WO2008065986A1 - Method of isoelectric point separation and method of determining hydrogen ion concentration gradient in the separation field - Google Patents

Method of isoelectric point separation and method of determining hydrogen ion concentration gradient in the separation field Download PDF

Info

Publication number
WO2008065986A1
WO2008065986A1 PCT/JP2007/072739 JP2007072739W WO2008065986A1 WO 2008065986 A1 WO2008065986 A1 WO 2008065986A1 JP 2007072739 W JP2007072739 W JP 2007072739W WO 2008065986 A1 WO2008065986 A1 WO 2008065986A1
Authority
WO
WIPO (PCT)
Prior art keywords
separation
isoelectric point
gradient
field
separation field
Prior art date
Application number
PCT/JP2007/072739
Other languages
French (fr)
Japanese (ja)
Inventor
Toru Sano
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Publication of WO2008065986A1 publication Critical patent/WO2008065986A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis

Definitions

  • the present invention relates to a method for determining a hydrogen ion concentration (pH) gradient in a separation field at the time of isoelectric point separation used for protein analysis or the like.
  • each component converges and is separated at an isoelectric point specific to each component.
  • the hydrogen ion concentration (pH) at which the charge is apparently zero is an isoelectric point
  • a solid such as polyacrylamide or agar or a liquid such as one in a pillar is used as the separation field.
  • Patent Document 1 discloses an isoelectric point marker suitable for fluorescence detection isoelectric focusing
  • Patent Document 2 discloses an isoelectric marker suitable for ultraviolet absorption detection isoelectric focusing.
  • Patent Document 1 JP-A-10-197481
  • Patent Document 2 Japanese Patent Laid-Open No. 11 23531
  • isoelectric point separation is performed in one lane, so the sample and the isoelectric point marker are mixed and the isoelectric point is separated.
  • the same type of component as the sample component for example, protein or peptide
  • isoelectric point marker is mixed as an isoelectric point marker
  • isoelectric point separation may be disturbed due to their influence.
  • these components are visualized by staining after completion of the separation. In this case, the pH distribution of the separation field cannot be known in real time during the separation process.
  • An object of the present invention is to provide a pH gradient determination method capable of accurately determining the pH distribution of a separation field in real time and without performing complicated operations without interfering with the determination of a sample separation result. Is to provide.
  • Another object of the present invention is that the sample separation result is not determined by the isoelectric point marker, and the isoelectric point of the analyte can be known in real time without requiring a complicated operation. It is to provide an electric point separation method.
  • a method for determining a pH gradient in a separation field for isoelectric point separation that determines a pH gradient in a separation field for isoelectric point separation including carrier ampholite,
  • a method for determining a pH gradient in a separation field for isoelectric point separation which determines a pH gradient in the separation field for isoelectric point separation including carrier ampholite,
  • a method for determining the pH gradient of a separation field for isoelectric point separation is provided.
  • An isoelectric separation method is provided.
  • the present invention provides a method for accurately determining the pH distribution of a separation field without interfering with the determination of the sample separation result, in real time, and without performing complicated operations.
  • the isoelectric point separation is not determined by the isoelectric point marker, and the isoelectric point of the analyte can be known in real time and without requiring a complicated operation.
  • a method is provided.
  • FIG. 1 is a plan view showing a configuration of a microchip that can be used in the present invention.
  • FIG. 2 shows a calibration curve prepared with a fluorescent isoelectric point marker in Examples.
  • FIG. 3 shows a fluorescence intensity distribution in a separation channel emitted by carrier ampholite, measured in an example.
  • the ideal method for determining the pH distribution of the separation field in real time and not interfering with the determination of the separation result of the sample can determine the pH gradient of the separation field without mixing any extra components at all. Is the method. This is because if this can be realized, the original separation pattern of the component to be analyzed can be observed.
  • the pH gradient referred to in the present invention means a pH distribution formed along a separation field where isoelectric point separation is performed, that is, in the separation direction of the separation field.
  • the minimum mixture for isoelectric point separation is an aqueous solution of the analyte and carrier ampholite.
  • Carrier ampholite is a mixture of compounds having various isoelectric points.
  • the distribution of the isoelectric point of the carrier ampholite that is always contained in the sample solution and forms the pH gradient of the separation field can be known by some method, other mixed components can be obtained. It is possible to determine the pH gradient of the separation field related to The present inventor has found that there are a plurality of fluorescent components among the component compounds constituting the carrier ampholite. Since these isoelectric points are unchanged, by measuring these fluorescent positions, it is possible to specify multiple absolute pH positions in the separation field, and using a calibration curve created based on them, The pH gradient of the separation field can be determined.
  • the isoelectric point of the fluorescent component of the carrier ampholite is pH 5.0, 7.0 and 9.0.
  • the separation field pH gradient has been confirmed to be linear, if these three fluorescence positions are measured, at least 5.0 to 9.0 in the separation field based on these positions.
  • the pH gradient of can be determined. For this reason, it is possible to know the pH gradient in the separation field at a certain time even in the case where the pH gradient field once produced in the liquid separation field moves in parallel to the alkali side due to the drift phenomenon. become .
  • the pH gradient may be curved rather than linear. In this case as well, it is possible to know the pH gradient in the separation field at a certain time using the isoelectric point information of the fluorescence component of the carrier ampolite by obtaining the approximate expression of the distribution curve in advance. .
  • This method can be performed by utilizing the fluorescence of a commercially available carrier ampholite constituent component.
  • a carrier ampolite having an isoelectric point marker function can be obtained by imparting fluorescence only to a specific isoelectric point component among the components of the carrier ampholite.
  • the ultraviolet light (205 nm to 280 nm) usually used for these detections does not have absorption characteristics, and V and fluorescence characteristics in other wavelength bands. It is preferred to use a carrier ampholite having
  • the pH gradient of the separation field can be determined simply by measuring the fluorescence emitted by the carrier ampholite. You can know the pH gradient of the separation field.
  • Carrier ampholite is the most reliable indicator because it defines the pH gradient of the separation field. Also, since no other markers are mixed, there is no adverse effect on sample separation. Furthermore, it is inexpensive because it does not mix another marker, and it does not require extra time to prepare the introduction solution. As described above, it is possible to provide an accurate, inexpensive, and fast method for determining pH in an isoelectric separation field.
  • the method of the present invention can be used in a separation field using a single beam (including a microchip microchannel). Needless to say, it can also be used in other separation fields.
  • FIG. 1 shows a microchip having a separation channel 101 formed on a substrate 100.
  • Liquid reservoirs 150 and 151 are formed at both ends of the separation channel 101.
  • the shape of the separation channel is not specified as a straight line, and may have a bent portion, for example. Even a microchip having two or more separation channels does not work.
  • the separation channel is set to have a width of 50 111 to 10 mm and a depth of 0.3 m to lmm.
  • a material such as quartz, glass, or plastic is preferably used.
  • the separation channel may have a simple concave structure, or may have a villa or wall-type microstructure for better separation, or may have various coatings applied.
  • This substrate is covered and sealed with a plate-like substance or a seal made of the same material as or different from the substrate.
  • a material capable of transmitting the light irradiating the sample entering the fine channel and the fluorescence generated by the sample force for example, a transparent material can be appropriately selected.
  • an aqueous solution containing an analyte such as protein and carrier ampholite is prepared.
  • analyte such as protein and carrier ampholite
  • a carrier ampholite aqueous solution of about 0.04 vol% to 4 vol% with 10 ⁇ to 100; ⁇ analyte dissolved per separation.
  • gel components may be mixed because the separation results are better for solutions with higher viscosity than water.
  • the preparation liquid (sample) is introduced from the liquid reservoir 150 and filled into the separation channel 101 using capillary action or using external force such as vacuum tweezers.
  • the liquid reservoir 150 is filled with an acidic solution, and the liquid reservoir 151 is filled with an alkaline solution.
  • Diluted phosphoric acid or the like can be used as the acidic solution, and diluted sodium hydroxide or the like can be used as the alkaline solution.
  • an apparatus including a mechanism for exciting the separation channel 101 with light of a specific wavelength and a mechanism for detecting the prepared liquid force and the fluorescence emitted therefrom is prepared.
  • a system in which an electrophoresis apparatus is set on an electric stage of a fluorescence microscope and a fluorescence intensity measuring apparatus is attached can be used, or a dedicated fluorescence scanner can be used.
  • excitation light sources include lasers, LEDs, and xenon lamps with filters.
  • the detection device include a photomultiplier tube (PMT), a photodiode array, and an APD (avalanche photodiode).
  • a fluorescence detection mechanism By using such a fluorescence detection mechanism, it is possible to monitor the fluorescence intensity in the separation channel 101 at each time.
  • GFP Green Fluorescent Protein
  • a combination of motion stages can be used.
  • the wavelength of fluorescence transmitted through the filter set for fluorescence observation of GFP is not less than 430 nm and not more than 510 ⁇ m, and is different from the ultraviolet light (around 205 ⁇ m to 280 nm) usually used for detecting proteins and peptides. is there. Therefore, it is preferable to confuse the fluorescence in this wavelength band with the signal of the analyte for analysis of proteins and peptides.
  • the force S exemplified by GFP as the fluorescence wavelength may be used.
  • the fluorescence intensity in the wavelength band of 400 nm or more and 780 nm or less can be measured.
  • a method for determining a pH gradient in a separation field for isoelectric point separation including a carrier ampholite, and a method for determining a pH gradient in a separation field for isoelectric point separation, which is different from each other.
  • There is a method for determining a pH gradient of a separation field for isoelectric point separation wherein a carrier gradient containing a plurality of fluorescent components having an isoelectric point is used, and the pH gradient is determined by using the fluorescent component as an isoelectric point marker.
  • This separation field can be one of the most important.
  • a method for determining a pH gradient in a separation field for isoelectric point separation including a carrier ampholite, wherein the pH gradient is determined in the separation field for isoelectric point separation.
  • a carrier ampholite containing a plurality of fluorescent components having Measuring the fluorescence intensity distribution along the isoelectric point; and determining the pH gradient in the separation field from the position that gives the peak of the fluorescence intensity distribution and the known isoelectric point
  • a method for determining the pH gradient of a separation field is provided.
  • This separation field force S is the most powerful force S.
  • an isoelectric separation method including a step of obtaining an isoelectric point of an object.
  • the analyte can be a protein or peptide.
  • an ICC-DI 05 type (trade name) glass chip manufactured by Micro Chemical Engineering Co., Ltd. was used as a microchip.
  • This microchip uses borosilicate glass as the material of the substrate 100, produces a linear fine channel on the substrate 100, and further the separation channel 101 becomes a fine channel. It is the microchip which adhered and sealed.
  • This microchip has a force S with two parallel straight channels, and only one can be used at the same time.
  • the actual configuration is the same as in FIG.
  • the microchip was used by attaching a glass reservoir to the liquid reservoirs 150 and 151 of the separation channel 101.
  • sample solution to be introduced a mixture of carrier ampholite, a genome for imparting viscosity to the sample, and an isoelectric point marker that emits fluorescence when excited by ultraviolet springs was used. More specifically, Beck Beckman Coulter, Inc. of cIEF Ampholyte 3- 10 (product code 477491) (trade name) 2 volume 0/0, manufactured by Beckman Coulter, Inc. of cIEF gel (product code 477497) (trade name: ) 96 volume 0 /. Fluorescent isoelectric point marker set (P / N17951; Fluorescent IEF—Marker—Mix for CE and Gel Electrophoresis) (trade name: 2% of commercial products) was used as a sample.
  • the microchip In order to perform fluorescence observation of the isoelectric point separation, the microchip is placed on an XY electric stage attached to a fluorescence microscope (trade name: AxioPlan 2 Imaging) manufactured by Zeiss, and the microchip is preliminarily provided. Alignment in the XY direction was performed using the alignment mark provided above.
  • fluorescence filters Two types of fluorescence filters were set in the fluorescence microscope, and they were exchanged so that fluorescence at different wavelengths could be observed. One of them is for detecting fluorescence emitted by carrier ampholite. No. 09 [Excitation filter (BP450-490), Dichroic mirror (FT510), Noria filter sold for GFP observation] (LP515)] (trade name made by Zeiss).
  • the other fluorescent filter is for observing the fluorescent isoelectric point marker. It is a filter set that is a special combination of three in accordance with the wavelength. [Excitation filter (330WB60), Dichroic mirror (400DCLP), NORIA FILTER (400ALP)] (trade name manufactured by OMEGA OPTICAL).
  • an aqueous solution of phosphoric acid (concentration: 0.1 M (concentration unit M represents mol / liter)) is added to the positive side reservoir 150, and sodium hydroxide (concentration) is added to the negative side reservoir 151. : 0 ⁇ 02M).
  • Electrodes (not shown) were placed in the liquid reservoir 150 and the liquid reservoir 151, and a DC voltage was applied between the separation channel electrodes. Specifically, for a channel length of about 60 mm, a DC voltage of 3500 V was applied between the liquid reservoirs at both ends.
  • Isoelectric point separation was completed about 2 minutes after the start of energization.
  • a pH gradient was created by carrier ampholite, and the five components of the fluorescent isoelectric point marker set formed a convergence band at each isoelectric point.
  • the progress of this isoelectric point separation is as follows: the amount of fluorescence received by the photomultiplier tube (PMT) attached to the fluorescence microscope by stopping energization every 30 seconds and moving the XY motorized stage along the flow path. This was done by plotting.
  • PMT photomultiplier tube
  • the distance from the channel end was converted to the isoelectric point (pH) using the correlation shown in FIG. Figure 3 shows the result. Since it was found that each peak was close to the acidic side (pH 4.3-6.2), energization was continued after isoelectric point separation was completed until each peak reached the center of the channel where it was easy to observe. Using the drift phenomenon, the liquid is moved to the alkali side.
  • a trypsin inhibitor (manufactured by Sigma-Aldrich) was prepared as a protein, and the cysteine residue was labeled with Cy3 and used. 1 ⁇ 5 1, 30 mM Tris—HCl (Tris-I) with 2 mM TCEP (Tris 2-chloroethyl phosphate) solution (Invitrogen, Inc., trade name: T—2556) per 10 mg protein solution dissolved in 15 mg / ml Hydrochloric acid buffer solution ( ⁇ 8 ⁇ 0) (manufactured by Nacalai Testa Co., Ltd., trade name: 02435-15) was mixed with 18 ⁇ 51 and reacted at 37 ° C for 1 hour.
  • the above-mentioned microchip is installed on an XY motorized stage attached to a Zeiss fluorescence microscope (trade name: AxioPlan 2 Imaging), and installed on the microchip in advance. Alignment in the vertical direction was performed using the horizontal and vertical alignment marks.
  • two types of fluorescence filters were set in the fluorescence microscope, and they were exchanged so that fluorescence at different wavelengths could be observed. One of them is to detect the fluorescence emitted by the fluorescent protein, and is a filter set that combines three in particular according to the wavelength.
  • the positive side reservoir 150 was filled with an aqueous phosphoric acid solution (concentration: 0 ⁇ 1M), and the negative side reservoir 151 was filled with sodium hydroxide (concentration: 0.02M). Electrodes (not shown) were placed in the liquid reservoir 150 and the liquid reservoir 151, and a DC voltage was applied between the separation channel electrodes. Specifically, for a channel length of about 60 mm, a DC voltage of 3500 V was applied between the liquid reservoirs at both ends. Isoelectric point separation was completed about 2 minutes after the start of energization. In the separation channel 101, a pH gradient was created by carrier ampholite, and the five components of the fluorescent isoelectric point marker set formed a convergence band at each isoelectric point.
  • the fluorescent protein formed a convergence band at its isoelectric point.
  • a calibration curve in the range of pH 4.0 to 9.0 was created.
  • the fluorescence distribution derived from trypsin inhibitor is observed.
  • the isoelectric point of the trypsin inhibitor estimated from this peak position was 4.6.
  • fluorescence filters were set in the fluorescence microscope, and they were exchanged so that fluorescence at different wavelengths could be observed.
  • One of them is for detecting the fluorescence emitted by the carrier ampholite.
  • No. 09 [Excitation Phonoletter (BP450-490), Dichroic mirror (FT510), Noria filter (For GFP observation) LP515)] (trade name made by Zeiss).
  • Another fluorescent filter is [Excitation filter (BP525 / 45), Dichroic mirror (FT560), Barrier filter (BP595 / 60)] (trade name, manufactured by OMEGA OPTICAL).
  • the positive side reservoir 150 was filled with an aqueous phosphoric acid solution (concentration: 0.1 M), and the negative side reservoir 151 was filled with sodium hydroxide (concentration: 0.02 kg). Electrodes (not shown) were placed in the liquid reservoir 150 and the liquid reservoir 151, and a DC voltage was applied between the separation channel electrodes. Specifically, for a channel length of about 60 mm, a DC voltage of 3500 V was applied between the liquid reservoirs at both ends. Isoelectric point separation was completed about 2 minutes after the start of energization. In the separation channel 101, a pH gradient was created by carrier ampholite, and the fluorescent protein formed a convergence band at its isoelectric point. First, the fluorescence emitted by the carrier ampholite was detected.
  • the fluorescence intensity distribution was measured along the separation channel 101, and the same results as in FIG. 3 were obtained. These peaks allowed us to draw a calibration curve from ⁇ ⁇ 4 ⁇ 3 to 6 ⁇ 2.
  • a fluorescence distribution derived from trypsin inhibitor was observed.
  • the isoelectric point of the trypsin inhibitor was estimated to be 4.6. Because of this, this technique can be applied to protein samples and can be applied to peptides as well.
  • the fluorescent component is used as an isoelectric point marker.
  • the pH gradient can be determined. It is not necessary to specify the compound of the fluorescent component.
  • the isoelectric point derived from the fluorescent component of the carrier ampholite it may be as described above.
  • a sample containing a separately prepared isoelectric point marker and carrier ampholite is subjected to isoelectric point separation, and the pH gradient is determined from the convergence position of the isoelectric point marker in the separation field.
  • the isoelectric point derived from the fluorescent component can be known.
  • the pH gradient can be determined as follows even when actually isoelectrically separating the analyte. That is, the fluorescence intensity distribution is measured along the separation field where the pH gradient is formed, and the fluorescence component of the carrier ampholite is measured. It is also possible to know the pH at a certain position of the separation field, as well as the position that gives the peak of the fluorescence intensity distribution derived from, and the known isoelectric point and force of the fluorescent component. If a plurality of fluorescent components having known isoelectric points with different carrier ampholites are contained, the pH can be known at a plurality of positions in the separation field. Thus, the pH gradient of the separation field can be determined. If the pH at the focusing position of the analyte in the separation field is obtained based on this pH gradient, the pH is the isoelectric point of the analyte.
  • the method of the present invention is useful for separating or identifying proteins, peptides, and the like by isoelectric points.

Abstract

A method of determining a pH gradient in which the pH distribution in separation field can be accurately determined on real-time basis without disturbing judgment of sample separation results and without needing complex operation; and a method of isoelectric point separation using the above method. There is provided a method of determining a pH gradient in separation field for isoelectric point separation in which the pH gradient is determined in a separation field for isoelectric point separation containing a carrier ampholyte, which method comprises the step of, using a carrier ampholyte containing multiple fluorescent components with known isoelectric points different from each other, determining the pH gradient with the use of the fluorescent components as isoelectric point markers, or measuring the fluorescence intensity distribution along the separation field; and the step of determining the pH gradient in separation field from known isoelectric points and peak making positions of the fluorescence intensity distribution. Further, there is provided a method of isoelectric point separation, comprising the step of finding the isoelectric point of analyte with the use of the pH gradient determined by the above method.

Description

明 細 書  Specification
等電点分離方法およびその分離場における水素イオン濃度勾配決定方 法  Isoelectric point separation method and hydrogen ion concentration gradient determination method in the separation field
技術分野  Technical field
[0001] 本発明は、タンパク質の分析などに利用される等電点分離実行時の、分離場にお ける水素イオン濃度(pH)勾配を決定する方法に関する。  [0001] The present invention relates to a method for determining a hydrogen ion concentration (pH) gradient in a separation field at the time of isoelectric point separation used for protein analysis or the like.
背景技術  Background art
[0002] タンパク質やペプチド等の両性成分混合物を等電点分離すると、各成分固有の等 電点位置に各成分が収束し分離される。このとき、見かけ上電荷がゼロとなる水素ィ オン濃度(pH)が等電点であり、また分離場としてはポリアクリルアミドゃ寒天等の固 体、あるいはキヤビラリ一中等の液体が用いられる。分離場において、どのように pH の分布が起こっているのかを知ることにより、等電点未知成分の場合にはそれらの等 電点を決定することができ、等電点既知成分の場合には、分離が正しく行われている かどうかを知ることができる。  [0002] When a mixture of amphoteric components such as proteins and peptides is isoelectrically separated, each component converges and is separated at an isoelectric point specific to each component. At this time, the hydrogen ion concentration (pH) at which the charge is apparently zero is an isoelectric point, and a solid such as polyacrylamide or agar or a liquid such as one in a pillar is used as the separation field. By knowing how the pH distribution is occurring in the separation field, the isoelectric point can be determined in the case of unknown isoelectric point components, and in the case of known isoelectric point components. You can know if the separation is done correctly.
[0003] 固体分離場の場合、最も直接的な pH測定方法として、等電点分離完了後にその スライスを作成し、各断片の pHを測定する方法を取ることができる。しかし液体分離 場の場合には直接測定することは困難である。そこで、いずれの場合にも通常は等 電点既知の物質 (等電点マーカー)を同一分離場で分離し、分離終了後にそれらを 用いて作成した pHの検量線を標準値として、分離場における pH勾配を決定する方 法が用いられる。特許文献 1には蛍光検出等電点電気泳動法に好適な等電点マー カーが開示され、特許文献 2には紫外線吸収検出等電点電気泳動法に好適な等電 点マーカーが開示される。  [0003] In the case of a solid separation field, the most direct pH measurement method is to prepare a slice after isoelectric point separation is completed and measure the pH of each fragment. However, it is difficult to measure directly in the case of a liquid separation field. Therefore, in any case, substances with known isoelectric points (isoelectric point markers) are usually separated in the same separation field, and after completion of separation, the calibration curve of pH created using them is used as the standard value in the separation field. A method for determining the pH gradient is used. Patent Document 1 discloses an isoelectric point marker suitable for fluorescence detection isoelectric focusing, and Patent Document 2 discloses an isoelectric marker suitable for ultraviolet absorption detection isoelectric focusing. .
[0004] 同一成分を用いて同一条件の等電点分離を行ったとしても、毎回分離場中での絶 対的位置が異なってしまうため、分離の都度 pHを測定しないと、今回の分離におい てどの位置がどの pH値を取っているのか分からない。これに加え、液体分離場を用 V、る場合には溶液のドリフト現象が発生し、相対的な pHの位置関係を保ったまま溶 液自体が略平行移動するため、ある時刻における分離場の pH勾配は、測定によつ てしか判定できない。 [0004] Even if isoelectric point separation is performed using the same components under the same conditions, the absolute position in the separation field will be different each time. I don't know which position is taking which pH value. In addition, when the liquid separation field is used, a drift phenomenon of the solution occurs, and the solution itself moves substantially in parallel while maintaining the relative pH positional relationship. The pH gradient is measured Can only be judged.
特許文献 1 :特開平 10— 197481号公報  Patent Document 1: JP-A-10-197481
特許文献 2:特開平 11 23531号公報  Patent Document 2: Japanese Patent Laid-Open No. 11 23531
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] 通常 1つのレーンで等電点分離が行われるため、サンプルと等電点マーカーは混 合されて等電点分離される。このとき、サンプルとなる成分と同一種類の成分、例え ばタンパク質やペプチドを等電点マーカーとして混合すると、サンプル中の成分とマ 一力一成分の区別が付けに《なる。さりとて区別を容易にするために、等電点マー カーを大量に混合すると、それらの影響を受け等電点分離が乱れることもある。また 通常これらの成分は、分離終了後に染色することにより可視化される。この場合、分 離途中の段階で分離場の pH分布をリアルタイムに知ることができない。  [0005] Normally, isoelectric point separation is performed in one lane, so the sample and the isoelectric point marker are mixed and the isoelectric point is separated. At this time, if the same type of component as the sample component, for example, protein or peptide, is mixed as an isoelectric point marker, it is possible to distinguish the component in the sample from one component at a time. In order to make the distinction easier, if isoelectric point markers are mixed in large quantities, isoelectric point separation may be disturbed due to their influence. Usually, these components are visualized by staining after completion of the separation. In this case, the pH distribution of the separation field cannot be known in real time during the separation process.
[0006] 本発明の目的は、サンプル分離結果の判定を妨害せず、リアルタイムに、かつ複雑 な操作を行わずに、分離場の pH分布を正確に決定することのできる pH勾配決定方 法を提供することである。  [0006] An object of the present invention is to provide a pH gradient determination method capable of accurately determining the pH distribution of a separation field in real time and without performing complicated operations without interfering with the determination of a sample separation result. Is to provide.
[0007] 本発明の別の目的は、等電点マーカーによってサンプル分離結果が判定されず、 リアルタイムに、かつ複雑な操作を必要とせずに被解析物の等電点を知ることのでき る等電点分離方法を提供することである。  Another object of the present invention is that the sample separation result is not determined by the isoelectric point marker, and the isoelectric point of the analyte can be known in real time without requiring a complicated operation. It is to provide an electric point separation method.
課題を解決するための手段  Means for solving the problem
[0008] 本発明により、キャリアアンフォライトを含む等電点分離用分離場における pH勾配 を決定する等電点分離用分離場の pH勾配決定方法であって、  [0008] According to the present invention, there is provided a method for determining a pH gradient in a separation field for isoelectric point separation that determines a pH gradient in a separation field for isoelectric point separation including carrier ampholite,
相異なる既知の等電点を有する蛍光成分を複数含有するキャリアアンフォライトを用 い、該蛍光成分を等電点マーカーとして利用することにより pH勾配を決定する 等電点分離用分離場の pH勾配決定方法が提供される。  Determine the pH gradient by using carrier ampholite containing multiple fluorescent components with different known isoelectric points and using the fluorescent component as an isoelectric point marker pH gradient of separation field for isoelectric point separation A determination method is provided.
[0009] 本発明により、キャリアアンフォライトを含む等電点分離用分離場における pH勾配 を決定する等電点分離用分離場の pH勾配決定方法であって、  [0009] According to the present invention, there is provided a method for determining a pH gradient in a separation field for isoelectric point separation, which determines a pH gradient in the separation field for isoelectric point separation including carrier ampholite,
相異なる既知の等電点を有する蛍光成分を複数含有するキャリアアンフォライトを用 い、該分離場に沿って蛍光強度分布を測定する工程;および、 該蛍光強度分布のピークを与える位置と、該既知の等電点とから、該分離場におけ る pH勾配を決定する工程 Measuring the fluorescence intensity distribution along the separation field using a carrier ampholite containing a plurality of fluorescent components having different known isoelectric points; and A step of determining a pH gradient in the separation field from the position giving the peak of the fluorescence intensity distribution and the known isoelectric point.
を有する等電点分離用分離場の pH勾配決定方法が提供される。  A method for determining the pH gradient of a separation field for isoelectric point separation is provided.
[0010] 本発明により、相異なる既知の等電点を有する蛍光成分を複数含有するキャリアァ ンフオライトと、被解析物とを含む試料を、分離場において等電点分離する工程; 該分離場に沿って蛍光強度分布を測定する工程; [0010] According to the present invention, a step of isoelectrically separating a sample containing a carrier anopholite containing a plurality of fluorescent components having different known isoelectric points and an analyte in the separation field; And measuring the fluorescence intensity distribution;
該蛍光強度分布のピークを与える位置と、該既知の等電点とから、該分離場におけ る pH勾配を決定する工程;および  Determining a pH gradient in the separation field from the position giving the peak of the fluorescence intensity distribution and the known isoelectric point; and
該 pH勾配を用いて被解析物の等電点を求める工程  A step of obtaining an isoelectric point of the analyte using the pH gradient
を有する等電分離方法が提供される。  An isoelectric separation method is provided.
発明の効果  The invention's effect
[0011] 本発明により、サンプル分離結果の判定を妨害せず、リアルタイムに、かつ複雑な 操作を行わずに、分離場の pH分布を正確に決定する方法が提供される。  [0011] The present invention provides a method for accurately determining the pH distribution of a separation field without interfering with the determination of the sample separation result, in real time, and without performing complicated operations.
[0012] 本発明により、等電点マーカーによってサンプル分離結果が判定されず、リアルタ ィムに、かつ複雑な操作を必要とせずに被解析物の等電点を知ることのできる等電 点分離方法が提供される。 [0012] According to the present invention, the isoelectric point separation is not determined by the isoelectric point marker, and the isoelectric point of the analyte can be known in real time and without requiring a complicated operation. A method is provided.
図面の簡単な説明  Brief Description of Drawings
[0013] [図 1]本発明にお!/、て用いることのできるマイクロチップの構成を示す平面図である。  FIG. 1 is a plan view showing a configuration of a microchip that can be used in the present invention.
[図 2]実施例において蛍光性等電点マーカーにより作成した検量線を示す。  FIG. 2 shows a calibration curve prepared with a fluorescent isoelectric point marker in Examples.
[図 3]実施例において測定した、キャリアアンフォライトの発する分離用流路における 蛍光強度分布を示す。  FIG. 3 shows a fluorescence intensity distribution in a separation channel emitted by carrier ampholite, measured in an example.
符号の説明  Explanation of symbols
[0014] 100 基板 [0014] 100 substrates
101 分離用流路  101 Separation flow path
102 分離用流路  102 Separation flow path
150 液溜  150 liquid reservoir
151 液溜 発明を実施するための最良の形態 151 Liquid reservoir BEST MODE FOR CARRYING OUT THE INVENTION
[0015] リアルタイムに分離場の pH分布を決定するとともに、サンプルの分離結果の判定を 妨害しないための理想的な方法は、余分の成分を全く混合することなぐ分離場の p H勾配を決定できる方法である。これが実現できれば、被解析成分本来の分離バタ ーンを観測することができるからである。  [0015] The ideal method for determining the pH distribution of the separation field in real time and not interfering with the determination of the separation result of the sample can determine the pH gradient of the separation field without mixing any extra components at all. Is the method. This is because if this can be realized, the original separation pattern of the component to be analyzed can be observed.
[0016] 本発明でいう pH勾配は、等電点分離を行う分離場に沿って、すなわち分離場の分 離方向に、形成される pH分布を意味する。  [0016] The pH gradient referred to in the present invention means a pH distribution formed along a separation field where isoelectric point separation is performed, that is, in the separation direction of the separation field.
[0017] 等電点分離を行うための最少混合物は、被解析物とキャリアアンフォライトの水溶液 である。キャリアアンフォライトは各種等電点を持つ化合物の混合体である。キャリア アンフォライトを満たした分離場の両端に、酸とアルカリの電極液を各々セットし、酸 側に陽極、アルカリ側に負極の直流電圧をかけることにより、キャリアアンフォライトに 含まれる各化合物は各々の等電点に収束する。その結果として分離場に pH勾配が 形成される。被解析物は、前記形成済 pH勾配に従いそれ自身の等電点に相当する pHの位置へ電気泳動し停止する。  [0017] The minimum mixture for isoelectric point separation is an aqueous solution of the analyte and carrier ampholite. Carrier ampholite is a mixture of compounds having various isoelectric points. By setting acid and alkali electrode solutions on both ends of the separation field filled with carrier ampholite, and applying DC voltage of the anode on the acid side and the negative electrode on the alkali side, each compound contained in the carrier ampholite Converges to the isoelectric point. As a result, a pH gradient is formed in the separation field. The analyte is electrophoresed to a pH position corresponding to its own isoelectric point according to the formed pH gradient and stops.
[0018] このこと力、ら、常にサンプル溶液に含まれており、かつ分離場の pH勾配を形成する キャリアアンフォライトの等電点分布を、何らかの方法で知ることができれば、他の混 合成分に関係なぐ分離場の pH勾配を決定できることになる。本発明者は、キャリア アンフォライトを構成する成分化合物の中に、蛍光を発する成分が複数あることを発 見した。これらの等電点は不変であることから、これらの蛍光する位置を測定すること により、分離場内の絶対的 pH位置を複数特定できることになり、それらを元に作成し た検量線を用いれば、分離場の pH勾配を決定できることになる。  [0018] If the distribution of the isoelectric point of the carrier ampholite that is always contained in the sample solution and forms the pH gradient of the separation field can be known by some method, other mixed components can be obtained. It is possible to determine the pH gradient of the separation field related to The present inventor has found that there are a plurality of fluorescent components among the component compounds constituting the carrier ampholite. Since these isoelectric points are unchanged, by measuring these fluorescent positions, it is possible to specify multiple absolute pH positions in the separation field, and using a calibration curve created based on them, The pH gradient of the separation field can be determined.
[0019] 例えばキャリアアンフォライトの蛍光成分の等電点力 pH5. 0、 7. 0および 9. 0で あるとする。分離場の pH勾配が線形であることを別に確認してある系においては、こ れら 3つの蛍光位置を測定すれば、その位置を元にして、少なくとも分離場における 5. 0〜9. 0の pH勾配を決定できることになる。このため液体分離場において、一度 出来上がった pH勾配の場がドリフト現象により、通常アルカリ側へ平行移動していく ような場合にあっても、ある時刻における分離場での pH勾配を知ることが可能になる 。キャリアアンフォライトの種類によっては、 pH勾配が線形でなく曲線状となる物もあ る力 この場合にもあらかじめ分布曲線の近似式を求めておくことにより、キャリアアン フォライトの蛍光成分の等電点情報を用いて、ある時刻における分離場での pH勾配 を知ることが可能になる。 [0019] For example, suppose that the isoelectric point of the fluorescent component of the carrier ampholite is pH 5.0, 7.0 and 9.0. In a system where the separation field pH gradient has been confirmed to be linear, if these three fluorescence positions are measured, at least 5.0 to 9.0 in the separation field based on these positions. The pH gradient of can be determined. For this reason, it is possible to know the pH gradient in the separation field at a certain time even in the case where the pH gradient field once produced in the liquid separation field moves in parallel to the alkali side due to the drift phenomenon. become . Depending on the type of carrier ampholite, the pH gradient may be curved rather than linear. In this case as well, it is possible to know the pH gradient in the separation field at a certain time using the isoelectric point information of the fluorescence component of the carrier ampolite by obtaining the approximate expression of the distribution curve in advance. .
[0020] この方法は、市販のキャリアアンフォライト構成成分が有する蛍光性を利用して行う ことができる。またキャリアアンフォライトの成分のうちの特定の等電点成分のみに意 図して蛍光性を付与することにより、等電点マーカー機能を有するキャリアアンフオラ イトを得ることもできる。 [0020] This method can be performed by utilizing the fluorescence of a commercially available carrier ampholite constituent component. In addition, a carrier ampolite having an isoelectric point marker function can be obtained by imparting fluorescence only to a specific isoelectric point component among the components of the carrier ampholite.
[0021] タンパク質やペプチドを検出する場合には、これらの検出のために通常用いる紫外 線光(205nm〜280nm付近)においては吸収特性をもたず、その他の波長帯にお V、て蛍光特性を有するキャリアアンフォライトを用いることが好ましレ、。  [0021] When detecting proteins and peptides, the ultraviolet light (205 nm to 280 nm) usually used for these detections does not have absorption characteristics, and V and fluorescence characteristics in other wavelength bands. It is preferred to use a carrier ampholite having
[0022] 以上説明したように本発明によれば、通常の等電点分離を行うときに、キャリアアン フォライトの発する蛍光を測定するだけで分離場の pH勾配を決定できるため、各時 刻における分離場の pH勾配を知ることができる。またキャリアアンフォライトは分離場 の pH勾配を規定する物であるから、最も信頼できる指標となる。また別のマーカーを 混合しないのでサンプルの分離に悪影響を与えることもない。さらに、別のマーカー を混合しないため安価であり、導入液の準備にも余分な時間力かからない。以上のよ うに、正確、安価、高速な等電点分離場内 pH決定方法を提供することができる。  [0022] As described above, according to the present invention, when performing normal isoelectric point separation, the pH gradient of the separation field can be determined simply by measuring the fluorescence emitted by the carrier ampholite. You can know the pH gradient of the separation field. Carrier ampholite is the most reliable indicator because it defines the pH gradient of the separation field. Also, since no other markers are mixed, there is no adverse effect on sample separation. Furthermore, it is inexpensive because it does not mix another marker, and it does not require extra time to prepare the introduction solution. As described above, it is possible to provide an accurate, inexpensive, and fast method for determining pH in an isoelectric separation field.
[0023] 以下、本発明の一形態について図面を参照して説明する。なお、すべての図面に おいて、共通の構成要素には同じ符号を付し、適宜説明を省略する。  Hereinafter, an embodiment of the present invention will be described with reference to the drawings. In all the drawings, common constituent elements are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
[0024] 本発明の方法は、キヤビラリ一(マイクロチップの微細流路を含む)を用いた分離場 で用いること力 Sできる。し力、しこれ以外の分離場においても使用できることはいうまで もない。  [0024] The method of the present invention can be used in a separation field using a single beam (including a microchip microchannel). Needless to say, it can also be used in other separation fields.
[0025] ここでは本発明の方法をマイクロチップ上の微細流路を用いて実施する場合につ いて説明する。図 1に、基板 100に形成された分離用流路 101を有するマイクロチッ プを示す。分離用流路 101の両端には液溜 150と 151が作製されている。分離用流 路の形状は直線に特定されず、たとえば屈曲部を有してもよい。また 2以上の分離用 流路を有するマイクロチップであっても力、まわない。分離用流路は、例えば幅 50 111 以上 10mm以下、深さは 0. 3 m以上 lmm以下に設定される。基板 100の材料と して、たとえば石英もしくはガラス、プラスチック等の材料が好適に用いられる。前記 分離用流路は単純な凹型構造であっても良いし、分離をより良好にするためのビラ 一や壁型の微細構造を有しても良ぐまた各種コーティングを施してあっても良い。こ の基板は、基板と同一材質もしくは異なる材質の板状物質もしくはシールによって覆 われ、封止される。封止のための部材の材料や基板の材料として、微細流路内に入 れるサンプルに照射する光およびサンプル力 発せられる蛍光を透過可能な材料、 例えば透明な材料を、適宜選ぶことができる。 [0025] Here, a case where the method of the present invention is carried out using a fine channel on a microchip will be described. FIG. 1 shows a microchip having a separation channel 101 formed on a substrate 100. Liquid reservoirs 150 and 151 are formed at both ends of the separation channel 101. The shape of the separation channel is not specified as a straight line, and may have a bent portion, for example. Even a microchip having two or more separation channels does not work. For example, the separation channel is set to have a width of 50 111 to 10 mm and a depth of 0.3 m to lmm. With the material of the substrate 100 Thus, for example, a material such as quartz, glass, or plastic is preferably used. The separation channel may have a simple concave structure, or may have a villa or wall-type microstructure for better separation, or may have various coatings applied. . This substrate is covered and sealed with a plate-like substance or a seal made of the same material as or different from the substrate. As the material of the member for sealing and the material of the substrate, a material capable of transmitting the light irradiating the sample entering the fine channel and the fluorescence generated by the sample force, for example, a transparent material can be appropriately selected.
[0026] 等電点分離を行うためのサンプルとして、例えば、タンパク質等の被解析物とキヤリ ァアンフオライトを含む水溶液を調製する。通常 1分離あたり、 10 §から100 ;^の被 解析物を溶解した 0. 04体積%から 4体積%程度のキャリアアンフォライト水溶液を用 いること力 Sできる。一般に、水よりも粘性の高い溶液における分離結果の方が良いた め、ゲル成分を混合することもある。前記調製液 (サンプル)を液溜 150から導入し、 毛細管現象を用いて、あるいは真空ピンセット等の外力を用いて分離用流路 101に 満たす。その後、液溜 150に残っている余分な調製液を除去した後、液溜 150に酸 性溶液、液溜 151にアルカリ性溶液を満たす。酸性溶液としては、希薄リン酸等が、 アルカリ性溶液としては、希薄水酸化ナトリウム等を用いることができる。液溜 150に 陽極電極を、液溜 151に陰極電極をセットし、 100〜800ボルト/ cmの直流電圧を 印加すると、分離用流路 101に満たされた調製液は等電点分離を開始する。 [0026] As a sample for performing isoelectric point separation, for example, an aqueous solution containing an analyte such as protein and carrier ampholite is prepared. Usually, it is possible to use a carrier ampholite aqueous solution of about 0.04 vol% to 4 vol% with 10 § to 100; ^ analyte dissolved per separation. In general, gel components may be mixed because the separation results are better for solutions with higher viscosity than water. The preparation liquid (sample) is introduced from the liquid reservoir 150 and filled into the separation channel 101 using capillary action or using external force such as vacuum tweezers. Then, after removing excess preparation liquid remaining in the liquid reservoir 150, the liquid reservoir 150 is filled with an acidic solution, and the liquid reservoir 151 is filled with an alkaline solution. Diluted phosphoric acid or the like can be used as the acidic solution, and diluted sodium hydroxide or the like can be used as the alkaline solution. When an anode electrode is set in the liquid reservoir 150 and a cathode electrode is set in the liquid reservoir 151 and a DC voltage of 100 to 800 volts / cm is applied, the prepared liquid filled in the separation channel 101 starts isoelectric point separation. .
[0027] このとき、分離用流路 101を特定の波長の光で励起する機構、および前記調製液 力、ら発せられる蛍光を検出する機構を備えた装置を準備しておく。この装置としては 、蛍光顕微鏡の電動ステージ上に電気泳動装置をセットし、蛍光強度測定装置を付 カロしたシステムを用いることができ、また専用の蛍光スキャナーを用いることができる。 励起用光源の例としては、レーザー、 LED、フィルターを付加したキセノンランプなど 力 S挙げられる。また検出装置の例としては、光電子増倍管(PMT)、フォトダイオード アレイ、 APD (アバランシェフオトダイオード)等が挙げられる。このような蛍光検出機 構を用いることにより、各時刻における分離用流路 101内での蛍光強度をモニタする こと力 Sできる。例えば、蛍光検出波長として生物実験でよく用いられる GFP (Green Fluorescent Protein)の蛍光観察用フィルターセットを装着した蛍光顕微鏡と電 動ステージの組み合わせを利用することができる。 [0027] At this time, an apparatus including a mechanism for exciting the separation channel 101 with light of a specific wavelength and a mechanism for detecting the prepared liquid force and the fluorescence emitted therefrom is prepared. As this apparatus, a system in which an electrophoresis apparatus is set on an electric stage of a fluorescence microscope and a fluorescence intensity measuring apparatus is attached can be used, or a dedicated fluorescence scanner can be used. Examples of excitation light sources include lasers, LEDs, and xenon lamps with filters. Examples of the detection device include a photomultiplier tube (PMT), a photodiode array, and an APD (avalanche photodiode). By using such a fluorescence detection mechanism, it is possible to monitor the fluorescence intensity in the separation channel 101 at each time. For example, a fluorescent microscope equipped with a filter set for fluorescence observation of GFP (Green Fluorescent Protein), which is often used in biological experiments, is used as a fluorescence detection wavelength. A combination of motion stages can be used.
[0028] キャリアアンフォライトとして、ベックマンコールター社製の cIEF Ampholyte 3— 10 (製品コード 477491) (商品名)を用いて調製したサンプルを観察すると、等電点 分離が進むにつれて、複数の蛍光バンドが観察される。  [0028] When a sample prepared using cIEF Ampholyte 3-10 (product code 477491) (product name) manufactured by Beckman Coulter as a carrier ampholite was observed, as the isoelectric point separation proceeded, multiple fluorescent bands were observed. Observed.
[0029] 一方、前記 cIEF Ampholyte 3— 10 (製品コード 477491) (商品名)を用いて 調製したサンプル中に Fluka社製の蛍光等電点マーカーセット(P/N17951; Flu orescent IEF― Marker― Mix for CE and Gel Electrophoresis) (商 t¾名 )を混合した溶液をサンプルとして用い、これらマーカーの等電点分布から pH勾配を 決定する。すると、このキャリアアンフォライトを用いると、分離場での pH勾配はほぼ 泉型となること力 S分力、る。したがって、一度キャリアアンフォライト由来蛍光バンドの各 等電点を決定しておけば、 pH勾配に関する検量線を描くことができる。この検量線 から、あらかじめ有効と判明している pHレンジで、分離場での pH分布を決定できる。  [0029] On the other hand, in a sample prepared using the cIEF Ampholyte 3-10 (product code 477491) (trade name), a fluorescent isoelectric marker set (P / N17951; Flu orescent IEF-Marker-Mix manufactured by Fluka) for CE and Gel Electrophoresis) (quotient t¾name) is used as a sample, and the pH gradient is determined from the isoelectric distribution of these markers. Then, when this carrier ampholite is used, the pH gradient in the separation field becomes almost a fountain type. Therefore, once each isoelectric point of the carrier ampholite-derived fluorescent band is determined, a calibration curve related to the pH gradient can be drawn. From this calibration curve, the pH distribution in the separation field can be determined in the pH range that is known to be effective in advance.
[0030] GFPの蛍光観察用フィルターセットを透過する蛍光の波長は、 430nm以上 510η m以下であり、通常タンパク質やペプチドを検出するために用いる紫外線光(205η m〜280nm付近)とは異なる波長である。従ってこの波長帯の蛍光と、被解析物の シグナルとを混同することはなぐタンパク質やペプチドの分析のために好適である。 ここでは蛍光波長として GFPを例に挙げた力 S、他の波長を利用しても構わない。例え ば、蛍光強度分布を測定する工程において、 400nm以上 780nm以下の波長帯の 蛍光強度を測定することができる。  [0030] The wavelength of fluorescence transmitted through the filter set for fluorescence observation of GFP is not less than 430 nm and not more than 510 η m, and is different from the ultraviolet light (around 205 η m to 280 nm) usually used for detecting proteins and peptides. is there. Therefore, it is preferable to confuse the fluorescence in this wavelength band with the signal of the analyte for analysis of proteins and peptides. Here, the force S exemplified by GFP as the fluorescence wavelength, and other wavelengths may be used. For example, in the step of measuring the fluorescence intensity distribution, the fluorescence intensity in the wavelength band of 400 nm or more and 780 nm or less can be measured.
[0031] 以上のとおり、本発明により、キャリアアンフォライトを含む等電点分離用分離場に おける pH勾配を決定する等電点分離用分離場の pH勾配決定方法であって、相異 なる既知の等電点を有する蛍光成分を複数含有するキャリアアンフォライトを用い、 該蛍光成分を等電点マーカーとして利用することにより pH勾配を決定する等電点分 離用分離場の pH勾配決定方法が提供される。この分離場がキヤビラリ一であること ができる。  [0031] As described above, according to the present invention, there is provided a method for determining a pH gradient in a separation field for isoelectric point separation including a carrier ampholite, and a method for determining a pH gradient in a separation field for isoelectric point separation, which is different from each other. There is a method for determining a pH gradient of a separation field for isoelectric point separation, wherein a carrier gradient containing a plurality of fluorescent components having an isoelectric point is used, and the pH gradient is determined by using the fluorescent component as an isoelectric point marker. Provided. This separation field can be one of the most important.
[0032] また、本発明により、キャリアアンフォライトを含む等電点分離用分離場における pH 勾配を決定する等電点分離用分離場の pH勾配決定方法であって、相異なる既知の 等電点を有する蛍光成分を複数含有するキャリアアンフォライトを用い、該分離場に 沿って蛍光強度分布を測定する工程;および、該蛍光強度分布のピークを与える位 置と、該既知の等電点とから、該分離場における pH勾配を決定する工程を有する等 電点分離用分離場の pH勾配決定方法が提供される。この分離場力 Sキヤビラリ一であ ること力 Sでさる。 [0032] Further, according to the present invention, there is provided a method for determining a pH gradient in a separation field for isoelectric point separation including a carrier ampholite, wherein the pH gradient is determined in the separation field for isoelectric point separation. A carrier ampholite containing a plurality of fluorescent components having Measuring the fluorescence intensity distribution along the isoelectric point; and determining the pH gradient in the separation field from the position that gives the peak of the fluorescence intensity distribution and the known isoelectric point A method for determining the pH gradient of a separation field is provided. This separation field force S is the most powerful force S.
[0033] 本発明により、相異なる既知の等電点を有する蛍光成分を複数含有するキャリアァ ンフオライトと、被解析物とを含む試料を、分離場において等電点分離する工程;該 分離場に沿って蛍光強度分布を測定する工程;該蛍光強度分布のピークを与える位 置と、該既知の等電点とから、該分離場における pH勾配を決定する工程;および該 pH勾配を用いて被解析物の等電点を求める工程を有する等電分離方法が提供さ れる。この被解析物がタンパク質もしくはペプチドであることができる。また、蛍光強度 分布を測定する工程にお!/、て、 400nm以上 780nm以下の波長帯の蛍光強度を測 定すること力 Sでさる。  [0033] According to the present invention, a step of isoelectric point separation in a separation field of a sample containing a carrier phophorite containing a plurality of fluorescent components having different known isoelectric points and an analyte; along the separation field Measuring the fluorescence intensity distribution; determining the pH gradient in the separation field from the position giving the peak of the fluorescence intensity distribution and the known isoelectric point; and analyzing the pH gradient using the pH gradient There is provided an isoelectric separation method including a step of obtaining an isoelectric point of an object. The analyte can be a protein or peptide. In addition, in the process of measuring the fluorescence intensity distribution, it is necessary to measure the fluorescence intensity in the wavelength band from 400 nm to 780 nm.
実施例  Example
[0034] (実施例 1) [Example 1]
以下においては、前述の形態のマイクロチップの場合を例に、具体的な実施例を 説明する。  In the following, specific examples will be described by taking the case of the above-described microchip as an example.
[0035] マイクロチップとして、マイクロ化学技研社製の ICC— DI 05型(商品名)ガラスチッ プを用いた。このマイクロチップは、基板 100の材料としてほう珪酸ガラスを用い、基 板 100上に直線状の微細流路を作製し、さらに分離用流路 101が微細流路となるよ うに、ほう珪酸ガラス板を接着して封止したマイクロチップである。このマイクロチップ には平行した 2本の直線流路がある力 S、同時に 1本しか使用せず、実際には図 1と同 様の構成であるため図 1を用いて説明する。  [0035] As a microchip, an ICC-DI 05 type (trade name) glass chip manufactured by Micro Chemical Engineering Co., Ltd. was used. This microchip uses borosilicate glass as the material of the substrate 100, produces a linear fine channel on the substrate 100, and further the separation channel 101 becomes a fine channel. It is the microchip which adhered and sealed. This microchip has a force S with two parallel straight channels, and only one can be used at the same time. The actual configuration is the same as in FIG.
[0036] 実際には、マイクロチップは、分離用流路 101の液溜部 150と 151にガラスリザー バを接着して力 使用した。  [0036] Actually, the microchip was used by attaching a glass reservoir to the liquid reservoirs 150 and 151 of the separation channel 101.
[0037] 導入サンプル溶液として、キャリアアンフォライト、サンプルに粘性を与えるためのゲ ノレ、紫外泉励起で蛍光を発する等電点マーカーの混合物を用いた。具体的にはべ ックマンコールター社製の cIEF Ampholyte 3— 10 (製品コード 477491) (商品 名) 2体積0 /0、ベックマンコールター社製の cIEFゲル(製品コード 477497) (商品名 ) 96体積0 /。、 Fluka社製の蛍光等電点マーカーセット(P/N17951 ; Fluorescen t IEF— Marker— Mix for CE and Gel Electrophoresis) (商 t¾名ノ 2体禾責 %を混合した溶液をサンプルとして用いた。 [0037] As the sample solution to be introduced, a mixture of carrier ampholite, a genome for imparting viscosity to the sample, and an isoelectric point marker that emits fluorescence when excited by ultraviolet springs was used. More specifically, Beck Beckman Coulter, Inc. of cIEF Ampholyte 3- 10 (product code 477491) (trade name) 2 volume 0/0, manufactured by Beckman Coulter, Inc. of cIEF gel (product code 477497) (trade name: ) 96 volume 0 /. Fluorescent isoelectric point marker set (P / N17951; Fluorescent IEF—Marker—Mix for CE and Gel Electrophoresis) (trade name: 2% of commercial products) was used as a sample.
[0038] 等電点分離の様子を蛍光観察するために、上記マイクロチップを、ツァイス社製蛍 光顕微鏡(商品名: AxioPlan 2 Imaging)に取り付けた XY電動ステージ上に設 置し、あらかじめマイクロチップ上に設けておいた位置合わせ用マークを用いて、 XY 方向のァライメントを行った。また蛍光顕微鏡には 2種類の蛍光フィルターをセットし、 それらを入れ替えて異なる波長に対する蛍光を観察できるようにした。その 1つはキヤ リアアンフォライトが発する蛍光を検出するためのものであり、 GFP観察用として販売 されている No. 09 [励起フィルター(BP450— 490)、ダイクロイツクミラー(FT510) 、 ノ リアフィルター(LP515) ]である(ツァイス社製の商品名)。もう 1つの蛍光フィルタ 一は蛍光等電点マーカーを観察するための物で、波長に合わせて 3枚を特に組み 合わせたフィルターセットであり、 [励起フィルター(330WB60)、ダイクロイツクミラー (400DCLP)、 ノ リアフィルター(400ALP) ] (オメガオプティカル社製の商品名)で ある。 [0038] In order to perform fluorescence observation of the isoelectric point separation, the microchip is placed on an XY electric stage attached to a fluorescence microscope (trade name: AxioPlan 2 Imaging) manufactured by Zeiss, and the microchip is preliminarily provided. Alignment in the XY direction was performed using the alignment mark provided above. In addition, two types of fluorescence filters were set in the fluorescence microscope, and they were exchanged so that fluorescence at different wavelengths could be observed. One of them is for detecting fluorescence emitted by carrier ampholite. No. 09 [Excitation filter (BP450-490), Dichroic mirror (FT510), Noria filter sold for GFP observation] (LP515)] (trade name made by Zeiss). The other fluorescent filter is for observing the fluorescent isoelectric point marker. It is a filter set that is a special combination of three in accordance with the wavelength. [Excitation filter (330WB60), Dichroic mirror (400DCLP), NORIA FILTER (400ALP)] (trade name manufactured by OMEGA OPTICAL).
[0039] 次にプラス側の液溜 150にはリン酸水溶液 (濃度: 0· 1M (濃度の単位の Mはモル /リットルを示す))、マイナス側の液溜 151には水酸化ナトリウム(濃度: 0· 02M)を 満たした。液溜 150、液溜 151中に電極(不図示)を配置し、これら分離用流路電極 間に直流電圧を印加した。具体的には、流路長約 60mmに対し、両端の液溜間に 直流電圧 3500Vを印加した。  [0039] Next, an aqueous solution of phosphoric acid (concentration: 0.1 M (concentration unit M represents mol / liter)) is added to the positive side reservoir 150, and sodium hydroxide (concentration) is added to the negative side reservoir 151. : 0 · 02M). Electrodes (not shown) were placed in the liquid reservoir 150 and the liquid reservoir 151, and a DC voltage was applied between the separation channel electrodes. Specifically, for a channel length of about 60 mm, a DC voltage of 3500 V was applied between the liquid reservoirs at both ends.
[0040] 通電開始から約 2分後に等電点分離が完了した。分離用流路 101内においては、 キャリアアンフォライトによる pH勾配が作成されるとともに、蛍光等電点マーカーセッ トの 5つの成分が、各々の等電点に収束バンドを形成した。この等電点分離が進む 様子は、 30秒ごとに通電を停止し、流路に沿って XY電動ステージを移動させること により、蛍光顕微鏡に取り付けた光電子増倍管 (PMT)が受光した蛍光量をプロット することで実施した。  [0040] Isoelectric point separation was completed about 2 minutes after the start of energization. In the separation channel 101, a pH gradient was created by carrier ampholite, and the five components of the fluorescent isoelectric point marker set formed a convergence band at each isoelectric point. The progress of this isoelectric point separation is as follows: the amount of fluorescence received by the photomultiplier tube (PMT) attached to the fluorescence microscope by stopping energization every 30 seconds and moving the XY motorized stage along the flow path. This was done by plotting.
[0041] まず、蛍光等電点マーカーの分離検出を行った。分離完了後に分離用流路 101に 沿って蛍光強度分布の測定を行い、各マーカー成分が示したピーク(各バンドの中 で最も蛍光の強い位置)と、流路端(マイナス側)からの距離をプロットしたものが図 2 である。このように 5つのマーカーはほぼ直線の検量線に乗る。したがって少なくとも p H4. 0〜9. 0の範囲では、流路中の位置を用いて対応する pHの値を逆算できること になる。 [0041] First, separation and detection of a fluorescent isoelectric point marker was performed. After the separation is completed, the fluorescence intensity distribution is measured along the separation channel 101, and the peak indicated by each marker component (in each band) Figure 2 is a plot of the distance from the end of the channel (minus side) and the position where the fluorescence is strongest. In this way, the five markers ride on an almost straight calibration curve. Therefore, at least in the range of pH 4.0 to 9.0, the corresponding pH value can be calculated backward using the position in the flow path.
[0042] 次に GFP用の蛍光フィルターに切り替えて分離用流路 101に沿った蛍光強度分 布を測定すると、キャリアアンフォライト由来の蛍光分布が観察される。  [0042] Next, when the fluorescence intensity distribution along the separation channel 101 is measured by switching to the GFP fluorescence filter, the fluorescence distribution derived from the carrier ampholite is observed.
[0043] ただし、前記蛍光マーカーの蛍光シグナルと干渉するため、複雑な蛍光強度バタ ーンを示す。そこで、蛍光等電点マーカーを入れないサンプルを調製して、蛍光強 度パターンの確認を行った。具体的にはベックマンコールター社製の cIEF Ampho lyte 3 - 10 (製品コード 477491) (商品名) 2体積0 /0、ベックマンコールター社製 の cIEFゲル (製品コード 477497) (商品名) 98体積%のみを混合した溶液をサンプ ノレとして用いた。このサンプルについて流路端(マイナス側)からの距離を横軸、蛍光 強度を縦軸にとった蛍光強度パターンを得た。そして流路端からの距離を図 2に示さ れる相関を用いて等電点(pH)に換算することによって横軸を等電点にした。この結 果を図 3に示す。各ピークが酸性側に寄った位置 (pH4. 3- 6. 2)にあることが判明 したため、等電点分離完了後も通電を継続し、各ピークが観察しやすい流路中央部 に来るまでドリフト現象を利用して、液をアルカリ側へ移動させてある。 [0043] However, since it interferes with the fluorescent signal of the fluorescent marker, a complex fluorescent intensity pattern is shown. Therefore, a sample without a fluorescent isoelectric point marker was prepared and the fluorescence intensity pattern was confirmed. Specifically, Beckman Coulter of cIEF Ampho lyte 3 - 10 (product code 477491) (trade name) 2 volume 0/0, Beckman Coulter of cIEF gel (product code 477497) (trade name) only 98 vol% The solution mixed with was used as a sample. For this sample, a fluorescence intensity pattern was obtained with the horizontal axis representing the distance from the channel end (minus side) and the vertical axis representing the fluorescence intensity. The distance from the channel end was converted to the isoelectric point (pH) using the correlation shown in FIG. Figure 3 shows the result. Since it was found that each peak was close to the acidic side (pH 4.3-6.2), energization was continued after isoelectric point separation was completed until each peak reached the center of the channel where it was easy to observe. Using the drift phenomenon, the liquid is moved to the alkali side.
[0044] また、前記蛍光マーカーを混合したサンプルを用いた実験において、ドリフト現象 によりアルカリ側へ液全体が平行移動して!/、く場合にあっても、 pH勾配の直線関係 が崩れなレ、ことを確認して!/、る。  [0044] Further, in the experiment using the sample mixed with the fluorescent marker, even if the entire liquid moves in parallel to the alkali side due to the drift phenomenon, the linear relationship of the pH gradient does not collapse. Make sure! /
[0045] 図 3に示すように 4つの特徴的なピークを観測でき、これらは再現性良く観測された 。酸性側の端に現れた、検量線を用いた外揷値で pH2. 3となるピークは、何に由来 するか明らかでなかったので、マーカーとして利用しなかった。よってこれら 4つのピ ークのうちの 3つである、 4. 3、 4. 6および 6. 2の 3ピークについては絶対的内部等 電点標準として利用できる。したがって少なくとも 4. 3〜6. 2の等電点範囲における 、等電点標準として用いることが可能であり、実用上はさらに広い範囲で利用可能で あると考えられる。  [0045] As shown in Fig. 3, four characteristic peaks were observed, and these were observed with good reproducibility. The peak that appeared at the acid side end and was pH 2.3 using the calibration curve was not clear, and was not used as a marker. Therefore, three of the four peaks, three peaks of 4.3, 4.6 and 6.2, can be used as absolute internal isoelectric point standards. Therefore, it can be used as an isoelectric point standard in an isoelectric point range of at least 4.3 to 6.2, and is considered to be usable in a wider range in practical use.
[0046] 実際にタンパク質サンプルを用いて実験を行った。タンパク質の分離位置を確認す るため、蛍光色素 Cy3 (GEヘルスケアバイオサイエンス株式会社製)で染色した物を 用いた。手順として、まず本タンパク質と蛍光マーカーを混合したサンプルを用い、 蛍光マーカーを指標としてタンパク質の等電点を確認した。次に本タンパク質のみを 用いたサンプルにより、キャリアアンフォライトの蛍光性によりその等電点を測定し、ほ ぼ一致する値が得られることを確認した。以下具体的に説明する。 [0046] Experiments were actually performed using protein samples. Check protein separation position For this reason, a product stained with the fluorescent dye Cy3 (GE Healthcare Biosciences) was used. As a procedure, first, a sample in which the present protein was mixed with a fluorescent marker was used, and the isoelectric point of the protein was confirmed using the fluorescent marker as an index. Next, with the sample using only this protein, its isoelectric point was measured by the fluorescence of the carrier ampholite, and it was confirmed that almost the same value was obtained. This will be specifically described below.
[0047] タンパク質としてトリプシンインヒビター(シグマアルドリッチ社製)を用意し、そのシス ティン残基を Cy3でラベルして用いた。 15mg/mlに溶解したタンパク質溶液 10〃 1 に対し、 2mM TCEP (リン酸トリス 2—クロロェチル)水溶液(インビトロジェン社製。 商品名: T— 2556)を 1 · 5 1, 30mM Tris— HCl (トリス一塩酸緩衝液)(ρΗ8· 0) (ナカライテスタ社製。商品名: 02435— 15)を 18· 5 1混合し、 37°Cで 1時間反応 した。続いて 2mM Cy3溶液 (溶媒: DMF (ジメチルホルムアミド))(関東化学社製。 商品名: 10344— 07)を 2 ^ 1混合し、 37°Cで 30分反応した。反応後透析により過剰 溶液を除去したものを、蛍光タンパク質とした。これを 1. 2mg/mlのタンパク質水溶 液として調製した。 [0047] A trypsin inhibitor (manufactured by Sigma-Aldrich) was prepared as a protein, and the cysteine residue was labeled with Cy3 and used. 1 · 5 1, 30 mM Tris—HCl (Tris-I) with 2 mM TCEP (Tris 2-chloroethyl phosphate) solution (Invitrogen, Inc., trade name: T—2556) per 10 mg protein solution dissolved in 15 mg / ml Hydrochloric acid buffer solution (ρΗ8 · 0) (manufactured by Nacalai Testa Co., Ltd., trade name: 02435-15) was mixed with 18 · 51 and reacted at 37 ° C for 1 hour. Subsequently, 2 mM Cy3 solution (solvent: DMF (dimethylformamide)) (manufactured by Kanto Chemical Co., Inc., trade name: 10344-07) was mixed with 2 ^ 1 and reacted at 37 ° C for 30 minutes. After removing the excess solution by dialysis after the reaction, a fluorescent protein was obtained. This was prepared as a 1.2 mg / ml protein aqueous solution.
[0048] まず、上記タンパク質と蛍光マーカーを混合したサンプル溶液として、 cIEF Amp holyte 3— 10 (製品コード 477491) (商品名) 2体積0 /0、ベックマンコールター社製 の cIEFゲノレ (製品コード 477497) (商品名) 94体積0 /0、 Fluka社製の蛍光等電点マ 一力一セット(P/N17951; Fluorescent IEF— Marker— Mix for CE and Gel Electrophoresis) (商品名) 2体積%、前記タンパク質水溶液 2体積%を混 合した溶液をサンプルとして用いた。等電点分離の様子を蛍光観察するために、前 述のマイクロチップを、ツァイス社製蛍光顕微鏡(商品名: AxioPlan 2 Imaging) に取り付けた XY電動ステージ上に設置し、あらかじめマイクロチップ上に設けてぉレ、 た位置合わせ用マークを用いて、 ΧΥ方向のァライメントを行った。また蛍光顕微鏡に は 2種類の蛍光フィルターをセットし、それらを入れ替えて異なる波長に対する蛍光を 観察できるようにした。その 1つは前記蛍光タンパク質が発する蛍光を検出するため のものであり、波長に合わせて 3枚を特に組み合わせたフィルターセットであり、 [励 起フィルター(ΒΡ525/45)、ダイクロイツクミラー (FT560)、ノ リアフィルター(ΒΡ5 95/60) ] (オメガオプティカル社製)である。もう 1つの蛍光フィルタ一は蛍光等電点 マーカーを観察するための物で、波長に合わせて 3枚を特に組み合わせたフィルタ 一セットであり、 [励起フィルター(330WB60)、ダイクロイツクミラー (400DCLP)、バ リアフィルター(400ALP) ] (オメガオプティカル社製の商品名)である。 [0048] First, as a sample solution obtained by mixing the protein and a fluorescent marker, cIEF Amp holyte 3- 10 (product codes 477491) (trade name) 2 volume 0/0, Beckman Coulter of cIEF Genore (product codes 477,497) (trade name) 94 volume 0/0, Fluka Corp. of fluorescent isoelectric point Ma one force a set (P / N17951; fluorescent IEF- Marker- Mix for CE and Gel Electrophoresis) ( trade name) 2% by volume, the protein A solution mixed with 2% by volume of an aqueous solution was used as a sample. In order to observe the state of isoelectric point separation by fluorescence, the above-mentioned microchip is installed on an XY motorized stage attached to a Zeiss fluorescence microscope (trade name: AxioPlan 2 Imaging), and installed on the microchip in advance. Alignment in the vertical direction was performed using the horizontal and vertical alignment marks. In addition, two types of fluorescence filters were set in the fluorescence microscope, and they were exchanged so that fluorescence at different wavelengths could be observed. One of them is to detect the fluorescence emitted by the fluorescent protein, and is a filter set that combines three in particular according to the wavelength. [Excitation filter (ΒΡ525 / 45), Dichroic mirror (FT560) , NORIA FILTER (ΒΡ5 95/60)] (Omega Optical Co., Ltd.). The other fluorescent filter is the fluorescent isoelectric point This is a set of filters that can be used to observe markers and is a combination of three filters according to the wavelength. [Excitation filter (330WB60), Dichroic mirror (400DCLP), Barrier filter (400ALP)] (Omega Optical Co., Ltd.) Product name).
[0049] プラス側の液溜 150にはリン酸水溶液 (濃度: 0· 1M)、マイナス側の液溜 151には 水酸化ナトリウム(濃度: 0. 02M)を満たした。液溜 150、液溜 151中に電極(不図示 )を配置し、これら分離用流路電極間に直流電圧を印加した。具体的には、流路長 約 60mmに対し、両端の液溜間に直流電圧 3500Vを印加した。通電開始から約 2 分後に等電点分離が完了した。分離用流路 101内においては、キャリアアンフォライ トによる pH勾配が作成されるとともに、蛍光等電点マーカーセットの 5つの成分が、 各々の等電点に収束バンドを形成した。さらに蛍光タンパク質がその等電点に収束 バンドを形成した。図 2と同様の結果を得て、 pH4. 0〜9. 0の範囲の検量線を作成 した。次に蛍光タンパク質用の蛍光フィルターに切り替えて分離用流路 101に沿った 蛍光強度分布を測定すると、トリプシンインヒビター由来の蛍光分布が観察される。こ のピーク位置から推定されるトリプシンインヒビターの等電点は 4. 6であった。  [0049] The positive side reservoir 150 was filled with an aqueous phosphoric acid solution (concentration: 0 · 1M), and the negative side reservoir 151 was filled with sodium hydroxide (concentration: 0.02M). Electrodes (not shown) were placed in the liquid reservoir 150 and the liquid reservoir 151, and a DC voltage was applied between the separation channel electrodes. Specifically, for a channel length of about 60 mm, a DC voltage of 3500 V was applied between the liquid reservoirs at both ends. Isoelectric point separation was completed about 2 minutes after the start of energization. In the separation channel 101, a pH gradient was created by carrier ampholite, and the five components of the fluorescent isoelectric point marker set formed a convergence band at each isoelectric point. Furthermore, the fluorescent protein formed a convergence band at its isoelectric point. The same results as in Fig. 2 were obtained, and a calibration curve in the range of pH 4.0 to 9.0 was created. Next, by switching to a fluorescent filter for fluorescent protein and measuring the fluorescence intensity distribution along the separation channel 101, the fluorescence distribution derived from trypsin inhibitor is observed. The isoelectric point of the trypsin inhibitor estimated from this peak position was 4.6.
[0050] 次に、前記タンパク質のみのサンプル溶液として、 cIEF Ampholyte 3— 10 (製 品コード 477491) (商品名) 2体積%、ベックマンコールター社製の cIEFゲル (製品 コード 477497) (商品名) 96体積%、前記タンパク質水溶液 2体積%を混合した溶 液をサンプルとして用いた。等電点分離の様子を蛍光観察するために、前述のマイ クロチップを、ツァイス社製蛍光顕微鏡(商品名: AxioPlan 2 Imaging)に取り付 けた XY電動ステージ上に設置し、あらかじめマイクロチップ上に設けてお!/、た位置 合わせ用マークを用いて、 XY方向のァライメントを行った。また蛍光顕微鏡には 2種 類の蛍光フィルターをセットし、それらを入れ替えて異なる波長に対する蛍光を観察 できるようにした。その 1つはキャリアアンフォライトが発する蛍光を検出するためのも のであり、 GFP観察用として販売されている No. 09 [励起フイノレター(BP450— 490 )、ダイクロイツクミラー(FT510)、 ノ リアフィルター(LP515) ]である(ツァイス社製の 商品名)。もう 1つの蛍光フィルタ一は [励起フィルター(BP525/45)、ダイクロイツク ミラー(FT560)、バリアフィルター (BP595/60) ] (オメガオプティカル社製の商品 名)である。 [0051] プラス側の液溜 150にはリン酸水溶液 (濃度: 0· 1M)、マイナス側の液溜 151には 水酸化ナトリウム(濃度: 0. 02Μ)を満たした。液溜 150、液溜 151中に電極(不図示 )を配置し、これら分離用流路電極間に直流電圧を印加した。具体的には、流路長 約 60mmに対し、両端の液溜間に直流電圧 3500Vを印加した。通電開始から約 2 分後に等電点分離が完了した。分離用流路 101内においては、キャリアアンフォライ トによる pH勾配が作成されるとともに、蛍光タンパク質がその等電点に収束バンドを 形成した。まず、キャリアアンフォライトの発する蛍光検出を行った。分離完了後に分 離用流路 101に沿って蛍光強度分布の測定を行い、図 3と同様の結果を得た。これ らのピークにより、 ρΗ4· 3〜6· 2の検量線を描くことが出来た。次に蛍光タンパク質 用の蛍光フィルターに切り替えて分離用流路 101に沿った蛍光強度分布を測定する と、トリプシンインヒビター由来の蛍光分布が観察された。この結果、トリプシンインヒビ ターの等電点を 4. 6と推定することが出来た。このこと力 、タンパク質サンプルにつ いても本手法が適用でき、ペプチドに対しても同様に適用可能である。 [0050] Next, cIEF Ampholyte 3-10 (product code 477491) (product name) 2% by volume, cIEF gel manufactured by Beckman Coulter (product code 477497) (product name) 96 A solution in which 2% by volume of the protein aqueous solution and 2% by volume of the protein aqueous solution were mixed was used as a sample. In order to observe the state of isoelectric point separation with fluorescence, the above-mentioned microchip is installed on an XY motorized stage attached to a Zeiss fluorescence microscope (trade name: AxioPlan 2 Imaging) and installed on the microchip in advance. Then, alignment was performed in the X and Y directions using the alignment mark. In addition, two types of fluorescence filters were set in the fluorescence microscope, and they were exchanged so that fluorescence at different wavelengths could be observed. One of them is for detecting the fluorescence emitted by the carrier ampholite. No. 09 [Excitation Phonoletter (BP450-490), Dichroic mirror (FT510), Noria filter (For GFP observation) LP515)] (trade name made by Zeiss). Another fluorescent filter is [Excitation filter (BP525 / 45), Dichroic mirror (FT560), Barrier filter (BP595 / 60)] (trade name, manufactured by OMEGA OPTICAL). [0051] The positive side reservoir 150 was filled with an aqueous phosphoric acid solution (concentration: 0.1 M), and the negative side reservoir 151 was filled with sodium hydroxide (concentration: 0.02 kg). Electrodes (not shown) were placed in the liquid reservoir 150 and the liquid reservoir 151, and a DC voltage was applied between the separation channel electrodes. Specifically, for a channel length of about 60 mm, a DC voltage of 3500 V was applied between the liquid reservoirs at both ends. Isoelectric point separation was completed about 2 minutes after the start of energization. In the separation channel 101, a pH gradient was created by carrier ampholite, and the fluorescent protein formed a convergence band at its isoelectric point. First, the fluorescence emitted by the carrier ampholite was detected. After the separation was completed, the fluorescence intensity distribution was measured along the separation channel 101, and the same results as in FIG. 3 were obtained. These peaks allowed us to draw a calibration curve from ρ の 4 · 3 to 6 · 2. Next, when the fluorescence intensity distribution along the separation channel 101 was measured by switching to a fluorescent filter for fluorescent protein, a fluorescence distribution derived from trypsin inhibitor was observed. As a result, the isoelectric point of the trypsin inhibitor was estimated to be 4.6. Because of this, this technique can be applied to protein samples and can be applied to peptides as well.
[0052] 以上説明したように、本発明によれば、相異なる既知の等電点を有する蛍光成分を 複数含有するキャリアアンフォライトを用い、この蛍光成分を等電点マーカーとして利 用することにより pH勾配を決定することができる。蛍光成分の化合物を特定する必要 はなレ、。分離場にぉレ、て pH勾配を形成した状態のキャリアアンフォライトにつ!/、て分 離場に沿った蛍光強度分布を測定した際に、複数の位置において蛍光ピークが観 察されるキャリアアンフォライトを用いればよい。これら複数の位置における等電点(ρ Η)を予め知っておく。  [0052] As described above, according to the present invention, by using a carrier ampholite containing a plurality of fluorescent components having different known isoelectric points, the fluorescent component is used as an isoelectric point marker. The pH gradient can be determined. It is not necessary to specify the compound of the fluorescent component. Carrier ampholite with a pH gradient formed in the separation field! / When a fluorescence intensity distribution is measured along the separation field, carriers whose fluorescence peaks are observed at multiple positions An ampholite may be used. Know the isoelectric points (ρ に お け る) at these multiple positions in advance.
[0053] キャリアアンフォライトの蛍光成分に由来する等電点を知るには、先に述べたように すればよい。つまり、別途用意した等電点マーカーとキャリアアンフォライトとを含む 試料を等電点分離し、分離場において等電点マーカーの収束位置から pH勾配を決 定し、この pH勾配からキャリアアンフォライトの蛍光成分に由来する等電点を知ること ができる。  [0053] In order to know the isoelectric point derived from the fluorescent component of the carrier ampholite, it may be as described above. In other words, a sample containing a separately prepared isoelectric point marker and carrier ampholite is subjected to isoelectric point separation, and the pH gradient is determined from the convergence position of the isoelectric point marker in the separation field. The isoelectric point derived from the fluorescent component can be known.
[0054] このようなキャリアアンフォライトを用いれば、実際に被解析物を等電点分離する際 においても、次のようにして pH勾配を決定することができる。すなわち、 pH勾配が形 成された分離場に沿って蛍光強度分布を測定し、キャリアアンフォライトの蛍光成分 に由来する蛍光強度分布のピークを与える位置と、その蛍光成分の既知の等電点と 力も分離場の或る位置における pHを知ることができる。キャリアアンフォライトが相異 なる既知の等電点を有する蛍光成分を複数含有すれば、分離場の複数の位置にお いて pHを知ることができる。よって分離場の pH勾配を決定することができる。この pH 勾配に基づいて、分離場における被解析物の集束位置の pHを求めれば、その pH が被解析物の等電点である。 [0054] When such a carrier ampholite is used, the pH gradient can be determined as follows even when actually isoelectrically separating the analyte. That is, the fluorescence intensity distribution is measured along the separation field where the pH gradient is formed, and the fluorescence component of the carrier ampholite is measured. It is also possible to know the pH at a certain position of the separation field, as well as the position that gives the peak of the fluorescence intensity distribution derived from, and the known isoelectric point and force of the fluorescent component. If a plurality of fluorescent components having known isoelectric points with different carrier ampholites are contained, the pH can be known at a plurality of positions in the separation field. Thus, the pH gradient of the separation field can be determined. If the pH at the focusing position of the analyte in the separation field is obtained based on this pH gradient, the pH is the isoelectric point of the analyte.
[0055] 従って、相異なる既知の等電点を有する蛍光成分を複数含有するキャリアアンフォ ライトを用いた等電点電気泳動法によって、キャリアアンフォライトとは別に等電点マ 一力一を用いずとも、分離場の pHを決定でき、さらにはタンパク質等の被解析物の 等電点を求めることができる。 [0055] Therefore, by using an isoelectric focusing method using a carrier ampholite containing a plurality of fluorescent components having different known isoelectric points, a single isoelectric point is used separately from the carrier ampholite. Without limitation, the pH of the separation field can be determined, and the isoelectric point of the analyte such as protein can be obtained.
産業上の利用可能性  Industrial applicability
[0056] 本発明の方法は、タンパク質やペプチドなどを等電点によって分離もしくは同定す る際に有用である。 [0056] The method of the present invention is useful for separating or identifying proteins, peptides, and the like by isoelectric points.
[0057] この出願 (ま、 2006年 12月 1曰 ίこ出願された曰本出願特願 2006— 325953を基 礎とする優先権を主張し、その開示の全てをここに取り込む。  [0057] This application (or claiming priority based on Japanese Patent Application No. 2006-325953 filed on December 1, 2006), the disclosure of which is incorporated herein in its entirety.

Claims

請求の範囲 The scope of the claims
[1] キャリアアンフォライトを含む等電点分離用分離場における pH勾配を決定する等 電点分離用分離場の pH勾配決定方法であって、  [1] A method for determining a pH gradient in a separation field for isoelectric point separation including a carrier ampholite, comprising:
相異なる既知の等電点を有する蛍光成分を複数含有するキャリアアンフォライトを用 い、該蛍光成分を等電点マーカーとして利用することにより pH勾配を決定する 等電点分離用分離場の pH勾配決定方法。  Determine the pH gradient by using carrier ampholite containing multiple fluorescent components with different known isoelectric points and using the fluorescent component as an isoelectric point marker pH gradient of separation field for isoelectric point separation Decision method.
[2] キャリアアンフォライトを含む等電点分離用分離場における pH勾配を決定する等 電点分離用分離場の pH勾配決定方法であって、 [2] A method for determining a pH gradient in a separation field for isoelectric point separation including carrier ampholite, comprising:
相異なる既知の等電点を有する蛍光成分を複数含有するキャリアアンフォライトを用 い、該分離場に沿って蛍光強度分布を測定する工程;および、  Measuring the fluorescence intensity distribution along the separation field using a carrier ampholite containing a plurality of fluorescent components having different known isoelectric points; and
該蛍光強度分布のピークを与える位置と、該既知の等電点とから、該分離場におけ る pH勾配を決定する工程  A step of determining a pH gradient in the separation field from the position giving the peak of the fluorescence intensity distribution and the known isoelectric point.
を有する等電点分離用分離場の pH勾配決定方法。  PH gradient determination method for separation field for isoelectric point separation.
[3] 前記分離場がキヤビラリ一である請求項 1または 2記載の方法。 [3] The method according to [1] or [2], wherein the separation field is one of the two.
[4] 相異なる既知の等電点を有する蛍光成分を複数含有するキャリアアンフォライトと、 被解析物とを含む試料を、分離場において等電点分離する工程; [4] isoelectric point separation in a separation field of a sample containing a carrier ampholite containing a plurality of fluorescent components having different known isoelectric points and an analyte;
該分離場に沿って蛍光強度分布を測定する工程;  Measuring the fluorescence intensity distribution along the separation field;
該蛍光強度分布のピークを与える位置と、該既知の等電点とから、該分離場におけ る pH勾配を決定する工程;および  Determining a pH gradient in the separation field from the position giving the peak of the fluorescence intensity distribution and the known isoelectric point; and
該 pH勾配を用いて被解析物の等電点を求める工程  A step of obtaining an isoelectric point of the analyte using the pH gradient
を有する等電分離方法。  An isoelectric separation method comprising:
[5] 前記被解析物がタンパク質もしくはペプチドである請求項 4記載の等電点分離方法 5. The isoelectric point separation method according to claim 4, wherein the analyte is a protein or a peptide.
[6] 前記蛍光強度分布を測定する工程において、 400nm以上 780nm以下の波長帯 の蛍光強度を測定する請求項 4または 5記載の等電点分離方法。 6. The isoelectric point separation method according to claim 4 or 5, wherein in the step of measuring the fluorescence intensity distribution, the fluorescence intensity in a wavelength band of 400 nm or more and 780 nm or less is measured.
PCT/JP2007/072739 2006-12-01 2007-11-26 Method of isoelectric point separation and method of determining hydrogen ion concentration gradient in the separation field WO2008065986A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006325953A JP2008139168A (en) 2006-12-01 2006-12-01 Isoelectric point separation method, and determination method of hydrogen ion concentration gradient in separation field
JP2006-325953 2006-12-01

Publications (1)

Publication Number Publication Date
WO2008065986A1 true WO2008065986A1 (en) 2008-06-05

Family

ID=39467777

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072739 WO2008065986A1 (en) 2006-12-01 2007-11-26 Method of isoelectric point separation and method of determining hydrogen ion concentration gradient in the separation field

Country Status (2)

Country Link
JP (1) JP2008139168A (en)
WO (1) WO2008065986A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7014752B2 (en) * 2019-06-03 2022-02-01 矢崎総業株式会社 Heat storage material composition and heat storage system for heating and cooling of buildings

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0949822A (en) * 1995-05-29 1997-02-18 Horiba Ltd Method for calibrating optical scanning type two-dimensional ph distribution measuring instrument
JPH09171020A (en) * 1995-03-31 1997-06-30 Bunshi Bio Photonics Kenkyusho:Kk Electrophoretic marker for fluorescence detecting isoelectric point
JPH10197481A (en) * 1996-11-14 1998-07-31 Bunshi Bio Photonics Kenkyusho:Kk Electrophoretic marker for fluorescence detecting isoelectric point
JPH1123531A (en) * 1997-07-03 1999-01-29 Bunshi Bio Photonics Kenkyusho:Kk Ultraviolet ray absorption detecting isoelectric point electrophoretic marker
JP2000329740A (en) * 1999-05-21 2000-11-30 Bunshi Biophotonics Kenkyusho:Kk Marker for fluorescence detection isoelectric point electrophoresis
JP2004150899A (en) * 2002-10-29 2004-05-27 Japan Science & Technology Agency Two-dimensional electrophoresis
JP2004294334A (en) * 2003-03-27 2004-10-21 Olympus Corp Free-flow electrophoretic element, and free-flow electrophoretic method
WO2005124332A1 (en) * 2004-06-15 2005-12-29 Nec Corporation Electrophoretic chip, electrophoretic device and electrophoresis method
JP2006184211A (en) * 2004-12-28 2006-07-13 Hamamatsu Photonics Kk Method and apparatus for manufacturing electrophoresis chip

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09171020A (en) * 1995-03-31 1997-06-30 Bunshi Bio Photonics Kenkyusho:Kk Electrophoretic marker for fluorescence detecting isoelectric point
JPH0949822A (en) * 1995-05-29 1997-02-18 Horiba Ltd Method for calibrating optical scanning type two-dimensional ph distribution measuring instrument
JPH10197481A (en) * 1996-11-14 1998-07-31 Bunshi Bio Photonics Kenkyusho:Kk Electrophoretic marker for fluorescence detecting isoelectric point
JPH1123531A (en) * 1997-07-03 1999-01-29 Bunshi Bio Photonics Kenkyusho:Kk Ultraviolet ray absorption detecting isoelectric point electrophoretic marker
JP2000329740A (en) * 1999-05-21 2000-11-30 Bunshi Biophotonics Kenkyusho:Kk Marker for fluorescence detection isoelectric point electrophoresis
JP2004150899A (en) * 2002-10-29 2004-05-27 Japan Science & Technology Agency Two-dimensional electrophoresis
JP2004294334A (en) * 2003-03-27 2004-10-21 Olympus Corp Free-flow electrophoretic element, and free-flow electrophoretic method
WO2005124332A1 (en) * 2004-06-15 2005-12-29 Nec Corporation Electrophoretic chip, electrophoretic device and electrophoresis method
JP2006184211A (en) * 2004-12-28 2006-07-13 Hamamatsu Photonics Kk Method and apparatus for manufacturing electrophoresis chip

Also Published As

Publication number Publication date
JP2008139168A (en) 2008-06-19

Similar Documents

Publication Publication Date Title
US20230213478A1 (en) Devices and methods for sample characterization
Jin et al. A microchip-based proteolytic digestion system driven by electroosmotic pumping
US7846676B2 (en) Methods and devices for analyte detection
US7935479B2 (en) Methods and devices for analyte detection
US20070062813A1 (en) Electrophoresis standards, methods and kits
EP2646832B1 (en) Protein renaturation microfluidic devices and methods of making and using the same
US7638024B2 (en) Capillary electrophoresis method
EP2312308A1 (en) Apparatus and method for analysis by capillary electrophoretic method
CA2595840A1 (en) Electrokinetic concentration device and methods of use thereof
WO2012177940A2 (en) Microfluidic devices and methods for separating and detecting constituents in a fluid sample
US20090023156A1 (en) Methods and reagents for quantifying analytes
CA3089842A1 (en) Devices, methods and kits for sample characterization
US20230417701A1 (en) Ce-western applications for antibody development
Chang et al. Stacking, derivatization, and separation by capillary electrophoresis of amino acids from cerebrospinal fluids
Khurana et al. Effects of carbon dioxide on peak mode isotachophoresis: Simultaneous preconcentration and separation
US9671368B2 (en) Two-dimensional microfluidic devices and methods of using the same
JP2007198845A (en) Capillary electrophoretic apparatus and capillary electrophoretic method
WO2008065986A1 (en) Method of isoelectric point separation and method of determining hydrogen ion concentration gradient in the separation field
US20060231400A1 (en) Electrophoretic apparatus and electrophoretic method
JP5057377B2 (en) Method and apparatus for measuring biological components or their functions
CN100427944C (en) Ngatively pressurized sampling three-dimensional chip capillary array electrophoresis system
Tolba et al. Fast quantitative determination of diuretic drugs in tablets and human urine by microchip electrophoresis with native fluorescence detection
JP2010185703A (en) Sample analysis method
CN101393202A (en) Evanescent wave optical fiber biosensor and use thereof
US10393701B2 (en) Microfluidic methods of assaying molecule switching and devices for practicing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07832464

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07832464

Country of ref document: EP

Kind code of ref document: A1