WO2008072415A1 - Multiple frequency antenna - Google Patents

Multiple frequency antenna Download PDF

Info

Publication number
WO2008072415A1
WO2008072415A1 PCT/JP2007/069816 JP2007069816W WO2008072415A1 WO 2008072415 A1 WO2008072415 A1 WO 2008072415A1 JP 2007069816 W JP2007069816 W JP 2007069816W WO 2008072415 A1 WO2008072415 A1 WO 2008072415A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
helical
support
antenna
frequency antenna
Prior art date
Application number
PCT/JP2007/069816
Other languages
French (fr)
Japanese (ja)
Inventor
Masashi Wakui
Original Assignee
Nippon Antena Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2007120542A external-priority patent/JP4129038B2/en
Application filed by Nippon Antena Kabushiki Kaisha filed Critical Nippon Antena Kabushiki Kaisha
Priority to US12/296,108 priority Critical patent/US8159404B2/en
Publication of WO2008072415A1 publication Critical patent/WO2008072415A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q11/00Electrically-long antennas having dimensions more than twice the shortest operating wavelength and consisting of conductive active radiating elements
    • H01Q11/02Non-resonant antennas, e.g. travelling-wave antenna
    • H01Q11/08Helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole

Definitions

  • the present invention relates to a multifrequency antenna suitable for being mounted on a vehicle capable of receiving FM broadcast and terrestrial digital broadcast.
  • FIG. 29 is a perspective view showing an example of the configuration of this antenna device.
  • the helical element 111 is wound around the outer peripheral surface of the rod-shaped insulating support 110 at a pitch p! /.
  • a metal element fitting 113 is fitted to the lower end of the support 110.
  • the lower part of the element fitting 113 is an attachment portion 114 for fixing the antenna device 100 to an antenna case attached to a vehicle roof or the like.
  • the attachment portion 114 is formed with, for example, a male screw.
  • the helical element 111 is wound! /, And is molded with resin from the tip of the support 110 to the element fitting 113.
  • FIG. 30 shows the frequency characteristics of the voltage standing wave ratio (VSWR) in the frequency band of FM broadcasting.
  • the length L1 of the element fitting 113 is about 22.5 mm. Referring to the frequency characteristics shown in Fig. 30, it can be seen that it is almost resonating at 83 MHz, which is the center frequency of FM broadcasting. Also, the frequency band of FM broadcasting in Japan is 76 MHz to 90 MHz, and the antenna device 100 shown in FIG. 29 is almost operating in the frequency band of FM broadcasting.
  • Terrestrial digital broadcasting The frequency band of TV broadcasting is the UHF band of 470 MHz to 710 MHz.
  • the antenna device 100 shown in Fig. 29 is attached to the antenna case.
  • Figure 31 shows the frequency characteristics of the UHF band. Referring to Fig. 31, the antenna device 100 is of course used for receiving SFM broadcasts.
  • the force antenna device 100 is not operating in the UHF band, and the antenna device 100 receives terrestrial digital TV broadcasts. Power to do S Can't!
  • FIG. 32 shows a configuration example of a conventional multi-frequency antenna configured to operate in a plurality of frequency bands.
  • the length of the parasitic coil unit 216 is adjusted so that the operating frequency band of the parasitic coil unit 216 having a large number of turns is the 800 MHz band in the mobile telephone network.
  • the length of the second parasitic coil section 219 is adjusted so that the operating frequency band of the second parasitic coil section 219 with a slightly reduced number of turns is in the vicinity of the 800 MHz band in the mobile telephone network. Yes. As a result, a sufficiently wide frequency band can be secured even in the low frequency band of 800 MHz.
  • the multi-frequency helical antenna is adjusted.
  • the 200 can operate in the 800MHz band and 1.5GHz band in the mobile telephone network.
  • the parasitic coil unit 216 and the second parasitic coil unit 219 are excited by the excitation coil unit 217.
  • Patent Document 1 JP 2000-295017 issued by the Japan Patent Office
  • Patent Document 2 JP 2003-37426 issued by the Japan Patent Office
  • the antenna device 100 described above has a problem that it cannot be operated in a plurality of frequency bands. Therefore, it is conceivable to apply a multi-frequency technique that operates in a plurality of frequency bands in the multi-frequency helical antenna 200 so that the antenna apparatus 100 operates in a plurality of frequency bands. That is, a non-powered helical element is further arranged between the pitches of the helical element 111. As a result, a multi-frequency antenna that operates in a plurality of frequency bands can be obtained. However, it is necessary to place an unpowered helical element between the pitches of the helical element 111. Therefore, it is necessary to increase the pitch of the helical element 111. As a result, the length L of the helical element 111 is too long! /, There is a problem in terms of design and handling.
  • an object of the present invention is to provide a multi-frequency antenna capable of shortening the overall length as much as possible even when operated in a plurality of frequency bands.
  • the present invention provides a helical element that operates in the first frequency band wound around the outer peripheral surface of the support, and a groove formed in the outer peripheral surface of the support. Or a linear element that operates in the second frequency band disposed in a storage hole formed in the support body.
  • the helical element that operates in the first frequency band wound around the outer peripheral surface of the support and the groove formed in the outer peripheral surface of the support or the support And a linear element that operates in the second frequency band disposed in the storage hole formed in FIG.
  • a linear element that operates in the second frequency band disposed in the storage hole formed in FIG.
  • the helical element is affected by the linear element, and the force S can be reduced to shorten the overall length of the multi-frequency antenna.
  • FIG. 1 is a perspective view showing a configuration of a multi-frequency antenna that is effective in the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line d-d showing the configuration of the multi-frequency antenna of the first embodiment according to the present invention.
  • FIG. 3 is a diagram showing the frequency characteristics of VSWR in the frequency band of FM broadcasting of the multi-frequency antenna of the first embodiment, which focuses on the present invention.
  • FIG. 4 is a diagram showing the frequency characteristics of the VSWR in the frequency band of the terrestrial digital TV broadcast of the multi-frequency antenna of the first embodiment according to the present invention.
  • FIG. 5 The present invention is effective when the linear element of the multi-frequency antenna of the first embodiment is provided. It is a figure which shows the frequency characteristic of the VSWR of a helical element when not providing.
  • FIG. 6 is a block diagram showing a configuration of a receiving system when the multifrequency antenna of the first embodiment of the present invention is mounted on a vehicle or the like.
  • FIG. 7 An enlarged perspective view showing a configuration in which an element metal fitting is fitted to the lower portion of the support body, which is applied to the multi-frequency antenna of the first embodiment of the present invention.
  • FIG. 8 is a perspective view showing a configuration for comparing with a configuration in which an element metal fitting is fitted to the lower portion of the support, which is applied to the multi-frequency antenna of the first embodiment of the present invention.
  • FIG. 9 A perspective view showing the configuration of the multi-frequency antenna of the second embodiment according to the present invention.
  • FIG. 10 A cross-sectional view taken along line ee showing the configuration of the multi-frequency antenna of the second embodiment, which focuses on the present invention.
  • FIG. 11 An exploded perspective view showing the configuration of the multi-frequency antenna according to the third embodiment of the present invention. 12] A perspective view showing the configuration of the multi-frequency antenna according to the third embodiment of the present invention. is there. 13] A sectional view taken along line ff showing the configuration of the multi-frequency antenna of the third embodiment of the present invention.
  • FIG. 14 is a perspective view showing the structure of the element fitting in the multi-frequency antenna of the third embodiment which focuses on the present invention.
  • FIG. 15 is a plan view showing the structure of the element fitting in the multi-frequency antenna of the third embodiment which focuses on the present invention.
  • FIG. 17 A cross-sectional view taken along the central axis showing the configuration of the element fitting in the multi-frequency antenna of the third embodiment which focuses on the present invention.
  • FIG. 19 is a diagram showing the frequency characteristic of the voltage standing wave ratio (VSWR) in the frequency band of FM broadcasting of the multi-frequency antenna according to the third embodiment which focuses on the present invention.
  • VSWR voltage standing wave ratio
  • the power of the present invention the frequency of the terrestrial digital TV broadcasting of the multi-frequency antenna of the third embodiment It is a figure which shows the frequency characteristic of VSWR in several bands.
  • the frequency characteristics of the VSWR in the FM broadcast frequency band when the diameter of the linear element is increased It is a figure shown in contrast with the frequency characteristic of VSWR at the time of.
  • FIG. 22 is a diagram showing the frequency characteristics of VSWR in the frequency band of FM broadcasting when the distance between the helical element and the linear element is narrowed in the multi-frequency antenna of the third embodiment which focuses on the present invention.
  • the VSWR of the frequency band of FM broadcasting when the diameter of the linear element is increased and the distance between the helical element and the linear element is increased is increased. It is a figure which shows the frequency characteristic.
  • the impedance in the frequency band of FM broadcasting when the diameter of the linear element is increased and the distance between the helical element and the linear element is increased is increased. It is a Smith chart which shows the frequency characteristic.
  • FIG.25 The frequency characteristics of VSWR in the frequency band of FM broadcasting when the length of the helical element is increased and the length of the linear element is slightly shortened in the multi-frequency antenna of the third embodiment which is effective in the present invention.
  • Fig.26 Impedance frequency in the frequency band of FM broadcasting when the length of the helical element is lengthened and the length of the linear element is slightly shortened in the multi-frequency antenna of the third embodiment which is effective in the present invention. It is a Smith chart which shows a characteristic.
  • the length of the helical element is increased and the length of the linear element is slightly shortened. It is a figure which shows a frequency characteristic.
  • FIG. 29 is a perspective view showing an example of a configuration of a conventional antenna device.
  • FIG. 30 is a diagram showing the frequency characteristics of VSWR in the frequency band of FM broadcasting of a conventional antenna device.
  • FIG. 31 is a diagram showing the frequency characteristics of VSWR in the UHF band of a conventional antenna device.
  • FIG. 32 is a diagram showing a configuration example of a conventional multi-frequency antenna configured to operate in a plurality of frequency bands.
  • FIG. 1 is a perspective view showing the configuration of the multi-frequency antenna according to the first embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along the line d-d showing the configuration of the multi-frequency antenna of the first embodiment.
  • a helical element 11 is wound at a pitch p on the outer peripheral surface of an insulating support 10 having a rod shape having a substantially circular cross section.
  • a metal element fitting 13 that is electrically connected to the lower end of the helical element 11 is fitted to the lower end of the support 10.
  • the lower part of the element metal fitting 13 has a mounting portion 14 with a reduced diameter for fixing the multi-frequency antenna 1 to an antenna case or the like.
  • the mounting portion 14 is screwed to, for example, an antenna case mounted on the roof of a vehicle.
  • a male screw is formed.
  • the support 10 is formed by resin molding and has flexibility.
  • a helical groove is formed on the outer peripheral surface, and a lead wire is wound around the helical groove so that the support 10 is pinched.
  • H Helical element 11 of p is formed.
  • the tip force of the support 10 around which the helical element 11 is wound is also applied to the element fitting 13 and is molded with resin so as to cover the helical element 11.
  • first groove portion 10a a first groove portion 10a, a second groove portion 10b, a third groove portion 10c, and a fourth groove portion 10d are formed substantially parallel to the central axis of the support body 10 from the lower end to the upper side.
  • the first groove portion 10a to the fourth groove portion 10d have substantially the same shape, a taper shape that narrows toward the tip, and the tip portion is formed in a semicircular shape.
  • a linear element 12 having a length a slightly shorter than the length b is disposed in the first groove portion 10a having a length b with a distance from the helical element 11.
  • the linear element 12 is disposed at the semicircular portion at the tip of the first groove portion 10a, and the distance from the helical element 11 can be at least about 1 mm.
  • the linear element 12 is covered with an insulating film such as polyurethane, so that even if it comes into contact with the helical element 11 with a space therebetween, it is insulated from the direct current.
  • the lower end of the linear element 12 is electrically connected to the element fitting 13, and the helical element 11 and the linear element 12 are supplied with power from the element fitting 13.
  • the first groove portion 10a to the fourth groove portion 10d are formed at equal intervals, and when the bending stress is applied to the support body 10, the stress is evenly distributed, so that the support body 10 can be formed even if a groove is formed. It is prevented from being broken by bending stress.
  • the helical element 11 has a length L that resonates in the frequency band of FM broadcasting
  • the length a of the linear element 12 has a length that resonates in the frequency band of terrestrial digital TV broadcasting.
  • the diameter ⁇ of the helical element 11 wound around the support 10 is about 6.8 mm
  • the pitch p is about 1 ⁇ 76 mm
  • the length L of the helical element 11 is about 139 mm
  • the length a of the linear element 12 is about 80 mm.
  • the length b of the first groove portion 10a is about 85 mm
  • the length L1 of the element metal fitting 13 is about 22.5 mm.
  • the distance between the helical element 11 and the linear element 12 is at least about lmm.
  • Figures 3 and 4 show the frequency characteristics of the voltage standing wave ratio (VSWR) when the multi-frequency antenna 1 with this size is attached to the antenna case.
  • VSWR voltage standing wave ratio
  • the frequency characteristics shown in Fig. 3 are the frequency characteristics of VSW R in the FM broadcast frequency band of the multi-frequency antenna 1.
  • the frequency characteristic is 83 MHz, which is the center frequency of FM broadcast.
  • multi-frequency antenna 1 is that the force s' s forces are almost operating in the frequency band of FM broadcast, Ru.
  • the frequency characteristics shown in FIG. 4 are the frequency characteristics of VSWR in the frequency band of terrestrial digital TV broadcasting in the multi-frequency antenna 1 of the first embodiment of the present invention.
  • Referring to FIG. It is considered to be a broadband frequency characteristic that resonates in the vicinity of 590 MHz, which is the center frequency of broadcasting, and the multi-frequency antenna 1 operates almost in the frequency band of terrestrial digital TV broadcasting from 470 MHz to 710 MHz! ! /,
  • the center frequency of FM broadcasting is almost 83 MHz. Resonates.
  • the pitch p is increased to about 1.76 mm, the center frequency of FM broadcasting is assumed even if the length is shortened to 139 mm. It almost resonates at 83MHz.
  • FIG. 5 shows the frequency characteristics of VS WR in the FM broadcast frequency band for the helical element 11 with and without the linear element 12 as described above.
  • the linear element 12 if the linear element 12 is not provided, the helical element 11 resonates at about 103 MHz and cannot cover the frequency band of FM broadcasting. However, if the linear element 12 is provided, the helical element 11 will resonate at about 83 MHz, and the helical element 11 will be able to cover the FM broadcast frequency band under the influence of the linear element 12. I know that.
  • the multi-frequency antenna 1 which is the power of the present invention can reduce the posture even if it operates in a plurality of frequency bands.
  • the helical element 11 can also be used as an antenna for AM broadcast reception.
  • the multi-frequency antenna 1 of the first embodiment of the present invention can be a multi-frequency antenna capable of receiving AM / FM broadcasting and terrestrial digital TV broadcasting.
  • the first embodiment of the present invention described above is equipped with a multi-frequency antenna 1 that can be applied to a vehicle or the like.
  • Figure 6 shows a block diagram showing the configuration of the receiving system.
  • the multi-frequency antenna 1 includes a helical element 11 and a linear element 12.
  • the lower ends of the helical element 11 and the linear element 12 are connected, and power is supplied from the same power supply unit 15.
  • the received signal derived from the power feeding unit 15 is demultiplexed by the demultiplexer 16 into an FM broadcast received signal and a terrestrial digital TV broadcast received signal.
  • the demultiplexed FM broadcast reception signal is amplified by the FM amplifier 17a and supplied to the radio receiver 18a having the FM broadcast receiving unit.
  • the demultiplexed terrestrial digital TV broadcast reception signal is amplified by the terrestrial digital TV amplifier 17b and supplied to the terrestrial digital TV tuner 18b. In this way, it is possible to receive at least FM broadcasts and terrestrial digital TV broadcasts simply by installing the multi-frequency antenna 1.
  • the helical element 11 is wound! /, And the element metal fitting 13 is fitted to the lower part of the support 10! /,
  • the Fig. 7 shows an enlarged perspective view of this fitting configuration.
  • the lower end of the helical element 11 is bent downward and connected to a connection portion 11 a that is tightly wound around the lower end portion of the support 10.
  • the lower end of the linear element 12 is stretched, and the insulating film is removed only at the stretched portion so as to be connected to the connection portion 11a.
  • the element metal fitting 13 is fitted to the lower end portion of the support body 10 so as to cover the connection portion 11a and crimped.
  • the helical element 11 and the linear element 12 are electrically connected to the element fitting 13.
  • the linear element 12 ′ is stored in the storage hole formed along the axis, simply fitting the element metal fitting 13 to the lower end of the support 10 so as to cover the connecting portion 11a and caulking
  • the helical element 11 is connected to the element fitting 13, it becomes difficult to securely connect the linear element 12 'to the element fitting 13, and another means for connecting the linear element 12' to the element fitting 13 is available. Necessary.
  • the configuration of the power feeding unit can be simplified.
  • a storage hole for storing the linear element 12 ′ is formed substantially along the center axis of the support 10, the support 10 is connected to the pipe. It becomes inferior in flexibility and becomes liable to break when bending stress is applied.
  • FIG. 9 is a perspective view showing the configuration of the multi-frequency antenna according to the second embodiment of the present invention, and is cut along line ee showing the configuration of the multi-frequency antenna of the second embodiment.
  • a cross-sectional view is shown in Fig. 10.
  • helical elements 21 are wound at a predetermined pitch on the outer peripheral surface of an insulating support 20 having a rod shape having a substantially circular cross section.
  • a metal element fitting 23 electrically connected to the lower end of the helical element 21 is fitted! /.
  • the lower part of the element metal fitting 23 has a mounting portion 24 with a small diameter for fixing the multi-frequency antenna 2 to the antenna case or the like, and the mounting portion 24 is screwed to an antenna case mounted on a vehicle roof or the like, for example.
  • a male screw is formed.
  • the support 20 is formed by resin molding and has flexibility, and a helical groove is formed on the outer peripheral surface, and a conductive wire is wound in the helical groove to thereby form a predetermined pitch.
  • Helical element 21 is formed. As shown in the figure, the helical element 21 is wound around the helical element 21! /, And the force is applied to the element fitting 23 from the tip of the support 20 to cover the helicity element 21. It is Monored.
  • the four predetermined lengths of the first groove portion 20a, the second groove portion 20b, the third groove portion 20c, and the fourth groove portion 20d are set to be upward from the lower end substantially parallel to the central axis of the support body 20. Grooves are formed.
  • the first groove portion 20a to the fourth groove portion 20d have substantially the same shape, a tapered shape that narrows toward the front, and a tip portion that is semicircular.
  • a linear element 22a is arranged in the first groove 20a
  • a linear element 22b force is arranged in the second groove 20b
  • a linear element 22d is arranged in the fourth groove 20d at a distance from the helical element 21.
  • the linear elements 22a, 22b, and 22d are arranged at the semicircular portions at the tip ends of the first flange portion 20a, the second flange portion 20b, and the fourth flange portion 20d.
  • the distance from 21 can be at least about lm m.
  • the linear elements 22a, 22b, and 22d are covered with an insulating film such as polyurethane, so that even if they are in contact with the spaced helical elements 21, they are insulated in a direct current manner.
  • the lower ends of the linear elements 22a, 22b, and 22d are electrically connected to the element fitting 23, and the helical element 21 and the linear element are connected.
  • the elements 22a, 22b, 22d are supplied with power from the element fitting 13. Note that the first groove portion 20a to the fourth groove portion 20d are formed at equal intervals, and even when a bending stress is applied to the support 20, the stress is evenly distributed, and the support 10 Is prevented from being broken by bending stress.
  • the helical element 21 has a length that resonates in the frequency band of FM broadcasting
  • the length of the linear element 22a has a length that resonates in the frequency band of terrestrial digital TV broadcasting
  • the length of the linear element 22b is the length that resonates in the frequency band of the 800MHz band mobile phone network
  • the length of the linear element 22d is the length that resonates in the frequency band of the 1.8GHz band mobile phone network. It is said.
  • the multi-frequency antenna 2 of the second embodiment can be a multi-frequency antenna that operates in four frequency bands.
  • the frequency band in which the multi-frequency antenna 2 operates is not limited to the above-mentioned frequency band except for the frequency band of FM broadcasting, and is not limited to the above terrestrial digital radio, AMPS (Advanced Mobile Phone Service), GS M (Global System for mobile (communications), DCS (Digital Communication System), PCS (Personal communications Service), PD (Personal Digital Cellular) and other mobile phone network frequency bands, keyless systems, weather bands, DAB (Digital Audio Broadcast), etc.
  • AMPS Advanced Mobile Phone Service
  • GS M Global System for mobile (communications)
  • DCS Digital Communication System
  • PCS Personal communications Service
  • PD Personal Digital Cellular
  • other mobile phone network frequency bands keyless systems
  • weather bands DAB (Digital Audio Broadcast)
  • DAB Digital Audio Broadcast
  • the helical element 21 can be used as an antenna for AM broadcast reception by using the helical element 21 as a voltage receiving element in the frequency band of AM broadcasting. it can.
  • the lower end of the helical element 21 is bent downward and connected to a connection part tightly wound around the lower end part of the support 20.
  • the lower ends of the linear elements 22a, 22b, and 22d are stretched, and the insulating film is removed only at the stretched portions so as to be connected to the connection portion.
  • the element metal fitting 23 is fitted to the lower end portion of the support 20 so as to cover the connection portion, and is crimped.
  • the helicoid element 21 and the spring-like elements 22a, 22b, 22d are electrically connected to the element fitting 23.
  • FIG. 11 is a perspective view showing the configuration of the multi-frequency antenna according to the third embodiment of the present invention.
  • FIG. 12 is a perspective view showing the configuration of the multi-frequency antenna according to the third embodiment of the present invention.
  • Figure 13 shows the cross section.
  • the multi-frequency antenna 3 according to the third embodiment of the present invention shown in FIGS. 11 to 13 has a linear element 12 ′ in a housing hole formed along the substantially central axis of the support 10 shown in FIG. It is a multi-frequency antenna that embodies the multi-frequency antenna that is housed.
  • helical elements 31 are wound at a pitch p on the outer peripheral surface of an insulating support 30 whose outer shape, which has a substantially circular cross section, is a rod shape.
  • a metal element fitting 33 that is electrically connected to the lower end of the helical element 31 is fitted!
  • the lower part of the element metal fitting 33 is provided with a mounting portion 34 having a small diameter for fixing the multi-frequency antenna 3 to the antenna case or the like, and the mounting portion 34 is screwed to an antenna case mounted on a vehicle roof or the like, for example.
  • a male screw is formed.
  • the support 30 is formed by resin molding and has flexibility, and a helical groove is formed on the outer peripheral surface, and a conductive wire is wound in the helical groove so that the pitch p is reduced.
  • Helical element 31 is formed.
  • the tip force of the support 30 around which the helical element 31 is wound is also applied to the element fitting 33, so that the resin antenna is covered so as to cover the helical element 31. Molded with cover 35.
  • a storage hole 30a having a predetermined length is formed from the lower end upward along substantially the central axis of the support 30.
  • a linear element 32 having a length a slightly shorter than the length of the storage hole 30a is stored in the storage hole 30a.
  • the linear element 32 is passed through the through hole formed in the mounting portion 34 from below the lower mounting portion 34 of the element fitting 33, and the lower portion of the linear element 32 is press-fitted into the through hole.
  • the linear element 32 is electrically connected to the element fitting 33 and mechanically fixed.
  • the element fitting 33 in this state is positioned below the support body 30 around which the helical element 31 is wound, and the linear element 32 is passed through the storage hole 30a formed in the support body 30.
  • the connecting portion 31a formed in the lower part of the support 30 from the upper side and having a slightly narrowed diameter is fitted into the element fitting 33, and the element fitting 33 is caulked. Connection Since the helical element 31 is tightly wound around the outer peripheral surface of the portion 31a, the lower end of the helical element 31 is electrically connected to the element fitting 33, and the helical element 31 and the linear element 32 are connected to the element fitting 33. It will be fed from.
  • the helical element 31 has a length L that resonates in the frequency band of FM broadcasting, and the length a of the linear element 32 has a length that resonates in the frequency band of terrestrial digital TV broadcasting.
  • the diameter ⁇ of the helical element 31 wound around the support 30 is about 6.8 mm
  • the pitch p is about 1 ⁇ 76 mm
  • the length L of the helical element 31 is about 139 mm
  • the length a of the linear element 32 is about 82 mm.
  • the length L1 of the element bracket 33 is about 22.5 mm.
  • the storage hole 30a may be formed so as to penetrate the entire force support 30 whose length is about 85 mm.
  • the distance S between the helical element 31 and the fountain element 32 see FIG.
  • the diameter D of the linear element 32 and the diameter C of the helical element 31 are about lmm (about 0 ⁇ 000 2 ⁇ ) or less.
  • FIG. 14 is a perspective view showing the structure of the element metal fitting 33
  • FIG. 15 is a plan view showing the structure of the element metal fitting 33
  • FIG. 16 is a bottom view showing the structure of the element metal fitting 33.
  • a sectional view taken along the central axis showing the configuration of the metal fitting 33 is shown in FIG.
  • the metal element fitting 33 is composed of a cylindrical portion 33a and a mounting portion 34 formed so as to protrude from the lower end of the cylindrical portion 33a.
  • a plurality of projecting pieces 33b for example, six, are formed at substantially the center of the element metal fitting 33 so as to project from the outer peripheral surface of the cylindrical portion 33a at equal intervals.
  • a lower cylindrical portion 33c is formed below the protruding piece 33b, and an attachment portion 34 having a screw formed on the outer peripheral surface is formed below the lower cylindrical portion 33c.
  • a fitting hole 33d into which a connection part 31a formed at the lower part of the support 30 is fitted is formed in the upper part of the cylindrical part 33a, and the diameter of the lower part of the fitting hole 33d is slightly reduced.
  • a through hole 33e having a reduced diameter communicating with the fitting hole 33d is formed through the mounting portion 34.
  • the through hole 33e is formed substantially on the long axis of the element fitting 33, and the linear element 32 is passed through the through hole 33e. Note that the width of the plurality of protruding pieces 33b is increased as it goes outward. Thus, when the antenna cover 35 is molded, the antenna cover 35 is securely molded to the element fitting 33.
  • FIG. 18 (a) shows a front view showing the configuration of the linear element 32
  • FIG. 18 (b) shows a partially enlarged view thereof.
  • the linear element 32 is composed of a linear metal wire, and a flat hitting portion 32a that is flattened and crushed is formed in the lower portion.
  • the linear element 32 is passed through the through hole 33e from below the mounting portion 34 of the element fitting 33.
  • the flat hitting portion 32a comes into contact with the lower end of the through hole 33e, the flat hitting portion 32a is press-fitted into the through hole 33e using a tool. Thereby, the linear element 32 is fixed to the element fitting 33 and is electrically connected.
  • the winding diameter ⁇ of the helical element 31 is about 6.8 mm
  • the wire diameter C of the helical element 31 is about 0.4 mm
  • the pitch p is about 1 ⁇ 76 mm
  • length L is about 139 mm
  • length a of linear element 32 is about 82 mm
  • diameter D of linear element 32 is about 0.8 mm
  • Figure 19 shows the frequency characteristics of the VSWR in the FM broadcast frequency band when the multi-frequency antenna 3 with an S dimension of about 2.6 mm is attached to the antenna case, and the VS WR in the terrestrial digital TV broadcast frequency band.
  • Figure 20 shows the frequency characteristics.
  • the multi-frequency antenna 3 of the third embodiment having the above dimensions is set to a resonance frequency of about 83 MHz so that it can operate sufficiently in the frequency band of FM broadcasting, and 470 MHz to 710 MHz. It operates almost in the frequency band of terrestrial digital TV broadcasting.
  • the center frequency of FM broadcasting is set. It almost resonates at 83MHz.
  • the length L is shortened to 139 mm even though the pitch p is increased to about 1.76 mm.
  • the pitch p is increased to about 1.76 mm.
  • it almost resonates at 83MHz, the center frequency of FM broadcasting. This is probably because the electrical length of the helical element 31 is equivalently increased under the influence of the linear element 32 as described above with reference to FIG.
  • the helical element 31 is affected by the linear element 32 and thus has a low profile.
  • the helical element 31 can be used also as an AM broadcast receiving antenna.
  • the multi-frequency antenna 3 of the third embodiment of the present invention can be a multi-frequency antenna capable of receiving AM / FM broadcasting and terrestrial digital TV broadcasting.
  • the configuration of the receiving system when the multi-frequency antenna 3 according to the third embodiment of the present invention is mounted on a vehicle or the like is the same as that shown in the block diagram of FIG.
  • the voltage standing wave ratio in the frequency band of FM broadcasting when the diameter D of the linear element 32 is increased to about lmm are shown in Fig. 21 in comparison with the frequency characteristics of VSWR when the diameter D of the linear element 32 is reduced to about 0.6 mm.
  • the other dimensions of the multi-frequency antenna 3 are the dimensions when the electrical characteristics shown in FIGS. 19 and 20 are obtained!
  • the resonance frequency becomes about 78 MHz in the frequency band of FM broadcasting, and the resonance frequency moves to a low band.
  • the diameter D of the linear element 32 is increased, the influence on the helical element 31 is increased, and the resonance frequency moves to a lower range. . Therefore, the thickness of the linear element 32 cannot be increased too much.
  • the helical element in the multi-frequency antenna 3 of the third embodiment which is effective in the present invention, the helical element
  • Figure 22 shows the frequency characteristics of the VSWR in the FM broadcast frequency band when a multi-frequency antenna 3 with a spacing S between 31 and the linear element 32 narrowed to about lmm is attached to the antenna case.
  • the other dimensions of the multi-frequency antenna 3 are the dimensions when the electrical characteristics shown in FIGS. 19 and 20 are obtained.
  • the distance S between the helical element 31 and the linear element 32 is reduced to about If lmm is set, the resonance frequency moves too low, and the resonance frequency does not appear in the frequency band of 70 MHz to 100 MHz, and almost does not operate in the frequency band of FM broadcasting.
  • the effect on the helical element 31 increases as the distance S between the helical element 31 and the linear element 32 decreases, and the resonance frequency shifts to a lower range. Will come. Therefore, the distance S between the helical element 31 and the linear element 32 cannot be made too small.
  • the diameter D of the linear element 32 is set to about lmm, and the distance S between the helical element 31 and the linear element 32 is set to about 1.
  • the frequency characteristics of the VSWR in the FM broadcast frequency band when the multi-frequency antenna 3 of 5 mm is attached to the antenna case is shown in Fig. 23, and the Smith chart showing the frequency characteristics of the impedance in the FM broadcast frequency band Shown in 24.
  • the other dimensions of the multi-frequency antenna 3 are the dimensions when the electrical characteristics shown in FIGS. 19 and 20 are obtained.
  • the distance S between the helical element 31 and the linear element 32 is increased from about lmm to about 1.5 mm.
  • the resonance frequency moves from below 70MHz to about 78MHz.
  • the helical element 31 is increased by increasing the distance S between the helical element 31 and the linear element 32.
  • the resonance frequency shifts to a higher frequency as the effect on the frequency becomes smaller.
  • the pitch p is slightly roughened to about 1.89mm without changing the length L of the helical element 31, the electrical length of the helical element 31 will be shortened, and the resonance frequency will be the center frequency of FM broadcasting 83MHz Can be substantially resonated.
  • the VSWR characteristic is slightly degraded, it works well in the frequency band of FM broadcasting!
  • the resonance frequency is set to 83 MHz, which is the center frequency of FM broadcasting, by reducing the diameter D of the linear element. It becomes possible to resonate.
  • the diameter D of the linear element and the interval S between the helical element 31 and the linear element 32 are combined, and the helical element 31 is combined.
  • the electrical length By adjusting the electrical length, desired electrical characteristics can be obtained.
  • the diameter D of the linear element 32 is less than about 1 mm, and the distance S between the helicopter force element 31 and the linear element 32 is set as follows. It is preferable that the thickness is about lmm or more.
  • the wire diameter C of the helical element 31 is reduced, the desired electrical characteristics can be obtained in the frequency band of FM broadcasting and digital terrestrial TV broadcasting. lmm or less is preferred
  • the length L of the helical element 31 of the helical element 31 is increased to about 152 mm, and the length a of the linear element 32 is slightly shortened to about 78 mm.
  • Fig. 25 and Fig. 26 show the electrical characteristics in the FM broadcast frequency band and digital terrestrial TV broadcast frequency band when the multi-frequency antenna 3 is attached to the antenna case.
  • the other dimensions of the multi-frequency antenna 3 are the dimensions when the electrical characteristics shown in FIGS. 19 and 20 are obtained.
  • the electrical characteristics shown in Fig. 25 are the frequency characteristics of the VSWR in the FM broadcast frequency band of the multi-frequency antenna 3 of the third embodiment, and the electrical characteristics shown in Fig. 26 are the frequency characteristics of the impedance in the FM broadcast frequency band. It is a Smith chart which shows. Referring to FIGS. 25 and 26, the multi-frequency antenna 3 of the third embodiment almost resonates at 83 MHz, which is the center frequency of FM broadcasting, and has a broader VSWR characteristic than the VSWR characteristic shown in FIG. It can be seen that it works well in the frequency band of FM broadcasting.
  • the electrical characteristics shown in FIG. 27 show the frequency of VSWR in the frequency band of a single terrestrial digital TV broadcast without attaching the multi-frequency antenna 3 of the third embodiment of the present invention having the above dimensions to the antenna case.
  • the electrical characteristics shown in FIG. 28 are the VSWR frequency characteristics in the frequency band of terrestrial digital TV broadcasting when the multi-frequency antenna 3 of the third embodiment of the present invention having the above dimensions is attached to the antenna case. is there.
  • the multi-frequency antenna 3 alone has a broad frequency characteristic that resonates in the vicinity of 610 MHz, and the frequency characteristic deviates from the frequency band of terrestrial digital TV broadcasting to a high frequency range.
  • FIG. 27 shows the frequency of VSWR in the frequency band of a single terrestrial digital TV broadcast without attaching the multi-frequency antenna 3 of the third embodiment of the present invention having the above dimensions to the antenna case.
  • the electrical characteristics shown in FIG. 28 are the VSWR frequency characteristics in the frequency band of terrestrial digital TV broadcasting when the multi-frequency antenna 3 of the third embodiment of the present invention having the
  • the multi-frequency antenna 3 of the third embodiment is a terrestrial digital of 470 MHz to 710 MHz.
  • the power that is working In this way by attaching the multi-frequency antenna 3 to the antenna case, it is considered that the frequency characteristics of the VSWR of the multi-frequency antenna 3 move to the whole low range due to the influence of the wiring in the antenna case. .
  • the wavelength of FM broadcasting is very long compared to the wiring inside the antenna case, so there is almost no change in electrical characteristics depending on the presence or absence of the antenna case.
  • the multi-frequency antenna 3 of the third embodiment even if the length a of the linear element 32 is slightly shortened and the length L of the helical element 31 is increased, It works well in the frequency band of terrestrial digital TV broadcasting.
  • the multi-frequency antenna 3 can be made a multi-frequency antenna capable of receiving AM / FM broadcasting and terrestrial digital TV broadcasting by using the helical element 31 as a voltage receiving element in the frequency band of AM broadcasting. .
  • the representative value of the diameter D of the linear element 32 is about 0.8 mm.
  • the linear element 32 is stored in the storage hole 30a. Accordingly, since the diameter of the storage hole 30a can be reduced (about 1 mm), the support 30 is sufficiently flexible even if it is in the shape of a pipe, and can be broken even if a bending stress is applied. I'm gonna get lost. Further, if the distance S between the helical element 31 and the linear element 32 is made smaller than about 2.6 mm, the diameter of the multi-frequency antenna 3 becomes smaller as the diameter of the support 30 becomes smaller. As a result, the multi-frequency antenna 3 becomes more flexible.
  • the distance between the helical element and the linear element is at least about lmm or more. It is preferable that therefore, by arranging the linear element in a tapered groove formed on the support by covering it with an insulating tube of about lmm thickness or more, the outer peripheral surface of the insulating tube is brought into contact with the tapered groove and the helical element is attached. The contact between the linear element and the helical element can be made constant. Thereby, the electrical characteristics of the multi-frequency antenna can be stabilized.
  • the helical element and the linear element are arranged so that the distance between the helical element and the linear element is constant. An insulating material having a low dielectric constant may be disposed between the conductors.
  • the force in which four grooves are formed at equal intervals on the outer peripheral surface of the support is not limited to this. Only the same number of grooves as the number of linear elements may be formed. In this case, when a plurality of grooves are provided, it is preferable to provide them at equal intervals.
  • the multi-frequency antenna which is the power of the present invention, is intended for in-vehicle use attached to the roof or trunk of a vehicle, but is not limited to this, and any multi-frequency antenna that operates in two or more frequency bands can be applied. Can do.

Abstract

A multiple frequency antenna that even in the operation in multiple frequency bands, allows minimizing of the whole length thereof. A helical element capable of operation in the frequency bands of FM broadcast is wound around the outer circumferential surface of stick-shaped support (10). Linear element (12) capable of operation in the frequency bands of terrestrial digital TV broadcast is disposed in first groove portion (10a) provided on the outer circumferential surface of the support (10) with a given length from its inferior end. Accordingly, there can be realized multiple frequency antenna (1) capable of operation in not only the frequency bands of FM broadcast but also the frequency bands of terrestrial digital TV broadcast, which multiple frequency antenna allows reduction of the whole length (L) of the helical element because of the effect of the linear element (12).

Description

明 細 書  Specification
多周波アンテナ  Multi-frequency antenna
技術分野  Technical field
[0001] 本発明は、 FM放送や地上デジタル放送を受信可能な車両に搭載して好適な多周 波アンテナに関するものである。  TECHNICAL FIELD [0001] The present invention relates to a multifrequency antenna suitable for being mounted on a vehicle capable of receiving FM broadcast and terrestrial digital broadcast.
背景技術  Background art
[0002] 車両に取り付けられる従来のアンテナ装置は、一般に AM放送と FM放送を受信可 能なアンテナ装置とされている。このアンテナ装置として、アンテナのロッド部をへリカ ル状に巻回されたヘリカルアンテナとした車載用のアンテナ装置が知られている。 このアンテナ装置の構成の一例を示す斜視図を図 29に示す。図 29に示すアンテ ナ装置 100は、棒状とされた絶縁性の支持体 110の外周面にピッチ pでヘリカルエレ メント 111が巻回されて!/、る。支持体 110の下端には金属製のエレメント金具 113が 嵌着されている。エレメント金具 113の下部はアンテナ装置 100を車両のルーフ等に 取り付けられるアンテナケースに固着するための取付部 114とされており、取付部 11 4には例えば雄ネジが形成されている。また、図示されていないがヘリカルエレメント 111が巻回されて!/、る支持体 110の先端からエレメント金具 113にかけて樹脂でモ 一ルドされている。  [0002] Conventional antenna devices attached to vehicles are generally antenna devices capable of receiving AM broadcasts and FM broadcasts. As this antenna device, a vehicle-mounted antenna device is known in which a helical antenna is wound around the rod portion of the antenna. FIG. 29 is a perspective view showing an example of the configuration of this antenna device. In the antenna device 100 shown in FIG. 29, the helical element 111 is wound around the outer peripheral surface of the rod-shaped insulating support 110 at a pitch p! /. A metal element fitting 113 is fitted to the lower end of the support 110. The lower part of the element fitting 113 is an attachment portion 114 for fixing the antenna device 100 to an antenna case attached to a vehicle roof or the like. The attachment portion 114 is formed with, for example, a male screw. Although not shown, the helical element 111 is wound! /, And is molded with resin from the tip of the support 110 to the element fitting 113.
[0003] 支持体 110に巻回されているヘリカルエレメント 111の径 φを約 6. 8mm、ピッチ p を約 1. 48mm,長さ Lを約 154mmとしたアンテナ装置 100をアンテナケースに取り 付けた際の FM放送の周波数帯における電圧定在波比 (VSWR)の周波数特性を 図 30に示す。なお、エレメント金具 113の長さ L1は約 22· 5mmとされている。図 30 に示す周波数特性を参照すると、 FM放送の中心周波数とされる 83MHzにほぼ共 振していること力わ力、る。また、 日本における FM放送の周波数帯は 76MHz〜90M Hzとされ、図 29に示すアンテナ装置 100は FM放送の周波数帯においてほぼ動作 していること力 Sわ力、る。ところで、最近は地上デジタル TV放送を車両においても受信 することが望まれている。地上デジタノレ TV放送の周波数帯は 470MHz〜710MHz の UHF帯とされており、図 29に示すアンテナ装置 100をアンテナケースに取り付け た際の UHF帯の周波数特性を図 31に示す。図 31を参照すると、アンテナ装置 100 力 SFM放送受信用とされていることから当然のことではある力 アンテナ装置 100は U HF帯において動作しておらず、アンテナ装置 100では地上デジタル TV放送を受信 すること力 Sできな!/、ことがわかる。 [0003] The antenna device 100 with the diameter φ of the helical element 111 wound around the support 110 of about 6.8 mm, the pitch p of about 1.48 mm, and the length L of about 154 mm was attached to the antenna case. Figure 30 shows the frequency characteristics of the voltage standing wave ratio (VSWR) in the frequency band of FM broadcasting. The length L1 of the element fitting 113 is about 22.5 mm. Referring to the frequency characteristics shown in Fig. 30, it can be seen that it is almost resonating at 83 MHz, which is the center frequency of FM broadcasting. Also, the frequency band of FM broadcasting in Japan is 76 MHz to 90 MHz, and the antenna device 100 shown in FIG. 29 is almost operating in the frequency band of FM broadcasting. By the way, recently, it is desired to receive terrestrial digital TV broadcasts in vehicles. Terrestrial digital broadcasting The frequency band of TV broadcasting is the UHF band of 470 MHz to 710 MHz. The antenna device 100 shown in Fig. 29 is attached to the antenna case. Figure 31 shows the frequency characteristics of the UHF band. Referring to Fig. 31, the antenna device 100 is of course used for receiving SFM broadcasts. The force antenna device 100 is not operating in the UHF band, and the antenna device 100 receives terrestrial digital TV broadcasts. Power to do S Can't!
[0004] そこで、複数の周波数帯において動作させるようにした従来の多周波アンテナの構 成例を図 32に示す。 [0004] Therefore, FIG. 32 shows a configuration example of a conventional multi-frequency antenna configured to operate in a plurality of frequency bands.
図 32に示す多周波へリカルアンテナ 200は、巻き数の多くされている無給電コィノレ 部 216の動作周波数帯域が移動電話網における 800MHz帯となるように無給電コィ ル部 216の長さが調節されており、巻き数が若干少なくされている第 2無給電コィノレ 部 219の動作周波数帯域が移動電話網における 800MHz帯の近傍となるように第 2 無給電コイル部 219の長さが調節されている。これにより、 800MHz帯という低い周 波数帯においても十分に広い周波数帯域を確保することができるようになる。また、 巻き数が少なくされている励振コイル部 217の動作周波数帯域が移動電話網におけ る 1. 5GHz帯となるように励振コイル部 217の長さを調節することにより、多周波ヘリ カルアンテナ 200は移動電話網における 800MHz帯と 1. 5GHz帯で動作可能とな る。なお、無給電コイル部 216と第 2無給電コイル部 219は励振コイル部 217により励 振されている。  The length of the parasitic coil unit 216 is adjusted so that the operating frequency band of the parasitic coil unit 216 having a large number of turns is the 800 MHz band in the mobile telephone network. The length of the second parasitic coil section 219 is adjusted so that the operating frequency band of the second parasitic coil section 219 with a slightly reduced number of turns is in the vicinity of the 800 MHz band in the mobile telephone network. Yes. As a result, a sufficiently wide frequency band can be secured even in the low frequency band of 800 MHz. In addition, by adjusting the length of the excitation coil section 217 so that the operating frequency band of the excitation coil section 217 having a reduced number of turns is 1.5 GHz in the mobile telephone network, the multi-frequency helical antenna is adjusted. The 200 can operate in the 800MHz band and 1.5GHz band in the mobile telephone network. The parasitic coil unit 216 and the second parasitic coil unit 219 are excited by the excitation coil unit 217.
特許文献 1 :日本国特許庁発行の特開 2000— 295017  Patent Document 1: JP 2000-295017 issued by the Japan Patent Office
特許文献 2 :日本国特許庁発行の特開 2003— 37426  Patent Document 2: JP 2003-37426 issued by the Japan Patent Office
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 上記したアンテナ装置 100では、複数の周波数帯において動作させることができな いという問題点がある。そこで、アンテナ装置 100において複数の周波数帯において 動作するように、上記多周波へリカルアンテナ 200において複数の周波数帯で動作 する多周波技術を適用することが考えられる。すなわち、ヘリカルエレメント 111のピ ツチ間にさらに無給電のヘリカルエレメントを配置するようにする。これにより、複数の 周波数帯で動作する多周波アンテナとすることができる。し力もながら、ヘリカルエレ メント 111のピッチ間にさらに無給電のヘリカルエレメントを配置しなければならない ため、ヘリカルエレメント 111のピッチを大きくする必要がある。すると、ヘリカルエレメ ント 111の長さ Lが長くなつてしま!/、、デザイン上の問題があると共に取り扱いに《な るという問題点があった。 [0005] The antenna device 100 described above has a problem that it cannot be operated in a plurality of frequency bands. Therefore, it is conceivable to apply a multi-frequency technique that operates in a plurality of frequency bands in the multi-frequency helical antenna 200 so that the antenna apparatus 100 operates in a plurality of frequency bands. That is, a non-powered helical element is further arranged between the pitches of the helical element 111. As a result, a multi-frequency antenna that operates in a plurality of frequency bands can be obtained. However, it is necessary to place an unpowered helical element between the pitches of the helical element 111. Therefore, it is necessary to increase the pitch of the helical element 111. As a result, the length L of the helical element 111 is too long! /, There is a problem in terms of design and handling.
[0006] そこで、本発明は複数の周波数帯において動作させるようにしても全長を極力短く することができる多周波アンテナを提供することを目的として!/、る。 [0006] Therefore, an object of the present invention is to provide a multi-frequency antenna capable of shortening the overall length as much as possible even when operated in a plurality of frequency bands.
課題を解決するための手段  Means for solving the problem
[0007] 上記目的を達成するために、本発明は、支持体の外周面に巻回されている第 1の 周波数帯で動作するヘリカルエレメントと、支持体の外周面に形成されている溝部内 、あるいは、支持体に形成されている収納孔内に配置されている第 2の周波数帯で 動作する線状エレメントとを備えることを最も主要な特徴としている。 [0007] In order to achieve the above object, the present invention provides a helical element that operates in the first frequency band wound around the outer peripheral surface of the support, and a groove formed in the outer peripheral surface of the support. Or a linear element that operates in the second frequency band disposed in a storage hole formed in the support body.
発明の効果  The invention's effect
[0008] 本発明によれば、支持体の外周面に巻回されている第 1の周波数帯で動作するへ リカルエレメントと、支持体の外周面に形成されている溝部内、あるいは、支持体に形 成されている収納孔内に配置されている第 2の周波数帯で動作する線状エレメントと を備えることから、多周波アンテナとすることができる。この場合、第 2の周波数帯で 動作するのは溝部内あるいは収納孔内に配置した線状エレメントとされるため、ヘリ カルエレメントのピッチを大きくする必要がなく多周波アンテナの全長を短くすること 力できる。さらに、ヘリカルエレメントが線状エレメントの影響を受けて、多周波アンテ ナの全長を短くすること力 Sできるようになる。  [0008] According to the present invention, the helical element that operates in the first frequency band wound around the outer peripheral surface of the support and the groove formed in the outer peripheral surface of the support or the support And a linear element that operates in the second frequency band disposed in the storage hole formed in FIG. In this case, since it is a linear element arranged in the groove or the accommodation hole that operates in the second frequency band, it is not necessary to increase the pitch of the helical element, and the overall length of the multi-frequency antenna is shortened. I can do it. In addition, the helical element is affected by the linear element, and the force S can be reduced to shorten the overall length of the multi-frequency antenna.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]本発明の第 1実施例に力、かる多周波アンテナの構成を示す斜視図である。  FIG. 1 is a perspective view showing a configuration of a multi-frequency antenna that is effective in the first embodiment of the present invention.
[図 2]本発明に力、かる第 1実施例の多周波アンテナの構成を示す d— d線で切断した 断面図である。  FIG. 2 is a cross-sectional view taken along the line d-d showing the configuration of the multi-frequency antenna of the first embodiment according to the present invention.
[図 3]本発明に力、かる第 1実施例の多周波アンテナの FM放送の周波数帯における VSWRの周波数特性を示す図である。  FIG. 3 is a diagram showing the frequency characteristics of VSWR in the frequency band of FM broadcasting of the multi-frequency antenna of the first embodiment, which focuses on the present invention.
[図 4]本発明に力、かる第 1実施例の多周波アンテナの地上デジタル TV放送の周波 数帯における VSWRの周波数特性を示す図である。  FIG. 4 is a diagram showing the frequency characteristics of the VSWR in the frequency band of the terrestrial digital TV broadcast of the multi-frequency antenna of the first embodiment according to the present invention.
[図 5]本発明に力、かる第 1実施例の多周波アンテナの線状エレメントを設けた場合と 設けない場合のヘリカルエレメントの VSWRの周波数特性を示す図である。 [Fig. 5] The present invention is effective when the linear element of the multi-frequency antenna of the first embodiment is provided. It is a figure which shows the frequency characteristic of the VSWR of a helical element when not providing.
園 6]本発明の第 1実施例の多周波アンテナを車両等に搭載した際の受信システム の構成を示すブロック図である。 6] FIG. 6 is a block diagram showing a configuration of a receiving system when the multifrequency antenna of the first embodiment of the present invention is mounted on a vehicle or the like.
園 7]本発明の第 1実施例の多周波アンテナに力、かる支持体の下部にエレメント金具 が嵌着される構成を拡大して示す斜視図である。 FIG. 7] An enlarged perspective view showing a configuration in which an element metal fitting is fitted to the lower portion of the support body, which is applied to the multi-frequency antenna of the first embodiment of the present invention.
園 8]本発明の第 1実施例の多周波アンテナに力、かる支持体の下部にエレメント金具 が嵌着される構成と対比するための構成を示す斜視図である。 FIG. 8 is a perspective view showing a configuration for comparing with a configuration in which an element metal fitting is fitted to the lower portion of the support, which is applied to the multi-frequency antenna of the first embodiment of the present invention.
園 9]本発明にかかる第 2実施例の多周波アンテナの構成を示す斜視図である。 園 10]本発明に力、かる第 2実施例の多周波アンテナの構成を示す e— e線で切断し た断面図である。 FIG. 9] A perspective view showing the configuration of the multi-frequency antenna of the second embodiment according to the present invention. FIG. 10] A cross-sectional view taken along line ee showing the configuration of the multi-frequency antenna of the second embodiment, which focuses on the present invention.
園 11]本発明の第 3実施例に力、かる多周波アンテナの構成を示す分解斜視図である 園 12]本発明の第 3実施例に力、かる多周波アンテナの構成を示す斜視図である。 園 13]本発明の第 3実施例の多周波アンテナの構成を示す f— f線で切断した断面 図である。 11] An exploded perspective view showing the configuration of the multi-frequency antenna according to the third embodiment of the present invention. 12] A perspective view showing the configuration of the multi-frequency antenna according to the third embodiment of the present invention. is there. 13] A sectional view taken along line ff showing the configuration of the multi-frequency antenna of the third embodiment of the present invention.
園 14]本発明に力、かる第 3実施例の多周波アンテナにおけるエレメント金具の構成を 示す斜視図である。 14] FIG. 14 is a perspective view showing the structure of the element fitting in the multi-frequency antenna of the third embodiment which focuses on the present invention.
園 15]本発明に力、かる第 3実施例の多周波アンテナにおけるエレメント金具の構成を 示す平面図である。 [15] FIG. 15 is a plan view showing the structure of the element fitting in the multi-frequency antenna of the third embodiment which focuses on the present invention.
園 16]本発明に力、かる第 3実施例の多周波アンテナにおけるエレメント金具の構成を 示す下面図である。 16] A bottom view showing the structure of the element metal fitting in the multi-frequency antenna of the third embodiment which focuses on the present invention.
園 17]本発明に力、かる第 3実施例の多周波アンテナにおけるエレメント金具の構成を 示す中心軸に沿って切断した断面図である。 FIG. 17] A cross-sectional view taken along the central axis showing the configuration of the element fitting in the multi-frequency antenna of the third embodiment which focuses on the present invention.
園 18]本発明に力、かる第 3実施例の多周波アンテナにおける線状エレメントの構成を 示す正面図および一部拡大図である。 18] A front view and a partially enlarged view showing the configuration of the linear element in the multi-frequency antenna of the third embodiment which is effective in the present invention.
園 19]本発明に力、かる第 3実施例の多周波アンテナの FM放送の周波数帯における 電圧定在波比 (VSWR)の周波数特性を示す図である。 19] FIG. 19 is a diagram showing the frequency characteristic of the voltage standing wave ratio (VSWR) in the frequency band of FM broadcasting of the multi-frequency antenna according to the third embodiment which focuses on the present invention.
園 20]本発明に力、かる第 3実施例の多周波アンテナの地上デジタル TV放送の周波 数帯における VSWRの周波数特性を示す図である。 20] The power of the present invention, the frequency of the terrestrial digital TV broadcasting of the multi-frequency antenna of the third embodiment It is a figure which shows the frequency characteristic of VSWR in several bands.
園 21]本発明に力、かる第 3実施例の多周波アンテナにおいて、線状エレメントの径を 太くした際の FM放送の周波数帯の VSWRの周波数特性を、線状エレメントが細!/、 径の際の VSWRの周波数特性と対比して示す図である。 21] In the multi-frequency antenna of the third embodiment, which focuses on the present invention, the frequency characteristics of the VSWR in the FM broadcast frequency band when the diameter of the linear element is increased, It is a figure shown in contrast with the frequency characteristic of VSWR at the time of.
園 22]本発明に力、かる第 3実施例の多周波アンテナにおいて、ヘリカルエレメントと 線状エレメントとの間隔を狭くした際の FM放送の周波数帯の VSWRの周波数特性 を示す図である。 22] FIG. 22 is a diagram showing the frequency characteristics of VSWR in the frequency band of FM broadcasting when the distance between the helical element and the linear element is narrowed in the multi-frequency antenna of the third embodiment which focuses on the present invention.
園 23]本発明に力、かる第 3実施例の多周波アンテナにおいて、線状エレメントの径を 太くすると共に、ヘリカルエレメントと線状エレメントとの間隔を広げた際の FM放送の 周波数帯の VSWRの周波数特性を示す図である。 23] In the multi-frequency antenna of the third embodiment, which focuses on the present invention, the VSWR of the frequency band of FM broadcasting when the diameter of the linear element is increased and the distance between the helical element and the linear element is increased. It is a figure which shows the frequency characteristic.
園 24]本発明に力、かる第 3実施例の多周波アンテナにおいて、線状エレメントの径を 太くすると共に、ヘリカルエレメントと線状エレメントとの間隔を広げた際の FM放送の 周波数帯におけるインピーダンスの周波数特性を示すスミスチャートである。 24] In the multi-frequency antenna according to the third embodiment, which is effective for the present invention, the impedance in the frequency band of FM broadcasting when the diameter of the linear element is increased and the distance between the helical element and the linear element is increased. It is a Smith chart which shows the frequency characteristic.
[図 25]本発明に力、かる第 3実施例の多周波アンテナにおいて、ヘリカルエレメントの 長さを長くし線状エレメントの長さを若干短くした際の FM放送の周波数帯の VSWR の周波数特性を示す図である。 [Fig.25] The frequency characteristics of VSWR in the frequency band of FM broadcasting when the length of the helical element is increased and the length of the linear element is slightly shortened in the multi-frequency antenna of the third embodiment which is effective in the present invention. FIG.
[図 26]本発明に力、かる第 3実施例の多周波アンテナにおいて、ヘリカルエレメントの 長さを長くし線状エレメントの長さを若干短くした際の FM放送の周波数帯におけるィ ンピーダンスの周波数特性を示すスミスチャートである。  [Fig.26] Impedance frequency in the frequency band of FM broadcasting when the length of the helical element is lengthened and the length of the linear element is slightly shortened in the multi-frequency antenna of the third embodiment which is effective in the present invention. It is a Smith chart which shows a characteristic.
[図 27]本発明の第 3実施例の多周波アンテナにおいて、ヘリカルエレメントの長さを 長くし線状エレメントの長さを若干短くした際の多周波アンテナ単独の地上デジタル [FIG. 27] In the multi-frequency antenna of the third embodiment of the present invention, the terrestrial digital of the multi-frequency antenna alone when the length of the helical element is lengthened and the length of the linear element is slightly shortened
TV放送の周波数帯における VSWRの周波数特性を示す図である。 It is a figure which shows the frequency characteristic of VSWR in the frequency band of TV broadcasting.
[図 28]本発明に力、かる第 3実施例の多周波アンテナにおいて、ヘリカルエレメントの 長さを長くし線状エレメントの長さを若干短くした際の地上デジタル TV放送の周波数 帯の VSWRの周波数特性を示す図である。  [Fig.28] In the multi-frequency antenna according to the third embodiment, which is effective in the present invention, the length of the helical element is increased and the length of the linear element is slightly shortened. It is a figure which shows a frequency characteristic.
[図 29]従来のアンテナ装置の構成の一例を示す斜視図である。  FIG. 29 is a perspective view showing an example of a configuration of a conventional antenna device.
[図 30]従来のアンテナ装置の FM放送の周波数帯における VSWRの周波数特性を 示す図である。 [図 31]従来のアンテナ装置の UHF帯における VSWRの周波数特性を示す図である FIG. 30 is a diagram showing the frequency characteristics of VSWR in the frequency band of FM broadcasting of a conventional antenna device. FIG. 31 is a diagram showing the frequency characteristics of VSWR in the UHF band of a conventional antenna device.
[図 32]複数の周波数帯において動作させるようにした従来の多周波アンテナの構成 例を示す図である。 FIG. 32 is a diagram showing a configuration example of a conventional multi-frequency antenna configured to operate in a plurality of frequency bands.
符号の説明  Explanation of symbols
[0010] 1 多周波アンテナ、 2 多周波アンテナ、 10 支持体、 10a 第 1溝部、 10b 第 2溝 部、 10c 第 3溝部、 10d 第 4溝部、 11 ヘリカルエレメント、 11a 接続部、 12 線 状エレメント、 13 エレメント金具、 14 取付部、 15 給電部、 16 分波器、 17a FM 増幅器、 17b 地上デジタル TV増幅器、 18a ラジオ受信機、 18b 地上デジタル T Vチューナ、 20 支持体、 20a 第 1溝部、 20b 第 2溝部、 20c 第 3溝部、 20d 第 4?冓咅 ^ 21 ヘリ力ノレエレメント、 22a 泉状エレメント、 22b 泉状エレメント、 22d 泉 状エレメント、 23 エレメント金具、 24 取付部、 30 支持体、 30a 収納孔、 31 ヘリ カルエレメント、 31a 接続部、 32 線状エレメント、 32a 平打ち部、 33 エレメント金 具、 33a 円筒部、 33b 突出片、 33c 下部円筒部、 33d 嵌揷孔、 33e 揷通孔、 3 4 取付部、 35 アンテナカバー、 100 アンテナ装置、 110 支持体、 111 ヘリ力 ノレエレメント、 113 エレメント金具、 114 取付部、 200 多周波へリカルアンテナ、 2 16 無給電コイル部、 217 励振コイル部、 219 無給電コイル部  [0010] 1 multi-frequency antenna, 2 multi-frequency antenna, 10 support, 10a 1st groove, 10b 2nd groove, 10c 3rd groove, 10d 4th groove, 11 helical element, 11a connection, 12-wire element , 13 Element bracket, 14 Mounting part, 15 Feeding part, 16 Splitter, 17a FM amplifier, 17b Terrestrial digital TV amplifier, 18a Radio receiver, 18b Terrestrial digital TV tuner, 20 Support, 20a 1st groove, 20b No. 1 2 groove part, 20c 3rd groove part, 20d 4th 21 ^ 21 Helicopter element, 22a spring element, 22b spring element, 22d spring element, 23 element bracket, 24 mounting part, 30 support, 30a storage Hole, 31 Helical element, 31a Connection part, 32 Linear element, 32a Flat hammered part, 33 Element bracket, 33a Cylindrical part, 33b Projecting piece, 33c Lower cylindrical part, 33d Fitting hole, 33e Through hole, 3 4 Mounting part, 35 Antenna cover, 100 Antenna device, 110 support, 111 Heli force Honoré element 113 element metal, 114 attachment portion, 200 multi-frequency to helical antennas, 2 16 passive coil section, 217 excitation coil section, 219 passive coil section
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 本発明の第 1実施例にかかる多周波アンテナの構成を示す斜視図を図 1に、第 1 実施例の多周波アンテナの構成を示す d— d線で切断した断面図を図 2に示す。 これらの図に示す多周波アンテナ 1は、ほぼ断面円形とされている棒状とされた絶 縁性の支持体 10の外周面にピッチ pでヘリカルエレメント 11が巻回されている。支持 体 10の下端には、ヘリカルエレメント 11の下端と電気的に接続される金属製のエレメ ント金具 13が嵌着されている。エレメント金具 13の下部は多周波アンテナ 1をアンテ ナケース等に固着するための径が細くされた取付部 14とされており、取付部 14には 例えば車両のルーフに取り付けられるアンテナケースに螺着される雄ネジが形成さ れている。支持体 10は樹脂成形により形成されて可撓性を有しており、外周面には ヘリカル状の溝が形成され、このヘリカル状の溝内に導線が巻回されることによりピッ チ pのヘリカルエレメント 11が形成されるようになる。また、図示されていないがへリカ ルエレメント 11が巻回されている支持体 10の先端力もエレメント金具 13にかけて、へ リカルエレメント 11を覆うように樹脂でモールドされている。 FIG. 1 is a perspective view showing the configuration of the multi-frequency antenna according to the first embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line d-d showing the configuration of the multi-frequency antenna of the first embodiment. Shown in In the multi-frequency antenna 1 shown in these drawings, a helical element 11 is wound at a pitch p on the outer peripheral surface of an insulating support 10 having a rod shape having a substantially circular cross section. A metal element fitting 13 that is electrically connected to the lower end of the helical element 11 is fitted to the lower end of the support 10. The lower part of the element metal fitting 13 has a mounting portion 14 with a reduced diameter for fixing the multi-frequency antenna 1 to an antenna case or the like. The mounting portion 14 is screwed to, for example, an antenna case mounted on the roof of a vehicle. A male screw is formed. The support 10 is formed by resin molding and has flexibility. A helical groove is formed on the outer peripheral surface, and a lead wire is wound around the helical groove so that the support 10 is pinched. H Helical element 11 of p is formed. Although not shown in the drawing, the tip force of the support 10 around which the helical element 11 is wound is also applied to the element fitting 13 and is molded with resin so as to cover the helical element 11.
[0012] さらに、支持体 10の中心軸にほぼ平行に下端から上方へ向かって、第 1溝部 10a、 第 2溝部 10b、第 3溝部 10cおよび第 4溝部 10dの 4本の溝部が形成されている。第 1 溝部 10aないし第 4溝部 10dの形状はほぼ同様の形状とされ先に行くほど狭まるテ ーパ状とされ先端部は半円状に形成されている。そして、長さ bとされた第 1溝部 10a 内に長さ bより若干短い長さ aの線状エレメント 12が、ヘリカルエレメント 11と間隔を置 いて配置されている。この場合、線状エレメント 12は、第 1溝部 10aの先端部の半円 状部の部位に配置されて、ヘリカルエレメント 11との間隔は少なくとも約 lmm以上の 間隔を確保することができる。線状エレメント 12は、ポリウレタン等の絶縁膜で被覆さ れており、間隔を置いたヘリカルエレメント 11と接触することがあっても直流的には絶 縁されるようになる。この線状エレメント 12の下端はエレメント金具 13に電気的に接 続されており、ヘリカルエレメント 11および線状エレメント 12はエレメント金具 13から 給電されるようになる。なお、第 1溝部 10aないし第 4溝部 10dは等間隔で形成されて おり、支持体 10に曲げ応力が印加された際に応力が均等に分散されて、溝を形成し ても支持体 10が曲げ応力により折損されることを防止している。  Furthermore, four groove portions of a first groove portion 10a, a second groove portion 10b, a third groove portion 10c, and a fourth groove portion 10d are formed substantially parallel to the central axis of the support body 10 from the lower end to the upper side. Yes. The first groove portion 10a to the fourth groove portion 10d have substantially the same shape, a taper shape that narrows toward the tip, and the tip portion is formed in a semicircular shape. A linear element 12 having a length a slightly shorter than the length b is disposed in the first groove portion 10a having a length b with a distance from the helical element 11. In this case, the linear element 12 is disposed at the semicircular portion at the tip of the first groove portion 10a, and the distance from the helical element 11 can be at least about 1 mm. The linear element 12 is covered with an insulating film such as polyurethane, so that even if it comes into contact with the helical element 11 with a space therebetween, it is insulated from the direct current. The lower end of the linear element 12 is electrically connected to the element fitting 13, and the helical element 11 and the linear element 12 are supplied with power from the element fitting 13. The first groove portion 10a to the fourth groove portion 10d are formed at equal intervals, and when the bending stress is applied to the support body 10, the stress is evenly distributed, so that the support body 10 can be formed even if a groove is formed. It is prevented from being broken by bending stress.
[0013] ここで、ヘリカルエレメント 11は FM放送の周波数帯に共振する長さ Lとされており、 線状エレメント 12の長さ aは地上デジタル TV放送の周波数帯に共振する長さとされ ている。この場合、支持体 10に巻回されているヘリカルエレメント 11の径 φは約 6. 8 mmとされ、ピッチ pは約 1 · 76mmとされ、ヘリカルエレメント 11の長さ Lは約 139mm とされ、線状エレメント 12の長さ aは約 80mmとされる。なお、第 1溝部 10aの長さ bは 約 85mmとされており、エレメント金具 13の長さ L1は約 22. 5mmとされている。また 、ヘリカルエレメント 11と線状エレメント 12との間隔は少なくとも約 lmmとされている。 この寸法とした多周波アンテナ 1をアンテナケースに取り付けた際の電圧定在波比( VSWR)の周波数特性を図 3および図 4に示す。  Here, the helical element 11 has a length L that resonates in the frequency band of FM broadcasting, and the length a of the linear element 12 has a length that resonates in the frequency band of terrestrial digital TV broadcasting. . In this case, the diameter φ of the helical element 11 wound around the support 10 is about 6.8 mm, the pitch p is about 1 · 76 mm, the length L of the helical element 11 is about 139 mm, The length a of the linear element 12 is about 80 mm. The length b of the first groove portion 10a is about 85 mm, and the length L1 of the element metal fitting 13 is about 22.5 mm. The distance between the helical element 11 and the linear element 12 is at least about lmm. Figures 3 and 4 show the frequency characteristics of the voltage standing wave ratio (VSWR) when the multi-frequency antenna 1 with this size is attached to the antenna case.
図 3に示す周波数特性は、多周波アンテナ 1の FM放送の周波数帯における VSW Rの周波数特性であり、図 3を参照すると、 FM放送の中心周波数とされる 83MHzに ほぼ共振しており、多周波アンテナ 1は FM放送の周波数帯においてほぼ動作して いること力 sわ力、る。 The frequency characteristics shown in Fig. 3 are the frequency characteristics of VSW R in the FM broadcast frequency band of the multi-frequency antenna 1. Referring to Fig. 3, the frequency characteristic is 83 MHz, which is the center frequency of FM broadcast. Almost has resonance, multi-frequency antenna 1 is that the force s' s forces are almost operating in the frequency band of FM broadcast, Ru.
[0014] また、図 4に示す周波数特性は、本発明の第 1実施例の多周波アンテナ 1における 地上デジタル TV放送の周波数帯における VSWRの周波数特性であり、図 4を参照 すると、地上デジタル TV放送の中心周波数とされる 590MHz近辺で共振するブロ ードな周波数特性とされており、多周波アンテナ 1は 470MHz〜710MHzの地上デ ジタル TV放送の周波数帯にお!/、てほぼ動作して!/、ること力 Sわ力、る。  Further, the frequency characteristics shown in FIG. 4 are the frequency characteristics of VSWR in the frequency band of terrestrial digital TV broadcasting in the multi-frequency antenna 1 of the first embodiment of the present invention. Referring to FIG. It is considered to be a broadband frequency characteristic that resonates in the vicinity of 590 MHz, which is the center frequency of broadcasting, and the multi-frequency antenna 1 operates almost in the frequency band of terrestrial digital TV broadcasting from 470 MHz to 710 MHz! ! /, The power of S
なお、ヘリカルエレメントを備える図 29に示す従来のアンテナ装置 100においては ピッチ pが約 1. 48mmとされて長さ Lが 154mmとされた際に、 FM放送の中心周波 数とされる 83MHzにほぼ共振するようになる。これに対して、本発明にかかる多周波 アンテナ 1においては、ピッチ pを約 1. 76mmと大きくしているにもかかわらず、長さし を 139mmと短くしても FM放送の中心周波数とされる 83MHzにほぼ共振するように なる。  In the conventional antenna device 100 shown in FIG. 29 having a helical element, when the pitch p is set to about 1.48 mm and the length L is set to 154 mm, the center frequency of FM broadcasting is almost 83 MHz. Resonates. On the other hand, in the multi-frequency antenna 1 according to the present invention, although the pitch p is increased to about 1.76 mm, the center frequency of FM broadcasting is assumed even if the length is shortened to 139 mm. It almost resonates at 83MHz.
[0015] これは、線状エレメント 12の影響を受けて等価的にヘリカルエレメント 11の電気長 が長くなつたものと考えられる。そこで、線状エレメント 12を設けた場合と設けない場 合の上記した寸法のヘリカルエレメント 11における FM放送の周波数帯における VS WRの周波数特性を図 5に示す。図 5を参照すると、線状エレメント 12を設けないよう にすると、ヘリカルエレメント 11は約 103MHzで共振するようになり FM放送の周波 数帯をカバーできないようになる。しかし、線状エレメント 12を設けるようにすると、へ リカルエレメント 11は約 83MHzで共振するようになり、ヘリカルエレメント 11は線状 エレメント 12の影響を受けて FM放送の周波数帯をカバーできるようになることがわ かる。このように、本発明に力、かる多周波アンテナ 1は複数の周波数帯において動作 するようにしても低姿勢化すること力 Sできるのである。なお、 AM放送の周波数帯にお いてヘリカルエレメント 11を電圧受信素子として利用することにより、ヘリカルエレメン ト 11を AM放送受信用のアンテナとして兼用することができる。このようにすると、本 発明の第 1実施例の多周波アンテナ 1は、 AM/FM放送と地上デジタル TV放送と を受信可能な多周波アンテナとすることができる。  [0015] This is considered that the electrical length of the helical element 11 is equivalently increased under the influence of the linear element 12. Therefore, Fig. 5 shows the frequency characteristics of VS WR in the FM broadcast frequency band for the helical element 11 with and without the linear element 12 as described above. Referring to FIG. 5, if the linear element 12 is not provided, the helical element 11 resonates at about 103 MHz and cannot cover the frequency band of FM broadcasting. However, if the linear element 12 is provided, the helical element 11 will resonate at about 83 MHz, and the helical element 11 will be able to cover the FM broadcast frequency band under the influence of the linear element 12. I know that. As described above, the multi-frequency antenna 1 which is the power of the present invention can reduce the posture even if it operates in a plurality of frequency bands. By using the helical element 11 as a voltage receiving element in the AM broadcast frequency band, the helical element 11 can also be used as an antenna for AM broadcast reception. In this way, the multi-frequency antenna 1 of the first embodiment of the present invention can be a multi-frequency antenna capable of receiving AM / FM broadcasting and terrestrial digital TV broadcasting.
[0016] 以上説明した本発明の第 1実施例に力、かる多周波アンテナ 1を車両等に搭載した 際の受信システムの構成を示すブロック図を図 6に示す。 [0016] The first embodiment of the present invention described above is equipped with a multi-frequency antenna 1 that can be applied to a vehicle or the like. Figure 6 shows a block diagram showing the configuration of the receiving system.
図 6に示すように、多周波アンテナ 1はヘリカルエレメント 11と線状エレメント 12とを 備えている。ヘリカルエレメント 11と線状エレメント 12とは下端が接続されており、同 じ給電部 15から給電されることになる。給電部 15から導出された受信信号は、分波 器 16において FM放送の受信信号と地上デジタル TV放送の受信信号とに分波され る。分波された FM放送の受信信号は、 FM増幅器 17aで増幅されて FM放送受信 部を備えるラジオ受信機 18aに供給される。また、分波された地上デジタル TV放送 の受信信号は、地上デジタル TV増幅器 17bで増幅されて地上デジタル TVチュー ナ 18bに供給される。このように、多周波アンテナ 1を搭載するだけで FM放送と地上 デジタル TV放送とを少なくとも受信することができるようになる。  As shown in FIG. 6, the multi-frequency antenna 1 includes a helical element 11 and a linear element 12. The lower ends of the helical element 11 and the linear element 12 are connected, and power is supplied from the same power supply unit 15. The received signal derived from the power feeding unit 15 is demultiplexed by the demultiplexer 16 into an FM broadcast received signal and a terrestrial digital TV broadcast received signal. The demultiplexed FM broadcast reception signal is amplified by the FM amplifier 17a and supplied to the radio receiver 18a having the FM broadcast receiving unit. The demultiplexed terrestrial digital TV broadcast reception signal is amplified by the terrestrial digital TV amplifier 17b and supplied to the terrestrial digital TV tuner 18b. In this way, it is possible to receive at least FM broadcasts and terrestrial digital TV broadcasts simply by installing the multi-frequency antenna 1.
また、本発明の第 1実施例に力、かる多周波アンテナ 1においては、ヘリカルエレメン ト 11が巻回されて!/、る支持体 10の下部にエレメント金具 13が嵌着されて!/、る。この 嵌着の構成を拡大した斜視図を図 7に示す。図 7に示すように、ヘリカルエレメント 11 の下端は下方へ折曲されて支持体 10の下端部に密巻きされている接続部 11aに接 続されている。また、線状エレメント 12の下端は延伸されると共に、延伸された部位だ け絶縁膜が除去されて接続部 11aに接続されるようになる。この状態において、接続 部 11aを覆うように支持体 10の下端部にエレメント金具 13が嵌着されてカシメ加工さ れる。これにより、エレメント金具 13にヘリカルエレメント 11と線状エレメント 12とが電 気的に接続されるようになる。この場合、図 8に示すように支持体 10のほぼ中心軸に 沿って形成された収納孔に線状エレメント 12'を収納することが考えられる力 図 8に 示すように支持体 10のほぼ中心軸に沿って形成された収納孔に線状エレメント 12' を収納した場合には、接続部 11aを覆うように支持体 10の下端部にエレメント金具 1 3を嵌着してカシメ加工するだけでは、ヘリカルエレメント 11はエレメント金具 13に接 続されるものの、線状エレメント 12'を確実にエレメント金具 13に接続することが難し くなり線状エレメント 12'をエレメント金具 13に接続する別の手段が必要となる。この ように、支持体 10の外周面に形成された溝部内に線状エレメント 12を配置する構成 とすることにより、給電部の構成を簡易化することができる。また、支持体 10のほぼ中 心軸に沿って線状エレメント 12'を収納する収納孔を形成すると、支持体 10がパイプ 状となって可撓力に劣るようになり、曲げ応力が印加された際に折損する恐れが生じ るようになる。 Further, in the multi-frequency antenna 1 which is the force according to the first embodiment of the present invention, the helical element 11 is wound! /, And the element metal fitting 13 is fitted to the lower part of the support 10! /, The Fig. 7 shows an enlarged perspective view of this fitting configuration. As shown in FIG. 7, the lower end of the helical element 11 is bent downward and connected to a connection portion 11 a that is tightly wound around the lower end portion of the support 10. Further, the lower end of the linear element 12 is stretched, and the insulating film is removed only at the stretched portion so as to be connected to the connection portion 11a. In this state, the element metal fitting 13 is fitted to the lower end portion of the support body 10 so as to cover the connection portion 11a and crimped. As a result, the helical element 11 and the linear element 12 are electrically connected to the element fitting 13. In this case, as shown in FIG. 8, it is possible to store the linear element 12 'in the storage hole formed substantially along the central axis of the support 10 as shown in FIG. When the linear element 12 ′ is stored in the storage hole formed along the axis, simply fitting the element metal fitting 13 to the lower end of the support 10 so as to cover the connecting portion 11a and caulking Although the helical element 11 is connected to the element fitting 13, it becomes difficult to securely connect the linear element 12 'to the element fitting 13, and another means for connecting the linear element 12' to the element fitting 13 is available. Necessary. In this way, by adopting a configuration in which the linear element 12 is disposed in the groove formed on the outer peripheral surface of the support 10, the configuration of the power feeding unit can be simplified. In addition, when a storage hole for storing the linear element 12 ′ is formed substantially along the center axis of the support 10, the support 10 is connected to the pipe. It becomes inferior in flexibility and becomes liable to break when bending stress is applied.
[0018] 次に、本発明の第 2実施例に力、かる多周波アンテナの構成を示す斜視図を図 9に 、第 2実施例の多周波アンテナの構成を示す e— e線で切断した断面図を図 10に示 す。  Next, FIG. 9 is a perspective view showing the configuration of the multi-frequency antenna according to the second embodiment of the present invention, and is cut along line ee showing the configuration of the multi-frequency antenna of the second embodiment. A cross-sectional view is shown in Fig. 10.
これらの図に示す多周波アンテナ 2は、ほぼ断面円形とされている棒状とされた絶 縁性の支持体 20の外周面に所定のピッチでヘリカルエレメント 21が巻回されている 。支持体 20の下端には、ヘリカルエレメント 21の下端と電気的に接続される金属製 のエレメント金具 23が嵌着されて!/、る。エレメント金具 23の下部は多周波アンテナ 2 をアンテナケース等に固着するための径が細くされた取付部 24とされており、取付部 24には例えば車両のルーフ等に取り付けられるアンテナケースに螺着される雄ネジ が形成されている。支持体 20は樹脂成形により形成されて可撓性を有しており、外 周面にはヘリカル状の溝が形成され、このヘリカル状の溝内に導線が巻回されること により所定のピッチのヘリカルエレメント 21が形成されるようになる。また、図示されて Vヽなレ、がヘリカルエレメント 21が巻回されて!/、る支持体 20の先端からエレメント金具 23に力、けて、ヘリ力ノレエレメント 21を覆うように樹月旨でモーノレドされている。  In the multi-frequency antenna 2 shown in these drawings, helical elements 21 are wound at a predetermined pitch on the outer peripheral surface of an insulating support 20 having a rod shape having a substantially circular cross section. At the lower end of the support 20, a metal element fitting 23 electrically connected to the lower end of the helical element 21 is fitted! /. The lower part of the element metal fitting 23 has a mounting portion 24 with a small diameter for fixing the multi-frequency antenna 2 to the antenna case or the like, and the mounting portion 24 is screwed to an antenna case mounted on a vehicle roof or the like, for example. A male screw is formed. The support 20 is formed by resin molding and has flexibility, and a helical groove is formed on the outer peripheral surface, and a conductive wire is wound in the helical groove to thereby form a predetermined pitch. Helical element 21 is formed. As shown in the figure, the helical element 21 is wound around the helical element 21! /, And the force is applied to the element fitting 23 from the tip of the support 20 to cover the helicity element 21. It is Monored.
[0019] さらに、支持体 20の中心軸にほぼ平行に下端から上方へ向かって、第 1溝部 20a、 第 2溝部 20b、第 3溝部 20cおよび第 4溝部 20dの 4本の所定長とされた溝部が形成 されている。第 1溝部 20aないし第 4溝部 20dの形状はほぼ同様の形状とされ先に行 くほど狭まるテーパ状とされ先端部は半円状とされている。そして、第 1溝部 20a内に 線状エレメント 22aが、第 2溝部 20b内に線状エレメント 22b力 第 4溝部 20d内に線 状エレメント 22dが、ヘリカルエレメント 21と間隔を置いて配置されている。この場合、 線状エレメント 22a, 22b, 22dは、第 1?冓部 20a、第 2?冓部 20b、第 4?冓部 20dの先端 部の半円状部の部位に配置されて、ヘリカルエレメント 21との間隔は少なくとも約 lm m以上の間隔を確保することができる。線状エレメント 22a、 22b、 22dは、ポリウレタ ン等の絶縁膜で被覆されており、間隔を置いたヘリカルエレメント 21と接触することが あっても直流的に絶縁されるようになる。この線状エレメント 22a、 22b、 22dの下端は エレメント金具 23に電気的に接続されており、ヘリカルエレメント 21および線状エレメ ント 22a、 22b、 22dはエレメント金具 13から給電されるようになる。なお、第 1溝部 20 aないし第 4溝部 20dは等間隔で形成されており、支持体 20に曲げ応力が印加され た際に応力が均等に分散されて、溝部を形成しても支持体 10が曲げ応力により折損 されることを防止している。 [0019] Furthermore, the four predetermined lengths of the first groove portion 20a, the second groove portion 20b, the third groove portion 20c, and the fourth groove portion 20d are set to be upward from the lower end substantially parallel to the central axis of the support body 20. Grooves are formed. The first groove portion 20a to the fourth groove portion 20d have substantially the same shape, a tapered shape that narrows toward the front, and a tip portion that is semicircular. A linear element 22a is arranged in the first groove 20a, a linear element 22b force is arranged in the second groove 20b, and a linear element 22d is arranged in the fourth groove 20d at a distance from the helical element 21. In this case, the linear elements 22a, 22b, and 22d are arranged at the semicircular portions at the tip ends of the first flange portion 20a, the second flange portion 20b, and the fourth flange portion 20d. The distance from 21 can be at least about lm m. The linear elements 22a, 22b, and 22d are covered with an insulating film such as polyurethane, so that even if they are in contact with the spaced helical elements 21, they are insulated in a direct current manner. The lower ends of the linear elements 22a, 22b, and 22d are electrically connected to the element fitting 23, and the helical element 21 and the linear element are connected. The elements 22a, 22b, 22d are supplied with power from the element fitting 13. Note that the first groove portion 20a to the fourth groove portion 20d are formed at equal intervals, and even when a bending stress is applied to the support 20, the stress is evenly distributed, and the support 10 Is prevented from being broken by bending stress.
[0020] ここで、ヘリカルエレメント 21は FM放送の周波数帯に共振する長さとされており、 線状エレメント 22aの長さは地上デジタル TV放送の周波数帯に共振する長さとされ ている。また、線状エレメント 22bの長さは 800MHz帯の携帯電話網の周波数帯に 共振する長さとされ、線状エレメント 22dの長さは 1. 8GHz帯の携帯電話網の周波 数帯に共振する長さとされている。これにより、第 2実施例の多周波アンテナ 2は 4つ の周波数帯において動作する多周波アンテナとすることができる。ただし、多周波ァ ンテナ 2が動作する周波数帯は、 FM放送の周波数帯を除レ、て上記した周波数帯に 限ることはなく地上デジタルラジオ、 AMPS (Advanced Mobile Phone Service)、 GS M (Global System for Mobile (communications)、 DCS (Digital Communication Syste m )、 PCS (Personal communications Service)、 PD (Personal Digital Cellular)等 の携帯電話網の周波数帯、キーレスシステム、ウエザーバンドや DAB (Digital Audio Broadcast)等の周波数帯とすることができる。この場合は、線状エレメント 22a、 22b、 22dの長さをそれぞれ動作させた!/、周波数帯に応じた長さとすればよ!/、。  [0020] Here, the helical element 21 has a length that resonates in the frequency band of FM broadcasting, and the length of the linear element 22a has a length that resonates in the frequency band of terrestrial digital TV broadcasting. The length of the linear element 22b is the length that resonates in the frequency band of the 800MHz band mobile phone network, and the length of the linear element 22d is the length that resonates in the frequency band of the 1.8GHz band mobile phone network. It is said. As a result, the multi-frequency antenna 2 of the second embodiment can be a multi-frequency antenna that operates in four frequency bands. However, the frequency band in which the multi-frequency antenna 2 operates is not limited to the above-mentioned frequency band except for the frequency band of FM broadcasting, and is not limited to the above terrestrial digital radio, AMPS (Advanced Mobile Phone Service), GS M (Global System for mobile (communications), DCS (Digital Communication System), PCS (Personal communications Service), PD (Personal Digital Cellular) and other mobile phone network frequency bands, keyless systems, weather bands, DAB (Digital Audio Broadcast), etc. In this case, the lengths of the linear elements 22a, 22b, and 22d are respectively operated! /, And the length corresponding to the frequency band is! /.
[0021] また、第 2実施例の多周波アンテナ 2において、ヘリカルエレメント 21を AM放送の 周波数帯において電圧受信素子として利用することにより、ヘリカルエレメント 21を A M放送受信用のアンテナとして兼用することができる。  In addition, in the multi-frequency antenna 2 of the second embodiment, the helical element 21 can be used as an antenna for AM broadcast reception by using the helical element 21 as a voltage receiving element in the frequency band of AM broadcasting. it can.
なお、第 2実施例の多周波アンテナ 2においても、ヘリカルエレメント 21の下端は下 方へ折曲されて支持体 20の下端部に密巻きされている接続部に接続されている。ま た、線状エレメント 22a, 22b, 22dの下端は延伸されると共に、延伸された部位だけ 絶縁膜が除去されて接続部に接続されるようになる。この状態において、接続部を覆 うように支持体 20の下端部にエレメント金具 23が嵌着されてカシメ加工される。これ により、エレメント金具 23にへリカノレエレメント 21と泉状エレメント 22a, 22b, 22dとカ 電気的に接続されるようになる。  Also in the multi-frequency antenna 2 of the second embodiment, the lower end of the helical element 21 is bent downward and connected to a connection part tightly wound around the lower end part of the support 20. In addition, the lower ends of the linear elements 22a, 22b, and 22d are stretched, and the insulating film is removed only at the stretched portions so as to be connected to the connection portion. In this state, the element metal fitting 23 is fitted to the lower end portion of the support 20 so as to cover the connection portion, and is crimped. As a result, the helicoid element 21 and the spring-like elements 22a, 22b, 22d are electrically connected to the element fitting 23.
[0022] 次に、本発明の第 3実施例にかかる多周波アンテナの構成を示す分解斜視図を図 11に示し、本発明の第 3実施例に力、かる多周波アンテナの構成を示す斜視図を図 1 2に示し、本発明の第 3実施例の多周波アンテナの構成を示す f f線で切断した断 面図を図 13に示す。 Next, an exploded perspective view showing the configuration of the multi-frequency antenna according to the third embodiment of the present invention is shown. 11 is a perspective view showing the configuration of the multi-frequency antenna according to the third embodiment of the present invention. FIG. 12 is a perspective view showing the configuration of the multi-frequency antenna according to the third embodiment of the present invention. Figure 13 shows the cross section.
図 11ないし図 13に示す本発明の第 3実施例に力、かる多周波アンテナ 3は、図 8に 示す支持体 10のほぼ中心軸に沿って形成された収納孔に線状エレメント 12 'を収納 した多周波アンテナを具体化した多周波アンテナとされている。  The multi-frequency antenna 3 according to the third embodiment of the present invention shown in FIGS. 11 to 13 has a linear element 12 ′ in a housing hole formed along the substantially central axis of the support 10 shown in FIG. It is a multi-frequency antenna that embodies the multi-frequency antenna that is housed.
第 3実施例の多周波アンテナ 3は、ほぼ断面円形とされている外形形状が棒状とさ れた絶縁性の支持体 30の外周面にピッチ pでヘリカルエレメント 31が巻回されてい る。支持体 30の下端には、ヘリカルエレメント 31の下端と電気的に接続される金属 製のエレメント金具 33が嵌着されて!/、る。エレメント金具 33の下部は多周波アンテナ 3をアンテナケース等に固着するための径が細くされた取付部 34とされており、取付 部 34には例えば車両のルーフ等に取り付けられるアンテナケースに螺着される雄ネ ジが形成されている。支持体 30は樹脂成形により形成されて可撓性を有しており、外 周面にはヘリカル状の溝が形成され、このヘリカル状の溝内に導線が巻回されること によりピッチ pのヘリカルエレメント 31が形成されるようになる。また、図 12に破線で図 示されているようにヘリカルエレメント 31が巻回されている支持体 30の先端力もエレ メント金具 33に力、けて、ヘリカルエレメント 31を覆うように樹脂製のアンテナカバー 35 でモールドされている。  In the multi-frequency antenna 3 of the third embodiment, helical elements 31 are wound at a pitch p on the outer peripheral surface of an insulating support 30 whose outer shape, which has a substantially circular cross section, is a rod shape. At the lower end of the support 30, a metal element fitting 33 that is electrically connected to the lower end of the helical element 31 is fitted! The lower part of the element metal fitting 33 is provided with a mounting portion 34 having a small diameter for fixing the multi-frequency antenna 3 to the antenna case or the like, and the mounting portion 34 is screwed to an antenna case mounted on a vehicle roof or the like, for example. A male screw is formed. The support 30 is formed by resin molding and has flexibility, and a helical groove is formed on the outer peripheral surface, and a conductive wire is wound in the helical groove so that the pitch p is reduced. Helical element 31 is formed. In addition, as shown by the broken line in FIG. 12, the tip force of the support 30 around which the helical element 31 is wound is also applied to the element fitting 33, so that the resin antenna is covered so as to cover the helical element 31. Molded with cover 35.
さらに、支持体 30の中心軸にほぼ沿って下端から上方へ向かって所定長の収納 孔 30aが形成されている。この収納孔 30a内に収納孔 30aの長さより若干短い長さ a の線状エレメント 32が収納されている。この場合、線状エレメント 32はエレメント金具 33の下部の取付部 34の下方から取付部 34に形成されている揷通孔内に揷通され て、線状エレメント 32の下部が揷通孔に圧入されることにより、線状エレメント 32がェ レメント金具 33に電気的に接続されると共に機械的に固着されている。この状態のェ レメント金具 33をヘリカルエレメント 31を巻回している支持体 30の下方へ位置させて 、支持体 30に形成されている収納孔 30a内に線状エレメント 32を揷通させていき、 エレメント金具 33内に上方から支持体 30の下部に形成されている径が若干細くされ ている接続部 31aを嵌着し、その部分のエレメント金具 33にカシメ加工を施す。接続 部 31 aの外周面にはヘリカルエレメント 31が密巻きされていることから、ヘリカルエレ メント 31の下端はエレメント金具 33に電気的に接続され、ヘリカルエレメント 31およ び線状エレメント 32はエレメント金具 33から給電されるようになる。 Further, a storage hole 30a having a predetermined length is formed from the lower end upward along substantially the central axis of the support 30. A linear element 32 having a length a slightly shorter than the length of the storage hole 30a is stored in the storage hole 30a. In this case, the linear element 32 is passed through the through hole formed in the mounting portion 34 from below the lower mounting portion 34 of the element fitting 33, and the lower portion of the linear element 32 is press-fitted into the through hole. As a result, the linear element 32 is electrically connected to the element fitting 33 and mechanically fixed. The element fitting 33 in this state is positioned below the support body 30 around which the helical element 31 is wound, and the linear element 32 is passed through the storage hole 30a formed in the support body 30. The connecting portion 31a formed in the lower part of the support 30 from the upper side and having a slightly narrowed diameter is fitted into the element fitting 33, and the element fitting 33 is caulked. Connection Since the helical element 31 is tightly wound around the outer peripheral surface of the portion 31a, the lower end of the helical element 31 is electrically connected to the element fitting 33, and the helical element 31 and the linear element 32 are connected to the element fitting 33. It will be fed from.
[0024] ヘリカルエレメント 31は FM放送の周波数帯に共振する長さ Lとされており、線状ェ レメント 32の長さ aは地上デジタル TV放送の周波数帯に共振する長さとされている。 この場合、支持体 30に巻回されているヘリカルエレメント 31の径 φは約 6. 8mmとさ れ、ピッチ pは約 1 · 76mmとされ、ヘリカルエレメント 31の長さ Lは約 139mmとされ、 線状エレメント 32の長さ aは約 82mmとされる。なお、エレメント金具 33の長さ L1は約 22. 5mmとされている。また、収納孔 30aの長さは約 85mmとされている力 支持体 30の全体を貫通するように収納孔 30aを形成するようにしてもよい。また、ヘリカルェ レメント 31と泉状エレメント 32との間隔 S (図 13参照)は少なくとも約 lmm以上とされ ている。この場合、地上デジタノレ TV放送の周波数帯は 470MHz〜710MHzの UH F帯の中心周波数 590MHzの波長をえとすると、 lmmは約 0. 0002えとなる。また 、線状エレメント 32の径 Dおよびヘリカルエレメント 31の線径 Cは約 lmm (約 0· 000 2 λ )以下とされている。 The helical element 31 has a length L that resonates in the frequency band of FM broadcasting, and the length a of the linear element 32 has a length that resonates in the frequency band of terrestrial digital TV broadcasting. In this case, the diameter φ of the helical element 31 wound around the support 30 is about 6.8 mm, the pitch p is about 1 · 76 mm, the length L of the helical element 31 is about 139 mm, The length a of the linear element 32 is about 82 mm. The length L1 of the element bracket 33 is about 22.5 mm. Further, the storage hole 30a may be formed so as to penetrate the entire force support 30 whose length is about 85 mm. Further, the distance S between the helical element 31 and the fountain element 32 (see FIG. 13) is at least about lmm. In this case, if the frequency band of terrestrial digital TV broadcasting is 470 MHz to 710 MHz and the center frequency of the UHF band is 590 MHz, lmm is about 0.0002. In addition, the diameter D of the linear element 32 and the diameter C of the helical element 31 are about lmm (about 0 · 000 2 λ) or less.
[0025] ここで、エレメント金具 33の構成を示す斜視図を図 14に、エレメント金具 33の構成 を示す平面図を図 15に、エレメント金具 33の構成を示す下面図を図 16に、エレメン ト金具 33の構成を示す中心軸に沿って切断した断面図を図 17に示す。  [0025] Here, FIG. 14 is a perspective view showing the structure of the element metal fitting 33, FIG. 15 is a plan view showing the structure of the element metal fitting 33, and FIG. 16 is a bottom view showing the structure of the element metal fitting 33. A sectional view taken along the central axis showing the configuration of the metal fitting 33 is shown in FIG.
これらの図に示すように、金属製のエレメント金具 33は円筒部 33aと円筒部 33aの 下端から突出するよう形成された取付部 34から構成されている。エレメント金具 33の ほぼ中央部には例えば 6個とされる複数の突出片 33bが等間隔で円筒部 33aの外 周面から突出して形成されている。突出片 33bの下には下部円筒部 33cが形成され ており、その下に外周面にネジが形成されている取付部 34が形成されている。円筒 部 33aの内部の上部には支持体 30の下部に形成されている接続部 31aが嵌揷され る嵌揷孔 33dが形成されており、嵌揷孔 33dの下部の径は若干細くされ、嵌揷孔 33 dに連通する径が細くされた揷通孔 33eが取付部 34を貫通して形成されて!/、る。揷 通孔 33eはエレメント金具 33のほぼ長軸上に形成されており、揷通孔 33e内には線 状エレメント 32が揷通される。なお、複数の突出片 33bの幅は外へ行くほど広くされ てアンテナカバー 35がモールドされた際に、アンテナカバー 35がエレメント金具 33 に確実にモールドされるようになる。 As shown in these drawings, the metal element fitting 33 is composed of a cylindrical portion 33a and a mounting portion 34 formed so as to protrude from the lower end of the cylindrical portion 33a. For example, a plurality of projecting pieces 33b, for example, six, are formed at substantially the center of the element metal fitting 33 so as to project from the outer peripheral surface of the cylindrical portion 33a at equal intervals. A lower cylindrical portion 33c is formed below the protruding piece 33b, and an attachment portion 34 having a screw formed on the outer peripheral surface is formed below the lower cylindrical portion 33c. A fitting hole 33d into which a connection part 31a formed at the lower part of the support 30 is fitted is formed in the upper part of the cylindrical part 33a, and the diameter of the lower part of the fitting hole 33d is slightly reduced. A through hole 33e having a reduced diameter communicating with the fitting hole 33d is formed through the mounting portion 34. The through hole 33e is formed substantially on the long axis of the element fitting 33, and the linear element 32 is passed through the through hole 33e. Note that the width of the plurality of protruding pieces 33b is increased as it goes outward. Thus, when the antenna cover 35 is molded, the antenna cover 35 is securely molded to the element fitting 33.
[0026] 次に、線状エレメント 32の構成を示す正面図を図 18 (a)に示し、その一部拡大図 を図 18 (b)に示す。 Next, FIG. 18 (a) shows a front view showing the configuration of the linear element 32, and FIG. 18 (b) shows a partially enlarged view thereof.
これらの図に示すように、線状エレメント 32は線状の金属線により構成されており、 下部に平打ち加工されて潰された平打ち部 32aが形成されている。この線状エレメン ト 32はエレメント金具 33の取付部 34の下から揷通孔 33e内に揷通される。そして、 平打ち部 32aが揷通孔 33eの下端に当接した際に工具を使用して揷通孔 33e内に 平打ち部 32aを圧入する。これにより、線状エレメント 32はエレメント金具 33に固着さ れると共に、電気的に接続されるようになる。  As shown in these drawings, the linear element 32 is composed of a linear metal wire, and a flat hitting portion 32a that is flattened and crushed is formed in the lower portion. The linear element 32 is passed through the through hole 33e from below the mounting portion 34 of the element fitting 33. When the flat hitting portion 32a comes into contact with the lower end of the through hole 33e, the flat hitting portion 32a is press-fitted into the through hole 33e using a tool. Thereby, the linear element 32 is fixed to the element fitting 33 and is electrically connected.
[0027] 本発明に力、かる第 3実施例の多周波アンテナ 3において、ヘリカルエレメント 31の 巻き径 Φを約 6· 8mm、ヘリカルエレメント 31の線径 Cを約 0· 4mm、ピッチ pを約 1 · 76mm,長さ Lを約 139mmとし、線状エレメント 32の長さ aを約 82mm、線状エレメン ト 32の径 Dを約 0. 8mm、 ヘリ力ノレエレメント 31と泉状エレメント 32の間鬲 Sを約 2. 6 mmの寸法とした多周波アンテナ 3をアンテナケースに取り付けた際の FM放送の周 波数帯の VSWRの周波数特性を図 19に、地上デジタル TV放送の周波数帯の VS WRの周波数特性を図 20に示す。 [0027] In the multi-frequency antenna 3 according to the third embodiment, which is effective in the present invention, the winding diameter Φ of the helical element 31 is about 6.8 mm, the wire diameter C of the helical element 31 is about 0.4 mm, and the pitch p is about 1 · 76 mm, length L is about 139 mm, length a of linear element 32 is about 82 mm, diameter D of linear element 32 is about 0.8 mm, and between helicity force element 31 and spring element 32図 Figure 19 shows the frequency characteristics of the VSWR in the FM broadcast frequency band when the multi-frequency antenna 3 with an S dimension of about 2.6 mm is attached to the antenna case, and the VS WR in the terrestrial digital TV broadcast frequency band. Figure 20 shows the frequency characteristics.
図 19、図 20を参照すると、上記寸法とした第 3実施例の多周波アンテナ 3は共振 周波数が約 83MHz近辺とされて FM放送の周波数帯において十分動作するように なると共に、 470MHz〜710MHzの地上デジタル TV放送の周波数帯においてほ ぼ動作している。  Referring to FIG. 19 and FIG. 20, the multi-frequency antenna 3 of the third embodiment having the above dimensions is set to a resonance frequency of about 83 MHz so that it can operate sufficiently in the frequency band of FM broadcasting, and 470 MHz to 710 MHz. It operates almost in the frequency band of terrestrial digital TV broadcasting.
[0028] また、ヘリカルエレメントを備える図 29に示す従来のアンテナ装置 100においては ピッチ pが約 1. 48mmとされて長さ Lが 154mmとされた際に、 FM放送の中心周波 数とされる 83MHzにほぼ共振するようになる。これに対して、本発明の第 3実施例に 力、かる多周波アンテナ 3においては、ピッチ pを約 1. 76mmと大きくしているにもかか わらず、長さ Lを 139mmと短くしても FM放送の中心周波数とされる 83MHzにほぼ 共振するようになる。これは、図 5を参照して上記に説明したように線状エレメント 32 の影響を受けて等価的にヘリカルエレメント 31の電気長が長くなつたものと考えられ このように、本発明に力、かる第 3実施例の多周波アンテナ 3は複数の周波数帯にお いて動作するようにしても、ヘリカルエレメント 31が線状エレメント 32の影響を受ける ことにより低姿勢化すること力 Sできるようになる。また、 AM放送の周波数帯において ヘリカルエレメント 31を電圧受信素子として利用することにより、ヘリカルエレメント 31 を AM放送受信用のアンテナとして兼用することができる。このようにすると、本発明 の第 3実施例の多周波アンテナ 3は、 AM/FM放送と地上デジタル TV放送とを受 信可能な多周波アンテナとすることができる。 [0028] Further, in the conventional antenna device 100 shown in Fig. 29 having a helical element, when the pitch p is about 1.48 mm and the length L is 154 mm, the center frequency of FM broadcasting is set. It almost resonates at 83MHz. On the other hand, in the multi-frequency antenna 3 which is effective in the third embodiment of the present invention, the length L is shortened to 139 mm even though the pitch p is increased to about 1.76 mm. However, it almost resonates at 83MHz, the center frequency of FM broadcasting. This is probably because the electrical length of the helical element 31 is equivalently increased under the influence of the linear element 32 as described above with reference to FIG. As described above, even if the multi-frequency antenna 3 of the third embodiment, which is effective in the present invention, operates in a plurality of frequency bands, the helical element 31 is affected by the linear element 32 and thus has a low profile. The ability to turn into S Further, by using the helical element 31 as a voltage receiving element in the AM broadcast frequency band, the helical element 31 can be used also as an AM broadcast receiving antenna. In this way, the multi-frequency antenna 3 of the third embodiment of the present invention can be a multi-frequency antenna capable of receiving AM / FM broadcasting and terrestrial digital TV broadcasting.
また、本発明の第 3実施例にかかる多周波アンテナ 3を車両等に搭載した際の受信 システムの構成は上記した図 6に示すブロック図と同様になり、その説明は省略する  The configuration of the receiving system when the multi-frequency antenna 3 according to the third embodiment of the present invention is mounted on a vehicle or the like is the same as that shown in the block diagram of FIG.
[0029] 次に、本発明に力、かる第 3実施例の多周波アンテナ 3において、線状エレメント 32 の径 Dを約 lmmと太くした際の FM放送の周波数帯の電圧定在波比(VSWR)の周 波数特性を、線状エレメント 32の径 Dを約 0. 6mmと細くした際の VSWRの周波数 特性と対比して図 21に示す。なお、多周波アンテナ 3の他の寸法は図 19,図 20に 示す電気特性を得た場合の寸法とされて!/、る。 [0029] Next, in the multi-frequency antenna 3 according to the third embodiment, which is useful for the present invention, the voltage standing wave ratio in the frequency band of FM broadcasting when the diameter D of the linear element 32 is increased to about lmm ( The frequency characteristics of VSWR) are shown in Fig. 21 in comparison with the frequency characteristics of VSWR when the diameter D of the linear element 32 is reduced to about 0.6 mm. The other dimensions of the multi-frequency antenna 3 are the dimensions when the electrical characteristics shown in FIGS. 19 and 20 are obtained!
図 21を参照すると、線状エレメント 32の径 Dを太くして約 lmmとすると FM放送の 周波数帯において共振周波数が約 78MHzとなり共振周波数が低域に移動するよう になる。このように、第 3実施例の多周波アンテナ 3においては線状エレメント 32の径 Dを太くするほどヘリカルエレメント 31に与える影響が大きくなつて、共振周波数が低 域に移動していくようになる。従って、線状エレメント 32の太さをあまり太くできないこ とになる。  Referring to FIG. 21, when the diameter D of the linear element 32 is increased to about lmm, the resonance frequency becomes about 78 MHz in the frequency band of FM broadcasting, and the resonance frequency moves to a low band. As described above, in the multi-frequency antenna 3 of the third embodiment, as the diameter D of the linear element 32 is increased, the influence on the helical element 31 is increased, and the resonance frequency moves to a lower range. . Therefore, the thickness of the linear element 32 cannot be increased too much.
[0030] また、本発明に力、かる第 3実施例の多周波アンテナ 3において、ヘリカルエレメント  [0030] Further, in the multi-frequency antenna 3 of the third embodiment which is effective in the present invention, the helical element
31と線状エレメント 32との間隔 Sを約 lmmと狭くした多周波アンテナ 3をアンテナケ ースに取り付けた際の FM放送の周波数帯の VSWRの周波数特性を図 22に示す。 なお、多周波アンテナ 3の他の寸法は図 19,図 20に示す電気特性を得た場合の寸 法とされている。  Figure 22 shows the frequency characteristics of the VSWR in the FM broadcast frequency band when a multi-frequency antenna 3 with a spacing S between 31 and the linear element 32 narrowed to about lmm is attached to the antenna case. The other dimensions of the multi-frequency antenna 3 are the dimensions when the electrical characteristics shown in FIGS. 19 and 20 are obtained.
図 22を参照すると、ヘリカルエレメント 31と線状エレメント 32との間隔 Sを狭くして約 lmmとすると共振周波数が低域に移動し過ぎて、 70MHz〜; 100MHzの周波数帯 域内に共振周波数が現れず、 FM放送の周波数帯においてほぼ動作しないようにな る。このように、第 3実施例の多周波アンテナ 3においてはヘリカルエレメント 31と線 状エレメント 32との間隔 Sを狭くするほどヘリカルエレメント 31に与える影響が大きく なって、共振周波数が低域に移動していくようになる。従って、ヘリカルエレメント 31と 線状エレメント 32との間隔 Sをあまり狭くできないことになる。 Referring to FIG. 22, the distance S between the helical element 31 and the linear element 32 is reduced to about If lmm is set, the resonance frequency moves too low, and the resonance frequency does not appear in the frequency band of 70 MHz to 100 MHz, and almost does not operate in the frequency band of FM broadcasting. Thus, in the multi-frequency antenna 3 of the third embodiment, the effect on the helical element 31 increases as the distance S between the helical element 31 and the linear element 32 decreases, and the resonance frequency shifts to a lower range. Will come. Therefore, the distance S between the helical element 31 and the linear element 32 cannot be made too small.
[0031] さらに、本発明に力、かる第 3実施例の多周波アンテナ 3において、線状エレメント 32 の径 Dを約 lmmとすると共に、ヘリカルエレメント 31と線状エレメント 32との間隔 Sを 約 1. 5mmとした多周波アンテナ 3をアンテナケースに取り付けた際の FM放送の周 波数帯の VSWRの周波数特性を図 23に、 FM放送の周波数帯におけるインピーダ ンスの周波数特性を示すスミスチャートを図 24に示す。なお、多周波アンテナ 3の他 の寸法は図 19,図 20に示す電気特性を得た場合の寸法とされている。  [0031] Further, in the multi-frequency antenna 3 of the third embodiment which is effective in the present invention, the diameter D of the linear element 32 is set to about lmm, and the distance S between the helical element 31 and the linear element 32 is set to about 1. The frequency characteristics of the VSWR in the FM broadcast frequency band when the multi-frequency antenna 3 of 5 mm is attached to the antenna case is shown in Fig. 23, and the Smith chart showing the frequency characteristics of the impedance in the FM broadcast frequency band Shown in 24. The other dimensions of the multi-frequency antenna 3 are the dimensions when the electrical characteristics shown in FIGS. 19 and 20 are obtained.
図 23、図 24を参照すると、線状エレメント 32の径 Dを太くして約 lmmとしても、ヘリ カルエレメント 31と線状エレメント 32との間隔 Sを約 lmmから約 1 · 5mmに広げること により共振周波数が 70MHz以下から約 78MHzまで移動するようになる。このように 、第 3実施例の多周波アンテナ 3においては線状エレメント 32の径を太くしても、ヘリ カルエレメント 31と線状エレメント 32との間隔 Sを広げていくことによりヘリカルエレメ ント 31に与える影響が小さくなつて、共振周波数が高域に移動していくようになる。こ の場合、ヘリカルエレメント 31の長さ Lを変えずにピッチ pを約 1. 89mmと若干粗くす るとヘリカルエレメント 31の電気長が短くなり、共振周波数を FM放送の中心周波数 とされる 83MHzにほぼ共振させることができるようになる。ただし、 VSWR特性は若 干劣化するが、 FM放送の周波数帯にお!/、ては十分動作する。  Referring to Figs. 23 and 24, even if the diameter D of the linear element 32 is increased to about lmm, the distance S between the helical element 31 and the linear element 32 is increased from about lmm to about 1.5 mm. The resonance frequency moves from below 70MHz to about 78MHz. Thus, in the multi-frequency antenna 3 of the third embodiment, even if the diameter of the linear element 32 is increased, the helical element 31 is increased by increasing the distance S between the helical element 31 and the linear element 32. The resonance frequency shifts to a higher frequency as the effect on the frequency becomes smaller. In this case, if the pitch p is slightly roughened to about 1.89mm without changing the length L of the helical element 31, the electrical length of the helical element 31 will be shortened, and the resonance frequency will be the center frequency of FM broadcasting 83MHz Can be substantially resonated. However, although the VSWR characteristic is slightly degraded, it works well in the frequency band of FM broadcasting!
[0032] また、ヘリカルエレメント 31と線状エレメント 32との間隔 Sを狭くした場合でも、線状 エレメントの径 Dを細くすることにより、共振周波数を FM放送の中心周波数とされる 8 3MHzにほぼ共振させることができるようになる。このように、本発明にかかる第 3実 施例の多周波アンテナ 3においては、線状エレメントの径 Dと、ヘリカルエレメント 31 と線状エレメント 32との間隔 Sとを組み合わせ、併せてヘリカルエレメント 31の電気長 を調整することにより所望の電気特性を得ることができるようになる。 このこと力 、本発明に力、かる第 3実施例の多周波アンテナ 3においては、線状エレ メント 32の径 Dを約 lmm未満、ヘリ力ノレエレメント 31と線状エレメント 32との間隔 Sを 約 lmm以上とするのが好適とされる。また、ヘリカルエレメント 31の線径 Cを細くする と、 FM放送および地上デジタル TV放送の周波数帯にお!/、て所望の電気的特性が 得られることから、ヘリカルエレメント 31の線径 Cは約 lmm以下とするのが好適とされ [0032] Even when the distance S between the helical element 31 and the linear element 32 is narrowed, the resonance frequency is set to 83 MHz, which is the center frequency of FM broadcasting, by reducing the diameter D of the linear element. It becomes possible to resonate. Thus, in the multi-frequency antenna 3 of the third embodiment according to the present invention, the diameter D of the linear element and the interval S between the helical element 31 and the linear element 32 are combined, and the helical element 31 is combined. By adjusting the electrical length, desired electrical characteristics can be obtained. In the multi-frequency antenna 3 according to the third embodiment, which is the force of the present invention, the diameter D of the linear element 32 is less than about 1 mm, and the distance S between the helicopter force element 31 and the linear element 32 is set as follows. It is preferable that the thickness is about lmm or more. In addition, if the wire diameter C of the helical element 31 is reduced, the desired electrical characteristics can be obtained in the frequency band of FM broadcasting and digital terrestrial TV broadcasting. lmm or less is preferred
[0033] 次に、第 3実施例の多周波アンテナ 3において、ヘリカルエレメント 31のへリカルェ レメント 31の長さ Lを約 152mmと長くし、線状エレメント 32の長さ aを約 78mmと若干 短くした多周波アンテナ 3をアンテナケースに取り付けた際の FM放送の周波数帯お よび地上デジタル TV放送の周波数帯における電気特性を図 25および図 26に示す 。なお、多周波アンテナ 3の他の寸法は図 19,図 20に示す電気特性を得た場合の 寸法とされている。 [0033] Next, in the multi-frequency antenna 3 of the third embodiment, the length L of the helical element 31 of the helical element 31 is increased to about 152 mm, and the length a of the linear element 32 is slightly shortened to about 78 mm. Fig. 25 and Fig. 26 show the electrical characteristics in the FM broadcast frequency band and digital terrestrial TV broadcast frequency band when the multi-frequency antenna 3 is attached to the antenna case. The other dimensions of the multi-frequency antenna 3 are the dimensions when the electrical characteristics shown in FIGS. 19 and 20 are obtained.
図 25に示す電気特性は、第 3実施例の多周波アンテナ 3の FM放送の周波数帯に おける VSWRの周波数特性であり、図 26に示す電気特性は FM放送の周波数帯に おけるインピーダンスの周波数特性を示すスミスチャートである。図 25および図 26を 参照すると、第 3実施例の多周波アンテナ 3は FM放送の中心周波数とされる 83MH zにほぼ共振していると共に図 19に示す VSWR特性よりブロードな VSWR特性とな り、 FM放送の周波数帯において十分動作することがわかる。  The electrical characteristics shown in Fig. 25 are the frequency characteristics of the VSWR in the FM broadcast frequency band of the multi-frequency antenna 3 of the third embodiment, and the electrical characteristics shown in Fig. 26 are the frequency characteristics of the impedance in the FM broadcast frequency band. It is a Smith chart which shows. Referring to FIGS. 25 and 26, the multi-frequency antenna 3 of the third embodiment almost resonates at 83 MHz, which is the center frequency of FM broadcasting, and has a broader VSWR characteristic than the VSWR characteristic shown in FIG. It can be seen that it works well in the frequency band of FM broadcasting.
[0034] また、図 27に示す電気特性は、上記寸法とした本発明の第 3実施例の多周波アン テナ 3をアンテナケースに取り付けることなく単独の地上デジタル TV放送の周波数 帯における VSWRの周波数特性であり、図 28に示す電気特性は、上記寸法とした 本発明の第 3実施例の多周波アンテナ 3をアンテナケースに取り付けた際の地上デ ジタル TV放送の周波数帯における VSWRの周波数特性である。図 27を参照すると 、多周波アンテナ 3単独では 610MHz近辺で共振するブロードな周波数特性とされ てレ、る力 地上デジタル TV放送の周波数帯から高域にずれた周波数特性とされて いる。し力もながら、図 28を参照すると、地上デジタル TV放送の中心周波数とされる 590MHz近辺で共振するブロードな周波数特性とされており、第 3実施例の多周波 アンテナ 3は 470MHz〜710MHzの地上デジタル TV放送の周波数帯においてほ ぼ動作していること力 Sわ力、る。このように、多周波アンテナ 3をアンテナケースに取り付 けることにより、アンテナケース内の配線の影響を受けて多周波アンテナ 3の VSWR の周波数特性が全体的に低域へ移動するものと考えられる。なお、 FM放送の波長 はアンテナケース内の配線に比して非常に長いので、アンテナケースの存否により 電気特性の変化はほとんど現れなレ、。 [0034] In addition, the electrical characteristics shown in FIG. 27 show the frequency of VSWR in the frequency band of a single terrestrial digital TV broadcast without attaching the multi-frequency antenna 3 of the third embodiment of the present invention having the above dimensions to the antenna case. The electrical characteristics shown in FIG. 28 are the VSWR frequency characteristics in the frequency band of terrestrial digital TV broadcasting when the multi-frequency antenna 3 of the third embodiment of the present invention having the above dimensions is attached to the antenna case. is there. Referring to FIG. 27, the multi-frequency antenna 3 alone has a broad frequency characteristic that resonates in the vicinity of 610 MHz, and the frequency characteristic deviates from the frequency band of terrestrial digital TV broadcasting to a high frequency range. However, referring to FIG. 28, it is considered to have a broad frequency characteristic that resonates in the vicinity of 590 MHz, which is the center frequency of terrestrial digital TV broadcasting. The multi-frequency antenna 3 of the third embodiment is a terrestrial digital of 470 MHz to 710 MHz. In the TV broadcast frequency band The power that is working In this way, by attaching the multi-frequency antenna 3 to the antenna case, it is considered that the frequency characteristics of the VSWR of the multi-frequency antenna 3 move to the whole low range due to the influence of the wiring in the antenna case. . The wavelength of FM broadcasting is very long compared to the wiring inside the antenna case, so there is almost no change in electrical characteristics depending on the presence or absence of the antenna case.
[0035] このように、第 3実施例の多周波アンテナ 3においては線状エレメント 32の長さ aを 若干短くして、ヘリカルエレメント 31の長さ Lを長くしても FM放送の周波数帯および 地上デジタル TV放送の周波数帯において十分動作するようになる。この場合、 AM 放送の周波数帯においてヘリカルエレメント 31を電圧受信素子として利用することに より、多周波アンテナ 3を AM/FM放送と地上デジタル TV放送とを受信可能な多 周波アンテナとすることができる。  In this way, in the multi-frequency antenna 3 of the third embodiment, even if the length a of the linear element 32 is slightly shortened and the length L of the helical element 31 is increased, It works well in the frequency band of terrestrial digital TV broadcasting. In this case, the multi-frequency antenna 3 can be made a multi-frequency antenna capable of receiving AM / FM broadcasting and terrestrial digital TV broadcasting by using the helical element 31 as a voltage receiving element in the frequency band of AM broadcasting. .
[0036] 以上説明した本発明に力、かる第 3実施例の多周波アンテナ 3においては、線状ェ レメント 32の径 Dの代表的な値が約 0. 8mmとされており、この寸法の線状エレメント 32を収納孔 30aに収納している。従って、収納孔 30aの径を小さくする(約 lmm)こと ができることから支持体 30がパイプ状の形状とされていても十分可撓性に富むように なり、曲げ応力が印加されても折損することなく橈むようになる。また、ヘリカルエレメ ント 31と線状エレメント 32との間隔 Sを約 2. 6mmより小さくすれば、支持体 30の径 が細くなつて多周波アンテナ 3の径が細くなる。これにより、多周波アンテナ 3はより可 撓性を有するようになる。  [0036] In the multi-frequency antenna 3 according to the third embodiment, which is effective for the present invention described above, the representative value of the diameter D of the linear element 32 is about 0.8 mm. The linear element 32 is stored in the storage hole 30a. Accordingly, since the diameter of the storage hole 30a can be reduced (about 1 mm), the support 30 is sufficiently flexible even if it is in the shape of a pipe, and can be broken even if a bending stress is applied. I'm gonna get lost. Further, if the distance S between the helical element 31 and the linear element 32 is made smaller than about 2.6 mm, the diameter of the multi-frequency antenna 3 becomes smaller as the diameter of the support 30 becomes smaller. As a result, the multi-frequency antenna 3 becomes more flexible.
産業上の利用可能性  Industrial applicability
[0037] 以上説明した本発明にかかる第 1 , 2実施例の多周波アンテナ装置において上述 した電気的特性を得るためには、ヘリカルエレメントと線状エレメントとの間隔が少なく とも約 lmm以上の間隔とするのが好適とされる。そこで、線状エレメントを約 lmm厚 以上の絶縁チューブで被覆して支持体に形成したテーパ状の溝部内に配置すること で、絶縁チューブの外周面をテーパ状の溝部に接触させると共にヘリカルエレメント に接触させて、線状エレメントとヘリカルエレメントとの間隔を一定とすることができる。 これにより、多周波アンテナの電気的特性を安定化することができる。また、ヘリカル エレメントと線状エレメントの間隔が一定となるように、ヘリカルエレメントと線状エレメ ントの間に低誘電率の絶縁材を配置するようにしてもよい。 [0037] In order to obtain the above-described electrical characteristics in the multi-frequency antenna device according to the first and second embodiments of the present invention described above, the distance between the helical element and the linear element is at least about lmm or more. It is preferable that Therefore, by arranging the linear element in a tapered groove formed on the support by covering it with an insulating tube of about lmm thickness or more, the outer peripheral surface of the insulating tube is brought into contact with the tapered groove and the helical element is attached. The contact between the linear element and the helical element can be made constant. Thereby, the electrical characteristics of the multi-frequency antenna can be stabilized. In addition, the helical element and the linear element are arranged so that the distance between the helical element and the linear element is constant. An insulating material having a low dielectric constant may be disposed between the conductors.
なお、以上説明した本発明に力、かる第 1 , 2実施例の多周波アンテナ装置において は、支持体の外周面に等間隔に 4つの溝部を形成するようにした力 これに限るもの ではなく線状エレメントの数と同数の溝部だけを形成するようにしても良い。この場合 、複数本の溝部を設ける場合は、等間隔に設けるようにするのが好適とされる。 また、本発明に力、かる多周波アンテナは車両のルーフやトランクに取り付けられる 車載用としたが、これに限るものではなく 2以上の周波数帯で動作する多周波アンテ ナであれば適用することができる。  In addition, in the multi-frequency antenna apparatus according to the first and second embodiments described above, the force in which four grooves are formed at equal intervals on the outer peripheral surface of the support is not limited to this. Only the same number of grooves as the number of linear elements may be formed. In this case, when a plurality of grooves are provided, it is preferable to provide them at equal intervals. In addition, the multi-frequency antenna, which is the power of the present invention, is intended for in-vehicle use attached to the roof or trunk of a vehicle, but is not limited to this, and any multi-frequency antenna that operates in two or more frequency bands can be applied. Can do.

Claims

請求の範囲 The scope of the claims
[1] 所定長の溝部が一端から中心軸に沿ってほぼ平行に外周面に形成されている棒 状に形成されて!/、る絶縁性の支持体と、  [1] An insulating support having a predetermined length of a groove formed on the outer peripheral surface substantially parallel to the central axis from one end!
該支持体の外周面に巻回され、一端部から給電される第 1の周波数帯で動作する ヘリカルエレメントと、  A helical element wound around the outer peripheral surface of the support and operating in a first frequency band fed from one end;
前記支持体に形成されている前記溝部内に配置され、端部から給電される第 2の 周波数帯で動作する線状エレメントと、  A linear element that is disposed in the groove formed in the support and operates in a second frequency band fed from an end; and
前記支持体の前記一端に被嵌されて前記ヘリカルエレメントの前記一端部および 前記線状エレメントの前記端部に電気的に接続され、下部に取付部が形成されてい るエレメント金具とを備え、  An element fitting that is fitted to the one end of the support and is electrically connected to the one end of the helical element and the end of the linear element, and has a mounting portion formed in the lower part;
前記エレメント金具を介して前記ヘリカルエレメントおよび前記線状エレメントに給 電されることを特徴とする多周波アンテナ。  A multi-frequency antenna, wherein power is supplied to the helical element and the linear element through the element fitting.
[2] 前記支持体が可撓性の樹脂製とされており、その外周面に前記ヘリカルエレメント が巻回されるヘリカル状の溝が形成されていることを特徴とする請求項 1記載の多周 波アンテナ。 [2] The multiple support according to claim 1, wherein the support is made of a flexible resin, and a helical groove around which the helical element is wound is formed on an outer peripheral surface thereof. Frequency antenna.
[3] 前記支持体の外周面に、外周面に所定長の複数本の溝部が一端から中心軸に沿 つてほぼ平行に形成されており、それぞれの溝部にそれぞれ異なる周波数帯で動作 する複数の線状エレメントがそれぞれ配置されており、前記複数の線状のエレメント は前記エレメント金具に接続されて、前記エレメント金具を介して前記ヘリカルエレメ ントおよび前記複数の線状エレメントに給電されることを特徴とする請求項 1記載の多 周波アンテナ。  [3] On the outer peripheral surface of the support body, a plurality of groove portions having a predetermined length are formed on the outer peripheral surface substantially parallel to the central axis from one end, and a plurality of grooves each operating in a different frequency band. Each of the linear elements is arranged, and the plurality of linear elements are connected to the element fitting, and are supplied with power to the helical element and the plurality of linear elements via the element fitting. The multi-frequency antenna according to claim 1.
[4] 前記溝部内に配置されている前記線状のエレメントは、前記ヘリカルエレメントと所 定間隔離隔されて前記溝部内に配置されていることを特徴とする請求項 1から 3のい ずれかに記載の多周波アンテナ。  [4] The line element according to any one of claims 1 to 3, wherein the linear element arranged in the groove is arranged in the groove so as to be spaced apart from the helical element by a predetermined distance. The multi-frequency antenna described in 1.
[5] 前記溝部内に配置されている前記線状のエレメントは、前記ヘリカルエレメントと所 定間隔離隔されて配置されるように所定厚の絶縁チューブで被覆されていることを特 徴とする請求項 1から 3のいずれかに記載の多周波アンテナ。 [5] The linear element disposed in the groove is covered with an insulating tube having a predetermined thickness so as to be spaced apart from the helical element by a predetermined distance. Item 4. The multi-frequency antenna according to any one of Items 1 to 3.
[6] 一端からほぼ中心軸に沿って収納孔が形成され、外形形状が棒状に形成されてい る絶縁性の支持体と、 [6] A storage hole is formed almost along the central axis from one end, and the outer shape is formed in a rod shape. An insulating support,
該支持体の外周面に巻回され、一端部から給電される第 1の周波数帯で動作する ヘリカルエレメントと、  A helical element wound around the outer peripheral surface of the support and operating in a first frequency band fed from one end;
前記支持体に形成されている前記収納孔内に配置され、端部から給電される第 2 の周波数帯で動作する線状エレメントと、  A linear element that is disposed in the storage hole formed in the support and operates in a second frequency band that is fed from an end;
前記支持体の前記一端に被嵌されて前記ヘリカルエレメントの前記一端部および 前記線状エレメントの前記端部に電気的に接続され、下部に取付部が形成されてい るエレメント金具とを備え、  An element fitting that is fitted to the one end of the support and is electrically connected to the one end of the helical element and the end of the linear element, and has a mounting portion formed in the lower part;
前記エレメント金具を介して前記ヘリカルエレメントおよび前記線状エレメントに給 電されることを特徴とする多周波アンテナ。  A multi-frequency antenna, wherein power is supplied to the helical element and the linear element through the element fitting.
[7] 前記支持体が可撓性の樹脂製とされており、その外周面に前記ヘリカルエレメント が巻回されるヘリカル状の溝が形成されていることを特徴とする請求項 6記載の多周 波アンテナ。 7. The multiple support according to claim 6, wherein the support is made of a flexible resin, and a helical groove around which the helical element is wound is formed on an outer peripheral surface thereof. Frequency antenna.
PCT/JP2007/069816 2006-12-12 2007-10-11 Multiple frequency antenna WO2008072415A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/296,108 US8159404B2 (en) 2006-12-12 2007-10-11 Multiple frequency antenna

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-334104 2006-12-12
JP2006334104 2006-12-12
JP2007120542A JP4129038B2 (en) 2006-12-12 2007-05-01 Multi-frequency antenna
JP2007-120542 2007-05-01

Publications (1)

Publication Number Publication Date
WO2008072415A1 true WO2008072415A1 (en) 2008-06-19

Family

ID=39511446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069816 WO2008072415A1 (en) 2006-12-12 2007-10-11 Multiple frequency antenna

Country Status (1)

Country Link
WO (1) WO2008072415A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544684A (en) * 2011-11-23 2012-07-04 杨鹤鸣 Radio-television integration receiving antenna

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800395A (en) * 1987-06-22 1989-01-24 Motorola, Inc. High efficiency helical antenna
JPH039375A (en) * 1989-06-06 1991-01-17 Japan Imeejingu Syst:Kk Optical pringing device
JPH1168447A (en) * 1997-08-20 1999-03-09 Tokin Corp Antenna system
US6107970A (en) * 1998-10-07 2000-08-22 Ericsson Inc. Integral antenna assembly and housing for electronic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800395A (en) * 1987-06-22 1989-01-24 Motorola, Inc. High efficiency helical antenna
JPH039375A (en) * 1989-06-06 1991-01-17 Japan Imeejingu Syst:Kk Optical pringing device
JPH1168447A (en) * 1997-08-20 1999-03-09 Tokin Corp Antenna system
US6107970A (en) * 1998-10-07 2000-08-22 Ericsson Inc. Integral antenna assembly and housing for electronic device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544684A (en) * 2011-11-23 2012-07-04 杨鹤鸣 Radio-television integration receiving antenna

Similar Documents

Publication Publication Date Title
JP4869273B2 (en) Multi-frequency antenna
CN113708053B (en) Antenna device
US20120081256A1 (en) Antenna apparatus
JPWO2008062746A1 (en) Antenna device
KR20100092366A (en) Antenna device
US6232925B1 (en) Antenna device
US20140125552A1 (en) Antenna and antenna unit including same
US7352337B2 (en) Portable SDARS-receiving device with integrated audio wire and antenna
JP2001127525A (en) Antenna
US6639562B2 (en) GSM/DCS stubby antenna
WO2005078862A1 (en) Multi-band antenna using parasitic element
WO2003061063A1 (en) Multi-frequency antenna
US7023388B2 (en) Multiple resonance antenna and mobile phone antenna
WO2008072415A1 (en) Multiple frequency antenna
KR200450208Y1 (en) Multiple antenna for car
JPH1051223A (en) Antenna system
EP1833116B1 (en) Quadrifilar helical antenna
US20040119657A1 (en) Stubby, multi-band, antenna having a large-diameter high frequency radiating/receiving element surrounding a small-diameter low frequency radiating/receiving element
JPH11298219A (en) Antenna and portable radio equipment using the antenna
JP4059998B2 (en) Antenna device
JP2003087031A (en) Antenna
US6246372B1 (en) Extendable whip antenna
KR100958812B1 (en) Multi-resonance antenna and portable electronic device having the same
JP2003037418A (en) Multi-band antenna
JPH1051224A (en) Antenna system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829554

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12296108

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07829554

Country of ref document: EP

Kind code of ref document: A1