WO2008072368A1 - Glass polarizer for visible light - Google Patents

Glass polarizer for visible light Download PDF

Info

Publication number
WO2008072368A1
WO2008072368A1 PCT/JP2007/001366 JP2007001366W WO2008072368A1 WO 2008072368 A1 WO2008072368 A1 WO 2008072368A1 JP 2007001366 W JP2007001366 W JP 2007001366W WO 2008072368 A1 WO2008072368 A1 WO 2008072368A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
light
polarizer
visible light
silver
Prior art date
Application number
PCT/JP2007/001366
Other languages
French (fr)
Japanese (ja)
Inventor
Khaled Jabri
Atsushi Arai
Hiromichi Nishimura
Yoshihiko Noro
Dai Takeda
Original Assignee
Okamoto Glass Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okamoto Glass Co., Ltd. filed Critical Okamoto Glass Co., Ltd.
Priority to JP2008549195A priority Critical patent/JP4928564B2/en
Priority to EP07849799A priority patent/EP2093595B1/en
Priority to ES07849799T priority patent/ES2404064T3/en
Priority to CN2007800146247A priority patent/CN101427165B/en
Priority to US12/226,815 priority patent/US8077389B2/en
Publication of WO2008072368A1 publication Critical patent/WO2008072368A1/en
Priority to HK09110194.4A priority patent/HK1132333A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/006Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of microcrystallites, e.g. of optically or electrically active material
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/008Surface plasmon devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/3144Cooling systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • H04N9/3167Modulator illumination systems for polarizing the light beam
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2214/00Nature of the non-vitreous component
    • C03C2214/30Methods of making the composites

Definitions

  • the present invention relates to a glass polarizer having polarization characteristics that can be industrially used for light in the visible light region.
  • the present invention relates to a glass polarizer for visible light having excellent heat resistance and light resistance that can be used as a polarizer for a projection type liquid crystal display device.
  • projection liquid crystal display devices have been widely used as video display devices that display large screens.
  • the rear projection type liquid crystal display device is mainly used for presentation of personal computer data
  • the front projection type liquid crystal display device is mainly used for presentation of personal computer data.
  • the projection type liquid crystal display device has a configuration in which an image on a small liquid crystal element is enlarged and projected on a large screen using a projection optical system.
  • Non-Patent Document 1 large screen display
  • FIG. 1 shows a configuration diagram of a typical projection type liquid crystal display device.
  • the light from the light source 4 is separated into blue (B), green (G) and red (R) components by optical components 5 to 16, and the liquid crystal elements 2 B, 2 G and 2 R corresponding to the respective components.
  • Each liquid crystal display element 2R, 2G and 2B has an incident side polarizer 1R, 1G and 1B on the incident side and an output side polarizer 3R, 3G and 3B on the output side.
  • a pair of polarizers composed of an entrance-side polarizer and an exit-side polarizer, corresponding to red, green, and blue, has a function of selectively passing light having a predetermined polarization direction that has passed through the liquid crystal element.
  • the light of the three primary colors that has passed through the liquid crystal elements 2R, 2G, and 2B becomes a light intensity modulated image signal.
  • These three primary colors are further synthesized by a synthesis prism 17 and further projected onto a screen 19 through an enlarged projection lens system 18.
  • the polarization characteristic required for the polarizing element is to transmit an optical signal having a desired polarization plane and to block an unnecessary optical signal having a polarization plane orthogonal to the optical signal.
  • the ratio of these transmittances is called an extinction ratio, and is widely used by those skilled in the art as a figure of merit that expresses the performance of a polarizing element. If this index is used, the performance required for a polarizing element applied to a projection type liquid crystal display device is expressed as having a large transmittance and a large extinction ratio for an optical signal. It is said that an industrially available polarizer preferably has a transmittance of 70 ⁇ 1 ⁇ 2 or more with respect to light of a wavelength to be used and an extinction ratio of 10: 1, preferably 30: 00: 1. (Patent Document 1)
  • a social demand for a projection-type liquid crystal display device is to realize a larger and clearer image with a smaller device.
  • the application of a light source with a larger amount of light and the use of a liquid crystal element with a smaller area are recent technological trends.
  • high energy density light is introduced not only into the liquid crystal element but also into the polarizer placed before and after the liquid crystal element.
  • a polarizer having a function of absorbing unnecessary light is required to have particularly high heat resistance and light resistance.
  • dichroic polarizers and non-dichroic polarizers (such as Brewster polarizers) that selectively absorb light depending on the plane of polarization (Patent Document 2). See).
  • the dichroic polarizer is a desirable element for a projection type liquid crystal display device that is particularly required to be miniaturized because the element is thin and does not require a special device that absorbs unnecessary light.
  • a polarizing film made of an organic resin is used by being bonded to a sapphire substrate having high thermal conductivity (Patent Document 3).
  • Patent Document 3 polarizers bonded with sapphire with excellent thermal conductivity are also in line with technical demands for higher brightness in recent years.
  • Projection-type liquid crystal display to protect the organic resin film from heat without satisfying the requirement that the polarizer function does not deteriorate due to heat generation
  • the equipment is equipped with a cooling device including a cooling fan. Cooling devices not only contradict the social need for miniaturization, but also create another problem of noise.
  • Patent Document 1 As a method for solving this technical problem, an idea of applying polarized glass applied to an element for optical communication has been proposed (Patent Document 1).
  • the optical wavelength used for optical communication is in the far-infrared region and is significantly different from visible light. Therefore, the technology of glass polarizer for optical communication immediately controls the light of the projection type liquid crystal display device. Is not immediately applicable.
  • the invention disclosed in Patent Document 1 does not disclose a technique for imparting an effective characteristic to light in the visible light region to a glass polarizing element. It is difficult to realize a projection type liquid crystal display device using a child.
  • Polarized glass is characterized in that it contains fine metal particles with shape anisotropy oriented and dispersed in an optically transparent glass substrate, and is an anisotropic surface plasmon present on the surface of fine metal particles.
  • the polarization characteristic is realized by using a unique resonance absorption phenomenon (see Patent Document 4 and Non-Patent Document 2).
  • FIG. 2 shows the surface plasmon resonance absorption characteristics of the metal fine particles cited from Patent Document 4.
  • Graph A in Fig. 2 corresponds to surface plasmon resonance absorption by spherical metal particles.
  • the resonance absorption of rod-shaped metal particles having shape anisotropy exhibits different characteristics depending on the correlation between the polarization plane of incident light and metal particles having shape anisotropy.
  • light having a polarization plane parallel to the longitudinal direction of the metal particles has a small transmittance due to strong absorption.
  • the transmittance for light having a polarization plane parallel to the longitudinal direction of the metal particles is expressed as T
  • the light having a polarization plane perpendicular to the longitudinal direction of the metal particles has a small absorption, and therefore shows a higher transmittance.
  • the transmittance for light having a polarization plane perpendicular to the longitudinal direction of the metal particles is expressed as just%. With this mechanism, polarization characteristics are realized. The characteristics disclosed in FIG.
  • the characteristics required for the projection type liquid crystal display device that is, the ratio between the parallel absorption curve ⁇ and the vertical absorption curve C between 500 nm and 600 nm, In other words, it has not realized that the extinction ratio is sufficiently large and that the parallel absorptivity value is sufficiently large.
  • Patent Document 7 is a technology that provides a polarizing element effective for light in the visible light region by utilizing the characteristics of copper fine particles having shape anisotropy (the disclosed characteristics are applied to FIG. 3). As shown in Fig. 3, it is not possible to achieve a large extinction ratio, especially for wavelengths below 600 nm, ie parallel transmission with respect to the transmission curves C and E perpendicular to the stretching axis. It is concluded that there is no practical characteristic that the ratio (extinction ratio) of the D and F values of the rate curves is small and the transmittance C is only 10 to 60%.
  • the ratio (extinction ratio) of the D and F values of the rate curves is small and the transmittance C is only 10 to 60%.
  • Patent Document 8 discloses a technique that realizes dichroic absorption with respect to wavelengths in the visible light region.
  • the characteristics applicable to the projection type liquid crystal display device to which the present invention is intended that is, Since there is no specific and quantitative description of achieving high transmittance and high extinction ratio, it cannot be realized as a polarizer.
  • Patent Document 9 proposes a technique for obtaining an effective extinction ratio in the visible light region, and does not disclose a technique for realizing high transmittance.
  • CODIXX is a manufacturing technology that introduces silver ions by diffusing from the glass surface, deposits silver fine particles by heat treatment, and then stretches them to impart shape anisotropy to the silver fine particles.
  • Is used to sell polarizing glass that is effective in the visible light region Non-patent Document 3
  • the ion diffusion process is generally unstable, and the concentration distribution of silver ions in the glass thickness direction tends to cause nonuniformity in the size of the silver particles produced. As a result, there is a weak point that the characteristic variation of the polarizer occurs.
  • the stretching particles are solid metallic silver particles, they cannot be stretched unless the stretching tension is larger than the silver halide grains that are stretched in a droplet state, so that there is a problem that the glass tends to break during stretching. .
  • a communication infrared light glass polarizer widely used in industry uses a different manufacturing method. That is, as disclosed in Patent Document 4 and Patent Document 5, a production method is adopted in which silver fine particles are produced by once precipitating silver halide and then reducing the silver halide. However, a polarizer produced by this production method does not exhibit practical performance that can be used in the visible range (Patent Document 5).
  • FIG. 1 of Patent Document 5 (cited as FIG. 4 in this specification) and paragraph “0 0 2 2” of the specification state as follows. “ ⁇ ⁇ Silver halide glass is unsatisfactory to produce an effective optical polarizer over the entire range of 4 0 0 ⁇ ⁇ _ 7 0 0 nm.”
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-7 7 8 50
  • Patent Document 2 Special Table 2 0 0 2— 5 1 9 7 4 3
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2 0 00 _ 2 0 6 5 0 7
  • Patent Document 4 U.S. Pat.No. 4,479,8 1 9
  • Patent Document 5 Japanese Patent No. 1 6 1 8477
  • Patent Document 6 Japanese Patent No. 274060 1
  • Patent Document 7 Japanese Patent No. 2885655
  • Patent Document 8 Special Table 2004-523804
  • Patent Document 9 Japanese Patent Publication No. 2-406 19
  • Patent Document 10 Japanese Patent No. 26280 14
  • Patent Document 11 Japanese Patent No. 3549 1 98
  • Non-Patent Literature 1 Nobuo Nishida, Large Screen Display (Series Advanced Display Technology 7), Kyoritsu Publishing, Tokyo, 2002
  • Non-Patent Document 2 S. L ink and M. A. E I _S ay ed, J. P h y s. Ch em. B 1 03 (1 999) 84 1 0-8426
  • Non-Patent Literature 3 Takuichi Suzuki, Industrial Materials Vol.52, No.12, pp. 102-107
  • the present invention is applicable to a projection-type liquid crystal display device, etc., starting from silver halide-containing glass, and has excellent transmittance and quenching for light in the visible light region (500 nm to 600 nm). It is an object to provide a technique for realizing a glass polarizer having a ratio.
  • the glass polarizing element of the present invention utilizes surface plasmon resonance of metal fine particles having shape anisotropy oriented and dispersed in glass. While using the same principle, the prior art shown in Fig. 4 has not realized the performance that a polarizer applicable to a projection-type liquid crystal display device should have. The reason for this will be described with reference to FIG.
  • Curve C in Fig. 2 shows that surface plasmon resonance absorption for light having a polarization plane orthogonal to the longitudinal direction of the metal fine particles having shape anisotropy exists around 380 nm.
  • curve C in Figure 2 shows that the effect extends from 500 nm to 600 nm. This effect is the polarization plane to pass It shows that it has the effect of transmitting light having a higher transmittance.
  • the curve B shows the absorption of light with a polarization plane parallel to the longitudinal direction, which indicates that the difference in polarization plane causes a large difference in the absorptivity, that is, the transmittance near 600 nm.
  • the inventors have found that the transmittance in the vicinity of 500 nm can be improved by reducing the size of the silver particles. That is, by using silver particles prepared from silver halide having a particle size of 40 nm or less, the transmittance T ⁇ % for light having a polarization plane perpendicular to the longitudinal direction of the metal fine particles is increased. Found that it would be possible.
  • the use of silver halide having a small particle size is achieved by the transmittance T II of light blocked by a polarizer, that is, light having a polarization plane parallel to the longitudinal direction of metal fine particles having shape anisotropy. It produced another effect of suppressing 0/0 to a small value close to 500 nm. As a result, by using silver halide with a small grain size, it is possible not only to increase the transmittance of light to be transmitted, but also to increase the extinction ratio. It became possible to keep.
  • the present invention is based on the conventional technology in that the starting material is a glass material in which silver halide is dispersed and precipitated. In order to realize an effective function for light in the visible light region, Need to add technology.
  • the conventional polarizing glass technology using silver halide for optical communication used in the near infrared region of 1.3 to 1.5 m is a mixed crystal of silver chloride and silver bromide and Polarizing glass has been produced by stretching particles having a particle size of 50 nm or more. For this reason, the technique regarding the polarizing glass for visible regions by this invention is not disclosed at all.
  • a mercury lamp is used as the light source, and the visible light source often includes an ultraviolet light component.
  • Glass with silver halide fine particles deposited has an absorption band that extends from the visible to the near-infrared when irradiated with ultraviolet light, and the glass is colored.When the ultraviolet light is blocked, the glass returns to its pre-irradiation state. And is widely known by the name of photochromic glass.
  • Patent Document 9 As prior art related to a polarizing glass that does not exhibit photo-irregularity, Cu O is hardly contained or the mother glass composition is limited (in molar ratio (R 2 0_A I 2 0 3 ): B 2 0 3 ⁇ 0 25) technology (Patent Document 9), a technology that substantially does not contain CuO and adds an effective amount of C e 0 2 to keep silver in the glass in an oxidized state (Patent Document 10) and substantially free of C u O, K 2 0 and contains many and B a O was prevented reduction is limited to compositions strengthened basic pressure forte glass to metallic silver silver technique (Patent Document 1 1) [0034] In the present invention, an alkali oxide of 0.
  • Nonfotoku port Mick glass By adding 5 to 5 wt% of nitrate, silver was dissolved as ions in the glass, and a non-photochromic glass could be obtained. That is, without the addition of C u O and C e 0 2 used as a silver oxidizing agent in a conventional technology, and, without limiting the composition of the base glass, could be obtained Nonfotoku port Mick glass.
  • a glass polarizer having a transmittance of 75% or more and an extinction ratio of 25 dB or more in the wavelength region from 500 nm to 600 nm. can do.
  • the projection-type liquid crystal display device to which the glass polarizer having such performance and heat resistance and light resistance (particularly UV resistance) is applied enables the use of a light source with higher energy, and as a result, A small and brighter display device can be realized.
  • the power of conventional resin polarizing films has been observed to deteriorate due to heat and light.
  • the image quality of the projection-type LCD can be maintained at a high level.
  • FIG. 1 is a conceptual diagram of an optical engine of a liquid crystal projector (Patent Document 1).
  • FIG. 2 is a graph showing absorption spectra (Patent Document 4) of stretch-oriented silver particles and non-oriented silver particles.
  • FIG. 3 is a graph showing a transmittance curve (Patent Document 7) of light polarized by visible light by stretching of copper particles.
  • FIG. 4 is a graph showing a visible light polarized light transmittance curve (Patent Document 7) by stretching of silver particles.
  • FIG. 5 is a graph showing light transmittance and extinction ratio curves of Example 1 in the range of 4800 nm to 620 nm.
  • FIG. 6 is a graph showing light transmittance and extinction ratio curves of Example 2 in the wavelength range from 4800 nm to 620 nm.
  • FIG. 7 is a graph showing light transmittance and extinction ratio curves in the wavelength range of 4 80 nm to 6 20 nm in Example 3.
  • FIG. 8 is a graph showing light transmittance and extinction ratio curves of Example 4 in the range of 4800 nm to 620 nm.
  • FIG. 9 is a graph showing light transmittance and extinction ratio curves of Example 5 in the wavelength range from 4800 nm to 620 nm.
  • FIG. 10 is a graph showing light transmittance and extinction ratio curves of Example 6 in the wavelength range of 4800 nm to 620 nm.
  • FIG. 11 is a graph showing the light transmittance and extinction ratio curve of Comparative Example 1 in the wavelength range of 4800 nm to 620 nm.
  • FIG. 12 is a graph showing light transmittance and extinction ratio curves in the wavelength range of 4 80 nm to 6 20 nm of Comparative Example 2.
  • Manufacturing technology for carrying out the present invention is based on the technology for manufacturing known infrared polarizing glass, and technology for refining silver halide precipitated grains and technology for preventing the realization of photoguchimism are added. It is realized by doing.
  • a glass batch having a predetermined composition is prepared.
  • the glass applied to the polarizer used in the visible light region must be selected from glass that does not have so-called photochromic properties, whose transmittance deteriorates when irradiated with light.
  • glass materials must be devised to strictly avoid copper oxide impurities.
  • the composition of the amount of silver halide introduced is finally selected to be a value that can achieve both transmittance and extinction ratio.
  • a glass batch having a predetermined composition is melted and poured into a mold to produce a plate-like glass.
  • metal halide particles are deposited in the mother glass by heat treatment. In general, the lower the heat treatment temperature and the shorter the heat treatment time, the smaller the particle size.
  • the heat treatment conditions are optimized depending on the glass type and composition.
  • the mother glass in which metal halide particles having an average particle diameter of 40 nm or less are dispersed is subjected to a predetermined processing to become a plate-like preform and is transferred to a stretching process.
  • the viscosity of the glass directly the heating temperature
  • the stretched glass is subjected to a reduction treatment so that part or all of the stretched silver halide grains become silver particles.
  • the time and temperature of the reduction treatment and the atmosphere determine the depth of the reduced metal particle layer present near the surface and must be carefully determined to achieve the final properties. Thereafter, an antireflection film is formed to complete the polarizing element of the present invention.
  • Table 1 shows examples and comparative examples.
  • the technical scope of the present invention is not limited to the following examples.
  • This raw material batch was melted in a platinum crucible with a capacity of 3 OO cc at 1 430 ° C for 4 hours, then poured into a mold and pressed with a roller, approximately 250 x 60 x 2.5 mm thick sheet glass Got.
  • This plate glass was heat-treated to precipitate silver chloride particles.
  • the grain size of silver chloride grains was controlled by the heat treatment temperature and heat treatment time shown in Table 1.
  • Table 1 also shows the results of measuring the average particle size of silver chloride grains using an electron microscope.
  • the obtained glass preform is set vertically in a stretching furnace, and the preform is fed at a constant speed and the stretching is performed while the preform feeding speed and the take-up speed are balanced, and stretching is performed. It was.
  • Table 1 shows the viscosity and stretching tension of the glass during stretching (load per unit area on the glass). The stretching tension was controlled mainly by the glass heating temperature. (These speed settings are also shown in Table 1.)
  • Table 1 shows the polarization characteristics of the polarizing glass thus produced. Also, the examples "! ⁇ 6 and comparative examples"! The transmittance spectrum (T ⁇ %) of light having a polarization plane perpendicular to the longitudinal direction of the metallic silver particles in the wavelength range of 500 nm to 600 nm (actually 480 nm to 62 O nm) of Figures 5 to 10 and Figures 11 and 12 show the extinction ratio data in the wavelength range.
  • the extinction ratio is 500 ⁇ in the transmission spectrum measured using a spectrophotometer.
  • Calculated from% by the following formula.
  • Table 1 shows the minimum extinction ratio in the wavelength region of 500 nm to 600 nm.
  • CI in glass composition 0.1% and 0.2% of 0.3% by weight of glass were dissolved with equimolar amounts of Br: 0.23% and 0.45%, and then halogenated.
  • Polarized glass was prepared using the same method and conditions as in Example 1 for glass preforms that had been heat-treated so that the average particle diameter of silver particles was 18 nm, which was the same as in Example 1, and the polarization characteristics were compared. As a result, both the spectra of the light of the polarization plane perpendicular to the major axis and minor axis direction of the metallic silver particles are shifted to the longer wavelength as the amount of Br increases, and at 500-60 Onm. The average transmittance and minimum extinction ratio decreased from 82% and 25 dB of Example 1 with CI only to 76%, 25 dB, 68%, and 8 dB, respectively.
  • the glass polarizers obtained in Examples 1 to 6 and Comparative Examples 1 and 2 were irradiated with a 500 W xenon lamp at a distance of 40 cm for 15 minutes. The change in transmittance was visually observed and the change in transmittance at 650 nm before and after irradiation was measured to determine the presence or absence of photochromic properties. As a result, in any of the polarizers obtained in Examples 1 to 6 and Comparative Examples 1 and 2, no change was observed before and after irradiation, and it was confirmed that no photochromic characteristics were exhibited. This means that the glass polarizer according to the present invention does not cause deterioration of polarization characteristics or transmittance characteristics even when irradiated with light of ultraviolet and visible short wavelengths.
  • the glass component is substantially free of a copper compound, and a glass raw material corresponding to 0.5 to 5 wt% of the glass oxide composition is introduced with nitrate to melt.
  • a polarizer that does not exhibit photochromic characteristics, that is, does not cause deterioration of polarization characteristics or transmittance characteristics even when irradiated with light of ultraviolet and visible short wavelengths.
  • an excellent transmittance having an average transmittance of 75% or more (Tl% 500 to 600 nm ) and an extinction ratio of 25 dB or more is obtained.
  • a polarizer can be provided. This can be used for a liquid crystal display device such as a liquid crystal projector with sufficient performance. Also follow Considering that conventional polarizers are used by attaching a resin-made polarizing film that is sensitive to heat and ultraviolet rays to sapphire, quartz glass, or glass substrates, the mother glass has high heat resistance and thermal shock resistance.
  • the optical engine of the projector itself can be simplified, for example, cooling measures including the installation of a cooling fan can be reduced or unnecessary. Conceivable. Furthermore, the glass polarizer according to the present invention does not exhibit photochromic characteristics, and other performance is hardly deteriorated, so that the image quality of the liquid crystal projector is maintained high, and as a result, the life of the liquid crystal projector itself is extended. Be expected.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Dispersion Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Polarising Elements (AREA)
  • Glass Compositions (AREA)

Abstract

This invention provides a glass polarizer which can be applied, for example, to projection-type liquid crystal display devices, is produced using a silver halide-containing glass as a starting material, and has excellent transmittance and extinction ratio to light having a visible light range (500 nm to 600 nm). The glass polarizer for visible light is a polarizer produced by heat treating a borosilicate glass to dispersion precipitate silver halide particles, heat stretching the borosilicate glass, and then reducing at least a part of the silver halide particles aligned and elongated in the glass to metallic silver particles. The glass polarizer for visible light is characterized in that the average transmittance (T⊥% 500 to 600 nm) of a wavelength range of 500 nm to 600 nm in light having a polarization plane orthogonal to the longitudinal direction of the metallic silver particles with a shape anisotropy, which have been uniaxially aligned and dispersed, is not less than 75%, and the extinction ratio in the above wavelength range is not less than 25 dB.

Description

明 細 書  Specification
可視光用ガラス偏光子  Visible glass polarizer
技術分野  Technical field
[0001 ] 本発明は可視光領域の光に対し工業的に利用可能な偏光特性を有するガラ ス偏光子に関するものである。 特に、 投射型液晶表示装置用の偏光子として 利用可能な優れた耐熱性および耐光性を有する可視光用ガラス偏光子に関す るものである。  [0001] The present invention relates to a glass polarizer having polarization characteristics that can be industrially used for light in the visible light region. In particular, the present invention relates to a glass polarizer for visible light having excellent heat resistance and light resistance that can be used as a polarizer for a projection type liquid crystal display device.
背景技術  Background art
[0002] 近年、 大型画面を表示する映像表示装置として投射型液晶表示装置が広く 利用されている。 リア投射型液晶表示装置は大型テレビとして、 フロント投 射型液晶表示装置はパソコンデータのプレゼンテーションに主に使用される 。 投射型液晶表示装置は投射光学系を利用して小さな液晶素子上の画像を大 画面に拡大投影する構成を持つ。 技術的に詳細な説明は、 例えば非特許文献 1 (大画面ディスプレイ) に見られる。  In recent years, projection liquid crystal display devices have been widely used as video display devices that display large screens. The rear projection type liquid crystal display device is mainly used for presentation of personal computer data, and the front projection type liquid crystal display device is mainly used for presentation of personal computer data. The projection type liquid crystal display device has a configuration in which an image on a small liquid crystal element is enlarged and projected on a large screen using a projection optical system. A technically detailed description can be found, for example, in Non-Patent Document 1 (large screen display).
[0003] 代表的な投射型液晶表示装置の構成図を図 1に示す。 光源 4の光は光学部 品 5〜1 6により青 (B ) 、 緑 (G ) および赤 (R ) の成分に分離され、 そ れぞれに対応する液晶素子 2 B、 2 Gおよび 2 Rに導かれる。 各液晶表示素 子 2 R、 2 Gおよび 2 Bは入射側に入射側偏光子 1 R、 1 Gおよび 1 Bを、 出射側に出射側偏光子 3 R、 3 Gおよび 3 Bを備えている。 赤、 緑および青 に対応する、 入射側偏光子および出射側偏光子から成る一組の偏光子は、 液 晶素子を通過した所定の偏光方向の光を選択的に通過させる機能を持つ。 こ の機能により液晶素子 2 R、 2 Gおよび 2 Bを通過した三原色の光は、 光強 度変調された画像信号となる。 これら 3原色光は、 更に合成プリズム 1 7で 光合成され、 更に拡大投射レンズ系 1 8を通してスクリーン 1 9に投影され る。  FIG. 1 shows a configuration diagram of a typical projection type liquid crystal display device. The light from the light source 4 is separated into blue (B), green (G) and red (R) components by optical components 5 to 16, and the liquid crystal elements 2 B, 2 G and 2 R corresponding to the respective components. Led to. Each liquid crystal display element 2R, 2G and 2B has an incident side polarizer 1R, 1G and 1B on the incident side and an output side polarizer 3R, 3G and 3B on the output side. . A pair of polarizers composed of an entrance-side polarizer and an exit-side polarizer, corresponding to red, green, and blue, has a function of selectively passing light having a predetermined polarization direction that has passed through the liquid crystal element. With this function, the light of the three primary colors that has passed through the liquid crystal elements 2R, 2G, and 2B becomes a light intensity modulated image signal. These three primary colors are further synthesized by a synthesis prism 17 and further projected onto a screen 19 through an enlarged projection lens system 18.
[0004] 偏光素子に要求される偏光特性は、 希望の偏光面をもつ光信号を透過させ 、 それと直交する偏光面を持つ不要光信号を阻止する性質を持つ事である。 すなわち、 希望する偏光面を持つ光に対し大きな透過率を有し、 これと直交 する偏光面を持つ光に対しては、 小さな透過率を持つ事が望ましい特性であ る。 [0004] The polarization characteristic required for the polarizing element is to transmit an optical signal having a desired polarization plane and to block an unnecessary optical signal having a polarization plane orthogonal to the optical signal. In other words, it is desirable to have a large transmittance for light having a desired polarization plane and a small transmittance for light having a polarization plane orthogonal to the light.
[0005] これらの透過率の比は消光比と呼ばれ、 当業者により偏光素子の性能を表 現する性能指数として広く利用されている。 この指標を利用すると、 投射型 液晶表示装置に適用する偏光素子に要求される性能は、 光信号に対し大きな 透過率と大きな消光比を持つ事であると表現される。 工業的に利用可能な偏 光子は、 使用する波長の光に対し 7 0 <½以上の透過率と 1 0 : 1望ましくは 3 0 0 0 : 1の消光比を持つことが好ましいと言われている (特許文献 1 )  [0005] The ratio of these transmittances is called an extinction ratio, and is widely used by those skilled in the art as a figure of merit that expresses the performance of a polarizing element. If this index is used, the performance required for a polarizing element applied to a projection type liquid crystal display device is expressed as having a large transmittance and a large extinction ratio for an optical signal. It is said that an industrially available polarizer preferably has a transmittance of 70 <½ or more with respect to light of a wavelength to be used and an extinction ratio of 10: 1, preferably 30: 00: 1. (Patent Document 1)
[0006] 投射型液晶表示装置に対する社会的な要求は、 より大きく且つ鮮明な画像 を、 より小型の装置で実現する事である。 この要求を実現するために、 より 大きな光量の光源の適用およびより面積の小さな液晶素子の利用が最近の技 術トレンドとなっている。 その結果、 液晶素子のみならず、 その前後に置か れる偏光子には高いエネルギー密度の光が導入される。 不要光を吸収する機 能を有する偏光子に対しては、 特に高い耐熱性と耐光性を持つ事が要求され るようになってきている。 [0006] A social demand for a projection-type liquid crystal display device is to realize a larger and clearer image with a smaller device. To meet this demand, the application of a light source with a larger amount of light and the use of a liquid crystal element with a smaller area are recent technological trends. As a result, high energy density light is introduced not only into the liquid crystal element but also into the polarizer placed before and after the liquid crystal element. A polarizer having a function of absorbing unnecessary light is required to have particularly high heat resistance and light resistance.
[0007] 偏光子にはその原理に従い、 偏光面に依存し選択的に光を吸収する二色性 偏光子および非二色性偏光子 (Brewster型偏光子など) が存在する (特許文 献 2参照) 。 二色性偏光子は、 素子が薄型であり且つ不要光を吸収する特別 の装置を必要としないために、 特に小型化が要求される投射型液晶表示装置 に望ましい素子である。  [0007] According to the principle of polarizers, there are dichroic polarizers and non-dichroic polarizers (such as Brewster polarizers) that selectively absorb light depending on the plane of polarization (Patent Document 2). See). The dichroic polarizer is a desirable element for a projection type liquid crystal display device that is particularly required to be miniaturized because the element is thin and does not require a special device that absorbs unnecessary light.
[0008] 現在、 可視光領域に於いて実用的な光学性能を実現している二色性偏光素 子は有機材料からなる偏光フィルムのみである。 しかし、 有機樹脂製の偏光 子は耐熱性が低いと言う決定的な欠点を有している (特許文献 1参照) 。  [0008] Currently, the only dichroic polarizing element that achieves practical optical performance in the visible light region is a polarizing film made of an organic material. However, a polarizer made of an organic resin has a decisive drawback of low heat resistance (see Patent Document 1).
[0009] この欠点を除くために、 有機樹脂製の偏光フィルムは熱伝導率の高いサフ アイァ基板に貼り合せて使用されている (特許文献 3 ) 。 しかし、 熱伝導率 に優れたサファィァと張り合わせた偏光子も近年の高輝度化の技術的要求即 ち、 最も輝度が高い緑領域での偏光素子による光吸収■発熱による偏光子機 能の劣化を起こさないという要求を満たす事が出来ず、 有機樹脂フィルムを 熱から保護するために投射型液晶表示装置では冷却用ファンを含む冷却装置 が設置されている。 冷却装置は、 小型化という社会的なニーズに反するのみ ならず、 騒音という別な問題も生み出すことになつている。 In order to eliminate this drawback, a polarizing film made of an organic resin is used by being bonded to a sapphire substrate having high thermal conductivity (Patent Document 3). However, polarizers bonded with sapphire with excellent thermal conductivity are also in line with technical demands for higher brightness in recent years. In other words, light absorption by the polarizing element in the green region where the brightness is the highest ■ Projection-type liquid crystal display to protect the organic resin film from heat without satisfying the requirement that the polarizer function does not deteriorate due to heat generation The equipment is equipped with a cooling device including a cooling fan. Cooling devices not only contradict the social need for miniaturization, but also create another problem of noise.
[0010] この技術課題を解決する方法として、 光通信用の素子に適用されている偏 光ガラスを適用するアイディアが提案されている (特許文献 1 ) 。 しかし、 光通信用で使用する光波長は遠赤外領域であり可視光とは著しく異なるので 、 光通信用のガラス偏光子の技術が直ちに、 可視光の光を制御する投射型液 晶表示装置に直ちに適用出来るものではない。 特許文献 1に開示されている 発明には、 ガラス偏光素子に可視光領域の光に対して有効な特性を付与する ための技術は開示されていないため、 この発明を利用するだけでは、 ガラス 偏光子を使用した投射型液晶表示装置を実現することは困難である。  [0010] As a method for solving this technical problem, an idea of applying polarized glass applied to an element for optical communication has been proposed (Patent Document 1). However, the optical wavelength used for optical communication is in the far-infrared region and is significantly different from visible light. Therefore, the technology of glass polarizer for optical communication immediately controls the light of the projection type liquid crystal display device. Is not immediately applicable. The invention disclosed in Patent Document 1 does not disclose a technique for imparting an effective characteristic to light in the visible light region to a glass polarizing element. It is difficult to realize a projection type liquid crystal display device using a child.
[001 1 ] ここで、 偏光ガラスの技術背景について簡単に説明する。 偏光ガラスは光 学的に透明なガラス基体中に配向分散した形状異方性を有する金属微粒子を 含む事を特徴とするガラスであって、 金属微粒子表面上に存在する表面ブラ ズモンの異方的な共鳴吸収現象を利用し偏光特性を実現するものである (特 許文献 4、 非特許文献 2参照) 。  [001 1] Here, the technical background of polarizing glass will be briefly described. Polarized glass is characterized in that it contains fine metal particles with shape anisotropy oriented and dispersed in an optically transparent glass substrate, and is an anisotropic surface plasmon present on the surface of fine metal particles. The polarization characteristic is realized by using a unique resonance absorption phenomenon (see Patent Document 4 and Non-Patent Document 2).
[0012] 特許文献 4より引用した金属微粒子の表面プラズモン共鳴吸収特性を図 2 として引用する。 図 2のグラフ Aは球状の金属微粒子による表面プラズモン 共鳴吸収に対応する。 一方、 棒状に延伸された形状異方性を有する金属微粒 子の共鳴吸収は、 入射光の偏光面と形状異方性を有する金属微粒子の相互関 係により異なる特性を示す。  [0012] FIG. 2 shows the surface plasmon resonance absorption characteristics of the metal fine particles cited from Patent Document 4. Graph A in Fig. 2 corresponds to surface plasmon resonance absorption by spherical metal particles. On the other hand, the resonance absorption of rod-shaped metal particles having shape anisotropy exhibits different characteristics depending on the correlation between the polarization plane of incident light and metal particles having shape anisotropy.
[0013] 偏光面が金属微粒子の長手方向に平行な場合、 Bで示す特性を示す。 特性 Aに比較し、 共鳴吸収の波長はより長い波長に移動している事が判る。 この 共鳴吸収波長は金属微粒子の長径と短径の比に依存し、 この比が大きいほど 共鳴吸収波長はより大きくなる事が知られている (非特許文献 2参照) 。 一 方、 長手方向に直交する偏光面を持つ光に対しては特性 Cで表す性質を示す [0014] 図 2から、 このガラスが、 6 0 0 n m付近の光に対し偏光特性を示す事が 理解される。 即ち、 金属粒子の長手方向に平行な偏光面を持つ光は強い吸収 により小さな透過率を持つ。 なお、 この金属粒子の長手方向に平行な偏光面 を持つ光に対する透過率を以下 T || <½と表現する。 一方、 金属粒子の長手方 向に直交する偏光面を持つ光に対しては吸収が小さく、 従ってより大きな透 過率を示す。 なお、 金属粒子の長手方向に直交する偏光面を持つ光に対する 透過率を以下丁丄%と表現する。 このようなメカニズムで、 偏光特性が実現 する。 なお、 図 2に開示されている特性は、 投射型液晶表示装置に必要な特 性即ち、 5 0 0 n m〜 6 0 0 n mで平行吸収曲線 Βと垂直吸収曲線 Cとの間 での比、 つまり消光比が充分大きいことと、 平行吸収率の値が充分大きいこ ととを実現していない。 [0013] When the polarization plane is parallel to the longitudinal direction of the metal fine particles, the characteristics indicated by B are exhibited. Compared to characteristic A, it can be seen that the wavelength of resonance absorption has shifted to a longer wavelength. It is known that this resonance absorption wavelength depends on the ratio of the major axis to the minor axis of the metal fine particles, and that the greater the ratio, the greater the resonance absorption wavelength (see Non-Patent Document 2). On the other hand, for light having a polarization plane perpendicular to the longitudinal direction, the property expressed by property C is exhibited. [0014] From FIG. 2, it is understood that this glass exhibits polarization characteristics with respect to light in the vicinity of 60 nm. That is, light having a polarization plane parallel to the longitudinal direction of the metal particles has a small transmittance due to strong absorption. The transmittance for light having a polarization plane parallel to the longitudinal direction of the metal particles is expressed as T || <½. On the other hand, the light having a polarization plane perpendicular to the longitudinal direction of the metal particles has a small absorption, and therefore shows a higher transmittance. The transmittance for light having a polarization plane perpendicular to the longitudinal direction of the metal particles is expressed as just%. With this mechanism, polarization characteristics are realized. The characteristics disclosed in FIG. 2 are the characteristics required for the projection type liquid crystal display device, that is, the ratio between the parallel absorption curve Β and the vertical absorption curve C between 500 nm and 600 nm, In other words, it has not realized that the extinction ratio is sufficiently large and that the parallel absorptivity value is sufficiently large.
[0015] 偏光ガラスおよび偏光ガラスを利用したガラス偏光子に関しては多くの技 術が提案されている。 これらの技術の多くは赤外線領域の光に対して適用可 能なガラス偏光子に関わる (特許文献 5および特許文献 6等) ものであり、 本発明の目的とする投射型液晶表示装置に利用する可視光領域の光に適用可 能な技術は開示されていない。  [0015] Many techniques have been proposed for polarizing glass and glass polarizers using polarizing glass. Many of these technologies relate to glass polarizers that can be applied to light in the infrared region (Patent Documents 5 and 6, etc.), and are used for the projection type liquid crystal display device that is the object of the present invention. A technique applicable to light in the visible light region is not disclosed.
[0016] 可視光領域の光に対し適用可能なガラス偏光子に関する発明は少ない。 特 許文献 7は形状異方性を有する銅微粒子の特性を利用して可視光領域の光に 対し有効な偏光素子を提供する技術である (開示されている特性を図 3に引 用) 。 し力、し、 図 3に見られるように、 特に 6 0 0 n m以下の波長に対して 大きな消光比を実現する事が出来ない即ち、 延伸軸に垂直な透過率曲線 C、 Eに対する平行透過率曲線それぞれ D、 Fの値の比 (消光比) が小さく、 ま た透過率 Cの値が僅か 1 0〜6 0 %でしかないことは、 実用的な特性を有し ていないと結論される。  There are few inventions related to glass polarizers that can be applied to light in the visible light region. Patent Document 7 is a technology that provides a polarizing element effective for light in the visible light region by utilizing the characteristics of copper fine particles having shape anisotropy (the disclosed characteristics are applied to FIG. 3). As shown in Fig. 3, it is not possible to achieve a large extinction ratio, especially for wavelengths below 600 nm, ie parallel transmission with respect to the transmission curves C and E perpendicular to the stretching axis. It is concluded that there is no practical characteristic that the ratio (extinction ratio) of the D and F values of the rate curves is small and the transmittance C is only 10 to 60%. The
[0017] 特許文献 8は、 可視光領域の波長に対し二色性の吸収を実現する技術を開 示するが、 本発明が目的とする投射型液晶表示装置に適用可能な特性即ち、 高い透過率および高い消光比を実現するという具体的かつ定量的な記載がな いため偏光子として実現可能とは言えない。 特許文献 9についても特許文献 8と同様に、 可視光領域に於いて有効な消光比を得るための技術を提案する 力 高い透過率を実現する技術は開示されていない。 [0017] Patent Document 8 discloses a technique that realizes dichroic absorption with respect to wavelengths in the visible light region. The characteristics applicable to the projection type liquid crystal display device to which the present invention is intended, that is, Since there is no specific and quantitative description of achieving high transmittance and high extinction ratio, it cannot be realized as a polarizer. Similarly to Patent Document 8, Patent Document 9 proposes a technique for obtaining an effective extinction ratio in the visible light region, and does not disclose a technique for realizing high transmittance.
[0018] C O D I X X社は、 銀イオンをガラス表面から拡散させることによって導 入し、 熱処理によって銀微粒子を析出させた後、 延伸加工することによりこ の銀微粒子に形状異方性を付与する製造技術を利用し、 可視光領域で有効な 偏光ガラスを販売している (非特許文献 3 ) 。 しかし、 イオン拡散工程は一 般に不安定であり、 またガラスの厚さ方向に銀イオンの濃度分布ができるの で、 生成される銀粒子の寸法に不均一性が生ずる傾向がある。 その結果、 偏 光子の特性ばらつきが生じるという弱点を持つ。 さらに、 延伸する粒子が固 体の金属銀粒子であるため液滴状態で延伸されるハロゲン化銀粒子よりも大 きな延伸張力でないと延伸できないので延伸時にガラスが破断しやすいとい う問題がある。 [0018] CODIXX is a manufacturing technology that introduces silver ions by diffusing from the glass surface, deposits silver fine particles by heat treatment, and then stretches them to impart shape anisotropy to the silver fine particles. Is used to sell polarizing glass that is effective in the visible light region (Non-patent Document 3). However, the ion diffusion process is generally unstable, and the concentration distribution of silver ions in the glass thickness direction tends to cause nonuniformity in the size of the silver particles produced. As a result, there is a weak point that the characteristic variation of the polarizer occurs. Furthermore, since the stretching particles are solid metallic silver particles, they cannot be stretched unless the stretching tension is larger than the silver halide grains that are stretched in a droplet state, so that there is a problem that the glass tends to break during stretching. .
[0019] 工業的に広く使用されている通信用赤外光ガラス偏光子は、 これと異なる 製造方法を利用している。 即ち、 特許文献 4および特許文献 5に示されてい るように、 ハロンゲン化銀を一旦析出させ、 その後ハロゲン化銀を還元する 事により銀微粒子を生成する製造方法を採用している。 しかしながら、 この 製造方法で作製された偏光子は可視域で使用できる実用性能を示さない (特 許文献 5 ) 。 例えば、 特許文献 5の図 1 (本明細書では図 4として引用) 及 び明細書の段落 「0 0 2 2」 で次のように述べている。 「■ · 4 0 0 η Γη _ 7 0 0 n mの全領域に亘り効果的な光偏光子を製造するには、 ハロゲン化銀 ガラスは不満足なものとなっている。 」  [0019] A communication infrared light glass polarizer widely used in industry uses a different manufacturing method. That is, as disclosed in Patent Document 4 and Patent Document 5, a production method is adopted in which silver fine particles are produced by once precipitating silver halide and then reducing the silver halide. However, a polarizer produced by this production method does not exhibit practical performance that can be used in the visible range (Patent Document 5). For example, FIG. 1 of Patent Document 5 (cited as FIG. 4 in this specification) and paragraph “0 0 2 2” of the specification state as follows. “■ · Silver halide glass is unsatisfactory to produce an effective optical polarizer over the entire range of 4 0 0 η Γη _ 7 0 0 nm.”
[0020] 以上述べたように、 工業的に広く適用可能な安定な製造技術に基づき、 投 射型液晶表示装置に適用可能な可視光対応のガラス偏光子は存在しない。  [0020] As described above, there is no glass polarizer for visible light applicable to a projection type liquid crystal display device based on a stable manufacturing technique widely applicable industrially.
[0021 ] 特許文献 1 :特開 2 0 0 4 _ 7 7 8 5 0号公報  [0021] Patent Document 1: Japanese Patent Application Laid-Open No. 2004-7 7 8 50
特許文献 2:特表 2 0 0 2— 5 1 9 7 4 3号公報  Patent Document 2: Special Table 2 0 0 2— 5 1 9 7 4 3
特許文献 3:特開 2 0 0 0 _ 2 0 6 5 0 7号公報 特許文献 4 :米国特許 4, 479, 8 1 9号公報 Patent Document 3: Japanese Patent Application Laid-Open No. 2 0 00 _ 2 0 6 5 0 7 Patent Document 4: U.S. Pat.No. 4,479,8 1 9
特許文献 5:特許 1 6 1 8477号公報  Patent Document 5: Japanese Patent No. 1 6 1 8477
特許文献 6:特許第 274060 1号公報  Patent Document 6: Japanese Patent No. 274060 1
特許文献 7:特許第 2885655号公報  Patent Document 7: Japanese Patent No. 2885655
特許文献 8:特表 2004— 523804号公報  Patent Document 8: Special Table 2004-523804
特許文献 9:特公平 2— 406 1 9号公報  Patent Document 9: Japanese Patent Publication No. 2-406 19
特許文献 10:特許第 26280 1 4号公報  Patent Document 10: Japanese Patent No. 26280 14
特許文献 11 :特許第 3549 1 98号公報  Patent Document 11: Japanese Patent No. 3549 1 98
非特許文献 1 :西田信夫、 大画面ディスプレイ (シリーズ先端ディスプレイ技 術 7) 、 共立出版、 東京、 2002年発行  Non-Patent Literature 1: Nobuo Nishida, Large Screen Display (Series Advanced Display Technology 7), Kyoritsu Publishing, Tokyo, 2002
非特許文献 2: S. L i n kおよび M. A. E I _S a y e d、 J . P h y s . C h em. B 1 03 ( 1 999) 84 1 0〜 8426ページ  Non-Patent Document 2: S. L ink and M. A. E I _S ay ed, J. P h y s. Ch em. B 1 03 (1 999) 84 1 0-8426
非特許文献 3 :鈴木巧一、 工業材料 Vol.52, No.12、 102〜107ページ  Non-Patent Literature 3: Takuichi Suzuki, Industrial Materials Vol.52, No.12, pp. 102-107
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0022] 本発明は、 投射型液晶表示装置などに適用可能な、 ハロゲン化銀含有ガラ スを出発材料として、 可視光領域 (500 n m〜 600 n m) の光に対し優 れた透過率および消光比を有するガラス偏光子を実現する技術を提供するこ とを目的とするものである。  [0022] The present invention is applicable to a projection-type liquid crystal display device, etc., starting from silver halide-containing glass, and has excellent transmittance and quenching for light in the visible light region (500 nm to 600 nm). It is an object to provide a technique for realizing a glass polarizer having a ratio.
課題を解決するための手段  Means for solving the problem
[0023] 本発明のガラス偏光素子はガラス中に配向分散した形状異方性を有する金 属微粒子の表面プラズモン共鳴を利用する。 同一の原理を利用しながら、 図 4に示された先行技術は投射型液晶表示装置に適用可能な偏光子の持つべき 性能を実現していない。 その原因を、 図 2を利用して説明する。  The glass polarizing element of the present invention utilizes surface plasmon resonance of metal fine particles having shape anisotropy oriented and dispersed in glass. While using the same principle, the prior art shown in Fig. 4 has not realized the performance that a polarizer applicable to a projection-type liquid crystal display device should have. The reason for this will be described with reference to FIG.
[0024] 図 2の曲線 Cは、 形状異方性を有する金属微粒子の長手方向に直交する偏 光面を持つ光に対する表面プラズモン共鳴吸収が約 380 n m付近に存在す る事を示している。 同時に、 この図 2の曲線 Cは、 その影響が 500 n mか ら 600 n mに及んでいることも示している。 この影響は通過すべき偏光面 を持つ光をより高い透過率で透過する効果をもたらすことを示す。 と同時に 、 長手方向に平行な偏光面を持つ光に対しての吸収を曲線 Bが示すことから 6 0 0 n m付近では偏光面の違いで吸収率即ち透過率に大きな差異を生ずる ことを示す。 [0024] Curve C in Fig. 2 shows that surface plasmon resonance absorption for light having a polarization plane orthogonal to the longitudinal direction of the metal fine particles having shape anisotropy exists around 380 nm. At the same time, curve C in Figure 2 shows that the effect extends from 500 nm to 600 nm. This effect is the polarization plane to pass It shows that it has the effect of transmitting light having a higher transmittance. At the same time, the curve B shows the absorption of light with a polarization plane parallel to the longitudinal direction, which indicates that the difference in polarization plane causes a large difference in the absorptivity, that is, the transmittance near 600 nm.
[0025] 赤外線領域の光線に適用する偏光子の場合、 透過させる光はこの共鳴吸収 の波長から遠く離れた波長なので、 上記の影響は無視可能なレベルに小さく 、 実用上の問題にならない。 これに対して、 可視光の偏光素子を実現する場 合、 上記の影響は無視出来ないレベルとなる。 従って、 緑領域可視光に適用 するガラス偏光子を実現するには、 5 0 0 n m〜 6 0 0 n mの波長領域の光 吸収を極小化する新たな技術手段が必要になる。 単純な技術手段として、 金 属粒子の濃度を減らすことにより、 この吸収を抑制し、 通過光に対する透過 率を向上させることは可能になるが、 そのような技術手段を採用した場合、 抑制すべき偏光面を持つ光を抑制する事が困難になる。 結果的に必要な消光 比を実現出来ない事になる。  [0025] In the case of a polarizer applied to light in the infrared region, since the transmitted light is far away from the wavelength of this resonance absorption, the above effect is negligible and does not cause a practical problem. On the other hand, in the case of realizing a polarizing element for visible light, the above effect is at a level that cannot be ignored. Therefore, in order to realize a glass polarizer applied to the green region visible light, a new technical means for minimizing the light absorption in the wavelength region of 500 nm to 600 nm is required. As a simple technical measure, it is possible to suppress this absorption by reducing the concentration of metal particles and improve the transmittance for transmitted light. However, if such a technical measure is adopted, it should be suppressed. It becomes difficult to suppress light having a polarization plane. As a result, the necessary extinction ratio cannot be realized.
[0026] 発明者らは、 この問題を研究した結果、 銀粒子の寸法を小さくする事によ つて、 5 0 0 n m付近の透過率を向上させることが可能になることを発見し た。 即ち、 4 0 n m以下の粒径を有するハロゲン化銀から作成した銀粒子を 使用することにより、 金属微粒子の長手方向に垂直な偏光面を持つ光に対す る透過率 T丄%を大きくする事が可能になることを見出した。  [0026] As a result of studying this problem, the inventors have found that the transmittance in the vicinity of 500 nm can be improved by reducing the size of the silver particles. That is, by using silver particles prepared from silver halide having a particle size of 40 nm or less, the transmittance T 丄% for light having a polarization plane perpendicular to the longitudinal direction of the metal fine particles is increased. Found that it would be possible.
[0027] 更に、 小さな粒径のハロゲン化銀の利用は、 偏光子が阻止する光、 すなわ ち形状異方性を持つ金属微粒子の長手方向に平行な偏光面を持つ光の透過率 T II 0/0を 5 0 0 n m付近まで小さな値に抑圧するという、 別な効果を生み出 した。 その結果、 粒径の小さなハロゲン化銀を利用することにより、 透過さ せるべき光の透過率丁丄%を 5 0 0 n m付近で大きくすることが実現出来る だけではなく、 同時に、 消光比を大きく保つことが可能になった。  [0027] Furthermore, the use of silver halide having a small particle size is achieved by the transmittance T II of light blocked by a polarizer, that is, light having a polarization plane parallel to the longitudinal direction of metal fine particles having shape anisotropy. It produced another effect of suppressing 0/0 to a small value close to 500 nm. As a result, by using silver halide with a small grain size, it is possible not only to increase the transmittance of light to be transmitted, but also to increase the extinction ratio. It became possible to keep.
[0028] 本発明はハロゲン化銀を分散析出したガラス材料を出発材料とする点で従 来の技術を基礎とするが、 可視光領域の光に対し有効な機能を実現するため に、 幾つかの技術を追加する必要がある。 [0029] 従来の 1. 3〜 1. 5 mの近赤外域で用いられている光通信用のハロゲ ン化銀を用いた偏光ガラスの技術では、 塩化銀と臭化銀の混晶でかつ粒径が 50 n m以上の粒子を延伸して偏光ガラスが作製されてきた。 このため、 本 発明による可視域用偏光ガラスに関する技術は全く開示されていない。 [0028] The present invention is based on the conventional technology in that the starting material is a glass material in which silver halide is dispersed and precipitated. In order to realize an effective function for light in the visible light region, Need to add technology. [0029] The conventional polarizing glass technology using silver halide for optical communication used in the near infrared region of 1.3 to 1.5 m is a mixed crystal of silver chloride and silver bromide and Polarizing glass has been produced by stretching particles having a particle size of 50 nm or more. For this reason, the technique regarding the polarizing glass for visible regions by this invention is not disclosed at all.
[0030] 本発明では銀粒子の粒子サイズだけでなく、 析出ハロゲン化銀粒子の組成 についても精査し、 臭素を含まない塩化銀単独の粒子の方が透過させるべき 光の 500 n m付近の透過率丁丄%を高めかつ消光比を大きくすることがで きることを見出した。  [0030] In the present invention, not only the grain size of the silver grains but also the composition of the precipitated silver halide grains is scrutinized, and the silver chloride-free grains that do not contain bromine should transmit light having a transmittance around 500 nm. We have found that it is possible to increase the percentage and increase the extinction ratio.
[0031] 投射型液晶表示装置では、 光源に水銀ランプが使用されており、 また可視 光光源は、 多くの場合紫外光の成分をも含む。 ハロゲン化銀の微粒子を析出 させたガラスは、 紫外光をガラスに照射すると可視域から近赤外域に渡る吸 収帯が生じてガラスが着色し、 紫外光を遮断すると照射前の状態に戻る特性 を有し、 フォトクロミックガラスの名で広く知られている。  In the projection type liquid crystal display device, a mercury lamp is used as the light source, and the visible light source often includes an ultraviolet light component. Glass with silver halide fine particles deposited has an absorption band that extends from the visible to the near-infrared when irradiated with ultraviolet light, and the glass is colored.When the ultraviolet light is blocked, the glass returns to its pre-irradiation state. And is widely known by the name of photochromic glass.
[0032] 図 2の形状異方性を持つ金属微粒子の長手方向に平行な偏光面を持つ光の 透過スぺク トル (T ||スぺク トル) では 500〜700 n mの波長域はよく 吸収するが、 300〜 400 n m波長域に表面プラズモン共鳴吸収の反転モ -ドによる透過ピークがみられる。 この帯域光が丁度ハロゲン化銀の感光波 長に対応しているため、 偏光ガラスの内部に還元されずに残っているハロゲ ン化銀が感光して可視域の透過率を低下させてしまう。 したがって、 本発明 の可視域用偏光ガラスとしてはフォトク口ミズムが発現しない材料を選択す ることが好ましい。  [0032] In the transmission spectrum (T || spectrum) of light with a polarization plane parallel to the longitudinal direction of metal fine particles with shape anisotropy in Figure 2, the wavelength range of 500 to 700 nm is good. Although absorption occurs, a transmission peak due to the inversion mode of surface plasmon resonance absorption is observed in the 300 to 400 nm wavelength region. Since this band light just corresponds to the photosensitive wavelength of silver halide, the silver halide remaining without being reduced inside the polarizing glass is exposed to light, and the transmittance in the visible region is lowered. Therefore, it is preferable to select a material that does not exhibit photoguchimism for the visible range polarizing glass of the present invention.
[0033] フォトク口ミズムを示さない偏光ガラスに関する先行技術としては、 C u Oを殆ど含有しないか母ガラス組成を限定 (モル比で (R20_A I 203) : B203 <0. 25)した技術 (特許文献 9) 、 実質的に C u Oを含まずかつ ガラス中の銀を酸化状態に保っために有効な量の C e 02を加える技術 (特許 文献 1 0) および実質的に C u Oを含まず、 K20を多く含みかつ B a Oを加 えてガラスの塩基性を強めた組成に限定して銀の金属銀への還元を防止した 技術 (特許文献 1 1 ) がある。 [0034] 本発明では、 ガラス溶融におけるガラス原料としてアルカリ酸化物の 0 .[0033] As prior art related to a polarizing glass that does not exhibit photo-irregularity, Cu O is hardly contained or the mother glass composition is limited (in molar ratio (R 2 0_A I 2 0 3 ): B 2 0 3 <0 25) technology (Patent Document 9), a technology that substantially does not contain CuO and adds an effective amount of C e 0 2 to keep silver in the glass in an oxidized state (Patent Document 10) and substantially free of C u O, K 2 0 and contains many and B a O was prevented reduction is limited to compositions strengthened basic pressure forte glass to metallic silver silver technique (Patent Document 1 1) [0034] In the present invention, an alkali oxide of 0.
5〜5 w t %を硝酸塩で加える事によって、 ガラス中に銀がイオンとして溶 解し、 ノンフォトクロミックなガラスを得る事ができた。 すなわち、 従来技 術で銀の酸化剤として用いられる C u Oや C e 0 2を加えず、 且つ、 母ガラス の組成を限定することなく、 ノンフォトク口ミックなガラスを得る事ができ た。 By adding 5 to 5 wt% of nitrate, silver was dissolved as ions in the glass, and a non-photochromic glass could be obtained. That is, without the addition of C u O and C e 0 2 used as a silver oxidizing agent in a conventional technology, and, without limiting the composition of the base glass, could be obtained Nonfotoku port Mick glass.
発明の効果  The invention's effect
[0035] 以上説明したように、 本発明によれば、 5 0 0 n m〜6 0 0 n mにおける 波長領域において透過率が 7 5 %以上で消光比が 2 5 d B以上のガラス偏光 子を提供することができる。 このような性能を有し、 且つ耐熱性及び耐光性 (特に耐紫外線性) に優れたガラス偏光子を適用した投射型液晶表示装置は 、 よりエネルギーの大きな光源の利用を可能とし、 その結果、 小型でより明 るい表示装置が実現する事が可能になる。 更に、 従来の樹脂製偏光フィルム は熱や光による性能の劣化が見られた力 耐熱性、 耐光性に優れる偏光ガラ スの利用により、 投射型液晶表示装置の画質は高い状態で維持可能となる。 図面の簡単な説明  [0035] As described above, according to the present invention, there is provided a glass polarizer having a transmittance of 75% or more and an extinction ratio of 25 dB or more in the wavelength region from 500 nm to 600 nm. can do. The projection-type liquid crystal display device to which the glass polarizer having such performance and heat resistance and light resistance (particularly UV resistance) is applied enables the use of a light source with higher energy, and as a result, A small and brighter display device can be realized. Furthermore, the power of conventional resin polarizing films has been observed to deteriorate due to heat and light. By using polarizing glass with excellent heat resistance and light resistance, the image quality of the projection-type LCD can be maintained at a high level. . Brief Description of Drawings
[0036] [図 1 ]図 1は、 液晶プロジェクターの光学エンジン概念図 (特許文献 1 ) であ る。  [0036] FIG. 1 is a conceptual diagram of an optical engine of a liquid crystal projector (Patent Document 1).
[図 2]図 2は、 延伸配向銀粒子および無配向銀粒子の吸収スぺク トル (特許文 献 4 ) を示すグラフである。  FIG. 2 is a graph showing absorption spectra (Patent Document 4) of stretch-oriented silver particles and non-oriented silver particles.
[図 3]図 3は、 銅粒子の延伸による可視光偏光した光の透過率曲線 (特許文献 7 ) を示すグラフである。  [FIG. 3] FIG. 3 is a graph showing a transmittance curve (Patent Document 7) of light polarized by visible light by stretching of copper particles.
[図 4]図 4は、 銀粒子の延伸による可視光偏光した光透過率曲線 (特許文献 7 ) を示すグラフである。  FIG. 4 is a graph showing a visible light polarized light transmittance curve (Patent Document 7) by stretching of silver particles.
[図 5]図 5は、 実施例 1の 4 8 0 nm〜6 2 0 n m波長範囲での光透過率および 消光比曲線を示すグラフである。  FIG. 5 is a graph showing light transmittance and extinction ratio curves of Example 1 in the range of 4800 nm to 620 nm.
[図 6]図 6は、 実施例 2の 4 8 0 nm〜6 2 0 n m波長範囲での光透過率および 消光比曲線を示すグラフである。 [図 7]図 7は、 実施例 3の 4 8 0 nm〜6 2 0 n m波長範囲での光透過率および 消光比曲線を示すグラフである。 FIG. 6 is a graph showing light transmittance and extinction ratio curves of Example 2 in the wavelength range from 4800 nm to 620 nm. FIG. 7 is a graph showing light transmittance and extinction ratio curves in the wavelength range of 4 80 nm to 6 20 nm in Example 3.
[図 8]図 8は、 実施例 4の 4 8 0 nm〜6 2 0 n m波長範囲での光透過率および 消光比曲線を示すグラフである。  FIG. 8 is a graph showing light transmittance and extinction ratio curves of Example 4 in the range of 4800 nm to 620 nm.
[図 9]図 9は、 実施例 5の 4 8 0 nm〜6 2 0 n m波長範囲での光透過率および 消光比曲線を示すグラフである。  FIG. 9 is a graph showing light transmittance and extinction ratio curves of Example 5 in the wavelength range from 4800 nm to 620 nm.
[図 10]図 1 0は、 実施例 6の 4 8 0 nm〜6 2 0 n m波長範囲での光透過率お よび消光比曲線を示すグラフである。  FIG. 10 is a graph showing light transmittance and extinction ratio curves of Example 6 in the wavelength range of 4800 nm to 620 nm.
[図 1 1 ]図 1 1は、 比較例 1の 4 8 0 nm〜6 2 0 n m波長範囲での光透過率お よび消光比曲線を示すグラフである。  [FIG. 11] FIG. 11 is a graph showing the light transmittance and extinction ratio curve of Comparative Example 1 in the wavelength range of 4800 nm to 620 nm.
[図 12]図 1 2は、 比較例 2の 4 8 0 nm〜6 2 0 n m波長範囲での光透過率お よび消光比曲線を示すグラフである。  FIG. 12 is a graph showing light transmittance and extinction ratio curves in the wavelength range of 4 80 nm to 6 20 nm of Comparative Example 2.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0037] 以下、 本発明の実施の形態について説明する。 本発明を実施するための製 造技術は、 公知の赤外線用偏光ガラスを製造する技術を基に、 ハロゲン化銀 の析出粒子を微細化させる技術およびフォトク口ミズムの実現を防止する技 術を追加する事により実現される。  Hereinafter, embodiments of the present invention will be described. Manufacturing technology for carrying out the present invention is based on the technology for manufacturing known infrared polarizing glass, and technology for refining silver halide precipitated grains and technology for preventing the realization of photoguchimism are added. It is realized by doing.
[0038] まず、 所定の組成のガラスバッチを準備する。 この時、 下記の事項に注意 して組成及び原料を選定する。 可視光領域で使用する偏光子に適用するガラ スは、 光照射により透過率が劣化する、 いわゆるフォトクロミック特性を持 たないガラスを選定する必要がある。 このためには、 ガラス原料は酸化銅の 不純物混入を厳密に避けるなどの工夫が必要になる。 また、 ハロゲン化銀の 導入量組成は最終的に透過率と消光比を両立可能な値に選択する。  [0038] First, a glass batch having a predetermined composition is prepared. At this time, pay attention to the following items and select the composition and raw materials. The glass applied to the polarizer used in the visible light region must be selected from glass that does not have so-called photochromic properties, whose transmittance deteriorates when irradiated with light. To this end, glass materials must be devised to strictly avoid copper oxide impurities. In addition, the composition of the amount of silver halide introduced is finally selected to be a value that can achieve both transmittance and extinction ratio.
[0039] 所定の組成のガラスバッチを溶解し、 型に注ぎ入れることにより板状のガ ラスを作製する。 次に、 熱処理により母ガラス中にハロゲン化金属粒子を析 出させる。 析出条件は一般に熱処理温度が低いほど、 熱処理時間が短いほど 粒径は小さくなる。 熱処理条件はガラスの種類■組成に依存して最適化され る。 [0040] 平均粒子径 4 0 n m以下のハロゲン化金属粒子が分散された母ガラスは、 所定の加工を経て、 板状のプリフォームとなり延伸工程に移される。 [0039] A glass batch having a predetermined composition is melted and poured into a mold to produce a plate-like glass. Next, metal halide particles are deposited in the mother glass by heat treatment. In general, the lower the heat treatment temperature and the shorter the heat treatment time, the smaller the particle size. The heat treatment conditions are optimized depending on the glass type and composition. [0040] The mother glass in which metal halide particles having an average particle diameter of 40 nm or less are dispersed is subjected to a predetermined processing to become a plate-like preform and is transferred to a stretching process.
[0041 ] 延伸工程では、 還元後の金属粒子が適切なァスぺク ト比を有するようにな るように、 ガラスの粘度 (直接的には加熱温度) 、 延伸張力 (ガラスを延伸 する力 =ガラスにかける荷重) を調整して、 プリフォームを延伸する。 [0041] In the drawing process, the viscosity of the glass (directly the heating temperature), the drawing tension (the force for drawing the glass = so that the reduced metal particles have an appropriate aspect ratio) Adjust the load on the glass and stretch the preform.
[0042] 延伸されたガラスは、 延伸されたハロゲン化銀粒子の一部または全部を銀 粒子とするために還元処理される。 還元処理の時間および温度および雰囲気 は、 表面付近に存在する、 還元された金属粒子層の深さを決定するので、 最 終特性を実現するよう注意深く決定されなくてはならない。 その後、 反射防 止膜を成膜して、 本発明の偏光素子が完成する。 [0042] The stretched glass is subjected to a reduction treatment so that part or all of the stretched silver halide grains become silver particles. The time and temperature of the reduction treatment and the atmosphere determine the depth of the reduced metal particle layer present near the surface and must be carefully determined to achieve the final properties. Thereafter, an antireflection film is formed to complete the polarizing element of the present invention.
実施例  Example
[0043] 以下、 本発明について、 実施例及び比較例を用いて更に具体的に説明する 。 表 1に実施例及び比較例を示した。 なお、 本発明の技術的範囲は以下の実 施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples. Table 1 shows examples and comparative examples. The technical scope of the present invention is not limited to the following examples.
2,23 W w* ;尸d ;尸0044/os 0580.08 B.3〇 A -o 2,23 W w *; 尸 d; 尸 0044 / os 0580.08 B.30 A -o
Figure imgf000014_0001
Figure imgf000014_0001
9. 5 %、 L i 2 O ; 1 . 9 %、 N a 2 O ; 2. 0 %、 K 2 O ; 9. 6 %、 A g ; 0. 3 2%、 C I ; 0. 3 7%となるように、 S i 02、 H3 B03、 A I (O H) 3、 L i 2C03、 N a N 03、 (N a 2C03) 、 K2 C03、 N a C I、 A g C I を原料として調合して原料バッチを準備した。 このとき 2重量%の 320を硝酸塩原料でぁる!\1 3 1\103 (硝酸ナトリウム) から配合した。 この 原料バッチを 3 O O c c容量の白金坩堝にて、 1 430°Cで 4時間溶融した 後、 金型に流し込みローラ一でプレスしてほぼ 2 50 X 60 X 2. 5 mm厚の 板状ガラスを得た。 9. 5%, L i 2 O ;. 1 9%, N a 2 O; 2. 0%, K 2 O; 9. 6%, A g; 0. 3 2%, CI; 0. 3 7% S i 0 2 , H 3 B0 3 , AI (OH) 3 , L i 2 C0 3 , N a N 0 3 , (N a 2 C0 3 ), K 2 C0 3 , N a CI, A raw material batch was prepared by blending A g CI as a raw material. At this time, 2% by weight of 3 20 was used as a nitrate raw material! \ 1 3 1 \ 10 3 (sodium nitrate). This raw material batch was melted in a platinum crucible with a capacity of 3 OO cc at 1 430 ° C for 4 hours, then poured into a mold and pressed with a roller, approximately 250 x 60 x 2.5 mm thick sheet glass Got.
[0045] この板状ガラスを熱処理して塩化銀の粒子を析出させた。 塩化銀粒子の粒 径は表 1に示す熱処理温度及び熱処理時間によって制御した。 電子顕微鏡に より塩化銀粒子の平均粒子径を測定した結果を表 1に併せて示してある。  [0045] This plate glass was heat-treated to precipitate silver chloride particles. The grain size of silver chloride grains was controlled by the heat treatment temperature and heat treatment time shown in Table 1. Table 1 also shows the results of measuring the average particle size of silver chloride grains using an electron microscope.
[0046] 得られたガラスプリフォームを延伸炉内に垂直にセットし、 プリフォーム の送り速度と引取り速度とをバランスさせてプリフォ一ムを定速で下方へ送 りながら加熱■延伸を行った。 延伸時のガラスの粘度、 延伸張力 (ガラスに かかる単位面積当たりの荷重) を表 1に示した。 延伸張力は主としてガラス 加熱温度によって制御した。 (これらの速度設定値も表 1に示してある。 ) [0046] The obtained glass preform is set vertically in a stretching furnace, and the preform is fed at a constant speed and the stretching is performed while the preform feeding speed and the take-up speed are balanced, and stretching is performed. It was. Table 1 shows the viscosity and stretching tension of the glass during stretching (load per unit area on the glass). The stretching tension was controlled mainly by the glass heating temperature. (These speed settings are also shown in Table 1.)
[0047] 延伸されたガラステープを約 5 Omm長に切断し両面を研磨した後、 これ を還元炉で水素ガスを約 1 . 5リツトル/分の割合でフローさせながら表 1に 示す還元条件 (温度、 時間) で熱処理した。 [0047] After the stretched glass tape was cut to about 5 Omm length and polished on both sides, the reduction conditions shown in Table 1 were performed while flowing hydrogen gas at a rate of about 1.5 liters / minute in a reducing furnace. Temperature and time).
[0048] 次に成膜工程であるが、 洗浄■乾燥後、 蒸着チャンバ一内に複数枚の試料 をセットし、 S i 02と T a 205の交互 4層膜 (反射防止膜) をスパッタ一法 あるいは真空蒸着法により試料両面に成膜し反射防止効果をもたせた。 [0048] Next, in the film formation process, after washing and drying, a plurality of samples are set in the vapor deposition chamber, and four alternating layers of Si 0 2 and Ta 2 0 5 (antireflection film) Was deposited on both sides of the sample by sputtering or vacuum deposition to provide an antireflection effect.
[0049] こうして作製した偏光ガラスの偏光特性を表 1に併せて示した。 また、 実 施例 "!〜 6と比較例 "!〜 2の 500 n m〜600 n m (実際には 480 n m 〜6 2 O n m) の波長領域における金属銀粒子の長手方向と直交する偏光面 を持つ光の透過率スペク トル (T丄%) と該波長域における消光比のデータ を図 5〜 1 0および図 1 1及び 1 2に示した。  [0049] Table 1 shows the polarization characteristics of the polarizing glass thus produced. Also, the examples "! ~ 6 and comparative examples"! The transmittance spectrum (T 丄%) of light having a polarization plane perpendicular to the longitudinal direction of the metallic silver particles in the wavelength range of 500 nm to 600 nm (actually 480 nm to 62 O nm) of Figures 5 to 10 and Figures 11 and 12 show the extinction ratio data in the wavelength range.
[0050] 消光比は、 分光光度計を用いて測定した透過スぺク トルにおける 500 η m〜600 n mの波長領域における金属銀粒子の長手方向と直交する偏光面 を持つ光の平均透過率丁丄%と金属銀粒子の長手方向と偏光面が平行な光の 平均透過率 T || %から次式により算出した。 なお、 表 1には、 500 n m〜 600 n mの波長領域における最小の消光比を示した。 [0050] The extinction ratio is 500 η in the transmission spectrum measured using a spectrophotometer. The average transmittance of light having a polarization plane perpendicular to the longitudinal direction of the metallic silver particles in the wavelength region of m to 600 nm, and the average transmittance of light whose polarization plane is parallel to the longitudinal direction of the metallic silver particles T || Calculated from% by the following formula. Table 1 shows the minimum extinction ratio in the wavelength region of 500 nm to 600 nm.
消光比 (d B) = 1 0 X I o g10 (T丄%/T II %) Extinction ratio (d B) = 1 0 XI og 10 (T 丄% / T II%)
[0051] 表 1から明らかなように、 ガラス組成が同じであれば、 熱処理温度が低い ほど析出する塩化銀の平均粒子径が小さくなつている。 そして、 その平均粒 子径が 40 n m以下の条件 (実施例 "!〜 6 ) で、 500 n m〜 600 n mの 波長領域において、 金属銀粒子の長手方向と直交する偏光面を持つ光の平均 透過率 (丁丄%500~600 nm) が 75<½以上であり、 かつ該波長域における最 小消光比が 25 d B以上である偏光特性が得られた。 [0051] As is clear from Table 1, when the glass composition is the same, the lower the heat treatment temperature, the smaller the average grain size of silver chloride precipitated. The average transmission of light having a polarization plane perpendicular to the longitudinal direction of the metallic silver particles in the wavelength region of 500 nm to 600 nm under the condition that the average particle diameter is 40 nm or less (Examples “! To 6”). A polarization characteristic was obtained in which the ratio (single% 500 to 600 nm ) was 75 <½ or more and the minimum extinction ratio in the wavelength range was 25 dB or more.
[0052] 平均粒子径が 40 n mを越える比較例 1、 2の場合には、 表 1に示したよ うに比較的低い延伸張力でさえ T丄透過スぺク トルと消光比が共に長波長側 にシフ卜するために延伸条件や還元条件を変えても、 500 n m〜 600 η mの波長領域において、 75%以上の平均透過率 (T丄%500~600 nm) と 2 5 d B以上の最小消光比を同時には得ることができなかった。 [0052] In Comparative Examples 1 and 2 where the average particle diameter exceeds 40 nm, as shown in Table 1, both the T 丄 transmission spectrum and the extinction ratio are on the longer wavelength side even at a relatively low stretching tension. Even if the stretching and reduction conditions are changed to shift, the average transmittance of 75% or more (T nm % 500 to 600 nm ) and the minimum of 25 dB or more in the wavelength range of 500 nm to 600 ηm The extinction ratio could not be obtained at the same time.
[0053] [比較例 3 ]  [0053] [Comparative Example 3]
ガラス組成における C I : 0. 37重量%の内の0. 1 %、 0. 2%を等 モル量の B r : 0. 23%および 0. 45%で置換したガラスを溶解し、 ハ ロゲン化銀粒子の平均粒径が実施例 1 と同じ 1 8 n mになるように熱処理し たガラスプリフォームを実施例 1 と同じ方法、 条件で偏光ガラスを作製して 偏光特性を比較した。 その結果、 金属銀粒子の長軸および短軸方向と直交す る偏光面の光の両スぺク トルともに B r量の増加に伴って全体的に長波長へ シフトし、 500〜 60 Onmにおける平均透過率および最小消光比は C Iの みの実施例 1の 82%、 25 d Bから各々、 76%、 25 d B、 68 %、 8 d Bと平均透過率、 最小消光比ともに低下した。  CI in glass composition: 0.1% and 0.2% of 0.3% by weight of glass were dissolved with equimolar amounts of Br: 0.23% and 0.45%, and then halogenated. Polarized glass was prepared using the same method and conditions as in Example 1 for glass preforms that had been heat-treated so that the average particle diameter of silver particles was 18 nm, which was the same as in Example 1, and the polarization characteristics were compared. As a result, both the spectra of the light of the polarization plane perpendicular to the major axis and minor axis direction of the metallic silver particles are shifted to the longer wavelength as the amount of Br increases, and at 500-60 Onm. The average transmittance and minimum extinction ratio decreased from 82% and 25 dB of Example 1 with CI only to 76%, 25 dB, 68%, and 8 dB, respectively.
[0054] 次に、 実施例 1〜 6及び比較例 1、 2で得られたガラス偏光子に、 500 Wキセノンランプを 40 cm離して 1 5分間照射し、 照射によるガラスの色 の変化を目視観察すると共に、 照射前後の 650 n mにおける透過率の変化 を測定して、 フォトクロミック特性の有無を判断した。 その結果、 実施例 1 〜 6及び比較例 1、 2で得られたいずれの偏光子においても照射前後で何ら 変化が観察されず、 フォトクロミック特性を示さないことが確認された。 こ れは本発明によるガラス偏光子が、 紫外及び可視短波長の光照射を受けても 偏光特性の劣化や透過率特性の低下を引き起こすことがないことを意味する [0054] Next, the glass polarizers obtained in Examples 1 to 6 and Comparative Examples 1 and 2 were irradiated with a 500 W xenon lamp at a distance of 40 cm for 15 minutes. The change in transmittance was visually observed and the change in transmittance at 650 nm before and after irradiation was measured to determine the presence or absence of photochromic properties. As a result, in any of the polarizers obtained in Examples 1 to 6 and Comparative Examples 1 and 2, no change was observed before and after irradiation, and it was confirmed that no photochromic characteristics were exhibited. This means that the glass polarizer according to the present invention does not cause deterioration of polarization characteristics or transmittance characteristics even when irradiated with light of ultraviolet and visible short wavelengths.
[0055] [比較例 4] [0055] [Comparative Example 4]
0. 2重量%の N a 2 Oが硝酸塩原料である N a N O 3 (硝酸ナトリウム) か ら導入され、 その他硝酸塩原料は一切使用せずに調合された原料バッチを溶 融して得られた前記同組成のガラスから同様の条件で作製されたガラス偏光 子においては、 キセノンランプの照射に伴って明らかにフォトク口ミック特 性が観察された。 ガラス偏光子内部の還元されていない塩化銀粒子が感光し て 650 n mにおける透過率の低下が引き起こされたと考えられる。 0. 2% by weight of Na 2 O was introduced from the nitrate raw material Na NO 3 (sodium nitrate), and was obtained by melting a raw material batch prepared without using any other nitrate raw materials In the glass polarizer produced from the glass of the same composition under the same conditions, the photochromic characteristics were clearly observed with the irradiation of the xenon lamp. It is probable that the unreduced silver chloride particles inside the glass polarizer were exposed to light, causing a decrease in transmittance at 650 nm.
[0056] 以上説明したように、 母ガラス中に析出■分散させる塩化銀の平均粒子径 を、 熱処理条件によって 40 n m以下に制御することによって、 500 n m 〜600 n mの緑色の波長領域において、 良好な偏光特性、 即ち 75%以上 の平均透過率 (丁丄%500~600 nm) かつ 25 d B以上の消光比を達成するこ とができた。 [0056] As explained above, by controlling the average particle size of silver chloride deposited and dispersed in the mother glass to 40 nm or less depending on the heat treatment conditions, it is good in the green wavelength region of 500 nm to 600 nm. Polarization characteristics, that is, an average transmittance of 75% or more (choice% 500 to 600 nm ) and an extinction ratio of 25 dB or more were achieved.
[0057] また、 ガラスの成分として銅の化合物を実質的に含有せず、 かつガラス原 料としてガラス酸化物組成の 0. 5〜5 w t %に相当する分を硝酸塩で導入し 溶融することによって、 フォトクロミック特性を示さない、 即ち紫外及び可 視短波長の光照射を受けても偏光特性の劣化や透過率特性の低下を引き起こ すことのない偏光子を得ることができた。  [0057] In addition, the glass component is substantially free of a copper compound, and a glass raw material corresponding to 0.5 to 5 wt% of the glass oxide composition is introduced with nitrate to melt. Thus, it was possible to obtain a polarizer that does not exhibit photochromic characteristics, that is, does not cause deterioration of polarization characteristics or transmittance characteristics even when irradiated with light of ultraviolet and visible short wavelengths.
[0058] 以上、 本発明によれば、 500 n m〜 600 n mにおける緑色の波長領域 において、 75%以上の平均透過率 (Tl%500~600 nm) かつ 25 d B以上 の消光比を有する優れた偏光子を提供することができる。 これは性能上十分 に液晶プロジェクタ一等の液晶表示装置に使用することができる。 また、 従 来の偏光子が熱や紫外線に弱い樹脂製の偏光フィルムをサファイア、 石英ガ ラスあるいはガラス基板に貼り付けて使用されていることを考えると、 母ガ ラスが高い耐熱性及び耐熱衝撃性に優れた硼珪酸ガラスである本発明による ガラス偏光子で代替されることにより、 プロジェクタ一の光学エンジンその ものの簡素化が可能となり例えば冷却用ファンの設置を含む冷却対策が軽減 されるあるいは不要となるとも考えられる。 さらに、 本発明によるガラス偏 光子はフォトク口ミック特性を示さず、 また他の性能もほとんど劣化しない ため、 液晶プロジェクターの画質が高いまま維持され、 結果として液晶プロ ジェクタ一自体の寿命が延びることが期待される。 [0058] As described above, according to the present invention, in the green wavelength region from 500 nm to 600 nm , an excellent transmittance having an average transmittance of 75% or more (Tl% 500 to 600 nm ) and an extinction ratio of 25 dB or more is obtained. A polarizer can be provided. This can be used for a liquid crystal display device such as a liquid crystal projector with sufficient performance. Also follow Considering that conventional polarizers are used by attaching a resin-made polarizing film that is sensitive to heat and ultraviolet rays to sapphire, quartz glass, or glass substrates, the mother glass has high heat resistance and thermal shock resistance. By replacing the glass polarizer according to the present invention, which is a borosilicate glass, the optical engine of the projector itself can be simplified, for example, cooling measures including the installation of a cooling fan can be reduced or unnecessary. Conceivable. Furthermore, the glass polarizer according to the present invention does not exhibit photochromic characteristics, and other performance is hardly deteriorated, so that the image quality of the liquid crystal projector is maintained high, and as a result, the life of the liquid crystal projector itself is extended. Be expected.

Claims

請求の範囲 The scope of the claims
[1 ] 熱処理によってハロゲン化銀粒子を分散析出させた硼珪酸ガラスを加熱延 伸した後、 ガラス中に配向、 伸長されたハロゲン化銀粒子の少なくとも一部 を還元して金属銀粒子にして製造される偏光子であって、 一軸配向して分散 されている形状異方性を有する金属銀粒子の長手方向と直交する偏光面を持 つ光の 5 0 0 n m〜6 0 0 n mの波長域の平均透過率 (T丄0 /0 5 0 0〜6 0 0 n m ) が 7 5 %以上であり、 かつ該波長域における消光比が 2 5 d B以上 であることを特徴とする可視光用ガラス偏光子。 [1] After heat-stretching borosilicate glass in which silver halide grains are dispersed and precipitated by heat treatment, at least a portion of the silver halide grains oriented and elongated in the glass is reduced to produce metal silver grains. The wavelength range of 500 nm to 600 nm of light having a plane of polarization perpendicular to the longitudinal direction of metallic silver particles having shape anisotropy dispersed in a uniaxial orientation. average transmission (T丄 0/0 5 0 0~6 0 0 nm) is not less 7 5% or more, and an extinction ratio in the wavelength region is a visible light, characterized in that it is 2 5 d B above Glass polarizer.
[2] 熱処理によってガラス中に分散析出する前記ハロゲン化銀粒子の平均粒径 力 4 0 n m以下であることを特徴とする請求項 1に記載の可視光用ガラス 偏光子。 [2] The glass polarizer for visible light according to [1], wherein the silver halide grains dispersed and precipitated in the glass by heat treatment have an average particle size of 40 nm or less.
[3] 熱処理によってガラス中に分散析出する前記ハロゲン化銀粒子が、 塩化銀 の粒子であることを特徴とする請求項 1又は 2に記載の可視光用ガラス偏光 子。  [3] The glass polarizer for visible light according to [1] or [2], wherein the silver halide grains dispersed and precipitated in the glass by heat treatment are silver chloride grains.
[4] 前記硼珪酸ガラスが、 ガラスの成分として銅の化合物を実質的に含有せず 、 かつガラス原料としてガラス酸化物組成の 0 . 5〜5 w t %に相当する分を 硝酸塩で導入し溶融することによって得られる、 フォトクロミック特性を示 さないアル力リアルミノ硼珪酸ガラスであることを特徴とする請求項 1、 2 又は 3に記載の可視光用ガラス偏光子。  [4] The borosilicate glass does not substantially contain a copper compound as a glass component, and a glass raw material corresponding to 0.5 to 5 wt% of the glass oxide composition is introduced with nitrate to melt. 4. The glass polarizer for visible light according to claim 1, 2 or 3, wherein the glass polarizer is an all-force real minoborosilicate glass that does not exhibit photochromic properties.
PCT/JP2007/001366 2006-12-15 2007-12-06 Glass polarizer for visible light WO2008072368A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008549195A JP4928564B2 (en) 2006-12-15 2007-12-06 Visible glass polarizer
EP07849799A EP2093595B1 (en) 2006-12-15 2007-12-06 Glass polarizer for visible light
ES07849799T ES2404064T3 (en) 2006-12-15 2007-12-06 Glass polarizer and process to produce the same
CN2007800146247A CN101427165B (en) 2006-12-15 2007-12-06 Glass polarizer for visible light
US12/226,815 US8077389B2 (en) 2006-12-15 2007-12-06 Glass polarizer for visible light
HK09110194.4A HK1132333A1 (en) 2006-12-15 2009-11-02 Glass polarizer for visible light

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-337871 2006-12-15
JP2006337871 2006-12-15

Publications (1)

Publication Number Publication Date
WO2008072368A1 true WO2008072368A1 (en) 2008-06-19

Family

ID=39511400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/001366 WO2008072368A1 (en) 2006-12-15 2007-12-06 Glass polarizer for visible light

Country Status (7)

Country Link
US (1) US8077389B2 (en)
EP (1) EP2093595B1 (en)
JP (1) JP4928564B2 (en)
CN (1) CN101427165B (en)
ES (1) ES2404064T3 (en)
HK (1) HK1132333A1 (en)
WO (1) WO2008072368A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011059593A (en) * 2009-09-14 2011-03-24 Okamoto Glass Co Ltd Glass polarizing element and manufacturing method thereof
WO2012105413A1 (en) * 2011-02-02 2012-08-09 日東電工株式会社 Protective sheet for glasses

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007046444A1 (en) * 2007-09-28 2009-04-02 Siemens Ag Organic photodetector with reduced dark current
JP5708096B2 (en) * 2011-03-18 2015-04-30 セイコーエプソン株式会社 Manufacturing method of polarizing element
JP5708095B2 (en) * 2011-03-18 2015-04-30 セイコーエプソン株式会社 Manufacturing method of polarizing element
CN108051932A (en) * 2018-01-16 2018-05-18 苏州千层茧农业科技有限公司 A kind of glasses of anti-automobile dazzle
US10897602B2 (en) * 2018-07-27 2021-01-19 Fujifilm Corporation Projection display device for performing projection and imaging comprising optical image emitting light valve and imaging optical system
JP2020016857A (en) * 2018-07-27 2020-01-30 富士フイルム株式会社 Projection type display device
JP6804168B2 (en) * 2018-10-15 2020-12-23 日東電工株式会社 Polarizing plate with retardation layer and image display device using it

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169140A (en) * 1980-04-28 1981-12-25 Corning Glass Works Manufacture of polarizing glass
US4479819A (en) 1982-09-29 1984-10-30 Corning Glass Works Infrared polarizing glasses
JPH0240619B2 (en) 1982-09-29 1990-09-12 Corning Glass Works
JP2628014B2 (en) 1992-10-16 1997-07-09 コーニング インコーポレイテッド Polarized glass
JP2740601B2 (en) 1991-10-14 1998-04-15 ホーヤ株式会社 Copper-containing polarizing glass and method for producing the same
JP2885655B2 (en) 1993-12-15 1999-04-26 コーニング インコーポレイテッド Glass polarizer and method of manufacturing the same
JP2000206507A (en) 1998-03-27 2000-07-28 Kyocera Corp Liquid crystal projector device transparent body and polarizing plate
JP2002519743A (en) 1998-07-04 2002-07-02 エフ.オー.ベー. ゲーエムベーハー ゲゼルシャフト ツァ フェアティグンク ファルビゲァ オプトエレクトロニシャー バウエレメンテ Manufacturing method of ultraviolet polarizer
JP2003139951A (en) * 2001-10-31 2003-05-14 Fuji Photo Film Co Ltd Optically anisotropic thin film and method for manufacturing the same
JP2003279749A (en) * 2002-01-24 2003-10-02 Corning Inc Polarizing glass
JP2004077850A (en) 2002-08-20 2004-03-11 Hitachi Ltd Liquid crystal display
JP3549198B2 (en) 2001-09-21 2004-08-04 Hoya株式会社 Polarizing glass and manufacturing method thereof
JP2004523804A (en) 2001-03-26 2004-08-05 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Colored two-color polarizer and method for producing the same
JP2005504711A (en) * 2001-10-09 2005-02-17 コーニング インコーポレイテッド Infrared glass polarizer and method for producing the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4125405A (en) * 1976-11-05 1978-11-14 Corning Glass Works Colored, dichroic, birefringent glass articles produced by optical alteration of additively-colored glasses containing silver and silver halides
US6313947B1 (en) * 1991-10-14 2001-11-06 Hoya Corporation Light polarizing glass containing copper particles and process for preparation thereof
US5281562A (en) * 1992-07-21 1994-01-25 Corning Incorporated Ultraviolet absorbing glasses
WO1998024624A1 (en) * 1996-12-04 1998-06-11 Corning Incorporated Broadband contrast polarizing glass
EP1017642A4 (en) * 1997-04-24 2002-06-26 Corning Inc Method of making glass having polarizing and non-polarizing regions
US6313948B1 (en) * 1999-08-02 2001-11-06 James I. Hanna Optical beam shaper
JP2004086100A (en) 2002-08-29 2004-03-18 Arisawa Mfg Co Ltd Polarizing glass and its manufacture method
JP3696607B2 (en) * 2003-07-31 2005-09-21 株式会社有沢製作所 Manufacturing method of polarizing glass
US7468148B2 (en) * 2005-10-24 2008-12-23 Corning Incorporated Visible polarizing glass and process
US7618908B2 (en) * 2005-12-20 2009-11-17 Corning Incorporated Visible light optical polarizer made from stretched H2-treated glass

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56169140A (en) * 1980-04-28 1981-12-25 Corning Glass Works Manufacture of polarizing glass
US4479819A (en) 1982-09-29 1984-10-30 Corning Glass Works Infrared polarizing glasses
JPH0240619B2 (en) 1982-09-29 1990-09-12 Corning Glass Works
JP2740601B2 (en) 1991-10-14 1998-04-15 ホーヤ株式会社 Copper-containing polarizing glass and method for producing the same
JP2628014B2 (en) 1992-10-16 1997-07-09 コーニング インコーポレイテッド Polarized glass
JP2885655B2 (en) 1993-12-15 1999-04-26 コーニング インコーポレイテッド Glass polarizer and method of manufacturing the same
JP2000206507A (en) 1998-03-27 2000-07-28 Kyocera Corp Liquid crystal projector device transparent body and polarizing plate
JP2002519743A (en) 1998-07-04 2002-07-02 エフ.オー.ベー. ゲーエムベーハー ゲゼルシャフト ツァ フェアティグンク ファルビゲァ オプトエレクトロニシャー バウエレメンテ Manufacturing method of ultraviolet polarizer
JP2004523804A (en) 2001-03-26 2004-08-05 フラウンホーファー−ゲゼルシャフト ツル フェルデルング デル アンゲヴァンテン フォルシュング エー ファウ Colored two-color polarizer and method for producing the same
JP3549198B2 (en) 2001-09-21 2004-08-04 Hoya株式会社 Polarizing glass and manufacturing method thereof
JP2005504711A (en) * 2001-10-09 2005-02-17 コーニング インコーポレイテッド Infrared glass polarizer and method for producing the same
JP2003139951A (en) * 2001-10-31 2003-05-14 Fuji Photo Film Co Ltd Optically anisotropic thin film and method for manufacturing the same
JP2003279749A (en) * 2002-01-24 2003-10-02 Corning Inc Polarizing glass
JP2004077850A (en) 2002-08-20 2004-03-11 Hitachi Ltd Liquid crystal display

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHEM., vol. B103, 1999, pages 8410 - 8426
K. SUZUKI, KOGYO ZAIRYO, vol. 52, no. 12, pages 102 - 107
See also references of EP2093595A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011059593A (en) * 2009-09-14 2011-03-24 Okamoto Glass Co Ltd Glass polarizing element and manufacturing method thereof
WO2012105413A1 (en) * 2011-02-02 2012-08-09 日東電工株式会社 Protective sheet for glasses
CN103339078A (en) * 2011-02-02 2013-10-02 日东电工株式会社 Protective sheet for glasses

Also Published As

Publication number Publication date
ES2404064T3 (en) 2013-05-23
EP2093595B1 (en) 2013-03-13
EP2093595A1 (en) 2009-08-26
CN101427165A (en) 2009-05-06
JP4928564B2 (en) 2012-05-09
CN101427165B (en) 2010-06-02
JPWO2008072368A1 (en) 2010-03-25
HK1132333A1 (en) 2010-02-19
EP2093595A4 (en) 2010-01-20
US8077389B2 (en) 2011-12-13
US20090168172A1 (en) 2009-07-02

Similar Documents

Publication Publication Date Title
JP4928561B2 (en) Glass polarizer and manufacturing method thereof
WO2008072368A1 (en) Glass polarizer for visible light
US8778227B2 (en) Organic/inorganic composite
JP2020038369A (en) Optical filter, manufacturing method thereof and use thereof
US20100167904A1 (en) Polarized glass and method for manufacturing the polarized glass
JP2006323119A (en) Solid polarizing element and its manufacturing method, and liquid crystal display device, liquid crystal display panel, and optical isolator using solid polarizing element
JP5153762B2 (en) Method for producing broadband cholesteric liquid crystal film
JP6941627B2 (en) Outdoor image irradiation device
JP2012225956A (en) Glass polarizer and method for manufacturing the same
JPWO2014080716A1 (en) Flat-type functional polarizer and glass polarizer-type polarizing beam splitter
JP5153761B2 (en) Method for producing broadband cholesteric liquid crystal film
JP4659849B2 (en) Polarizing glass and manufacturing method of polarizing glass
JP2011197465A (en) Glass polarizing element
JP2011059592A (en) Glass polarizing element and manufacturing method thereof
JP2011059593A (en) Glass polarizing element and manufacturing method thereof
JP2009280455A (en) Transparent polycrystal spinel substrate and method for producing the same, and electro-optical device
JP2007178977A (en) Polarizing glass
JP5839457B2 (en) Glass polarizer
WO2010061660A1 (en) Polarizing glass having high extinction ratio
WO2017033929A1 (en) Portable display device and half-mirror film
JP2009128655A (en) Dichroic solid polarizing element utilizable in visible light region and method for producing the same
JP2000193823A (en) Polarizer, and optical isolator using it
JP2009020136A (en) Light absorption filter and projector
JP2017142386A (en) Ultraviolet rays filter layer, method for forming ultraviolet rays filter layer, ultraviolet rays filter, grid polarization element, and polarized light irradiation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07849799

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008549195

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200780014624.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12226815

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007849799

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE