響レンズ 22の平坦な裏面に接着して固定される。圧電素 子としては、市販の PZT素子を用いることができる。  [0022] The probe element 24 includes a transducer 26 that makes an ultrasonic wave incident on an eyeball 8 that is a measurement object via a concave acoustic lens 22, and a vibration detection sensor 28 that detects a reflected wave from the eyeball 8. And have. In the example of FIG. 2, the vibrator 26 and the vibration detection sensor 28 are stacked and connected in series, and the connection point is grounded. Specifically, two disk-shaped piezoelectric elements each provided with electrodes are stacked using two, and the middle two electrodes are integrated into a ground electrode, and the stacked upper surface side electrode and lower surface electrode are integrated. One side of the side electrode is used as the input electrode of the vibrator 26, and the other side is used as the output electrode of the vibration detection sensor 28. In the example of FIG. 2, the surface on the input electrode side of the vibrator 26 is bonded and fixed to the flat back surface of the concave acoustic lens 22. A commercially available PZT element can be used as the piezoelectric element.
[0023] 凹面音響レンズ 22は、探触素子 24から放射される超音波について測定対象物上 に焦点を合わせるように、また、測定対象物から放射される反射波を効率よく集めて 探触素子 24に伝える機能を有する素子である。凹面音響レンズ 22は、測定対象物 である眼球 8に向かい合う面が所定の曲面形状を有する凹面に形成され、凹面の反 対側の裏面が探触素子 24と接続するために例えば平坦面に形成される。かかる凹 面音響レンズ 22は、適当なブラスティック材料またはセラミック、ガラス等を所定の形 状に成形したものを用いることができる。  [0023] The concave acoustic lens 22 focuses the ultrasonic wave radiated from the probe 24 on the measurement object, and efficiently collects the reflected waves radiated from the measurement object. It is an element that has a function to transmit to 24. The concave acoustic lens 22 is formed in a concave surface having a predetermined curved surface on the surface facing the eyeball 8 as a measurement object, and the back surface on the opposite side of the concave surface is formed on, for example, a flat surface to connect to the probe element 24. Is done. The concave acoustic lens 22 may be made of a suitable plastic material or ceramic, glass or the like molded into a predetermined shape.
[0024] 凹面音響レンズ 22の凹面の曲面形状は、測定対象である眼球 8の曲面形状に対 応する形状が好ましい。簡略的には、一定の曲率半径を有する球面の一部として構 成すること力 Sできる。この場合の曲率半径は、眼圧の測定に適した部位における曲率 半径、あるいは眼球の平均的な曲率半径とすることができる。例えば、曲率半径を数 mm程度とすること力 Sできる。 [0025] 凹面音響レンズ 22の凹面形状は、上記のように適当な材料を成形加工して、固定 的な形状とすることができるほか、たとえば、円筒形状の支持部の外周に固定端を有 する可撓性の曲面膜を張り、円筒状支持部の内部に加圧流体を注入し、流体圧を変 更することで凹面の形状を可変する形状可変凹面音響レンズとしてもょレ、。流体とし ては、超音波振動が伝播しやすいものを用いることが好ましぐ水、流動性のあるシリ コンゴム等を用いることができる。 [0024] The concave curved surface shape of the concave acoustic lens 22 is preferably a shape corresponding to the curved surface shape of the eyeball 8 to be measured. In short, the force S can be configured as a part of a spherical surface having a certain radius of curvature. In this case, the radius of curvature can be the radius of curvature at a site suitable for measuring intraocular pressure, or the average radius of curvature of the eyeball. For example, the force S can be set to a radius of curvature of several millimeters. The concave surface shape of the concave acoustic lens 22 can be formed into a fixed shape by molding an appropriate material as described above. For example, the concave acoustic lens 22 has a fixed end on the outer periphery of a cylindrical support portion. This is a variable-shape concave acoustic lens that has a flexible curved membrane, injects pressurized fluid into the cylindrical support, and changes the shape of the concave surface by changing the fluid pressure. As the fluid, it is preferable to use a fluid that easily propagates ultrasonic vibrations, and fluid silicone rubber can be used.
[0026] 図 2には、眼圧測定部 40の構成が示されている。眼圧測定部 40は、振動検出セン サ 28からの反射波に相当する出力信号を受け取る端子 42と、振動子 26への入射波 に相当する入力信号を出す端子 44と、図 1に示す本体部 60の表示画面等の出力部 に眼圧値を出力する端子 46とを有する。眼圧測定部 40の内部は、次のように構成さ れる。  FIG. 2 shows the configuration of the intraocular pressure measurement unit 40. The intraocular pressure measurement unit 40 includes a terminal 42 that receives an output signal corresponding to the reflected wave from the vibration detection sensor 28, a terminal 44 that outputs an input signal corresponding to the incident wave to the transducer 26, and the main body shown in FIG. A terminal 46 for outputting an intraocular pressure value to an output section such as a display screen of the section 60; The inside of the intraocular pressure measurement unit 40 is configured as follows.
[0027] 振動検出センサ 28に接続される端子 42は、適当な DCカットコンデンサを介して増 幅器 48に接続される。増幅器 48は、振動検出センサ 28によって検出された反射波 信号を適当に増幅する電子回路で、周知の増幅回路を用いることができる。  [0027] The terminal 42 connected to the vibration detection sensor 28 is connected to the amplifier 48 via an appropriate DC cut capacitor. The amplifier 48 is an electronic circuit that appropriately amplifies the reflected wave signal detected by the vibration detection sensor 28, and a known amplifier circuit can be used.
[0028] 増幅器 48の出力は、位相シフト回路 50に入力され、位相シフト回路 50の出力は、 端子 44を介して振動子 26に接続される。したがって、振動子 26—凹面音響レンズ 2 2 - (大気)―(眼球 8) - (大気)—凹面音響レンズ 22—振動検出センサ 28—増幅 器 48—位相シフト回路 50—振動子 26の閉ループが構成される。したがって、位相 シフト回路 50の内容を適当に設定することで、この閉ループにおいて自励発振を生 じさせること力 Sでさる。  The output of the amplifier 48 is input to the phase shift circuit 50, and the output of the phase shift circuit 50 is connected to the vibrator 26 via the terminal 44. Therefore, transducer 26—concave acoustic lens 2 2-(atmosphere) — (eyeball 8)-(atmosphere) —concave acoustic lens 22—vibration detection sensor 28—amplifier 48—phase shift circuit 50—closed loop of transducer 26 Composed. Therefore, by appropriately setting the contents of the phase shift circuit 50, the force S can be used to generate self-excited oscillation in this closed loop.
[0029] 位相シフト回路 50の機能は、この閉ループにおいて、位相シフト回路 50に入力さ れる入力信号と、出力される出力信号との間に位相差が生じるときは、閉ループの発 振周波数を変更して、位相差をゼロに補償する機能を有する。そして、位相差をゼロ に補償したときの周波数を周波数変化量算出部 52に出力する。  [0029] The function of the phase shift circuit 50 is to change the oscillation frequency of the closed loop when a phase difference occurs between the input signal input to the phase shift circuit 50 and the output signal output in this closed loop. Thus, the phase difference is compensated to zero. Then, the frequency when the phase difference is compensated to zero is output to the frequency change amount calculation unit 52.
[0030] 周波数変化量算出部 52は、閉ループにおいて測定対象物が含まれないときに位 相シフト回路 50の作用により自励発振が生じるときの閉ループの発振周波数 f と、閉 ループにぉレ、て測定対象物が含まれるときに位相シフト回路 50の作用により自励発 振が生じるときの閉ループの発振周波数 f とを受け取って、これらの間の周波数変化 量である A f=f — f を算出する機能を有する。すなわち、周波数変化量算出部 52 [0030] The frequency variation calculation unit 52 generates a closed loop oscillation frequency f when self-oscillation occurs due to the action of the phase shift circuit 50 when the measurement target is not included in the closed loop, When the self-excited oscillation occurs due to the action of the phase shift circuit 50 when the measurement object is included, the closed-loop oscillation frequency f is received and the frequency change therebetween It has a function to calculate the quantity A f = f — f. That is, the frequency variation calculation unit 52
2 1  twenty one
の機能は、測定対象物が閉ループに含まれないときの発振周波数 f を閉ループから 検出してこれを一旦記憶し、次に測定対象物が閉ループに含まれるときの発振周波 数 f を閉ループから検出してこれも一旦記憶し、記憶された 2つの周波数 f と f とを読 This function detects the oscillation frequency f when the measurement object is not included in the closed loop and stores it once, and then detects the oscillation frequency f when the measurement object is included in the closed loop. This is also memorized once and the two memorized frequencies f and f are read.
2 1 2 み出して、その差である周波数変化量を演算するという一連の処理を行うものである 2 1 2 This is a series of processing that calculates the amount of frequency change that is the difference between the two.
[0031] 図 1、図 2の例では、眼球 8がない場合の閉ループにおける自励発振の周波数 f と 、眼球 8がある場合の閉ループにおける自励発振の周波数 f の間の周波数変化量 In the examples of FIGS. 1 and 2, the amount of frequency change between the frequency f of the self-oscillation in the closed loop when the eyeball 8 is not present and the frequency f of the self-oscillation in the closed loop when the eyeball 8 is present.
2  2
である A f=f — f が周波数変化量算出部 52で求められ、眼圧算出部 54に出力され  A f = f — f is obtained by the frequency variation calculation unit 52 and output to the intraocular pressure calculation unit 54.
2 1  twenty one
る。なお、力、かる位相シフト回路 50の具体的構成と詳細な作用については、上記の 特許文献 2に開示されている。  The Note that the specific configuration and detailed operation of the force and phase shift circuit 50 are disclosed in Patent Document 2 above.
[0032] 位相シフト回路 50は、閉ループの自励発振を維持するために、振動検出センサ 28 力もの出力信号と振動子 26への入力信号との間に位相差が生じるときは、閉ループ の周波数を変更して位相差をゼロに補償するものである。したがって、閉ループの自 励発振の周波数は、位相差をゼロに補償する際の周波数変化量が大きい方が測定 対象物の物性の相違の検出が容易になる。そこで、位相シフト回路 50の回路内容で ある回路定数は、対象となる閉ループについて、位相差をゼロに補償する際の周波 数変化量が安定して大きく取れる発振周波数となるように設定される。換言すれば、 探触素子 24の周波数一位相特性において、多くの発振周波数がある力 その中で 、発振が安定していること、位相差を変更すると適当な大きさの周波数変化を生じる こと、の条件を満たす発振周波数が選択され、その選択された発振周波数に対して 、位相シフト回路 50の回路定数が設定される。  [0032] In order to maintain the closed-loop self-oscillation, the phase shift circuit 50 has a closed-loop frequency when a phase difference occurs between the output signal of the vibration detection sensor 28 and the input signal to the vibrator 26. To compensate for the phase difference to zero. Therefore, as for the frequency of the self-oscillation of the closed loop, the difference in the physical properties of the measurement object becomes easier when the frequency change amount when compensating for the phase difference to zero is large. Therefore, the circuit constants, which are the circuit contents of the phase shift circuit 50, are set so that the frequency change amount when the phase difference is compensated to zero becomes a stable and large oscillation frequency for the target closed loop. In other words, in the frequency-phase characteristics of the probe element 24, a force with a large number of oscillation frequencies, among which the oscillation is stable, and changing the phase difference causes a frequency change of an appropriate magnitude. An oscillation frequency satisfying the above condition is selected, and the circuit constant of the phase shift circuit 50 is set for the selected oscillation frequency.
[0033] 図 3は、位相シフト回路 50の回路定数が設定される発振周波数の選定の様子を示 す図である。図 3には、探触素子 24の周波数—位相特性が示されている。図 3に示 されるように、この探触素子 24の特性は、複数のピークを有している。ピーク Bは、最 も発振特性が先鋭なピークであり、発振が安定しているが、逆にその強い安定性のた め、位相差を変更してもほとんど周波数変化を示さない。ピーク Cは、発振が不安定 である。 [0034] そこで、ピーク Aが、適当に発振が安定し、し力、も位相差の変更に応じて適当な大 きさの周波数変化を生じるものとして、測定対象物の物性の特性の相違の検出に適 当なピークとして選定することができる。すなわち、位相シフト回路 50の回路定数は、 周波数帯で 350kHz近辺に適するように設定される。 FIG. 3 is a diagram showing a state of selection of an oscillation frequency at which the circuit constant of the phase shift circuit 50 is set. FIG. 3 shows the frequency-phase characteristics of the probe element 24. As shown in FIG. 3, the characteristic of the probe element 24 has a plurality of peaks. Peak B is the peak with the sharpest oscillation characteristics and stable oscillation. Conversely, due to its strong stability, there is almost no frequency change even if the phase difference is changed. Peak C is unstable in oscillation. [0034] Therefore, it is assumed that the peak A causes the oscillation to be properly stabilized, and the force and the frequency change of an appropriate magnitude according to the change of the phase difference. It can be selected as a peak suitable for detection. That is, the circuit constant of the phase shift circuit 50 is set to be suitable around 350 kHz in the frequency band.
[0035] 眼圧算出部 54は、周波数変化量算出部 52から出力される周波数変化量に基づい て、眼圧を算出する機能を有する。周波数変化量力も眼圧を算出するには、周波数 変化量と眼圧との関係を予め求めておき、その関係に周波数変化量算出部 52によ つて算出された周波数変化量を当てはめて実行される。  The intraocular pressure calculation unit 54 has a function of calculating intraocular pressure based on the frequency change amount output from the frequency change amount calculation unit 52. In order to calculate intraocular pressure with respect to the frequency variation force, the relationship between the frequency variation and the intraocular pressure is obtained in advance, and the frequency variation calculated by the frequency variation calculator 52 is applied to the relationship. The
[0036] 図 4から図 7は、眼球に超音波を入射したときに生じる位相差をゼロに補償する周 波数変化量と眼圧との関係を求める実験の様子を説明する図である。これらの図は、 眼球をモデル化した模擬対象物に超音波を入射して位相差をゼロに補償したときの 周波数 f とについて、模擬対象物がないときの周波数 f 力 の周波数変化量 A fを求 FIG. 4 to FIG. 7 are diagrams for explaining the state of an experiment for determining the relationship between the amount of change in frequency and the intraocular pressure for compensating for the phase difference generated when an ultrasonic wave is incident on the eyeball to zero. These figures show the frequency change amount A f of the frequency f force when there is no simulated object, with respect to the frequency f when the phase difference is compensated to zero by applying ultrasonic waves to the simulated object modeling the eyeball. Seeking
2 1 twenty one
め、これを模擬対象物の音響インピーダンスあるいは、眼圧に相当する圧力と対応付 けを行ったものである。なお、以下では、図 1、図 2の符号を用いて説明する。  Therefore, this is correlated with the acoustic impedance of the simulated object or the pressure corresponding to the intraocular pressure. In the following description, the reference numerals in FIGS. 1 and 2 are used.
[0037] 図 4、図 5は、形状の異なる模擬対象物 A, Bを作成し、凹面音響レンズ 22から模擬 対象物 A, Bの先端までの距離を 4000 m、すなわち 4mmとして、周波数変化量 Δ fと、模擬対象物 A, Bの音響インピーダンスとの関係を求めた様子を説明する図であ る。図 4には、模擬対象物 A, Bの形状寸法が示されている。模擬対象物 A, Bの形状 は、眼球 8の外形に近似して、半球状よりは緩やかな曲面を有するものとしてある。模 擬対象物 A, Bの先端部における曲率半径は、図 4の寸法から、約 4mmから約 6mm 程度と評価すること力できる。模擬対象物 A, Bのそれぞれについて、シリコンゴムを 適当な媒体に混ぜて、その濃度を 40%, 60%, 80%, 100%と変化させることで、そ れぞれ硬さの異なる 4種類のサンプルを作成した。  [0037] Figures 4 and 5 show simulated objects A and B with different shapes, and the distance from the concave acoustic lens 22 to the tips of the simulated objects A and B is 4000 m, that is, 4 mm. FIG. 4 is a diagram for explaining a state in which a relationship between Δf and acoustic impedances of simulated objects A and B is obtained. FIG. 4 shows the geometric dimensions of the simulated objects A and B. The shapes of the simulated objects A and B approximate the outer shape of the eyeball 8, and have a curved surface that is gentler than the hemisphere. From the dimensions in Fig. 4, the radius of curvature at the tip of simulated objects A and B can be evaluated as about 4 mm to about 6 mm. For each of the simulated objects A and B, silicon rubber is mixed in an appropriate medium and the concentration is changed to 40%, 60%, 80%, and 100%. A sample was created.
[0038] そしてこれらのサンプルについて、硬さに対応する音響インピーダンスを測定した。  [0038] For these samples, the acoustic impedance corresponding to the hardness was measured.
また、上記のように、約 350kHzの周波数帯において、模擬対象物 A, Bがある場合 とない場合との間の発振周波数の変化量である周波数変化量 A fを求めた。求めら れた音響インピーダンスと求められた周波数変化量を対応付けた結果を図 5に示す 。図 5から分かるように、形状が異なる模擬対象物 A, Bについて、それぞれ、周波数 変化量 A fと音響インピーダンスとは相関関係がある。図 5によれば、その相関関係 はほぼ線形関係であるが、模擬対象物の形状に依存して相関関係が異なつて!/、る。 In addition, as described above, in the frequency band of about 350 kHz, the frequency change amount A f that is the change amount of the oscillation frequency between when the simulated objects A and B are present and not present was obtained. Figure 5 shows the result of associating the calculated acoustic impedance with the calculated frequency change. As can be seen from Fig. 5, the frequencies of simulated objects A and B with different shapes are There is a correlation between the change A f and the acoustic impedance. According to Fig. 5, the correlation is almost linear, but the correlation varies depending on the shape of the simulated object!
[0039] 図 5によって、位相シフト法を用いたときの周波数変化量 A fと、測定対象物の硬さ との間に相関関係があることが分力、つたので、次に、周波数変化量 A fと眼圧に相当 する圧力との対応付けを実験した様子が図 6、図 7に示されている。ここでは、眼球を モデル化した模擬対象物として、図 6に示される形状で、内部に空洞を有するシリコ ンゴムの眼球モデル 70を用いている。眼球モデル 70は、ベース部分 72と、内部を加 圧することで膨らみ外形形状を可変できる曲面部分 74とを含んで構成され、加圧器 80によって、眼球モデル 70の内部に水あるいは適当な流動体を加圧して注入する ことで、曲面部分 74の形状を可変できる。曲面部分 74における内部流動体の圧力 は、マノメータ等の圧力計 82によって検出できる。図 6には、圧力を大きくするにつれ 、曲面部分 74が膨らんで曲面部分 75, 76に変化する様子が示されている。  [0039] As shown in FIG. 5, since there is a correlation between the frequency change amount A f when the phase shift method is used and the hardness of the measurement object, the component force, that is, the frequency change amount is described next. Figures 6 and 7 show the experiment of correlating Af with the pressure corresponding to intraocular pressure. Here, a silicone rubber eyeball model 70 having a shape shown in FIG. 6 and having a cavity inside is used as a simulated object modeling the eyeball. The eyeball model 70 is configured to include a base portion 72 and a curved surface portion 74 that can bulge and change its outer shape by pressurizing the inside, and the pressurizer 80 supplies water or an appropriate fluid to the inside of the eyeball model 70. The shape of the curved surface portion 74 can be changed by injecting under pressure. The pressure of the internal fluid in the curved surface portion 74 can be detected by a pressure gauge 82 such as a manometer. FIG. 6 shows how the curved surface portion 74 expands and changes to curved surface portions 75 and 76 as the pressure is increased.
[0040] 図 7は、凹面音響レンズ 22から眼球モデル 70の先端までの距離を 2000 m、す なわち 2mmとして、周波数変化量 A fと、眼球モデル 70の圧力との関係を示す図で ある。図 7から分かるように、眼球モデル 70の圧力と、位相シフト法における周波数変 化量 Δ fとの間にきれ!/、な線形性が認められる。  FIG. 7 is a diagram showing the relationship between the frequency variation A f and the pressure of the eyeball model 70 when the distance from the concave acoustic lens 22 to the tip of the eyeball model 70 is 2000 m, ie, 2 mm. . As can be seen from FIG. 7, there is a clear linearity between the pressure of the eyeball model 70 and the frequency change Δf in the phase shift method.
[0041] したがって、図 7のような対応関係を予めメモリ等に記憶しておくことで、図 1に示さ れる眼圧測定装置 10によって、眼球 8の眼圧を求めることができる。「A f—眼圧」の 対応関係は、 A fを入力することで眼圧が出力される型式で記憶される。具体的には 、ルックアップテーブルのような換算テーブルの型式で記憶されてもよぐ計算式の形 式で記憶されてレ、てもよレ、。  Accordingly, by storing the correspondence relationship as shown in FIG. 7 in a memory or the like in advance, the intraocular pressure of the eyeball 8 can be obtained by the intraocular pressure measurement device 10 shown in FIG. The correspondence relationship of “A f—intraocular pressure” is stored in a format in which the intraocular pressure is output by inputting A f. Specifically, it may be stored in the form of a calculation formula that may be stored in the form of a conversion table such as a lookup table.
[0042] 上記構成の眼圧測定装置 10の作用を、眼圧を求める手順として以下に説明する。  [0042] The operation of the intraocular pressure measurement apparatus 10 having the above-described configuration will be described below as a procedure for obtaining intraocular pressure.
以下では図 1から図 3の符号を用いて説明する。  In the following, description will be made using the reference numerals in FIGS.
[0043] 最初に、位相シフト回路 50の作用によって、眼球 8がない状態で自励発振を生じさ せ、そのときの発振周波数を f として、周波数変化量算出部 52に出力される。上記の 例では、 f は、図 3のピーク Aの周波数であるので約 350kHzである。眼球 8がない状 態とは、眼球 8と凹面音響レンズ 22の先端の間の間隔を十分広く取ることで実現でき [0044] 次に、探触子移動機構 30を用いて、眼球 8に対し凹面音響レンズ 22を近づける。 近づける距離は、眼球 8と凹面音響レンズ 22の先端との間の距離力 凹面音響レン ズ 22の代表的な曲率半径となるようにすることが好ましい。あるいは、距離を変化さ せて、そのときの発振周波数のばらつきが少なくなる位置をもって、測定のための間 隔とすること力できる。すなわち、眼球 8と凹面音響レンズ 22との間の間隔が狭すぎ ても広すぎても、超音波が発散するか、あるいは凹面音響レンズ 22の曲面上に集中 しないからである。 First, by the action of the phase shift circuit 50, self-excited oscillation is generated in the absence of the eyeball 8, and the oscillation frequency at that time is output to the frequency change amount calculation unit 52 as f. In the above example, f is about 350 kHz because it is the frequency of peak A in Fig. 3. The absence of the eyeball 8 can be realized by providing a sufficiently large space between the eyeball 8 and the tip of the concave acoustic lens 22. Next, the concave acoustic lens 22 is brought closer to the eyeball 8 using the probe moving mechanism 30. The approaching distance is preferably a distance force between the eyeball 8 and the tip of the concave acoustic lens 22 and a representative radius of curvature of the concave acoustic lens 22. Alternatively, by changing the distance, a position where the variation in oscillation frequency at that time is reduced can be used as an interval for measurement. That is, if the distance between the eyeball 8 and the concave acoustic lens 22 is too narrow or too wide, the ultrasonic waves diverge or do not concentrate on the curved surface of the concave acoustic lens 22.
[0045] 適切な間隔に眼球 8と凹面音響レンズ 22との間が設定されると、その位置における 発振周波数が f として、周波数変化量算出部 52に出力される。周波数変化量算出  [0045] When the interval between the eyeball 8 and the concave acoustic lens 22 is set at an appropriate interval, the oscillation frequency at that position is output to the frequency variation calculation unit 52 as f. Frequency change calculation
2  2
部 52では、周波数変化量として、 A f = f — f を算出して、眼圧算出部 54に出力する  The unit 52 calculates A f = f − f as the frequency change amount and outputs it to the intraocular pressure calculation unit 54.
2 1  twenty one
。 A fの大きさは、図 5、図 7の例では、およそ 100Hz程度である。  . The magnitude of A f is about 100 Hz in the examples of Figs.
[0046] 眼圧算出部 54では、予め記憶されている「A f—眼圧」対応関係を読み出し、その 対応関係に周波数変化量算出部 52から与えられた周波数変化量 A fをあてはめ、 対応する眼圧を算出し、出力する。出力された眼圧値は、本体部 60において、ディ スプレイあるいはプリンタ等の出力手段によって、表示出力される。図 7の例で、 A f = 120Hzとすれば、対応する眼圧は、約 1. lkPaと算出されて表示されることになる [0046] The intraocular pressure calculation unit 54 reads the pre-stored “A f—intraocular pressure” correspondence, and applies the frequency change amount A f given from the frequency change amount calculation unit 52 to the correspondence relationship. Calculates and outputs the intraocular pressure. The output intraocular pressure value is displayed and output on the main body 60 by an output means such as a display or a printer. In the example of Fig. 7, if A f = 120Hz, the corresponding intraocular pressure will be calculated and displayed as approximately 1. lkPa.

Claims

請求の範囲 The scope of the claims
[1] 非接触で眼球に超音波を入射する振動子と、眼球からの反射波を検出する振動検 出センサとを有する探触子と、  [1] A probe having a transducer that makes ultrasonic waves incident on the eyeball in a non-contact manner and a vibration detection sensor that detects reflected waves from the eyeball;
探触子の先端に設けられ、眼球に向かい合う面が凹面である凹面音響レンズと、 探触子に増幅器とともに直列に接続され、振動子への入力波形と振動検出センサ 力、らの出力波形に位相差が生じるときは、周波数を変化させてその位相差をゼロに 補償する位相シフト回路と、  A concave acoustic lens, which is provided at the tip of the probe and has a concave surface facing the eyeball, is connected to the probe in series with an amplifier, and the input waveform to the transducer and the vibration detection sensor force When a phase difference occurs, a phase shift circuit that changes the frequency to compensate for the phase difference to zero,
位相差をゼロに補償したときの周波数変化量と眼圧との関係を予め求めておき、凹 面音響レンズを眼球に離隔させて向かい合わせて眼球に超音波を入射したときに生 じる位相差をゼロに補償する周波数変化量力 眼圧を算出する眼圧算出部と、 を備えることを特徴とする眼圧測定装置。  The relationship between the amount of change in frequency and the intraocular pressure when the phase difference is compensated to zero is obtained in advance, and the position that occurs when an ultrasonic wave is incident on the eyeball with the concave acoustic lens facing away from the eyeball. An intraocular pressure measurement device comprising: an intraocular pressure calculation unit that calculates an intraocular pressure to compensate for a phase difference to zero.
[2] 請求の範囲 1に記載の眼圧測定装置にお!/、て、  [2] In the intraocular pressure measuring device according to claim 1,! /,
凹面音響レンズと測定対象物の眼球との間の距離を可変できる探触子移動機構を 備えることを特徴とする眼圧測定装置。  An intraocular pressure measuring device comprising a probe moving mechanism capable of varying a distance between a concave acoustic lens and an eyeball of a measurement object.
[3] 請求の範囲 1に記載の眼圧測定装置にお!/、て、 [3] In the intraocular pressure measuring device according to claim 1,! /,
凹面音響レンズの曲面形状を可変できる曲面形状可変手段を備えることを特徴と する眼圧測定装置。  An intraocular pressure measuring device comprising curved surface shape changing means capable of changing a curved surface shape of a concave acoustic lens.
PCT/JP2007/073512 2006-12-08 2007-12-05 Intraocular pressure measuring device WO2008072527A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008549263A JP5505684B2 (en) 2006-12-08 2007-12-05 Tonometry device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-331933 2006-12-08
JP2006331933 2006-12-08

Publications (1)

Publication Number Publication Date
WO2008072527A1 true WO2008072527A1 (en) 2008-06-19

Family

ID=39511548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/073512 WO2008072527A1 (en) 2006-12-08 2007-12-05 Intraocular pressure measuring device

Country Status (2)

Country Link
JP (1) JP5505684B2 (en)
WO (1) WO2008072527A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268651A (en) * 2008-05-03 2009-11-19 Nidek Co Ltd Non-contact ultrasonic tonometer
JP2010068873A (en) * 2008-09-16 2010-04-02 Nidek Co Ltd Non-contact ultrasonic tonometer
JP2010068874A (en) * 2008-09-16 2010-04-02 Nidek Co Ltd Non-contact ultrasonic tonometer
JP2010082279A (en) * 2008-09-30 2010-04-15 Nidek Co Ltd Non-contact ultrasonic tonometer
WO2010087291A1 (en) * 2009-01-29 2010-08-05 学校法人 日本大学 Intraocular pressure measurement device
US7845235B2 (en) 2007-11-06 2010-12-07 Costin Sandu Non-invasive system and method for measuring vacuum pressure in a fluid
EP2260765A1 (en) 2009-06-09 2010-12-15 Nidek Co., Ltd Non-contact ultrasonic measurement device
EP2266454A1 (en) 2009-06-22 2010-12-29 Nidek Co., Ltd Non-contact ultrasonic tonometer
JP2011030756A (en) * 2009-07-31 2011-02-17 Nidek Co Ltd Non-contact type ultrasonic tonometer
JP2011087900A (en) * 2009-03-31 2011-05-06 Nidek Co Ltd Non-contact ultrasonic tonometer
JP2011092598A (en) * 2009-10-30 2011-05-12 Nidek Co Ltd Non-contact ultrasonic tonometer
JP2011212124A (en) * 2010-03-31 2011-10-27 Nidek Co Ltd Non-contact type ultrasonic tonometer
JP2013031767A (en) * 2012-11-19 2013-02-14 Nidek Co Ltd Non-contact ultrasonic tonometer
US11406415B2 (en) 2012-06-11 2022-08-09 Tenex Health, Inc. Systems and methods for tissue treatment
US11457937B2 (en) 2014-09-02 2022-10-04 Tenex Health, Inc. Subcutaneous wound debridement

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117320615A (en) 2021-05-18 2023-12-29 阔维苏合同会社 Non-contact eyeball physical property measuring device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180241A (en) * 1988-09-28 1990-07-13 Univ Ohio Non-contact ultrasonic tonometer
JPH05253190A (en) * 1991-10-10 1993-10-05 Massie Res Lab Inc Non-contact type tonometer
JPH08322803A (en) * 1995-05-31 1996-12-10 Canon Inc Ocular tension meter
JPH09145691A (en) * 1995-09-20 1997-06-06 Sadao Omata Frequency difference detection circuit and measuring unit employing it

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4822438B2 (en) * 2004-04-07 2011-11-24 学校法人日本大学 Operation center frequency selection method, operation center frequency selection device, and hardness measurement system for hardness measurement system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02180241A (en) * 1988-09-28 1990-07-13 Univ Ohio Non-contact ultrasonic tonometer
JPH05253190A (en) * 1991-10-10 1993-10-05 Massie Res Lab Inc Non-contact type tonometer
JPH08322803A (en) * 1995-05-31 1996-12-10 Canon Inc Ocular tension meter
JPH09145691A (en) * 1995-09-20 1997-06-06 Sadao Omata Frequency difference detection circuit and measuring unit employing it

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7845235B2 (en) 2007-11-06 2010-12-07 Costin Sandu Non-invasive system and method for measuring vacuum pressure in a fluid
JP2009268651A (en) * 2008-05-03 2009-11-19 Nidek Co Ltd Non-contact ultrasonic tonometer
JP2010068873A (en) * 2008-09-16 2010-04-02 Nidek Co Ltd Non-contact ultrasonic tonometer
JP2010068874A (en) * 2008-09-16 2010-04-02 Nidek Co Ltd Non-contact ultrasonic tonometer
JP2010082279A (en) * 2008-09-30 2010-04-15 Nidek Co Ltd Non-contact ultrasonic tonometer
WO2010087291A1 (en) * 2009-01-29 2010-08-05 学校法人 日本大学 Intraocular pressure measurement device
JP2010172464A (en) * 2009-01-29 2010-08-12 Nihon Univ Tonometer
JP2011087900A (en) * 2009-03-31 2011-05-06 Nidek Co Ltd Non-contact ultrasonic tonometer
US8500638B2 (en) 2009-03-31 2013-08-06 Nidek Co., Ltd. Non-contact ultrasonic tonometer
EP2260765A1 (en) 2009-06-09 2010-12-15 Nidek Co., Ltd Non-contact ultrasonic measurement device
EP2266454A1 (en) 2009-06-22 2010-12-29 Nidek Co., Ltd Non-contact ultrasonic tonometer
CN101926659A (en) * 2009-06-22 2010-12-29 株式会社尼德克 Non-contact ultrasonic tonometer
JP2011000344A (en) * 2009-06-22 2011-01-06 Nidek Co Ltd Non-contact ultrasonic tonometer
JP2011030756A (en) * 2009-07-31 2011-02-17 Nidek Co Ltd Non-contact type ultrasonic tonometer
JP2011092598A (en) * 2009-10-30 2011-05-12 Nidek Co Ltd Non-contact ultrasonic tonometer
JP2011212124A (en) * 2010-03-31 2011-10-27 Nidek Co Ltd Non-contact type ultrasonic tonometer
US11406415B2 (en) 2012-06-11 2022-08-09 Tenex Health, Inc. Systems and methods for tissue treatment
JP2013031767A (en) * 2012-11-19 2013-02-14 Nidek Co Ltd Non-contact ultrasonic tonometer
US11457937B2 (en) 2014-09-02 2022-10-04 Tenex Health, Inc. Subcutaneous wound debridement

Also Published As

Publication number Publication date
JPWO2008072527A1 (en) 2010-03-25
JP5505684B2 (en) 2014-05-28

Similar Documents

Publication Publication Date Title
JP5505684B2 (en) Tonometry device
US5251627A (en) Non-invasive measurement of eyeball pressure using vibration
JP3151153B2 (en) Frequency deviation detection circuit and measuring instrument using the same
JPH0221840A (en) Apparatus and method for measuring elastic acoustic wave unable to infiltrate into soft organic tissue
US9101958B2 (en) Electromechanical transducer
CN101026990A (en) Pressure measuring method, pressure measuring device, and tonometer
CN106264605B (en) Ultrasonic device and device for generating mechanical vibration
CN112004467A (en) Method for sensor response reading using continuous wave excitation using natural frequency displacement mechanism
JP4562970B2 (en) Method and apparatus for determining intraocular pressure by measuring changes in frequency characteristics
Eklund et al. A resonator sensor for measurement of intraocular pressure-evaluation in an in vitro pig-eye model
RU2290856C2 (en) Method and device for measuring intra-eye pressure
JP5435417B2 (en) Tonometry device
JP6125938B2 (en) Method of detecting pressure change of measurement object using piezoelectric vibrator
JP2004267299A (en) Intraocular pressure examination device
Denisov et al. Micromechanical actuators driven by ultrasonic power transfer
JP6954667B2 (en) Method for measuring skin viscoelastic properties and device for measuring skin viscoelastic properties
KR102634608B1 (en) A device for measuring the amount of probe displacement using a change in the amount of light
JPH06327639A (en) Apparatus and method for inspection of skin
JP4034683B2 (en) Fruit and vegetable hardness measuring apparatus equipped with pressure adjusting mechanism and fruit and vegetable hardness measuring method
RU2102917C1 (en) Method and device for making ocular tonometric measurements
JP6141713B2 (en) Method for obtaining structural information inside a living body
KR20170129354A (en) The measurement apparatus for capacitive membrane sensor using mechanical resonance characteristics of membrane and the method thereof
JP4037306B2 (en) Fruit and vegetable hardness measuring apparatus equipped with pressure adjusting mechanism and fruit and vegetable hardness measuring method
CN116261423A (en) Estimating central blood pressure
RU1823788C (en) Method and device for eye tonometry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07850136

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008549263

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07850136

Country of ref document: EP

Kind code of ref document: A1