WO2008072112A1 - Detection of formaldehyde in urine samples - Google Patents
Detection of formaldehyde in urine samples Download PDFInfo
- Publication number
- WO2008072112A1 WO2008072112A1 PCT/IB2007/053957 IB2007053957W WO2008072112A1 WO 2008072112 A1 WO2008072112 A1 WO 2008072112A1 IB 2007053957 W IB2007053957 W IB 2007053957W WO 2008072112 A1 WO2008072112 A1 WO 2008072112A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- colorant
- formaldehyde
- substrate
- absorbent article
- urine sample
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N31/00—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
- G01N31/22—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N31/00—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
- G01N31/22—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators
- G01N31/223—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators for investigating presence of specific gases or aerosols
- G01N31/224—Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods using chemical indicators for investigating presence of specific gases or aerosols for investigating presence of dangerous gases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/42—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators with wetness indicator or alarm
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/84—Accessories, not otherwise provided for, for absorbent pads
- A61F13/8405—Additives, e.g. for odour, disinfectant or pH control
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/78—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/487—Physical analysis of biological material of liquid biological material
- G01N33/493—Physical analysis of biological material of liquid biological material urine
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/52—Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/84—Accessories, not otherwise provided for, for absorbent pads
- A61F2013/8473—Accessories, not otherwise provided for, for absorbent pads for diagnostic purposes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/20—Oxygen containing
- Y10T436/200833—Carbonyl, ether, aldehyde or ketone containing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T436/00—Chemistry: analytical and immunological testing
- Y10T436/20—Oxygen containing
- Y10T436/200833—Carbonyl, ether, aldehyde or ketone containing
- Y10T436/202499—Formaldehyde or acetone
Definitions
- U.S. Patent No. 6,689,617 describes a multistep procedure that includes at least a ten minute mixing step and a period for reagent preparation of at least 24 hours.
- Techniques involving canines (Willis C.
- a method for detecting formaldehyde in a urine sample e.g., urine or a urinary material associated therewith, such as headspace gas located associated with urine
- the method comprises contacting the sample with a substrate, the substrate comprising at least one colorant configured for producing a spectral response when subjected to formaldehyde, detecting the spectral response, and correlating the spectral response to the presence of formaldehyde in the sample.
- a device for detecting the presence of formaldehyde in a urine sample.
- the device comprises a container having an interior volume for the receipt of the liquid sample, a lid configured for enclosing the interior volume of the container, and a substrate affixed to the lid, the substrate comprising a colorant configured for producing a spectral response when subjected to formaldehyde in a vapor over the urine sample.
- an absorbent article is provided for receiving a bodily fluid suspected of containing formaldehyde.
- the article comprises a substantially liquid impermeable layer, a liquid permeable layer, an absorbent core positioned between the substantially liquid impermeable layer and the liquid permeable layer, and a substrate integrated into the article and positioned such that the substrate is in fluid communication with the bodily fluid when provided by a wearer of the article.
- the substrate comprises a colorant configured for exhibiting a spectral response indicative of the presence of formaldehyde in the bodily fluid.
- Fig. 1 contains schematic representations of exemplary embodiments of various substrates according to the present invention.
- Fig. 2 contains a perspective view of an exemplary embodiment of a substrate comprising a lateral flow device according to the present invention.
- Figs. 3-7 contain perspective views of exemplary embodiments of absorbent articles incorporating a substrate that comprises a representative lateral flow device according to the present invention.
- Fig. 8 is a schematic view of another exemplary embodiment of the present invention incorporating a substrate in a sample container.
- formaldehyde is intend to encompass formaldehyde in any form, includes its gaseous form (i.e., H 2 CO), hydrated form (i.e., CH 2 (OH) 2 ), and so forth.
- urine sample generally refers to urine or a urinary material associated therewith (e.g., headspace gas located associated with urine).
- the urine and/or urinary material may be used as obtained or pretreated in some manner.
- pretreatment may include filtration, precipitation, dilution, distillation, mixing, concentration, inactivation of interfering components, the addition of reagents, lysing, etc.
- the present invention is directed to a method for rapidly detecting the presence of formaldehyde in a urine sample.
- the method includes contacting the urine sample with a substrate on which is disposed a colorant that is capable of undergoing a detectable color change in the presence of formaldehyde.
- oxidation of the colorant by formaldehyde induces either a shift of the absorption maxima towards the red end of the spectrum (“bathochromic shift") or towards the blue end of the spectrum (“hypsochromic shift").
- the absorption shift provides a color difference that is detectable, either visually or through instrumentation, to indicate the presence of formaldehyde within the urine sample.
- the colorant prior to contact with a urine sample, the colorant may be colorless or it may possess a certain color. However, after contacting the urine sample and reacting with formaldehyde, the colorant exhibits a color that is different than its initial color. The color change may thus be readily correlated to the presence of formaldehyde in the urine sample.
- arylmethanes e.g., diarylmethanes and triarylmethanes
- Triarylmethanes for example, have the following general structure:
- R, R', and R" are independently selected from substituted and unsubstituted aryl groups, such as phenyl, naphthyl, anthracenyl, etc.
- the aryl groups may be substituted with functional groups, such as amino, hydroxyl, carbonyl, carboxyl, sulfonic, alkyl, and/or other known functional groups.
- triarylmethane leuco bases examples include basic fuchsin, pararosanilin (Magenta 0), rosanilin (magenta I), magenta II, new fuchsin ("magenta III”), methyl violet 2B, methyl violet 6B, methyl violet 10B (“crystal violet”), methyl green, ethyl green, acid fuchsin, and so forth etc.
- Suitable diarylmethane leuco bases may include 4,4'-bis (dimethylamino) benzhydrol (also known as "Michler's hydrol"), Michler's hydrol leucobenzotriazole, Michler's hydrol leucomorpholine, Michler's hydrol leucobenzenesulfonamide, etc.
- the colorant may include pararosanilin or an analog thereof. The structure of pararosanilin is set forth below:
- pararosanilin may itself react with formaldehyde to provide a detectable color change
- the unreacted colorant may be colorless and the reacted colorant may exhibit a certain color (e.g., red).
- Suitable sulfur-containing compounds for use in the present invention may include, for instance, sulfuric acid, sulfosalicylic acid, sulfonic acids, such as methanesulfonic acid, benzenesulfonic acid, toluenesulfonic acid, trifluoromethanesulfonic acid, styrenesulfonic acid, naphthalene disulfonic acid, hydroxybenzenesulfonic acid, etc.; and so forth.
- pararosanilin may be treated with sulfuric acid, which results in the addition of a sulfonic acid group on the central carbon atom.
- the structure of such a "sulfo-pararosanilin" is set forth below:
- Sulfo-pararosanilin is generally colorless. However, upon reaction with formaldehyde, the colorant may undergo a change in color to a pink or reddish color. This allows a user to readily detect the presence of formaldehyde. Nevertheless, other colorants may be employed in some embodiments of the present invention to form a more intense color. Such colorants may include, for instance, analogs of pararosanilin (e.g., rosanilin (magenta I), magenta II, new fuchsin ("magenta III”), etc.). In one particular embodiment, for example, basic fuchsin is employed in the present invention, which is believed to be a mixture of pararosanilin, rosanilin (magenta I), and magenta II.
- analogs of pararosanilin e.g., rosanilin (magenta I), magenta II, new fuchsin ("magenta III"), etc.
- basic fuchsin is employed in
- aromatic azo compounds having the general structure:
- X-R 1 -N N-R 2 -Y wherein, Ri is an aromatic group; R 2 is selected from the group consisting of aliphatic and aromatic groups; and
- X and Y are independently selected from the group consisting of hydrogen, halides, -NO 2 , -NH 2 , aryl groups, alkyl groups, alkoxy groups, sulfonate groups, - SO 3 H, -OH, -COH, -COOH, halides, etc.
- Particular examples of such azo compounds (or derivatives thereof) include Methyl Violet, Methyl Yellow, Methyl Orange, Methyl Red, and Methyl Green.
- chrysoidin (4-phenyIazo-1 ,3-phenylenediamine monohydrochloride) is a colorant from this class that may be used with the present invention.
- the colorant may be applied to a substrate so that a user to readily detect the change in color that occurs upon reacting with formaldehyde.
- a solution containing the colorant may be initially applied to the substrate within a detection zone.
- the colorant solution may contain an aqueous and/or non-aqueous solvent depending on the material used to form the chromatographic medium.
- Suitable non-aqueous solvents may include glycols (e.g., propylene glycol, butylene glycol, triethylene glycol, hexylene glycol, polyethylene glycols, ethoxydiglycol, and dipropyleneglycol); alcohols (e.g., methanol, ethanol, n- propanol, and isopropanol); triglycerides; ethyl acetate; acetone; triacetin; acetonitrile, tetrahydrafuran; xylenes; formaldehydes (e.g., dimethylformamide); etc.
- the amount of the solvent and colorant in the solution may generally vary based on the desired level of sensitivity.
- the colorant may be present in the solution at a concentration of from about 0.001 wt. % to about 1 wt.%, in some embodiments from about 0.005 wt.% to about 0.5 wt.%, and in some embodiments, from about 0.01 wt.% to about 0.5 wt.%.
- surfactants may help enhance the sensitivity of the colorant and the contrast between different regions.
- Particularly desired surfactants are nonionic surfactants, such as ethoxylated alkylphenols, ethoxylated and propoxylated fatty alcohols, ethylene oxide-propylene oxide block copolymers, ethoxylated esters of fatty (C 8 -C 18 ) acids, condensation products of ethylene oxide with long chain amines or amides, condensation products of ethylene oxide with alcohols, acetylenic diols, and mixtures thereof.
- nonionic surfactants such as ethoxylated alkylphenols, ethoxylated and propoxylated fatty alcohols, ethylene oxide-propylene oxide block copolymers, ethoxylated esters of fatty (C 8 -C 18 ) acids, condensation products of ethylene oxide with long chain amines or amides, condensation products of ethylene oxide with alcohols, acetylenic dio
- nonionic surfactants include, but are not limited to, methyl gluceth-10, PEG-20 methyl glucose distearate, PEG-20 methyl glucose sesquistearate, Cn -I5 pareth-20, ceteth-8, ceteth-12, dodoxynol-12, laureth-15, PEG-20 castor oil, polysorbate 20, steareth-20, polyoxyethylene-10 cetyl ether, polyoxyethylene-10 stearyl ether, polyoxyethylene-20 cetyl ether, polyoxyethylene-10 oleyl ether, polyoxyethylene-20 oleyl ether, an ethoxylated nonylphenol, ethoxylated octylphenol, ethoxylated dodecylphenol, or ethoxylated fatty (Ce -C2 2 ) alcohol, including 3 to 20 ethylene oxide moieties, polyoxyethylene-20 isohexadecyl ether, polyoxyethylene-23 glycerol laurate,
- a binder may also be employed to facilitate the immobilization of the colorant on a substrate.
- water-soluble organic polymers may be employed as binders.
- One suitable class of water-soluble organic polymers includes polysaccharides and derivatives thereof. Polysaccharides are polymers containing repeated carbohydrate units, which may be cationic, anionic, nonionic, and/or amphoteric. In one particular embodiment, the polysaccharide is a nonionic, cationic, anionic, and/or amphoteric cellulosic ether.
- Suitable nonionic cellulosic ethers may include, but are not limited to, alkyl cellulose ethers, such as methyl cellulose and ethyl cellulose; hydroxyalkyl cellulose ethers, such as hydroxyethyl cellulose, hydroxypropyl cellulose, hydroxypropyl hydroxybutyl cellulose, hydroxyethyl hydroxypropyl cellulose, hydroxyethyl hydroxybutyl cellulose and hydroxyethyl hydroxypropyl hydroxybutyl cellulose; alkyl hydroxyalkyl cellulose ethers, such as methyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, ethyl hydroxyethyl cellulose, ethyl hydroxypropyl cellulose, methyl ethyl hydroxyethyl cellulose and methyl ethyl hydroxypropyl cellulose; and so forth.
- alkyl cellulose ethers such as methyl cellulose and e
- the substrate of the present invention is desirably formed from a solid, but not necessarily rigid, material.
- the solid support may be formed from any of a variety materials, such as a film, paper, nonwoven web, knitted fabric, woven fabric, foam, glass, etc.
- the materials used to form the solid support may include, but are not limited to, natural, synthetic, or naturally occurring materials that are synthetically modified, such as polysaccharides (e.g., cellulose materials such as paper and cellulose derivatives, such as cellulose acetate and nitrocellulose); polyether sulfone; polyethylene; nylon; polyvinylidene fluoride (PVDF); polyester; polypropylene; silica; inorganic materials, such as deactivated alumina, diatomaceous earth, MgSO 4 , or other inorganic finely divided material uniformly dispersed in a porous polymer matrix, with polymers such as vinyl chloride, vinyl chloride-propylene copolymer, and vinyl chloride-vinyl acetate copolymer; cloth, both naturally occurring (e.g., cotton) and synthetic (e.g., nylon or rayon); porous gels, such as silica gel, agarose, dextran, and gelatin; polymeric films, such as polyacrylamide; and
- the colorant solution may be applied to the substrate using any known application technique, such as printing, dipping, spraying, melt extruding, coating (e.g., solvent coating, powder coating, brush coating, etc.), and so forth. Upon application, the solution is dried to remove the carrier and leave a residue of the colorant for interacting with formaldehyde. Regardless of the manner in which it is applied, the amount of the colorant employed is effective to result in a detectable color change upon contact with formaldehyde.
- any known application technique such as printing, dipping, spraying, melt extruding, coating (e.g., solvent coating, powder coating, brush coating, etc.), and so forth.
- coating e.g., solvent coating, powder coating, brush coating, etc.
- the amount of the colorant employed is effective to result in a detectable color change upon contact with formaldehyde.
- the exact quantity of a colorant employed within a particular location may vary based on a variety of factors, including the sensitivity of the colorant, the presence of other additives, the desired degree of detectability (e.g., with an unaided eye), and the suspected concentration of formaldehyde in the urine sample. For instance, a certain minute amount of formaldehyde may be normally present in a urine sample or may be expected due to a diet of foods rich in free or chemically bound formaldehyde. Thus, colorants may be employed in an amount sufficient to provide a spectral response, such as a detectable color change, in the presence of formaldehyde at certain threshold concentrations, such as about 10 parts per billion or more of the urine sample.
- the threshold concentration may vary depending on the nature of the urine sample.
- the threshold concentration in the headspace gas above urine may be about 10 parts per billion, while the threshold concentration may be about 1 x 10 6 or more in urine.
- the colorant when present on a substrate, typically constitutes from about 0.001 wt.% to about 20 wt.%, in some embodiments from about 0.01 wt.% to about 10 wt.%, and in some embodiments from about 0.1 wt.% to about 5 wt.% of the dry weight of the substrate.
- the amount of other additives may also vary as desired, such as from about 0.001 wt.% to about 10 wt.%, in some embodiments from about 0.01 wt.% to about 5 wt.%, and in some embodiments from about 0.025 wt.% to about 1 wt.% based on the dry weight of the substrate.
- a detection zone may be formed on the substrate so that a user may better determine the presence of formaldehyde within a urine sample. Desirably, the detection zone possesses a size effective to permit visual observation without unduly increasing the size of the substrate.
- the width (or diameter) of the detection zone may, for example, range from about 0.01 to about 100 millimeters, in some embodiments from about 0.1 to about 50 millimeters, and in some embodiments, from about 1 to about 20 millimeters.
- the shape of the detection zone may also enhance visual observation of the colorant as an indicator.
- the detection zone may be in the form of stripes, bands, dots, or any other geometric shape.
- Multiple colorants may also be used to provide a semi-quantitative test to indicate not only the presence of formaldehyde but also the amount within a urine sample. More specifically, multiple detection zones representing various levels of sensitivity for particular concentrations of formaldehyde may be formed on the substrate.
- three detection zones might be formed on the substrate at three different locations with such zones representing sensitivities for a low, medium, and high concentration of formaldehyde.
- Upon testing a particular sample having a medium concentration of formaldehyde only the low and medium colorant would provide a spectral response. Knowing the predetermined sensitivity of each colorant would then allow a correlation to determine at least a range for the concentration of formaldehyde present in the urine sample.
- One or more control colorants may also be used with the present invention.
- a colorant may be located on the substrate at a location where it will not make contact with the urine sample.
- colorant may be located at two separate locations along the substrate so that only one may be dipped into the liquid to be tested.
- the colorant used for the control may also be placed on a separate substrate (for example, as part of a kit) that will not make contact with the urine sample but will be readily accessible during testing for purposes of comparison with a colorant that is subjected to the urine sample.
- a separate substrate for example, as part of a kit
- Such a configuration may be particularly appropriate where a urine sample's headspace is being tested in order to avoid contact of the control with the vapor.
- the substrate of the present invention bearing one or more colorants as discussed above, is contacted with the urine sample of interest.
- Such contact may be by immersing all or part of the substrate into a urine sample such as a liquid specimen containing the urine to be tested.
- the substrate might be positioned within an absorbent article that is worn by a test subject, where the substrate is positioned so as to come into contact with urine discharged by the subject.
- the location where the colorant is present on the sample may be placed into direct contact with the liquid sample or, alternatively, the substrate may be constructed so that liquid migrates or flows from a part of the substrate contacted with the liquid to a location on the substrate bearing the colorant.
- the substrate may be positioned in the headspace or vapor above a liquid sample containing the urine to be tested.
- the degree to which the colorant changes color provides information (a spectral response) regarding the presence of formaldehyde to which it is exposed. For example, basic fuchsin may undergo a significant color change from colorless to pink in the presence of formaldehyde. In the presence of other aldehydes (e.g., acetaldehyde, isovaleraldehyde, phenylacetalaldehyde, or phthalic dicarboxyaldehyde), the color change occurs to a lesser extent if at all. Thus, when a urine sample is placed in to contact with the colorant, a color change may simply be observed to determine whether the infection is caused by formaldehyde. That is, if the color change occurs to a certain degree (e.g., from colorless to pink), it may be determined that the infected urine sample contains formaldehyde.
- a certain degree e.g., from colorless to pink
- the spectral response is measured with an optical reader.
- the actual configuration and structure of the optical reader may generally vary as is readily understood by those skilled in the art.
- the optical reader contains an illumination source that is capable of emitting electromagnetic radiation and a detector that is capable of registering a signal (e.g., transmitted or reflected light).
- the illumination source may be any device known in the art that is capable of providing electromagnetic radiation, such as light in the visible or near-visible range (e.g., infrared or ultraviolet light).
- suitable illumination sources include, but are not limited to, light emitting diodes (LED), flashlamps, cold-cathode fluorescent lamps, electroluminescent lamps, and so forth.
- the illumination may be multiplexed and/or collimated. In some cases, the illumination may be pulsed to reduce any background interference. Further, illumination may be continuous or may combine continuous wave (CW) and pulsed illumination where multiple illumination beams are multiplexed (e.g., a pulsed beam is multiplexed with a CW beam), permitting signal discrimination between a signal induced by the CW source and a signal induced by the pulsed source.
- CW continuous wave
- LEDs e.g., aluminum gallium arsenide red diodes, gallium phosphide green diodes, gallium arsenide phosphide green diodes, or indium gallium nitride violet/blue/ultraviolet (UV) diodes
- UV diodes indium gallium nitride violet/blue/ultraviolet (UV) diodes
- UV LED excitation diode suitable for use in the present invention is Model NSHU55OE (Nichia Corporation), which emits 750 to 1000 microwatts of optical power at a forward current of 10 milliamps (3.5-3.9 volts) into a beam with a full-width at half maximum of 10 degrees, a peak wavelength of 370-375 nanometers, and a spectral half-width of 12 nanometers.
- the illumination source may provide diffuse illumination to the colorant.
- an array of multiple point light sources e.g., LEDs
- Another particularly desired illumination source that is capable of providing diffuse illumination in a relatively inexpensive manner is an electroluminescent (EL) device.
- An EL device is generally a capacitor structure that utilizes a luminescent material (e.g., phosphor particles) sandwiched between electrodes, at least one of which is transparent to allow light to escape. Application of a voltage across the electrodes generates a changing electric field within the luminescent material that causes it to emit light.
- the detector may generally be any device known in the art that is capable of sensing a spectral response.
- the detector may be an electronic imaging detector that is configured for spatial discrimination.
- electronic imaging sensors include high speed, linear charge-coupled devices (CCD), charge-injection devices (CID), complementary-metal-oxide-semiconductor (CMOS) devices, and so forth.
- CCD linear charge-coupled devices
- CID charge-injection devices
- CMOS complementary-metal-oxide-semiconductor
- image detectors for instance, are generally two-dimensional arrays of electronic light sensors, although linear imaging detectors (e.g., linear CCD detectors) that include a single line of detector pixels or light sensors, such as, for example, those used for scanning images, may also be used.
- Each array includes a set of known, unique positions that may be referred to as "addresses.”
- Each address in an image detector is occupied by a sensor that covers an area (e.g., an area typically shaped as a box or a rectangle). This area is generally referred to as a "pixel" or pixel area.
- a detector pixel for instance, may be a CCD, CID, or a CMOS sensor, or any other device or sensor that detects or measures light.
- the size of detector pixels may vary widely, and may in some cases have a diameter or length as low as 0.2 micrometers.
- the detector may be a light sensor that lacks spatial discrimination capabilities.
- examples of such light sensors may include photomultiplier devices, photodiodes, such as avalanche photodiodes or silicon photodiodes, and so forth.
- Silicon photodiodes are sometimes advantageous in that they are inexpensive, sensitive, capable of high-speed operation (short risetime / high bandwidth), and easily integrated into most other semiconductor technology and monolithic circuitry.
- silicon photodiodes are physically small, which enables them to be readily incorporated into various types of detection systems. If silicon photodiodes are used, then the wavelength range of the emitted signal may be within their range of sensitivity, which is 400 to 1100 nanometers.
- Optical readers may generally employ any known detection technique, including, for instance, luminescence (e.g., fluorescence, phosphorescence, etc.), absorbance (e.g., fluorescent or non-fluorescent), diffraction, etc.
- the optical reader measures color intensity of a spectral response as a function of absorbance.
- absorbance readings are measured using a microplate reader from Dynex Technologies of Chantilly, Virginia (Model # MRX).
- absorbance readings are measured using a conventional test known as "CIELAB", which is discussed in Pocket Guide to Digital Printing by F. Cost, Delmar Publishers, Albany, NY. ISBN 0-8273-7592-1 at pages 144 and 145.
- CIELAB color space is somewhat visually uniform, a single number may be calculated that represents the difference between two colors as perceived by a human. This difference is termed ⁇ E and calculated by taking the square root of the sum of the squares of the three differences ( ⁇ L * , ⁇ a * , and ⁇ b * ) between the two colors.
- ⁇ E the difference between two colors as perceived by a human.
- each ⁇ E unit is approximately equal to a "just noticeable" difference between two colors.
- CIELAB is therefore a good measure for an objective device-independent color specification system that may be used as a reference color space for the purpose of color management and expression of changes in color.
- color intensities may thus be measured using, for instance, a handheld spectrophotometer from Minolta Co. Ltd. of Osaka, Japan (Model # CM2600d).
- This instrument utilizes the D/8 geometry conforming to CIE No.15, ISO 7724/1 , ASTME1164 and JIS Z8722- 1982 (diffused illumination/ 8-degree viewing system.
- the D65 light reflected by the specimen surface at an angle of 8 degrees to the normal of the surface is received by the specimen-measuring optical system.
- Still another suitable optical reader is the reflectance spectrophotometer described in U.S. Patent App. Pub. No. 2003/0119202 to Kaylor, et al., which is incorporated herein in its entirety by reference thereto for all purposes.
- transmission-mode detection systems may also be used in the present invention.
- the spectral response of the colorant of the present invention may be rapid and may be detected within a relatively short period of time.
- the spectral response may occur in about 20 minutes or less, in some embodiments about 10 minutes or less, in some embodiments about 5 minutes or less, in some embodiments about 3 minutes or less, and in some embodiments, from about 10 seconds to about 2 minutes.
- the colorant may provide a "real-time" indication of the presence of formaldehyde in the sample.
- substrate 10 has a strip-like shape and is shown having a block of colorant 12 applied along one end.
- Fig. 1 B shows colorant 12 and colorant 14 applied as thin bands along one end of substrate 10.
- Colorant 12 and colorant 14 are applied to the substrate 10 as a series of dots in Fig. 1 C. It should be understood that these figures serve only as illustrative examples. Numerous other configurations for the colorant and the shape of substrate 10 are possible as previously described.
- the colorant may actually be colorless when first applied to substrate 10 so as to undergo a color and/or shade change after being subjected to the presence of formaldehyde.
- Fig. 2 illustrates another exemplary embodiment of the present invention in which the substrate is constructed as a lateral flow device 120 for detecting the presence of formaldehyde in accordance with the present invention.
- the lateral flow device 120 contains a chromatographic medium 123 optionally supported by a rigid support material 121.
- a colorant 136 constructed as previously described, is also applied to medium 123.
- the chromatographic medium 123 may be made from any of a variety of materials through which the urine sample is capable of passing.
- the chromatographic medium 123 may be a porous membrane formed from synthetic or naturally occurring materials, such as polysaccharides (e.g., cellulose materials such as paper and cellulose derivatives, such as cellulose acetate and nitrocellulose); polyether sulfone; polyethylene; nylon; polyvinylidene fluoride (PVDF); polyester; polypropylene; silica; inorganic materials, such as deactivated alumina, diatomaceous earth, MgSO 4 , or other inorganic finely divided material uniformly dispersed in a porous polymer matrix, with polymers such as vinyl chloride, vinyl chloride-propylene copolymer, and vinyl chloride-vinyl acetate copolymer; cloth, both naturally occurring (e.g., cotton) and synthetic (e.g., nylon or rayon); porous gels, such as silica gel, agarose, dextran, and gelatin; polymeric films, such as polyacrylamide; and so forth.
- polysaccharides
- the chromatographic medium 123 is formed from nitrocellulose and/or polyether sulfone materials.
- nitrocellulose refers to nitric acid esters of cellulose, which may be nitrocellulose alone, or a mixed ester of nitric acid and other acids, such as aliphatic carboxylic acids having from 1 to 7 carbon atoms.
- a porous membrane strip may have a length of from about 10 to about 100 millimeters, in some embodiments from about 20 to about 80 millimeters, and in some embodiments, from about 40 to about 60 millimeters.
- the width of the membrane strip may also range from about 0.5 to about 20 millimeters, in some embodiments from about 1 to about 15 millimeters, and in some embodiments, from about 2 to about 10 millimeters.
- the thickness of the membrane strip is generally small enough to allow transmission-based detection.
- the membrane strip may have a thickness less than about 500 micrometers, in some embodiments less than about 250 micrometers, and in some embodiments, less than about 150 micrometers.
- the support 121 carries the chromatographic medium 123.
- the support 121 may be positioned directly adjacent to the chromatographic medium 123 as shown in Fig. 2, or one or more intervening layers may be positioned between the chromatographic medium 123 and the support 121.
- the support 121 may generally be formed from any material able to carry the chromatographic medium 123.
- the support 121 may be formed from a material that is transmissive to light, such as transparent or optically diffuse (e.g., transluscent) materials.
- it is generally desired that the support 121 is liquid-impermeable so that fluid flowing through the medium 123 does not leak through the support 121.
- suitable materials for the support include, but are not limited to, glass; polymeric materials, such as polystyrene, polypropylene, polyester (e.g., Mylar® film), polybutadiene, polyvinylchloride, polyamide, polycarbonate, epoxides, methacrylates, and polymelamine; and so forth.
- the support 121 is generally selected to have a certain minimum thickness. Likewise, the thickness of the support 121 is typically not so large as to adversely affect its optical properties.
- the support 121 may have a thickness that ranges from about 100 to about 5,000 micrometers, in some embodiments from about 150 to about 2,000 micrometers, and in some embodiments, from about 250 to about 1 ,000 micrometers.
- one suitable membrane strip having a thickness of about 125 micrometers may be obtained from Millipore Corp. of Bedford, Massachusetts under the name "SHF180UB25.”
- the chromatographic medium 123 may be cast onto the support 121 , wherein the resulting laminate may be die-cut to the desired size and shape. Alternatively, the chromatographic medium 123 may simply be laminated to the support 121 with, for example, an adhesive.
- a nitrocellulose or nylon porous membrane is adhered to a Mylar® film.
- An adhesive is used to bind the porous membrane to the Mylar® film, such as a pressure-sensitive adhesive.
- Laminate structures of this type are believed to be commercially available from Millipore Corp. of Bedford, Massachusetts. Still other examples of suitable laminate device structures are described in U.S. Patent No. 5,075,077 to Durley, III, et a!., which is incorporated herein in its entirety by reference thereto for all purposes.
- the device 120 may also contain an absorbent material 154 that is positioned adjacent to the medium 123.
- the absorbent material 154 assists in promoting capillary action and fluid flow through the medium 123.
- the absorbent material 154 receives fluid that has migrated through the entire chromatographic medium 123 and thus draws any unreacted components away from the detection region.
- absorbent materials include, but are not limited to, nitrocellulose, cellulosic materials, porous polyethylene pads, glass fiber filter paper, and so forth.
- the absorbent material may be wet or dry prior to being incorporated into the device. Pre-wetting may facilitate capillary flow for some fluids, but is not typically required.
- the absorbent material may be treated with a surfactant to assist the wicking process.
- a user may directly apply the urine sample to a portion of the chromatographic medium 123 through which it may then travel in the direction illustrated by arrow "L" in Fig. 2.
- the urine sample may first be applied to a sample application zone 142 that is in fluid communication with the chromatographic medium 123.
- the sample application zone 142 may be formed on the medium 123.
- the sample application zone 142 may be formed by a separate material, such as a pad.
- sample pads include, but are not limited to, nitrocellulose, cellulose, porous polyethylene pads, and glass fiber filter paper.
- the sample application zone 142 may also contain one or more pretreatment reagents, either diffusively or non-diffusively attached thereto.
- device may 120 may include a reagent zone (not shown) that is in fluid communication with the sample application zone 142.
- the reagent zone may be formed from a separate material or pad.
- Such a reagent pad may be formed from any material through which the urine sample is capable of passing, such as glass fibers.
- the reagent zone may simply be formed on the medium 123.
- the reagent zone may be applied with one or more solutions containing reagents as desired.
- the urine sample may contact the reagent zone to mix with the desired reagents before traveling in the direction of arrow L.
- an additional colorant 138 may also be employed in the lateral flow device 120 for improving detection accuracy, for providing dual indication of the presence of formaldehyde, and/or for providing a semiquantitative indication of the amount of formaldehyde present in a sample as previously discussed.
- colorant 138 could be configured to provide a spectral response to confirm that testing has been completed regardless of the presence of formaldehyde.
- colorant 138 could be configured to provide a color change to notify the user that a liquid sample has successfully migrated along the length of device 120 in the direction of arrow L.
- colorant 138 Among the benefits provided by such a colorant 138 is that the user is informed that a sufficient volume of urine sample has been added without requiring careful measurement or calculation. This provides the ability to use the lateral flow device 120 without the need for externally controlling the reaction time, urine sample volume, etc.
- Device 120 is not limited to colorants disposed and oriented in the manner shown in Fig. 2. As previously described, colorants may be generally provided in any number of distinct detection regions as desired. Furthermore, each colorant location may contain the same or different materials. For example, the colorants may include two or more distinct components, formed as lines, dots, etc. In addition, the colorants may be disposed in the form of lines in a direction that is substantially perpendicular to the flow of the urine sample through the device 120 as shown or, in some embodiments, the colorants may be disposed in the form of lines in a direction that is substantially parallel to the flow of the urine sample through the device 120.
- absorbent article generally refers to any article capable of absorbing water or other fluids.
- absorbent articles include, but are not limited to, personal care absorbent articles, such as diapers, training pants, absorbent underpants, incontinence articles, feminine hygiene products (e.g., sanitary napkins), swim wear, baby wipes, and so forth; medical absorbent articles, such as garments, fenestration materials, underpads, bedpads, bandages, absorbent drapes, and medical wipes; food service wipers; clothing articles; and so forth. Materials and processes suitable for forming such absorbent articles are well known to those skilled in the art.
- absorbent articles include a substantially liquid-impermeable layer (e.g., outer cover), a liquid- permeable layer (e.g., bodyside liner, surge layer, etc.), and an absorbent core.
- an absorbent article is shown in Fig. 3 as an adult incontinence article 101.
- the adult incontinence article 101 is shown as having an hourglass shape in an unfastened configuration.
- other shapes may of course be utilized, such as a generally rectangular shape, T- shape, or l-shape.
- the adult incontinence article 101 includes a chassis formed by various components, including an outer cover 117, bodyside liner 105, absorbent core 103, and surge layer 107. It should be understood, however, that other layers may also be used in exemplary embodiments of the present invention.
- the bodyside liner 105 is generally employed to help isolate the wearer's skin from liquids held in the absorbent core 103.
- the liner 105 presents a bodyfacing surface that is typically compliant, soft feeling, and non- irritating to the wearer's skin.
- the liner 105 is also less hydrophilic than the absorbent core 103 so that its surface remains relatively dry to the wearer.
- the liner 105 may be liquid-permeable to permit liquid to readily penetrate through its thickness. Exemplary liner constructions that contain a nonwoven web are described in U.S. Patent Nos.
- the adult incontinence article 101 may also include a surge layer 107 that helps to decelerate and diffuse surges or gushes of liquid that may be rapidly introduced into the absorbent core 103.
- the surge layer 107 rapidly accepts and temporarily holds the liquid prior to releasing it into the storage or retention portions of the absorbent core 103.
- the surge layer 107 is interposed between an inwardly facing surface 116 of the bodyside liner 105 and the absorbent core 103.
- the surge layer 107 may be located on an outwardly facing surface 118 of the bodyside liner 105.
- the surge layer 107 is typically constructed from highly liquid-permeable materials. Examples of suitable surge layers are described in U.S. Patent No. 5,486,166 to Ellis, et al. and 5,490,846 to Ellis, et a!., which are incorporated herein in their entirety by reference thereto for all purposes.
- the outer cover 117 is typically formed from a material that is substantially impermeable to liquids.
- the outer cover 117 may be formed from a thin plastic film or other flexible liquid-impermeable material.
- the outer cover 117 is formed from a polyethylene film having a thickness of from about 0.01 millimeter to about 0.05 millimeter.
- the film may be impermeable to liquids, but permeable to gases and water vapor (i.e., "breathable"). This permits vapors to escape from the absorbent core 103, but still prevents liquid exudates from passing through the outer cover 117.
- the outer cover 117 may be formed from a polyolefin film laminated to a nonwoven web.
- a stretch-thinned polypropylene film may be thermally laminated to a spunbond web of polypropylene fibers.
- the adult incontinence article 101 may also contain various other components as is known in the art.
- the adult incontinence article 101 may also contain a substantially hydrophilic tissue wrapsheet (not illustrated) that helps maintain the integrity of the fibrous structure of the absorbent core 103.
- the tissue wrapsheet is typically placed about the absorbent core 103 over at least the two major facing surfaces thereof, and composed of an absorbent cellulosic material, such as creped wadding or a high wet-strength tissue.
- the tissue wrapsheet may be configured to provide a wicking layer that helps to rapidly distribute liquid over the mass of absorbent fibers of the absorbent core 103.
- the wrapsheet material on one side of the absorbent fibrous mass may be bonded to the wrapsheet located on the opposite side of the fibrous mass to effectively entrap the absorbent core 103.
- the adult incontinence article 101 may also include a ventilation layer (not shown) that is positioned between the absorbent core 103 and the outer cover 117. When utilized, the ventilation layer may help insulate the outer cover 117 from the absorbent core 103, thereby reducing dampness in the outer cover 117.
- ventilation layers may include a nonwoven web laminated to a breathable film, such as described in U.S. Patent No. 6,663,611 to Blanev, et al.. which is incorporated herein in its entirety by reference thereto for all purposes.
- the adult incontinence article 101 may also include a pair of side panels (or ears) (not shown) that extend from the side edges 132 of the adult incontinence article 101 into one of the waist regions.
- the side panels may be integrally formed with a selected adult incontinence article component.
- the side panels may be integrally formed with the outer cover 117 or from the material employed to provide the top surface.
- the side panels may be provided by members connected and assembled to the outer cover 117, the top surface, between the outer cover 117 and top surface, or in various other configurations.
- the side panels may be elasticized or otherwise rendered elastomeric by use of the elastic nonwoven composite of the present invention.
- the adult incontinence article 101 may also include a pair of containment flaps 112 that are configured to provide a barrier and to contain the lateral flow of body exudates.
- the containment flaps 112 may be located along the laterally opposed side edges 132 of the bodyside liner 105 adjacent the side edges of the absorbent core 103.
- the containment flaps 112 may extend longitudinally along the entire length of the absorbent core 103, or may only extend partially along the length of the absorbent core 103. When the containment flaps 112 are shorter in length than the absorbent core 103, they may be selectively positioned anywhere along the side edges 132 of adult incontinence article 101 in a crotch region 110. In one embodiment, the containment flaps 112 extend along the entire length of the absorbent core 103 to better contain the body exudates. Such containment flaps 112 are generally well known to those skilled in the art. For example, suitable constructions and arrangements for the containment flaps 112 are described in U.S. Patent No. 4,704,116 to Enloe. which is incorporated herein in its entirety by reference thereto for all purposes.
- the adult incontinence article 101 may be elasticized with suitable elastic members, as further explained below.
- the adult incontinence article 101 may include leg elastics 106 constructed to operably tension the side margins of the adult incontinence article 101 to provide elasticized leg bands which can closely fit around the legs of the wearer to reduce leakage and provide improved comfort and appearance.
- Waist elastics 108 may also be employed to elasticize the end margins of the adult incontinence article 101 to provide elasticized waistbands.
- the waist elastics 108 are configured to provide a resilient, comfortably close fit around the waist of the wearer.
- the adult incontinence article 101 may also include one or more fasteners 130.
- two flexible fasteners 130 are illustrated in Fig. 3 on opposite side edges of waist regions to create a waist opening and a pair of leg openings about the wearer.
- the shape of the fasteners 130 may generally vary, but may include, for instance, generally rectangular shapes, square shapes, circular shapes, triangular shapes, oval shapes, linear shapes, and so forth.
- the fasteners may include, for instance, a hook-and-loop material, buttons, pins, snaps, adhesive tape fasteners, cohesives, fabric-and-loop fasteners, etc.
- each fastener 130 includes a separate piece of hook material affixed to the inside surface of a flexible backing.
- the various regions and/or components of the adult incontinence article 101 may be assembled together using any known attachment mechanism, such as adhesive, ultrasonic, thermal bonds, etc.
- Suitable adhesives may include, for instance, hot melt adhesives, pressure-sensitive adhesives, and so forth.
- the adhesive may be applied as a uniform layer, a patterned layer, a sprayed pattern, or any of separate lines, swirls or dots.
- the outer cover 117 and bodyside liner 105 are assembled to each other and to the absorbent core 103 using an adhesive.
- the absorbent core 103 may be connected to the outer cover 117 using conventional fasteners, such as buttons, hook and loop type fasteners, adhesive tape fasteners, and so forth.
- other adult incontinence article components such as the leg elastic members 106, waist elastic members 108 and fasteners 130, may also be assembled into the adult incontinence article 101 using any attachment mechanism.
- a substrate according to the present invention may be incorporated into the absorbent article in a variety of different orientations and configurations, so long as the device is capable of receiving urine from the wearer and providing a spectral response that a user or caregiver may review for the presence or absence of formaldehyde.
- the colorants on the substrate may be positioned in the absorbent article so that the colorants are readily visible to the user or caregiver so as to provide a simple, accurate, and real time indication of the presence of the formaldehyde in a urine sample. The visibility of such colorants on the substrate may be accomplished in a variety of ways.
- the absorbent article may include a transparent or transluscent portion (e.g., window, film, etc.) that allows the colorants to be readily viewed without removal of the absorbent article from the wearer and/or without disassembly of the absorbent article.
- all or part of the colorants may extend through a hole or aperture in the absorbent article for observation.
- the colorants may simply be positioned on a surface of the absorbent article for observation while providing a mechanism for having the colorant in fluid communication with the urine sample.
- the adult incontinence article 101 includes a substrate comprising a lateral flow assay device 120 that may be positioned at least partially between the outer cover 117 and the absorbent core 103.
- the lateral flow assay device 120 may be positioned such that the colorants 136 and 138 are visible through a window 140 in the outer cover 117.
- the sample zone 142 positioned at one end of the assay device 120, is strategically positioned in the adult incontinence article 101 so that urine discharged by the wearer can travel to the sample zone 142 for collection of at least a portion of the discharged urine therein.
- the absorbent material 154 is also provided at the other end of the assay device 120 to hold part of the sample and to promote wicking or capillary flow in the device 120 as will be more fully described below.
- Fig. 3 illustrates the assay device 120 as being placed directly into the layers that comprise the absorbent article 101.
- the assay device 120 may be partially or completely encased within a thin film (not shown) except for the sample zone 142, which remains exposed to the bodily fluid (e.g., urine) being tested.
- a thin film may be desirable so as to inhibit other components of the assay device 120, other than the sample zone 142, from receiving the bodily fluid directly from the wearer or from the layers of the absorbent article 101.
- the assay device 120 may operate more effectively if the wicking zone 154 is shielded so that it draws the bodily fluid only from sample zone 142 and not from the absorbent article 101.
- Such thin film may be constructed, for example, from a variety of materials including polymers such as polyethylene, polypropylene, polycarbonate, and others.
- the assay device 120 is positioned so as to receive the discharged bodily fluid.
- the assay device 120 includes a sample zone 142 for collection of the fluid.
- the sample zone for assay device 120 may be constructed from one or more components that form parts of the absorbent article 101.
- the sample zone could be constructed as part of the surge layer 107, absorbent core 103, or other components that might be used in the construction of absorbent article 101 and that are capable of receiving and providing fluid to assay device 120.
- the assay device 120 may be configured with the adult incontinence article 101 in a variety of different placements and orientations.
- Fig. 3 depicts the assay device 120 at a position between the absorbent core 103 and the outer cover 117. In this manner, the colorants 136 and 138 are visible though the window 140 when the adult incontinence article 101 is in place on the wearer.
- the window 140 is made of a transparent material formed as part of the outer cover 117 so as to prevent undesirable leaks of the collected fluids. In such cases, the results of testing with the device 120 may be readily observed without removal of the adult incontinence article 101 from the wearer.
- the device 120 could be placed between, for example, the absorbent core 103 and the bodyside liner 105 with the window 140 being defined by the bodyside liner 105. In such cases, the results of testing with the assay device 120 may be checked when, for example, the adult incontinence article 101 is being changed or replaced on the wearer. Furthermore, the device 120 may be placed at other locations and in different orientations as well.
- Fig. 4 depicts another exemplary embodiment of the present invention in which the assay device 120 has been integrated into an adult incontinence article 215.
- a window 240 allows observations of colorants 136 and 138 as previously described.
- the assay device 120 has been placed on an opposite side of the adult incontinence article 101.
- Fig. 5 illustrates another exemplary embodiment where the assay device 120 has been integrated into an adult incontinence article 315.
- a window 340 allows observations of the colorants 136 and 138 as previously described.
- the wicking zone 154 is placed next to the outer cover 117.
- the sample zone 142 is placed next to the wearer's skin.
- the adult incontinence article 315 is constructed with the assay device 120 extending through absorbent core 303 and body side liner 305 to a position where sample zone 142 will be adjacent the wearer's skin.
- Fig. 6 illustrates an adult incontinence article 415 having two assay devices 120 integrated therein.
- window 440 allows the colorants 136 and 138 of two different assay devices 120 to be observed from outside the adult incontinence article 415.
- Such configuration might be desirable, for example, were each assay device 120 is constructed for detecting the presence of formaldehyde using colorants having different compositions.
- the assays devices in Fig. 6 are oriented at an obtuse angle relative to the embodiments of Figs. 3 through 5.
- Fig. 6 also illustrates that multiple configurations and orientations for devices 120 may be utilized under the teachings disclosed herein.
- Fig.7 shows the assay device 120 incorporated into an adult incontinence article 515. Rather than being visible through a window, colorants 136 and 138 are actually on the outside of the adult incontinence article 515.
- the sample zone 142 resides inside the adult incontinence article 515 as part of the assay device 120 and extends through an aperture 542 in a cover 517.
- a transparent film 541 is affixed to the cover 517 to protect the assay device 120 and prevent fluid leaks from adult incontinence article 515.
- the assay device 120 may be fixed into position in the absorbent article using a variety of techniques or mechanisms.
- the assay device 120 may be attached using any known attachment mechanism, such as adhesive, ultrasonic, thermal bonds, etc.
- Suitable adhesives may include, for instance, hot melt adhesives, pressure- sensitive adhesives, and so forth.
- the adhesive may be applied as a uniform layer, a patterned layer, a sprayed pattern, or any of separate lines, swirls or dots.
- the assay device 120 may be connected using conventional fasteners, such as buttons, hook and loop type fasteners, adhesive tape fasteners, and so forth.
- pockets or apertures may be built into one or more layers of the absorbent article to fix the position of the assay device 120.
- a variety of configurations may be used to secure assay device 120 into a position that helps ensure contact with the bodily fluid to be tested.
- the embodiments of Figs. 3 through 7 are provided by way of example only as the present invention is not limited to an adult incontinence article and may be used with other absorbents articles as well.
- numerous configurations and variations of an assay device may be used. Such assay devices may be incorporated in a variety of orientations and configurations into such absorbent articles.
- a fluid such as urine may be directly discharged to a portion of chromatographic medium 123, a liquid permeable cover or other material surrounding assay device 120, or may be discharged onto a component of the absorbent article into which the assay device 120 has been integrated.
- the fluid may then travel in the direction illustrated by arrow "L" in Fig. 2.
- the urine sample may first be applied to, or supplied to, a sample application zone 142 that is in fluid communication with the chromatographic medium 123.
- the sample application zone 142 may be formed on the medium 123.
- the sample application zone 142 may be formed by a separate material, such as a pad.
- the intensity of indication (such as a color change) from colorant 136 may be measured to quantitatively or semi- quantitatively determine the level of formaldehyde present in the urine sample.
- qualitative testing may be typically employed to provide early testing and monitoring of a health condition.
- formaldehyde is visually detected, the user or caregiver is given an indication that further quantitative testing may be undertaken.
- an adult incontinence article having an integrated assay device may be periodically used with elderly or non-ambulatory patients as part of a monitoring program that tests for cancer.
- further quantitative testing can then be undertaken to determine the scope and stage of the problem detected so a to provide additional treatment information.
- Fig. 8 illustrates an exemplary embodiment of the present invention in which a substrate 10 has been incorporated into a specimen container 15.
- Substrate 10 is attached to the inside of lid 16.
- lid 16 Upon placing a urine sample 17 into container 15, lid 16 is placed onto container 15 to substantially seal off the interior of container 15.
- the container 15 is then allowed to equilibrate over a period of time so that substrate 10 can test the vapor from the collected urine sample 17.
- colorant 12 provides a spectral response.
- Lid 16 may be removed to observe colorant 12.
- an aperture (not shown) having a transparent or translucent covering may be provided so that the colorant 12 of substrate 10 can be observed without removing lid 16 from container 15.
- EXAMPLE 1 The ability of basic fuchsin-sulfuric reagent to indicate the presence of formaldehyde was determined.
- concentrations of formaldehyde solutions were prepared in water (mg/ml): 5.625, 11.25, 22.5, 45, 90, 180, and 360 mg/ml (which corresponds to 0.056, 1.125, 2.25, 4.5, 9.0, 18.0 and 36.0 percent, respectively).
- concentration of formaldehyde solution 50 ⁇ l was placed into a microtiter well.
- water without any formaldehyde was also placed into one of the microtiiter wells as a control.
- basic fuchsin-sulfuric acid reagent was prepared by mixing 150 ⁇ l of 2.0 mg/ml stock solution of basic fuchsin in ethanol with 2.0 ml of water. This produced a solution red in color. This mixture was then slowly combined with 2N sulfuric acid until the red colored solution became colorless.
- EXAMPLE 2 The ability to use basic fuchsin-sulfuric reagent without indicating the presence of other aldehydes was determined.
- concentrations of aldehydes were prepared in water: 1.0 mg/ml of acetaldehyde, 15.0 mg/ml of isovaleraldehyde, 15.0 mg/ml of phenlyacetaldehyde, and 5.0 mg/ml of phthalic dicarboxyaldehyde.
- concentration 50 ⁇ l was placed into a microtiter well.
- Basic fuchsin-sulfuric acid reagent was prepared as previously described, and 250 ⁇ l was added into each of the microtiiter wells. No significant color change was observed in any of the wells.
- a sheet of KIMWIPE® was coated with basic fuchsin-sulfuric agent prepared in a manner was previously described. The sheet was allowed to air dry. Various concentrations of formaldehyde were prepared and applied to different portions of the sheet. Where the formaldehyde solution was applied, a visible pink color change was generated in a dose dependent manner.
- a handheld spectrophotometer was then used to calculate a ⁇ E value based on ⁇ L*, ⁇ a*, and ⁇ b* for each strip placed over a formaldehyde solution and the strip placed over the water control.
- the ⁇ E values confirmed the perceived visual changes as values of approximately 5 or higher correspond to changes that are perceptible to the naked eye.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Immunology (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Hematology (AREA)
- Vascular Medicine (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Urology & Nephrology (AREA)
- Epidemiology (AREA)
- Biophysics (AREA)
- Medicinal Chemistry (AREA)
- Food Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Toxicology (AREA)
- Dispersion Chemistry (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
Description
Claims
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020097012286A KR101407790B1 (en) | 2006-12-14 | 2007-09-28 | Detection of formaldehyde in urine samples |
JP2009540897A JP2010513855A (en) | 2006-12-14 | 2007-09-28 | Detection of formaldehyde in urine samples |
CA002670430A CA2670430A1 (en) | 2006-12-14 | 2007-09-28 | Detection of formaldehyde in urine samples |
EP07826586A EP2092326A1 (en) | 2006-12-14 | 2007-09-28 | Detection of formaldehyde in urine samples |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/638,760 | 2006-12-14 | ||
US11/638,760 US8012761B2 (en) | 2006-12-14 | 2006-12-14 | Detection of formaldehyde in urine samples |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008072112A1 true WO2008072112A1 (en) | 2008-06-19 |
Family
ID=39145207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2007/053957 WO2008072112A1 (en) | 2006-12-14 | 2007-09-28 | Detection of formaldehyde in urine samples |
Country Status (7)
Country | Link |
---|---|
US (1) | US8012761B2 (en) |
EP (1) | EP2092326A1 (en) |
JP (1) | JP2010513855A (en) |
KR (1) | KR101407790B1 (en) |
CN (1) | CN101558299A (en) |
CA (1) | CA2670430A1 (en) |
WO (1) | WO2008072112A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020157526A1 (en) | 2019-01-28 | 2020-08-06 | Ioi Auranae Kft | Device and method for the automatic determination of anion and cation levels from urine |
CN114797421A (en) * | 2022-03-11 | 2022-07-29 | 上海时宜品牌管理有限公司 | Tea extract gel composition with formaldehyde discoloration property |
Families Citing this family (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080269707A1 (en) * | 2007-04-30 | 2008-10-30 | Kimberly-Clark Worldwide, Inc. | Lateral Flow Device for Attachment to an Absorbent Article |
US8866624B2 (en) * | 2008-12-31 | 2014-10-21 | Kimberly-Clark Worldwide, Inc. | Conductor-less detection system for an absorbent article |
US20100168694A1 (en) * | 2008-12-31 | 2010-07-01 | Sudhanshu Gakhar | Infrared Wetness Detection System For An Absorbent Article |
US9006458B2 (en) * | 2010-10-12 | 2015-04-14 | Agency For Science, Technology And Research | Surface Enhanced Raman Spectroscopy (SERS) compounds and methods of their preparation |
US20130296739A1 (en) * | 2012-05-01 | 2013-11-07 | Courtney Schultz | Diaper with Pocket for an Absorbent Pad Containing a Test Strip |
TWI458962B (en) * | 2012-05-14 | 2014-11-01 | Univ Nat United | Detecting element, and manufacturing methods and use of the detecting element |
US9572724B2 (en) | 2013-08-16 | 2017-02-21 | Clopay Plastic Products Company, Inc. | Printed wetness and health indicators on absorbent articles and methods of making same |
US9885702B1 (en) | 2013-09-09 | 2018-02-06 | Celerion, Inc. | Isotopically-labeled solvents and the use of same in testing E-cigarettes |
US9645134B1 (en) | 2013-09-09 | 2017-05-09 | Celerion, Inc. | Isotopically-labeled solvents and the use of same in testing e-cigarettes |
US20160282352A1 (en) * | 2013-11-06 | 2016-09-29 | iSense Medical Corp. (dba Metabolomx) | Cancer urine test |
CN104970921B (en) * | 2014-04-02 | 2019-07-19 | 林有健 | Excreta sensing device and diaper with excreta sensing device |
CN106661531A (en) | 2014-06-27 | 2017-05-10 | 脉冲健康有限责任公司 | Fluorescence detection assembly |
CA2976512A1 (en) | 2015-02-27 | 2016-09-01 | Kimberly-Clark Worldwide, Inc. | Absorbent article leakage assessment system |
KR102115850B1 (en) * | 2016-06-15 | 2020-05-27 | 인하대학교 산학협력단 | Colorimetric sensor containing Chrysoidine G compound for detecting cobalt ion |
EP3579982A4 (en) * | 2017-02-16 | 2021-03-31 | Isense LLC | Sensor arrays with nucleophilic indicators |
ES2679643B1 (en) * | 2017-02-24 | 2019-03-21 | Univ Vigo | Non-instrumental colorimetric device and method for volatile chemical species |
KR102099784B1 (en) | 2017-04-05 | 2020-04-10 | 킴벌리-클라크 월드와이드, 인크. | Absorbent article leak detection clothing and absorbent article leak detection method using the same |
CN107340289A (en) * | 2017-06-28 | 2017-11-10 | 防城港市质量技术监督局 | A kind of formaldehyde determination kit |
KR101961485B1 (en) * | 2017-12-11 | 2019-03-22 | (주)세한 | Disposable pocket diaper for adult male |
CN108801962B (en) * | 2018-06-25 | 2021-01-15 | 曲阜师范大学 | Preparation of silver-melamine nanocomposite test paper and application of silver-melamine nanocomposite test paper in formaldehyde adsorption and rapid test |
CN109856068B (en) * | 2019-01-17 | 2021-08-24 | 浙江理工大学 | Formaldehyde detection reagent based on Mannich reaction and detection method |
TWI697667B (en) * | 2019-09-26 | 2020-07-01 | 大華學校財團法人大華科技大學 | Apparatus and method for measuring electrical properties in urine |
KR102411461B1 (en) * | 2019-10-31 | 2022-06-22 | 한국생산기술연구원 | Formaldehyde Sensitive Functional Cotton Fiber |
WO2021107064A1 (en) * | 2019-11-28 | 2021-06-03 | 株式会社シノテスト | Kit for collecting bodily fluid samples |
US20230054322A1 (en) * | 2021-08-23 | 2023-02-23 | Leslie P. Taylor | Urine indication pad with inbuilt diagnostics for training and indication of potential disease |
US20230140613A1 (en) * | 2022-03-30 | 2023-05-04 | Hasan Bagheri | Colorimetric system for detection of covid-19 using exhaled breath metabolites |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3945798A (en) * | 1973-05-24 | 1976-03-23 | Eastman Kodak Company | Formaldehyde test element and method of use |
DE3732504A1 (en) * | 1987-09-26 | 1989-04-13 | Wisdata Scient Soft And Hardwa | Method and apparatus for the determination of formaldehyde concentrations in the air |
WO1990000737A1 (en) * | 1988-07-08 | 1990-01-25 | Becker Wilhelm Ab | A method and device for measuring formaldehyde emission from surfaces |
EP0555045A1 (en) * | 1992-02-03 | 1993-08-11 | Lifescan, Inc. | Improved oxidative coupling dye for spectrophotometric quantitative analysis of analytes |
EP1034758A1 (en) * | 1998-09-16 | 2000-09-13 | Paula Jimenez Cerrato | Diaper with indicators sensitive to the status of the impregnated urine and visible from outside |
US6436716B1 (en) * | 2000-05-30 | 2002-08-20 | Integrated Biomedical Technology, Inc. | Aldehyde test strip |
WO2003019178A2 (en) * | 2001-08-29 | 2003-03-06 | Husky Injection Molding Systems Ltd. | Method and apparatus for testing aldehyde in a polyester polymer |
JP2003254959A (en) * | 2001-12-26 | 2003-09-10 | Wako Pure Chem Ind Ltd | New formaldehyde measuring kit |
CN1487296A (en) * | 2003-07-14 | 2004-04-07 | 大连理工大学 | Test paper for fast detecting formaldehyde content in aquatic product without interference from protein |
WO2004111635A1 (en) * | 2003-06-12 | 2004-12-23 | Toyo Hakko Co., Ltd. | Composition for aldehyde detection |
JP2005003673A (en) * | 2003-05-20 | 2005-01-06 | Sakura Color Prod Corp | Indicator composition |
JP2006275817A (en) * | 2005-03-29 | 2006-10-12 | National Institute Of Advanced Industrial & Technology | Method and device for detecting formaldehyde |
Family Cites Families (130)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5622871A (en) | 1987-04-27 | 1997-04-22 | Unilever Patent Holdings B.V. | Capillary immunoassay and device therefor comprising mobilizable particulate labelled reagents |
US3409405A (en) * | 1965-02-17 | 1968-11-05 | Raam R. Mohan | Diagnostic preparation for the detection of formaldehyde |
NL137566C (en) | 1966-03-11 | |||
DE1767931C3 (en) | 1967-10-26 | 1973-09-27 | Boehringer Mannheim Gmbh, 6800 Mannheim | Diagnostic means and method for the detection of urobilinogen bodies |
DE1941370C3 (en) | 1969-08-14 | 1974-01-17 | Boehringer Mannheim Gmbh, 6800 Mannheim | Diagnostic agent for the detection of nitrite and nitrite-forming bacteria in body fluids |
DE2118455B1 (en) | 1971-04-16 | 1972-09-21 | Boehringer Mannheim Gmbh | Test strips |
DE2130559C3 (en) | 1971-06-19 | 1973-11-22 | Boehringer Mannheim Gmbh, 6800 Mannheim | Diagnostic means for the detection of urobihnogen |
DE2229611C3 (en) | 1972-06-19 | 1980-07-17 | Boehringer Mannheim Gmbh, 6800 Mannheim | Diagnostic detection of urobilinogen bodies |
DE2235152C2 (en) | 1972-07-18 | 1975-07-10 | Boehringer Mannheim Gmbh, 6800 Mannheim | Diagnostic agent for the detection of blood and other peroxidatically active substances in body fluids |
DE2235127C2 (en) | 1972-07-18 | 1974-08-08 | Boehringer Mannheim Gmbh, 6800 Mannheim | Diagnostic agent for the detection of blood and other peroxidatically active substances in body fluids |
DE2240471C3 (en) | 1972-08-17 | 1975-04-03 | Boehringer Mannheim Gmbh, 6800 Mannheim | Test paper for the detection of bilirubin in body fluids |
DE2240357C2 (en) | 1972-08-17 | 1974-09-12 | Boehringer Mannheim Gmbh, 6800 Mannheim | Test paper for the detection of bilirubin in body fluids |
US3814586A (en) | 1973-01-02 | 1974-06-04 | Miles Lab | Composition,method and device for determining bilirubin and urobilinogen |
DE2460903C3 (en) | 1974-12-21 | 1981-12-24 | Boehringer Mannheim Gmbh, 6800 Mannheim | New 3,3 ', 5,5'-Tetraalkylbenzidines |
DE2510633C3 (en) | 1975-03-12 | 1978-07-13 | Boehringer Mannheim Gmbh, 6800 Mannheim | Diagnostic agent for the detection of protein in body fluids and indicator dyes suitable therefor |
DE2521402C3 (en) | 1975-05-14 | 1979-07-26 | Behringwerke Ag, 3550 Marburg | Diagnostic agent for the detection of urobilinogen |
DE2728236B2 (en) | 1977-06-23 | 1980-09-18 | Wolfgang Dr. 3300 Braunschweig Hirsch | Stabilized diagnostic preparation for the detection of urobilinogen |
US4158546A (en) | 1978-07-24 | 1979-06-19 | Miles Laboratories, Inc. | Composition, test device and method for determining the presence of urobilinogen in a test sample |
DE2839931A1 (en) | 1978-09-14 | 1980-03-27 | Behringwerke Ag | DIAGNOSTIC AGENT FOR DETECTING UROBILINOGEN |
US4190419A (en) | 1978-09-22 | 1980-02-26 | Miles Laboratories, Inc. | Device for detecting serum bilirubin |
DE2936745A1 (en) | 1979-09-12 | 1981-04-16 | Behringwerke Ag, 3550 Marburg | DIAGNOSTIC AGENT FOR DETECTING BILIRUBIN IN BODY LIQUIDS AND REQUIRED REAGENT |
US4393881A (en) * | 1979-09-24 | 1983-07-19 | Shah Nayan S | Midstream urine collection device |
EP0146654A3 (en) | 1980-06-20 | 1986-08-20 | Unilever Plc | Processes and apparatus for carrying out specific binding assays |
JPS6084253A (en) | 1983-10-15 | 1985-05-13 | Wako Pure Chem Ind Ltd | Novel diazonium salt and composition for detecting urobilinogen using it |
US4703017C1 (en) | 1984-02-14 | 2001-12-04 | Becton Dickinson Co | Solid phase assay with visual readout |
GB8406752D0 (en) | 1984-03-15 | 1984-04-18 | Unilever Plc | Chemical and clinical tests |
US4743560A (en) | 1984-03-26 | 1988-05-10 | Becton Dickinson And Company | Solid phase assay |
CA1341430C (en) | 1984-07-02 | 2003-06-03 | Kenneth Maynard Enloe | Diapers with elasticized side pockets |
US4753891A (en) * | 1985-05-24 | 1988-06-28 | Akzo N.V. | Schiff test for rapid detection of low levels of aldehydes |
TW203120B (en) | 1985-10-04 | 1993-04-01 | Abbott Lab | |
US4916056A (en) | 1986-02-18 | 1990-04-10 | Abbott Laboratories | Solid-phase analytical device and method for using same |
US4835099A (en) | 1986-11-20 | 1989-05-30 | Becton, Dickinson And Company | Signal enhancement in immunoassay by modulation of enzymatic catalysis |
US4954435A (en) | 1987-01-12 | 1990-09-04 | Becton, Dickinson And Company | Indirect colorimetric detection of an analyte in a sample using ratio of light signals |
USRE38430E1 (en) | 1987-03-27 | 2004-02-17 | Becton, Dickinson And Company | Solid phase chromatographic immunoassay |
CA1303983C (en) | 1987-03-27 | 1992-06-23 | Robert W. Rosenstein | Solid phase assay |
JPH0684970B2 (en) | 1987-03-31 | 1994-10-26 | 株式会社京都医科学研究所 | Method of detecting occult blood in feces |
DE291194T1 (en) | 1987-04-27 | 1992-03-19 | Unilever N.V., Rotterdam | IMMUNOASSAYS AND DEVICES FOR THIS. |
US4855240A (en) | 1987-05-13 | 1989-08-08 | Becton Dickinson And Company | Solid phase assay employing capillary flow |
US4904583A (en) | 1987-05-26 | 1990-02-27 | Becton, Dickinson And Company | Cascade immunoassay by multiple binding reactions |
US5120643A (en) | 1987-07-13 | 1992-06-09 | Abbott Laboratories | Process for immunochromatography with colloidal particles |
US4956302A (en) | 1987-09-11 | 1990-09-11 | Abbott Laboratories | Lateral flow chromatographic binding assay device |
US5073340A (en) | 1987-10-08 | 1991-12-17 | Becton, Dickinson And Company | Depositing a binder on a solid support |
US4978625A (en) | 1987-10-19 | 1990-12-18 | Becton, Dickinson And Company | Fluorescence immunoassay using water insoluble dyes |
US5275785A (en) | 1987-10-30 | 1994-01-04 | Unilever Patent Holdings B.V. | Test device for detecting an analyte in a liquid sample |
US5670381A (en) | 1988-01-29 | 1997-09-23 | Abbott Laboratories | Devices for performing ion-capture binding assays |
US5573919A (en) | 1988-06-02 | 1996-11-12 | Carter-Wallace | Assay using an absorbent material |
AU2684488A (en) | 1988-06-27 | 1990-01-04 | Carter-Wallace, Inc. | Test device and method for colored particle immunoassay |
US5075077A (en) | 1988-08-02 | 1991-12-24 | Abbott Laboratories | Test card for performing assays |
US5252459A (en) | 1988-09-23 | 1993-10-12 | Abbott Laboratories | Indicator reagents, diagnostic assays and test kits employing organic polymer latex particles |
US5208143A (en) | 1988-11-17 | 1993-05-04 | Becton, Dickinson And Company | Immunoassay on a preblocked solid surface |
US5185127A (en) | 1989-09-21 | 1993-02-09 | Becton, Dickinson And Company | Test device including flow control means |
US5075078A (en) | 1989-10-05 | 1991-12-24 | Abbott Laboratories | Self-performing immunochromatographic device |
US6274324B1 (en) | 1989-12-01 | 2001-08-14 | Unilever Patent Holdings B.V. | Specific binding reagent comprising a variable domain protein linked to a support or tracer |
JPH0810218B2 (en) | 1990-09-19 | 1996-01-31 | テルモ株式会社 | Test tool |
US5192606A (en) * | 1991-09-11 | 1993-03-09 | Kimberly-Clark Corporation | Absorbent article having a liner which exhibits improved softness and dryness, and provides for rapid uptake of liquid |
US5428690A (en) | 1991-09-23 | 1995-06-27 | Becton Dickinson And Company | Method and apparatus for automated assay of biological specimens |
AU4798793A (en) * | 1992-08-10 | 1994-03-03 | Monolithic System Technology, Inc. | Fault-tolerant, high-speed bus system and bus interface for wafer-scale integration |
US5468236A (en) | 1993-06-09 | 1995-11-21 | Kimberly-Clark Corporation | Disposable absorbent product incorporating chemically reactive substance |
ES2145034T3 (en) | 1993-11-12 | 2000-07-01 | Unilever Nv | ANALYTICAL DEVICES AND PROCEDURES FOR THE USE OF THEM. |
CA2120646A1 (en) | 1993-12-16 | 1995-06-17 | Kimberly-Clark Worldwide, Inc. | Dynamic fitting diaper |
JP3091094B2 (en) | 1993-12-28 | 2000-09-25 | ユニチカ株式会社 | Reagent for direct bilirubin measurement |
US5399219A (en) | 1994-02-23 | 1995-03-21 | Kimberly-Clark Corporation | Method for making a fastening system for a dynamic fitting diaper |
US5486166A (en) | 1994-03-04 | 1996-01-23 | Kimberly-Clark Corporation | Fibrous nonwoven web surge layer for personal care absorbent articles and the like |
EP0672774B1 (en) | 1994-03-04 | 1999-07-14 | Kimberly-Clark Worldwide, Inc. | Improved surge management fibrous nonwoven web for personal care absorbent articles and the like |
US5558158A (en) | 1994-05-19 | 1996-09-24 | Elmore; Robert L. | Hygienic air handler |
US5540796A (en) | 1994-08-03 | 1996-07-30 | Kimberly-Clark Corporation | Process for assembling elasticized ear portions |
US5702377A (en) | 1994-09-01 | 1997-12-30 | Kimberly-Clark Worldwide, Inc. | Wet liner for child toilet training aid |
GB9419267D0 (en) | 1994-09-23 | 1994-11-09 | Unilever Plc | Assay devices |
US5955374A (en) | 1994-11-23 | 1999-09-21 | Smith; Jack V. | Method of detection of bilirubin in urine on an automated analyzer |
US5736408A (en) | 1994-11-23 | 1998-04-07 | Carter; Jesse M. | Method for the detection of urobilinogen in urine on an automated analyzer |
AU4117696A (en) | 1994-11-24 | 1996-06-17 | Unipath Limited | Recovery of and uses of specific binding agents |
GB9505425D0 (en) | 1995-03-17 | 1995-05-03 | Unilever Plc | Assay devices |
US5595618A (en) | 1995-04-03 | 1997-01-21 | Kimberly-Clark Corporation | Assembly process for a laminated tape |
US20030180183A1 (en) | 1995-10-30 | 2003-09-25 | Takao Fukuoka | Method for measuring substance and testing piece |
US5788863A (en) | 1995-12-13 | 1998-08-04 | Becton Dickinson And Company | Apparatus and method for conducting an assay using reverse flow through a membrane |
US6060638A (en) | 1995-12-22 | 2000-05-09 | Kimberly-Clark Worldwide, Inc. | Matched permeability liner/absorbent structure system for absorbent articles and the like |
US5945281A (en) | 1996-02-02 | 1999-08-31 | Becton, Dickinson And Company | Method and apparatus for determining an analyte from a sample fluid |
CA2254108C (en) | 1996-05-23 | 2008-07-22 | Unilever Plc | Improvements in or relating to specific binding assays |
US5798273A (en) | 1996-09-25 | 1998-08-25 | Becton Dickinson And Company | Direct read lateral flow assay for small analytes |
US6194220B1 (en) | 1996-09-25 | 2001-02-27 | Becton, Dickinson And Company | Non-instrumented assay with quantitative and qualitative results |
US5998221A (en) | 1996-09-25 | 1999-12-07 | Becton, Dickinson And Company | Non-instrumented assay with quantitative and qualitative results |
ATE231971T1 (en) | 1996-09-27 | 2003-02-15 | Inverness Medical Switzerland | TEST KIT AND DEVICES |
ATE228247T1 (en) | 1996-09-27 | 2002-12-15 | Inverness Medical Switzerland | TEST REAGENTS AND TEST DEVICES |
DK0833158T3 (en) | 1996-09-27 | 2002-02-18 | Unilever Nv | Preparation of test strips |
US6057165A (en) | 1997-02-07 | 2000-05-02 | Becton, Dickinson And Company | Quality control procedure for membrane flow-through diagnostic assay devices |
GB2322192B (en) | 1997-02-14 | 2001-01-31 | Unilever Plc | Assay devices |
US5931823A (en) | 1997-03-31 | 1999-08-03 | Kimberly-Clark Worldwide, Inc. | High permeability liner with improved intake and distribution |
US5989924A (en) | 1997-09-30 | 1999-11-23 | Becton, Dickinson And Company | Device for determining an analyte in a sample |
US6197404B1 (en) | 1997-10-31 | 2001-03-06 | Kimberly-Clark Worldwide, Inc. | Creped nonwoven materials |
US6077669A (en) | 1997-11-04 | 2000-06-20 | Becton Dickinson And Company | Kit and method for fluorescence based detection assay |
GB9807134D0 (en) | 1998-04-02 | 1998-06-03 | Unilever Plc | Test methods devices and test kits |
US6093869A (en) | 1998-06-29 | 2000-07-25 | The Procter & Gamble Company | Disposable article having a responsive system including a feedback control loop |
US6165797A (en) * | 1999-02-19 | 2000-12-26 | Bio-Defense Nutritionals, Inc. | Methods for testing oxidative stress |
US6203496B1 (en) | 1999-08-12 | 2001-03-20 | Michael R. Gael | Apparatus with reagents for detection of medical conditions |
US6663611B2 (en) | 1999-09-28 | 2003-12-16 | Kimberly-Clark Worldwide, Inc. | Breathable diaper with low to moderately breathable inner laminate and more breathable outer cover |
JP2001349891A (en) | 2000-04-03 | 2001-12-21 | Unilever Nv | Test method and device |
JP2001349892A (en) | 2000-04-03 | 2001-12-21 | Unilever Nv | Test method and device |
US6627459B1 (en) | 2000-04-19 | 2003-09-30 | Applied Biotech, Inc. | Immunoassay controls |
US7052831B2 (en) | 2000-09-29 | 2006-05-30 | Becton Dickinson And Company | Detection of multiple analytes from a single sample using a multi-well, multi-analyte flow-through diagnostic test device |
US6653149B1 (en) | 2000-10-16 | 2003-11-25 | Applied Biotech Inc. | Specimen collection device and method |
US6436659B1 (en) * | 2000-10-27 | 2002-08-20 | Ethicon, Inc. | Biological indicator for sterilization processes with double buffer system |
US6524864B2 (en) | 2000-12-28 | 2003-02-25 | Aurora L. Fernandez Decastro | Test strip for simultaneous detection of a plurality of analytes |
US6669908B2 (en) | 2001-07-25 | 2003-12-30 | Applied Biotech, Inc. | Urine test device |
US20030119203A1 (en) | 2001-12-24 | 2003-06-26 | Kimberly-Clark Worldwide, Inc. | Lateral flow assay devices and methods for conducting assays |
US8367013B2 (en) | 2001-12-24 | 2013-02-05 | Kimberly-Clark Worldwide, Inc. | Reading device, method, and system for conducting lateral flow assays |
AU2002360205A1 (en) | 2001-12-27 | 2003-07-30 | Inverness Medical Switzerland Gmbh | System and method for fluorescence detection |
US20040151632A1 (en) | 2002-06-27 | 2004-08-05 | Badley Robert Andrew | Luminescence assays and assay readers |
US6689617B1 (en) | 2002-07-30 | 2004-02-10 | Medi-Tech Holdings, Inc. | Agent for detecting malondialdehyde, method of making the same, and test kit for use thereof |
US7781172B2 (en) | 2003-11-21 | 2010-08-24 | Kimberly-Clark Worldwide, Inc. | Method for extending the dynamic detection range of assay devices |
US7060867B2 (en) | 2002-11-27 | 2006-06-13 | Kimberly-Clark Worldwide, Inc. | Absorbent article with a body facing liner having discretely placed lotion deposits |
US20040121334A1 (en) | 2002-12-19 | 2004-06-24 | Kimberly-Clark Worldwide, Inc. | Self-calibrated flow-through assay devices |
US7247500B2 (en) | 2002-12-19 | 2007-07-24 | Kimberly-Clark Worldwide, Inc. | Reduction of the hook effect in membrane-based assay devices |
US7459314B2 (en) | 2003-02-13 | 2008-12-02 | Inverness Medical Switzerland Gmbh | Lateral flow immunoassay controls |
US7239394B2 (en) | 2003-06-04 | 2007-07-03 | Inverness Medical Switzerland Gmbh | Early determination of assay results |
US7315378B2 (en) | 2003-06-04 | 2008-01-01 | Inverness Medical Switzerland Gmbh | Optical arrangement for assay reading device |
WO2005016425A1 (en) | 2003-08-06 | 2005-02-24 | Innomed Technologies, Inc. | Nasal interface and system including ventilation insert |
JP2005056604A (en) | 2003-08-06 | 2005-03-03 | Hitachi Displays Ltd | Self-luminous flat display device |
US20050054255A1 (en) | 2003-09-08 | 2005-03-10 | Kimberly-Clark Worldwide, Inc. | Nonwoven fabric liner and diaper including a nonwoven laminate liner |
US20050059941A1 (en) | 2003-09-11 | 2005-03-17 | Kimberly-Clark Worldwide, Inc. | Absorbent product with improved liner treatment |
WO2005031304A2 (en) | 2003-09-22 | 2005-04-07 | Becton, Dickinson And Company | Quantification of analytes using internal standards |
US7943395B2 (en) | 2003-11-21 | 2011-05-17 | Kimberly-Clark Worldwide, Inc. | Extension of the dynamic detection range of assay devices |
US7592020B2 (en) * | 2003-12-05 | 2009-09-22 | Kimberly-Clark Worldwide, Inc. | Personal care products with visual indicator of vaginitis |
US20050191704A1 (en) | 2004-03-01 | 2005-09-01 | Kimberly-Clark Worldwide, Inc. | Assay devices utilizing chemichromic dyes |
TWI272937B (en) | 2004-07-29 | 2007-02-11 | Neter Marketing Co Ltd | Sanitary article with physiology examining function and its examination method |
US7662562B2 (en) | 2004-08-10 | 2010-02-16 | Becton, Dickinson And Company | Method for rapid identification of microorganisms |
US20060127886A1 (en) | 2004-12-15 | 2006-06-15 | Kaylor Rosann M | Sample-efficient lateral flow immunoassay |
US7939342B2 (en) | 2005-03-30 | 2011-05-10 | Kimberly-Clark Worldwide, Inc. | Diagnostic test kits employing an internal calibration system |
US20060240569A1 (en) | 2005-04-20 | 2006-10-26 | Becton, Dickinson And Company | Semi-quantitative immunochromatographic device |
US7439079B2 (en) | 2005-04-29 | 2008-10-21 | Kimberly-Clark Worldwide, Inc. | Assay devices having detection capabilities within the hook effect region |
US7829347B2 (en) | 2005-08-31 | 2010-11-09 | Kimberly-Clark Worldwide, Inc. | Diagnostic test kits with improved detection accuracy |
-
2006
- 2006-12-14 US US11/638,760 patent/US8012761B2/en not_active Expired - Fee Related
-
2007
- 2007-09-28 KR KR1020097012286A patent/KR101407790B1/en not_active IP Right Cessation
- 2007-09-28 CA CA002670430A patent/CA2670430A1/en not_active Abandoned
- 2007-09-28 WO PCT/IB2007/053957 patent/WO2008072112A1/en active Application Filing
- 2007-09-28 CN CNA2007800460056A patent/CN101558299A/en active Pending
- 2007-09-28 JP JP2009540897A patent/JP2010513855A/en not_active Withdrawn
- 2007-09-28 EP EP07826586A patent/EP2092326A1/en not_active Withdrawn
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3945798A (en) * | 1973-05-24 | 1976-03-23 | Eastman Kodak Company | Formaldehyde test element and method of use |
DE3732504A1 (en) * | 1987-09-26 | 1989-04-13 | Wisdata Scient Soft And Hardwa | Method and apparatus for the determination of formaldehyde concentrations in the air |
WO1990000737A1 (en) * | 1988-07-08 | 1990-01-25 | Becker Wilhelm Ab | A method and device for measuring formaldehyde emission from surfaces |
EP0555045A1 (en) * | 1992-02-03 | 1993-08-11 | Lifescan, Inc. | Improved oxidative coupling dye for spectrophotometric quantitative analysis of analytes |
EP1034758A1 (en) * | 1998-09-16 | 2000-09-13 | Paula Jimenez Cerrato | Diaper with indicators sensitive to the status of the impregnated urine and visible from outside |
US6436716B1 (en) * | 2000-05-30 | 2002-08-20 | Integrated Biomedical Technology, Inc. | Aldehyde test strip |
WO2003019178A2 (en) * | 2001-08-29 | 2003-03-06 | Husky Injection Molding Systems Ltd. | Method and apparatus for testing aldehyde in a polyester polymer |
JP2003254959A (en) * | 2001-12-26 | 2003-09-10 | Wako Pure Chem Ind Ltd | New formaldehyde measuring kit |
JP2005003673A (en) * | 2003-05-20 | 2005-01-06 | Sakura Color Prod Corp | Indicator composition |
WO2004111635A1 (en) * | 2003-06-12 | 2004-12-23 | Toyo Hakko Co., Ltd. | Composition for aldehyde detection |
CN1487296A (en) * | 2003-07-14 | 2004-04-07 | 大连理工大学 | Test paper for fast detecting formaldehyde content in aquatic product without interference from protein |
JP2006275817A (en) * | 2005-03-29 | 2006-10-12 | National Institute Of Advanced Industrial & Technology | Method and device for detecting formaldehyde |
Non-Patent Citations (3)
Title |
---|
DATABASE WPI Week 200442, Derwent World Patents Index; AN 2004-441625, XP002472219 * |
DATABASE WPI Week 200506, Derwent World Patents Index; AN 2005-057892, XP002472386 * |
See also references of EP2092326A1 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020157526A1 (en) | 2019-01-28 | 2020-08-06 | Ioi Auranae Kft | Device and method for the automatic determination of anion and cation levels from urine |
CN114797421A (en) * | 2022-03-11 | 2022-07-29 | 上海时宜品牌管理有限公司 | Tea extract gel composition with formaldehyde discoloration property |
Also Published As
Publication number | Publication date |
---|---|
KR101407790B1 (en) | 2014-06-20 |
CN101558299A (en) | 2009-10-14 |
US20080145947A1 (en) | 2008-06-19 |
KR20090097882A (en) | 2009-09-16 |
US8012761B2 (en) | 2011-09-06 |
CA2670430A1 (en) | 2008-06-19 |
JP2010513855A (en) | 2010-04-30 |
EP2092326A1 (en) | 2009-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8012761B2 (en) | Detection of formaldehyde in urine samples | |
US8901366B2 (en) | Urine volume hydration test devices | |
US8222476B2 (en) | Absorbent articles with impending leakage sensors | |
US7846383B2 (en) | Lateral flow assay device and absorbent article containing same | |
US8623292B2 (en) | Dehydration sensors with ion-responsive and charged polymeric surfactants | |
AU2008243894B2 (en) | Lateral flow device for attachment to an absorbent article | |
KR101343675B1 (en) | Method for screening for bacterial conjunctivitis | |
AU2011290497B2 (en) | Dehydration sensors having buffered inks | |
US20090157024A1 (en) | Hydration Test Devices | |
AU2011336203B2 (en) | Dehydration sensors having polymeric base-buffered inks | |
US10383564B2 (en) | Indicator panels for incontinence products | |
US7977103B2 (en) | Method for detecting the onset of ovulation | |
WO2008053390A1 (en) | Absorbent article containing lateral flow assay device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200780046005.6 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07826586 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2007826586 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2670430 Country of ref document: CA Ref document number: 2007826586 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2009540897 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020097012286 Country of ref document: KR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 3368/CHENP/2009 Country of ref document: IN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |