WO2008072467A1 - Method for melting asbestos and apparatus for melting asbestos - Google Patents

Method for melting asbestos and apparatus for melting asbestos Download PDF

Info

Publication number
WO2008072467A1
WO2008072467A1 PCT/JP2007/072842 JP2007072842W WO2008072467A1 WO 2008072467 A1 WO2008072467 A1 WO 2008072467A1 JP 2007072842 W JP2007072842 W JP 2007072842W WO 2008072467 A1 WO2008072467 A1 WO 2008072467A1
Authority
WO
WIPO (PCT)
Prior art keywords
asbestos
melting
light
melted
containing member
Prior art date
Application number
PCT/JP2007/072842
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichi Ikeda
Norio Umeyama
Original Assignee
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute Of Advanced Industrial Science And Technology filed Critical National Institute Of Advanced Industrial Science And Technology
Priority to JP2008549237A priority Critical patent/JPWO2008072467A1/en
Publication of WO2008072467A1 publication Critical patent/WO2008072467A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/0066Disposal of asbestos
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/40Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by heating to effect chemical change, e.g. pyrolysis

Definitions

  • the present invention relates to a method for melting asbestos and an apparatus therefor, and more particularly to a method for detoxifying asbestos by melting asbestos and extinguishing its fibrous form, and an apparatus therefor. is there.
  • Asbestos naturally occurring fibrous mineral that includes chrysotile (white asbestos), crocidolite (blue asbestos), and amosite (tea asbestos). It has excellent potency, heat resistance, insulation, mechanical strength, and is easy to process, so it has long been widely used as an industrial material for electrical products, automobiles, and building materials such as building roofing materials and wall materials. I came.
  • asbestos has excellent characteristics, but has fine needle-like 'fibrous crystals', and when inhaled by humans, a part of it remains in the respiratory organs for a long time, and asbestos lungs. It causes serious health problems such as lung cancer, malignant mesothelioma, and so on!
  • waste asbestos material As a disposal method of waste containing such asbestos (waste asbestos material), it has been conventionally packed in a double plastic bag so that it does not scatter or is made concrete, and it is underground in the final treatment plant. The landfill method was taken.
  • Patent Document 1 discloses a method for separating asbestos from a waste material of a fiber-reinforced cement board containing asbestos and detoxifying the separated asbestos, and the obtained solid and residue. Describes a method for producing a fiber-reinforced cement board that is reused as a part of the raw material.
  • the fiber reinforced cement board waste containing asbestos is roughly crushed or crushed, then wet pulverized, and 60% asbestos is recovered from the resulting slurry by wet separation.
  • the asbestos content is separated into 0 to 10% by weight or less, and the solid content is baked at 700 to 1000 ° C to decompose the asbestos in the solid content. It is a harmless component mainly composed of Mg 2 SiO 3.
  • Patent Document 2 paying attention to the fact that the fluorocarbon decomposition product produced by the fluorocarbon detoxification treatment contains calcium fluoride, by using this fluorocarbon decomposition waste as a melting agent, low energy is used.
  • a method for detoxifying asbestos is proposed. In other words, it was produced by substances containing asbestos (slate plates containing asbestos, roof tiles, water pipes, automobile brakes, acetylene cylinder fillers, fireproof coatings, etc.) and detoxification treatment of CFCs.
  • Patent Document 3 a method for melting asbestos waste mixed with aluminum powder by arc discharge or heating by thermal plasma
  • Patent Document 4 describes asbestos pretreated with a melting agent composed of a boron compound.
  • a method of melting slate waste materials containing about 1000 ° C is proposed
  • Patent Document 5 proposes a method of melting asbestos-containing waste from 1200 to 1700 ° C without additives. Yes.
  • any asbestos detoxification treatment method uses a method in which the asbestos used in a building or the like is removed and then collected in a treatment plant and melted, it was sprayed on a wall material.
  • asbestos processing costs are very high.
  • Patent Document 1 JP 2000-271561 A
  • Patent Document 2 JP 2005-168632 Koyuki
  • Patent Document 3 Japanese Patent Laid-Open No. 08-084969
  • Patent Document 4 JP-A-2005-279589
  • Patent Document 5 Japanese Patent Laid-Open No. 09-019672
  • Patent Document 6 Japanese Patent Publication No. 5-34317
  • Patent Document 7 International Publication No. 2005/1725 Pamphlet
  • the present invention has been made in view of the circumstances as described above, and greatly reduces the cost of processing asbestos, and also has sufficient safety when removing asbestos.
  • the purpose is to provide a method of detoxifying the best.
  • the present invention has been completed based on these findings, and provides the following asbestos melting method and apparatus.
  • a method for melting asbestos comprising melting asbestos, an asbestos-containing member, or an asbestos in an asbestos-containing member by condensing light from the light source on the asbestos or the asbestos-containing member.
  • the light emitting source is a light source that emits light including infrared rays.
  • an asbestos-containing member or an apparatus for melting asbestos in an asbestos-containing member, comprising: a light emitting source; and means for condensing light emitted from the light emitting source onto the asbestos or the asbestos-containing member.
  • a melting apparatus for asbestos comprising:
  • asbestos can be melted while attached to a wall that does not need to be peeled off from the wall or the like, the current cost can be greatly reduced, and the safety can be remarkably improved. Can be improved.
  • FIG. 1 is a diagram showing an outline of a detoxification apparatus according to the present invention.
  • FIG. 20 is a diagram schematically showing a melting experiment method using a reflecting mirror.
  • asbestos, an asbestos-containing member, or an asbestos-containing member is collected by condensing light from a light-emitting source that emits light including infrared rays onto asbestos or a member containing asbestos.
  • the asbestos in the member is locally heated to a predetermined temperature, whereby the asbestos is heated and melted to be detoxified.
  • asbestos in the present invention include chrysotile (white asbestos), clothidite (blue asbestos), and amosite (tea asbestos). It can be rendered harmless by a device.
  • the light source that emits light containing infrared rays is typically a force S that uses an infrared irradiation lamp such as a halogen lamp or a xenon lamp, or a light source that emits light containing infrared rays. It is not limited to this.
  • a reflecting mirror or a lens is used as a means for condensing the light from the light source on the best.
  • the apparatus used for melting asbestos in the present invention is not particularly limited as long as it has the light emitting source and means for condensing the light from the light emitting source. It is possible to refer to known heating devices described in Patent Documents 6 and 7, which are known as crystal growth devices. In particular, the crystal growth heating device described in Patent Document 7 is extremely small, can be used with a household 100V power source, and can be used at low cost, although the temperature can be raised to 2000 ° C. It has some advantages. The following melting experiment 1 was performed using this apparatus.
  • Fig. 1 is a conceptual diagram showing an outline of a small infrared central heating furnace used for melting experiments.
  • 1 is an elliptical reflector
  • 2 is a light source such as a halogen lamp
  • 3 is a sample.
  • the small infrared central heating furnace has two elliptical reflectors.
  • One light source 3 such as a halogen lamp is installed at each focal point.
  • the two reflecting mirrors are provided so that the other focal points coincide with each other, and the sample 3 is arranged at the focal point.
  • the filament When the current is supplied to the lamp 3, the filament becomes red hot and emits infrared rays. By collecting the infrared rays at the sample position, the temperature of the sample is raised.
  • the alumina tube on which the sample was fixed was attached to the small infrared central heating furnace.
  • the small infrared fountain intensive heating furnace is equipped with two general-purpose halogen lamps of 650W, each capable of applying a voltage up to 100V.
  • two general-purpose halogen lamps of 650W each capable of applying a voltage up to 100V.
  • FIGS. 2 and 3, FIGS. 4 and 5, and FIGS. 6 and 7 are photographs of the chrysotile, amosite, and clothite, respectively, observed directly with cameras before and after heating with the apparatus.
  • Figs. 8 and 9, Fig. 10 and Fig. 11, Fig. 12 and Fig. 13 are photographs of phase contrast microscopic observation of chrysotile, amosite, and crocidolite before and after infrared focused heat treatment, respectively.
  • Figure 14 and Figure 15, Figure 16 and Figure 17, Figure 18 and Figure 19 show the powder X-rays of chrysotile, amosite, and crocidolite before and after infrared focused heat treatment, respectively. It is a diffraction pattern. In this phase contrast microscope photo, the fibrous form of asbestos is observed as a blue glow!
  • the asbestos-containing spraying material with a concentration of 0.1% to several percent is mainly processed. Specifically, rock wool, vermiculite, and pearlite, which are the base materials of typical spray materials, must be melted simultaneously with asbestos. Moreover, in the processing of the asbestos-containing spray material on the assumed plane, the above-mentioned crystal growth apparatus cannot be used as it is because of restrictions on the shape of the apparatus.
  • FIG. 20 is a diagram schematically showing the method used, in which 1 is a reflecting mirror, 2 is a halogen lamp, 3 is a spraying material, and 4 is , Concrete plate or iron plate, 5 is the molten part.
  • the reflector used was a spheroidal mirror made of brass and gold-plated on the mirror surface.
  • the focal length for the spheroid was 50 mm
  • the major axis was 65 mm
  • the minor axis was 60 mm
  • the minor axis to major axis ratio was 0.92.
  • the halogen lamp used was a flat filament (JCS 100V-650WCC manufactured by Usio Electric Co., Ltd.) with a power of 650W.
  • Halogen lamp The center of the lament was located at one focal point inside the reflector, and the reflector was placed so that the other focal point was on the surface of the spray material.
  • the power supply was the 100V'15A power supply used in the crystal growth apparatus.
  • FIG. 21 is a cross-sectional photograph after rock wool on concrete has melted. The melted and solid ocher mass remained on the bottom and sides of the sinkhole.
  • Smoke started at about 30V, started melting at about 70V, and the melted part at about 85V boiled.
  • the irradiation time was about 30 seconds.
  • the melted area was about 10 mm in diameter and about 3 mm deep.
  • Smoke started at around 20V, started melting at around 70V, and the part melted at around 75V boiled.
  • the irradiation time was about 30 seconds.
  • the melted area was about 10 mm in diameter and about 3 mm deep.
  • the surface started to melt at about 50V, and melted and collapsed at about 60V.
  • the irradiation time was about 30 seconds. Even when the voltage was increased to 90 V, the melted part did not increase.
  • the melted area was about 20 mm in diameter and about 16 mm in depth.
  • the temperature of the iron plate after the experiment remained at room temperature.
  • the surface of the concrete or iron plate may be exposed during the spraying material melting process.
  • the experiment was performed to irradiate the concrete surface and the iron plate surface with infrared rays in the same way as the melting process for the spraying material described above. went.
  • the irradiation time was about 30 seconds.
  • the melted area was about 10 mm in diameter and about 2 mm in depth.
  • Infrared rays were irradiated using the method shown in the schematic diagram of FIG.
  • the voltage was raised to 95V, but there was no change. It was considered that the powder did not have a glossy foil, so the reflectivity was large and the temperature did not rise.
  • Copper oxide (CuO) powder Melting point 1100 ° C
  • Iron oxide (Fe 2 O 3, Fe 2 O 3) powder both melting points about 1600 ° C
  • the asbestos-containing spray material targeted by the present invention is a material suitable for local heat treatment with low thermal conductivity and reflectance.
  • the infrared irradiation of concrete or steel sheet which is the base material of walls, ceilings, etc.
  • the iron oxide melting test results show that the temperature of rock wool is 1600 ° C or higher. Therefore, when rock wool mixed with asbestos is melted, it is certain that the contained asbestos, whose melting point is said to be about 1500 ° C, is also melted when the wool is melted.
  • chrysotile, crocidolite, and amosite were all easily melted by infrared rays, and the fibrous form disappeared. It became clear that it was practically possible to perform in-situ melting.
  • asbestos can be made harmless by being attached to a wall that does not need to be peeled off from the wall or the like, and melted as it is.
  • Rua The application of the method and apparatus of the present invention to the asbestos treatment required when demolishing a sbestos board or asbestos-containing rock wool can be greatly expected.

Abstract

This invention provides a method for rendering asbestos unharmful, which can significantly reduce the cost necessary for asbestos treatment and is satisfactorily safe in the removal of asbestos. Light from an infrared light emitting source is collected at asbestos or an asbestos-containing material to locally heat asbestos, the asbestos-containing material, or asbestos contained in the asbestos-containing material to a predetermined temperature, and thus to melt asbestos, whereby the asbestos is rendered unharmful. In the method, an apparatus for melting asbestos is used. The apparatus comprises a light emitting source and means for collecting light emitted from the light emitting source at asbestos or the asbestos-containing material.

Description

明 細 書  Specification
アスベストの溶融方法及びそのための装置  Method for melting asbestos and apparatus therefor
技術分野  Technical field
[0001] 本発明はアスベストの溶融方法及びそのための装置に関するものであり、さらに詳 しくはアスベストを溶融してその繊維状形態を消滅させることによりアスベストを無害 化する方法及びそのための装置に関するものである。  The present invention relates to a method for melting asbestos and an apparatus therefor, and more particularly to a method for detoxifying asbestos by melting asbestos and extinguishing its fibrous form, and an apparatus therefor. is there.
背景技術  Background art
[0002] アスベスト(石綿)は、天然に産する繊維状の鉱物で、種類としては、クリソタイル(白 石綿)、クロシドライト(青石綿)、及びァモサイト (茶石綿)などがあり、耐酸性、耐アル カリ性、耐熱性、絶縁性や機械的強度に優れており、加工もし易いため、古くから電 気製品、 自動車等の工業材料や、建物の屋根材ゃ壁材等の建築材料として幅広く 使用されてきた。  [0002] Asbestos (natural asbestos) is a naturally occurring fibrous mineral that includes chrysotile (white asbestos), crocidolite (blue asbestos), and amosite (tea asbestos). It has excellent potency, heat resistance, insulation, mechanical strength, and is easy to process, so it has long been widely used as an industrial material for electrical products, automobiles, and building materials such as building roofing materials and wall materials. I came.
[0003] このように、アスベストは優れた特性を有するものの、微小な針状'繊維状結晶を持 つため、人が吸引した場合、その一部が呼吸器官に長期間残留して、石綿肺、肺ガ ン、悪性中皮腫等の重大な健康障害の原因になると!/、われて!/、る。  [0003] Thus, asbestos has excellent characteristics, but has fine needle-like 'fibrous crystals', and when inhaled by humans, a part of it remains in the respiratory organs for a long time, and asbestos lungs. It causes serious health problems such as lung cancer, malignant mesothelioma, and so on!
このアスベストの問題に関しては、平成 17年 7月以来、政府によって、本格的に様 々な対策が取りまとめられているところであり、具体的には、石綿の飛散のおそれの ある建築材料の使用を規制するとともに、増改築時や解体時には、原則として石綿の 除去を義務づける等の法整備がなされてきている。  With regard to this asbestos problem, since July 2005, various measures have been put in place by the government in earnest. Specifically, the use of building materials that may scatter asbestos is regulated. At the same time, legislation has been put in place, such as obligating the removal of asbestos as a general rule at the time of expansion and reconstruction or dismantling.
[0004] こうしたアスベストを含有する廃棄物(廃アスベスト材)の処分方法として、従来、二 重のプラスチック袋に梱包して飛散しない状態にして或はコンクリート化して、最終処 理場で地中に埋め立てる方法がとられていた。  [0004] As a disposal method of waste containing such asbestos (waste asbestos material), it has been conventionally packed in a double plastic bag so that it does not scatter or is made concrete, and it is underground in the final treatment plant. The landfill method was taken.
しかしながら、環境問題上の問題から埋め立て地が不足し、近年では、こうした埋め 立てに代えて、電気炉等で、アスベストの融点約 1500°C以上に加熱し、溶融処理す る等の方法で、建築廃材中などのアスベストを無害化処理することが行われている。  However, due to environmental problems, landfill sites are lacking.In recent years, instead of such landfills, an asbestos melting point of about 1500 ° C or higher is heated in an electric furnace, etc. Detoxification of asbestos, such as in construction waste, has been carried out.
[0005] たとえば、特許文献 1には、アスベストを含有する繊維強化セメント板の廃材からァ スベストを分離し、分離したアスベストを無害化する方法、及び得られた固形物、残滓 を原料の一部に再利用する繊維強化セメント板の製造方法が記載されている。この 方法では、アスベストを含有した繊維強化セメント板の廃棄物を、粗砕または粗断し たのち、湿式微粉砕し、得られたスラリーから、湿式分離法でアスベストを 60〜; 100 重量%回収した固形分と、アスベスト含有量 0〜; 10重量%以下の残滓とに分離し、 該固形分を 700〜; 1000°Cで焼成することにより、固形分中のアスベストを分解し、フ ォレステライト(Mg SiO )を主体とした無害成分とするものである。 [0005] For example, Patent Document 1 discloses a method for separating asbestos from a waste material of a fiber-reinforced cement board containing asbestos and detoxifying the separated asbestos, and the obtained solid and residue. Describes a method for producing a fiber-reinforced cement board that is reused as a part of the raw material. In this method, the fiber reinforced cement board waste containing asbestos is roughly crushed or crushed, then wet pulverized, and 60% asbestos is recovered from the resulting slurry by wet separation. The asbestos content is separated into 0 to 10% by weight or less, and the solid content is baked at 700 to 1000 ° C to decompose the asbestos in the solid content. It is a harmless component mainly composed of Mg 2 SiO 3.
2 4  twenty four
[0006] また、特許文献 2では、フロン無害化処理によって生成されるフロン分解物がフッ化 カルシウムを含むことに着目して、このフロン分解汚物を融解剤として用いることによ り、低エネルギーでアスベストを無害化処理する方法を提案している。すなわち、ァス ベストを含んだ物質(アスベストを含んだスレート板、屋根瓦、水道管、自動車のブレ ーキ、アセチレンボンベの充填材、耐火被覆材等)とフロン分解無害化処理によって 生成されたフロン分解物とを混合又は混練し、次いで当該混合物を 600°C以下の低 温で加熱処理することにより、アスベストを確実に分解し、アスベストの繊維形態の消 滅、結晶構造の崩壊などを引き起こして無公害化するものである。  [0006] Also, in Patent Document 2, paying attention to the fact that the fluorocarbon decomposition product produced by the fluorocarbon detoxification treatment contains calcium fluoride, by using this fluorocarbon decomposition waste as a melting agent, low energy is used. A method for detoxifying asbestos is proposed. In other words, it was produced by substances containing asbestos (slate plates containing asbestos, roof tiles, water pipes, automobile brakes, acetylene cylinder fillers, fireproof coatings, etc.) and detoxification treatment of CFCs. By mixing or kneading the CFC decomposition product, and then heat-treating the mixture at a low temperature of 600 ° C or lower, asbestos is reliably decomposed, causing the fiber form of asbestos to disappear, the crystal structure to collapse, etc. To make it pollution-free.
[0007] さらに、特許文献 3では、アルミニウム粉を混合したアスベスト廃棄物をアーク放電、 或いは熱プラズマによる加熱によって溶融処理する方法力 特許文献 4では、硼素 化合物からなる融解剤によって前処理したアスベストを含むスレート廃材を 1000°C 程度の温度で溶融処理する方法が、特許文献 5では、アスベスト含有廃棄物を、添 加剤無しで 1200〜; 1700°Cで溶融処理する方法が、それぞれ提案されている。  [0007] Further, in Patent Document 3, a method for melting asbestos waste mixed with aluminum powder by arc discharge or heating by thermal plasma, Patent Document 4 describes asbestos pretreated with a melting agent composed of a boron compound. A method of melting slate waste materials containing about 1000 ° C is proposed, and Patent Document 5 proposes a method of melting asbestos-containing waste from 1200 to 1700 ° C without additives. Yes.
[0008] しかしながら、いずれのアスベスト無害化処理方法も、建築物などに使用されたァス ベストを除去した後、処理場に集め、溶融させる方法を用いているため、壁材に吹き つけられたアスベスト等を除去する際には、アスベストを含む粉塵が作業場外に漏洩 しないように大力 Sかりな設備と安全対策を用意しなければならず、このような状況では 、アスベストの処理に多大なコストがかかり、また、アスベストを除去する際の安全性も 十分でない。  [0008] However, since any asbestos detoxification treatment method uses a method in which the asbestos used in a building or the like is removed and then collected in a treatment plant and melted, it was sprayed on a wall material. When removing asbestos, etc., it is necessary to prepare powerful equipment and safety measures so that dust containing asbestos does not leak out of the workplace, and in this situation, asbestos processing costs are very high. In addition, it is not safe enough to remove asbestos.
特許文献 1 :特開 2000— 271561号公報  Patent Document 1: JP 2000-271561 A
特許文献 2:特開 2005— 168632号公幸  Patent Document 2: JP 2005-168632 Koyuki
特許文献 3:特開平 08— 084969号公報 特許文献 4 :特開 2005— 279589号公報 Patent Document 3: Japanese Patent Laid-Open No. 08-084969 Patent Document 4: JP-A-2005-279589
特許文献 5 :特開平 09— 019672号公報  Patent Document 5: Japanese Patent Laid-Open No. 09-019672
特許文献 6:特公平 5— 34317号公報  Patent Document 6: Japanese Patent Publication No. 5-34317
特許文献 7 :国際公開第 2005/1725号パンフレット  Patent Document 7: International Publication No. 2005/1725 Pamphlet
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0009] 本発明は、以上のような事情に鑑みてなされたものであって、アスベストの処理にか 力、るコストを大幅に減らし、かつ、アスベストを除去する際の安全性も十分であるァス ベストの無害化方法を提供することを目的とするものである。 [0009] The present invention has been made in view of the circumstances as described above, and greatly reduces the cost of processing asbestos, and also has sufficient safety when removing asbestos. The purpose is to provide a method of detoxifying the best.
課題を解決するための手段  Means for solving the problem
[0010] 従来のアスベストの無害化処理における上記課題は、主として壁材などからのァス ベストの除去工程にあり、課題解決のためには、アスベストの除去工程と無害化処理 を同時になしうる方法が必要である。一方、前述のとおり、アスベストを無害化処理す る方法としては、アスベストを加熱溶融することにより、その繊維状形態を崩壊させる の力 コスト及び環境上の安全性等の点で非常に有効であるものの、壁材に吹き付 けられたアスベストに従来の実用的な加熱溶融方法、例えばガスバーナーの火炎に よる加熱方法などを適用したのでは、壁材などの基板及びその周辺の温度も上昇し てしまうために、アスベスト又はアスベストを含有する吹きつけ材のみを所定の温度に 均質に加熱して溶融することは殆ど不可能である。 [0010] The above-mentioned problem in conventional asbestos detoxification treatment is mainly in the asbestos removal process from wall materials and the like, and in order to solve the problem, a method that can simultaneously perform the asbestos removal process and the detoxification process. is required. On the other hand, as described above, asbestos detoxification method is very effective in terms of cost, environmental safety, etc. However, if a conventional practical heating and melting method, such as a heating method using a gas burner flame, is applied to the asbestos sprayed on the wall material, the temperature of the substrate such as the wall material and its surroundings also rises. Therefore, it is almost impossible to melt only asbestos or only the spray material containing asbestos by uniformly heating to a predetermined temperature.
[0011] 本発明者らは、壁材に吹き付けられたアスベストを溶融する方法について研究を重 ねた結果、アスベスト或いはアスベスト含有部材に、ハロゲンランプなどの発光源から の光を集光させ、生じた熱によりアスベストを溶融してその繊維状形態を崩壊すること により、アスベストを無害化できるという知見を得た。  [0011] As a result of studies on a method for melting asbestos sprayed on a wall material, the present inventors have concentrated light from a light source such as a halogen lamp on asbestos or an asbestos-containing member. We obtained the knowledge that asbestos can be rendered harmless by melting asbestos with heat and collapsing its fibrous form.
[0012] 本発明は、これらの知見に基づいて完成に至ったものであり、以下のアスベストの 溶融方法及び溶融装置を提供するものである。  The present invention has been completed based on these findings, and provides the following asbestos melting method and apparatus.
(1)アスベスト又はアスベスト含有部材に、発光源からの光を集光させることにより、ァ スベスト、アスベスト含有部材又はアスベスト含有部材中のアスベストを溶融すること を特徴とするアスベストの溶融方法。 (2)前記発光源が、赤外線を含む光を放射する光源であることを特徴とする(1)に記 載のアスベストの溶融方法。 (1) A method for melting asbestos, comprising melting asbestos, an asbestos-containing member, or an asbestos in an asbestos-containing member by condensing light from the light source on the asbestos or the asbestos-containing member. (2) The method for melting asbestos according to (1), wherein the light emitting source is a light source that emits light including infrared rays.
(3)前記アスベスト又はアスベスト含有部材カ 平面、曲面、或いは多面体面上に塗 布又は吹き付けられたものであることを特徴とする(1)に記載のアスベストの溶融方 法。  (3) The asbestos melting method according to (1), wherein the asbestos or asbestos-containing member is coated or sprayed on a plane, curved surface or polyhedral surface.
(4)アスベスト、アスベスト含有部材又はアスベスト含有部材中のアスベストを溶融す る装置であって、発光源と、該発光源から放射された光をアスベスト又はアスベスト含 有部材に集光させる手段とを有することを特徴とするアスベストの溶融装置。  (4) Asbestos, an asbestos-containing member, or an apparatus for melting asbestos in an asbestos-containing member, comprising: a light emitting source; and means for condensing light emitted from the light emitting source onto the asbestos or the asbestos-containing member. A melting apparatus for asbestos, comprising:
(5)前記発光源が、赤外線照射ランプであることを特徴とする(4)に記載のアスベスト の溶融装置。  (5) The asbestos melting apparatus according to (4), wherein the light source is an infrared irradiation lamp.
(6)前記集光手段が、回転楕円面鏡であり、発光源からの光を点状に集光させること ができる反射鏡であることを特徴とする(4)に記載のアスベストの溶融装置。  (6) The asbestos melting device according to (4), wherein the condensing means is a spheroid mirror, and is a reflecting mirror capable of condensing light from a light source in a dot shape. .
(7)前記集光手段が、発光源からの光を線状に集光させることができる反射鏡である ことを特徴とする請求項 4に記載のアスベストの溶融装置。  (7) The asbestos melting apparatus according to (4), wherein the condensing means is a reflecting mirror capable of condensing light from a light source in a linear shape.
(8)平面、曲面、或いは多面体面上に塗布又は吹き付けられたアスベスト、アスペス ト含有部材又はアスベスト含有部材中のアスベストを溶融するための装置であること を特徴とする(4)〜(7)の!/、ずれかに記載のアスベストの溶融装置。  (8) A device for melting asbestos, asbestos-containing members or asbestos in asbestos-containing members applied or sprayed on a plane, curved surface, or polyhedron surface (4) to (7) No! / Asbestos melting equipment as described in any of the above.
発明の効果  The invention's effect
[0013] 本発明の方法及び装置によれば、アスベストを壁などからはがす必要はなぐ壁に 付いたまま溶融させることで、現在かかっているコストを大幅に削減でき、また、安全 性も格段に改善することができる。  [0013] According to the method and apparatus of the present invention, asbestos can be melted while attached to a wall that does not need to be peeled off from the wall or the like, the current cost can be greatly reduced, and the safety can be remarkably improved. Can be improved.
図面の簡単な説明  Brief Description of Drawings
[0014] [図 1]本発明の無害化装置の概略を示す図  FIG. 1 is a diagram showing an outline of a detoxification apparatus according to the present invention.
[図 2]クリソタイルの赤外線集光加熱処理前の写真  [Figure 2] Photograph of chrysotile before infrared condensing heat treatment
[図 3]クリソタイルの赤外線集光加熱処理後の写真  [Figure 3] Photo of chrysotile after infrared heat treatment
[図 4]ァモサイトの赤外線集光加熱処理前の写真  [Fig.4] Photograph of amosite before infrared heat treatment
[図 5]ァモサイトの赤外線集光加熱処理後の写真  [Fig.5] Photo of amosite after infrared heat treatment
[図 6]クロシドライトの赤外線集光加熱処理前の写真 [図 7]クロシドライトの赤外線集光加熱処理後の写真 [Figure 6] Photograph of crocidolite before infrared condensing heat treatment [Figure 7] Photograph of crocidolite after infrared heat treatment
[図 8]赤外線集光加熱処理前のクリソタイルの位相差顕微鏡観察の写真  [Figure 8] Photo of phase contrast microscope observation of chrysotile before infrared condensing heat treatment
[図 9]赤外線集光加熱処理後のクリソタイルの位相差顕微鏡観察の写真  [Figure 9] Photo of phase contrast microscope observation of chrysotile after infrared condensing heat treatment
[図 10]赤外線集光加熱処理前のァモサイトの位相差顕微鏡観察の写真  [Fig.10] Photo of phase contrast microscope observation of amosite before infrared heat treatment
[図 11]赤外線集光加熱処理後のァモサイトの位相差顕微鏡観察の写真  [Figure 11] Photo of phase contrast microscope observation of amosite after infrared condensing heat treatment
[図 12]赤外線集光加熱処理前のクロシドライトの位相差顕微鏡観察の写真  [Figure 12] Photo of phase contrast microscope observation of crocidolite before infrared heat treatment
[図 13]赤外線集光加熱処理後のクロシドライトの位相差赤外線顕微鏡観察の写真 [Fig.13] Photo of phase contrast infrared microscopic observation of crocidolite after infrared heat treatment
[図 14]赤外線集光加熱処理前のクリソタイルの粉末の X線回折パターン [Fig.14] X-ray diffraction pattern of chrysotile powder before infrared heat treatment
[図 15]赤外線集光加熱処理後のクリソタイルの粉末の X線回折パターン  [Figure 15] X-ray diffraction pattern of chrysotile powder after infrared heat treatment
[図 16]赤外線集光加熱処理前のモサイトの粉末の X線回折パターン  [Figure 16] X-ray diffraction pattern of mosite powder before infrared heat treatment
[図 17]赤外線集光加熱処理後のァモサイトの粉末の X線回折パターン  [Fig.17] X-ray diffraction pattern of amosite powder after infrared heat treatment
[図 18]赤外線集光加熱処理前のクロシドライトの粉末の X線回折パターン  [Fig.18] X-ray diffraction pattern of crocidolite powder before infrared heat treatment
[図 19]赤外線集光加熱処理後のクロシドライトの粉末の X線回折パターン  [Fig.19] X-ray diffraction pattern of crocidolite powder after infrared focused heat treatment
[図 20]反射鏡を用いた溶融実験の方法を模式的に示す図  FIG. 20 is a diagram schematically showing a melting experiment method using a reflecting mirror.
[図 21]コンクリート上のロックウールが溶融した後の断面写真  [Fig.21] Cross-sectional photograph after rock wool on concrete melts
符号の説明  Explanation of symbols
[0015] 1 :楕円型反射鏡 [0015] 1: Elliptical reflector
2 :発光源 (ハロゲンランプ)  2: Light source (halogen lamp)
3:試料(アスベスト又はアスベスト含有吹き付け材)  3: Sample (asbestos or asbestos-containing spray material)
4 :コンクリート板又は鉄板  4: Concrete plate or iron plate
5 :溶融部分  5: Melted part
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 本発明にお!/、ては、アスベスト又はアスベストを含む部材に、赤外線を含む光を放 射する発光源からの光を集光させて、アスベスト、アスベスト含有部材、又はアスペス ト含有部材中のアスベストを、所定の温度に、局所的に加熱することによって、ァスべ ストを加熱溶融して無害化することを特徴とするものである。 [0016] In the present invention, asbestos, an asbestos-containing member, or an asbestos-containing member is collected by condensing light from a light-emitting source that emits light including infrared rays onto asbestos or a member containing asbestos. The asbestos in the member is locally heated to a predetermined temperature, whereby the asbestos is heated and melted to be detoxified.
本発明におけるアスベストとしては、代表的には、クリソタイル(白石綿)、クロシドラ イト(青石綿)、及びァモサイト(茶石綿)などがあり、これらのいずれも本発明の方法及 び装置により無害化することが可能である。 Representative examples of asbestos in the present invention include chrysotile (white asbestos), clothidite (blue asbestos), and amosite (tea asbestos). It can be rendered harmless by a device.
[0017] これらのアスベストが、電気炉等の高温加熱により約 1500°C以上の高温で溶融す ることは従来から知られているが、ハロゲンランプ等の赤外線を含む光を放射する発 光源からの光を照射することにより、その光の吸収によって加熱溶融されることは今ま でなされていなかった。すなわち、アスベスト自体は、白色ないし青色又は茶色を帯 びた白色の繊維状鉱物であるので、それに光を吸収させて効率的に加熱溶融できる ことは知られていなかった。 白色の物質は光を吸収しにくいと一般的に考えられてい る力、らである。予想外にも、光を照射した際には、その光を吸収して容易に加熱溶融 されることがわかった。そして、アスベストは、その熱伝導率が非常に小さいために、 加熱源からの放射光を集光させてアスベストを含む材料に照射した際には、局所的 に加熱溶融され易いものと思われる。  [0017] Although it has been conventionally known that these asbestos melt at a high temperature of about 1500 ° C or higher by high-temperature heating of an electric furnace or the like, from a light source that emits light including infrared rays such as a halogen lamp. Until now, it has not been heated and melted by the absorption of light. That is, asbestos itself is a white, blue or brownish white fibrous mineral, it has not been known that it can absorb light and efficiently heat and melt it. A white substance is a force generally considered to be difficult to absorb light. Unexpectedly, it was found that when irradiated with light, it absorbs the light and is easily melted by heating. And asbestos has a very low thermal conductivity, it seems that it is likely to be heated and melted locally when the material containing asbestos is irradiated by collecting the radiated light from the heating source.
[0018] 本発明において、赤外線を含む光を放射する発光源としては、代表的にはハロゲ ンランプ、キセノンランプ等の赤外線照射ランプが用いられる力 S、赤外線を含む光を 放射する発光源であればこれに限られるものではない。また、該発光源からの光をァ スベストに集光させる手段としては、反射鏡やレンズが用いられる。  [0018] In the present invention, the light source that emits light containing infrared rays is typically a force S that uses an infrared irradiation lamp such as a halogen lamp or a xenon lamp, or a light source that emits light containing infrared rays. It is not limited to this. In addition, a reflecting mirror or a lens is used as a means for condensing the light from the light source on the best.
本発明におけるアスベストの溶融に用いられる装置としては、前記発光源と、該発 光源からの光を集光させる手段を有するものであればよぐ特に限定されるものでは ないが、アスベスト処理装置ではなく結晶成長装置として知られている、上記特許文 献 6及び 7に記載されている公知の加熱装置を参考にすることができる。特に特許文 献 7に記載された結晶成長加熱装置は、 2000°Cまで温度を上昇可能であるにもか かわらず、非常に小型であって、家庭用の 100Vの電源が使用でき、安価であるなど の利点を有している。以下の溶融実験 1はこの装置を使用して行った。  The apparatus used for melting asbestos in the present invention is not particularly limited as long as it has the light emitting source and means for condensing the light from the light emitting source. It is possible to refer to known heating devices described in Patent Documents 6 and 7, which are known as crystal growth devices. In particular, the crystal growth heating device described in Patent Document 7 is extremely small, can be used with a household 100V power source, and can be used at low cost, although the temperature can be raised to 2000 ° C. It has some advantages. The following melting experiment 1 was performed using this apparatus.
[0019] (溶融実験 1)  [0019] (Melting experiment 1)
小型赤外線集中加熱炉を用いて、アスベストの溶融実験を行った。  An asbestos melting experiment was conducted using a small infrared central heating furnace.
図 1は、溶融実験に用いた小型赤外線集中加熱炉の概略を示す概念図である。 図中、 1は、楕円型反射鏡であり、 2は、ハロゲンランプなどの発光源であり、 3は、 試料である。  Fig. 1 is a conceptual diagram showing an outline of a small infrared central heating furnace used for melting experiments. In the figure, 1 is an elliptical reflector, 2 is a light source such as a halogen lamp, and 3 is a sample.
図に示すとおり、小型赤外線集中加熱炉は、 2つの楕円型反射鏡を持ち、それぞ れの焦点の位置にハロゲンランプなどの発光源 3が 1つずつ設置されている。 2つの 反射鏡は、互いに他方の焦点が一致するように設けられており、試料 3は、その焦点 の位置に配置される。 As shown in the figure, the small infrared central heating furnace has two elliptical reflectors. One light source 3 such as a halogen lamp is installed at each focal point. The two reflecting mirrors are provided so that the other focal points coincide with each other, and the sample 3 is arranged at the focal point.
ノ、ロゲンランプ 3に通電することにより、フィラメントが赤熱し、赤外線を放射するが、 その赤外線を試料位置に集光させることで、試料の温度を上昇させる。  When the current is supplied to the lamp 3, the filament becomes red hot and emits infrared rays. By collecting the infrared rays at the sample position, the temperature of the sample is raised.
[0020] 試料として、クリソタイル(ロシア'ウラル産 P4クラス)、ァモサイト(南アフリカ産)、クロ シドライト(南アフリカ産)の 3種類を用い、それぞれ 5mm角程度として、外径 6mmの アルミナ管の先端に差し込み固定した。 [0020] Three types of samples, chrysotile (Russia's Ural P4 class), amosite (South Africa) and crocidolite (South Africa), are used, each approximately 5mm square, and inserted into the tip of an alumina tube with an outer diameter of 6mm. Fixed.
次に、試料を固定したアルミナ管を、前記小型赤外線集中加熱炉に取り付けた。  Next, the alumina tube on which the sample was fixed was attached to the small infrared central heating furnace.
[0021] 当該小型赤外泉集中加熱炉は 650Wの汎用のハロゲンランプを 2つ備え、それぞ れに最高 100Vまで、電圧をかけることが出来る。例えば融点 2050°Cのルビーを溶 かすためには、当該装置で 93V程度の電圧をかける必要がある。 [0021] The small infrared fountain intensive heating furnace is equipped with two general-purpose halogen lamps of 650W, each capable of applying a voltage up to 100V. For example, in order to dissolve ruby with a melting point of 2050 ° C, it is necessary to apply a voltage of about 93V with the device.
今回の溶融実験では、試料空間に空気を数百 cc/minの量で流しながら、 40V〜 50Vの電圧を印加することで、 3種類全てのアスベストを溶融させることが出来た。 このこと力、ら、アスベストの場合、ルビーの場合の約 1/3程度の電力で溶融可能で あること力 sわ力、る。 In this melting experiment, all three types of asbestos could be melted by applying a voltage of 40 V to 50 V while flowing air at a rate of several hundred cc / min into the sample space. This force, et al., In the case of asbestos, that the force s I force can be melted at about about one-third of the power in the case of ruby, Ru.
[0022] 図 2及び 3、図 4及び 5、図 6及び 7は、それぞれ、クリソタイル、ァモサイト及びクロシ ドライトを、当該装置で加熱する前後のカメラで直接観察した写真である。  [0022] FIGS. 2 and 3, FIGS. 4 and 5, and FIGS. 6 and 7 are photographs of the chrysotile, amosite, and clothite, respectively, observed directly with cameras before and after heating with the apparatus.
これらの写真から明らかなように、繊維状の試料の形状が、なめらかになり、また、 体積も小さくなる様子を観察できた。また、溶融後のアスベストが試料保持に使用し たアルミナ管に濡れず玉状になっていることから、アスベストがアルミナに比べてより 赤外線を吸収し、温度が上昇して!/、ること力 S分力、る。  As is clear from these photographs, it was observed that the shape of the fibrous sample became smooth and the volume decreased. In addition, asbestos after melting is not wetted to the alumina tube used to hold the sample and is in the shape of a ball, so that asbestos absorbs more infrared rays than alumina and the temperature rises! S component force.
[0023] また、溶融したクリソタイル、ァモサイト及びクロシドライトの試料中に、繊維状の形 態が残っていないことを確かめるため、それぞれの、赤外線集光加熱処理前と赤外 線集光加熱処理後の試料について、 JIS A 1481 : 2006「建材製品中のアスペス ト含有率測定方法」に準拠した、位相差顕微鏡観察及び粉末 X線回折を行った。位 相差顕微鏡観察については、採用した屈折率、分散色は、クリソタイル(1. 550、白 色)、クロシドライト(1 · 700、白色)、ァモサイト(1 · 700、白色)である。 X線は Cu— Κ α線を用いた。 [0023] In addition, in order to confirm that the fibrous form does not remain in the melted chrysotile, amosite, and crocidolite samples, before and after the infrared focused heat treatment, respectively. The sample was subjected to phase contrast microscope observation and powder X-ray diffraction in accordance with JIS A 1481: 2006 “Method for measuring aspect content in building materials”. For phase contrast microscopy, the refractive index and dispersion color adopted are chrysotile (1.550, white), crocidolite (1 · 700, white) and amosite (1 · 700, white). X-ray is Cu— Κ α rays were used.
図 8及び図 9、図 10及び図 11、図 12及び図 13は、それぞれクリソタイル、ァモサイ ト、及びクロシドライトの赤外線集光加熱処理前と赤外線集光加熱処理後の位相差 顕微鏡観察の写真であり、図 14及び図 15、図 16及び図 17、図 18及び図 19は、そ れぞれクリソタイル、ァモサイト、及びクロシドライトの赤外線集光加熱処理前と赤外 線集光加熱処理後の粉末 X線回折パターンである。今回の位相差顕微鏡観察の写 真では、アスベストの繊維状形態は青く光って!/、る部分として観察される。  Figs. 8 and 9, Fig. 10 and Fig. 11, Fig. 12 and Fig. 13 are photographs of phase contrast microscopic observation of chrysotile, amosite, and crocidolite before and after infrared focused heat treatment, respectively. Figure 14 and Figure 15, Figure 16 and Figure 17, Figure 18 and Figure 19 show the powder X-rays of chrysotile, amosite, and crocidolite before and after infrared focused heat treatment, respectively. It is a diffraction pattern. In this phase contrast microscope photo, the fibrous form of asbestos is observed as a blue glow!
これらの図からみて、赤外線集光加熱処理後の試料のいずれにも、繊維状の石綿 は含まれて!/、な!/、ことが明らかである。  From these figures, it is clear that fibrous asbestos is contained in any of the samples after the infrared condensing heat treatment! / ,!
[0024] (溶融実験 2) [0024] (Melting experiment 2)
平面上の吹きつけ材の溶融実験を行った。  A melting experiment of spray material on a flat surface was conducted.
当該技術を用いた平面上に施工されたアスベスト吹き付け材の溶融処理を行う際 には、主に 0· 1 %〜数%の濃度のアスベスト含有吹きつけ材を処理することになる。 具体的には、典型的な吹き付け材の母材であるロックウール、バーミキユライト、及び パーライトをアスベストと同時に溶融処理する必要がある。また、想定される平面上の アスベスト含有吹きつけ材の処理においては、装置形状上の制限があるため、前述 の結晶成長装置をそのまま使用することはできない。  When the asbestos spraying material applied on a flat surface using this technology is melted, the asbestos-containing spraying material with a concentration of 0.1% to several percent is mainly processed. Specifically, rock wool, vermiculite, and pearlite, which are the base materials of typical spray materials, must be melted simultaneously with asbestos. Moreover, in the processing of the asbestos-containing spray material on the assumed plane, the above-mentioned crystal growth apparatus cannot be used as it is because of restrictions on the shape of the apparatus.
そこで、本実験では、反射鏡のみを準備し、コンクリート板(60mm X 300mm X 30 Omm)及び鉄板(5mm X 300mm X 300mm)の上に吹き付けられた、ロックウーノレ( 厚さ約 15mm)、バーミキユライト(厚さ約 5mm)、及びパーライト(厚さ約 5mm)の溶 融処理実験を行った。  Therefore, in this experiment, only a reflecting mirror was prepared, and a rock unole (thickness of about 15 mm) and vermiculite sprayed on a concrete plate (60 mm x 300 mm x 30 Omm) and an iron plate (5 mm x 300 mm x 300 mm). (Thickness of about 5 mm) and pearlite (thickness of about 5 mm) were melted.
[0025] 図 20は、使用した方法を模式的に示す図であって、図中、 1は、反射鏡であり、 2は 、ハロゲンランプであり、 3は、吹きつけ材であり、 4は、コンクリート板又は鉄板であり、 5は、溶融部分である。  [0025] FIG. 20 is a diagram schematically showing the method used, in which 1 is a reflecting mirror, 2 is a halogen lamp, 3 is a spraying material, and 4 is , Concrete plate or iron plate, 5 is the molten part.
反射鏡には、その材質が真鍮で、鏡面に金メッキが施された回転楕円面鏡を用い た。回転楕円面に関する焦点間距離は 50mm、長径 65mm、短径 60mm、短径長 径比は 0. 92であった。また、ハロゲンランプは、平板型フィラメント(ゥシォ電機製 J CS 100V— 650WCC)で、電力は 650Wのものを使用した。ハロゲンランプのフィ ラメントの中心は、反射鏡内側の一方の焦点に位置し、またもう一方の焦点の位置が 、吹きつけ材表面になるように反射鏡を置いた。電源は、結晶成長装置で使用した 1 00V' 15Aの電源を使用した。 The reflector used was a spheroidal mirror made of brass and gold-plated on the mirror surface. The focal length for the spheroid was 50 mm, the major axis was 65 mm, the minor axis was 60 mm, and the minor axis to major axis ratio was 0.92. The halogen lamp used was a flat filament (JCS 100V-650WCC manufactured by Usio Electric Co., Ltd.) with a power of 650W. Halogen lamp The center of the lament was located at one focal point inside the reflector, and the reflector was placed so that the other focal point was on the surface of the spray material. The power supply was the 100V'15A power supply used in the crystal growth apparatus.
以下にそれぞれの結果を示す。  Each result is shown below.
(1)コンクリート上のロックウール  (1) Rock wool on concrete
55V程度で表面が溶融しはじめ、 70V程度で大きく溶融、陥没した。照射時間は 3 0秒程度であった。その後 90Vまで電圧を上昇させても、溶融部分が大きくなることは なかった。直径約 15mm、深さ約 15mmの局所的な溶融処理ができたことになる。図 21は、コンクリート上のロックウールが溶融した後の断面写真である。溶融固化した 黄土色の塊は陥没穴の底部と側面に残った。  The surface began to melt at about 55V, and melted and collapsed at about 70V. The irradiation time was about 30 seconds. Even when the voltage was increased to 90 V, the melted part did not increase. This means that a local melting process with a diameter of about 15 mm and a depth of about 15 mm has been achieved. Figure 21 is a cross-sectional photograph after rock wool on concrete has melted. The melted and solid ocher mass remained on the bottom and sides of the sinkhole.
(2)コンクリート上のバーミキユライト  (2) Vermiculite on concrete
30V程度で煙があがり、 70V程度で溶け始め、 85V程度で溶けた部分が沸騰した 。照射時間は 30秒程度であった。溶融できた領域は、直径約 10mm、深さ約 3mm であった。  Smoke started at about 30V, started melting at about 70V, and the melted part at about 85V boiled. The irradiation time was about 30 seconds. The melted area was about 10 mm in diameter and about 3 mm deep.
(3)コンクリート上のパーライト  (3) Perlite on concrete
20V程度で煙があがり、 70V程度で溶け始め、 75V程度で溶けた部分が沸騰した 。照射時間は 30秒程度であった。溶融できた領域は、直径約 10mm、深さ約 3mm であった。  Smoke started at around 20V, started melting at around 70V, and the part melted at around 75V boiled. The irradiation time was about 30 seconds. The melted area was about 10 mm in diameter and about 3 mm deep.
(4)鉄板上のロックウール  (4) Rock wool on iron plate
50V程度で表面が溶融しはじめ、 60V程度で大きく溶融、陥没した。照射時間は 3 0秒程度であった。その後 90Vまで電圧を上昇させても、溶融部分が大きくなることは なかった。溶融できたのは、直径約 20mm、深さ約 16mmの領域であった。実験後 の鉄板の温度は室温のままであった。  The surface started to melt at about 50V, and melted and collapsed at about 60V. The irradiation time was about 30 seconds. Even when the voltage was increased to 90 V, the melted part did not increase. The melted area was about 20 mm in diameter and about 16 mm in depth. The temperature of the iron plate after the experiment remained at room temperature.
(5)鉄板上のバーミキユライト  (5) Vermiculite on iron plate
30V程度で煙があがり、 95Vまで電圧を上げた力 溶融しな力 た。照射時間は 3 0秒程度であった。実験後の鉄板の温度は 50°C程度まで上がって!/、た。  Smoke rose at about 30V, and the voltage increased to 95V. The irradiation time was about 30 seconds. The temperature of the iron plate after the experiment rose to about 50 ° C!
(6)鉄板上のパーライト  (6) Perlite on iron plate
20V程度で煙があがり、 95Vまで電圧を上げた力 溶融しな力 た。照射時間は 3 0秒程度であった。実験後の鉄板の温度は 50°C程度まで上がって!/、た。 Smoke rose at about 20V, and the power increased to 95V. Irradiation time is 3 It was about 0 seconds. The temperature of the iron plate after the experiment rose to about 50 ° C!
[0027] 上記(1)、(2)、(3)、(4)の実験結果から、コンクリート上のロックウール、バーミキ ユライト、パーライト及び鉄板上のロックウールを赤外線による局所加熱で溶融処理で きることが明ら力、となった。 [0027] From the experimental results of (1), (2), (3), and (4) above, rock wool on concrete, vermiculite, pearlite, and rock wool on iron plates can be melted by local heating with infrared rays. It became clear that power.
上記 (4)、(5)、(6)の実験結果から、バーミキユライト及びパーライトの熱伝導率が 、ロックウールに比較して大きいこと、及び、バーミキユライト及びパーライトの吹きつ け厚さ力 ロックウールに比較して薄いことから、赤外線による局所加熱力 鉄板上の バーミキユライト及びパーライトに関しては不可能であることを示唆している。  From the experimental results of (4), (5) and (6) above, it can be seen that the thermal conductivity of vermiculite and pearlite is larger than that of rock wool, and the thickness of the sprayed vermiculite and pearlite. Power It is thin compared to rock wool, suggesting that local heating power by infrared rays is not possible for vermiculite and pearlite on iron plates.
[0028] (溶融実験 3) [0028] (Melting experiment 3)
吹きつけ材溶融処理の際に、コンクリート又は鉄板の面が剥き出しになる場合もあ ること力、ら、コンクリート表面及び鉄板表面に、前述の吹きつけ材に対する溶融処理と 同じく赤外線を照射する実験を行った。  The surface of the concrete or iron plate may be exposed during the spraying material melting process. In addition, the experiment was performed to irradiate the concrete surface and the iron plate surface with infrared rays in the same way as the melting process for the spraying material described above. went.
以下にそれぞれの結果を示す。  Each result is shown below.
(7)コンクリート  (7) Concrete
45V程度で溶け始め、 65V程度で溶けた部分が沸騰した。その後電圧を 70V程度 まで上げても、沸騰が激しくなるだけであった。照射時間は 30秒程度であった。溶融 できた領域は、直径約 10mm、深さ約 2mmであった。  It started to melt at about 45V, and the part melted at about 65V boiled. After that, even if the voltage was raised to about 70V, the boiling only increased. The irradiation time was about 30 seconds. The melted area was about 10 mm in diameter and about 2 mm in depth.
(8)鉄板  (8) Iron plate
95Vまで電圧を上げても全く変化無し。酸化している様子も見られなかった。照射 時間は 30秒程度であった。実験後の鉄板の温度は 50°C程度まで上がって!/、た。  No change even if the voltage is increased to 95V. No oxidation was observed. The irradiation time was about 30 seconds. The temperature of the iron plate after the experiment rose to about 50 ° C!
[0029] 上記(7)、(8)の結果から、コンクリート上のロックウールなどの吹きつけ材を本発明 の方法及び装置で溶融処理する場合には、万が一コンクリートの表面に直接赤外線 が集光するような事態になったとしても、コンクリートの表面のみ力 ;!〜 2mm程度に 薄く溶融するだけであって、コンクリートの内側まで溶融したり、破損したりすることは あり得ないことがわかる。一方、鉄板の場合は、万が一鉄板の表面に直接赤外線が 集光するような事態になったとしても、その良好な熱伝導率のために、局所加熱がで きず比較的大きな領域全体で照射エネルギーを受け止めるため、鉄板が溶融するこ とはあり得ず、酸化、破損などの変質も全く考える必要がないことがわかる。 [0030] (溶融実験 4) [0029] From the results of (7) and (8) above, when the spray material such as rock wool on the concrete is melted by the method and apparatus of the present invention, the infrared rays should be condensed directly on the concrete surface. Even if this happens, only the surface of the concrete is forced; it only melts thinly to about 2mm, and it can be understood that it cannot melt or break to the inside of the concrete. On the other hand, in the case of an iron plate, even if infrared rays are directly collected on the surface of the iron plate, due to its good thermal conductivity, local heating cannot be performed and the irradiation energy over a relatively large area It can be seen that the steel plate cannot be melted and no alterations such as oxidation and breakage need to be considered. [0030] (Melting experiment 4)
赤外線照射の影響を、温度上昇以外は全く受けない鉄板上で、ランプ電圧と温度 の関係を知るために、銀箔、酸化銅(CuO)粉末、及び酸化鉄 (Fe O )粉末に、前  In order to know the relationship between the lamp voltage and temperature on an iron plate that is not affected by infrared irradiation except for temperature rise, silver foil, copper oxide (CuO) powder, and iron oxide (FeO) powder were previously
2 3  twenty three
記図 20の模式図に示す方法を用いて赤外線を照射した。  Infrared rays were irradiated using the method shown in the schematic diagram of FIG.
(9)銀箔(0· lmm X 15mm X 15mm)  (9) Silver foil (0 · lmm X 15mm X 15mm)
95Vまで電圧を上げたが全く変化はなかった。粉末状ではなぐ光沢のある箔状で あつたため、反射率が大きく温度が上がらなかったと考えられる。  The voltage was raised to 95V, but there was no change. It was considered that the powder did not have a glossy foil, so the reflectivity was large and the temperature did not rise.
(10)酸化銅 (CuO)粉末:融点 1100°C  (10) Copper oxide (CuO) powder: Melting point 1100 ° C
35V程度で溶け始め、 40V程度で全体が溶融した。  It started to melt at about 35V, and the whole melted at about 40V.
(11)酸化鉄 (Fe O 、 Fe O )粉末:共に融点約 1600°C  (11) Iron oxide (Fe 2 O 3, Fe 2 O 3) powder: both melting points about 1600 ° C
2 3 3 4  2 3 3 4
赤い粉末であった Fe O 1 25V程度で黒く変色し始めた。 Fe O へ変化している  It began to turn black at about 25 V Fe O 1 which was a red powder. Changing to Fe 2 O
2 3 3 4  2 3 3 4
と考えられる。 70V程度で溶け始め、 75V程度で全体が溶融した。  it is conceivable that. Melting started at about 70V, and the whole melted at about 75V.
[0031] これらの実験から、赤外線集光加熱による溶融処理は、対象材料の熱伝導率や反 射率、或!/、は体積によっては容易でな!/、場合が存在することが分かる。 [0031] From these experiments, it can be seen that there are cases where the melting process by the infrared condensing heating is not easy depending on the thermal conductivity or the reflectance of the target material, or! /, Or the volume.
本発明で対象とするアスベスト含有吹きつけ材は、熱伝導率や反射率が小さぐ局 所加熱処理に適した材料であることを確認できた。また吹きつけ材が施工されてレ、る 壁や天井の基材であるコンクリートや鉄板力 赤外線照射により受ける影響はほとん ど無いことが実証された。また、ロックウールが溶融する電圧は 70V程度であることか ら、ロックウールの温度は 1600°C以上になっていることが、酸化鉄の溶融実験結果 力、ら示された。したがって、アスベストを混入したロックウールを溶融処理する際に、口 ックウールが溶融した時には、融点が 1500°C程度と言われている含有アスベストも 溶融していることは確実である。クリソタイル、クロシドライト、ァモサイトのいずれも赤 外線によって容易に溶融され、繊維状形態が消失していることも示されたことから、ァ スベスト含有吹きつけ材を、本発明の赤外線集光加熱により、その場溶融処理を行う ことが現実的に可能であることが明らかとなった。  It was confirmed that the asbestos-containing spray material targeted by the present invention is a material suitable for local heat treatment with low thermal conductivity and reflectance. In addition, it was proved that there was almost no influence from the infrared irradiation of concrete or steel sheet, which is the base material of walls, ceilings, etc., when the spray material was applied. Moreover, since the voltage at which rock wool melts is around 70V, the iron oxide melting test results show that the temperature of rock wool is 1600 ° C or higher. Therefore, when rock wool mixed with asbestos is melted, it is certain that the contained asbestos, whose melting point is said to be about 1500 ° C, is also melted when the wool is melted. It was also shown that chrysotile, crocidolite, and amosite were all easily melted by infrared rays, and the fibrous form disappeared. It became clear that it was practically possible to perform in-situ melting.
産業上の利用可能性  Industrial applicability
[0032] 本発明の方法及び装置によれば、アスベストを壁などからはがす必要はなぐ壁に 付レ、たまま溶融させることで無害化ができるので、今後数十年は必要とされて!/、るァ スベスト板或いはアスベスト含有ロックウール等の取り壊しの際に必要とされるァスべ スト処理への本発明の方法及び装置の適用が大いに期待できる。 [0032] According to the method and apparatus of the present invention, asbestos can be made harmless by being attached to a wall that does not need to be peeled off from the wall or the like, and melted as it is. , Rua The application of the method and apparatus of the present invention to the asbestos treatment required when demolishing a sbestos board or asbestos-containing rock wool can be greatly expected.

Claims

請求の範囲 The scope of the claims
[1] アスベスト又はアスベスト含有部材に、発光源からの光を集光させることにより、ァス ベスト、アスベスト含有部材又はアスベスト含有部材中のアスベストを溶融することを 特徴とするアスベストの溶融方法。  [1] A method for melting asbestos, characterized in that asbestos, an asbestos-containing member, or an asbestos in an asbestos-containing member is melted by concentrating light from the light source on the asbestos or the asbestos-containing member.
[2] 前記発光源が、赤外線を含む光を放射する光源であることを特徴とする請求項 1に 記載のアスベストの溶融方法。  2. The asbestos melting method according to claim 1, wherein the light emitting source is a light source that emits light including infrared rays.
[3] 前記アスベスト又はアスベスト含有部材カ 平面、曲面、或いは多面体面上に塗布 又は吹き付けられたものであることを特徴とする請求項 1に記載のアスベストの溶融 方法。 [3] The asbestos melting method according to [1], wherein the asbestos or asbestos-containing member is applied or sprayed on a plane, a curved surface, or a polyhedral surface.
[4] アスベスト、アスベスト含有部材又はアスベスト含有部材中のアスベストを溶融する 装置であって、発光源と、該発光源から放射された光をアスベスト又はアスベスト含 有部材に集光させる手段とを有することを特徴とするアスベストの溶融装置。  [4] An apparatus for melting asbestos, an asbestos-containing member, or an asbestos in an asbestos-containing member, comprising a light source and a means for condensing the light emitted from the light source on the asbestos or the asbestos-containing member An asbestos melting apparatus characterized by that.
[5] 前記発光源が、赤外線照射ランプであることを特徴とする請求項 4に記載のァスべ ストの溶融装置。  5. The best melting apparatus according to claim 4, wherein the light source is an infrared irradiation lamp.
[6] 前記集光手段が、回転楕円面鏡であり、発光源からの光を点状に集光させることが できる反射鏡であることを特徴とする請求項 4に記載のアスベストの溶融装置。  6. The asbestos melting apparatus according to claim 4, wherein the condensing means is a spheroid mirror, and is a reflecting mirror capable of condensing light from a light source in a dot shape. .
[7] 前記集光手段が、発光源からの光を線状に集光させることができる反射鏡であるこ とを特徴とする請求項 4に記載のアスベストの溶融装置。  7. The asbestos melting apparatus according to claim 4, wherein the condensing means is a reflecting mirror capable of condensing light from a light source in a linear shape.
[8] 平面、曲面、或いは多面体上に塗布又は吹き付けられたアスベスト、アスベスト含 有部材又はアスベスト含有部材中のアスベストを溶融するための装置であることを特 徴とする請求項 4〜7のいずれ力、 1項に記載のアスベストの溶融装置。  [8] Any one of claims 4 to 7, characterized in that it is an apparatus for melting asbestos, an asbestos-containing member or asbestos in an asbestos-containing member applied or sprayed on a plane, a curved surface, or a polyhedron. 1. The asbestos melting device according to item 1.
PCT/JP2007/072842 2006-12-15 2007-11-27 Method for melting asbestos and apparatus for melting asbestos WO2008072467A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008549237A JPWO2008072467A1 (en) 2006-12-15 2007-11-27 Method for melting asbestos and apparatus therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006337691 2006-12-15
JP2006-337691 2006-12-15

Publications (1)

Publication Number Publication Date
WO2008072467A1 true WO2008072467A1 (en) 2008-06-19

Family

ID=39511492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072842 WO2008072467A1 (en) 2006-12-15 2007-11-27 Method for melting asbestos and apparatus for melting asbestos

Country Status (2)

Country Link
JP (1) JPWO2008072467A1 (en)
WO (1) WO2008072467A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157337A1 (en) * 2008-06-24 2009-12-30 独立行政法人産業技術総合研究所 Cladding material heat treatment apparatus
JP2010005541A (en) * 2008-06-27 2010-01-14 National Institute Of Advanced Industrial & Technology Melting detoxification apparatus for waste to be treated
JP2010201371A (en) * 2009-03-04 2010-09-16 Taisei Corp Melting detoxification apparatus for waste to be treated, and melting detoxification method using the same
WO2010110195A1 (en) * 2009-03-27 2010-09-30 独立行政法人産業技術総合研究所 Apparatus and method for melting waste by light heating
WO2015045925A1 (en) * 2013-09-27 2015-04-02 独立行政法人産業技術総合研究所 Heat treatment device and heat treatment method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141642A (en) * 1996-11-13 1998-05-29 Komatsu Ltd Method and apparatus for melting waste
JP2007216093A (en) * 2006-02-14 2007-08-30 Yukio Hirose Optical detoxifying method, optical heat source and optical detoxifying apparatus for asbestos covering

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62237984A (en) * 1986-04-08 1987-10-17 Meisei Kogyo Kk Waste materials treatment for asbestos-containing substance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141642A (en) * 1996-11-13 1998-05-29 Komatsu Ltd Method and apparatus for melting waste
JP2007216093A (en) * 2006-02-14 2007-08-30 Yukio Hirose Optical detoxifying method, optical heat source and optical detoxifying apparatus for asbestos covering

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157337A1 (en) * 2008-06-24 2009-12-30 独立行政法人産業技術総合研究所 Cladding material heat treatment apparatus
JP2010007251A (en) * 2008-06-24 2010-01-14 National Institute Of Advanced Industrial & Technology Heat treatment apparatus for coated material
JP2010005541A (en) * 2008-06-27 2010-01-14 National Institute Of Advanced Industrial & Technology Melting detoxification apparatus for waste to be treated
JP2010201371A (en) * 2009-03-04 2010-09-16 Taisei Corp Melting detoxification apparatus for waste to be treated, and melting detoxification method using the same
WO2010110195A1 (en) * 2009-03-27 2010-09-30 独立行政法人産業技術総合研究所 Apparatus and method for melting waste by light heating
JP2010227828A (en) * 2009-03-27 2010-10-14 National Institute Of Advanced Industrial Science & Technology Apparatus and method for melting and detoxifying waste to be treated by light heating
WO2015045925A1 (en) * 2013-09-27 2015-04-02 独立行政法人産業技術総合研究所 Heat treatment device and heat treatment method
JP2015068000A (en) * 2013-09-27 2015-04-13 独立行政法人産業技術総合研究所 Heat treatment device and heat treatment method

Also Published As

Publication number Publication date
JPWO2008072467A1 (en) 2010-03-25

Similar Documents

Publication Publication Date Title
Paolini et al. Asbestos treatment technologies
JP5676099B2 (en) Harmless treatment method for asbestos
Wei et al. Effect of calcium compounds on lightweight aggregates prepared by firing a mixture of coal fly ash and waste glass
WO2008072467A1 (en) Method for melting asbestos and apparatus for melting asbestos
JP3769569B2 (en) Asbestos detoxification treatment method
WO2007034816A1 (en) Method for modification of asbestos
JP3830492B2 (en) Treatment method for waste slate containing asbestos
KR102046866B1 (en) Method for decomposing asbestos-containing materials using ilmenite or carbon-based materials
JP2010063990A (en) Heat treatment system for asbestos-containing waste
CN102712537B (en) Production method for a lightweight construction material using asbestos waste
JP2007308871A (en) Treating method for making asbestos harmless
KR101755124B1 (en) Method of detoxification for material containing asbestos
KR102146082B1 (en) Mehtod for manufacturing calcium silicate
WO2010110195A1 (en) Apparatus and method for melting waste by light heating
KR101302473B1 (en) Method of asbestos detoxification and calcium compound reaction liquid used therefor
JP2007160223A (en) Exhaust gas neutralizer using molten slag
JP2011088058A (en) Method for detoxifying asbestos
Hong et al. Detoxification of Asbestos and Recovery of Valuable Metals from Detoxified Asbestos
JP2001061990A (en) Treatment for pyrolyzing halogenide such as pcb
JP2009034651A (en) Asbestos decomposition method
JP4923179B2 (en) Method for detoxifying asbestos and method for producing magnesium carbonate
JP2007209835A (en) Asbestos treatment system and asbestos treatment method
JP2007216079A (en) Asbestos treatment system and asbestos treatment method
JP4894700B2 (en) Method for detoxifying asbestos-containing material and method for producing cement
JP5317459B2 (en) Processing method for waste materials containing asbestos

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832567

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008549237

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07832567

Country of ref document: EP

Kind code of ref document: A1