WO2008066069A1 - Apparatus test device - Google Patents

Apparatus test device Download PDF

Info

Publication number
WO2008066069A1
WO2008066069A1 PCT/JP2007/072936 JP2007072936W WO2008066069A1 WO 2008066069 A1 WO2008066069 A1 WO 2008066069A1 JP 2007072936 W JP2007072936 W JP 2007072936W WO 2008066069 A1 WO2008066069 A1 WO 2008066069A1
Authority
WO
WIPO (PCT)
Prior art keywords
command
inverter
speed
machine
torque command
Prior art date
Application number
PCT/JP2007/072936
Other languages
French (fr)
Japanese (ja)
Inventor
Ryuta Matsutani
Kenji Yoshida
Shigeru Sakurai
Original Assignee
Kabushiki Kaisha Yaskawa Denki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Yaskawa Denki filed Critical Kabushiki Kaisha Yaskawa Denki
Priority to JP2008547007A priority Critical patent/JP4873013B2/en
Publication of WO2008066069A1 publication Critical patent/WO2008066069A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/02Gearings; Transmission mechanisms

Definitions

  • the present invention relates to a test apparatus for a machine having N input shafts and M output shafts.
  • FIG. 13 is an example of a conventional mechanical test apparatus disclosed in Patent Document 1.
  • 110 is an engine
  • 120 is a motor generator
  • 130 is a power distribution mechanism
  • 140 is a drive shaft
  • 150a and 150b are load absorption motors
  • 160 is a running simulator
  • 170a and 170b are sensors
  • 180 is a terminal.
  • the device, 190 is an ECU. Under the control of the ECU 190, the drive output output from the engine 110 and the motor / generator 120 is transmitted to the drive shaft 140 via the power distribution mechanism 130, and loaded at both ends of the drive shaft 140 as a load device.
  • Absorption motors 150a and 150b are connected.
  • the load absorbing motors 150a and 150b virtually generate braking torque and running resistance torque for the drive shaft 140 in order to simulate the vehicle running state.
  • the load absorption motors 150a and 150b can be used to virtually generate a braking torque or running resistance torque, making it possible to run the vehicle in a simulated manner and not to install a brake system that is installed in an actual vehicle.
  • the vehicle running condition can be created and various performance tests of the vehicle can be performed.
  • FIG. 14 is an example of a transmission test apparatus disclosed in Patent Document 2.
  • 201 is a low inertia drive motor
  • 202 is a transmission
  • 203 is an absorption motor
  • 204 is a harness
  • 205 is an ECU
  • 206 is an electronic throttle.
  • a low-inertia drive motor 1 that simulates rotation output is used, and the rotation output shaft is connected to the transmission 2 so that the rotation output can be transmitted to the transmission 2 with good frequency response.
  • An absorption motor 3 is connected to the output shaft of the transmission 2 in order to give resistance during running in a pseudo manner.
  • the transmission 202 includes a torque converter, a transmission main body, and a hydraulic controller, and an ECU (electronic control unit) 205 that controls the engine and the transmission is connected to the bench harness 4.
  • the transmission itself has multiple sets of planetary gears, as well as hydraulic friction such as hydraulic clutches and hydraulic brakes.
  • the engagement element is built in, and the hydraulic controller houses a plurality of solenoid valves that are duty-driven by the ECU 205 in addition to the integrally formed hydraulic circuit.
  • the ECU 5 is mounted on the vehicle and integrated with the actual engine and the transmission 202, and is connected to the electronic throttle 206.
  • FIG. 15 shows an example of the inverter test apparatus disclosed in Patent Document 3.
  • Figure 15 shows an example of the inverter test apparatus disclosed in Patent Document 3.
  • 310 is an inverter test device
  • 311 is a DC power supply (DC power supply)
  • 312 is a first motor
  • 312a is a stator of the first motor
  • 312b is a rotor of the first motor
  • 313 is a second motor
  • 313a is a stator of the second motor
  • 313b is a rotor of the second motor
  • 314 is a first rotating shaft
  • 315 is a second rotating shaft
  • 316 is a power distribution mechanism.
  • 317 is the rotational driving force transmission mechanism
  • 317a and 317b are the gears of the rotational driving force transmission mechanism
  • 317c is the rotational shaft of the rotational driving force transmission mechanism
  • 317d is the differential gear of the rotational driving force transmission mechanism
  • 317e and 317f are the rotational driving force This is the output shaft of the transmission mechanism.
  • 318 is a third rotating shaft
  • 319 is a rotating shaft fixing device
  • 322 is a transaxle device
  • 321 is a load device.
  • the inverter test apparatus 310 performs testing by setting two units, a first inverter INV1 and a second inverter INV2, and includes a DC power source 311, a three-phase first motor 312 and a second motor 313.
  • the rotation shafts 314 and 315 of the two motors are coupled by a power distribution mechanism 316, and the third rotation shaft 318 of the power distribution mechanism 316 is fixed by a rotation shaft fixing device 319.
  • a rotation driving force transmission mechanism 317 is connected to the second rotation shaft 315, and an output shaft 317e of the load device 321 is connected to the rotation driving force transmission mechanism 317.
  • the first and second inverters INV1 and INV2 can also convert DC power into three-phase AC power and convert the three-phase AC power into DC power.
  • the first and second inverters INV1 and INV2 are used as a pair.
  • this inverter test device 310 When this inverter test device 310 is used, of the AC power output from the first inverter IN VI, the loss of the first and second motors 312 and 313 and the second inverter INV 2 and the rotational driving force transmitted from the rotating shaft 315 are transmitted.
  • the second inverter INV2 force can also be regenerated to the DC power supply 31 1 side by removing the energy consumed by the load device 321 through the mechanism 317 and the output shaft 317e.
  • the power consumed during the output test of the first inverter INV1 can be suppressed. is there.
  • Patent Document 1 JP 2005-274323 A Patent Document 2: Japanese Patent Laid-Open No. 2006-170681
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-245133
  • Patent Documents 1 and 2 disclose the processing of absorbed power even though there is a description that the load absorption motor absorbs the power generated by the motor generator. It has not been.
  • Patent Document 3 uses a common power source for the two inverters.
  • the example of Patent Document 3 is an inverter test apparatus, and it is not disclosed that the machine test apparatus is involved in pass / fail judgment.
  • the present invention has been made in view of such problems, and an object thereof is to provide a small and efficient mechanical test apparatus by using a common converter with a plurality of inverters.
  • the present invention is configured as follows.
  • the invention according to claim 1 is a test apparatus for a machine having N input shafts and M output shafts, the first motor to the Nth motor coupled to the N input shafts, and M pieces.
  • N + 1 motor to N + M motor coupled to the output shaft of the first motor, and a first motor that controls the rotational speed or torque of the first motor to the N + M motor by converting DC power into AC power.
  • AC power is converted to direct current power in a mechanical testing device including an inverter to an N + M inverter and a machine control unit that provides a torque command or a speed command to the first inverter to the N + M inverter.
  • a common converter that supplies the DC power to the first inverter to the N + M inverter.
  • the invention according to claim 2 is the mechanical test apparatus according to claim 1, wherein the N is 1 and the M is 2.
  • the invention according to claim 3 is the mechanical test apparatus according to claim 1, wherein the N is 1 and the M is 4.
  • the invention according to claim 4 is the mechanical test apparatus according to claim 1, wherein the N is 2. And M is 1.
  • the invention according to claim 5 is the mechanical test apparatus according to claim 1, wherein the machine control unit receives a command from the host system and transmits a response, and a speed command and torque from the command.
  • a command generation unit for generating a command and control mode signal, a pass / fail determination condition for the command, a speed, torque command, a converter current force, a pass / fail determination unit for determining whether the machine is OK, and the speed command, torque command, control
  • a second communication unit that transmits a mode signal to the inverter and the converter and receives a response.
  • a sixth aspect of the present invention is the mechanical test apparatus according to the first aspect, wherein the inverter receives a speed command, a torque command, and a control mode signal from the machine control unit, and transmits the torque command and the speed.
  • a current command generating unit that generates a current command from the command, a current control unit that generates a voltage command from the current command and the current, a PWM unit that generates a PWM signal from the voltage command, and power amplifying the PWM signal And a power conversion unit.
  • the inverter operates by selecting a speed control mode or a torque control mode according to the control mode signal.
  • the torque command is set to zero, and in the torque command mode, the torque command generated by the speed control unit is set to zero.
  • the invention according to claim 8 is the mechanical test apparatus according to claim 4, wherein the inverter generates PWM signals synchronized with each other based on a synchronization signal generated by the machine control unit. It is.
  • the invention according to claim 9 is the mechanical test apparatus according to claim 1, wherein the comparator rectifies a three-phase AC power source to generate a DC power source, and a DC voltage of the DC power source.
  • a smoothing capacitor for smoothing for smoothing; a utility pole detector for detecting a converter current output to the inverter; and a fourth communication unit for receiving a command from the machine control unit and transmitting the converter current as a response.
  • the invention according to claim 10 is the mechanical test apparatus according to claim 8, wherein the converter includes the diode rectification unit and a power converter for power regeneration. .
  • the invention described in claim 11 is the mechanical test apparatus according to claim 9, wherein the comparator controls the DC voltage of the DC power supply to an arbitrary voltage that can be set.
  • the machine control unit provides a torque command to the input shaft inverter and a speed command to the output shaft inverter, and a speed of the input shaft inverter. And the pass / fail of the machine is determined from the torque command response of the output shaft inverter.
  • a thirteenth aspect of the present invention is the mechanical test apparatus according to the twelfth aspect, wherein the mechanical control unit controls the speed command so that the torque command of the output shaft becomes constant.
  • the mechanical control unit provides a speed command to the input shaft inverter and a torque command to the output shaft inverter, and a torque of the input shaft inverter.
  • the pass / fail of the machine is determined from a command and a response to the speed of the output shaft inverter.
  • the invention according to claim 15 is the mechanical test apparatus according to claim 14, wherein the machine control unit controls the speed command so that the torque command of the input shaft becomes constant.
  • the mechanical control unit determines whether or not the machine is acceptable based on the torque command, the speed command, and a converter current response of the converter. It is characterized by determining.
  • the present invention by using a common converter for a plurality of inverters, the number of parts can be reduced, and a small and efficient mechanical testing apparatus can be provided.
  • FIG. 1 is a block diagram showing a configuration of a mechanical test apparatus of the present invention.
  • FIG. 2 is a block diagram showing a configuration of a machine control unit of the machine test apparatus of the present invention.
  • FIG. 3 is a block diagram showing the configuration of the inverter of the mechanical test apparatus of the present invention.
  • FIG. 8 Simulation time chart when the output is proportional to the 1.8th power of the speed in the mechanical test device of the present invention.
  • FIG. 1 is a block diagram showing a configuration of a mechanical test apparatus according to a first embodiment of the present invention
  • FIG. 2 is a block diagram showing a configuration of a machine control unit
  • FIG. 3 is a block diagram showing a configuration of an inverter.
  • 4 and 5 are block diagrams showing the configuration of the converter.
  • 1 is a converter
  • 2 to 7 are inverters
  • 8 to 13 is a motor
  • 14 is a machine control unit.
  • 21 is a command generation unit
  • 22 is a pass / fail determination unit
  • 23 is a communication unit with a host system
  • 24 is a communication unit with an inverter.
  • 31 is a speed control unit
  • 32 is a torque addition unit
  • 33 is a current command generation unit
  • 34 is a current control unit
  • 35 is a PWM unit
  • 36 is a power conversion unit
  • 37 is a motor
  • 38 is a speed detection unit
  • 39 is a communication unit with the machine control unit.
  • 41 is a diode rectifier
  • 42 is a smoothing capacitor
  • 43 is a current detector
  • 44 is a regenerative processor
  • 45 is a voltage detector
  • 46 is a communication unit.
  • 47 is a power converter
  • 48 is a regenerative converter
  • the communication unit 23 receives test items, test details, and pass / fail judgment conditions from a host system such as a personal computer.
  • the command generation unit 21 generates a control mode signal, a speed command, and a torque command for specifying whether the inverter is in a speed control mode or a torque control mode from the test items and test contents of the host system, and delivers them to the communication unit 24.
  • the communication unit 24 transmits a control mode signal, a speed command, and a torque command to the inverter, and receives a speed and torque command from the inverter.
  • the pass / fail determination unit 22 determines pass / fail from the speed command, the torque command, and the speed and torque command that are responses of the inverter.
  • the communication unit 39 receives the control mode signal, speed command, and torque command transmitted from the machine control unit 14 and transmits them to each control unit.
  • the speed control unit 31 operates only when the speed control mode is designated, and generates a torque command by performing PID control processing on the difference between the speed command and the speed.
  • the torque command adding unit 32 adds the torque command and the external torque command transmitted from the machine control unit 14 to generate a new torque command. Except in certain cases where torque feedforward is used, an external torque is The torque command is zero, and in the torque control mode, the torque command generated by the speed control unit is zero.
  • the current command generator 33 generates a current command from the torque command and the motor constant.
  • the current control unit 34 generates a voltage command by performing a PID control process on the difference between the current command and the motor current.
  • the PWM unit 35 generates a PWM signal based on the voltage command and the synchronization command.
  • the power converter 36 insulates and amplifies the PWM signal to drive a power element that constitutes the power converter and supplies power to the motor.
  • the diode rectifier 41 is composed of a 6-bridge diode, and rectifies a three-phase AC power source to generate a DC power source.
  • the smoothing capacitor 42 smoothes the DC voltage of the DC power supply and supplies the smoothed DC power to the inverter.
  • the current detector 43 detects the current supplied to the inverter and generates a converter current signal.
  • the smoothing capacitor voltage rises and reaches a predetermined level due to the regenerative power of the inverter, the regenerative processing unit 44 turns on the power element, connects the resistor in parallel with the smoothing capacitor, and discharges, thereby reducing the capacitor voltage.
  • the voltage detector detects the voltage of the smoothing capacitor and generates a converter voltage signal.
  • the communication unit 46 transmits the converter current signal and the voltage signal to the machine control unit.
  • the power converter 47 regenerates the regenerative power of the inverter to the power source.
  • Figure 6 shows the control system and machine model used in the simulation.
  • the rotor of the input shaft motor and the rotor of the input shaft of the machine are rigidly coupled. is there.
  • J2 Jr2 + Jm2.
  • Torque is transmitted from the input shaft to the output shaft using a spring system with a spring constant of ks, and a backlash BL is added.
  • FIG. 7 is a simulation time chart when a speed command is given to one input shaft and a torque command is given to one output shaft.
  • the spring constant ks 100000Nm / rad.
  • Acceleration time tva lsec
  • load torque acceleration time tt a lsec
  • maximum speed co max 300rad s
  • maximum tonrec speed Trqmax 200Nm
  • knocklash BL 0.
  • Input shaft power Pin and output shaft power Pout total input / output difference Difference PDF is large when the speed is accelerated, and when the torque is increased at a constant speed, the power is lost to the motor, inverter and machine. And consumes little power from the power supply.
  • the speed control shaft motor views the torque control shaft motor torque as the outer tongue L torque and generates a torque command to counter it. If the torque control shaft motor operates as a generator, the speed control shaft motor operates as a motor, and if the torque control shaft motor operates as a motor, the speed control shaft motor operates as a generator. . However, immediately, the moment of inertia of the entire mechanical system including the motor rotor must be accelerated, which requires a large amount of force.
  • the pass / fail judgment of the machine is based on the sum of the input shaft power and the output shaft power as the input / output power difference PDF, and the input / output power difference PDF as a function of speed and torque. It can be. It is also possible to control the speed command so that the torque command of the speed control axis at a constant speed is constant, and add the speed command at this time to the pass / fail judgment condition!
  • Figure 8 shows the simulation time chart when the output of the output shaft is proportional to the speed 1.8.
  • the power output of the converter almost cancels out the input power Pin of the input shaft and the output power Pout of the output shaft at a constant speed.
  • FIG. 10 is a simulation time chart when vibration occurs in the machine.
  • the torque command waveform is a force that pulsates at a frequency proportional to the machine speed, and the vibration level increases at the resonance frequency point of the mechanical system. Torque command pulsation also appears in the power input / output power difference. By analyzing these waveforms, it is possible to detect defects in specific parts of the transmission system that can not only determine the pass / fail of the machine.
  • FIG. 11 is a simulation time chart when a torque command is given to one input shaft and a speed command is given to one output shaft in the second embodiment of the present invention.
  • the simulation conditions are the same as in the first example. The only difference is that during start-up, a ramp speed command is given to the input shaft and a zero torque command is given to the output shaft. A ramp-shaped torque command has been given to the shaft.
  • the speed control shaft regards the torque control shaft torque command as a disturbance and generates a torque command to counter it. The distinction between regeneration and force line is determined by the force to regenerate the torque control axis and the force line.
  • the speed command may be controlled so that the torque command of the speed control shaft at a constant speed becomes constant, and the speed command at this time may be added to the pass / fail judgment condition.
  • FIG. 12 shows a simulation result when the PWM of the input shaft and the output shaft of the mechanical test apparatus of the present invention are synchronized. Not only can the noise caused by beats generated when the PWM frequency is different be reduced, but also the ripple current of the capacitor can be reduced.
  • the total input / output power difference, torque command for each axis, and speed are compared with the reference values for pass / fail judgment, and although not explained, waveform analysis is performed using FFT, etc. ⁇ -By analyzing the spectrum, it is possible to determine the pass / fail of the machine, and to provide a machine test device with reduced power consumption.
  • a failure of a specific transmission system can be determined from the loss and vibration of a machine that can not only efficiently test a machine having N input shafts and M output shafts. It can be expected to be used as a test device for stationary machines and mobile machines.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Inverter Devices (AREA)

Abstract

Provided is a small-size and highly-effective apparatus test device by using a plurality of inverters and a common converter. The test device is used for testing an apparatus having N input shafts and M output shafts. The apparatus test device includes: a first motor (2) to an N-th motor (4) connected to the N input shafts; an N+1-th motor (5) to an N+M-th motor (7) connected to the M output shafts; a first inverter (8) to an N+M inverter (13) for converting DC power into AC power and controlling rpm or torque of the first motor to the N+M motor; and an apparatus control unit (14) which gives a torque instruction or a velocity instruction to the first inverter to the N+M inverter. The apparatus test device further includes a common converter (1) for converting the AC power into DC power for supply to the first inverter to the N+M inverter.

Description

明 細 書  Specification
機械試験装置  Mechanical testing equipment
技術分野  Technical field
[0001] 本発明は、 N個の入力軸と M個の出力軸をもつ機械の試験装置に関する。  The present invention relates to a test apparatus for a machine having N input shafts and M output shafts.
背景技術  Background art
[0002] 図 13は、特許文献 1に開示された従来の機械試験装置の例である。図 13におい て、 110はエンジン、 120はモータ'ジェネレータ、 130は動力分配機構、 140はドラ イブシャフト、 150a、 150bは負荷吸収モータ、 160は走行模擬装置、 170a, 170b はセンサ、 180は端末装置、 190は ECUである。 ECU190の制御のもと、エンジン 1 10やモータ'ジェネレータ 120から出力された駆動出力は、動力分配機構 130を介 してドライブシャフト 140に伝えら、ドライブシャフト 140の両端には負荷装置として負 荷吸収モータ 150a、 150bが接続されている。負荷吸収モータ 150a、 150bは、車 両走行状態を模擬するために、ドライブシャフト 140に対して仮想的に制動トルクや 走行抵抗トルクを発生させる。負荷吸収モータ 150a、 150bは、仮想的に制動トルク や走行抵抗トルクを発生させることで、実際に車両を走らせることなぐさらに、実際の 車両に搭載されるブレーキシステムを搭載することなぐ模擬的に車両走行状態を作 り出し、車両の各種性能試験を行うことができるというものである。  FIG. 13 is an example of a conventional mechanical test apparatus disclosed in Patent Document 1. In FIG. 13, 110 is an engine, 120 is a motor generator, 130 is a power distribution mechanism, 140 is a drive shaft, 150a and 150b are load absorption motors, 160 is a running simulator, 170a and 170b are sensors, and 180 is a terminal. The device, 190 is an ECU. Under the control of the ECU 190, the drive output output from the engine 110 and the motor / generator 120 is transmitted to the drive shaft 140 via the power distribution mechanism 130, and loaded at both ends of the drive shaft 140 as a load device. Absorption motors 150a and 150b are connected. The load absorbing motors 150a and 150b virtually generate braking torque and running resistance torque for the drive shaft 140 in order to simulate the vehicle running state. The load absorption motors 150a and 150b can be used to virtually generate a braking torque or running resistance torque, making it possible to run the vehicle in a simulated manner and not to install a brake system that is installed in an actual vehicle. The vehicle running condition can be created and various performance tests of the vehicle can be performed.
[0003] 図 14は、特許文献 2に開示されたトランスミッション試験装置の例である。図 14にお いて、 201は低慣性駆動モータ、 202はトランスミッション、 203は吸収モータ、 204 はハーネス、 205は ECU、 206は電子スロットルである。エンジンに代えて、回転を 擬似的に出力する低慣性駆動モータ 1を使用し、回転出力軸をトランスミッション 2に 連結し、回転出力の周波数応答性良くトランスミッション 2へ伝えられるように、高剛性 結合している。トランスミッション 2には、走行時の抵抗を擬似的に与えるため出力軸 に吸収モータ 3を連結している。トランスミッション 202は、トルクコンバータ、変速機本 体、油圧コントローラから構成されており、エンジンおよびトランスミッションを制御する ECU (電子制御ユニット) 205がベンチ用ハーネス 4によって接続されている。変速 機本体は複数組のプラネタリギヤの他、油圧クラッチや油圧ブレーキ等の油圧摩擦 係合要素が内蔵され、油圧コントローラには、一体に形成された油圧回路の他、 EC U205によってデューティ駆動される複数の電磁弁が収納されている。 ECU5は、車 両に搭載され、実エンジンとトランスミッション 202との制御を行う一体型をしたもので あり、電子スロットル 206に接続されている。 FIG. 14 is an example of a transmission test apparatus disclosed in Patent Document 2. In FIG. 14, 201 is a low inertia drive motor, 202 is a transmission, 203 is an absorption motor, 204 is a harness, 205 is an ECU, and 206 is an electronic throttle. Instead of the engine, a low-inertia drive motor 1 that simulates rotation output is used, and the rotation output shaft is connected to the transmission 2 so that the rotation output can be transmitted to the transmission 2 with good frequency response. ing. An absorption motor 3 is connected to the output shaft of the transmission 2 in order to give resistance during running in a pseudo manner. The transmission 202 includes a torque converter, a transmission main body, and a hydraulic controller, and an ECU (electronic control unit) 205 that controls the engine and the transmission is connected to the bench harness 4. The transmission itself has multiple sets of planetary gears, as well as hydraulic friction such as hydraulic clutches and hydraulic brakes. The engagement element is built in, and the hydraulic controller houses a plurality of solenoid valves that are duty-driven by the ECU 205 in addition to the integrally formed hydraulic circuit. The ECU 5 is mounted on the vehicle and integrated with the actual engine and the transmission 202, and is connected to the electronic throttle 206.
[0004] 図 15は特許文献 3に開示されたインバータ試験装置の例である。図 15において、  FIG. 15 shows an example of the inverter test apparatus disclosed in Patent Document 3. In Figure 15,
310はインバータ試験装置、 311は DC電源(直流電源)、 312は第 1モータ、 312a は第 1モータのステータ、 312bは第 1モータのロータである。 313は第 2モータ、 313 aは第 2モータのステータ、 313bは第 2モータのロータ、 314は第 1回転軸、 315は第 2回転軸、 316は動力分配機構である。 317は回転駆動力伝達機構、 317a, 317b は回転駆動力伝達機構のギア、 317cは回転駆動力伝達機構の回転軸、 317dは回 転駆動力伝達機構のディファレンシャルギア、 317e、 317fは回転駆動力伝達機構 の出力軸である。 318は第 3回転軸、 319は回転軸固定装置、 322はトランスアクス ル装置、 321は負荷装置である。インバータ試験装置 310は、第 1インバータ INV1、 第 2インバータ INV2の 2台をセットして試験を行い、 DC電源 311と 3相の第 1モータ 312と第 2モータ 313とを有する。また、 2つのモータの回転軸 314、 315は動力分配 機構 316で結合されていて、動力分配機構 316の第 3回転軸 318は回転軸固定装 置 319により固定されている。第 2回転軸 315には回転駆動力伝達機構 317が接続 されていて、回転駆動力伝達機構 317には負荷装置 321の出力軸 317eが接続され ている。第 1、第 2インバータ INV1、 INV2は、直流電力を 3相交流電力に変換し、 3 相交流電力を直流電力に変換することもできる。第 1、第 2インバータ INV1、 INV2 は一対で使用される。このインバータ試験装置 310を用いた場合、第 1インバータ IN VIから出力された交流電力のうち、第 1、第 2モータ 312、 313や第 2インバータ INV 2の損失と回転軸 315から回転駆動力伝達機構 317と出力軸 317eを通じて負荷装 置 321で消費されたエネルギーを除いた分は、第 2インバータ INV2力も DC電源 31 1側に回生することができる。第 1インバータ INV1から出力された交流出力電力の全 てを抵抗などによって消費していた場合に比して、第 1インバータ INV1の出力試験 の際に消費する電力を抑制することができるというものである。  310 is an inverter test device, 311 is a DC power supply (DC power supply), 312 is a first motor, 312a is a stator of the first motor, and 312b is a rotor of the first motor. 313 is a second motor, 313a is a stator of the second motor, 313b is a rotor of the second motor, 314 is a first rotating shaft, 315 is a second rotating shaft, and 316 is a power distribution mechanism. 317 is the rotational driving force transmission mechanism, 317a and 317b are the gears of the rotational driving force transmission mechanism, 317c is the rotational shaft of the rotational driving force transmission mechanism, 317d is the differential gear of the rotational driving force transmission mechanism, and 317e and 317f are the rotational driving force This is the output shaft of the transmission mechanism. 318 is a third rotating shaft, 319 is a rotating shaft fixing device, 322 is a transaxle device, and 321 is a load device. The inverter test apparatus 310 performs testing by setting two units, a first inverter INV1 and a second inverter INV2, and includes a DC power source 311, a three-phase first motor 312 and a second motor 313. Further, the rotation shafts 314 and 315 of the two motors are coupled by a power distribution mechanism 316, and the third rotation shaft 318 of the power distribution mechanism 316 is fixed by a rotation shaft fixing device 319. A rotation driving force transmission mechanism 317 is connected to the second rotation shaft 315, and an output shaft 317e of the load device 321 is connected to the rotation driving force transmission mechanism 317. The first and second inverters INV1 and INV2 can also convert DC power into three-phase AC power and convert the three-phase AC power into DC power. The first and second inverters INV1 and INV2 are used as a pair. When this inverter test device 310 is used, of the AC power output from the first inverter IN VI, the loss of the first and second motors 312 and 313 and the second inverter INV 2 and the rotational driving force transmitted from the rotating shaft 315 are transmitted. The second inverter INV2 force can also be regenerated to the DC power supply 31 1 side by removing the energy consumed by the load device 321 through the mechanism 317 and the output shaft 317e. Compared to the case where all the AC output power output from the first inverter INV1 is consumed by resistors, etc., the power consumed during the output test of the first inverter INV1 can be suppressed. is there.
[0005] 特許文献 1 :特開 2005— 274323号公報 特許文献 2 :特開 2006— 170681号公報 [0005] Patent Document 1: JP 2005-274323 A Patent Document 2: Japanese Patent Laid-Open No. 2006-170681
特許文献 3 :特開 2005— 245133号公報  Patent Document 3: Japanese Patent Laid-Open No. 2005-245133
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] しかしながら、特許文献 1および 2に開示された従来の機械試験装置は、モータジ エネレータが生成したパワーを、負荷吸収モータが吸収する記述はあっても、吸収し たパワーの処理については開示されていない。また、特許文献 3の例は、 2台のイン バータに対して共通の電源を使用している。しかし、特許文献 3の例は、インバータ の試験装置であって、機械試験装置ではなぐ機械の合否判定にかかわることは開 示されていない。 [0006] However, the conventional mechanical testing devices disclosed in Patent Documents 1 and 2 disclose the processing of absorbed power even though there is a description that the load absorption motor absorbs the power generated by the motor generator. It has not been. In addition, the example of Patent Document 3 uses a common power source for the two inverters. However, the example of Patent Document 3 is an inverter test apparatus, and it is not disclosed that the machine test apparatus is involved in pass / fail judgment.
本発明はこのような問題点に鑑みてなされたものであり、複数のインバータと共通の コンバータを用いることにより、小型で効率のよい機械試験装置を提供することを目 的とする。  The present invention has been made in view of such problems, and an object thereof is to provide a small and efficient mechanical test apparatus by using a common converter with a plurality of inverters.
課題を解決するための手段  Means for solving the problem
[0007] 上記問題を解決するため、本発明は、次のように構成したのである。 [0007] In order to solve the above problems, the present invention is configured as follows.
請求項 1に記載の発明は、 N個の入力軸と M個の出力軸をもつ機械の試験装置で あって、 N個の入力軸に結合された第 1モータ〜第 Nモータと、 M個の出力軸に結合 された第 N+ 1モータ〜第 N + Mモータと、直流電力を交流電力に変換し前記第 1モ ータ〜前記第 N + Mモータの回転速度またはトルクを制御する第 1インバータ〜第 N + Mインバータと、前記第 1インバータ〜前記第 N + Mインバータにトルク指令また は速度指令を与える機械制御部と、を備えた機械試験装置において、交流電力を直 流電力に変換し、前記直流電力を前記第 1インバータ〜前記第 N + Mインバータに 供給する共通コンバータを備えることを特徴とするものである。  The invention according to claim 1 is a test apparatus for a machine having N input shafts and M output shafts, the first motor to the Nth motor coupled to the N input shafts, and M pieces. N + 1 motor to N + M motor coupled to the output shaft of the first motor, and a first motor that controls the rotational speed or torque of the first motor to the N + M motor by converting DC power into AC power. AC power is converted to direct current power in a mechanical testing device including an inverter to an N + M inverter and a machine control unit that provides a torque command or a speed command to the first inverter to the N + M inverter. And a common converter that supplies the DC power to the first inverter to the N + M inverter.
請求項 2に記載の発明は、請求項 1記載の機械試験装置において、前記 Nは 1で あり、前記 Mは 2であることを特徴とするものである。  The invention according to claim 2 is the mechanical test apparatus according to claim 1, wherein the N is 1 and the M is 2.
請求項 3に記載の発明は、請求項 1記載の機械試験装置において、前記 Nは 1で あり、前記 Mは 4であることを特徴とするものである。  The invention according to claim 3 is the mechanical test apparatus according to claim 1, wherein the N is 1 and the M is 4.
請求項 4に記載の発明は、請求項 1記載の機械試験装置において、前記 Nは 2で あり、前記 Mは 1であることを特徴とするものである。 The invention according to claim 4 is the mechanical test apparatus according to claim 1, wherein the N is 2. And M is 1.
請求項 5に記載の発明は、請求項 1記載の機械試験装置において、前記機械制御 部は、上位システムからコマンドを受信しレスポンスを送信する第 1通信部と、前記コ マンドから速度指令、トルク指令、制御モード信号を生成する指令生成部と、前記コ マンドの機械合否判定条件と速度、トルク指令、コンバータ電流力 機械の合否を判 定する合否判定部と、前記速度指令、トルク指令、制御モード信号を前記インバータ と前記コンバータへ送信し、レスポンスを受信する第 2通信部と、を備えることを特徴 とするあのである。  The invention according to claim 5 is the mechanical test apparatus according to claim 1, wherein the machine control unit receives a command from the host system and transmits a response, and a speed command and torque from the command. A command generation unit for generating a command and control mode signal, a pass / fail determination condition for the command, a speed, torque command, a converter current force, a pass / fail determination unit for determining whether the machine is OK, and the speed command, torque command, control And a second communication unit that transmits a mode signal to the inverter and the converter and receives a response.
請求項 6に記載の発明は、請求項 1記載の機械試験装置において、前記インバー タは、前記機械制御部から速度指令、トルク指令、制御モード信号を受信し、トルク 指令、速度を送信する第 3通信部と、前記速度指令と速度からトルク指令を生成する 速度制御部と、前記トルク指令と前記機械制御部の外部トルク指令を加算して新た なトルク指令とするトルク加算部と、前記トルク指令から電流指令を生成する電流指 令生成部と、前記電流指令と電流から電圧指令を生成する電流制御部と、前記電圧 指令から PWM信号を生成する PWM部と、前記 PWM信号を電力増幅する電力変 換部と、を備えることを特徴とするものである。  A sixth aspect of the present invention is the mechanical test apparatus according to the first aspect, wherein the inverter receives a speed command, a torque command, and a control mode signal from the machine control unit, and transmits the torque command and the speed. (3) a communication unit, a speed control unit that generates a torque command from the speed command and the speed, a torque addition unit that adds the torque command and an external torque command of the machine control unit to obtain a new torque command, and the torque A current command generating unit that generates a current command from the command, a current control unit that generates a voltage command from the current command and the current, a PWM unit that generates a PWM signal from the voltage command, and power amplifying the PWM signal And a power conversion unit.
請求項 7に記載の発明は、請求項 5記載の機械試験装置において、前記インバー タは前記制御モード信号により速度制御モードかトルク制御モードを選択して動作し 、前記速度制御モードでは、前記外部トルク指令を零とし、前記トルク指令モードで は、前記速度制御部の生成するトルク指令を零にすることを特徴とするものである。 請求項 8に記載の発明は、請求項 4記載の機械試験装置において、前記インバー タは、前記機械制御部の生成する同期信号に基づき、互いに同期した PWM信号を 生成することを特徴とするものである。  According to a seventh aspect of the present invention, in the mechanical test apparatus according to the fifth aspect, the inverter operates by selecting a speed control mode or a torque control mode according to the control mode signal. The torque command is set to zero, and in the torque command mode, the torque command generated by the speed control unit is set to zero. The invention according to claim 8 is the mechanical test apparatus according to claim 4, wherein the inverter generates PWM signals synchronized with each other based on a synchronization signal generated by the machine control unit. It is.
請求項 9に記載の発明は、請求項 1記載の機械試験装置において、前記コンパ一 タは、 3相交流電源を整流して直流電源を生成するダイオード整流部と、前記直流電 源の直流電圧を平滑する平滑コンデンサと、前記インバータへ出力するコンバータ 電流を検出する電柱検出器と、前記機械制御部から指令を受信し、コンバータ電流 をレスポンスとして送信する第 4通信部と、を備えることを特徴とするものである。 請求項 10に記載の発明は、請求項 8記載の機械試験装置において、前記コンパ ータは、前記ダイオード整流部と、電源回生用の電力変換器と、を備えることを特徴 とするあのである。 The invention according to claim 9 is the mechanical test apparatus according to claim 1, wherein the comparator rectifies a three-phase AC power source to generate a DC power source, and a DC voltage of the DC power source. A smoothing capacitor for smoothing; a utility pole detector for detecting a converter current output to the inverter; and a fourth communication unit for receiving a command from the machine control unit and transmitting the converter current as a response. To do. The invention according to claim 10 is the mechanical test apparatus according to claim 8, wherein the converter includes the diode rectification unit and a power converter for power regeneration. .
請求項 11に記載の発明は、請求項 9記載の機械試験装置において、前記コンパ ータは、前記直流電源の直流電圧を設定可能な任意の電圧に制御することを特徴と するものである。  The invention described in claim 11 is the mechanical test apparatus according to claim 9, wherein the comparator controls the DC voltage of the DC power supply to an arbitrary voltage that can be set.
請求項 12に記載の発明は、請求項 1記載の機械試験装において、前記機械制御 部は、前記入力軸インバータにトルク指令、前記出力軸インバータに速度指令を与 え、前記入力軸インバータの速度と前記出力軸インバータのトルク指令のレスポンス から前記機械の合否を判定することを特徴とするものである。  According to a twelfth aspect of the present invention, in the mechanical test equipment according to the first aspect, the machine control unit provides a torque command to the input shaft inverter and a speed command to the output shaft inverter, and a speed of the input shaft inverter. And the pass / fail of the machine is determined from the torque command response of the output shaft inverter.
請求項 13に記載の発明は、請求項 12記載の機械試験装置において、前記機械 制御部は、前記出力軸のトルク指令が一定になるよう速度指令を制御することを特徴 とするあのである。  A thirteenth aspect of the present invention is the mechanical test apparatus according to the twelfth aspect, wherein the mechanical control unit controls the speed command so that the torque command of the output shaft becomes constant.
請求項 14に記載の発明は、請求項 1記載の機械制御装置において、前記機械制 御部は、前記入力軸インバータに速度指令、前記出力軸インバータにトルク指令を 与え、前記入力軸インバータのトルク指令と前記出力軸インバータの速度のレスボン スから前記機械の合否を判定することを特徴とするものである。  According to a fourteenth aspect of the present invention, in the mechanical control device according to the first aspect, the mechanical control unit provides a speed command to the input shaft inverter and a torque command to the output shaft inverter, and a torque of the input shaft inverter. The pass / fail of the machine is determined from a command and a response to the speed of the output shaft inverter.
請求項 15に記載の発明は、請求項 14記載の機械試験装置において、前記機械 制御部は、前記入力軸のトルク指令が一定になるよう速度指令を制御することを特徴 とするあのである。  The invention according to claim 15 is the mechanical test apparatus according to claim 14, wherein the machine control unit controls the speed command so that the torque command of the input shaft becomes constant.
請求項 16に記載の発明は、請求項 1記載の機械試験装置において、前記機械制 御部は、前記トルク指令と前記速度指令と前記コンバータのコンバータ電流のレスポ ンスに基づいて前記機械の合否を判定することを特徴とするものである。  According to a sixteenth aspect of the present invention, in the mechanical test apparatus according to the first aspect, the mechanical control unit determines whether or not the machine is acceptable based on the torque command, the speed command, and a converter current response of the converter. It is characterized by determining.
発明の効果  The invention's effect
[0008] 本発明によると、複数のインバータに共通のコンバータを用いることにより、部品点 数を低減でき、小型で効率のよ!/、機械試験装置を提供することができる。  [0008] According to the present invention, by using a common converter for a plurality of inverters, the number of parts can be reduced, and a small and efficient mechanical testing apparatus can be provided.
図面の簡単な説明  Brief Description of Drawings
[0009] [図 1]本発明の機械試験装置の構成を示すブロック図 [図 2]本発明の機械試験装置の機械制御部の構成を示すブロック図 [0009] FIG. 1 is a block diagram showing a configuration of a mechanical test apparatus of the present invention. FIG. 2 is a block diagram showing a configuration of a machine control unit of the machine test apparatus of the present invention.
[図 3]本発明の機械試験装置のインバータの構成を示すブロック図  FIG. 3 is a block diagram showing the configuration of the inverter of the mechanical test apparatus of the present invention.
園 4]本発明の機械試験装置のコンバータの構成を示すブロック図 4] Block diagram showing the configuration of the converter of the mechanical testing device of the present invention
園 5]本発明の機械試験装置のコンバータの構成を示すブロック図 5] Block diagram showing the configuration of the converter of the mechanical testing device of the present invention
園 6]本発明の機械試験装置の動作をシミュレーションしたブロック図 6] Block diagram simulating the operation of the mechanical testing device of the present invention
園 7]本発明の機械試験装置の第 1実施例の動作を示すシミュレーションタイムチヤ ート 7] Simulation time chart showing the operation of the first embodiment of the mechanical testing device of the present invention
[図 8]本発明の機械試験装置で出力を速度の 1. 8乗に比例したときのシミュレーショ ンタイムチャート  [Fig. 8] Simulation time chart when the output is proportional to the 1.8th power of the speed in the mechanical test device of the present invention.
園 9]本発明の機械試験装置のバックラッシがある場合のシミュレーションタイムチヤ ート 9] Simulation time chart when there is backlash of the mechanical testing device of the present invention
園 10]本発明の機械試験装置の機械振動がある場合のシミュレーションタイムチヤ一 卜 10] Simulation time chart when there is mechanical vibration of the mechanical testing device of the present invention
園 11]本発明の機械試験装置の第 2実施例の動作を示すシミュレーションタイムチヤ ート 11] Simulation time chart showing the operation of the second embodiment of the mechanical testing device of the present invention.
[図 12]本発明の機械試験装置の PWMを同期させたときのシミュレーションタイムチヤ ート  [Fig.12] Simulation time chart when PWM of the mechanical testing device of the present invention is synchronized
園 13]特許文献 1に開示された従来例の構成を示すブロック図 13] A block diagram showing the configuration of the conventional example disclosed in Patent Document 1
園 14]特許文献 2に開示された従来例の構成を示すブロック図 14] A block diagram showing the configuration of the conventional example disclosed in Patent Document 2
園 15]特許文献 3に開示された従来例の構成を示すブロック図 15] Block diagram showing the configuration of the conventional example disclosed in Patent Document 3
符号の説明 Explanation of symbols
1 コンノ ータ 1 Contour
2〜7 インバータ 2-7 inverter
8〜; 13 モータ 8 ~; 13 Motor
14 機械制御部 14 Machine control unit
15 機械 15 machine
21 指令生成部 21 Command generator
22 合否判定部 、 24 通信部 22 Pass / fail judgment part 24 Communication Department
速度制御部  Speed control unit
トルク加算部  Torque adder
電流指令生成部 電流制御部  Current command generator Current controller
PWM部  PWM section
電力変換部  Power converter
モータ  motor
速度検出部  Speed detector
通信部  Communication department
ダイオード整流部 平^コ、 'サ 電流検出部  Diode rectifier unit
回生処理部  Regenerative processing section
電圧検出部  Voltage detector
通信部  Communication department
電力変換部  Power converter
回生コンパ一 -タ エンジン  Regenerative component -ta engine
モータ'ジェネレータ 動力分配機構 a, 150b 負荷吸収モータ 走行模擬装置 a, 170b センサ  Motor 'generator Power distribution mechanism a, 150b Load absorption motor Travel simulator a, 170b Sensor
操作端末  Operation terminal
ECU ECU
1 低慣性駆動モータ 1 Low inertia drive motor
卜ランスミッション 203 吸収モータ 卜 Lance mission 203 Absorption motor
204 ノヽーネス  204 Knowness
205 ECU  205 ECU
206 電子スロットル  206 Electronic throttle
207 パネル PC  207 Panel PC
208 中 iボックス  208 medium i box
210 制御手段  210 Control means
211 条件入力画面  211 Condition input screen
310 インバータ試験装置  310 Inverter test equipment
311 DC電源(直流電源)  311 DC power supply (DC power supply)
312 第 1モータ  312 1st motor
312a 第 1モータのステータ  312a Stator of first motor
312b 第 1モータのロータ  312b 1st motor rotor
313 第 2モータ  313 Second motor
313a 第 2モータのステータ  313a Second motor stator
313b 第 2モータのロータ  313b Second motor rotor
314 第 1回転軸  314 1st rotation axis
315 第 2回転軸  315 Second rotation axis
316 動力分配機構  316 Power distribution mechanism
317 回転駆動力伝達機構  317 Rotational driving force transmission mechanism
317a, 317b 回転駆動力伝達機構のギア  317a, 317b Rotational drive force transmission gear
317c 回転駆動力伝達機構の回転軸  317c Rotation shaft of rotational drive force transmission mechanism
317d 回転駆動力伝達機構のディファレンシャルギア 317d Rotational drive force transmission differential gear
317e、 317f 回転駆動力伝達機構の出力軸 317e, 317f Rotary drive force transmission mechanism output shaft
318 第 3回転軸  318 3rd rotation axis
319 回転軸固定装置  319 Rotating shaft fixing device
321 負荷装置  321 load device
322 トランスアクスル装置 発明を実施するための最良の形態 322 Transaxle device BEST MODE FOR CARRYING OUT THE INVENTION
[0011] 以下、本発明の実施の形態について図を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
実施例 1  Example 1
[0012] 図 1は、本発明の第 1実施例の機械試験装置の構成を示すブロック図、図 2は機械 制御部の構成を示すブロック図、図 3はインバータの構成を示すブロック図で、図 4、 5はコンバータの構成を示すブロック図ある。図 1において、 1はコンバータ、 2〜7は インバータ、 8〜; 13はモータ、 14は機械制御部である。  FIG. 1 is a block diagram showing a configuration of a mechanical test apparatus according to a first embodiment of the present invention, FIG. 2 is a block diagram showing a configuration of a machine control unit, and FIG. 3 is a block diagram showing a configuration of an inverter. 4 and 5 are block diagrams showing the configuration of the converter. In FIG. 1, 1 is a converter, 2 to 7 are inverters, 8 to; 13 is a motor, and 14 is a machine control unit.
図 2において、 21は指令生成部、 22は合否判定部、 23は上位システムとの通信部 、 24はインバータとの通信部である。  In FIG. 2, 21 is a command generation unit, 22 is a pass / fail determination unit, 23 is a communication unit with a host system, and 24 is a communication unit with an inverter.
図 3において、 31は速度制御部、 32はトルク加算部、 33は電流指令生成部、 34は 電流制御部、 35は PWM部、 36は電力変換部、 37はモータ、 38は速度検出部、 39 は機械制御部との通信部である。  In FIG. 3, 31 is a speed control unit, 32 is a torque addition unit, 33 is a current command generation unit, 34 is a current control unit, 35 is a PWM unit, 36 is a power conversion unit, 37 is a motor, 38 is a speed detection unit, 39 is a communication unit with the machine control unit.
図 4において、 41はダイオード整流部、 42は平滑コンデンサ、 43は電流検出部、 4 4は回生処理部、 45は電圧検出部、 46は通信部である。  In FIG. 4, 41 is a diode rectifier, 42 is a smoothing capacitor, 43 is a current detector, 44 is a regenerative processor, 45 is a voltage detector, and 46 is a communication unit.
図 5において、 47は電力変換部、 48は回生コンバータである。  In FIG. 5, 47 is a power converter, and 48 is a regenerative converter.
次に機械制御部 14の動作について説明する。通信部 23でパソコンなどの上位シ ステムから試験項目、試験内容、合否判定条件を受信する。指令生成部 21は、上位 システムの試験項目、試験内容から、インバータを速度制御モードかトルク制御モー ドかを指定する制御モード信号、速度指令、トルク指令を生成し通信部 24に引渡す 。通信部 24は、制御モード信号、速度指令、トルク指令をインバータに送信し、イン バータから速度、トルク指令を受信する。合否判定部 22は、速度指令、トルク指令お よびインバータの応答である速度、トルク指令から合否を判定する。  Next, the operation of the machine control unit 14 will be described. The communication unit 23 receives test items, test details, and pass / fail judgment conditions from a host system such as a personal computer. The command generation unit 21 generates a control mode signal, a speed command, and a torque command for specifying whether the inverter is in a speed control mode or a torque control mode from the test items and test contents of the host system, and delivers them to the communication unit 24. The communication unit 24 transmits a control mode signal, a speed command, and a torque command to the inverter, and receives a speed and torque command from the inverter. The pass / fail determination unit 22 determines pass / fail from the speed command, the torque command, and the speed and torque command that are responses of the inverter.
[0013] 次にインバータの動作について説明する。通信部 39は、機械制御部 14から送信さ れた制御モード信号、速度指令、トルク指令を受信し、各制御部に伝送する。速度制 御部 31は、速度制御モードに指定されたときのみ動作し、速度指令と速度の差を PI D制御処理してトルク指令を生成する。トルク指令加算部 32は、トルク指令と機械制 御部 14から伝送された外部トルク指令を加算し新たなトルク指令を生成する。トルク フィードフォワードを使用する特定の場合を除き、速度制御モードのときは、外部トル ク指令は零であり、トルク制御モードのときは速度制御部の生成するトルク指令は零 である。電流指令生成部 33は、トルク指令とモータ定数から電流指令を生成する。電 流制御部 34は、電流指令とモータ電流の差を PID制御処理して電圧指令を生成す る。 PWM部 35は、電圧指令と同期指令に基づいて PWM信号を生成する。電力変 換部 36は、 PWM信号を絶縁増幅して電力変換器を構成するパワー素子を駆動し モータに電力を供給する。 Next, the operation of the inverter will be described. The communication unit 39 receives the control mode signal, speed command, and torque command transmitted from the machine control unit 14 and transmits them to each control unit. The speed control unit 31 operates only when the speed control mode is designated, and generates a torque command by performing PID control processing on the difference between the speed command and the speed. The torque command adding unit 32 adds the torque command and the external torque command transmitted from the machine control unit 14 to generate a new torque command. Except in certain cases where torque feedforward is used, an external torque is The torque command is zero, and in the torque control mode, the torque command generated by the speed control unit is zero. The current command generator 33 generates a current command from the torque command and the motor constant. The current control unit 34 generates a voltage command by performing a PID control process on the difference between the current command and the motor current. The PWM unit 35 generates a PWM signal based on the voltage command and the synchronization command. The power converter 36 insulates and amplifies the PWM signal to drive a power element that constitutes the power converter and supplies power to the motor.
次に、コンバータの動作について説明する。図 4で、ダイオード整流部 41は、 6ブリ ッジのダイオードで構成されており、 3相交流電源を整流して直流電源を生成する。 平滑コンデンサ 42は、直流電源の直流電圧を平滑し、平滑した直流電力をインバー タに供給する。電流検出部 43はインバータに供給する電流を検出し、コンバータ電 流信号を生成する。回生処理部 44は、インバータの回生電力により平滑コンデンサ 電圧が上昇して所定のレベルに到達すると電力素子をオンして抵抗を平滑コンデン サと並列に接続して放電し、コンデンサ電圧を低下させる。電圧検出部は、平滑コン デンサの電圧を検出してコンバータ電圧信号を生成する。通信部 46はコンバータ電 流信号、電圧信号を機械制御部に送信する。図 5で、電力変換部 47は、インバータ の回生電力を電源に回生する。  Next, the operation of the converter will be described. In FIG. 4, the diode rectifier 41 is composed of a 6-bridge diode, and rectifies a three-phase AC power source to generate a DC power source. The smoothing capacitor 42 smoothes the DC voltage of the DC power supply and supplies the smoothed DC power to the inverter. The current detector 43 detects the current supplied to the inverter and generates a converter current signal. When the smoothing capacitor voltage rises and reaches a predetermined level due to the regenerative power of the inverter, the regenerative processing unit 44 turns on the power element, connects the resistor in parallel with the smoothing capacitor, and discharges, thereby reducing the capacitor voltage. The voltage detector detects the voltage of the smoothing capacitor and generates a converter voltage signal. The communication unit 46 transmits the converter current signal and the voltage signal to the machine control unit. In Fig. 5, the power converter 47 regenerates the regenerative power of the inverter to the power source.
次に入出力軸のインバータを駆動したときの波形をシミュレーションタイムチャート に基づいて説明する。  Next, the waveforms when the input / output shaft inverter is driven will be described based on a simulation time chart.
図 6は、シミュレーションに使用した制御系と機械のモデルである。入力軸のモータ のロータと機械の入力軸の回転体はリジッドに結合しておりロータの慣性モーメントを Jrl、入力軸の慣性モーメントを Jmlとすると入力軸全体の慣性モーメントは Jl =Jrl +Jmlである。出力軸も同様にに J2 =Jr2 +Jm2である。入力軸から出力軸へのトル クの伝達はばね定数 ksのばね系で行い、さらにバックラッシ BLを付加した。  Figure 6 shows the control system and machine model used in the simulation. The rotor of the input shaft motor and the rotor of the input shaft of the machine are rigidly coupled. is there. Similarly for the output shaft, J2 = Jr2 + Jm2. Torque is transmitted from the input shaft to the output shaft using a spring system with a spring constant of ks, and a backlash BL is added.
図 7は、 1つの入力軸に速度指令、 1つの出力軸にトルク指令を与えたときのシミュ レーシヨンタイムチャートである。シミュレーションの条件は、入力側および出力側とも に、慣性モーメント J1 =J2 = 0. Ikgm2、モータ抵抗 R1 =R2 = 0. 001 Ω、速度制 卸ゲイン kvl = 0. 05Nms/rad、米占十生制動係数 kdl =Kd2 = 0. OlNms/rad,ば ね定数 ks = 100000Nm/radである。加速時間 tva = lsec、負荷トルク加速時間 tt a = lsec、最大速度 co max= 300rad s、最大トノレク速度 Trqmax = 200Nm、ノ ッ クラッシ BL = 0である。入力軸パワー Pinと出力軸パワー Poutの合計の入出力パヮ 一差 Pdfは速度加速時は、大き!/、が一定速度でトルクを増加させたときのパワーはモ ータとインバータと機械のロスであり電源の電力はほとんど消費しない。速度制御の 軸のモータが、トルク制御の軸のモータトルクを外舌 Lトルクとしてとらえ、それに対抗 するトルク指令を生成する。トルク制御の軸のモータが発電機として動作すれば速度 制御の軸のモータは電動機として動作し、トルク制御の軸のモータが電動機として動 作すれば速度制御の軸のモータは発電機として動作する。ただし、加即時にはモー タのロータを含む機械系全体の慣性モーメントを加速しなければならず、大きなパヮ 一を必要とする。しかし、加速時間を Ta= l sec→10secに増加させれば、瞬時パヮ 一は 1/10になり、ほとんど無視することができる。機械の合否判定は、入力軸のパ ヮ一と出力軸のパワーの総計を入出力パワー差 Pdfとして、入出力パワー差 Pdfを速 度、トルクの関数として合格条件をあらかじめ決めておき、合否判定とすることができ る。また、一定速度時の速度制御軸のトルク指令が一定になるように速度指令を制御 し、このときの速度指令を合否判定条件に加えてもよ!/、。 FIG. 7 is a simulation time chart when a speed command is given to one input shaft and a torque command is given to one output shaft. The simulation conditions are the moment of inertia J1 = J2 = 0. Ikgm2, motor resistance R1 = R2 = 0.001 Ω, speed control gain kvl = 0.05 Nms / rad The braking coefficient kdl = Kd2 = 0. OlNms / rad, the spring constant ks = 100000Nm / rad. Acceleration time tva = lsec, load torque acceleration time tt a = lsec, maximum speed co max = 300rad s, maximum tonrec speed Trqmax = 200Nm, knocklash BL = 0. Input shaft power Pin and output shaft power Pout total input / output difference Difference Pdf is large when the speed is accelerated, and when the torque is increased at a constant speed, the power is lost to the motor, inverter and machine. And consumes little power from the power supply. The speed control shaft motor views the torque control shaft motor torque as the outer tongue L torque and generates a torque command to counter it. If the torque control shaft motor operates as a generator, the speed control shaft motor operates as a motor, and if the torque control shaft motor operates as a motor, the speed control shaft motor operates as a generator. . However, immediately, the moment of inertia of the entire mechanical system including the motor rotor must be accelerated, which requires a large amount of force. However, if the acceleration time is increased from Ta = l sec to 10 sec, the instantaneous performance becomes 1/10, which can be almost ignored. The pass / fail judgment of the machine is based on the sum of the input shaft power and the output shaft power as the input / output power difference Pdf, and the input / output power difference Pdf as a function of speed and torque. It can be. It is also possible to control the speed command so that the torque command of the speed control axis at a constant speed is constant, and add the speed command at this time to the pass / fail judgment condition!
図 8は、出力軸の出力が速度の 1. 8乗に比例したときのシミュレーションタイムチヤ ートである。コンバータの電源出力は、定速度のとき入力軸の入力パワー Pinと出力 軸の出力パワー Poutがほとんど打ち消しあう。入出力パワー差、トルク指令、速度を 解析することにより機械の合否判定ができる。  Figure 8 shows the simulation time chart when the output of the output shaft is proportional to the speed 1.8. The power output of the converter almost cancels out the input power Pin of the input shaft and the output power Pout of the output shaft at a constant speed. By analyzing the input / output power difference, torque command, and speed, you can make a pass / fail judgment for the machine.
図 9は、機械にバックラッシ BL = 0. lradがあるときのシミュレーションタイムチャート で、条件は図 4と同一である。トルクが変化するときに振動が発生するので、合否判 定としてトルクが変化する加速開始時、加速終了時、減速開始時、減速終了時の振 動と、入出力軸のトルク方向反転時の位置誤差などを用いることできる。  Fig. 9 is a simulation time chart when the machine has a backlash BL = 0. lrad. The conditions are the same as in Fig. 4. Since vibration occurs when the torque changes, the vibration at the start of acceleration, at the end of acceleration, at the start of deceleration, at the end of deceleration, and the position when the torque direction of the input / output shaft is reversed as the pass / fail judgment. An error or the like can be used.
図 10は、機械に振動が生じたときのシミュレーションタイムチャートである。トルク指 令波形は、機械速度に比例した周波数で脈動しているば力、りでなぐ機械系の共振 周波数点で振動のレベルが大きくなつて!/、る。トルク指令の脈動は電源の入出力パ ヮー差にも現れる。これらの波形を解析することにより、機械の合否を判定することが できるだけではなぐ伝達系の特定部位の不良を検出できる。 実施例 2 FIG. 10 is a simulation time chart when vibration occurs in the machine. The torque command waveform is a force that pulsates at a frequency proportional to the machine speed, and the vibration level increases at the resonance frequency point of the mechanical system. Torque command pulsation also appears in the power input / output power difference. By analyzing these waveforms, it is possible to detect defects in specific parts of the transmission system that can not only determine the pass / fail of the machine. Example 2
[0014] 図 11は、本発明の第 2実施例で、 1つの入力軸にトルク指令を与え、 1つの出力軸 に速度指令を与えたときのシミュレーションタイムチャートである。シミュレーションの 条件は第 1実施例と同様で、異なるのは、始動時、入力軸にランプ状の速度指令と 出力軸に零トルク指令を与え、最大速度に到達したら、出力軸に速度指令と入力軸 にランプ状のトルク指令を与えたことある。第 1実施例同様に、速度制御の軸は、トル ク制御の軸のトルク指令を外乱ととらえ、それに対抗するトルク指令を生成する。回生 、カ行の区別はトルク制御の軸を回生にするの力、、カ行にするのかで決定される。ま た、実施例 1と同様、一定速度時の速度制御軸のトルク指令が一定になるように速度 指令を制御し、このときの速度指令を合否判定条件に加えてもよい。  FIG. 11 is a simulation time chart when a torque command is given to one input shaft and a speed command is given to one output shaft in the second embodiment of the present invention. The simulation conditions are the same as in the first example. The only difference is that during start-up, a ramp speed command is given to the input shaft and a zero torque command is given to the output shaft. A ramp-shaped torque command has been given to the shaft. Similar to the first embodiment, the speed control shaft regards the torque control shaft torque command as a disturbance and generates a torque command to counter it. The distinction between regeneration and force line is determined by the force to regenerate the torque control axis and the force line. Further, as in the first embodiment, the speed command may be controlled so that the torque command of the speed control shaft at a constant speed becomes constant, and the speed command at this time may be added to the pass / fail judgment condition.
図 12は、本発明の機械試験装置の入力軸と出力軸の PWMを同期させたときのシ ミュレーシヨン結果である。 PWM周波数が異なる場合に発生するビートによる騒音を 低減できるだけではなくコンデンサのリプル電流を減少させることができる。  FIG. 12 shows a simulation result when the PWM of the input shaft and the output shaft of the mechanical test apparatus of the present invention are synchronized. Not only can the noise caused by beats generated when the PWM frequency is different be reduced, but also the ripple current of the capacitor can be reduced.
実施例 3  Example 3
[0015] 本発明の機械試験装置で N= l、 M = 2または M = 4の例としては、電動自動車、 ハイブリッドカーなどがある。また、 N = 2、 M= lの例としては、各種機械のツインドラ イブがある。  [0015] Examples of N = l, M = 2, or M = 4 in the mechanical test apparatus of the present invention include an electric vehicle and a hybrid car. Examples of N = 2 and M = l include twin drives for various machines.
以上説明したように、総入出力パワー差、各軸のトルク指令、速度を合否判定の基 準値と比較したり、説明はしていないが、 FFTなどにより波形解析をしたり、騒音のパ ヮースペクトラムを解析することにより機械の合否を判定でき、電源パワーの消費を低 減した機械試験装置を提供できる。  As described above, the total input / output power difference, torque command for each axis, and speed are compared with the reference values for pass / fail judgment, and although not explained, waveform analysis is performed using FFT, etc.ヮ-By analyzing the spectrum, it is possible to determine the pass / fail of the machine, and to provide a machine test device with reduced power consumption.
産業上の利用可能性  Industrial applicability
[0016] 本発明の機械試験装置によると、 N個の入力軸、 M個の出力軸をもつ機械を効率 よく試験できるだけではなぐ機械のロス、振動から、特定の伝達系の不具合を判定 できるので、静止機械、移動機械などの試験装置としての適用が期待できる。 [0016] According to the mechanical test apparatus of the present invention, a failure of a specific transmission system can be determined from the loss and vibration of a machine that can not only efficiently test a machine having N input shafts and M output shafts. It can be expected to be used as a test device for stationary machines and mobile machines.

Claims

請求の範囲 The scope of the claims
[1] N個の入力軸と M個の出力軸をもつ機械の試験装置であって、 N個の入力軸に結 合された第 1モータ〜第 Nモータと、 M個の出力軸に結合された第 N + 1モータ〜第 N + Mモータと、直流電力を交流電力に変換し前記第 1モータ〜前記第 N + Mモー タの回転速度またはトルクを制御する第 1インバータ〜第 N + Mインバータと、前記 第 1インバータ〜前記第 N + Mインバータにトルク指令または速度指令を与える機械 制御部と、を備えた機械試験装置において、  [1] Machine test equipment with N input shafts and M output shafts, 1st motor to Nth motor coupled to N input shafts, and M output shafts N + 1-th motor to N + M motor, and first inverter to N + th to control the rotational speed or torque of the first motor to N + M motor by converting DC power into AC power. In a mechanical test apparatus comprising: an M inverter; and a machine control unit that provides a torque command or a speed command to the first inverter to the N + M inverter,
交流電力を直流電力に変換し、前記直流電力を前記第 1インバータ〜前記第 N + Mインバータに供給する共通コンバータを備えることを特徴とする機械試験装置。  A mechanical test apparatus comprising: a common converter that converts AC power into DC power and supplies the DC power to the first inverter to the N + M inverter.
[2] 前記 Nは 1であり、前記 Mは 2であることを特徴とする請求項 1記載の機械試験装置  [2] The machine test apparatus according to claim 1, wherein the N is 1 and the M is 2.
[3] 前記 Nは 1であり、前記 Mは 4であることを特徴とする請求項 1記載の機械試験装置 [3] The machine test device according to claim 1, wherein the N is 1 and the M is 4.
[4] 前記 Nは 2であり、前記 Mは 1であることを特徴とする請求項 1記載の機械試験装置 4. The machine test apparatus according to claim 1, wherein the N is 2 and the M is 1.
[5] 前記機械制御部は、上位システムからコマンドを受信しレスポンスを送信する第 1通 信部と、前記コマンドから速度指令、トルク指令、制御モード信号を生成する指令生 成部と、前記コマンドの機械合否判定条件と速度、トルク指令、コンバータ電流から 機械の合否を判定する合否判定部と、前記速度指令、トルク指令、制御モード信号 を前記インバータと前記コンバータへ送信し、レスポンスを受信する第 2通信部と、を 備えることを特徴とする請求項 1記載の機械試験装置。 [5] The machine control unit receives a command from the host system and transmits a response, a command generation unit that generates a speed command, a torque command, and a control mode signal from the command, and the command Machine pass / fail judgment conditions and a pass / fail judgment unit for judging machine pass / fail from the speed, torque command, and converter current, and the speed command, torque command, and control mode signal are transmitted to the inverter and the converter, and a response is received. The mechanical testing device according to claim 1, further comprising: 2 communication units.
[6] 前記インバータは、前記機械制御部から速度指令、トルク指令、制御モード信号を 受信し、トルク指令、速度を送信する第 3通信部と、前記速度指令と速度からトルク指 令を生成する速度制御部と、前記トルク指令と前記機械制御部の外部トルク指令を 加算して新たなトルク指令とするトルク加算部と、前記トルク指令から電流指令を生成 する電流指令生成部と、前記電流指令と電流から電圧指令を生成する電流制御部と 、前記電圧指令から PWM信号を生成する PWM部と、前記 PWM信号を電力増幅 する電力変換部と、を備えることを特徴とする請求項 1記載の機械試験装置。 [6] The inverter receives a speed command, a torque command, and a control mode signal from the machine control unit, and generates a torque command from the speed command and the speed, and a third communication unit that transmits the torque command and the speed. A speed control unit, a torque addition unit that adds the torque command and an external torque command of the machine control unit to obtain a new torque command, a current command generation unit that generates a current command from the torque command, and the current command 2. The current control unit that generates a voltage command from the current, a PWM unit that generates a PWM signal from the voltage command, and a power conversion unit that amplifies the PWM signal. Mechanical test equipment.
[7] 前記インバータは前記制御モード信号により速度制御モードかトルク制御モードを 選択して動作し、前記速度制御モードでは、前記外部トルク指令を零とし、前記トノレ ク指令モードでは、前記速度制御部の生成するトルク指令を零にすることを特徴とす る請求項 6記載の機械試験装置。 [7] The inverter operates by selecting a speed control mode or a torque control mode according to the control mode signal. In the speed control mode, the external torque command is set to zero, and in the torque command mode, the speed control unit 7. The mechanical test apparatus according to claim 6, wherein the torque command generated by is set to zero.
[8] 前記インバータは、前記機械制御部の生成する同期信号に基づき、互いに同期し た PWM信号を生成することを特徴とする請求項 6記載の機械試験装置。  8. The machine test apparatus according to claim 6, wherein the inverter generates PWM signals synchronized with each other based on a synchronization signal generated by the machine control unit.
[9] 前記コンバータは、 3相交流電源を整流して直流電源を生成するダイオード整流部 と、前記直流電源の直流電圧を平滑する平滑コンデンサと、前記インバータへ出力 するコンバータ電流を検出する電柱検出器と、前記機械制御部から指令を受信し、 コンバータ電流をレスポンスとして送信する第 4通信部と、を備えることを特徴とする 請求項 1記載の機械試験装置。  [9] The converter includes a diode rectifier that rectifies a three-phase AC power supply to generate a DC power supply, a smoothing capacitor that smoothes a DC voltage of the DC power supply, and a utility pole detection that detects a converter current output to the inverter. The machine test device according to claim 1, further comprising: a tester; and a fourth communication unit that receives a command from the machine control unit and transmits a converter current as a response.
[10] 前記コンバータは、前記ダイオード整流部と、電源回生用の電力変換器と、を備え ることを特徴とする請求項 9記載の機械試験装置。 10. The mechanical test apparatus according to claim 9, wherein the converter includes the diode rectifier and a power converter for power regeneration.
[11] 前記コンバータは、前記直流電源の直流電圧を設定可能な任意の電圧に制御す ることを特徴とする請求項 9記載の機械試験装置。 11. The mechanical test apparatus according to claim 9, wherein the converter controls the DC voltage of the DC power supply to an arbitrary voltage that can be set.
[12] 前記機械制御部は、前記入力軸インバータにトルク指令、前記出力軸インバータ に速度指令を与え、前記入力軸インバータの速度と前記出力軸インバータのトルク 指令のレスポンスから前記機械の合否を判定することを特徴とする請求項 1記載の機 械試験装置。 [12] The machine control unit gives a torque command to the input shaft inverter and a speed command to the output shaft inverter, and determines pass / fail of the machine from the response of the speed of the input shaft inverter and the torque command of the output shaft inverter. The mechanical test apparatus according to claim 1, wherein
[13] 前記機械制御部は、前記出力軸のトルク指令が一定になるよう速度指令を制御す ることを特徴とする請求項 12記載の機械試験装置。  13. The machine test apparatus according to claim 12, wherein the machine control unit controls a speed command so that a torque command of the output shaft becomes constant.
[14] 前記機械制御部は、前記入力軸インバータに速度指令、前記出力軸インバータに トルク指令を与え、前記入力軸インバータのトルク指令と前記出力軸インバータの速 度のレスポンスから前記機械の合否を判定することを特徴とする請求項 1記載の機械 制御装置。  [14] The machine control unit gives a speed command to the input shaft inverter and a torque command to the output shaft inverter, and determines whether the machine passes or fails based on the torque command of the input shaft inverter and the response of the speed of the output shaft inverter. 2. The machine control device according to claim 1, wherein the determination is made.
[15] 前記機械制御部は、前記入力軸のトルク指令が一定になるよう速度指令を制御す ることを特徴とする請求項 14記載の機械試験装置。  15. The machine test device according to claim 14, wherein the machine control unit controls a speed command so that a torque command of the input shaft becomes constant.
[16] 前記機械制御部は、前記トルク指令と前記速度指令と前記コンバータのコンバータ 電流のレスポンスに基づいて前記機械の合否を判定することを特徴とする請求項 1 記載の機械試験装置。 [16] The machine control unit includes the torque command, the speed command, and a converter of the converter. The machine test apparatus according to claim 1, wherein the pass / fail of the machine is determined based on a current response.
PCT/JP2007/072936 2006-11-30 2007-11-28 Apparatus test device WO2008066069A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008547007A JP4873013B2 (en) 2006-11-30 2007-11-28 Mechanical testing equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-322984 2006-11-30
JP2006322984 2006-11-30

Publications (1)

Publication Number Publication Date
WO2008066069A1 true WO2008066069A1 (en) 2008-06-05

Family

ID=39467859

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072936 WO2008066069A1 (en) 2006-11-30 2007-11-28 Apparatus test device

Country Status (2)

Country Link
JP (1) JP4873013B2 (en)
WO (1) WO2008066069A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013047551A1 (en) * 2011-09-30 2015-03-26 国際計測器株式会社 Torsion test equipment
JP2021030403A (en) * 2019-08-28 2021-03-01 パナソニックIpマネジメント株式会社 Abnormality diagnostic device and robot control device including the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587554U (en) * 1992-04-23 1993-11-26 株式会社明電舎 Dynamometer control panel for shiyashi dynamometer
JPH0712683A (en) * 1993-06-23 1995-01-17 Mazda Motor Corp Apparatus and method for testing differential limiter
JPH07181110A (en) * 1993-12-22 1995-07-21 Meidensha Corp Tester for 4 wheel-driven car
JPH10281937A (en) * 1997-04-04 1998-10-23 Shinko Electric Co Ltd Speed correcting circuit and torque correcting circuit of load dc motor connected to output shaft of 4-axial differential gear durability tester
JP2000035380A (en) * 1998-07-15 2000-02-02 Shinko Electric Co Ltd Tester for hybrid electric vehicle
JP2004282838A (en) * 2003-03-13 2004-10-07 Yaskawa Electric Corp Braking method of inverter driven induction motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0587554U (en) * 1992-04-23 1993-11-26 株式会社明電舎 Dynamometer control panel for shiyashi dynamometer
JPH0712683A (en) * 1993-06-23 1995-01-17 Mazda Motor Corp Apparatus and method for testing differential limiter
JPH07181110A (en) * 1993-12-22 1995-07-21 Meidensha Corp Tester for 4 wheel-driven car
JPH10281937A (en) * 1997-04-04 1998-10-23 Shinko Electric Co Ltd Speed correcting circuit and torque correcting circuit of load dc motor connected to output shaft of 4-axial differential gear durability tester
JP2000035380A (en) * 1998-07-15 2000-02-02 Shinko Electric Co Ltd Tester for hybrid electric vehicle
JP2004282838A (en) * 2003-03-13 2004-10-07 Yaskawa Electric Corp Braking method of inverter driven induction motor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013047551A1 (en) * 2011-09-30 2015-03-26 国際計測器株式会社 Torsion test equipment
JP2021030403A (en) * 2019-08-28 2021-03-01 パナソニックIpマネジメント株式会社 Abnormality diagnostic device and robot control device including the same
JP7245994B2 (en) 2019-08-28 2023-03-27 パナソニックIpマネジメント株式会社 Abnormal diagnosis device and robot control device equipped with the same

Also Published As

Publication number Publication date
JPWO2008066069A1 (en) 2010-03-04
JP4873013B2 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
CN102384769B (en) Method and system for testing novel contra-rotating dual-rotor motor driver
KR101000410B1 (en) Active vibration control system for hybried electric vehicle
CN101261190B (en) Hybrid power automobile controller life-span test system and test method
JP4176144B1 (en) Electric vehicle control device
US8410739B2 (en) Method and apparatus for determining the operating condition of generator rotating diodes
US11407402B2 (en) Driving torque command generating apparatus and method of operating hybrid electric vehicle
CN103402848B (en) For the method and apparatus that the function by regulation of at least one first assembly of vehicle transmission system and one second assembly is monitored
KR101628577B1 (en) Vibraition control system of hybrid vehicle
CN109765485B (en) Motor braking test system and method based on torque control mode
Yuan et al. Power efficiency estimation-based health monitoring and fault detection of modular and reconfigurable robot
US20100066316A1 (en) Method and apparatus for detecting a short circuit in a DC link
US20100070212A1 (en) Method and apparatus for determining state of inverter capacitor in an electric drive
CN106515718B (en) For controlling the method and system of hybrid vehicle
JP5557273B2 (en) Testing equipment for vehicles with multiple power sources
CN201193984Y (en) Hybrid powered automobile controller life test system
CN104648160A (en) Vehicle diagnostic system and method for detecting incorrect cable connections
KR20140106555A (en) Electrical machine control method and apparatus
WO2008066069A1 (en) Apparatus test device
Brandl et al. Hybrid vehicle’s NVH challenges and influences on the NVH development
JP3671565B2 (en) Test system
CN103381807A (en) Method and apparatus for operating a powertrain system upon detecting a stuck-closed clutch
JP2008104257A (en) Inspection device for hybrid vehicle drive unit
CN103481888B (en) For operating the method and apparatus of multi-mode transmission system in a dynamic condition
JP2017178004A (en) Hybrid vehicle and control method therefor
KR101164931B1 (en) Power supply apparatus of simulation inertia loading device for railroad vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008547007

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 07832658

Country of ref document: EP

Kind code of ref document: A1