WO2008065901A1 - Radio communication system, radio communication device, and radio communication method - Google Patents

Radio communication system, radio communication device, and radio communication method Download PDF

Info

Publication number
WO2008065901A1
WO2008065901A1 PCT/JP2007/072202 JP2007072202W WO2008065901A1 WO 2008065901 A1 WO2008065901 A1 WO 2008065901A1 JP 2007072202 W JP2007072202 W JP 2007072202W WO 2008065901 A1 WO2008065901 A1 WO 2008065901A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
environment
distance
communication environment
window function
Prior art date
Application number
PCT/JP2007/072202
Other languages
French (fr)
Japanese (ja)
Inventor
Takeshi Nakano
Mitsuharu Senda
Original Assignee
Kyocera Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006321533A external-priority patent/JP2008136055A/en
Priority claimed from JP2007018098A external-priority patent/JP2008141715A/en
Application filed by Kyocera Corporation filed Critical Kyocera Corporation
Publication of WO2008065901A1 publication Critical patent/WO2008065901A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements

Definitions

  • Wireless communication system Wireless communication apparatus, and wireless communication method
  • the present invention relates to a wireless communication system, a wireless communication apparatus, and a wireless communication method.
  • a wireless communication system that performs packet communication by adopting TOFDMA (Orthogonal Frequency Division Multiple Access) in addition to TDMA (Time Division Multiple Access) / TDD (Time Division Duplex) as a multiple access technology suspension is the next generation. It is attracting attention as a broadband mobile communication system.
  • OFDMA Orthogonal subcarriers are shared by a plurality of terminals, and a plurality of arbitrary subcarriers are positioned as subchannels.
  • multiple access is realized by adaptively allocating subchannels to each terminal at any communication timing (in a system employing TDMA, this communication timing is equivalent to a slot).
  • FIG. 10A is a schematic diagram of an OFDM signal.
  • each symbol is composed of a GI (Guard Interval) portion and a data portion, and discontinuities occur between the symbols.
  • this data is referred to as window function target data
  • This window function target data must be data that has continuity at discontinuities.
  • the discontinuity seen from symbol 1 is the data Part 2 is the second half of Dl. In the latter half, the original data of the GI part gl exists. Therefore, as shown in FIG.
  • the window function target data having continuity at the discontinuity point as seen from symbol 1 is data immediately after the GI part gl, that is, data at the head part of the data part D1.
  • Data at the beginning of this data part D1 is extracted as the window function target data dl of symbol 1.
  • a predetermined window function is applied to the window function target data dl and added to the end of the data part D1.
  • the window function target data dl after the window function is applied is the extended data dl '.
  • the discontinuity point seen from symbol 2 corresponds to the head part of GI part g2, and the window function target data having continuity with respect to this head part is shown in data part D2 as shown in FIG. 10C.
  • This is the data immediately before the original data of GI part g2.
  • This data is extracted as the window function target data d2 of symbol 2, applied with a predetermined window function, and added to the head of the GI part g2.
  • the window function target data d2 after the window function is applied is defined as extended data d2 ′. The above processing is performed for each symbol.
  • FIG. 11A shows the case where symbol 1 and symbol 2 described above are arranged in series according to the method defined in the IEEE802.11g standard. In this method, the extension data dl ′ of symbol 1 overlaps with the GI part g2 of symbol 2, and the extension data d2 ′ of symbol 2 overlaps with the data part D1 of symbol 1.
  • FIG. 11B shows a case where the above-described symbol 1 and symbol 2 are arranged in series by the method defined in the IEEE802.20 standard. In this method, the extension data d1 'of symbol 1 and the extension data d2' of symbol 2 overlap. The extension data does not overlap the data part D1 or GI part g2.
  • the discontinuity at the discontinuity point is alleviated, and the side lobe in the band can be reduced.
  • Symbol 2 expansion data d2 ' Has a problem that the SNR (Signal to Noise Ratio) decreases.
  • the SNR does not decrease, but the symbol time increases, so the data rate increases. There was a problem of lowering.
  • the guard interval period is set longer with a margin, the symbol length becomes longer even after synchronization is established between the base station and the wireless communication terminal, and the data rate cannot be improved. .
  • Patent Document 1 Japanese Translation of Special Publication 2003-535502
  • the present invention has been made in view of the above-described circumstances, and an object of the present invention is to reduce side lobes in a band without reducing the SNR and data rate when performing communication using OFDM. To do.
  • the present invention has the following aspects, for example.
  • a first aspect is a wireless communication system that performs communication using OFDM (Orthogonal Frequency Division Multiplexing), and grasps the communication environment with the receiving side after establishing synchronization with the receiving side.
  • a reduction area determination unit that determines a reduction area in the guard interval according to the unit and the communication environment, and for each symbol, a predetermined window function is applied to the reduction area of the guard interval and a guard interval is applied.
  • a window function processing unit that adds extended data obtained by applying a predetermined window function to data extracted from a part of the immediately following data area, and a symbol processed by the window function processing unit.
  • a symbol placement unit that places each other in series so that the beginning of the symbol does not overlap the data area of an adjacent symbol. It is obtain a wireless communication system.
  • a second aspect is the above-described wireless communication system, further comprising a storage unit that stores in advance a correspondence between a distance between a transmission side and a reception side and the reducible region, and The communication environment grasping unit grasps the distance between the transmission side and the receiving side as the communication environment, and the reducible area determination unit comprises the distance grasped by the communication environment grasping unit, the storage unit The wireless communication system determines a reducible area corresponding to the distance based on the correspondence relationship stored in! /.
  • a third aspect is the wireless communication system described above, wherein the storage unit stores the correspondence relationship according to a line-of-sight environment with respect to the receiving side, and the communication environment grasping unit is configured as the communication environment.
  • the distance between the transmitting side and the receiving side and the line-of-sight environment are grasped, and the reducible area determination unit is stored in the storage unit and the distance and line-of-sight environment grasped by the communication environment grasping unit.
  • the wireless communication system determines a reducible area corresponding to the distance and the line-of-sight environment based on the correspondence relationship according to the line-of-sight environment.
  • a fourth aspect is a wireless communication apparatus that performs communication using OFDM, and after establishing synchronization with the receiving side, a communication environment grasping unit that grasps a communication environment with the receiving side, and the communication
  • a wireless communication device comprising: a reducible area determination unit that determines a reducible area in a guard interval according to a communication environment.
  • a fifth aspect is the above-described wireless communication apparatus, in which for each symbol, a predetermined window function is applied to the area where the guard interval can be reduced and extracted from a part of the data area immediately after the guard interval.
  • a window function processing unit for adding extended data obtained by applying a predetermined window function to the processed data at the end of the data area, and symbols processed by the window function processing unit are Is a radio communication apparatus further comprising a symbol arrangement unit arranged in series so as not to overlap the data area of adjacent symbols.
  • a sixth aspect is the wireless communication apparatus, further comprising a storage unit that stores in advance a correspondence relationship between a distance between the own apparatus and the receiving side and the reducible area,
  • the environment grasping unit grasps the distance between the own device and the receiving side as the communication environment, and the reducible area determining unit grasps the distance grasped by the communication environment grasping unit and the memory
  • the wireless communication apparatus determines a reducible area corresponding to the distance based on the correspondence relationship stored in the unit.
  • a seventh aspect is the wireless communication apparatus, wherein the storage unit stores the correspondence relationship according to a line-of-sight environment with respect to the receiving side, and the communication environment grasping unit includes the communication As the environment, the distance between the own device and the receiving side and the visibility environment are grasped, and the reducible area determination unit is grasped by the communication environment grasping unit. Based on the distance and line-of-sight environment and the correspondence relationship stored in the storage unit according to the line-of-sight environment! /, The reduction possible area corresponding to the distance and line-of-sight environment is determined. , A wireless communication device.
  • An eighth aspect is a wireless communication method that performs communication using OFDM, and grasps a communication environment between the transmission side and the reception side after establishing synchronization between the transmission side and the reception side
  • a wireless communication method comprising: a communication environment grasping step; and a reducible area determining step for determining a reducible area in a guard interval according to the communication environment.
  • a ninth aspect is the above wireless communication method, further comprising a storage step of previously storing a correspondence relationship between a distance between a transmission side and a reception side and the reduction possible region,
  • the boundary grasping step grasps the distance between the transmission side and the receiving side as the communication environment, and the reducible area determination step comprises the distance grasped in the communication environment grasping step, and the storage step
  • the wireless communication method determines a reducible area corresponding to the distance based on the correspondence relationship stored in! /.
  • a tenth aspect is the wireless communication method, wherein the storing step stores the correspondence relationship according to a line-of-sight environment between the transmission side and the reception side, and determines the communication environment.
  • the distance between the transmitting side and the receiving side and the line-of-sight environment are grasped as the communication environment, and the reducible area determination step is performed in the communication environment grasping step!
  • a wireless communication method for determining a reducible area corresponding to the distance and line-of-sight environment based on the grasped distance and line-of-sight environment and the correspondence relationship corresponding to the line-of-sight environment stored in the storing step. is there.
  • An eleventh aspect is the wireless communication method described above, in which a predetermined window function is applied to the area where the guard interval can be reduced for each symbol, and extracted from a part of the data area immediately after the guard interval.
  • the leading power of the symbol is a wireless communication method that is arranged in series so as not to overlap the data area of the adjacent symbol.
  • FIG. 1 is a schematic configuration diagram of a wireless communication system in an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a relationship among frequencies, slots, and subchannels of a wireless communication system in an embodiment of the present invention.
  • FIG. 3 is a configuration block diagram of a wireless communication terminal (terminal) PS in an embodiment of the present invention.
  • FIG. 4A is a first explanatory diagram showing a correspondence relationship between a Gr reduction possible area and a distance between a terminal PS and a base station CS in an embodiment of the present invention.
  • FIG. 4B is a first explanatory diagram showing a correspondence relationship between a Gr reduction possible area and a distance between the terminal PS and the base station CS in an embodiment of the present invention.
  • FIG. 5A is a second explanatory diagram showing a correspondence relationship between the Gr reduction possible area and the distance between the terminal PS and the base station CS in one embodiment of the present invention.
  • FIG. 5B is a second explanatory diagram showing a correspondence relationship between the Gr reduction possible area and the distance between the terminal PS and the base station CS in one embodiment of the present invention.
  • FIG. 6 is a detailed explanatory diagram of the wireless communication unit 2 in one embodiment of the present invention.
  • FIG. 7 is an operation flow chart of a wireless communication terminal (terminal) PS according to an embodiment of the present invention.
  • FIG. 8 is a first explanatory diagram showing an ECP process in one embodiment of the present invention.
  • FIG. 9 is a second explanatory diagram showing an ECP process in one embodiment of the present invention.
  • FIG. 1 OA is an explanatory diagram showing a conventional ECP process.
  • FIG. 10B is an explanatory view showing a conventional ECP process.
  • FIG. 10B is an explanatory view showing a conventional ECP process.
  • FIG. 11A is an explanatory view showing conventional ECP processing.
  • FIG. 11B is an explanatory diagram showing a conventional ECP process.
  • the wireless communication system of this embodiment includes a base station CS, a wireless communication terminal (hereinafter abbreviated as a terminal) PS, and a network (not shown).
  • Base station CS and terminal PS are time-division multiplex connections Communication is performed using orthogonal frequency division multiple access (OFDMA) as a multiple access technique in addition to system (TDMA) and time division duplex (TDD).
  • OFDMA orthogonal frequency division multiple access
  • TDMA system
  • TDD time division duplex
  • a plurality of base stations CS are provided at regular distance intervals, and multiple connections are made with a plurality of terminals PS to perform wireless communication.
  • the terminal PS and the base station CS have the same configuration in the present embodiment in the force characteristic portion corresponding to the wireless communication device. For this reason, the following explanation will be given using the terminal PS as a representative.
  • the OFDMA scheme is that all subcarriers in an orthogonal relationship are shared by all terminal PSs, and a set of arbitrary subcarriers is positioned as one group, one for each terminal PS.
  • the TDMA method and the TDD method are further combined with the OFDMA method described above.
  • each group is divided into an uplink and a downlink in the time axis direction as a TDD, and these uplink and downlink are each divided into four TDMA slots.
  • FIG. 2 shows the relationship among frequency, TDMA slot, and subchannel in the wireless communication system of this embodiment.
  • the vertical axis represents frequency and the horizontal axis represents time.
  • 112 subchannels which are multiplied by 28 in the frequency direction and 4 in the time axis direction (4 slots), are allocated for uplink and downlink, respectively.
  • the most subchannel in the frequency direction (number 1 in FIG. 2) is used as a control channel (CCH) among all subchannels.
  • the remaining subchannel is used as a traffic channel (TCH).
  • this traffic channel is called a traffic subchannel.
  • the base station CS and the terminal PS that perform radio communication can be arbitrarily selected from all traffic subchannels belonging to the uplink and downlink (in this case, 108 subchannels of 27 X 4 slots excluding CCH).
  • One or more traffic subchannels are assigned.
  • the same traffic channel is assigned to the traffic subchannel for uplink and downlink as communication channels.
  • the terminal PS controls the terminal A unit 1, a wireless communication unit 2, an operation unit 3, a display unit 4, a voice input / output unit 5 and a storage unit (storage means) 6 are provided. Further, the terminal control unit 1 includes a communication environment grasping unit (communication environment grasping unit) la and a GI reducible region determining unit (reducible region determining unit) lb as functional elements.
  • a communication environment grasping unit communication environment grasping unit
  • a GI reducible region determining unit resistible region determining unit
  • the terminal control unit 1 Control the overall operation.
  • the communication environment grasping unit la of the terminal control unit 1 is based on the received signal acquired from the base station CS via the wireless communication unit 2! /, Based on the distance between the terminal PS and the base station CS and the line-of-sight environment. To figure out. Specifically, the communication environment grasping unit la grasps whether the prospect environment is an environment that is within the prospect or an environment that is not the prospect.
  • the communication environment grasping unit la grasps the distance between the terminal PS and the base station CS based on the synchronization timing.
  • the base station CS uses the power of the response frame from the terminal PS to the frame sent to the synchronized terminal PS that is the other party of communication (how long the deviation time is based on the time axis). calculate.
  • the base station CS instructs the terminal PS in advance to transmit at a timing that allows for the time difference.
  • the line-of-sight environment is an environment in which there are few occurrences of multipaths between the terminal PS and the base station CS in the communication area.
  • the Gr reduction possible area becomes smaller in inverse proportion to the distance between the terminal PS and the base station CS. This is because the delay time increases as the terminal PS is located at a longer distance from the base station CS.
  • the unforeseen environment is an environment where multiple paths occur frequently because there are obstacles between the terminal PS and the base station CS in the communication area, as shown in Fig. 5A.
  • the delayed wave power may be larger than in the out-of-sight environment, and as shown in FIG. 5B, an exponential function is used for the distance between the terminal PS and the base station CS. Therefore, the area where Gr can be reduced becomes smaller.
  • whether or not the force is a line-of-sight environment and an environment that is not a line-of-sight environment is determined as follows. If the received signal level of the delayed wave arriving after the direct wave arriving at the base station CS from the terminal PS is lower than that of the direct wave, the line-of-sight environment is determined. In addition, it is judged that the environment is out of sight when there are delay waves with more delay waves than a certain number and a signal level higher than that of the direct waves.
  • Gr reduction information the correspondence between the distance between the terminal PS and the base station CS in the sight-line environment and the non-line-of-sight environment and the Gr reduction possible area.
  • Gr reduction information may be stored as table-like data or as a function.
  • the Gr reducible area determination unit lb includes the distance between the terminal PS and the base station CS, which is grasped by the communication environment grasping unit la, the line-of-sight environment, and the Gr reduction information stored in the storage unit 6. Based on the above, the Gr reduction possible area corresponding to the distance between the terminal PS and the base station CS and the line-of-sight environment is determined.
  • the terminal control unit 1 outputs the Gr reducible region determined by the Gr reducible region determining unit lb and the ECP processing start request to the ECP processing unit 16 described later.
  • the radio communication unit 2 Under the control of the terminal control unit 1, the radio communication unit 2 performs error correction coding, modulation, and multiplexing by OFDM on the control signal or data signal output from the terminal control unit 1 to multiplex Get the digitized signal (OFDM signal). Further, the radio communication unit 2 frequency-converts the multiplexed signal into the RF frequency band, and transmits it to the base station CS as a transmission signal.
  • the transmitter side of the wireless communication unit 2 includes an error correction coding unit 10, an interleaver 11, a serial / parallel conversion unit 12, a digital modulation unit 13, an IF FT (Inverse Fast Fourier Transform) unit 14, GI (Guard Interval) attached calorie unit 15, ECP (Ext ended Cyclic Prefix) processing unit 16, and transmission unit 17.
  • error correction coding unit 10 an interleaver 11
  • serial / parallel conversion unit 12 a digital modulation unit 13
  • GI Guard Interval
  • ECP Ext ended Cyclic Prefix
  • the error correction encoding unit 10 is, for example, a FEC (Forward Error Correction) encoder.
  • the error correction coding unit 10 adds an error correction code, which is redundant information, to the bit string of the control signal or data signal input from the terminal control unit 1 based on the coding rate specified by the terminal control unit 1. , Output to interleaver 11.
  • the interleaver 11 performs an interleaving process on the bit string to which the error correction code is added by the error correction coding unit 10.
  • the serial / parallel conversion unit 12 converts the bit string after the interleaving process into the terminal control unit.
  • Each subcarrier included in the subchannel indicated in 1 is divided in bit units and output to each digital modulation section 13.
  • the digital modulation unit 13 digitally modulates the bit data divided for each subcarrier using the subcarrier corresponding to the bit data, and outputs the modulated signal to the IFFT unit 14.
  • Each digital modulation unit 13 is a modulation method instructed by the terminal control unit 1, for example, BPSK (Binary Phase Shift Keying), QPSK (Quadrature Phase Shift Keying), 16Q AM (Quadrature Amplitude Modulation), Digital modulation is performed using 64QAM.
  • the IFFT unit 14 generates an OFDM signal by performing inverse Fourier transform on the modulated signal input from each digital modulation unit 13 and performing orthogonal multiplexing, and outputs the OFDM signal to the GI adding unit 15.
  • the GI adding unit 15 adds a guard interval (GI) to the OFDM signal input from the IFFT unit 14 and outputs it to the ECP processing unit 16.
  • GI guard interval
  • the ECP processing unit 16 includes a window function processing unit 16a and a symbol arrangement unit 16b.
  • the ECP processing unit 16 starts the ECP processing in response to an ECP processing start request input from the terminal control unit 1.
  • the ECP processing unit 16 outputs the OFDM signal after GI addition to the transmitting unit 17 without processing.
  • the window function processing unit 16a Based on the Gr reducible region input from the terminal control unit 1, the window function processing unit 16a applies a predetermined window function to the Gr reducible region for each symbol included in the OFDM signal after GI addition.
  • the window function processing unit 16a adds the extended data obtained by applying a predetermined window function to the window function target data extracted from the head part of the data part immediately after the GI, at the end of the data part.
  • the symbol arrangement unit 16b arranges the symbols processed by the window function processing unit 16a in series so as not to overlap the symbol leading force s and the data portion of the adjacent symbol, and outputs them to the transmission unit 17.
  • the transmission unit 17 converts the frequency of the OFDM signal input from the symbol arrangement unit 16b into an RF frequency band, and transmits it to the base station CS as a transmission signal.
  • the receiver side of the wireless communication unit 2 includes components that perform the reverse operation of the transmitter side. That is, the receiver side of the radio communication unit 2 extracts the received OFDM signal by frequency-converting the received signal received from the base station CS to the IF frequency band. Further, the receiver side of the wireless communication unit 2 applies the window function to the received OFDM signal and the GI. Remove. After that, the receiver side of the wireless communication unit 2 reconstructs the bit string by performing FFT processing, digital demodulation, parallel serial conversion processing, dintariba processing, and error correction decoding processing on the received OFDM signal. Output to control unit 1.
  • the operation unit 3 is composed of operation keys such as a power key, various function keys, and a keypad.
  • the operation unit 3 outputs an operation signal based on operation inputs from these operation keys to the terminal control unit 1.
  • the display unit 4 is, for example, a liquid crystal monitor or an organic EL monitor, and displays predetermined images and characters based on display signals input from the terminal control unit 1.
  • the voice input / output unit 5 includes a microphone and a speaker.
  • the voice input / output unit 5 converts voice input from the outside through the microphone into a digital signal and outputs the digital signal to the terminal control unit 1.
  • the audio input / output unit 5 outputs the audio data input from the terminal control unit 1 to the outside through a speaker.
  • the storage unit 6 stores various data such as a terminal control program and GI reduction information used by the terminal control unit 1 and has a function as a buffer used for retransmission control and the like.
  • terminal PS configured as described above will be described using the flowchart of FIG.
  • terminal control unit 1 receives an operation signal instructing data transmission from operation unit 3.
  • the terminal control unit 1 controls the radio communication unit 2 to search for a control channel (CCH) transmitted from the base station CS.
  • the terminal control unit 1 performs a process of establishing a communication connection with the base station CS that has successfully acquired and transmitted the control channel with the best reception state.
  • the terminal control unit 1 requests the base station CS to allocate a link channel (traffic subchannel) via the control channel, and the base station CS and the base station CS are based on the synchronization information included in the control channel.
  • Establish synchronization step Sl).
  • the communication environment grasping unit la establishes a communication between the terminal PS and the base station CS based on the received signal acquired from the base station CS via the wireless communication unit 2.
  • the distance and the prospect environment are ascertained (step S2).
  • the communication environment grasping unit la synchronizes the distance between the terminal PS and the base station CS. Get based on ming. Then, the communication environment grasping unit la determines that it is a line-of-sight environment when the received signal level of the delayed wave that arrives after the direct wave that reaches the base station CS from the terminal PS is lower than the direct wave. In addition, the communication environment grasping unit la determines that the environment is an out-of-look environment when there are delay waves that have more than a predetermined number of delay waves and a signal level higher than that of the direct waves.
  • the Gr reducible area determination unit lb determines the distance between the terminal PS and the base station CS, which is grasped by the communication environment grasping unit la, the line-of-sight environment, and the Gr stored in the storage unit 6. Based on the reduction information, the Gr reduction possible area corresponding to the distance between the terminal PS and the base station CS and the line-of-sight environment is determined (step S3). Specifically, for example, when the outlook environment grasped by the communication environment grasping unit la is an unforeseen environment, the Gr reducible area determination unit lb displays the Gr reducible area shown in FIG. The Gr reduction possible area is determined based on the correspondence with the distance to the station CS.
  • terminal control section 1 outputs a bit string of a data signal to be transmitted to base station CS to error correction coding section 10. Further, the terminal control unit 1 outputs an ECP processing start request and a signal indicating the Gr reducible region determined by the Gr reducible region determining unit lb to the ECP processing unit 16.
  • the bit string of the data signal is converted into an OFDM signal to which GI is added through an error correction coding unit 10, an interleaver 11, a serial-parallel conversion unit 12, a digital modulation unit 13, an IFFT unit 14, and a GI addition unit 15.
  • the OFD M signal is input to the window function processing unit 16a of the ECP processing unit 16.
  • an ECP process start request and a signal indicating a Gr reduction possible area are input from the terminal control unit 1 to the window function processing unit 16a. Therefore, the window function processing unit 16a starts ECP processing on the OFDM signal input from the GI adding unit 15 (step S4).
  • the OFDM signal input from the GI adding unit 15 can be shown in FIG. Fig. 8 shows symbol 1 extracted from the OFDM signal shown in Fig. 10A.
  • the window function processing unit 16a applies a predetermined window function (for example, a trigonometric function) to the Gr reducible region rl in the GI unit gl of the symbol 1.
  • the window function processing unit 16a starts from the head of the data part D1 immediately after the GI part gl.
  • the extended data r2 ′ obtained by applying a predetermined window function to the extracted window function target data r2 is added to the end of the data part D1.
  • data rl ′ obtained by applying a window function to the Gr reducible area rl is added to the beginning of symbol 1.
  • the extension data r2 ′ is added to the end of the symbol 1. Then, as shown in FIG. 9, the same process is performed for symbol 2.
  • the symbol arrangement unit 16b serially processes the symbols processed by the window function processing unit 16a so that the head of the symbol does not overlap the data portion of the adjacent symbol. Deploy. Specifically, the symbol arrangement unit 16b arranges the symbols processed by the window function processing unit 16a in series so that only the extension data r2 ′ and the data rl ′′ overlap, and outputs the symbols to the transmission unit 17.
  • the transmission unit 17 inputs the OFDM signal from the symbol arrangement unit 16b, and the transmission unit 17 frequency-converts the OFDM signal to an RF frequency band to obtain a transmission signal, which is transmitted to the base station CS (step S5).
  • adjacent symbols are arranged in series by a method similar to the conventional IEEE802.20 standard shown in Fig. 11B, where the difference between this embodiment and the conventional one is that Gr can be reduced in the GI section.
  • the GI length is shortened, which reduces the symbol time and suppresses the decrease in data rate, that is, while suppressing the decrease in data rate just by reducing the SNR. It is possible to reduce the side lobes of the band.
  • the guard interval time corresponding to the reducible amount can be reduced, and the symbol length of the communication frame can be shortened, thereby improving the data rate in communication. be able to.
  • the present invention can be widely applied to communication systems using OFDM systems that use only DMA.
  • the terminal PS has been described as an example of the wireless communication apparatus, the present invention is not limited to this, and the same configuration can be applied to a wireless communication apparatus that performs communication using the base station CS or other OFDM. Monkey.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

It is possible to provide a radio communication system capable of reducing a side robe within a band without lowering an SNR and a data rate when performing communication by using the OFDM. The communication system includes: communication environment recognizing means (1a) which recognizes a communication environment with a reception side after establishing a synchronization with the reception side; reduction-enabled region deciding means (1b) which decides a reduction-enabled region in a guard interval in accordance with the communication environment; window function processing means (16a) which applies a predetermined window function to the reduction-enabled region of the guard interval for each symbol and adds extension data obtained by applying the predetermined window function to the data extracted from a part of the data region immediately after the guard interval, to the end of a data region; and a symbol arranging means (16b) which arranges the symbols processed by the window function processing means in series so that symbol heads are not superimposed on the adjacent symbol data region.

Description

明 細 書  Specification
無線通信システム、無線通信装置及び無線通信方法  Wireless communication system, wireless communication apparatus, and wireless communication method
技術分野  Technical field
[0001] 本発明は、無線通信システム、無線通信装置及び無線通信方法に関する。  The present invention relates to a wireless communication system, a wireless communication apparatus, and a wireless communication method.
本願は、 2006年 11月 29曰に出願された特願 2006— 321533号、及び、 2007年 1月 29日に出願された特願 2007— 018098号に対し優先権を主張し、その内容を ここに援用する。  This application claims priority to Japanese Patent Application No. 2006-321533 filed on November 29, 2006, and Japanese Patent Application No. 2007-018098 filed on January 29, 2007. Incorporated into.
背景技術  Background art
[0002] 近年、 TDMA(Time Division Multiple Access)/TDD(Time Division Duplex)に加え TOFDMA(Orthogonal Frequency Division Multiple Access)を多元接続技休亍として 採用してパケット通信を行う無線通信システムが次世代のブロードバンド移動体通信 システムとして注目されている。この OFDMAにおいては、直交関係にあるサブキヤ リアを複数の端末で共有し、任意の複数のサブキャリアをサブチャネルとして位置づ ける。更に、任意の通信タイミング (TDMAを採用するシステムではこの通信タイミン グはスロットなどに相当する)で各端末にサブチャネルを適応的に割り当てることによ り、多元接続を実現する。  [0002] In recent years, a wireless communication system that performs packet communication by adopting TOFDMA (Orthogonal Frequency Division Multiple Access) in addition to TDMA (Time Division Multiple Access) / TDD (Time Division Duplex) as a multiple access technology suspension is the next generation. It is attracting attention as a broadband mobile communication system. In this OFDMA, orthogonal subcarriers are shared by a plurality of terminals, and a plurality of arbitrary subcarriers are positioned as subchannels. In addition, multiple access is realized by adaptively allocating subchannels to each terminal at any communication timing (in a system employing TDMA, this communication timing is equivalent to a slot).
[0003] このような OFDMAでは、シンボル間で不連続となる部分の影響によって帯域内の サイドローブが大きくなるという問題がある。この問題に対し、シンボル間で不連続と なる部分に窓関数をかけ、滑らかに変化させることによって帯域内のサイドローブを 低減する技術として ECP(Extended Cyclic Prefix)処理がある。以下、図 10と図 11を 参照してこの ECP処理について具体的に説明する。  [0003] In such OFDMA, there is a problem that side lobes in the band increase due to the influence of discontinuous portions between symbols. To deal with this problem, there is ECP (Extended Cyclic Prefix) processing as a technique for reducing side lobes in the band by applying a window function to the discontinuous part between symbols and changing it smoothly. The ECP process will be specifically described below with reference to FIGS. 10 and 11.
[0004] 図 10Aは、 OFDM信号の模式図である。この図 10Aに示すように、 OFDM信号に おいて、各シンボルは GI(Guard Interval)部とデータ部とから構成され、シンボル間に 不連続点が発生している。 ECP処理では、まず、シンボル毎に窓関数をかける対象 となるデータ(以下、このデータを窓関数対象データと称す)をそれぞれのデータ部 力 抽出する。この窓関数対象データは、不連続点において連続性を有するデータ である必要がある。例えば、図 10Aにおいて、シンボル 1からみた不連続点はデータ 部 Dlの後半部分にあたる。この後半部分には GI部 glの元データが存在する。従つ て、図 10Bに示すように、シンボル 1からみた不連続点において連続性を有する窓関 数対象データは、 GI部 glの直後のデータ、つまりデータ部 D1の先頭部分のデータ となる。このデータ部 D1の先頭部分のデータをシンボル 1の窓関数対象データ dlと して抽出する。そして、この窓関数対象データ dlに所定の窓関数をかけ、データ部 D 1の最後尾に付加する。なお、窓関数をかけた後の窓関数対象データ dlを拡張デー タ dl 'とする。 FIG. 10A is a schematic diagram of an OFDM signal. As shown in FIG. 10A, in an OFDM signal, each symbol is composed of a GI (Guard Interval) portion and a data portion, and discontinuities occur between the symbols. In the ECP process, first, data for which a window function is to be applied for each symbol (hereinafter, this data is referred to as window function target data) is extracted for each data part. This window function target data must be data that has continuity at discontinuities. For example, in Figure 10A, the discontinuity seen from symbol 1 is the data Part 2 is the second half of Dl. In the latter half, the original data of the GI part gl exists. Therefore, as shown in FIG. 10B, the window function target data having continuity at the discontinuity point as seen from symbol 1 is data immediately after the GI part gl, that is, data at the head part of the data part D1. Data at the beginning of this data part D1 is extracted as the window function target data dl of symbol 1. Then, a predetermined window function is applied to the window function target data dl and added to the end of the data part D1. The window function target data dl after the window function is applied is the extended data dl '.
[0005] 一方、シンボル 2からみた不連続点は GI部 g2の先頭部分にあたり、この先頭部分 に対して連続性を有する窓関数対象データは、図 10Cに示すように、データ部 D2に おいて GI部 g2の元データの直前のデータである。このデータをシンボル 2の窓関数 対象データ d2として抽出して所定の窓関数をかけ、 GI部 g2の先頭に付加する。な お、窓関数をかけた後の窓関数対象データ d2を拡張データ d2'とする。以上のような 処理をシンボル毎に行う。  [0005] On the other hand, the discontinuity point seen from symbol 2 corresponds to the head part of GI part g2, and the window function target data having continuity with respect to this head part is shown in data part D2 as shown in FIG. 10C. This is the data immediately before the original data of GI part g2. This data is extracted as the window function target data d2 of symbol 2, applied with a predetermined window function, and added to the head of the GI part g2. The window function target data d2 after the window function is applied is defined as extended data d2 ′. The above processing is performed for each symbol.
[0006] 次に、窓関数をかけた後の拡張データが付加されたシンボル同士の直列配置処理 を行う。この直列配置処理には、 IEEE802.11gの規格で定められた方法と IEEE802.20 の規格で定められた方法とがある。図 11Aは、 IEEE802.11gの規格で定められた方 法によって、上述したシンボル 1とシンボル 2とを直列配置した場合を示したものであ る。この方法では、シンボル 1の拡張データ dl 'がシンボル 2の GI部 g2に重なり、シン ボル 2の拡張データ d2'がシンボル 1のデータ部 D1に重なることになる。一方、図 11 Bは、 IEEE802.20の規格で定められた方法によって、上述したシンボル 1とシンボル 2 とを直列配置した場合を示したものである。この方法では、シンボル 1の拡張データ d 1 'とシンボル 2の拡張データ d2'とは重なる力 データ部 D1や GI部 g2には拡張デ ータは重ならない。  [0006] Next, a serial arrangement process of symbols to which extension data after application of a window function is added is performed. This serial arrangement process includes a method defined in the IEEE802.11g standard and a method defined in the IEEE802.20 standard. Fig. 11A shows the case where symbol 1 and symbol 2 described above are arranged in series according to the method defined in the IEEE802.11g standard. In this method, the extension data dl ′ of symbol 1 overlaps with the GI part g2 of symbol 2, and the extension data d2 ′ of symbol 2 overlaps with the data part D1 of symbol 1. On the other hand, FIG. 11B shows a case where the above-described symbol 1 and symbol 2 are arranged in series by the method defined in the IEEE802.20 standard. In this method, the extension data d1 'of symbol 1 and the extension data d2' of symbol 2 overlap. The extension data does not overlap the data part D1 or GI part g2.
[0007] 上述した IEEE802.11gの規格で定められた方法によると、不連続点における不連続 性が緩和され、帯域内のサイドローブを低減することができる力 シンボル 2の拡張デ ータ d2'がシンボル 1のデータ部 D1に重なることになるため、 SNR(Signal to Noise R atio)が低下するという問題があった。また、上述した IEEE802.20の規格で定められた 方法によると、 SNRは低下しないが、シンボル時間が長くなるため、データレートが 低下するという問題があった。 [0007] According to the method defined in the IEEE802.11g standard described above, the discontinuity at the discontinuity point is alleviated, and the side lobe in the band can be reduced. Symbol 2 expansion data d2 ' Has a problem that the SNR (Signal to Noise Ratio) decreases. In addition, according to the method defined in the above-mentioned IEEE802.20 standard, the SNR does not decrease, but the symbol time increases, so the data rate increases. There was a problem of lowering.
[0008] また、ガードインターバルの期間は、余裕を持って長めに設定されているため基地 局と無線通信端末との間で同期が確立した後でもシンボル長が長くなりデータレート を向上できなかった。 [0008] Also, since the guard interval period is set longer with a margin, the symbol length becomes longer even after synchronization is established between the base station and the wireless communication terminal, and the data rate cannot be improved. .
特許文献 1 :特表 2003— 535502号公報  Patent Document 1: Japanese Translation of Special Publication 2003-535502
発明の開示  Disclosure of the invention
[0009] 本発明は、上述した事情に鑑みてなされたものであり、 OFDMを用いて通信を行う 場合において、 SNR及びデータレートを低下させることなぐ帯域内のサイドローブを 低減することを目的とする。  [0009] The present invention has been made in view of the above-described circumstances, and an object of the present invention is to reduce side lobes in a band without reducing the SNR and data rate when performing communication using OFDM. To do.
[0010] また、本発明は、基地局と無線通信端末との間で同期が確立した後における、ガー ドインターバル期間のうちの削減可能な量を取得することを目的とする。  [0010] It is another object of the present invention to obtain a reducible amount in the guard interval period after synchronization is established between the base station and the radio communication terminal.
[0011] 上記目的を達成するために、本発明は、例えば、以下の側面を有する。  In order to achieve the above object, the present invention has the following aspects, for example.
[0012] 第 1の側面は、 OFDM(Orthogonal Frequency Division Multiplexing)を用いて通信 を行う無線通信システムであって、受信側との同期確立後に、前記受信側との通信 環境を把握する通信環境把握ユニットと、前記通信環境に応じて、ガードインターバ ルにおける削減可能領域を決定する削減可能領域決定ユニットと、シンボル毎に、 前記ガードインターバルの削減可能領域に所定の窓関数をかけると共に、ガードイン ターバル直後のデータ領域の一部から抽出したデータに所定の窓関数をかけて得ら れる拡張データをデータ領域の最後尾に付加する窓関数処理ユニットと、前記窓関 数処理ユニットによって処理されたシンボル同士を、シンボルの先頭が、隣接するシ ンボルのデータ領域に重ならないように直列配置するシンボル配置ユニットと、を備 える無線通信システムである。 [0012] A first aspect is a wireless communication system that performs communication using OFDM (Orthogonal Frequency Division Multiplexing), and grasps the communication environment with the receiving side after establishing synchronization with the receiving side. A reduction area determination unit that determines a reduction area in the guard interval according to the unit and the communication environment, and for each symbol, a predetermined window function is applied to the reduction area of the guard interval and a guard interval is applied. A window function processing unit that adds extended data obtained by applying a predetermined window function to data extracted from a part of the immediately following data area, and a symbol processed by the window function processing unit. A symbol placement unit that places each other in series so that the beginning of the symbol does not overlap the data area of an adjacent symbol. It is obtain a wireless communication system.
[0013] 第 2の側面は、上記の無線通信システムであって、送信側と受信側との間の距離と 、前記削減可能領域との対応関係を予め記憶する記憶ユニットを更に備え、前記通 信環境把握ユニットは、前記通信環境として、前記送信側と受信側との間の距離を 把握し、前記削減可能領域決定ユニットは、前記通信環境把握ユニットによって把握 された前記距離と、前記記憶ユニットに記憶されて!/、る前記対応関係とに基づレヽて、 前記距離に対応する削減可能領域を決定する、無線通信システムである。 [0014] 第 3の側面は、上記の無線通信システムであって、前記記憶ユニットは、前記受信 側に対する見通し環境に応じた前記対応関係を記憶し、前記通信環境把握ユニット は、前記通信環境として、前記送信側と受信側との間の距離及び前記見通し環境を 把握し、前記削減可能領域決定ユニットは、前記通信環境把握ユニットによって把握 された前記距離及び見通し環境と、前記記憶ユニットに記憶されてレ、る前記見通し 環境に応じた前記対応関係とに基づ!/、て、前記距離及び見通し環境に対応する削 減可能領域を決定する、無線通信システムである。 [0013] A second aspect is the above-described wireless communication system, further comprising a storage unit that stores in advance a correspondence between a distance between a transmission side and a reception side and the reducible region, and The communication environment grasping unit grasps the distance between the transmission side and the receiving side as the communication environment, and the reducible area determination unit comprises the distance grasped by the communication environment grasping unit, the storage unit The wireless communication system determines a reducible area corresponding to the distance based on the correspondence relationship stored in! /. [0014] A third aspect is the wireless communication system described above, wherein the storage unit stores the correspondence relationship according to a line-of-sight environment with respect to the receiving side, and the communication environment grasping unit is configured as the communication environment. The distance between the transmitting side and the receiving side and the line-of-sight environment are grasped, and the reducible area determination unit is stored in the storage unit and the distance and line-of-sight environment grasped by the communication environment grasping unit. The wireless communication system determines a reducible area corresponding to the distance and the line-of-sight environment based on the correspondence relationship according to the line-of-sight environment.
[0015] 第 4の側面は、 OFDMを用いて通信を行う無線通信装置であって、受信側との同 期確立後に、前記受信側との通信環境を把握する通信環境把握ユニットと、前記通 信環境に応じて、ガードインターバルにおける削減可能領域を決定する削減可能領 域決定ユニットと、を備える無線通信装置である。  [0015] A fourth aspect is a wireless communication apparatus that performs communication using OFDM, and after establishing synchronization with the receiving side, a communication environment grasping unit that grasps a communication environment with the receiving side, and the communication A wireless communication device comprising: a reducible area determination unit that determines a reducible area in a guard interval according to a communication environment.
[0016] 第 5の側面は、上記無線通信装置であって、シンボル毎に、前記ガードインターバ ルの削減可能領域に所定の窓関数をかけると共に、ガードインターバル直後のデー タ領域の一部から抽出したデータに所定の窓関数をかけて得られる拡張データをデ ータ領域の最後尾に付加する窓関数処理ユニットと、前記窓関数処理ユニットによつ て処理されたシンボル同士を、シンボルの先頭が、隣接するシンボルのデータ領域 に重ならないように直列配置するシンボル配置ユニットと、を更に備える無線通信装 置である。  [0016] A fifth aspect is the above-described wireless communication apparatus, in which for each symbol, a predetermined window function is applied to the area where the guard interval can be reduced and extracted from a part of the data area immediately after the guard interval. A window function processing unit for adding extended data obtained by applying a predetermined window function to the processed data at the end of the data area, and symbols processed by the window function processing unit are Is a radio communication apparatus further comprising a symbol arrangement unit arranged in series so as not to overlap the data area of adjacent symbols.
[0017] 第 6の側面は、上記無線通信装置であって、自装置と前記受信側との間の距離と、 前記削減可能領域との対応関係を予め記憶する記憶ユニットを更に備え、前記通信 環境把握ユニットは、前記通信環境として、自装置と前記受信側との間の距離を把 握し、前記削減可能領域決定ユニットは、前記通信環境把握ユニットによって把握さ れた前記距離と、前記記憶ユニットに記憶されている前記対応関係とに基づいて、前 記距離に対応する削減可能領域を決定する無線通信装置である。  [0017] A sixth aspect is the wireless communication apparatus, further comprising a storage unit that stores in advance a correspondence relationship between a distance between the own apparatus and the receiving side and the reducible area, The environment grasping unit grasps the distance between the own device and the receiving side as the communication environment, and the reducible area determining unit grasps the distance grasped by the communication environment grasping unit and the memory The wireless communication apparatus determines a reducible area corresponding to the distance based on the correspondence relationship stored in the unit.
[0018] 第 7の側面は、上記無線通信装置であって、前記記憶ユニットは、前記受信側に対 する見通し環境に応じた前記対応関係を記憶し、前記通信環境把握ユニットは、前 記通信環境として、自装置と前記受信側との間の距離及び前記見通し環境を把握し 、前記削減可能領域決定ユニットは、前記通信環境把握ユニットによって把握された 前記距離及び見通し環境と、前記記憶ユニットに記憶されて!/、る前記見通し環境に 応じた前記対応関係とに基づ!/、て、前記距離及び見通し環境に対応する削減可能 領域を決定する、無線通信装置である。 [0018] A seventh aspect is the wireless communication apparatus, wherein the storage unit stores the correspondence relationship according to a line-of-sight environment with respect to the receiving side, and the communication environment grasping unit includes the communication As the environment, the distance between the own device and the receiving side and the visibility environment are grasped, and the reducible area determination unit is grasped by the communication environment grasping unit. Based on the distance and line-of-sight environment and the correspondence relationship stored in the storage unit according to the line-of-sight environment! /, The reduction possible area corresponding to the distance and line-of-sight environment is determined. , A wireless communication device.
[0019] 第 8の側面は、 OFDMを用いて通信を行う無線通信方法であって、送信側と受信 側との同期確立後に、前記送信側と前記受信側との間の通信環境を把握する通信 環境把握ステップと、前記通信環境に応じて、ガードインターバルにおける削減可能 領域を決定する削減可能領域決定ステップと、を備える無線通信方法である。  [0019] An eighth aspect is a wireless communication method that performs communication using OFDM, and grasps a communication environment between the transmission side and the reception side after establishing synchronization between the transmission side and the reception side A wireless communication method comprising: a communication environment grasping step; and a reducible area determining step for determining a reducible area in a guard interval according to the communication environment.
[0020] 第 9の側面は、上記無線通信方法であって、送信側と受信側との間の距離と、前記 削減可能領域との対応関係を予め記憶する記憶ステップを更に備え、前記通信環 境把握ステップは、前記通信環境として、前記送信側と受信側との間の距離を把握 し、前記削減可能領域決定ステップは、前記通信環境把握ステップにおいて把握さ れた前記距離と、前記記憶ステップで記憶されて!/、る前記対応関係とに基づ!/、て、 前記距離に対応する削減可能領域を決定する無線通信方法である。  [0020] A ninth aspect is the above wireless communication method, further comprising a storage step of previously storing a correspondence relationship between a distance between a transmission side and a reception side and the reduction possible region, The boundary grasping step grasps the distance between the transmission side and the receiving side as the communication environment, and the reducible area determination step comprises the distance grasped in the communication environment grasping step, and the storage step The wireless communication method determines a reducible area corresponding to the distance based on the correspondence relationship stored in! /.
[0021] 第 10の側面は、上記無線通信方法であって、前記記憶ステップは、前記送信側と 前記受信側との間の見通し環境に応じた前記対応関係を記憶し、前記通信環境把 握ステップは、前記通信環境として、前記送信側と前記受信側との間の距離及び前 記見通し環境を把握し、前記削減可能領域決定ステップは、前記通信環境把握ステ ップにお!/、て把握された前記距離及び見通し環境と、前記記憶ステップで記憶され ている前記見通し環境に応じた前記対応関係とに基づいて、前記距離及び見通し 環境に対応する削減可能領域を決定する無線通信方法である。  [0021] A tenth aspect is the wireless communication method, wherein the storing step stores the correspondence relationship according to a line-of-sight environment between the transmission side and the reception side, and determines the communication environment. In the step, the distance between the transmitting side and the receiving side and the line-of-sight environment are grasped as the communication environment, and the reducible area determination step is performed in the communication environment grasping step! A wireless communication method for determining a reducible area corresponding to the distance and line-of-sight environment based on the grasped distance and line-of-sight environment and the correspondence relationship corresponding to the line-of-sight environment stored in the storing step. is there.
[0022] 第 11の側面は、上記無線通信方法であって、前記シンボル毎に、前記ガードイン ターバルの削減可能領域に所定の窓関数をかけると共に、ガードインターバル直後 のデータ領域の一部から抽出したデータに所定の窓関数をかけて得られる拡張デー タをデータ領域の最後尾に付加する窓関数処理ステップを更に備え、前記シンボル 配置ステップは、前記窓関数処理ステップによって処理されたシンボル同士を、シン ボルの先頭力 隣接するシンボルのデータ領域に重ならないように直列配置する無 線通信方法である。  [0022] An eleventh aspect is the wireless communication method described above, in which a predetermined window function is applied to the area where the guard interval can be reduced for each symbol, and extracted from a part of the data area immediately after the guard interval. A window function processing step of adding extended data obtained by applying a predetermined window function to the processed data at the end of the data area, and the symbol placement step includes the symbols processed by the window function processing step. The leading power of the symbol is a wireless communication method that is arranged in series so as not to overlap the data area of the adjacent symbol.
[0023] 上記解決手段によると、 OFDMを用いて通信を行う場合において、 SNR及びデー タレートを低下させることなぐ帯域内のサイドローブを低減することが可能である。 [0023] According to the above solution, when performing communication using OFDM, SNR and data It is possible to reduce side lobes in the band without lowering the tartrate.
[0024] 上記解決手段によると、 OFDMを用いて通信を行う場合において、 SNR及びデー タレートを低下させることなぐ帯域内のサイドローブを低減することが可能である。ま た、ガードインターバル期間のうちの削減可能な量を取得することにより、削減可能 量に応じた時間を削減でき、シンボル長を短くできるのでデータレートを向上すること ができる。 [0024] According to the above solution, when performing communication using OFDM, it is possible to reduce side lobes within a band without reducing the SNR and data rate. In addition, by acquiring the amount that can be reduced in the guard interval period, the time corresponding to the amount that can be reduced can be reduced, and the symbol length can be shortened, so that the data rate can be improved.
図面の簡単な説明  Brief Description of Drawings
[0025] [図 1]図 1は、本発明の一実施形態における無線通信システムの構成概略図である。  FIG. 1 is a schematic configuration diagram of a wireless communication system in an embodiment of the present invention.
[図 2]図 2は、本発明の一実施形態における無線通信システムの周波数、スロット及 びサブチャネルの関係を示す模式図である。  FIG. 2 is a schematic diagram showing a relationship among frequencies, slots, and subchannels of a wireless communication system in an embodiment of the present invention.
[図 3]図 3は、本発明の一実施形態における無線通信端末 (端末) PSの構成ブロック 図である。  FIG. 3 is a configuration block diagram of a wireless communication terminal (terminal) PS in an embodiment of the present invention.
[図 4A]図 4Aは、本発明の一実施形態における Gr削減可能領域と端末 PS—基地局 CS間の距離との対応関係を示す第 1の説明図である。  FIG. 4A is a first explanatory diagram showing a correspondence relationship between a Gr reduction possible area and a distance between a terminal PS and a base station CS in an embodiment of the present invention.
[図 4B]図 4Bは、本発明の一実施形態における Gr削減可能領域と端末 PS—基地局 CS間の距離との対応関係を示す第 1の説明図である。  FIG. 4B is a first explanatory diagram showing a correspondence relationship between a Gr reduction possible area and a distance between the terminal PS and the base station CS in an embodiment of the present invention.
[図 5A]図 5Aは、本発明の一実施形態における Gr削減可能領域と端末 PS—基地局 CS間の距離との対応関係を示す第 2の説明図である。  FIG. 5A is a second explanatory diagram showing a correspondence relationship between the Gr reduction possible area and the distance between the terminal PS and the base station CS in one embodiment of the present invention.
[図 5B]図 5Bは、本発明の一実施形態における Gr削減可能領域と端末 PS—基地局 CS間の距離との対応関係を示す第 2の説明図である。  FIG. 5B is a second explanatory diagram showing a correspondence relationship between the Gr reduction possible area and the distance between the terminal PS and the base station CS in one embodiment of the present invention.
[図 6]図 6は、本発明の一実施形態における無線通信部 2の詳細説明図である。  FIG. 6 is a detailed explanatory diagram of the wireless communication unit 2 in one embodiment of the present invention.
[図 7]図 7は、本発明の一実施形態における無線通信端末 (端末) PSの動作フローチ ヤートでめる。  [FIG. 7] FIG. 7 is an operation flow chart of a wireless communication terminal (terminal) PS according to an embodiment of the present invention.
[図 8]図 8は、本発明の一実施形態における ECP処理を示す第 1の説明図である。  FIG. 8 is a first explanatory diagram showing an ECP process in one embodiment of the present invention.
[図 9]図 9は、本発明の一実施形態における ECP処理を示す第 2の説明図である。  FIG. 9 is a second explanatory diagram showing an ECP process in one embodiment of the present invention.
[図 10A]図 1 OAは、従来の ECP処理を示す説明図である。  [FIG. 10A] FIG. 1 OA is an explanatory diagram showing a conventional ECP process.
[図 10B]図 10Bは、従来の ECP処理を示す説明図である。  FIG. 10B is an explanatory view showing a conventional ECP process.
[図 10C]図 10Bは、従来の ECP処理を示す説明図である。 [図 11A]図 11 Aは、従来の ECP処理を示す説明図である。 FIG. 10B is an explanatory view showing a conventional ECP process. FIG. 11A is an explanatory view showing conventional ECP processing.
[図 11B]図 11Bは、従来の ECP処理を示す説明図である。  FIG. 11B is an explanatory diagram showing a conventional ECP process.
符号の説明  Explanation of symbols
[0026] CS',,基地局 [0026] CS ', base station
PS'*'無線通信端末(端末)  PS '*' wireless communication terminal (terminal)
1···端末制御部  1. Terminal control unit
2···無線通信部  2 ... Wireless communication part
3···操作部  3 Operation section
4···表示部  4 Display section
5···音声入出力部  5 ... Audio input / output section
6···記憶部 (記憶手段)  6 ··· Storage section (storage means)
la- ··通信環境把握部 (通信環境把握手段)  la- ··· Communication environment grasping section (Communication environment grasping means)
lb-- ·θΓ削減可能領域決定部(削減可能領域決定手段)  lb-- · θΓ reduction possible area determination part (reducible area determination means)
10···訂正符号化部  10 ... Coding encoder
11···インタリーバ  11 ... Interleaver
12·· 'シリアル パラレル変換部  12 ... 'Serial parallel conversion part
13···デジタル変調部  13 Digital modulation section
14...IFFT部  14 ... IFFT section
15···ΟΙ付加部  15 ΟΙ Additional section
16"'ECP処理部  16 "'ECP processor
17···送信部  17 ··· Transmitter
16a* ··窓関数処理部  16a * Window function processing section
16b' ··シンボル配置部  16b 'Symbol placement part
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0027] 以下、図面を参照して本発明の例である一実施形態についての説明を行う。 Hereinafter, an embodiment that is an example of the present invention will be described with reference to the drawings.
本実施形態は、 OFDMA方式の通信システムに関するものである。図 1に示す通り 、本実施形態の無線通信システムは、基地局 CSと無線通信端末(以下端末と略す) PS及び図示しないネットワークから成る。基地局 CSと端末 PSは、時分割多重接続 方式 (TDMA)、時分割複信方式 (TDD)に加えて直交周波数分割多重接続方式( OFDMA)を多元接続技術として用いて通信を行うものである。基地局 CSは、一定 の距離間隔で複数設けられ、複数の端末 PSと多重接続を行い、無線通信を行う。 なお、端末 PS及び基地局 CSは、本実施形態においては無線通信装置に相当す る力 特徴的な部分において両者は同じ構成を備えている。このため、以下では端 末 PSを代表的に用いて説明する。 The present embodiment relates to an OFDMA communication system. As shown in FIG. 1, the wireless communication system of this embodiment includes a base station CS, a wireless communication terminal (hereinafter abbreviated as a terminal) PS, and a network (not shown). Base station CS and terminal PS are time-division multiplex connections Communication is performed using orthogonal frequency division multiple access (OFDMA) as a multiple access technique in addition to system (TDMA) and time division duplex (TDD). A plurality of base stations CS are provided at regular distance intervals, and multiple connections are made with a plurality of terminals PS to perform wireless communication. Note that the terminal PS and the base station CS have the same configuration in the present embodiment in the force characteristic portion corresponding to the wireless communication device. For this reason, the following explanation will be given using the terminal PS as a representative.
[0028] 周知のように OFDMA方式とは、直交関係にある全てのサブキャリアを全端末 PS で共有し、任意の複数のサブキャリアの集まりを 1つのグループとして位置づけ、各端 末 PSに 1つ又は複数のグループを適応的に割り当てることにより多元接続を実現す る技術である。本実施形態の無線通信システムでは、上記した OFDMA方式に、 T DMA方式及び TDD方式をさらに糸且み合わせている。つまり、各グループを TDDと して時間軸方向に上り回線と下り回線に分け、さらにこれら上り回線と下り回線をそれ ぞれ 4つの TDMAスロットに分割している。そして、本実施形態においては、各ダル ープが時間軸方向にそれぞれ TDMAスロットとして分割された 1つの単位をサブチ ャネルと呼ぶ。図 2に本実施形態の無線通信システムにおける周波数と TDMAスロ ットとサブチャネルの関係を示す。縦軸は周波数、横軸は時間を示している。図 2が 示すように、周波数方向 28個、時間軸方向 4個(4スロット)を掛け合わせた 112個の サブチャネルが上り回線用と下り回線用にそれぞれ割り当てられる。  [0028] As is well known, the OFDMA scheme is that all subcarriers in an orthogonal relationship are shared by all terminal PSs, and a set of arbitrary subcarriers is positioned as one group, one for each terminal PS. Alternatively, it is a technology that realizes multiple access by adaptively assigning multiple groups. In the wireless communication system of this embodiment, the TDMA method and the TDD method are further combined with the OFDMA method described above. In other words, each group is divided into an uplink and a downlink in the time axis direction as a TDD, and these uplink and downlink are each divided into four TDMA slots. In this embodiment, one unit obtained by dividing each dulpe as a TDMA slot in the time axis direction is called a subchannel. Figure 2 shows the relationship among frequency, TDMA slot, and subchannel in the wireless communication system of this embodiment. The vertical axis represents frequency and the horizontal axis represents time. As shown in Fig. 2, 112 subchannels, which are multiplied by 28 in the frequency direction and 4 in the time axis direction (4 slots), are allocated for uplink and downlink, respectively.
[0029] 本実施形態の無線通信システムでは、図 2に示すように、全サブチャネルのうち周 波数方向の一番端のサブチャネル(図 2では 1番)を制御チャネル(CCH)として使用 し、残りのサブチャネルをトラフィックチャネル (TCH)として使用している。以下では、 このトラフィックチャネルをトラフィックサブチャネルという。そして、無線通信を行う基 地局 CSと端末 PSには、上り回線と下り回線のそれぞれに属する全トラフィックサブチ ャネル(この場合、 CCHを除いた 27 X 4スロットの 108サブチャネル)のうちから任意 の 1つ又は複数のトラフィックサブチャネルが割り当てられる。なお、通信チャネルとし ての上り回線用及び下り回線用のトラフィックサブチャネルには、同じトラフィックチヤ ネルが割り当てられる。  In the wireless communication system of the present embodiment, as shown in FIG. 2, the most subchannel in the frequency direction (number 1 in FIG. 2) is used as a control channel (CCH) among all subchannels. The remaining subchannel is used as a traffic channel (TCH). In the following, this traffic channel is called a traffic subchannel. The base station CS and the terminal PS that perform radio communication can be arbitrarily selected from all traffic subchannels belonging to the uplink and downlink (in this case, 108 subchannels of 27 X 4 slots excluding CCH). One or more traffic subchannels are assigned. The same traffic channel is assigned to the traffic subchannel for uplink and downlink as communication channels.
[0030] 次に、端末 PSの構成について説明する。図 3に示すように、端末 PSは、端末制御 部 1、無線通信部 2、操作部 3、表示部 4、音声入出力部 5及び記憶部(記憶手段) 6 を備える。また、端末制御部 1は、通信環境把握部(通信環境把握手段) la及び GI 削減可能領域決定部(削減可能領域決定手段) lbをその機能要素として備える。 [0030] Next, the configuration of terminal PS will be described. As shown in Fig. 3, the terminal PS controls the terminal A unit 1, a wireless communication unit 2, an operation unit 3, a display unit 4, a voice input / output unit 5 and a storage unit (storage means) 6 are provided. Further, the terminal control unit 1 includes a communication environment grasping unit (communication environment grasping unit) la and a GI reducible region determining unit (reducible region determining unit) lb as functional elements.
[0031] 端末制御部 1は、記憶部 6に記憶されている端末制御プログラムや無線通信部 2を 介して取得した受信信号、操作部 3から入力される操作信号に基づいて、本端末 PS の動作を統括的に制御する。端末制御部 1の通信環境把握部 laは、無線通信部 2 を介して基地局 CSから取得した受信信号に基づ!/、て、本端末 PSと基地局 CSとの 間の距離及び見通し環境を把握する。具体的には、通信環境把握部 laは、見通し 環境が見通し内の環境か、または見通し外の環境かを把握する。  [0031] Based on the terminal control program stored in the storage unit 6, the received signal obtained via the wireless communication unit 2, and the operation signal input from the operation unit 3, the terminal control unit 1 Control the overall operation. The communication environment grasping unit la of the terminal control unit 1 is based on the received signal acquired from the base station CS via the wireless communication unit 2! /, Based on the distance between the terminal PS and the base station CS and the line-of-sight environment. To figure out. Specifically, the communication environment grasping unit la grasps whether the prospect environment is an environment that is within the prospect or an environment that is not the prospect.
[0032] 更に具体的には、通信環境把握部 laは、端末 PSと基地局 CSとの間の距離を同期 タイミングにより把握する。基地局 CSは、通信相手である同期している端末 PSに送 信したフレームに対する、端末 PSからの応答フレームが時間軸に基づいてどの程度 本来のタイミングとずれている力、 (ずれ時間)を算出する。更に、基地局 CSは、あらか じめ端末 PSに対し前記ずれ時間を見込んだタイミングで送信するよう指示する。基 地局 CSは、前記ずれ時間に基づき端末 PSとの距離を算出し把握することができる。 たとえば、(端末 PSと基地局 CS間距離) = (ずれ時間)/ (電波伝搬速度)により算 出する。また、見通し環境の把握とは、端末 PSと基地局 CSとの間の通信環境が、見 通し環境が見通し内の環境なの力、または見通し外の環境なのかを把握することを指 す。  [0032] More specifically, the communication environment grasping unit la grasps the distance between the terminal PS and the base station CS based on the synchronization timing. The base station CS uses the power of the response frame from the terminal PS to the frame sent to the synchronized terminal PS that is the other party of communication (how long the deviation time is based on the time axis). calculate. Furthermore, the base station CS instructs the terminal PS in advance to transmit at a timing that allows for the time difference. The base station CS can calculate and grasp the distance from the terminal PS based on the deviation time. For example, (distance between terminal PS and base station CS) = (deviation time) / (radio wave propagation speed). Understanding the outlook environment means that the communication environment between the terminal PS and the base station CS is to understand whether the outlook environment is in the outlook environment or in the out of view environment.
[0033] ここで、見通し内の環境とは、図 4Aに示すように、通信エリア内において端末 PSと 基地局 CSとの間に障害物がなぐマルチパスの発生が少ない環境である。このような 見通し内の環境では、図 4Bに示すように、端末 PSと基地局 CSとの間の距離に反比 例して Gr削減可能領域は小さくなる。これは、端末 PSが基地局 CSから遠距離の位 置にあるほど、遅延時間が大きくなるためである。一方、見通し外の環境とは、図 5A に示すように、通信エリア内において端末 PSと基地局 CSとの間に障害物があり、マ ルチパスが多発する環境である。このような見通し外の環境では、見通し内の環境よ りも遅延波の電力が大きくなる場合があり、図 5Bに示すように、端末 PSと基地局 CS との間の距離に対して指数関数的に Gr削減可能領域は小さくなる。 [0034] また、見通し内環境である力、、見通し外環境であるかは以下のように判断する。端 末 PSから基地局 CSに到達する直接波のあとに到達する遅延波の受信信号レベル が直接波に比べ低い場合は、見通し内環境であると判断される。また、遅延波が所 定数より多く且つ直接波よりも信号レベルが高い遅延波が存在する場合を見通し外 環境であると判断される。 Here, the line-of-sight environment, as shown in FIG. 4A, is an environment in which there are few occurrences of multipaths between the terminal PS and the base station CS in the communication area. In such a line-of-sight environment, as shown in Fig. 4B, the Gr reduction possible area becomes smaller in inverse proportion to the distance between the terminal PS and the base station CS. This is because the delay time increases as the terminal PS is located at a longer distance from the base station CS. On the other hand, the unforeseen environment is an environment where multiple paths occur frequently because there are obstacles between the terminal PS and the base station CS in the communication area, as shown in Fig. 5A. In such an out-of-sight environment, the delayed wave power may be larger than in the out-of-sight environment, and as shown in FIG. 5B, an exponential function is used for the distance between the terminal PS and the base station CS. Therefore, the area where Gr can be reduced becomes smaller. [0034] In addition, whether or not the force is a line-of-sight environment and an environment that is not a line-of-sight environment is determined as follows. If the received signal level of the delayed wave arriving after the direct wave arriving at the base station CS from the terminal PS is lower than that of the direct wave, the line-of-sight environment is determined. In addition, it is judged that the environment is out of sight when there are delay waves with more delay waves than a certain number and a signal level higher than that of the direct waves.
[0035] 図 4B及び図 5Bに示すような、見通し内の環境及び見通し外の環境における端末 PSと基地局 CSとの間の距離と、 Gr削減可能領域との対応関係(以下、この対応関 係を Gr削減情報と呼ぶ)は、記憶部 6に予め記憶されている。このような Gr削減情報 は、テーブル状のデータとして記憶しても良いし、関数として記憶しても良い。  [0035] As shown in FIG. 4B and FIG. 5B, the correspondence between the distance between the terminal PS and the base station CS in the sight-line environment and the non-line-of-sight environment and the Gr reduction possible area (hereinafter, this correspondence relationship). Is called “Gr reduction information”). Such Gr reduction information may be stored as table-like data or as a function.
[0036] Gr削減可能領域決定部 lbは、通信環境把握部 laによって把握された端末 PSと基 地局 CSとの間の距離及び見通し環境と、記憶部 6に記憶されている Gr削減情報とに 基づいて、端末 PSと基地局 CSとの間の距離及び見通し環境に対応する Gr削減可 能領域を決定する。端末制御部 1は、 Gr削減可能領域決定部 lbが決定した Gr削減 可能領域と ECP処理開始要求とを、後述する ECP処理部 16に出力する。  [0036] The Gr reducible area determination unit lb includes the distance between the terminal PS and the base station CS, which is grasped by the communication environment grasping unit la, the line-of-sight environment, and the Gr reduction information stored in the storage unit 6. Based on the above, the Gr reduction possible area corresponding to the distance between the terminal PS and the base station CS and the line-of-sight environment is determined. The terminal control unit 1 outputs the Gr reducible region determined by the Gr reducible region determining unit lb and the ECP processing start request to the ECP processing unit 16 described later.
[0037] 無線通信部 2は、端末制御部 1による制御の下、端末制御部 1から出力される制御 信号またはデータ信号に対して、誤り訂正符号化、変調及び OFDMによる多重化を 行い、多重化信号 (OFDM信号)を得る。更に、無線通信部 2は、多重化信号を RF 周波数帯に周波数変換した後、送信信号として基地局 CSに送信する。  [0037] Under the control of the terminal control unit 1, the radio communication unit 2 performs error correction coding, modulation, and multiplexing by OFDM on the control signal or data signal output from the terminal control unit 1 to multiplex Get the digitized signal (OFDM signal). Further, the radio communication unit 2 frequency-converts the multiplexed signal into the RF frequency band, and transmits it to the base station CS as a transmission signal.
[0038] 具体的に説明すると、図 6に示すように、無線通信部 2の送信機側は、誤り訂正符 号化部 10、インタリーバ 11、シリアル パラレル変換部 12、デジタル変調部 13、 IF FT (Inverse Fast Fourier Transform)部 14、 GI(Guard Interval)付カロ部 15、 ECP(Ext ended Cyclic Prefix)処理部 16及び送信部 17を備える。  More specifically, as shown in FIG. 6, the transmitter side of the wireless communication unit 2 includes an error correction coding unit 10, an interleaver 11, a serial / parallel conversion unit 12, a digital modulation unit 13, an IF FT (Inverse Fast Fourier Transform) unit 14, GI (Guard Interval) attached calorie unit 15, ECP (Ext ended Cyclic Prefix) processing unit 16, and transmission unit 17.
[0039] 誤り訂正符号化部 10は、例えば、 FEC (Forward Error Correction)エンコーダであ る。誤り訂正符号化部 10は、上記端末制御部 1に指示された符号化レートに基づい て、端末制御部 1から入力される制御信号またはデータ信号のビット列に冗長情報で ある誤り訂正符号を付加し、インタリーバ 11に出力する。インタリーバ 11は、誤り訂正 符号化部 10によって誤り訂正符号が付加されたビット列にインタリーブ処理を施す。 シリアル パラレル変換部 12は、上記インタリーブ処理後のビット列を、端末制御部 1に指示されたサブチャネルに含まれるサブキャリア毎にビット単位で分割して各デ ジタル変調部 13に出力する。 [0039] The error correction encoding unit 10 is, for example, a FEC (Forward Error Correction) encoder. The error correction coding unit 10 adds an error correction code, which is redundant information, to the bit string of the control signal or data signal input from the terminal control unit 1 based on the coding rate specified by the terminal control unit 1. , Output to interleaver 11. The interleaver 11 performs an interleaving process on the bit string to which the error correction code is added by the error correction coding unit 10. The serial / parallel conversion unit 12 converts the bit string after the interleaving process into the terminal control unit. Each subcarrier included in the subchannel indicated in 1 is divided in bit units and output to each digital modulation section 13.
[0040] デジタル変調部 13は、サブキャリアと同数設けられている。デジタル変調部 13は、 サブキャリア毎に分割されたビットデータを、当該ビットデータに対応するサブキャリア を用いてデジタル変調し、変調信号を IFFT部 14に出力する。なお、各デジタル変 調部 13は、上記端末制御部 1に指示された変調方式、例えば、 BPSK (Binary Phas e Shift Keying)、 QPSK(Quadrature Phase Shift Keying)、 16Q AM (Quadrature Am plitude Modulation)、 64QAM等を用いてデジタル変調を行う。 IFFT部 14は、各デ ジタル変調部 13から入力される変調信号を逆フーリエ変換して直交多重化すること により OFDM信号を生成し、当該 OFDM信号を GI付加部 15に出力する。 GI付加 部 15は、上記 IFFT部 14から入力される OFDM信号にガードインターバル(GI)を 付加して ECP処理部 16に出力する。  [0040] The same number of digital modulation units 13 as subcarriers are provided. The digital modulation unit 13 digitally modulates the bit data divided for each subcarrier using the subcarrier corresponding to the bit data, and outputs the modulated signal to the IFFT unit 14. Each digital modulation unit 13 is a modulation method instructed by the terminal control unit 1, for example, BPSK (Binary Phase Shift Keying), QPSK (Quadrature Phase Shift Keying), 16Q AM (Quadrature Amplitude Modulation), Digital modulation is performed using 64QAM. The IFFT unit 14 generates an OFDM signal by performing inverse Fourier transform on the modulated signal input from each digital modulation unit 13 and performing orthogonal multiplexing, and outputs the OFDM signal to the GI adding unit 15. The GI adding unit 15 adds a guard interval (GI) to the OFDM signal input from the IFFT unit 14 and outputs it to the ECP processing unit 16.
[0041] ECP処理部 16は、窓関数処理部 16a及びシンボル配置部 16bから構成される。 E CP処理部 16は、端末制御部 1から入力される ECP処理開始要求によって ECP処 理を開始する。一方、 ECP処理部 16は、 ECP処理開始要求が入力されない場合、 GI付加後の OFDM信号を無処理で送信部 17に出力する。窓関数処理部 16aは、 端末制御部 1から入力される Gr削減可能領域に基づき、 GI付加後の OFDM信号に 含まれるシンボル毎に、 Gr削減可能領域に所定の窓関数をかける。更に、窓関数処 理部 16aは、 GI直後のデータ部の先頭部分から抽出した窓関数対象データに所定 の窓関数をかけて得られる拡張データをデータ部の最後尾に付加する。シンボル配 置部 16bは、窓関数処理部 16aによって処理されたシンボル同士を、シンボルの先 頭力 s、隣接するシンボルのデータ部に重ならないように直列配置して送信部 17に出 力する。送信部 17は、シンボル配置部 16bから入力される OFDM信号を RF周波数 帯に周波数変換し、送信信号として基地局 CSに送信する。 [0041] The ECP processing unit 16 includes a window function processing unit 16a and a symbol arrangement unit 16b. The ECP processing unit 16 starts the ECP processing in response to an ECP processing start request input from the terminal control unit 1. On the other hand, when the ECP processing start request is not input, the ECP processing unit 16 outputs the OFDM signal after GI addition to the transmitting unit 17 without processing. Based on the Gr reducible region input from the terminal control unit 1, the window function processing unit 16a applies a predetermined window function to the Gr reducible region for each symbol included in the OFDM signal after GI addition. Further, the window function processing unit 16a adds the extended data obtained by applying a predetermined window function to the window function target data extracted from the head part of the data part immediately after the GI, at the end of the data part. The symbol arrangement unit 16b arranges the symbols processed by the window function processing unit 16a in series so as not to overlap the symbol leading force s and the data portion of the adjacent symbol, and outputs them to the transmission unit 17. The transmission unit 17 converts the frequency of the OFDM signal input from the symbol arrangement unit 16b into an RF frequency band, and transmits it to the base station CS as a transmission signal.
[0042] 一方、図示は省略するが無線通信部 2の受信機側は、上記送信機側と逆動作を行 う構成要素を備える。すなわち、無線通信部 2の受信機側は、基地局 CSから受信し た受信信号を IF周波数帯に周波数変換して受信 OFDM信号を抽出する。更に、無 線通信部 2の受信機側は、当該受信 OFDM信号から窓関数をかけた部分及び GIを 除去する。その後、無線通信部 2の受信機側は、当該受信 OFDM信号に対して、 F FT処理、デジタル復調、パラレル シリアル変換処理、ディンタリーバ処理及び誤り 訂正復号処理を行うことでビット列を再構築し、端末制御部 1に出力する。 On the other hand, although not shown, the receiver side of the wireless communication unit 2 includes components that perform the reverse operation of the transmitter side. That is, the receiver side of the radio communication unit 2 extracts the received OFDM signal by frequency-converting the received signal received from the base station CS to the IF frequency band. Further, the receiver side of the wireless communication unit 2 applies the window function to the received OFDM signal and the GI. Remove. After that, the receiver side of the wireless communication unit 2 reconstructs the bit string by performing FFT processing, digital demodulation, parallel serial conversion processing, dintariba processing, and error correction decoding processing on the received OFDM signal. Output to control unit 1.
[0043] 続いて、図 3に戻って説明する。操作部 3は、電源キー、各種ファンクションキー、テ ンキ一等の操作キーから構成されている。操作部 3は、これら操作キーによる操作入 力に基づいた操作信号を端末制御部 1に出力する。表示部 4は、例えば液晶モニタ または有機 ELモニタ等であり、端末制御部 1から入力される表示信号に基づいて所 定の画像や文字を表示する。 Subsequently, returning to FIG. 3, the description will be continued. The operation unit 3 is composed of operation keys such as a power key, various function keys, and a keypad. The operation unit 3 outputs an operation signal based on operation inputs from these operation keys to the terminal control unit 1. The display unit 4 is, for example, a liquid crystal monitor or an organic EL monitor, and displays predetermined images and characters based on display signals input from the terminal control unit 1.
音声入出力部 5は、マイク及びスピーカから構成されており、マイクを介して外部か ら入力された音声をデジタル信号に変換して端末制御部 1に出力する。一方、音声 入出力部 5は、端末制御部 1から入力される音声データを、スピーカを介して外部に 出力する。記憶部 6は、上記の端末制御部 1で使用される端末制御プログラムや GI 削減情報など各種データを記憶すると共に、再送制御等に使用されるバッファとして の機能を有する。  The voice input / output unit 5 includes a microphone and a speaker. The voice input / output unit 5 converts voice input from the outside through the microphone into a digital signal and outputs the digital signal to the terminal control unit 1. On the other hand, the audio input / output unit 5 outputs the audio data input from the terminal control unit 1 to the outside through a speaker. The storage unit 6 stores various data such as a terminal control program and GI reduction information used by the terminal control unit 1 and has a function as a buffer used for retransmission control and the like.
[0044] 次に、上記のように構成された端末 PSの動作について図 7のフローチャートを用い て説明する。  Next, the operation of terminal PS configured as described above will be described using the flowchart of FIG.
[0045] まず、端末制御部 1は、操作部 3からデータ送信を指示する操作信号を受け付ける 。端末制御部 1は、無線通信部 2を制御して、基地局 CSから送信される制御チヤネ ル (CCH)をサーチする。更に、端末制御部 1は、捕捉に成功し且つ受信状態が最も 良い制御チャネルを送信している基地局 CSとの間の通信接続の確立処理を行う。こ こで、端末制御部 1は、制御チャネルを介して基地局 CSに対してリンクチャネル(トラ フィックサブチャネル)の割り当てを要求し、制御チャネルに含まれる同期情報に基 づいて基地局 CSとの同期を確立する(ステップ Sl)。  First, terminal control unit 1 receives an operation signal instructing data transmission from operation unit 3. The terminal control unit 1 controls the radio communication unit 2 to search for a control channel (CCH) transmitted from the base station CS. Furthermore, the terminal control unit 1 performs a process of establishing a communication connection with the base station CS that has successfully acquired and transmitted the control channel with the best reception state. Here, the terminal control unit 1 requests the base station CS to allocate a link channel (traffic subchannel) via the control channel, and the base station CS and the base station CS are based on the synchronization information included in the control channel. Establish synchronization (step Sl).
[0046] 基地局 CSとの同期確立が終了すると、通信環境把握部 laは、無線通信部 2を介し て基地局 CSから取得した受信信号に基づいて、本端末 PSと基地局 CSとの間の距 離及び見通し環境(見通し内の環境か、または見通し外の環境)を把握する(ステツ プ S2)。  [0046] When the establishment of synchronization with the base station CS is completed, the communication environment grasping unit la establishes a communication between the terminal PS and the base station CS based on the received signal acquired from the base station CS via the wireless communication unit 2. The distance and the prospect environment (in-prospect or out-of-sight environment) are ascertained (step S2).
[0047] 具体的には、通信環境把握部 laは、端末 PSと基地局 CSとの間の距離を同期タイ ミングに基づいて取得する。そして、通信環境把握部 laは、端末 PSから基地局 CS に到達する直接波のあとに到達する遅延波の受信信号レベルが直接波に比べ低い 場合には、見通し内環境であると判断する。また、通信環境把握部 laは、遅延波が 所定数より多く且つ直接波よりも信号レベルが高い遅延波が存在する場合には、見 通し外環境であると判断する。 [0047] Specifically, the communication environment grasping unit la synchronizes the distance between the terminal PS and the base station CS. Get based on ming. Then, the communication environment grasping unit la determines that it is a line-of-sight environment when the received signal level of the delayed wave that arrives after the direct wave that reaches the base station CS from the terminal PS is lower than the direct wave. In addition, the communication environment grasping unit la determines that the environment is an out-of-look environment when there are delay waves that have more than a predetermined number of delay waves and a signal level higher than that of the direct waves.
[0048] 続いて、 Gr削減可能領域決定部 lbは、通信環境把握部 laによって把握された端 末 PSと基地局 CSとの間の距離及び見通し環境と、記憶部 6に記憶されている Gr削 減情報とに基づいて、端末 PSと基地局 CSとの間の距離及び見通し環境に対応する Gr削減可能領域を決定する(ステップ S3)。具体的には、例えば通信環境把握部 la によって把握された見通し環境が見通し外の環境であった場合、 Gr削減可能領域 決定部 lbは、図 5Bに示す Gr削減可能領域と、端末 PSと基地局 CSとの間の距離と の対応関係に基づいて Gr削減可能領域を決定する。  [0048] Subsequently, the Gr reducible area determination unit lb determines the distance between the terminal PS and the base station CS, which is grasped by the communication environment grasping unit la, the line-of-sight environment, and the Gr stored in the storage unit 6. Based on the reduction information, the Gr reduction possible area corresponding to the distance between the terminal PS and the base station CS and the line-of-sight environment is determined (step S3). Specifically, for example, when the outlook environment grasped by the communication environment grasping unit la is an unforeseen environment, the Gr reducible area determination unit lb displays the Gr reducible area shown in FIG. The Gr reduction possible area is determined based on the correspondence with the distance to the station CS.
[0049] そして、端末制御部 1は、基地局 CSに送信すべきデータ信号のビット列を誤り訂正 符号化部 10に出力する。更に、端末制御部 1は、 ECP処理開始要求及び Gr削減可 能領域決定部 lbが決定した Gr削減可能領域を示す信号を ECP処理部 16に出力 する。データ信号のビット列は、誤り訂正符号化部 10、インタリーバ 11、シリアルーパ ラレル変換部 12、デジタル変調部 13、 IFFT部 14及び GI付加部 15を経て GIが付 加された OFDM信号に変換される。 ECP処理部 16の窓関数処理部 16aは、 OFD M信号を入力される。ここで、窓関数処理部 16aには、端末制御部 1から ECP処理開 始要求及び Gr削減可能領域を示す信号が入力されている。このため、窓関数処理 部 16aは、 GI付加部 15から入力される OFDM信号に対して ECP処理を開始する( ステップ S4)。  [0049] Then, terminal control section 1 outputs a bit string of a data signal to be transmitted to base station CS to error correction coding section 10. Further, the terminal control unit 1 outputs an ECP processing start request and a signal indicating the Gr reducible region determined by the Gr reducible region determining unit lb to the ECP processing unit 16. The bit string of the data signal is converted into an OFDM signal to which GI is added through an error correction coding unit 10, an interleaver 11, a serial-parallel conversion unit 12, a digital modulation unit 13, an IFFT unit 14, and a GI addition unit 15. The OFD M signal is input to the window function processing unit 16a of the ECP processing unit 16. Here, an ECP process start request and a signal indicating a Gr reduction possible area are input from the terminal control unit 1 to the window function processing unit 16a. Therefore, the window function processing unit 16a starts ECP processing on the OFDM signal input from the GI adding unit 15 (step S4).
[0050] 以下、この ECP処理部 16における窓関数処理部 16a及びシンボル配置部 16bに よる ECP処理について詳細に説明する。 GI付加部 15から入力される OFDM信号は 、従来と同様に図 10Aで示すことができる。図 8は、この図 10Aで示される OFDM信 号からシンボル 1を抽出したものである。図 8に示すように、窓関数処理部 16aは、シ ンボル 1の GI部 glにおける Gr削減可能領域 rlに所定の窓関数 (例えば三角関数) をかける。また、窓関数処理部 16aは、 GI部 gl直後のデータ部 D1の先頭部分から 抽出した窓関数対象データ r2に所定の窓関数をかけて得られる拡張データ r2'をデ ータ部 D1の最後尾に付加する。これにより、シンボル 1の先頭には Gr削減可能領域 rlに窓関数をかけて得られたデータ rl 'が付加される。更に、シンボル 1の最後尾に は拡張データ r2'が付加される。そして、図 9に示されるように、シンボル 2についても 同様の処理を行う。シンボル 2には、シンボル 2の GI部 g2における Gr削減可能領域 に所定の窓関数をかけた結果得られるデータ rl"と、 GI部 g2の直後のデータ D2の 先頭部分から抽出した窓関数対象データ r2に所定の窓関数をかけた結果得られる 拡張データ r2"とがそれぞれ付加される。このように窓関数処理部 16aは、全てのシ ンボルに対して上記と同様な処理を行う。 [0050] Hereinafter, the ECP processing by the window function processing unit 16a and the symbol arrangement unit 16b in the ECP processing unit 16 will be described in detail. The OFDM signal input from the GI adding unit 15 can be shown in FIG. Fig. 8 shows symbol 1 extracted from the OFDM signal shown in Fig. 10A. As shown in FIG. 8, the window function processing unit 16a applies a predetermined window function (for example, a trigonometric function) to the Gr reducible region rl in the GI unit gl of the symbol 1. The window function processing unit 16a starts from the head of the data part D1 immediately after the GI part gl. The extended data r2 ′ obtained by applying a predetermined window function to the extracted window function target data r2 is added to the end of the data part D1. As a result, data rl ′ obtained by applying a window function to the Gr reducible area rl is added to the beginning of symbol 1. Furthermore, the extension data r2 ′ is added to the end of the symbol 1. Then, as shown in FIG. 9, the same process is performed for symbol 2. For symbol 2, data rl "obtained as a result of applying a predetermined window function to the Gr reducible region in GI part g2 of symbol 2, and the window function target data extracted from the head part of data D2 immediately after GI part g2 Extended data r2 "obtained as a result of applying a predetermined window function to r2 is added. As described above, the window function processing unit 16a performs the same processing as described above for all symbols.
[0051] そして、図 9に示すように、シンボル配置部 16bは、窓関数処理部 16aによって処理 されたシンボル同士を、シンボルの先頭が、隣接するシンボルのデータ部に重ならな いように直列配置する。具体的には、シンボル配置部 16bは、窓関数処理部 16aによ つて処理されたシンボル同士を、拡張データ r2'とデータ rl"だけが重なるように直列 配置して送信部 17に出力する。送信部 17は、 OFDM信号をシンボル配置部 16bか ら入力する。送信部 17は、 OFDM信号を RF周波数帯に周波数変換して送信信号 を得て、基地局 CSに送信する(ステップ S5)。つまり、図 11Bに示す従来の IEEE802. 20の規格と同様な方法によって隣り合うシンボル同士を直列配置するのである。ここ で、本実施形態と従来とで大きく異なる点は、 GI部において Gr削減可能領域分だけ 削減することにより、 GI長を短縮したことである。これによりシンボル時間が短縮され、 データレートの低下を抑えることができる。すなわち、 SNRの低下だけでなぐデータ レートの低下を抑えつつ、帯域内のサイドローブを低減することが可能となる。 Then, as shown in FIG. 9, the symbol arrangement unit 16b serially processes the symbols processed by the window function processing unit 16a so that the head of the symbol does not overlap the data portion of the adjacent symbol. Deploy. Specifically, the symbol arrangement unit 16b arranges the symbols processed by the window function processing unit 16a in series so that only the extension data r2 ′ and the data rl ″ overlap, and outputs the symbols to the transmission unit 17. The transmission unit 17 inputs the OFDM signal from the symbol arrangement unit 16b, and the transmission unit 17 frequency-converts the OFDM signal to an RF frequency band to obtain a transmission signal, which is transmitted to the base station CS (step S5). In other words, adjacent symbols are arranged in series by a method similar to the conventional IEEE802.20 standard shown in Fig. 11B, where the difference between this embodiment and the conventional one is that Gr can be reduced in the GI section. By reducing the area, the GI length is shortened, which reduces the symbol time and suppresses the decrease in data rate, that is, while suppressing the decrease in data rate just by reducing the SNR. It is possible to reduce the side lobes of the band.
[0052] ところで、単純に GI部に ECP処理を行った場合であっても、 SNR及びデータレート の低下を抑制することできる。し力、し、 GI部において ECP処理を行った部分は元の データと異なることになる。このため、この場合には、 GI部の効果がなくなってしまい、 信号の遅延によるシンボル間干渉が発生しやすくなる。し力、し、同期確立後の信号の 遅延は前回の通信状況により想定することができ、 GIで規定される最大の遅延よりも はるかに少ないものと考えられる。従って、本実施形態のように、同期確立後の通信 において、 GI部に ECP処理を行うことにより、 SNR及びデータレートの低下を抑えつ つ、帯域内のサイドローブを低減することが可能となる。 [0052] By the way, even when the ECP processing is simply performed on the GI unit, it is possible to suppress the decrease in the SNR and the data rate. The part of the GI section that has undergone ECP processing is different from the original data. For this reason, in this case, the effect of the GI unit is lost, and intersymbol interference due to signal delay is likely to occur. The delay of the signal after the synchronization is established can be assumed by the previous communication situation, and is considered to be much less than the maximum delay specified by GI. Therefore, as in this embodiment, in communication after establishment of synchronization, ECP processing is performed on the GI unit, thereby suppressing a decrease in SNR and data rate. In addition, side lobes in the band can be reduced.
[0053] また、ガードインターバル期間のうちの削減可能な量を取得することにより、削減可 能量に応じたガードインターバル時間を削減でき、通信フレームのシンボル長を短く できるので通信におけるデータレートを向上することができる。 [0053] Also, by obtaining the reducible amount of the guard interval period, the guard interval time corresponding to the reducible amount can be reduced, and the symbol length of the communication frame can be shortened, thereby improving the data rate in communication. be able to.
[0054] なお、上記実施形態では、 OFDMA方式の通信システムについて述べた力 OFIn the above embodiment, the power OF described for the communication system of the OFDMA system
DMAだけでなぐ OFDM方式を用いた通信システムにも広く適用することができる。 また、無線通信装置として端末 PSを例示して説明したが、これに限定されず、同様 な構成を基地局 CSまたは他の OFDMを用いて通信を行う無線通信装置に適用す ること力 Sでさる。 The present invention can be widely applied to communication systems using OFDM systems that use only DMA. Further, although the terminal PS has been described as an example of the wireless communication apparatus, the present invention is not limited to this, and the same configuration can be applied to a wireless communication apparatus that performs communication using the base station CS or other OFDM. Monkey.
なお、本発明は以上の実施形態に限定されるものではなぐ例えば上記の実施形 態に対する構成要素の追加や削除、置換、構成要素同士の組み合わせなどを適宜 行ってもよい。  Note that the present invention is not limited to the above embodiment, and for example, addition or deletion of components to the above embodiment, substitution, combination of components, and the like may be appropriately performed.
産業上の利用可能性  Industrial applicability
[0055] OFDMを用いて通信を行う場合において、 SNR及びデータレートを低下させること なぐ帯域内のサイドローブを低減することができる。 [0055] When performing communication using OFDM, it is possible to reduce side lobes in the band without reducing the SNR and data rate.

Claims

請求の範囲 The scope of the claims
[1] OFDM(Orthogonal Frequency Division Multiplexing)を用いて通信を fiう無泉通 信システムであって、  [1] A non-spring communication system that uses OFDM (Orthogonal Frequency Division Multiplexing) to communicate.
受信側との同期確立後に、前記受信側との通信環境を把握する通信環境把握ュ ニッ卜と、  After establishing synchronization with the receiving side, a communication environment grasping unit for grasping the communication environment with the receiving side,
前記通信環境に応じて、ガードインターバルにおける削減可能領域を決定する削 減可能領域決定ユニットと、  A reducible area determination unit that determines a reducible area in the guard interval according to the communication environment;
シンボル毎に、前記ガードインターバルの削減可能領域に所定の窓関数をかける と共に、ガードインターバル直後のデータ領域の一部から抽出したデータに所定の 窓関数をかけて得られる拡張データをデータ領域の最後尾に付加する窓関数処理 ユニットと、  For each symbol, a predetermined window function is applied to the reducible area of the guard interval, and extended data obtained by applying a predetermined window function to data extracted from a part of the data area immediately after the guard interval is used as the end of the data area. A window function processing unit to be added to the tail,
前記窓関数処理ユニットによって処理されたシンボル同士を、シンボルの先頭が、 隣接するシンボルのデータ領域に重ならなレ、ように直列配置するシンボル配置ュニ ットと、を備える無線通信システム。  A radio communication system comprising: a symbol arrangement unit arranged in series so that symbols processed by the window function processing unit are arranged such that a symbol head does not overlap a data area of an adjacent symbol.
[2] 送信側と受信側との間の距離と、前記削減可能領域との対応関係を予め記憶する 記憶ユニットを更に備え、 [2] The storage unit further stores in advance the correspondence between the distance between the transmission side and the reception side and the reducible area,
前記通信環境把握ユニットは、前記通信環境として、前記送信側と受信側との間の 距離を把握し、  The communication environment grasping unit grasps a distance between the transmitting side and the receiving side as the communication environment,
前記削減可能領域決定ユニットは、前記通信環境把握ユニットによって把握された 前記距離と、前記記憶ユニットに記憶されている前記対応関係とに基づいて、前記 距離に対応する削減可能領域を決定する、  The reducible area determining unit determines a reducible area corresponding to the distance based on the distance grasped by the communication environment grasping unit and the correspondence relation stored in the storage unit.
請求項 1記載の無線通信システム。  The wireless communication system according to claim 1.
[3] 前記記憶ユニットは、前記受信側に対する見通し環境に応じた前記対応関係を記 [3] The storage unit stores the correspondence relationship according to the line-of-sight environment with respect to the receiving side.
I思しゝ  I think
前記通信環境把握ユニットは、前記通信環境として、前記送信側と受信側との間の 距離及び前記見通し環境を把握し、  The communication environment grasping unit grasps the distance between the transmitting side and the receiving side and the line-of-sight environment as the communication environment,
前記削減可能領域決定ユニットは、前記通信環境把握ユニットによって把握された 前記距離及び見通し環境と、前記記憶ユニットに記憶されて!/、る前記見通し環境に 応じた前記対応関係とに基づ!/、て、前記距離及び見通し環境に対応する削減可能 領域を決定する、 The reducible area determination unit includes the distance and line-of-sight environment acquired by the communication environment determination unit, and the line-of-sight environment stored in the storage unit! / Based on the corresponding relationship according to! /, Determine the reducible area corresponding to the distance and the visibility environment,
請求項 2記載の無線通信システム。  The wireless communication system according to claim 2.
[4] OFDM(Orthogonal Frequency Division Multiplexing)を用いて通信を行う無,锒通 信装置であって、 [4] A wireless communication device that performs communication using OFDM (Orthogonal Frequency Division Multiplexing),
受信側との同期確立後に、前記受信側との通信環境を把握する通信環境把握ュ ニッ卜と、  After establishing synchronization with the receiving side, a communication environment grasping unit for grasping the communication environment with the receiving side,
前記通信環境に応じて、ガードインターバルにおける削減可能領域を決定する削 減可能領域決定ユニットと、  A reducible area determination unit that determines a reducible area in the guard interval according to the communication environment;
を備える無線通信装置。  A wireless communication device comprising:
[5] シンボル毎に、前記ガードインターバルの削減可能領域に所定の窓関数をかける と共に、ガードインターバル直後のデータ領域の一部から抽出したデータに所定の 窓関数をかけて得られる拡張データをデータ領域の最後尾に付加する窓関数処理 ユニットと、 [5] For each symbol, a predetermined window function is applied to the area where the guard interval can be reduced, and extended data obtained by applying a predetermined window function to data extracted from a part of the data area immediately after the guard interval is used as data. A window function processing unit to be added to the end of the area;
前記窓関数処理ユニットによって処理されたシンボル同士を、シンボルの先頭が、 隣接するシンボルのデータ領域に重ならなレ、ように直列配置するシンボル配置ュニ ッ卜と、  A symbol arrangement unit that arranges the symbols processed by the window function processing unit in series so that the top of the symbol does not overlap the data area of an adjacent symbol;
を更に備える請求項 4記載の無線通信装置。  The wireless communication apparatus according to claim 4, further comprising:
[6] 自装置と前記受信側との間の距離と、前記削減可能領域との対応関係を予め記憶 する記憶ユニットを更に備え、 [6] The apparatus further comprises a storage unit for storing in advance the correspondence between the distance between the device and the receiving side and the reducible area,
前記通信環境把握ユニットは、前記通信環境として、自装置と前記受信側との間の 距離を把握し、  The communication environment grasping unit grasps a distance between the own device and the receiving side as the communication environment,
前記削減可能領域決定ユニットは、前記通信環境把握ユニットによって把握された 前記距離と、前記記憶ユニットに記憶されている前記対応関係とに基づいて、前記 距離に対応する削減可能領域を決定する、  The reducible area determining unit determines a reducible area corresponding to the distance based on the distance grasped by the communication environment grasping unit and the correspondence relation stored in the storage unit.
請求項 5記載の無線通信装置。  The wireless communication device according to claim 5.
[7] 前記記憶ユニットは、前記受信側に対する見通し環境に応じた前記対応関係を記 [7] The storage unit stores the correspondence relationship according to a line-of-sight environment with respect to the receiving side.
I思しゝ 前記通信環境把握ユニットは、前記通信環境として、自装置と前記受信側との間の 距離及び前記見通し環境を把握し、 I think The communication environment grasping unit grasps the distance between the own device and the receiving side and the line-of-sight environment as the communication environment,
前記削減可能領域決定ユニットは、前記通信環境把握ユニットによって把握された 前記距離及び見通し環境と、前記記憶ユニットに記憶されて!、る前記見通し環境に 応じた前記対応関係とに基づ!/、て、前記距離及び見通し環境に対応する削減可能 領域を決定する、  The reducible area determination unit is based on the distance and line-of-sight environment grasped by the communication environment grasping unit and the correspondence relationship according to the line-of-sight environment stored in the storage unit! /, Determine a reducible area corresponding to the distance and line-of-sight environment,
請求項 6記載の無線通信装置。  The wireless communication device according to claim 6.
[8」 OFDM(Orthogonal Frequency Division Multiplexingリを用いて通 1§を tTつ無泉通 f 方法であって、 [8] OFDM (Orthogonal Frequency Division Multiplexing)
送信側と受信側との同期確立後に、前記送信側と前記受信側との間の通信環境を 把握する通信環境把握ステップと、  A communication environment grasping step for grasping a communication environment between the transmission side and the reception side after establishing synchronization between the transmission side and the reception side;
前記通信環境に応じて、ガードインターバルにおける削減可能領域を決定する削減 可能領域決定ステップと、  A reducible area determination step for determining a reducible area in the guard interval according to the communication environment;
を備える無線通信方法。  A wireless communication method comprising:
[9] 送信側と受信側との間の距離と、前記削減可能領域との対応関係を予め記憶する 記憶ステップを更に備え、 [9] A storage step of previously storing a correspondence relationship between the distance between the transmission side and the reception side and the reducible area is further provided.
前記通信環境把握ステップは、前記通信環境として、前記送信側と受信側との間 の距離を把握し、  The communication environment grasping step grasps a distance between the transmission side and the reception side as the communication environment,
前記削減可能領域決定ステップは、前記通信環境把握ステップにお!/、て把握され た前記距離と、前記記憶ステップで記憶されている前記対応関係とに基づいて、前 記距離に対応する削減可能領域を決定する、  The reducible area determination step can reduce the distance corresponding to the distance based on the distance grasped in the communication environment grasping step and the correspondence stored in the storing step. Determine the area,
請求項 8記載の無線通信方法。  The wireless communication method according to claim 8.
[10] 前記記憶ステップは、前記送信側と前記受信側との間の見通し環境に応じた前記 対応関係を記憶し、 [10] The storing step stores the correspondence relationship according to a line-of-sight environment between the transmitting side and the receiving side,
前記通信環境把握ステップは、前記通信環境として、前記送信側と前記受信側と の間の距離及び前記見通し環境を把握し、  The communication environment grasping step grasps the distance between the transmitting side and the receiving side and the line-of-sight environment as the communication environment,
前記削減可能領域決定ステップは、前記通信環境把握ステップにお!/、て把握され た前記距離及び見通し環境と、前記記憶ステップで記憶されて!/、る前記見通し環境 に応じた前記対応関係とに基づ!/、て、前記距離及び見通し環境に対応する削減可 能領域を決定する、 The reducible area determining step includes the distance and line-of-sight environment determined in the communication environment determination step and the line-of-sight environment stored in the storage step! / Based on the correspondence relationship according to the! /, Determine a reducible area corresponding to the distance and line-of-sight environment,
請求項 9記載の無線通信方法。  The wireless communication method according to claim 9.
前記シンボル毎に、前記ガードインターバルの削減可能領域に所定の窓関数をか けると共に、ガードインターバル直後のデータ領域の一部から抽出したデータに所定 の窓関数をかけて得られる拡張データをデータ領域の最後尾に付加する窓関数処 理ステップを更に備え、  For each symbol, a predetermined window function is applied to the area where the guard interval can be reduced, and extended data obtained by applying a predetermined window function to data extracted from a part of the data area immediately after the guard interval is used as the data area. A window function processing step to be added to the tail of
前記シンボル配置ステップは、前記窓関数処理ステップによって処理されたシンポ ル同士を、シンボルの先頭が、隣接するシンボルのデータ領域に重ならないように直 列配置する請求項 8記載の無線通信方法。  9. The radio communication method according to claim 8, wherein the symbol arrangement step arranges the symbols processed by the window function processing step in series so that the head of the symbol does not overlap with a data area of an adjacent symbol.
PCT/JP2007/072202 2006-11-29 2007-11-15 Radio communication system, radio communication device, and radio communication method WO2008065901A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-321533 2006-11-29
JP2006321533A JP2008136055A (en) 2006-11-29 2006-11-29 Radio communication system, radio communication equipment and radio communicating method
JP2007018098A JP2008141715A (en) 2007-01-29 2007-01-29 Radio communication system and radio communication device
JP2007-018098 2007-01-29

Publications (1)

Publication Number Publication Date
WO2008065901A1 true WO2008065901A1 (en) 2008-06-05

Family

ID=39467694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072202 WO2008065901A1 (en) 2006-11-29 2007-11-15 Radio communication system, radio communication device, and radio communication method

Country Status (1)

Country Link
WO (1) WO2008065901A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101729482B (en) * 2008-10-29 2013-03-27 京瓷株式会社 Base station device
US9680681B2 (en) 2013-03-04 2017-06-13 Mitsubishi Electric Corporation Transmission apparatus, reception apparatus, and communication system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068975A (en) * 1998-02-22 2000-03-03 Sony Internatl Europ Gmbh Transmission method/device and reception method/device
JP2003298549A (en) * 2002-04-02 2003-10-17 Mitsubishi Electric Corp Multi-carrier transmission apparatus
JP2004135305A (en) * 2002-10-08 2004-04-30 Lucent Technol Inc Feedback method for hsdpa system using ofmda

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000068975A (en) * 1998-02-22 2000-03-03 Sony Internatl Europ Gmbh Transmission method/device and reception method/device
JP2003298549A (en) * 2002-04-02 2003-10-17 Mitsubishi Electric Corp Multi-carrier transmission apparatus
JP2004135305A (en) * 2002-10-08 2004-04-30 Lucent Technol Inc Feedback method for hsdpa system using ofmda

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101729482B (en) * 2008-10-29 2013-03-27 京瓷株式会社 Base station device
US9680681B2 (en) 2013-03-04 2017-06-13 Mitsubishi Electric Corporation Transmission apparatus, reception apparatus, and communication system
US9866419B2 (en) 2013-03-04 2018-01-09 Mitsubishi Electric Corporation Transmission apparatus, reception apparatus, and communication system

Similar Documents

Publication Publication Date Title
AU2008312350B2 (en) OFDM/OFDMA frame structure for communication systems
JP5156128B2 (en) Method and apparatus in a wireless communication system
JP4927179B2 (en) Method and system for transmitting and receiving common control information in a communication system
KR100918729B1 (en) Method and apparatus for time multiplexing packet data and uplink control information in single carrier frequency division multiple access system
US20070211656A1 (en) Method and apparatus for time multiplexing uplink data and uplink signaling information in an SC-FDMA system
JP6903690B2 (en) Communication method based on wireless network, terminal equipment and network equipment
JP2001060934A (en) Ofdm communication equipment
US20100027506A1 (en) Wireless communication system, wireless communication terminal and cell station, and wireless communication method
KR20070074438A (en) Method and transmitting apparatus for transmission of uplink signaling information for single carrier frequency division multiple access system
KR20120130405A (en) Method and apparatus for transmitting of dynamic time division duplex data region in wireless communication system
US8259572B2 (en) Communication method and transmitting apparatus utilizing the same
JP4920037B2 (en) Encoded signal arrangement method and communication apparatus in multicarrier communication
CN109039555B (en) Method and device used in user and base station of wireless communication
JP2010531083A (en) System and method for scheduling and transferring data through a transmission system
US9628232B2 (en) Method of and a radio transmission system and radio access equipment for cellular wireless radio transmission
CN109392115B (en) Method and device used in user equipment and base station for wireless communication
JPWO2005004361A1 (en) Multi-carrier wireless transmission system, transmitting apparatus and receiving apparatus
WO2007081165A1 (en) Method and apparatus for data coded symbol mapping based on channel estimation in a frequency division multiple access system
CN114450906B (en) Network access node and client device for adaptive DMRS patterns
WO2008065901A1 (en) Radio communication system, radio communication device, and radio communication method
JP5451642B2 (en) Communication method using frames
JP2008136055A (en) Radio communication system, radio communication equipment and radio communicating method
KR20190026239A (en) Method for controlling HARQ process in Cloud-RAN, base station system and user equipment therefor
JP2004254335A (en) Radio base station and radio terminal
JP2007221289A (en) Transmission apparatus for adaptively controlling number of fast fourier transform points, receiving apparatus, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07831932

Country of ref document: EP

Kind code of ref document: A1