WO2008065895A1 - Method for separation/measurement of f2-isoprostane isomer - Google Patents

Method for separation/measurement of f2-isoprostane isomer Download PDF

Info

Publication number
WO2008065895A1
WO2008065895A1 PCT/JP2007/072146 JP2007072146W WO2008065895A1 WO 2008065895 A1 WO2008065895 A1 WO 2008065895A1 JP 2007072146 W JP2007072146 W JP 2007072146W WO 2008065895 A1 WO2008065895 A1 WO 2008065895A1
Authority
WO
WIPO (PCT)
Prior art keywords
isoprostane
phase extraction
sample
solid phase
solid
Prior art date
Application number
PCT/JP2007/072146
Other languages
French (fr)
Japanese (ja)
Inventor
Zhang Bo
Keijiro Saku
Original Assignee
Zhang Bo
Keijiro Saku
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhang Bo, Keijiro Saku filed Critical Zhang Bo
Publication of WO2008065895A1 publication Critical patent/WO2008065895A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • G01N30/14Preparation by elimination of some components
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/28Control of physical parameters of the fluid carrier
    • G01N30/34Control of physical parameters of the fluid carrier of fluid composition, e.g. gradient
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N2030/009Extraction

Definitions

  • the present invention relates to a method for separating and measuring F 2 -isoprostane isomers. More specifically, the present invention relates to a method for separating and measuring stereoisomers and positional isomers of F 2 —isoprostane compounds and a sample processing method for separating and measuring F 2 —isoprostane isomers.
  • Non-patent Document 1 oxidative stress in a living body is a cause of peroxidation of lipids and phospholipids, and the relationship between oxidative stress and diseases has attracted attention.
  • the level of oxidation in the living body is regulated by the balance between the reactive oxygen species production system and the consumption system, and is usually kept almost constant.
  • oxidative stress or oxidative stress a state in which the balance is lost due to various factors such as drugs, radiation, and ischemia, and the tendency to oxidize.
  • oxidative stress is defined as the difference between the oxidative damage potential of reactive oxygen species (ROS) generated in vivo and the antioxidant potential of the in vivo antioxidant system.
  • ROS reactive oxygen species
  • Reactive oxygen is produced in the body when oxygen is taken from the respiration and used in the mitochondrial electron transport system to generate water, when leukocytes undergo an inflammatory reaction during infection, or during metabolism of arachidonic acid. Is done.
  • active oxygen is generally regarded as a bad person, it is originally useful for energy production, invasion of foreign substances, treatment of unwanted cells, and cell information transmission.
  • arachidonic acid is a metabolite of linoleic acid, one of the essential n-6 unsaturated fatty acids derived from food, and exists as phospholipids in cell membranes and plasma. It has been reported that when arachidonic acid is peroxidized by reactive oxygen species or free radicals, a series of prostaglandin-like substances with strong biological activity are generated non-enzymatically by radical reactions in the human body (for example, Non-patent document 1). Thus, a series of prostaglandin-like substances generated from arachidonic acid by the reaction mechanism of free radicals are collectively called F 2 isoprostane compounds.
  • F 2 —isoprostane compounds are markers of established oxidative stress (see, eg, Non-Patent Document 2) and are associated with a variety of conditions and diseases including cardiovascular disease and its risk factors (eg, Non-patent document 3).
  • F 2 -isoprostane has a strong physiological action as a ligand for a prostaglandin (PG) receptor or nuclear receptor bound to a cell membrane (see, for example, Non-Patent Document 4).
  • PG prostaglandin
  • F 2 -isoprostane is produced in a state bound to the phospholipid of the cell membrane and lipoprotein (see, for example, Non-Patent Document 5) and dissociates into free F 2 -isoprostane by the action of phospholipase A 2. It is metabolized in urine (for example, see Non-Patent Document 6).
  • F 2 —isoprostan has a number of stereoisomers and 4 series of positional isomers (see, for example, Non-Patent Documents 1 and 7 1 1).
  • comprehensive and specific measurements of the F 2 -isoprostane isomers are required for comprehensive assessment of oxidative stress.
  • F 2 -isotopes present in biological samples Since the concentration of rostan is low, an analytical method with high analytical sensitivity is required (for example, see Non-Patent Document 8).
  • Urinary F 2 isoprostane has been shown to be a specific and sensitive oxidative stress marker for noninvasive in vivo oxidative stress measurement, which is beginning to be used to assess oxidative stress.
  • 8-isoprostane (8-iso-PGF 2 a , 8-iso-15 (S) PGF 2 a and iPF 2 a -lll) is the most studied F 2 — Isoprostan.
  • iPF 2 a -VI is a positional isomer of iPF 2 a -lll and is said to be produced in the body more than 8-isoprostan (for example, see Non-Patent Document 9).
  • the F 2 —isoprostane isomers have different physiological effects and may vary in metabolism in various pathologies and diseases associated with oxidative stress, so specific and comprehensive measurements of the F 2 —isoprostane isomers Is important.
  • isoprostane molecular markers one present in plasma or urine (iPF 2 a -ll and iPF 2 a -VI and 8,12-iso -iPF 2 a -VI) is measured by gas chromatography / mass spectrometry (GC / MS) as a method for measuring the degree of lipid peroxidation (for example, see Patent Document 1). ).
  • GC / MS Gas Chromatography / Mass Spectrometry
  • F 2 —isoprostane see, eg, Non-Patent Documents 10 0, 11 and 12.
  • GC / MS cannot be used as a routine measurement method due to the lack of measurement specificity as well as troublesome purification and derivatization of Sankare (for example, Non-Patent Documents 1 0 and 1 2).
  • An 8-isoprostane measurement kit based on enzyme immunoassay (ELISA) is also available on the market.
  • ELISA enzyme immunoassay
  • F 2 —isoprostane stereoisomers are analyzed by high performance liquid chromatography
  • HPLC and regioisomers can be separated by electrospray (ESI) -MS / MS, allowing specific measurement of F 2 -isoprostane isomers.
  • ESI-MS / MS method in a way that can detect low concentrations of analyte from complex sample matrices can sensitive measurement of F 2 _ isoprostanes.
  • LC-MS / MS methods have significant drawbacks when analyzing biological samples. In other words, the ionization efficiency of the measurement substance by ESI is affected by the sample matrix and HPLC buffer. Since the matrix effect varies from sample to sample (see Non-Patent Documents 14 for example), it is necessary to control the matrix effect in order to perform stable analysis.
  • the measurement substance in order to correct measurement data that has fluctuated due to sample injection, sample preparation, instrument parameters, and the matrix effect, the measurement substance is chemically and structurally the same, but only the mass is different, stable.
  • the isotope-labeled analog is used as an internal standard (IS). Even if internal standards such as stable isotopes are used, for example, plasma samples extracted with an organic solvent are separated by HPLC-isolated 8-isoprostane (8-iso-PGF 2 ( l -d 4 ) It has been reported that accurate measurement is not possible due to the presence of contaminants in the peak (for example, see Non-Patent Document 16).
  • Urinary F 2 — isoprostane compounds are peroxidation products of arachidonic acid through reactive oxygen species and are reliable markers of oxidative stress.
  • isomers in urinary F 2 -isoprostane compounds there are various isomers in urinary F 2 -isoprostane compounds, and it is important to separate and measure these isomers with high accuracy.
  • the LC-MS / MS method has been reported to be a specific assay for the F 2 -isoprostane isomer in biological samples.
  • this method since ion suppression by the sample matrix is not controlled, stable analysis cannot be performed at present.
  • fluctuations in the electrospray ionization efficiency due to the sample matrix will affect the accuracy, reproducibility, and sensitivity of the measurement. Therefore, when measuring biological samples by LC-MS / MS, it is very important to control ionization suppression or enhancement by the sample matrix in order to perform stable analysis.
  • Non-Patent Document 1 Yin, H., et a, J. Chromatogr. B Analyt. Technol. Biomed. Life Sc, 2005, 827: 157-164
  • Non-Patent Document 4 Pratico, D., et al., ⁇ Biol. Chem. 1996, 271: 14916-14924
  • Non-Patent Document 6 Basu, S., FEBS Lett. 1998, 428: 32-36
  • Non-Patent Document 7 Rokach, Tsuji, et al., Chem. Phys. Lipids, 2004, 128: 35-56
  • Non-patent literature 8 Schwedhelm, ⁇ ⁇ , et al., J. Chromatogr. B Biomed. Sc, App, 2000, 744: 99-112
  • Non-Patent Document 9 luliano, L. et al., ⁇ Am. CoH. Cardiol. 2001, 37: 76-80
  • Non-Patent Document 1 1 Reilly, MP "et al., Circulation. 1997, 96: 3314-3320
  • Non-Patent Document 1 2 Mori, T.A., et al., Anal. Biochem. 1999, 268: 117-125
  • Non-Patent Literature 1 3 Pratico, D., et al., Nat. Med. 1998, 4: 1189-1192
  • Non-Patent Document 1 Mallet, C.R., et al., Rapid. Commun. Mass Spectrom. 18: 49-58
  • Non-Patent Document 1 5 Tiller, PR, et al., Rapid. Commun. Mass Spectrom. 16: 92-98
  • Non-patent literature 1 6 Taylor, AW, et al., Anal. Biochem. 2006, 350: 41-51
  • Non-patent literature 1 7 Liang, Y, et al., Free Radic. Biol. Med. 2003, 34: 409- 418
  • Non-patent literature 1 8 Li, H "et al., Proc. Natl. Acad. Sci, USA, 1999, 96: 13381-13386 [Non-patent literature 1 9 Bohnstedt, KC, et al., J. Chromatog in B Analyt Technol. Biomed. Life Sci. 2006, 796: 11-19
  • Non-Patent Document 2 0 luliano, L, et al., ⁇ Am. Coll. Cardio 2001, 37: 76-80
  • Non-Patent Document 2 1 Snyder, L.R., et al., ⁇ Chromatogr. A. 2000. 892: 107-121
  • Patent Document 1 Special Table 2 0 0 2—5 3 1 8 1 5 gazette Disclosure of Invention Therefore, the present inventor has developed a matrix and one HPLC buffer additive during measurement of F 2 —isoprostane by LC-MS / MS As a result of intensive investigations on the means to control the ion suppression effect of urine, a new multi-dimensional solid-phase extraction (MD-SPE) urine sample cleanup method and a new buffer-free HPLC method were developed. The present invention was completed by finding that stable measurement of urinary F 2 -isoprostane without damage by the MS / MS method was possible.
  • MD-SPE multi-dimensional solid-phase extraction
  • one main object of the present invention is to provide a method for separating and measuring F 2 -isoprostane isomers.
  • a preferred embodiment of the present invention is to provide a method for separating and measuring stereoisomers and positional isomers of F 2 _isoprostane compounds.
  • Another main object of the present invention is to provide a sample suitable for a method for separating and measuring F 2 -isoprostane isomers, particularly a method for treating a biological sample such as a urine sample.
  • the present invention provides a method for separating and measuring stereoisomers and positional isomers of F 2 -isoprostane compounds.
  • a sample is added to a chromatographic carrier having a specific particle size capable of separating F 2 -isoprostane isomers, and an elution solution consisting of a methanol noacetonyl aqueous solution having a specific concentration ratio is used.
  • the specific particle size that can be separated from F 2 -isoprostane isomers is 4 // Less than m
  • the chromatographic carrier is not capable of retaining F 2 —isoprostane isomer
  • methanol Z-acetonitrile aqueous solution with a specific concentration ratio is 1 0: 9 0-1 0 0: 0
  • a method for separating and measuring F 2 -isoprostane isomers is provided.
  • a preferred embodiment of the present invention provides a method for separating and measuring F 2 -isoprostane isomers, wherein the specific particle size capable of separating F 2 -isoprostane isomers is 3.5 m or less.
  • Another preferred embodiment of the present invention is a silica carrier in which the chromatographic carrier is C6-C20, preferably C8-C18, more preferably C8, or a C18 long chain alkyl group is chemically bonded to silica gel.
  • the chromatographic carrier is C6-C20, preferably C8-C18, more preferably C8, or a C18 long chain alkyl group is chemically bonded to silica gel.
  • specific concentration ratio of methanol Asetonitoriru aqueous solution 4 0: 6 0-1 0 0: 0, preferably from 5 0: 5 0 - 1 0 0: 0 consists a F 2 —Methods for separating and measuring isoprostane isomers.
  • the present invention provides a sample processing method suitable for a method for separating and measuring F 2 -isoprostane isomers.
  • the sample processing method of the present invention is based on the two-step solid-phase extraction using a solid-phase extraction carrier having a different solid-phase capacity, by removing impurities and extracting the F 2 -isoprostane compound.
  • -It is an epoch-making method that makes it possible to simultaneously perform three things: solvent exchange for MS / MS analysis, concentration to enhance analytical sensitivity, and sample purification at the same time.
  • a sample such as a biological sample is passed through a first solid phase extraction carrier having a large solid phase capacity, and F 2 -isoprostane contained in the sample is passed.
  • a first solid-phase extraction step comprising holding a compound and its isotope on the first solid-phase extraction carrier and removing contaminants contained in the sample, and passing through the first solid-phase extraction carrier
  • the obtained sample is passed through a second solid phase extraction carrier having a smaller solid phase capacity than the solid phase capacity of the first solid phase extraction carrier, and further F 2 -isopropyl compound and its isotope are extracted into the second solid phase extraction.
  • a second solid-phase extraction step comprising holding the carrier and removing contaminants contained in the sample.
  • the first solid phase extraction step is performed by size exclusion chromatography and reverse phase chromatography
  • the second solid phase extraction step is performed by size exclusion chromatography and normal phase chromatography.
  • a sample such as a body sample is passed through a first solid phase extraction carrier having a large solid phase capacity, and the F 2 -isoprostane compound contained in the sample and its isotope are included.
  • a first solid phase extraction step of holding a body on the first solid phase extraction carrier and removing contaminants contained in the sample, and a sample that has passed through the first solid phase extraction carrier.
  • the F 2 -isoprostane compound and its isotope are further retained on the second solid phase extraction support through the second solid phase extraction support having a solid phase capacity smaller than the solid phase capacity of the first solid phase extraction support.
  • a second solid-phase extraction step comprising removing contaminants contained in the sample, a sample treatment method comprising, and an eluate obtained by the treatment by the sample treatment method, the F 2 _ isoprostane isomers separable specific particle size
  • the chromatographic one carrier consisting of methanol Asetoni Bok Lil aqueous solution of a specific concentration ratios having, chromatography one by F 2 - becomes the isoprostane isomer from separating measure F 2 - isoprostane isomer
  • the specific particle size that can be separated is 4 ⁇ m or less, and the chromatographic carrier does not have the ability to retain F 2 —isoprostane isomer.
  • the present invention provides a method for separating and measuring F 2 -isoprostane isomers, wherein the aqueous solution of methanol Z-acetonitrile at a specific concentration ratio is from 10:90 to 100 : 0: 0.
  • F 2 - separation method of measuring Isopurosutan isomers F 2 - is cormorants effect has to be able to carry out separation measurement of stereoisomers as well as regioisomers of the isoprostane compounds with high sensitivity and high precision .
  • sample processing method according to the present invention has an effect that the method for separating and measuring F 2 -isoprostane isomer according to the present invention can be performed with high sensitivity and high accuracy.
  • FIG. 1 is a diagram showing the structure of an isomer of F 2 -isoprostane compound and a diuterium-substituted internal standard (IS).
  • Figure 2 shows (A) 8-iso-PGF 2a , (B) 8-iso-PGF 2a -d4, (C) 2,3-dinor-8-iso-PGF 2a .
  • D ( ⁇ ) 5- It is a figure which shows the ion spectrum of iPF 2a -VI, (E) ( ⁇ ) 5-iPF 2a -VI-d11.
  • Fig. 3 shows the results of liquid chromatography tandem mass (LC-MS / MS) analysis of iPF 2a -ll and iPF 2a -VI isomers detected in MRM mode.
  • a and B are m / z353 ⁇ 193 ion channels
  • C is m / z 357 ⁇ 197 ion channels
  • D is m / z 325 ⁇ 237 ion channels
  • F m / z364 ⁇ 115 ion channels. is there.
  • Fig. 4 A shows the addition of urine sample with Oasis HLB (hydrophilic monolipophilic balance), MAX (reverse phase and anion exchange), MCX (reverse phase and cation exchange) solid phase extraction cartridge (3cc / 60mg) [ 3 H] A graph showing a retention curve of 8-iso-PGF 2a .
  • Oasis HLB hydrophilic monolipophilic balance
  • MAX reverse phase and anion exchange
  • MCX reverse phase and cation exchange
  • FIG. 6 is a diagram showing a change in holding characteristics in a cartridge.
  • FIG. 4C shows: selective solid phase extraction protocol and multidimensional solid phase extraction method.
  • AA means arachidonic acid
  • EA means ethyl acetate.
  • FIG. 5 is a diagram showing an MRM chromatogram of F 2 -isoprostane in a urine sample extracted by a multidimensional solid-phase extraction method.
  • A is the iPF 2e -lll isomer in the urine sample
  • B is the extracted urine sample
  • 8 o-15 (R) PGF 2a iPF 2tician-ll
  • IPF 2a -lll is the ion channel (m / z 353 ⁇ 193) when 2a is added
  • C is the ion of the internal standard iPF 2 a -lll-d4 and PGF 2a -d4 added to the urine sample.
  • D indicates the internal standard ion channel (m / z357 ⁇ 197) of the blank urine sample
  • E indicates 2,3-dinor-iPF 2a- lll standard addition
  • Figure 6 shows (A) iPF 2 (r -lll / iPF 2a -lll-d 4 peak area ratio, (B) iPF 2a -VI / iPFwVI when 1 ml and 2 ml urine samples were extracted from 8 volunteers. -d "peak area ratio, (C) iPF 2 (l -lll S / N ratio,
  • Fig. 7 shows the results of examining the resolution of 8-iso-PGF 2a and unknown isomers and the resolution of PGF 2a and unknown isomers by changing the mixing ratio of methanol and acetonitrile.
  • BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a sample matrix during measurement of urinary F 2 -isoprostane by LC-MS / MS method.
  • a novel multidimensional solid phase extraction (MD-SPE) method and an HPLC method that can separate F 2 -isoprostane isomers without using a buffer to control the ion-suppressing effect of an HPLC buffer additive. It is about.
  • a novel multidimensional (MD) solid-phase extraction (SPE) method was developed in the present invention.
  • the F 2 -isoprostane can be selectively extracted by removing the contaminants by the 2D SPE washing method and the selective elution method.
  • the novel multidimensional solid-phase extraction method according to the present invention is based on two-step solid-phase extraction using a solid-phase extraction carrier having different solid-phase volumes and selective SPE washing / elution protocol.
  • the two-step solid phase extraction method is composed of a first solid phase extraction step and a second solid phase extraction step.
  • the first solid phase extraction step mainly includes a process of removing proteins, salts, etc., a process of removing acidic polar contaminants, a process of removing basic polar contaminants, and a process of removing neutral contaminants. It is configured. These steps should be performed using size exclusion chromatography and reverse phase chromatography.
  • the sample before the sample is processed in the first solid phase extraction step, the sample is pretreated so as to be suitable for the subsequent first solid phase extraction step.
  • 10% methanol, heavy water isotopes, and acids such as formic acid may be added to the sample to adjust the sample to an acidity of about pH 3.
  • acids such as formic acid
  • the pretreated sample is added to the first solid phase extraction support and the sample is neutralized, for example with 5% methanol. By washing in this manner, contaminants such as proteins and salts that are not retained on the carrier can be removed.
  • the first solid phase extraction carrier used in this step is adjusted to be acidic before use, for example, by adding an acid such as 5% methanol and formic acid.
  • the carrier is washed with, for example, 5% methanol and 2% formic acid and moved to the acidic side.
  • Polar base contaminants are removed by washing with a solvent having a higher concentration of organic solvent on the acidic side, for example, 159% methanol (2% formic acid).
  • the neutral contaminants are removed, for example, by washing the carrier with a hexane Z ethyl ether mixture :? ). After removing neutral contaminants in this way, wash the carrier with, for example, hexane-ethyl acetate mixed solution.
  • F 2 -Isopro In addition to removing water remaining on the carrier, F 2 -Isopro It can remove impurities that are less polar than stun.
  • polar organic solvent such as jetyl ether and acid elution solvent such as acetic acid are used.
  • a mixture of organic solvent and acetic acid was added to elute the fatty acid fraction containing F 2 -isoprostane.
  • the eluate treated in this way is processed in the second solid phase extraction step.
  • F 2 -isoprostane is retained in normal phase chromatography to remove contaminants that are less polar than F 2 -isoprostane. Switch to aqueous solvent with 5 ⁇ 1 ⁇ 2 methanol wash and remove acid.
  • the concentration of the organic solvent F 2 - raise enough to elute the isoprostanes, for example, methanol 8096, by selectively F 2 - eluting the isoprostane F 2 - isoprostanes by Li held Are removed by leaving solid impurities in the solid phase.
  • F 2 -isoprostane can be eluted with a small solvent volume, eg 40-50 ⁇ . Dilute the eluted sample with water and adjust the organic solvent concentration of the sample to be lower than the initial HPLC organic solvent concentration, eg, 20%.
  • the prepared sample can be directly subjected to LC-MS / MS analysis.
  • the first and second solid phase extraction supports used in the first solid phase extraction step and the second solid phase extraction step have a small pore size, for example, hydrophilic-lipophilic balance (HLB). It should be a solid phase polymer of about 7-20. Examples of the solid phase polymer include a copolymer of hydrophilic vinyl pyrrolidone and lipophilic divinyl benzene, and the carrier usable in the present invention is not limited to such a copolymer. Rather, any material that meets the object of the present invention can be used.
  • HLB hydrophilic-lipophilic balance
  • the elution volume should be about 1 ml when isoprostane is eluted with diethyl ether (296 acetic acid). If the concentration factor is increased, it is necessary to increase the amount of the sample, and about 3 ml of urine can be added. In the case of a thin urine sample, 4 ml or more may be added. Furthermore, if cell culture medium is used, 10 ml of medium can be used to measure isoprostane. In the case of the family hypercholesterolemic animal model Watanabe Heron, it can be extracted with a 1 ml urine sample.
  • the first solid phase extraction step can be concentrated 1 to 10 times.
  • a solvent with a strong dissolution power such as methanol or acetonitrile
  • the elution volume is small (for example, 0.5 ml)
  • the concentration multiple can be further increased.
  • Use of a strong solvent with a strong dissolving power requires caution because contaminants will also be eluted.
  • the first solid-phase extraction step uses the first solid-phase extraction support and uses the F 2 -isoproteol using size exclusion chromatography, reverse phase chromatography or normal phase chromatography mechanisms depending on the sample type. While holding the stun, contaminants that are not held by the carrier are removed. In other words, when the sample is a urine sample, reverse phase chromatography is used, but the sample is a tissue sample. In some cases, normal phase chromatography can also be used.
  • the first solid-phase extraction step uses an HLB cartridge to retain F 2 -isoprostane in a size-exclusion chromatography and reverse-phase chromatographic mechanism, and is highly polar with large molecular weight contaminants such as proteins. Small molecular weight contaminants can be removed.
  • the second solid phase extraction step contaminants that were not removed in the first solid phase extraction step are removed by performing substantially the same operation as the first solid phase extraction step.
  • the second solid phase extraction step is operated by a normal phase chromatograph that is different from the reverse phase chromatography used in the first solid phase extraction step.
  • the eluate obtained in the first solid phase extraction step cannot be used in the second solid phase extraction step as it is.
  • the eluate obtained in the first solid phase extraction step is switched to aqueous with a solvent such as hexane and processed in the next second solid phase extraction step.
  • the second solid phase extraction step is substantially the same operation as the first solid phase extraction step using a small volume of the solid support, and is a solvent exchange, concentration and further removal of contaminants.
  • the eluate of jetyl ether (added with 2% acetic acid) obtained in the first solid phase extraction step is difficult to use for LC-MS / MS analysis as it is, so it is necessary to exchange and concentrate the solvent.
  • the internal standard for quantifying isoprostane (heavy water isotope) is not stable under acidic conditions, and the concentration of isoprostane in the eluate is low. Because there is no. Normally, the solvent can be exchanged and concentrated by removing the solvent with nitrogen gas. However, isoprostane may be decomposed if it takes time and effort. On the other hand, if solid phase extraction is used, it is possible to simultaneously perform solvent exchange and concentration without decomposing isoprostane and saving labor and time.
  • the second solid phase extraction carrier used in the second solid phase extraction step for example, a solid phase carrier having a solid phase capacity smaller than that of the first solid phase extraction carrier, for example, an HLB unit plate or the like is preferably used.
  • the final methanol concentration of the eluted sample must be 20% or less.
  • a carrier with a small solid volume such as an HLB Elution plate
  • its elution volume Since it is small, there is a feature that the concentration factor can be increased. For example, if a 2 ml urine sample is eluted with 1 ml, the concentration factor is twice, so the concentration of isoprostane contained is too low to provide sufficient measurement sensitivity. Therefore, in order to use such eluate for LC-MS / MS analysis, it is necessary to increase the isoprostane concentration by skipping the solvent.
  • the concentration factor when using the Elution plate in the second solid phase extraction step is 25 (from 1000 ⁇ / 50 ⁇ to 250 times.
  • the 40 ⁇ 40 eluate obtained in the first step is Even when diluted with ⁇ , it is possible to obtain a concentration factor of 10 times, which can greatly reduce the time and labor of extraction and greatly increase the efficiency of the sample after dilution with water.
  • the concentration factor will be 5 to 50 times.
  • the optimal range for urinary isoprostane analysis is 10 to 20 times. Therefore, the concentration factor required for LC-MS / MS analysis can be easily achieved.
  • the second solid phase extraction carrier used in the second solid phase extraction step has a small solid phase capacity, it has other conditions than the first solid phase extraction carrier (for example, 10 mg) having a large retention capacity. Even if they are the same, there are few contaminants that can be retained. Therefore, the second solid phase extraction step utilizes another dimension of separation mechanism that utilizes the difference in retention capacity of isoprostane and contaminants relative to the volume of the solid phase. In other words, the second solid-phase extraction step removes contaminants and at the same time provides solvent exchange and analytical sensitivity for LC-MS / MS analysis. It is an epoch-making method that can perform the three processes of concentration for sample collection and sample clean-up simultaneously in a short time.
  • F 2 -isoprostane can be retained using normal phase chromatography mechanisms using a microelution SPE plate.
  • F 2 -isoprostane is retained on the support using size exclusion chromatography and normal phase chromatography, but not in normal phase chromatography. Low polarity contaminants are removed.
  • first and second solid phase extraction carriers used in the first solid phase extraction step and the second solid phase extraction step may be substantially the same type so that their holding capacities are different.
  • the holding capacity of the first solid phase extraction carrier used in the first solid phase extraction step is prepared to be larger than the holding capacity of the second solid phase extraction carrier used in the second solid phase extraction step.
  • the retention capacity of the solid-phase extraction carrier is proportional to the amount (mg) of the carrier for the same type of carrier. Therefore, in this invention, the ratio between the holding capacity of the first solid phase extraction carrier and the holding capacity of the second solid phase extraction carrier is generally 30: 1 to 50: 1, preferably 1. 0: 1 to 2 0: It should be in the range of about 1.
  • the first solid phase extraction step uses a 1cc / 30 mg solid phase extraction cartridge
  • the second solid phase extraction step uses a small amount of solid phase extraction support (2 mg) ⁇ ⁇ ⁇ plate
  • the retention capacity ratio of 1cc / HLB solid phase extraction cartridge 30 mg and 2_ ⁇ ⁇ ⁇ ution plate 2 mg is 15: 1.
  • a 1 cc / 30 mg HLB solid phase extraction cartridge can hold 2 to 3 ml of urine sample.
  • HLB solid-phase extraction supports are characterized by the ability to retain both hydrophilic and lipophilic compounds. In other words, selectivity is low.
  • the sample is extracted at room temperature to remove the extraction solvent with nitrogen gas and re-dissolve the sample with the analysis solvent for LC-MS / MS analysis after sample extraction. I had to leave it for hours.
  • sample extraction and solvent exchange for LC-MS / MS analysis can be simultaneously performed in the second solid phase extraction step.
  • sample concentration can be performed at the same time by using a small volume solid phase.
  • the contaminants contained in the sample are also concentrated at the same time, which affects the stability of the sample and the stability of the measurement sensitivity.
  • the measurement substance is concentrated using solid phase extraction having a small solid phase capacity, the measurement substance is also concentrated, but there is an advantage that contaminants are removed. This increases the cleanliness of the sample and significantly reduces sample processing time.
  • the sample elution volume is small (eg, 40 jul)
  • it is possible to easily concentrate a urine sample eg, 2 ml
  • the eluted sample can be used for LC-MS / MS measurement simply by diluting with water.
  • a clean sample can be extracted by a two-dimensional selective solid phase extraction washing method and a selective F 2 -isoprostane elution method.
  • HLB available Polymeric adsorbents can be used in the pH range of 1-14.
  • the two-dimensional cleaning method was developed by taking advantage of the difference in pH and methanol retention characteristics of F 2 -isoprostane and urinary contaminants.
  • acidic and basic compounds show opposite retention at low and high pH. At low pH, acidic compounds have strong retention, whereas basic compounds have weak retention. On the other hand, at high pH, acidic compounds have only weak retention, whereas basic compounds have strong retention.
  • the basic compound can be removed. Further, the basic compound can be further removed by washing on the acidic side with 15% methanol / 2% formic acid. On the other hand, washing on the base side using 5% methanol / 2% ammonia can remove acidic contaminants. It has been observed that yellow contaminants are removed by washing on the base side.
  • Neutral contaminants present in urine can be removed by hexane washing. Hexane is not miscible with methanol and water, so it is recommended to add jetyl ether to the hexane wash.
  • ethyl oxalate is miscible with water
  • the water remaining in the HLB cartridge can be removed by adding a washing step with a mixed solution of ethyl hexane monoacetate (for example, 9 1). Is good. This is because it is necessary to remove the water remaining in the solid phase in order to increase the elution efficiency of the sample with jetyl ether / 2% acetic acid.
  • F 2 -isoprostane can be selectively eluted by using diethyl ether / 2% acetic acid.
  • Diethyl ether is less polar and more selective than ethyl acetate, so there is less elution of contaminants, and it is observed that yellow contaminants remain in the solid phase cartridge after elution of F 2 -isoprostane. ing. Therefore, clean sample extraction is possible by selective washing of contaminants and selective elution of F 2 -isoprostane.
  • the novel multidimensional solid phase extraction (MD-SPE) method has significant advantages.
  • sample processing for liquid chromatographic and tandem mass spectrometry (LC-MS / MS) analysis can be performed in a short period of time, and a clean sample extraction can be achieved.
  • extraction of 8 samples is usually possible within 3 hours.
  • this processing method is solid, it is possible to further increase the sample processing efficiency by automatic processing. Conceivable.
  • this MD-SPE method can be performed by, for example, cell (endothelial cells, smooth muscle cells, etc.) culture solution (10 ml) or animal ( It is also possible to apply it to urine samples (1 to 2 ml) of magpies, rabbits, etc.
  • Such correction includes, for example, replacing the Captiva Filter cartridge (0.2 jum, 3 ml) with a Captiva Filter cartridge (10 ⁇ m, 10 ml).
  • the novel multi-dimensional solid phase extraction method of this invention needs to be modified when preparing plasma samples for analysis of F 2 -isoprostane using LC-MS / MS. Since F 2 -isoprostan is bound to plasma phospholipids, to measure total F 2 -isoprostane, It is necessary to dissociate the isoprostane - the isoprostanes free F 2 - F 2 in alkaline water solution.
  • free radical scavengers such as ptylhydroxytoluene and cycloxygenase inhibitors such as indomethacin are used to prevent the automatic oxidation of arachidonic acid that may occur during sample separation, storage and processing.
  • Non-patent Document 20 It has been reported in the literature that [ 2 H 8 ] arachidonic acid was added to a blood clot sample to detect the production of 8-iso-PGF 2 a in vitro (Non-patent Document 20).
  • the present inventors have, [3 HI8-iso-PGF 2 a of the retention by Oasis HLB cartridge, in plasma samples after alkali treatment with 15% KOH, compared to plasma sample not treated with alkali, it clearly lower was observed.
  • the F 2 -isoprostane compound is an isomer of F 2 -prostaglandin, and there are many stereoisomers (Non-patent Documents 1 and 7). Specific and exhaustive measurements of F 2 —isoprostane isomers may be used for comprehensive assessment of oxidative stress in various pathologies. An HPLC-specific separation of these isomers is required to make a specific-exhaustive measurement of F 2 -isoprostanes.
  • Urinary 8-isoprostane (8-iso-PGF 2 a ) is one of F 2 -isoprostanes and is currently measured as a marker of oxidative stress.
  • the present inventor has buffer one additive F 2 - results the finding that separation of iso prostanoic was not affected even by the addition of acetic acid to extract urine sample - isoproterenol induced vital to Ion suppression stun F 2
  • An HPLC method that does not use a buffer for pH control was developed.
  • LC-MS grade water should be used for LC-MS / MS analysis.
  • a buffer is added to an organic solvent to control the pH within a certain range.
  • the present inventor has observed that the ionization efficiency of F 2 -isoprostane clearly decreases when a buffer additive such as ammonia oxalate or formic acid is added by a post column.
  • the ionization efficiency of F 2 -isoprostane, an ammonia commonly used as a buffer additive was examined, but stable results were not obtained. The cause of this is thought to be that ammonia reacts with carbon dioxide in the air to produce ammonia acetate. This means that ammonia must be freshly made to use it as a buffer additive.
  • a silica support as a packing material for liquid chromatography (HPLC) that can be used in the LC-MS or LC-MS / MS method of the present invention. That is, since the molecular weight of F 2 -isoprostane is small, a silica carrier generally selected for low molecular weight analysis is preferred.
  • Silica gel polymers are synthesized as fillers in various separation modes by introducing various functional groups into silica gel.
  • the packing material used for reversed phase columns is often C6—C20, preferably C8—C18, more preferably C8 long chain alkyl group chemically bonded to silica gel.
  • the C18 force ram is a filler in which a C18 alkyl group (octadecyl group consisting of 18 carbons) is bound with silica gel, that is, a filler synthesized by reacting octadecyl (ODS) silane with a silanol group on the silica gel surface.
  • ODS octadecyl
  • the column is filled with, and is also called Octadecyl (ODS) column.
  • the C8 column is a column packed with a filler in which a C8 alkyl group (octyl group consisting of 8 carbons) is bonded by silica gel, that is, a filler synthesized by reacting octylsilane with a silanol group on the surface of the silica gel.
  • a C8 alkyl group octyl group consisting of 8 carbons
  • a reversed-phase column is required for the analysis of F2-isoprostane.
  • the stationary phase is nonpolar and the mobile phase is polar.
  • a filler in general, a type in which a functional group of an aliphatic hydrocarbon is bonded to a silica-based carrier is often used.
  • F2-isoprostane when F2-isoprostane is analyzed under neutral conditions without using a buffer, F2-isoprostane is considered to exist as an ion, which is advantageous for ionization, that is, sensitivity of analysis, but peak tailing Therefore, it is necessary that the silica filler be completely end-capped (inactivated active silanol groups) with high-purity silica.
  • the packing material for liquid chromatography (HPLC) that can be used in the present invention has a spherical shape with a pore size of 10 nm (130 A) or less and a particle size of, for example, 4 im or less, preferably 3.5 ⁇ . It should be:
  • the solvent composition that can be used in the present invention should be acetonitrile or a mixed solvent of acetonitrile and methanol having a specific mixing ratio.
  • the mixing ratio is, for example, 40:60 or less, preferably 50:50 or less.
  • 8-iso-PGF 2a and the unknown isomer can be separated even with acetonitrile alone.
  • the buffer-free HPLC method used in this invention makes it possible to minimize the maintenance of LC-MS / MS analytical instruments and reduce the time required for routine buffer preparation.
  • This buffer-free HPLC method uses a three-solvent system and can perform analysis by simply supplementing water, methanol, and acetonitrile with occasional replenishment.
  • F 2 isoprostan standard is used for slight fluctuations in analysis temperature, mobile phase composition, gradient gradient, pH, sample injection volume, etc. The separation of (see Figure 1) had no significant effect. This indicates that the newly developed HPLC method is a solid F 2 -isoprostane isomer separation method.
  • the novel multi-dimensional solid phase extraction (MD-SPE) and the puffer-free HPLC method according to the present invention can eliminate the trouble of the HPLC column and reduce the contamination of the ion source of the mass spectrometer. Even when the urine sample extracted by this multi-dimensional solid-phase extraction method was injected 400 times, the HPLC column back pressure was not clearly increased. In addition, there was no need to use a guard column and pre-filter as used in conventional HPLC analysis. Even after the extracted urine sample was injected more than 40 times into the HPLC column, the sample cone of the mass spectrometer detector had no visible contamination. For this reason, the method of the present invention not only greatly reduces the labor for maintenance of the mass spectrometer, but also stabilizes the detection sensitivity.
  • this new MD-SPE-buffer-free HPLC method can extract iPF 2 till-llll and iPF 2 till -VI internal standards added in urine with a stable recovery rate, and iPF 2
  • the matrix ion controls the ionization efficiency of tt -lll and iPF 2 a -VI (see Table 1).
  • Detection of F 2 was performed with a Quattro Premier tandem mass spectrometer controlled with MassLynx (version 4.1). Ionization was achieved by negative ion mode electrospray ionization (ESI). The position of the ESI probe and single mass detection (MS) and tandem mass detection (MS / MS) parameters are set so that a 200 ng / ml 8-iso-PGF 2 a standard solution infused with a microsyringe can achieve maximum sensitivity. Optimized for.
  • Optimum tuning conditions for electrospray ionization are as follows: Cavity voltage, 3 kV; Ion S block temperature, 120 ° C; Extractor, 3.0 kV; High frequency lens, 0.1 V; Desolvation gas (nitrogen) Gas) Temperature, 400 ° C; Flow rate, 1200 l / h; Cone gas flow rate, 50 l / h; Ion energy, 1.0; Multiplier, 650 V; Low and high mass resolution, 13.
  • MS / MS tuning inlet voltage, outlet voltage and collision gas (argon gas) flow rates were set to -2V, 2V and 0.35ml / min, respectively.
  • Mass calibration including static calibration, scan calibration, and scan speed calibration, was performed using the S calibration reference file for NA in positive ion ESI mode with MassLynx software.
  • MS tuning parameters are as follows: Capillary voltage, 3 kV; cone voltage, 40 V; Ion source block temperature, 80 ° C; Ex small lacta, 3.0 kV: High frequency lens, 0.1 V; Desolvation Gas (nitrogen gas) temperature: 150 ° C, flow rate: 350 l / h. Atmospheric pressure ionization calibration solution (NaCsl) (Waters Corp., USA) was introduced by syringe pump at a flow rate of 10 (1 / min).
  • Fragment ions generated from deprotonated molecules were detected by MS / MS tuning F2—Daughter ion (fragment ion) with the highest ionic strength of isoprostane and internal standard was the fragment ion (fragment ion) scan mode
  • the collision energy that maximizes the precursor product ion intensity in the multi-reaction monitoring (MRM) mode was determined, the delay time between data acquisition channels was 0.01 seconds, the delay time between scans was 0.01 seconds, and the dwell time (detection)
  • the time to acquire the ion mass data from the chamber was 0.1 s)
  • Figure 2 shows the optimized cone voltage and collision energy for each compound.
  • Oxidation of arachidonic acid produces four groups of F 2 -isoprostane positional isomers.
  • the four groups consist of Group III (15 Series), Group IV (8 Series), Group V (12 Series), and Group VI (5 Series).
  • Group III (iPF 2a -lll) and Group VI (iPF 2a -VI) F 2 - isoprostanes is the most abundant F 2 - is a isoprostanes.
  • Figure 1 shows commercially available group III F 2 —isoprostane (A: 8-iso-PGF 2a G: 8-iso-PGF 2i ; J: 8-iso-15 (R) PGF 2a ), group VI F 2 — Prostaglandins (N: (Sat) 5-iPF 2a -VI), (B: PGF 2 ⁇ ; C: 11i8-PGF 2a ; F: 5-trans-PGF 2a ; H: PGF 2 I, 5-trans-PGF 2i ; K: 15 (R) PGF 2a ) and metabolites of 8-iso-PGF 2a and PGF 2a (M: 2, 3-dinor-8-iso-PGF 2a N: 2, 3-dinor-1ip- The chemical structure of PGF 2a ) is shown.
  • Isotopes of internal standard products iPF 2a -lll, PGF 2a and iPF 2a -VI (D; 8-iso-PGF
  • the structure of 2 a -d 4 ; E: PGF 2 a -d 4 ; ⁇ ⁇ ) 5-iPF 2 a -VI -d ") is also shown in FIG.
  • Figure 2 shows the spectrum of the product (product) ion of F 2 —isoprostane.
  • the molecular weight related ions produced by monoisoprostane in negative ion electrospray (ES) mode are as follows: 8-iso-PGF 2 a (Fig. 2 A) and (Sat) 5-iPF 2 a -VI ( Fig. 2 D), m / z 353; 8-iso-PGF 2 a -d 4 (Fig. 2 B), m / z 357; 2, 3-dinor-8-iso-PG ⁇ a (Fig. 2 C), m / z 325; (Sat) 5-iPF 2 a -V ⁇ d "(Fig. 2 A) and (Sat) 5-iPF 2 a -VI ( Fig. 2 D), m / z 353; 8-iso-PGF 2 a -d 4 (Fig. 2 B), m / z 357; 2, 3-dinor-8-is
  • the precursor / product ion pairs used to detect F 2 —isoprostan in the mode are: 8-iso-PGF 2 (l , m / z 353/193; 8-iso-PGF 2 a -d 4 M / z 357/197; 2,3-dinor-8-iso-PGF 2 a , m / z 325/237; iPF 2 -V and m / z 353 / 115; iPF 2 a -VI -d ", m / z 364/115.
  • 8-iso-PGF 2 Since 8-iso-PGF 2 complicatand PGF 2a show the same fragmentation pattern, they cannot be separated by tandem mass spectrometry. Therefore, 8-iso-PGF 2 (r is specifically measured. To achieve this, 8-iso-PGF 2a and its isomer PGF 2a must be separated by HPLC.
  • the pH of the sample was adjusted to about 3 by adding 0.4 ml of 10% methanol, internal isotopes, and 1-3 ml of 1% formic acid to 2 ml of the urine sample.
  • the sample was passed through a Captive filter cartridge (0.2 ⁇ ) to remove solid particles. The sample thus treated was used for the next solid phase extraction. (Selective solid phase extraction method)
  • F 2 is a weakly acidic, weakly polar and lipophilic compound, so three polymer solid-phase adsorbents for F 2 —Isoprostane in urine samples, HSL (hydrophilic-lipophilic balance) MAX (mixed -mode anion exchange) and MCX (mixed-mode cation exchange) retention capacity were screened.
  • Figure 4 A shows the retention volume curve in and added to the urine sample [3 HI8-iso-PGF 2 Oasis HLB of alpha, MAX and MCX solid phase cartridge (3 cc 60 mg).
  • the Oasis HLB solid phase cartridge stably held samples up to 10 ml, while the Oasis MAX and MCX solid phase cartridges were compatible with [ 3 H] 8-iso-PGF 2 a. Compared to the above, it showed weak holding power. This result showed that the Oasis HLB solid phase cartridge had the largest retention capacity for urinary F 2 -isoprostane. Therefore, the Oasis HLB solid phase was used for the development of the next solid phase extraction method.
  • Comparison of the retention capacities of (HLB. MAX and MCX) was performed by adding the urine sample (1 ml to 10 ml each) to the solid phase cartridge and measuring the radiation dose of the liquid passed through. 200 ⁇ of waste solution and eluate were mixed with 3 ml of scintillation solution (light emitted when radiation collides with fluorescent material), and the radiation dose was measured using a liquid scintillation counter.
  • This selective solid phase extraction washing method was developed by taking advantage of the fact that the retention characteristics of F 2 -isoprostane and urine sample matrix differed when the pH of the contaminants and the concentration of the organic solvent were changed. Under washing conditions on the acidic side (29 formic acid), neutral side (water) and base side (2% ammonia), the concentration of methanol (10% —100Q6) was changed, the waste liquid was recovered and the radiation dose was recovered. Was used to determine the concentration of methanol used in the cleaning method to remove contaminants. The elution volume was determined by collecting 0.5 ml each of the eluate of jetyl ether acetic acid (100: 2) and measuring the radiation dose.
  • Oasis HLB cartridge (1cc 30 mg) and Oasis HLB ⁇ ⁇ ution plate (750 ⁇ / 2 mg) were used for the two-step multidimensional solid-phase extraction method.
  • the treated urine sample was added to a 0.2 m Captiva filter directly connected to the top of the Oasis HLB cartridge using a vacuum manifold at a flow rate of 3 ml / min or less.
  • the filter cartridge was discarded and the solid phase extraction cartridge was washed with 1 ml of 5% methanol.
  • the next extraction was performed using a pressurized manifold (Cerex system 48) with nitrogen gas.
  • the eluate from the Oasis HLB solid-phase force was applied to the Oasis HLB ⁇ Elution plate.
  • the eluate from the Oasis HLB® ution plate was diluted with water and directly used for LC-MS / MS analysis.
  • a urine sample processing method for LC-MS / MS analysis among multidimensional solid-phase extraction methods is described with reference to FIG. 4C.
  • an acidified urine sample containing 10% methanol is added to the HLB solid phase cartridge, and then washed with 5% methanol.
  • high molecular weight contaminants eg, proteins
  • a size exclusion chromatography method using a small pore size (8 nm) HLB solid phase adsorbent.
  • Polar contaminants such as salts and other carbohydrate compounds are removed because they are not retained by reversed-phase chromatography.
  • cartridge wash step 2 base wash
  • acidic, medium polarity and hydrophobic contaminants are removed by washing with 2% ammonia containing 5% methanol.
  • this washing step elution of yellow contaminants in the urine sample was observed.
  • Cartridge Cleaning Step 3 the pH is switched to acidic pH by washing with 2% formic acid containing 5% methanol. Rabbit and hydrophobic contaminants are removed by washing with 2% formic acid containing 15% methanol.
  • elution step A the fatty acid fraction was selectively eluted with jetyl ether containing 2% acetic acid, but yellow contaminants remained on the solid phase cartridge.
  • Fraction A eluted from the HLB solid phase cartridge is diluted with hexane and added to the HLB // ⁇ ution plate.
  • F 2 -isoprostane was retained on the SPE adsorbent by a normal phase chromatography mechanism.
  • plate washing step 1 acetic acid in the eluted sample was removed by washing with 5% methanol.
  • the plate washing step 2 base side washing
  • the remaining slight amount of yellow contaminants was removed by washing with 2% ammonia containing 5% methanol.
  • plate washing steps 3 and 4 the pH was switched to acidic side with 2% formic acid containing 5% methanol and then formic acid was removed by washing with 5 ⁇ 1 ⁇ 2 methanol.
  • plate washing step 5 neutral and hydrophobic Sexual contaminants were removed by washing with 15% methanol.
  • elution fraction step B the F 2 -isoprostane fraction was washed with 80% methanol and eluted. This eluate was clear and diluted directly with water and used directly for LC-MS / MS analysis.
  • the ACE column (3 im, C8, 50 x 2.1 mm d.) Is used to separate the 8-iso-PGF 2 a isomers in the organic solvent composition of the mobile phase.
  • the effect on the environment was examined.
  • the mobile phase is methanol
  • 8-ion-PGF 2 a is more efficiently ionized than methanol, so the mobile phase used for the F 2 —isoprostane isomer separation is methanol.
  • a mixed solvent in which acetonitrile was added was used.
  • Ammonia is a commonly used buffer additive for 8-iso-PGF 2a analysis by LC-MS / MS.
  • the 15 (R) PGF 2 a Oyo standard solution of beauty PGF 2 a the 15 (R) PGF 2 a Oyo standard solution of beauty PGF 2 a.
  • the ionization of these isomers The effect on efficiency was examined. Surprisingly, even at low concentrations of ammonia acetate, the ionic strength of the 8-iso-PGF 2 paragraphisomer was significantly reduced. Ammonium acetate reduced the retention time of the 8-iso-PGF 2 a isomer. However, it did not affect the separation of isomers.
  • 8-iso-PGF 2 8-iso-PGF 2 .
  • the optimal temperature and gradient conditions for the 8-iso-PGF 2a isomer separation were examined using the computer simulation software DryLab 2000 Plus. Temperature (20 ° C and 40 ° C) and gradient slope (gradient time, 6 minutes and 1 The experiment was performed by computer simulation with 8 minutes, gradient range, 40-90% MeOH / ACN (2: 1)) changed at the same time. As a result, 8-iso-PGF 2 under low separation temperature and shallow gradient conditions. It was found that the separation of isomers was good.
  • FIG 3 shows the results of standard analysis of F 2 -isoprostane and F 2 -prostaglandin isomers by LC-MS / MS.
  • iPF2a-lll 8-iso-PGF 2 a
  • iPF2a-lll 8-iso-PGF 2 a
  • R PGF2 a
  • 11 -PGF2a
  • 15 R
  • PGF2a As shown in Figure 3B, 8-iso-PGF 2a and PGF2 (have the same retention time as iPF2a-ll, and 5-trans-PGF 2 ⁇ has 11 (same as -PGF2a
  • the Hypersil BDS (3 ⁇ . C8) column not only separated the F 2 -isoprostane stereoisomer into the baseline, as shown in Figure 3. A peak with a sharp peak shape and good symmetry was obtained.
  • Reversed phase HPLC was performed on a Waters Alliance 2796 and 2695 separation module connected to a mass spectrometer. Instrument control and data acquisition were performed using MassLynx (version 4.1) software. A gradient was created with a 2 pump Z4 solvent system. Solvent A used water, solvent B used methanol, and solvent C used acetonitrile. ACE (3 ⁇ m, C8, 50x2.1 mm) ID and Hypersil BDS (3 ⁇ m, C8, 50x2.1 mm) columns were used for HPLC separation and analysis of urine samples. Initial HPLC separation conditions were examined using the computer simulation software DryLab 2000 Plus. The column temperature was set to 24 ° C and the mobile phase flow rate was set to 0.2 ml / min.
  • Figure 5 shows the results of urine sample analysis by multi-dimensional solid-phase extraction LC-MS / MS detected in MRM mode.
  • 8-iso-15 (R) PGF 2a and 8-iso-PGF 2a were baseline separated from PGF 2a and other unknown isomers.
  • the peaks of 8-iso-15 (R) PGF 2a , 8-iso-PGF 2a , 15 (R) PGF 2 ⁇ and PGF 2a in urine samples were identified by adding these compounds to the extracted sample.
  • Figure 5B shows the MRM chromatogram of the stable isotopes of hydrogen H (deuterium) labeled 8-iso-PGF 2 hurryand PGF 2a analyzed in the extracted urine sample.
  • Figure 5D shows the 8-iso-PGF 2a (8-iso- PGF 2a -d 4 ) and a blank sample with no added stable isotopes PGF 2a (PGF 2a -d 4) (internal standard), 8-iso-PGF 2i d 4 and PGF 2a - d Shows no contaminants at a retention time of 4.
  • Figure 5 E shows 2,3-dinor-iPF 2 a -lll is baseline separated from other unknown isomers. Increasing the gradient time and using a longer column could also separate other isomers. . As shown in FIG.
  • FIG 5 F iPF 2 a -VI and 5-epi-iPF 2 "-VI were other isomers and baseline resolution
  • FIG 5 G is, iPF 2 a extracted from the urine sample - VI-d "and S-epi-iPFwVI-c ⁇ are separated from each other. In the blank sample, there were no contaminants with the same retention time as iPF ⁇ -VI-d and S-epi-iPF ⁇ -VI-d.
  • Figure 7 shows the results of examining the resolution of 8-iso-PGF 2a and unknown isomers by changing the mixing ratio of methanol and acetonitrile.
  • 8-iso-PGF 2a and the unknown isomers began to separate when the mixing ratio of methanol and acetonitrile was 40:60, and methanol and acetonitrile A clear separation was observed when the mixing ratio was 50:50. In addition, it was separated even if the acetonitrile was 100%.
  • the recovery rate of urine samples by the two-step multidimensional solid-phase extraction method is determined by adding the internal standard mixture (8-iso-PGF 2 a -d 4 and iPF ⁇ -VI-d) before and after sample extraction. evaluated.
  • the recovery rate (%) was calculated by multiplying the ratio of the peak area of the internal standard added to the urine sample before extraction to the peak area of the internal standard added to the urine sample after extraction by 100.
  • the solid phase extraction recovery rate was calculated as follows by the following data analysis.
  • Ion ot down inhibition sample matrices standard (23-dinor-8-iso -PGF 2a 8-iso- PGF 2 a and (Sat) 5-iPF 2a -VI) and an internal standard (8-an iso- PGF 2tr l 4 and (soil) S-iPF ⁇ -VI-d ") were investigated by adding the solution to the extracted urine sample with water. Calculated by multiplying the ratio of the peak area of the internal standard to the peak area of the standard or internal standard added to water by 100.
  • Urine samples matrix F 2 - effect on the ionization efficiency of isoprostanes F 2 in urine samples extracted with water - have been conducted under consider adding standard solution and internal standard solution isoprostanes.
  • Table 2 when extracted from urine samples (1 ml and 2 ml) or repeatedly extracted from urine samples (2 ml), 2,3-dinor-iPF 2a -lll is approximately 12 -23% ion suppression (Matrix action, 77-88%) o Matrix effects on other F 2 -isoprostanes were 88% to 127%, 15 (R) iPF 2a -lll iPF 2a -lll iPF 2a -lll-d 4 .iPF 2a -V and 5-epi-iPF 2a -V and iPF 2a -VI-d 11 and S-epi-iPFwVI-d "were each subjected to a matrix action of 95 soil 6% 100 ⁇ 6% 103 ⁇ 5% 96
  • the calculated area of the analysis sample was exported as a text file, combined into one file using a self-made Excel macro, and the recovery rate and matrix effect were calculated using a SAS software package.
  • F 2 according to the availability to the invention on the industrial - separation method for measuring isoprostane isomers, F is isolated by oxidative stress marker one 2 - and Isopurosutan isomer with high accuracy to measure the separation at high efficiency Therefore, F 2 -isoprostane isomers caused by oxidative stress can be identified, so that the pathological condition and the cause of the disease can be accurately diagnosed. Therefore, the method for separating and measuring F 2 -isoprostane isomers according to the present invention can be effectively applied particularly to the field of disease diagnosis.

Abstract

Disclosed is a method for separation/measurement of a F2-isoprostane isomer, which comprises the steps of: conducting a sample treatment procedure comprising a first solid phase extraction step for passing a sample containing the F2-isoprostane isomer through a first solid phase extraction carrier having a larger solid phase volume to remove contaminants contained in the sample and a second solid phase extraction step for passing a sample eluted from the first solid phase extraction carrier through a second solid phase extraction carrier having a smaller solid phase volume than that of the first solid phase extraction carrier to further remove contaminants from the sample containing F2-isoprostane isomer; applying the eluate obtained in the proceeding step to a chromatography carrier having a specific particle diameter suitable for the separation of the F2-isoprostane isomer and separating the F2-isoprostane isomer from the carrier by chromatography using an eluent comprising an aqueous methanol/acetonitrile solution having a specific concentration ratio to measure the F2-isoprostane isomer. In the method, the specific particle diameter suitable for the separation of the F2-isoprostane isomer is 4 μm or less, and the aqueous methanol/acetonitrile solution has a concentration ratio of 10:90 to 100:0.

Description

明細書  Specification
F2—ィソプロスタン異性体の分離測定方法 技術分野  F2—Method for separation and measurement of isoprostane isomers
この発明は、 F 2—イソプロスタン異性体の分離測定方法に関するものである。 更に詳細に は、 この発明は、 F 2—イソプロスタン化合物の立体異性体ならびに位置異性体の分離測定方 法および F 2—イソプロスタン異性体の分離測定方法のためのサンプル処理方法およびに関す るものである。 背景技術 The present invention relates to a method for separating and measuring F 2 -isoprostane isomers. More specifically, the present invention relates to a method for separating and measuring stereoisomers and positional isomers of F 2 —isoprostane compounds and a sample processing method for separating and measuring F 2 —isoprostane isomers. Is. Background
近年、生体における酸化ストレスが脂質やリン脂質の過酸化の起因となっていることが次第 に明らかにされてきて、 酸化ストレスと疾患との関係が注目されている (非特許文献 1 )。 生体の酸化レベルは、活性酸素種産生系と消費系とのバランスによって規定されていて、通 常はほぼ一定に保たれている。 しかし、薬物、放射線、虚血などの様々な要因でそのバランス が崩れ、 酸化傾向になっている状態を酸化ストレスまたは酸化的ストレスと呼んでいる。  In recent years, it has been clarified that oxidative stress in a living body is a cause of peroxidation of lipids and phospholipids, and the relationship between oxidative stress and diseases has attracted attention (Non-patent Document 1). The level of oxidation in the living body is regulated by the balance between the reactive oxygen species production system and the consumption system, and is usually kept almost constant. However, a state in which the balance is lost due to various factors such as drugs, radiation, and ischemia, and the tendency to oxidize is called oxidative stress or oxidative stress.
つまり、酸化ストレスは、生体内で生成する活性酸素種(ROS: Reactive Oxygen Species)の 酸化損傷力と生体内の抗酸化システムの抗酸化ポテンシャルとの差として定義されている。 活性酸素は、体内では、呼吸で取り入れた酸素をミトコンドリアの電子伝達系で使用して水 が生成される際や、感染時に白血球が炎症反応を起こす際や、ァラキドン酸の代謝の際などに 産生される。活性酸素は、 一般的に悪者とされているが、 本来は、 エネルギー生産、侵入異物 攻擎、不要細胞の処理、細胞情報伝達などに際して生産される有用なものである。 しかしなが ら、生体内の抗酸化システムで捕捉しきれない余分な量の活性酸素種が生産されると、その余 分な活性酸素種は、細胞膜上のリン酸脂質、 糖質、 タンパク質、酵素、 核酸、遺伝情報を担う 遺伝子 DNAなどを酸化変性して損傷を与え、 生体の構造や機能を損傷し、 病気を惹起し、 老 化を促進し、 がんや生活習慣病などの原因となることが知られている。  In other words, oxidative stress is defined as the difference between the oxidative damage potential of reactive oxygen species (ROS) generated in vivo and the antioxidant potential of the in vivo antioxidant system. Reactive oxygen is produced in the body when oxygen is taken from the respiration and used in the mitochondrial electron transport system to generate water, when leukocytes undergo an inflammatory reaction during infection, or during metabolism of arachidonic acid. Is done. Although active oxygen is generally regarded as a bad person, it is originally useful for energy production, invasion of foreign substances, treatment of unwanted cells, and cell information transmission. However, when an excessive amount of reactive oxygen species that cannot be captured by the in vivo antioxidant system is produced, the excess reactive oxygen species are converted to phospholipids, carbohydrates, proteins, Enzyme, nucleic acid, genetic DNA that carries genetic information is damaged by oxidative modification, damages the structure and function of the body, induces disease, promotes aging, causes cancer, lifestyle-related diseases, etc. It is known to be.
また、ァラキドン酸は、食品に由来する必須 n— 6系不飽和脂肪酸の 1種であるリノール酸 の代謝産物であり、細胞膜や血漿中では、 リン脂質として存在している。ァラキドン酸が活性 酸素種やフリーラジカルなどによって過酸化されると、強い生物活性を示す一連のプロスタグ ランジン様物質がヒトの体内で非酵素的にラジカル反応によって生成されることが報告され た (例えば、 非特許文献 1参照)。 このように、 ァラキドン酸から遊離基の反応機構によって 生成された一連のプロスタグランジン様物質は F2イソプロスタン化合物と総称されている。 In addition, arachidonic acid is a metabolite of linoleic acid, one of the essential n-6 unsaturated fatty acids derived from food, and exists as phospholipids in cell membranes and plasma. It has been reported that when arachidonic acid is peroxidized by reactive oxygen species or free radicals, a series of prostaglandin-like substances with strong biological activity are generated non-enzymatically by radical reactions in the human body (for example, Non-patent document 1). Thus, a series of prostaglandin-like substances generated from arachidonic acid by the reaction mechanism of free radicals are collectively called F 2 isoprostane compounds.
F 2—イソプロスタン化合物は確立された酸化ストレスのマ一カーであり (例えば、 非特許文 献 2参照)、 心血管病及びその危険因子を含める様々な病態や疾患と関連している (例えば、 非特許文献 3参照)。 F 2—イソプロスタンは細胞膜に結合したプロスタグランジン (PG) 受 容体又は核受容体のリガンドとして強力な生理作用を持っている(例えば、非特許文献 4参照)。 また F 2—イソプロスタンは、 細胞膜及びリポ蛋白のリン脂質に結合した状態で産生され (例 えば、 非特許文献 5参照)、 ホスホリパ一ゼ A2の作用で遊離 F 2—イソプロスタンに解離し、 尿中に代謝される (例えば、 非特許文献 6参照)。 F 2 —isoprostane compounds are markers of established oxidative stress (see, eg, Non-Patent Document 2) and are associated with a variety of conditions and diseases including cardiovascular disease and its risk factors (eg, Non-patent document 3). F 2 -isoprostane has a strong physiological action as a ligand for a prostaglandin (PG) receptor or nuclear receptor bound to a cell membrane (see, for example, Non-Patent Document 4). F 2 -isoprostane is produced in a state bound to the phospholipid of the cell membrane and lipoprotein (see, for example, Non-Patent Document 5) and dissociates into free F 2 -isoprostane by the action of phospholipase A 2. It is metabolized in urine (for example, see Non-Patent Document 6).
生体サンプル中の F 2—イソプロスタン測定にはいくつかの難しい点がある。まず、 F 2—ィ ソプロスタンは多数の立体異性体と 4シリーズの位置異性体とが存在する (例えば、非特許文 献 1、 7参照 1 1 )。 さらに、酸化ストレスを総合的評価するためには、 F 2—イソプロスタン 異性体の網羅的 ·特異的測定が必要である。 その上、 生体サンプル中に存在する F 2—イソプ ロスタンの濃度が低いために、分析感度の高い分析法が必要である (例えば、非特許文献 8参 照)。 There are several difficulties in measuring F 2 -isoprostane in biological samples. First, F 2 —isoprostan has a number of stereoisomers and 4 series of positional isomers (see, for example, Non-Patent Documents 1 and 7 1 1). In addition, comprehensive and specific measurements of the F 2 -isoprostane isomers are required for comprehensive assessment of oxidative stress. In addition, F 2 -isotopes present in biological samples Since the concentration of rostan is low, an analytical method with high analytical sensitivity is required (for example, see Non-Patent Document 8).
尿中 F 2—イソプロスタンは非侵襲的体内酸化ストレス測定の特異的かつ高感度の酸化ス卜 レスマーカーであることが明らかにされ、その測定が酸化ストレスの評価に使用され始めてい る。かかる F2イソプロスタン異性体のうち、 8—イソプロスタン(8-iso-PGF2 a、 8-iso-15(S) PGF2 aおよび iPF2 a-lll)は最も研究されている F 2—ィソプロスタンである。 iPF2 a-VIは、 iPF 2 a-lll の位置異性体で、 体内で作られる量が 8—イソプロスタンより多いとされている ((例 えば、 非特許文献 9参照))。 F 2—イソプロスタン異性体は、 それぞれ生理作用を持ち、 酸化 ストレスと関連する様々な病態や疾患での代謝も異なる可能性があるので、 F 2—イソプロス タン異性体の特異的 ·網羅的測定は重要である。 Urinary F 2 —isoprostane has been shown to be a specific and sensitive oxidative stress marker for noninvasive in vivo oxidative stress measurement, which is beginning to be used to assess oxidative stress. Of these F 2 isoprostane isomers, 8-isoprostane (8-iso-PGF 2 a , 8-iso-15 (S) PGF 2 a and iPF 2 a -lll) is the most studied F 2 — Isoprostan. iPF 2 a -VI is a positional isomer of iPF 2 a -lll and is said to be produced in the body more than 8-isoprostan (for example, see Non-Patent Document 9). The F 2 —isoprostane isomers have different physiological effects and may vary in metabolism in various pathologies and diseases associated with oxidative stress, so specific and comprehensive measurements of the F 2 —isoprostane isomers Is important.
酸化ストレス症候群または疾病を診断するために、例えば、脳組織や、髄液、血漿もしくは 尿中に存在するイソプロスタン分子マーカ一(iPF2 a-llし iPF2 a-VI および 8,12-iso-iPF2 a-VI) のレベルをガスクロマトグラフィー/質量分析法 (GC/MS) によって測定する方法が、 脂質 の過酸化の度合を測定する方法として報告されている (例えば、 特許文献 1参照)。 To diagnose oxidative stress syndrome or disease, for example, brain tissue or cerebrospinal fluid, isoprostane molecular markers one present in plasma or urine (iPF 2 a -ll and iPF 2 a -VI and 8,12-iso -iPF 2 a -VI) is measured by gas chromatography / mass spectrometry (GC / MS) as a method for measuring the degree of lipid peroxidation (for example, see Patent Document 1). ).
ガスクロマトグラフィ一/質量分析法 (GC/MS) は F 2—イソプロスタンの測定のゴールド スタンダード (gold standard) とされている (例えば、 非特許文献 1 0、 1 1、 1 2参照)。 し力、しながら、 GC/MSは、 サンカレの精製と誘導化などの手間がかかるだけではなく、 測定 特異度も欠けているために、 日常的な測定法として利用できない状況である (例えば、非特許 文献 1 0、 1 2参照)。 また、 酵素免疫測定 (ELISA) 法による 8—イソプロスタン測定キッ トも市販されている。 しかし、 抗体の交差性などの問題点がある他に、 F 2—イソプロスタン 異性体の網羅的測定ができないという欠点がある (例えば、 非特許文献 1 3参照)。 Gas Chromatography / Mass Spectrometry (GC / MS) is considered the gold standard for the determination of F 2 —isoprostane (see, eg, Non-Patent Documents 10 0, 11 and 12). However, GC / MS cannot be used as a routine measurement method due to the lack of measurement specificity as well as troublesome purification and derivatization of Sankare (for example, Non-Patent Documents 1 0 and 1 2). An 8-isoprostane measurement kit based on enzyme immunoassay (ELISA) is also available on the market. However, in addition to problems such as cross-reactivity of antibodies, there is a drawback that exhaustive measurement of F 2 -isoprostane isomers cannot be performed (for example, see Non-patent Documents 13).
一方、液体クロマ卜グラフィ一一タンデム質量分析(LC-MS/MS)法による F 2—イソプロス タンとその代謝物測定法は、感度と特異性の高い F 2—イソプロスタン測定法である(例えば、 非特許文献 1参照)。 F 2—イソプロスタンの立体異性体は高速液体クロマトグラフィーOn the other hand, the liquid chroma Bok photography eleven tandem mass spectrometry (LC-MS / MS) F 2 by method - Isopurosu Tan and its metabolites assay, high sensitivity and specificity F 2 - is a isoprostanes assays (e.g. Non-patent document 1). F 2 —isoprostane stereoisomers are analyzed by high performance liquid chromatography
(HPLC) によって分離でき、位置異性体はエレクトロスプレー (ESI)-MS/MS法によって分離 できるために、 F 2—イソプロスタン異性体の特異的測定ができる。また、 ESI-MS/MS法は複 雑なサンプルマトリックスから低濃度の測定物質を検出できる方法で、 F 2 _イソプロスタン の高感度測定ができる。 しかし、 LC-MS/MS法は、生体サンプルを分析する場合に重大な欠点 がある。つまり、 ESIによる測定物質のイオン化効率はサンプルマトリックスおよび HPLCバ ッファーの影響を受ける点である。 サンプルごとにマトリックス効果が異なるので (例えば、 非特許文献 1 4参照)、 安定な分析をするためには、 マトリックス効果を制御する必要がある(HPLC) and regioisomers can be separated by electrospray (ESI) -MS / MS, allowing specific measurement of F 2 -isoprostane isomers. Moreover, ESI-MS / MS method in a way that can detect low concentrations of analyte from complex sample matrices can sensitive measurement of F 2 _ isoprostanes. However, LC-MS / MS methods have significant drawbacks when analyzing biological samples. In other words, the ionization efficiency of the measurement substance by ESI is affected by the sample matrix and HPLC buffer. Since the matrix effect varies from sample to sample (see Non-Patent Documents 14 for example), it is necessary to control the matrix effect in order to perform stable analysis.
(例えば、 非特許文献 1 5参照)。 (For example, refer nonpatent literature 15).
かかる測定方法においては、サンプル注入、サンプル調製、機器パラメーターやマ卜リック ス効果によって変動した測定データを補正するために、測定物質と化学的 ·構造的に同じであ つて質量だけが異なる、安定したアイソトープで標識したアナログが内部標準品 (IS) として 使われている。 し力、し、安定同位体などの内部標準品を使っても、例えば、有機溶媒で抽出し た血漿サンプルには HPLCで分離された 8 -イソプロスタンの同位体(8-iso-PGF2 (l-d4)のピ ークに夾雑物質が含まれていることから、正確な測定ができないことが報告されている (例え ば、 非特許文献 1 6参照)。 なぜならば、 測定物質と内部標準品との比が測定物質の濃度計算 に使われているので、 8—イソプロスタンの正確的な測定ができない。そのため、夾雑物質と 内部標準品を分離させるために HPLC分離のグラジェン卜時間を長くする必要があつた(例え ば、 非特許文献 1 6参照)。 しかしながら、 測定物質と共に溶出するマトリックス関連化合物 の夾雑物質は、測定物質と同じ保持時間の場合も測定データの正確性を影響するが、その夾雑 物質の存在は検出できない。 従って、 LC-MS/MS法による F 2—イソプロスタン測定の場合に は、清浄な生体サンプルを抽出することは、正確でかつ再現性のあるデータを得るための基本 である。 In such a measurement method, in order to correct measurement data that has fluctuated due to sample injection, sample preparation, instrument parameters, and the matrix effect, the measurement substance is chemically and structurally the same, but only the mass is different, stable. The isotope-labeled analog is used as an internal standard (IS). Even if internal standards such as stable isotopes are used, for example, plasma samples extracted with an organic solvent are separated by HPLC-isolated 8-isoprostane (8-iso-PGF 2 ( l -d 4 ) It has been reported that accurate measurement is not possible due to the presence of contaminants in the peak (for example, see Non-Patent Document 16). Since the ratio to the standard is used to calculate the concentration of the measurement substance, 8-isoprostane cannot be measured accurately, so the HPLC separation gradient time must be reduced in order to separate contaminants from the internal standard. I need to lengthen it (for example, Non-patent document 16). However, the matrix-related compound contaminants that elute together with the analyte will affect the accuracy of the measurement data even when the retention time is the same as the analyte, but the presence of the contaminant cannot be detected. Therefore, in the case of F 2 -isoprostane measurement by LC-MS / MS, extracting a clean biological sample is the basis for obtaining accurate and reproducible data.
以前、 LC-MS/MS法による尿中 F 2—イソプロスタンの測定法については報告されているが、 生体サンプル中の F 2—イソプロスタンに対するマトリックスによるイオン抑制効果は、 検討 されていない (例えば、 非特許文献 1 6、 1 7、 1 8 , 1 9参照)。 また、 サンプルマトリツ クスおよび HPLCバッファーによるイオン源の汚れは、測定感度を低下させるために、安定な 分析ができない。 したがって、 LC-MS/MS法による尿中 F 2—イソプロスタン測定法は確立さ れていないと言わざるを得なし、。サンプルマトリックスおよび HPLCバッファ一によるイオン 抑制効果の制御は LC-MS/MS法による生体サンプル F 2—ィソプロスタン測定法の確立におい て重要である。 Previously, a method for measuring urinary F 2 —isoprostane by LC-MS / MS has been reported, but the ion-suppressing effect of the matrix on F 2 —isoprostane in biological samples has not been investigated (for example, Non-Patent Documents 16, 17, 17, 18 and 19). In addition, contamination of the ion source due to the sample matrix and HPLC buffer reduces the measurement sensitivity and cannot be analyzed stably. Therefore, it must be said that a method for measuring urinary F 2 -isoprostane by LC-MS / MS has not been established. Control of the ion suppression effect by the sample matrix and HPLC buffer is important in establishing a method for measuring biological samples F 2 -isoprostane by LC-MS / MS method.
要約すると、酸化ストレスは、心血管病を含める様々な病態や疾患に関連していることが明 らかにされてきて、 酸化ストレスのマーカ一を測定することは緊急に必要である。 尿中 F 2— イソプロスタン化合物は、活性酸素種を介するァラキドン酸の過酸化産物であり、信頼性のあ る酸化ストレスのマーカーである。 しかし、 尿中 F 2—イソプロスタン化合物には様々な異性 体が存在しておリ、 その異性体を高精度に分離測定することが重要である。 In summary, oxidative stress has been shown to be associated with a variety of conditions and diseases, including cardiovascular disease, and it is an urgent need to measure markers of oxidative stress. Urinary F 2 — isoprostane compounds are peroxidation products of arachidonic acid through reactive oxygen species and are reliable markers of oxidative stress. However, there are various isomers in urinary F 2 -isoprostane compounds, and it is important to separate and measure these isomers with high accuracy.
LC-MS/MS法は、 生体サンプル中の F 2—イソプロスタン異性体の特異的測定法であると報 告されている。 し力、し、かかる方法では、サンプルマトリックスによるイオン抑制が制御され ていないため、安定な分析ができないのが現状である。 また、サンプルマトリックスによるェ レクトロスプレーイオン化効率の変動は、測定の正確度、再現性、感度などに影響を及ぼすこ とになる。従って、 LC-MS/MS法で生体サンプルを測定する場合には、サンプルマトリックス によるイオン化抑制又は増強作用の制御は、 安定な分析を行うために非常に重要である。 The LC-MS / MS method has been reported to be a specific assay for the F 2 -isoprostane isomer in biological samples. However, in this method, since ion suppression by the sample matrix is not controlled, stable analysis cannot be performed at present. In addition, fluctuations in the electrospray ionization efficiency due to the sample matrix will affect the accuracy, reproducibility, and sensitivity of the measurement. Therefore, when measuring biological samples by LC-MS / MS, it is very important to control ionization suppression or enhancement by the sample matrix in order to perform stable analysis.
非特許文献 1 Yin, H., et aに, J. Chromatogr. B Analyt. Technol. Biomed. Life Scに 2005, 827: 157-164  Non-Patent Document 1 Yin, H., et a, J. Chromatogr. B Analyt. Technol. Biomed. Life Sc, 2005, 827: 157-164
非特許文献 2 Morrow, J. D., et al., Arterioscler. Thrornb. Vase. Biol. 2005, 25: 279-286 非特許文献 3 Montuschi, P., et al., FASEB J. 2004, 18: 1791-1800  Non-patent literature 2 Morrow, JD, et al., Arterioscler. Thrornb. Vase. Biol. 2005, 25: 279-286 Non-patent literature 3 Montuschi, P., et al., FASEB J. 2004, 18: 1791-1800
非特許文献 4 Pratico, D., et al.,丄 Biol. Chem. 1996, 271 : 14916-14924  Non-Patent Document 4 Pratico, D., et al., 丄 Biol. Chem. 1996, 271: 14916-14924
非特許文献 5 Kim, S., et al., Bioorg. Med. Chem. Lett. 2005, 15: 1513-1617  Non-Patent Document 5 Kim, S., et al., Bioorg. Med. Chem. Lett. 2005, 15: 1513-1617
非特許文献 6 Basu, S., FEBS Lett.1998, 428: 32-36  Non-Patent Document 6 Basu, S., FEBS Lett. 1998, 428: 32-36
非特許文献 7 Rokach,丄, et al., Chem. Phys. Lipids, 2004, 128: 35-56  Non-Patent Document 7 Rokach, Tsuji, et al., Chem. Phys. Lipids, 2004, 128: 35-56
非特許文献 8 Schwedhelm, Ε·, et al., J. Chromatogr. B Biomed. Scに Appに, 2000, 744: 99-112  Non-patent literature 8 Schwedhelm, Ε ·, et al., J. Chromatogr. B Biomed. Sc, App, 2000, 744: 99-112
非特許文献 9 luliano, L. et al.,丄 Am. CoH. Cardiol. 2001 , 37: 76-80 Non-Patent Document 9 luliano, L. et al., 丄 Am. CoH. Cardiol. 2001, 37: 76-80
^!^X ^ 1 0 Tsikas, D., et al., J. Chromatogr. B Analyt. Technol. Biomed. Life Scに 2003, 794: 237-255  ^! ^ X ^ 1 0 Tsikas, D., et al., J. Chromatogr. B Analyt. Technol. Biomed. Life Sc 2003, 794: 237-255
非特許文献 1 1 Reilly, MP" et al., Circulation. 1997, 96: 3314-3320  Non-Patent Document 1 1 Reilly, MP "et al., Circulation. 1997, 96: 3314-3320
非特許文献 1 2 Mori, T.A., et al., Anal. Biochem. 1999, 268: 117-125  Non-Patent Document 1 2 Mori, T.A., et al., Anal. Biochem. 1999, 268: 117-125
非特許文献 1 3 Pratico, D., et al., Nat. Med. 1998, 4: 1189-1192  Non-Patent Literature 1 3 Pratico, D., et al., Nat. Med. 1998, 4: 1189-1192
非特許文献 1 4 Mallet, C.R., et al., Rapid. Commun. Mass Spectrom. 18: 49-58  Non-Patent Document 1 4 Mallet, C.R., et al., Rapid. Commun. Mass Spectrom. 18: 49-58
非特許文献 1 5 Tiller, P.R., et al., Rapid. Commun. Mass Spectrom. 16: 92-98 非特許文献 1 6 Taylor, A.W., et al., Anal. Biochem. 2006, 350: 41-51 非特許文献 1 7 Liang, Y, et al., Free Radic. Biol. Med. 2003, 34: 409-418 Non-Patent Document 1 5 Tiller, PR, et al., Rapid. Commun. Mass Spectrom. 16: 92-98 Non-patent literature 1 6 Taylor, AW, et al., Anal. Biochem. 2006, 350: 41-51 Non-patent literature 1 7 Liang, Y, et al., Free Radic. Biol. Med. 2003, 34: 409- 418
非特許文献 1 8 Li, H" et al., Proc. Natl. Acad. Sci, USA, 1999, 96: 13381-13386 【非特許文献 1 9 Bohnstedt, K.C., et al., J. Chromatogに B Analyt. Technol. Biomed. Life Sci. 2006, 796: 11-19  Non-patent literature 1 8 Li, H "et al., Proc. Natl. Acad. Sci, USA, 1999, 96: 13381-13386 [Non-patent literature 1 9 Bohnstedt, KC, et al., J. Chromatog in B Analyt Technol. Biomed. Life Sci. 2006, 796: 11-19
非特許文献 2 0 luliano, L, et al.,丄 Am. Coll. Cardioに 2001, 37: 76-80  Non-Patent Document 2 0 luliano, L, et al., 丄 Am. Coll. Cardio 2001, 37: 76-80
非特許文献 2 1 Snyder, L. R., et al.,丄 Chromatogr. A. 2000. 892: 107-121  Non-Patent Document 2 1 Snyder, L.R., et al., 丄 Chromatogr. A. 2000. 892: 107-121
特許文献 1 特表 2 0 0 2—5 3 1 8 1 5号公報 発明の開示 そこで、 本発明者は、 LC-MS/MS法による F 2—イソプロスタン測定中のマトリックス及び HPLCバッファ一添加物によるィォン抑制効果を制御する手段を鋭意検討した結果、新しい多 次元固相抽出 (MD-SPE) による尿サンプルのクリーンアップ法と新しいバッファ一フリーの HPLC法を開発して、それによつて LC-MS/MS法による障害のない安定した尿中 F 2—ィソプ ロスタンの測定が可能であることを見出して、 この発明を完成した。 また、 特定の HPLC 力 ラムと溶媒組成とを組み合わせることによって、 8—イソプロスタンと新規な未知 F 2—イソ プロスタン異性体を分離することができ、 8—イソプロスタンの特異的測定を可能にした。 したがって、 この発明の一つの主な目的は、 F 2—イソプロスタン異性体の分離測定方法を 提供することである。 Patent Document 1 Special Table 2 0 0 2—5 3 1 8 1 5 gazette Disclosure of Invention Therefore, the present inventor has developed a matrix and one HPLC buffer additive during measurement of F 2 —isoprostane by LC-MS / MS As a result of intensive investigations on the means to control the ion suppression effect of urine, a new multi-dimensional solid-phase extraction (MD-SPE) urine sample cleanup method and a new buffer-free HPLC method were developed. The present invention was completed by finding that stable measurement of urinary F 2 -isoprostane without damage by the MS / MS method was possible. In addition, by combining a specific HPLC force ram and solvent composition, 8-isoprostane and a new unknown F 2 -isoprostane isomer could be separated, enabling specific measurement of 8-isoprostane. . Accordingly, one main object of the present invention is to provide a method for separating and measuring F 2 -isoprostane isomers.
この発明の好ましい態様は、 F 2 _イソプロスタン化合物の立体異性体ならびに位置異性体 の分離測定方法を提供することである。 A preferred embodiment of the present invention is to provide a method for separating and measuring stereoisomers and positional isomers of F 2 _isoprostane compounds.
この発明の別の主な目的は、 F 2—イソプロスタン異性体の分離測定方法に適した試料、 特 に尿試料などの生体試料の処理方法を提供することである。 Another main object of the present invention is to provide a sample suitable for a method for separating and measuring F 2 -isoprostane isomers, particularly a method for treating a biological sample such as a urine sample.
この発明の上記目的を達成するために、 この発明は、 F 2—イソプロスタン化合物の立体異 性体ならびに位置異性体の分離測定方法を提供する。 In order to achieve the above object of the present invention, the present invention provides a method for separating and measuring stereoisomers and positional isomers of F 2 -isoprostane compounds.
更に具体的には、 試料を F 2—ィソプロスタン異性体分離可能な特定の粒径を有するクロマ トグラフィ一用担体に添加して特定濃度比のメタノールノアセトニ卜リル水溶液からなる溶 出液を用いて、 クロマトグラフィ一によつて F 2—イソプロスタン異性体を分離測定すること からなる F 2—イソプロスタン異性体の分離測定方法において、F 2—イソプロスタン異性体分 離可能な特定の粒径が 4 // m以下であり、 クロマトグラフィ一用担体が F 2—イソプロスタン 異性体の保持能を有してなく、 かつ、 特定濃度比のメタノール Zァセトニトリル水溶液が 1 0: 9 0 - 1 0 0 : 0であることからなる F 2—イソプロスタン異性体の分離測定方法を提供 する。 More specifically, a sample is added to a chromatographic carrier having a specific particle size capable of separating F 2 -isoprostane isomers, and an elution solution consisting of a methanol noacetonyl aqueous solution having a specific concentration ratio is used. In the method for separating and measuring F 2 -isoprostane isomers, which consists of separating and measuring F 2 -isoprostane isomers by chromatography, the specific particle size that can be separated from F 2 -isoprostane isomers is 4 // Less than m, the chromatographic carrier is not capable of retaining F 2 —isoprostane isomer, and methanol Z-acetonitrile aqueous solution with a specific concentration ratio is 1 0: 9 0-1 0 0: 0 A method for separating and measuring F 2 -isoprostane isomers is provided.
この発明の好ましい態様は、 F 2—イソプロスタン異性体分離可能な特定の粒径が 3 . 5 m以下であることからなる F 2—イソプロスタン異性体の分離測定方法を提供する。 A preferred embodiment of the present invention provides a method for separating and measuring F 2 -isoprostane isomers, wherein the specific particle size capable of separating F 2 -isoprostane isomers is 3.5 m or less.
また、この発明の好ましい別の態様は、クロマトグラフィー用担体が C6— C20、好ましくは C 8-C18、より好ましくは C8もレ、くは C18長鎖アルキル基がシリカゲルに化学結合したシリカ担体で あることからなる F 2—イソプロスタン異性体の分離測定方法が提供される。 Another preferred embodiment of the present invention is a silica carrier in which the chromatographic carrier is C6-C20, preferably C8-C18, more preferably C8, or a C18 long chain alkyl group is chemically bonded to silica gel. A method for separating and measuring F 2 -isoprostane isomers is provided.
この発明の好ましい更に別の態様として、メタノール ァセトニトリル水溶液の特定濃度比 が 4 0: 6 0〜 1 0 0: 0、 好ましくは 5 0: 5 0 - 1 0 0: 0であることからなる F 2—ィ ソプロスタン異性体の分離測定方法が提供される。 さらに、 この発明は、 F 2—イソプロスタン異性体の分離測定方法に適した試料の処理方法 を提供する。 この発明の試料処理方法は、固相容量の異なる固相抽出担体を用いた 2ステップ 固相抽出によリ、 夾雑物質を除去すると共に F 2—イソプロスタン化合物を抽出することによ つて、 LC-MS/MS分析ための溶媒交換、分析感度を高めるための濃縮ならびに試料の精製と いう 3つのことを同時に短い時間で行うことを可能にした画期的な方法である。 As yet another preferred aspect of the invention, specific concentration ratio of methanol Asetonitoriru aqueous solution 4 0: 6 0-1 0 0: 0, preferably from 5 0: 5 0 - 1 0 0: 0 consists a F 2 —Methods for separating and measuring isoprostane isomers are provided. Furthermore, the present invention provides a sample processing method suitable for a method for separating and measuring F 2 -isoprostane isomers. The sample processing method of the present invention is based on the two-step solid-phase extraction using a solid-phase extraction carrier having a different solid-phase capacity, by removing impurities and extracting the F 2 -isoprostane compound. -It is an epoch-making method that makes it possible to simultaneously perform three things: solvent exchange for MS / MS analysis, concentration to enhance analytical sensitivity, and sample purification at the same time.
より具体的には、 この発明に係る試料の処理方法は、生体試料などの試料を、大きい固相容 量の第 1固相抽出担体に通して、 該試料中に含まれる F 2—イソプロスタン化合物ならびにそ の同位体を該第 1固相抽出担体に保持するとともに、該試料中に含まれる夾雑物質を除去する ことからなる第 1固相抽出ステップと、該第 1固相抽出担体を通過した試料を、該第 1固相抽 出担体の固相容量よリも小さい固相容量の第 2固相抽出担体を通して、 更に F 2—イソプロス タン化合物ならびにその同位体を該第 2固相抽出担体に保持するとともに、該試料中に含まれ る夾雑物質を除去することからなる第 2固相抽出ステップと、 からなつている。 More specifically, in the sample processing method according to the present invention, a sample such as a biological sample is passed through a first solid phase extraction carrier having a large solid phase capacity, and F 2 -isoprostane contained in the sample is passed. A first solid-phase extraction step comprising holding a compound and its isotope on the first solid-phase extraction carrier and removing contaminants contained in the sample, and passing through the first solid-phase extraction carrier The obtained sample is passed through a second solid phase extraction carrier having a smaller solid phase capacity than the solid phase capacity of the first solid phase extraction carrier, and further F 2 -isopropyl compound and its isotope are extracted into the second solid phase extraction. A second solid-phase extraction step comprising holding the carrier and removing contaminants contained in the sample.
この発明における好ましい態様として、第 1固相抽出ステップがサイズ排除クロマトグラフ ィ一ならびに逆相ク口マトグラフィ一で行われること、ならびに第 2固相抽出ステツプがサイ ズ排除クロマトグラフィ一ならびに順相クロマトグラフィ一で行われることからなる試料の 処理方法が提供される。  In a preferred embodiment of the present invention, the first solid phase extraction step is performed by size exclusion chromatography and reverse phase chromatography, and the second solid phase extraction step is performed by size exclusion chromatography and normal phase chromatography. A sample processing method is provided comprising:
さらに、 この発明は、更に別の態様として、体試料などの試料を、大ぎい固相容量の第 1固 相抽出担体に通して、 該試料中に含まれる F 2—イソプロスタン化合物ならびにその同位体を 該第 1固相抽出担体に保持するとともに、該試料中に含まれる夾雑物質を除去することからな る第 1固相抽出ステップと、 該第 1固相抽出担体を通過した試料を、該第 1固相抽出担体の 固相容量よリも小さい固相容量の第 2固相抽出担体を通して、 更に F 2—イソプロスタン化合 物ならびにその同位体を該第 2固相抽出担体に保持するとともに、該試料中に含まれる夾雑物 質を除去することからなる第 2固相抽出ステップと、からなる試料の処理方法と、該試料の処 理方法で処理して得られた溶出液を、 を F 2 _イソプロスタン異性体分離可能な特定の粒径を 有するクロマトグラフィ一用担体に添加して特定濃度比のメタノール アセトニ卜リル水溶 液からなる溶出液を用いて、 クロマトグラフィ一によって F 2—イソプロスタン異性体を分離 測定することからなる F 2—イソプロスタン異性体の分離測定方法において、 F 2—イソプロス タン異性体分離可能な特定の粒径が 4 μ m以下であり、 クロマトグラフィ一用担体が F 2—ィ ソプロスタン異性体の保持能を有してなく、かつ、特定濃度比のメタノール Zァセトニトリル 水溶液が 1 0 : 9 0 ~ 1 0 0: 0であることからなる F 2—イソプロスタン異性体の分離測定 方法を提供する。 Further, according to yet another aspect of the present invention, a sample such as a body sample is passed through a first solid phase extraction carrier having a large solid phase capacity, and the F 2 -isoprostane compound contained in the sample and its isotope are included. A first solid phase extraction step of holding a body on the first solid phase extraction carrier and removing contaminants contained in the sample, and a sample that has passed through the first solid phase extraction carrier. The F 2 -isoprostane compound and its isotope are further retained on the second solid phase extraction support through the second solid phase extraction support having a solid phase capacity smaller than the solid phase capacity of the first solid phase extraction support. In addition, a second solid-phase extraction step comprising removing contaminants contained in the sample, a sample treatment method comprising, and an eluate obtained by the treatment by the sample treatment method, the F 2 _ isoprostane isomers separable specific particle size With an elution solution is added to the chromatographic one carrier consisting of methanol Asetoni Bok Lil aqueous solution of a specific concentration ratios having, chromatography one by F 2 - becomes the isoprostane isomer from separating measure F 2 - isoprostane isomer In the method for separating and measuring F 2 —isoprostane isomer, the specific particle size that can be separated is 4 μm or less, and the chromatographic carrier does not have the ability to retain F 2 —isoprostane isomer. In addition, the present invention provides a method for separating and measuring F 2 -isoprostane isomers, wherein the aqueous solution of methanol Z-acetonitrile at a specific concentration ratio is from 10:90 to 100 : 0: 0.
この発明に係る F 2—ィソプロスタン異性体の分離測定方法は、 F 2—イソプロスタン化合物 の立体異性体ならびに位置異性体の分離測定を高感度でかつ高精度で行うことができるとい う効果がある。 According to the present invention F 2 - separation method of measuring Isopurosutan isomers, F 2 - is cormorants effect has to be able to carry out separation measurement of stereoisomers as well as regioisomers of the isoprostane compounds with high sensitivity and high precision .
また、 この発明に係るサンプルの処理方法は、 この発明に係る F 2—イソプロスタン異性体 の分離測定方法を高感度でかつ高精度で行うことができるという効果がある。 Further, the sample processing method according to the present invention has an effect that the method for separating and measuring F 2 -isoprostane isomer according to the present invention can be performed with high sensitivity and high accuracy.
つまり、 この発明は、多次元固相抽出による新規サンプルクリーンアップ法とバッファ一を 使わない新規 F 2—イソプロスタン分離 HPLC法によって、 LC-MS/MS法による尿中 F 2—ィ ソプロスタンの網羅的-特異的分析を行うことができるという効果がある。 また、 この発明に 係る新規多次元固相抽出一 LC-MS/MS法を使用すれば、 尿サンプル中の F 2—ィソプロスタン をルーチン分析するという効果も期待される。 図面の簡単な説明 図 1は、 F2—イソプロスタン化合物の異性体ならびにジユウテリゥム置換内部標準品(IS) の各構造を示す図である。 That is, the present invention is novel sample clean-up method the new F 2 to the without buffers one by Multidimensional Solid Phase Extraction - by isoprostane separation HPLC method, LC-MS / MS in urine by method F 2 - exhaustive of I Sopurosutan There is an effect that a target-specific analysis can be performed. In addition, if the novel multidimensional solid phase extraction-LC-MS / MS method according to the present invention is used, the effect of routine analysis of F 2 -isoprostane in urine samples is also expected. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing the structure of an isomer of F 2 -isoprostane compound and a diuterium-substituted internal standard (IS).
図 2は、 (A) 8-iso-PGF2a、 (B) 8-iso-PGF2a-d4, (C) 2,3-dinor-8-iso-PGF2a. (D)(±)5-iPF 2a-VI、 (E)(±)5-iPF2a-VI-d11のイオンスぺクトルを示す図である。 Figure 2 shows (A) 8-iso-PGF 2a , (B) 8-iso-PGF 2a -d4, (C) 2,3-dinor-8-iso-PGF 2a . (D) (±) 5- It is a figure which shows the ion spectrum of iPF 2a -VI, (E) (±) 5-iPF 2a -VI-d11.
図 3は、 MRMモードで検出した iPF2a-lllと iPF2a-VI異性体の液体クロマトグラフィ一一 タンデム質量 (LC-MS/MS) 分析結果を示す図である。 図中、 Aと Bは m/z353→193 イオン チャンネル、 Cは m/z 357→197 イオンチャンネル、 Dは m/z 325→237 イオンチャンネル、 F: m/z364→115イオンチャンネルを示す図である。 Fig. 3 shows the results of liquid chromatography tandem mass (LC-MS / MS) analysis of iPF 2a -ll and iPF 2a -VI isomers detected in MRM mode. In the figure, A and B are m / z353 → 193 ion channels, C is m / z 357 → 197 ion channels, D is m / z 325 → 237 ion channels, and F: m / z364 → 115 ion channels. is there.
図 4 Aは、 Oasis HLB (親水一親油バランス)、 MAX (逆相一陰イオン交換)、 MCX (逆相一 陽イオン交換) 固相抽出カートリッジ (3cc/60mg) での尿サンプル添加 [3H】8-iso-PGF2aの 保持曲線を示す図である。 Fig. 4 A shows the addition of urine sample with Oasis HLB (hydrophilic monolipophilic balance), MAX (reverse phase and anion exchange), MCX (reverse phase and cation exchange) solid phase extraction cartridge (3cc / 60mg) [ 3 H] A graph showing a retention curve of 8-iso-PGF 2a .
図 4Bは、 酸性側 (2%ギ酸)、 中性側 (水)、塩基側 (2%アンモニア) 洗浄条件下で、 メタ ノール濃度に対する 【3H]8-iso-PGF2aの Oasis HLB固相カートリッジでの保持特性変化をし めす図である。 Figure 4B shows the Oasis HLB solid phase of [ 3 H] 8-iso-PGF 2a against methanol concentration under acidic conditions (2% formic acid), neutral side (water), base side (2% ammonia) wash conditions. FIG. 6 is a diagram showing a change in holding characteristics in a cartridge.
図 4Cは、 :選択的固相抽出プロトコールと多次元固相抽出法を示す図である。 図中、 AAは ァラキドン酸、 EAは酢酸ェチルを意味する。  FIG. 4C shows: selective solid phase extraction protocol and multidimensional solid phase extraction method. In the figure, AA means arachidonic acid and EA means ethyl acetate.
図 5は、 多次元固相抽出法で抽出した尿サンプル中 F2—イソプロスタンの MRMクロマト グラムを示す図である。 図中、 Aは尿サンプル中の iPF2e-lll異性体を、 Bは抽出した尿サン プルに 8 o-15(R) PGF2a, iPF2„-lll, 15(R) PGF2。と PGF2aを添加した場合の iPF2a-lll異 性体イオンチャンネル (m/z 353→193) を示し、 Cは尿サンプルに添加した内部標準品 iPF2 a-lll-d4と PGF2a-d4のイオンチャンネル (m/z357→197) を示し、 Dはブランク尿サンプル の内部標準品イオンチャンネル (m/z357→197) を示し、 Eは 2,3-dinor-iPF2a-lll標準品添加FIG. 5 is a diagram showing an MRM chromatogram of F 2 -isoprostane in a urine sample extracted by a multidimensional solid-phase extraction method. In the figure, A is the iPF 2e -lll isomer in the urine sample, B is the extracted urine sample, 8 o-15 (R) PGF 2a , iPF 2 „-ll, 15 (R) PGF 2 and PGF. IPF 2a -lll is the ion channel (m / z 353 → 193) when 2a is added, and C is the ion of the internal standard iPF 2 a -lll-d4 and PGF 2a -d4 added to the urine sample. Channel (m / z357 → 197), D indicates the internal standard ion channel (m / z357 → 197) of the blank urine sample, E indicates 2,3-dinor-iPF 2a- lll standard addition
(点線)と添加しない抽出尿中 2,3-dinor-iPF2a-lllイオンチャンネル(m/z 325→237)を示し、 Fは ((±)5- iPF2a-VI 添加 (点線) と添加しない抽出尿中 iPF2a-VI イオンチャンネル (m/z 353→115) を示し、 G:は尿中添加内部標準品 (±)5- iPF^-VI-d"のイオンチャンネル (m/z 364→115) を示している。 (Dotted line) and 2,3-dinor-iPF 2a -lll ion channel (m / z 325 → 237) in extracted urine without addition, F indicates ((±) 5- iPF 2a -VI added (dotted line) and added The extracted urinary iPF 2a -VI ion channel (m / z 353 → 115) is shown, G: is the urinary internal standard (±) 5-iPF ^ -VI-d "ion channel (m / z 364 → 115).
図 6は、 8名のポランティアから尿サンプルを 1 ml と 2ml抽出したときの (A)iPF2(r-lll/iPF 2a-lll-d4ピーク面積比、 (B) iPF2a-VI/ iPFwVI-d"ピーク面積比、 (C) iPF2(l-lllの S/N比、Figure 6 shows (A) iPF 2 (r -lll / iPF 2a -lll-d 4 peak area ratio, (B) iPF 2a -VI / iPFwVI when 1 ml and 2 ml urine samples were extracted from 8 volunteers. -d "peak area ratio, (C) iPF 2 (l -lll S / N ratio,
(D) iPF2a-VIの S/N比での相関を示している。 (C) iPF2a-lllと (D) iPF2a-VIの S/N比は 箱髭図にもデータを示す図である。図中、ボックスの上と下の境界線は 75と 25パーセンタイ ル値を示し、ボックス内の線は中央値を示す。上と下のエラ一バ一は 90と 10パーセンタイル を示す。なお、 1 mlと 2mlのサンプルに同じ量(2ng) の iPF2a-ll卜 d4と iPF2a-V卜 d„を添加 した。 (D) Correlation at the S / N ratio of iPF 2a -VI. The S / N ratios for (C) iPF 2a -ll and (D) iPF 2a -VI are also shown in the box chart. In the figure, the upper and lower borders of the box indicate 75 and 25 percentile values, and the line in the box indicates the median value. The upper and lower error bars indicate the 90th and 10th percentiles. The same amount (2 ng) of iPF 2a -ll d4 and iPF 2a -V d d was added to the 1 ml and 2 ml samples.
図 7は、 メタノールとァセトニトリルの混合比率を変化させて、 8-iso-PGF2aと未知異性体 の分離能および PGF2aと未知異性体の分解能を調べた結果を示す図である。 発明を実施するための最良の形態 この発明は、 LC-MS/MS法による尿中 F2—イソプロスタン測定中のサンプルマトリックス 及び HPLCバッファ一添加物によるィォン抑制作用を制御するために、新規な多次元固相抽出 (MD-SPE) 法とバッファ一を使わない F 2—イソプロスタン異性体を分離することができる HPLC法に関するものである。 Fig. 7 shows the results of examining the resolution of 8-iso-PGF 2a and unknown isomers and the resolution of PGF 2a and unknown isomers by changing the mixing ratio of methanol and acetonitrile. BEST MODE FOR CARRYING OUT THE INVENTION The present invention relates to a sample matrix during measurement of urinary F 2 -isoprostane by LC-MS / MS method. In addition, a novel multidimensional solid phase extraction (MD-SPE) method and an HPLC method that can separate F 2 -isoprostane isomers without using a buffer to control the ion-suppressing effect of an HPLC buffer additive. It is about.
液体クロマトグラフィ一一タンデム質量分析 (LC-MS/MS)法による F 2—イソプロスタン 測定の場合には、清浄な生体サンプルを抽出することは、正確でかつ再現性のあるデータを得 るための基本であることは前述した通りである。 In the case of F 2 -isoprostane determination by liquid chromatography-tandem mass spectrometry (LC-MS / MS), extracting a clean biological sample is necessary to obtain accurate and reproducible data. As described above, it is basic.
清浄な生体サンプルを抽出するために、 この発明において新規な多次元固相抽出 (MD— SPE: Multidimensional (MD) Solid-Phase Extraction (SPE)) 方法を開発した。 この方法によ つて、 尿中夾雑物質を除去して F 2—イソプロスタンを抽出するために、 サイズ排除クロマト グラフィー、 順相クロマトグラフィ一と逆相クロマトグラフィー機序を応用して F 2—イソプ ロスタンを保持し、夾雑物質を取り除くとともに、 2次元 SPE洗浄法と選択的溶出法によつ てさらに夾雑物質を除去し、 F 2—イソプロスタンを選択的に抽出することができる。 In order to extract a clean biological sample, a novel multidimensional (MD) solid-phase extraction (SPE) method was developed in the present invention. By this method connexion, F to remove contaminants in the urine 2 - to extract isoprostanes, size exclusion chromatography, by applying the ordinal normal phase chromatography one and reverse phase chromatography machine F 2 - isoprene Rostand The F 2 -isoprostane can be selectively extracted by removing the contaminants by the 2D SPE washing method and the selective elution method.
この発明に係る新規多次元固相抽出方法は、固相容積が異なる固相抽出担体を使用しての 2 ステップ固相抽出と、選択的 SPE洗浄■溶出プロ卜コールに基づいている。 2ステップ固相 抽出法は、 第 1固相抽出ステップと第 2固相抽出ステップとから構成されている。  The novel multidimensional solid-phase extraction method according to the present invention is based on two-step solid-phase extraction using a solid-phase extraction carrier having different solid-phase volumes and selective SPE washing / elution protocol. The two-step solid phase extraction method is composed of a first solid phase extraction step and a second solid phase extraction step.
つまり、第 1固相抽出ステップは、主として、 タンパク質や塩などを除去する工程、酸性極 性夾雑物質を除去する工程、塩基性極性夾雑物質を除去する工程ならびに中性夾雑物質を除去 する工程から構成されている。これらの工程はサイズ排除クロマトグラフィ一と逆相クロマト グラフィーを用いて行うのがよい。  That is, the first solid phase extraction step mainly includes a process of removing proteins, salts, etc., a process of removing acidic polar contaminants, a process of removing basic polar contaminants, and a process of removing neutral contaminants. It is configured. These steps should be performed using size exclusion chromatography and reverse phase chromatography.
なお、 この発明においては、サンプルを第 1固相抽出ステップで処理する前に、サンプルは 前処理をして、 後続する第 1固相抽出ステップに適うようにする。 例えば、 サンプルに 10% メタノール、 重水同位体ならびにギ酸などの酸を添加して、 サンプルを p H 3程度の酸性に調 整するのがよい。また、 このサンプルをフィルターなどによってサンプル中に存在する固体粒 子を除去するのがよい。 このように処理したサンプルを次の固相抽出操作に使用する。  In the present invention, before the sample is processed in the first solid phase extraction step, the sample is pretreated so as to be suitable for the subsequent first solid phase extraction step. For example, 10% methanol, heavy water isotopes, and acids such as formic acid may be added to the sample to adjust the sample to an acidity of about pH 3. In addition, it is preferable to remove solid particles present in the sample by filtering this sample. The sample thus treated is used for the next solid phase extraction operation.
第 1 固相抽出ステップにおけるタンパク質や塩などの大きな分子量の夾雑物質を除去する 工程では、 前処理したサンプルを、 第 1固相抽出担体に添加して、 例えば 5%メタノールでサ ンプルを中性にして洗浄することによって、担体に保持されないタンパク質や塩などの夾雑物 質を除去することができる。この工程に使用する第 1固相抽出担体は、使用前に、例えば、 5% メタノ一ルとギ酸などの酸を添加して酸性に調整する。  In the process of removing large molecular weight contaminants such as proteins and salts in the first solid phase extraction step, the pretreated sample is added to the first solid phase extraction support and the sample is neutralized, for example with 5% methanol. By washing in this manner, contaminants such as proteins and salts that are not retained on the carrier can be removed. The first solid phase extraction carrier used in this step is adjusted to be acidic before use, for example, by adding an acid such as 5% methanol and formic acid.
上記工程でタンパク質や塩などの大きな分子量の夾雑物質を除去した後、 例えば 5%メタノ —ルと 2%アンモニアで担体を塩基性にして洗浄することによって、 極性を有する酸性夾雑物 質を除去することができる。  After removing large molecular weight contaminants such as proteins and salts in the above step, remove polar acidic contaminants, for example, by washing the carrier with 5% methanol and 2% ammonia to make it basic. be able to.
次に、 塩基性極性夾雑物質を除去するために、 例えば 5%メタノールと 2%ギ酸で担体を洗 浄して酸性側に移動させる。 酸性側で有機溶媒の濃度が高めの溶媒、例えば、 159«のメタノール (2%ギ酸)、 で洗浄することによつて極性塩基夾雑物が除去される。  Next, in order to remove the basic polar contaminants, the carrier is washed with, for example, 5% methanol and 2% formic acid and moved to the acidic side. Polar base contaminants are removed by washing with a solvent having a higher concentration of organic solvent on the acidic side, for example, 159% methanol (2% formic acid).
続いて、中性夾雑物質を除去するために、例えばへキサン Zェチルエーテル混合液で担体を洗 浄することによって、 中性夾雑物質を除去す:?)。 このよラに中性夾雑物質を除去した後、例え ばへキサン■酢酸ェチル混合液で担体を洗浄すること I,こ つて、担体に残存している水分を除 去するとともに、 F 2—イソプロスタンよりも極性が弱い 雑物質を除去することができる。 その後、 F 2—イソプロスタンを選択的に溶出するために、 例えばジェチルエーテルなどの 極性有機溶媒と酢酸などの酸の溶出溶媒を用いて、酢酸ェチルよリも極性が低い極性を有する 有機溶媒と酢酸との混合物を添加して F 2—ィソプロスタンを含む脂肪酸分画を溶出した。 こ のようにして得られた溶出液は、 次の第 2固相抽出ステップの前に、 非極性溶媒、 例えばへキ サンで、希釈して順相で保持するようにサンプルを準備する。 このように処理した溶出液を次 の第 2固相抽出ステップで処理する。 Subsequently, in order to remove neutral contaminants, the neutral contaminants are removed, for example, by washing the carrier with a hexane Z ethyl ether mixture :? ). After removing neutral contaminants in this way, wash the carrier with, for example, hexane-ethyl acetate mixed solution. I. In addition to removing water remaining on the carrier, F 2 -Isopro It can remove impurities that are less polar than stun. Then, in order to selectively elute F 2 -isoprostane, for example, polar organic solvent such as jetyl ether and acid elution solvent such as acetic acid are used. A mixture of organic solvent and acetic acid was added to elute the fatty acid fraction containing F 2 -isoprostane. Prepare the sample so that the eluate thus obtained is diluted in non-polar solvent, eg hexane, and kept in normal phase before the next second solid phase extraction step. The eluate treated in this way is processed in the second solid phase extraction step.
第 2固相抽出ステップでは、 F 2—イソプロスタンを順相クロマトグラフィーで保持し、 F 2— イソプロスタンより極性の弱い夾雑物を除去する。 5<½メタノール洗浄によって水性溶媒に切り 替えると共に、 酸を除去する。 In the second solid phase extraction step, F 2 -isoprostane is retained in normal phase chromatography to remove contaminants that are less polar than F 2 -isoprostane. Switch to aqueous solvent with 5 <½ methanol wash and remove acid.
次に、 例えば 5%メタノールと 2%アンモニアで塩基側洗浄することによって、 固相容量が小さ い場合に、 塩基側で F 2—イソプロスタンより保持が弱い夾雑物を更に除去できる。 Next, for example, by washing with 5% methanol and 2% ammonia on the base side, contaminants that are weaker than F 2 -isoprostane on the base side can be further removed when the solid phase capacity is small.
次に、 F 2—イソプロスタンを溶出するために、 例えば 5%メタノールと 2%ギ酸で担体を洗浄 して酸性側 Iこ移動させる。 その後、 酸を、 例えば 5%メタノールで除去する。 更に、 洗浄有機溶媒 の濃度を、 F 2—イソプロスタンが溶出しない程度にあげて、 例えば、 1596メタノール、 で洗浄 することによって、 極性夾雑物を除去とともに、 F 2—イソプロスタンを溶出しやすいように担 体を準備する。 Next, to elute F 2 -isoprostane, wash the carrier with 5% methanol and 2% formic acid, for example, and move it to the acidic side. The acid is then removed, for example with 5% methanol. Furthermore, increase the concentration of the washing organic solvent to such an extent that F 2 -isoprostane does not elute. For example, washing with 1596 methanol removes polar impurities and facilitates the elution of F 2 -isoprostane. Prepare a carrier.
次に、更に有機溶媒の濃度を F 2—イソプロスタンを溶出できる程度にあげる、例えば、 8096の メタノール、 ことによって、 選択的に F 2—イソプロスタンを溶出して F 2—イソプロスタンよ リ保持の強い夾雑物を固相に残すことによって除去する。 Then, further the concentration of the organic solvent F 2 - raise enough to elute the isoprostanes, for example, methanol 8096, by selectively F 2 - eluting the isoprostane F 2 - isoprostanes by Li held Are removed by leaving solid impurities in the solid phase.
第 2固相抽出ステップで容量の小さい固相、 例えば 2 mg、 を使うことによって、 少ない溶媒容 積、 例えば、 40 - 50 μΙ、 で F 2—イソプロスタンを溶出できる。 溶出したサンプルを水で希釈 して、 サンプルの有機溶媒濃度は、 HPLC の初期有機溶媒濃度、 例えば 20%、 より低くなる ように調整する。 調整後のサンプルはそのまま LC-MS/MS分析ができる。 By using a small solid phase, eg 2 mg, in the second solid phase extraction step, F 2 -isoprostane can be eluted with a small solvent volume, eg 40-50 μΙ. Dilute the eluted sample with water and adjust the organic solvent concentration of the sample to be lower than the initial HPLC organic solvent concentration, eg, 20%. The prepared sample can be directly subjected to LC-MS / MS analysis.
第 1固相抽出ステツプと第 2固相抽出ステツプで使用する第 1および第 2固相抽出担体は、細孔 サイズが小さく、 例えば、 親水性—親油性バランス (HLB: hydrophilic-lipophilic balance) が 7— 2 0程度の固相ポリマ一であるのよい。かかる固相ポリマーとしては、例えば、親水性のビニルビ ロリ ドンと、親油性のジビニルベンゼンとの共重合体が挙げられるが、 この発明に使用できる担体 は、かかる共重合体に一切限定されるものではなく、 この発明の目的に適うものであればいずれも 使用することができる。  The first and second solid phase extraction supports used in the first solid phase extraction step and the second solid phase extraction step have a small pore size, for example, hydrophilic-lipophilic balance (HLB). It should be a solid phase polymer of about 7-20. Examples of the solid phase polymer include a copolymer of hydrophilic vinyl pyrrolidone and lipophilic divinyl benzene, and the carrier usable in the present invention is not limited to such a copolymer. Rather, any material that meets the object of the present invention can be used.
また、 第 1固相抽出ステップで 1cc / 30 mgの固相抽出カートリッジを使用すると、 ジェチ ルエーテル (296酢酸) でイソプロスタンを溶出する場合、 溶出容積は 1 ml程度である必要が ある。濃縮倍数を上げるとしたら、サンプルの量を上げる必要があり、 3 ml程度の尿を添加す ることも可能である。 また、 薄い尿サンプルの場合には、 4mlまたはそれ以上添加することも できると考えられる。さらに、細胞培地を使った場合には、イソプロスタンを測定するために、 10 mlの培地を使用することが可能である。 家族高コレステロール血症動物モデルワタナベゥ サギの場合には、 1 mlの尿サンプルで抽出することができる。 つまり、 サンプルによって、 第 1固相抽出ステップでは 1から 10倍の濃縮が可能である。 メタノール、 ァセトニトリルなど の溶出力の強い溶媒を使用した場合は、 溶出容積が少なくて済む (例えば、 0.5 ml) ので、 濃 縮倍数をさらに上げることができるという利点がある。 し力、し、溶出力の強い溶媒を使用する のは、 夾雑物質も溶出してしまうので注意を要する。  If a 1 cc / 30 mg solid phase extraction cartridge is used in the first solid phase extraction step, the elution volume should be about 1 ml when isoprostane is eluted with diethyl ether (296 acetic acid). If the concentration factor is increased, it is necessary to increase the amount of the sample, and about 3 ml of urine can be added. In the case of a thin urine sample, 4 ml or more may be added. Furthermore, if cell culture medium is used, 10 ml of medium can be used to measure isoprostane. In the case of the family hypercholesterolemic animal model Watanabe Heron, it can be extracted with a 1 ml urine sample. That is, depending on the sample, the first solid phase extraction step can be concentrated 1 to 10 times. When a solvent with a strong dissolution power such as methanol or acetonitrile is used, since the elution volume is small (for example, 0.5 ml), there is an advantage that the concentration multiple can be further increased. Use of a strong solvent with a strong dissolving power requires caution because contaminants will also be eluted.
第 1固相抽出ステップでは、第 1固相抽出担体を使用して、試料の種類に応じてサイズ排除 クロマ卜グラフィー、逆相クロマトグラフィーまたは順相クロマトグラフィー機序を使用して F 2—イソプロスタンを保持するとともに、担体に保持されない夾雑物質を除去する。つまリ、 試料が尿サンカレなどの場合には、逆相クロマトグラフィ一を使用するが、試料が組織試料の 場合には順相クロマトグラフィーも使用することができる。第 1固相抽出ステップでは、 HLB カートリッジを使用して、サイズ排除クロマトグラフィ一と逆相クロマ卜グラフィ一機序で F 2—イソプロスタンを保持し、 蛋白などの大きい分子量の夾雑物質と極性の大きい小分子量の 夾雑物質を除去することができる。 The first solid-phase extraction step uses the first solid-phase extraction support and uses the F 2 -isoproteol using size exclusion chromatography, reverse phase chromatography or normal phase chromatography mechanisms depending on the sample type. While holding the stun, contaminants that are not held by the carrier are removed. In other words, when the sample is a urine sample, reverse phase chromatography is used, but the sample is a tissue sample. In some cases, normal phase chromatography can also be used. The first solid-phase extraction step uses an HLB cartridge to retain F 2 -isoprostane in a size-exclusion chromatography and reverse-phase chromatographic mechanism, and is highly polar with large molecular weight contaminants such as proteins. Small molecular weight contaminants can be removed.
第 2固相抽出ステップは、第 1固相抽出ステップと実質的には同じ操作を行うことによって、 第 1固相抽出ステップでは除去されなかった夾雑物質を除去する。ただし、第 2固相抽出ステ ップは、原則として、第 1固相抽出ステップで使用した逆相クロマトグラフィーとは異なる順 相クロマ卜グラフィ一によつて操作することから、そのための調整をする必要がある。つまリ、 第 1 固相抽出ステップ得られた溶出液はそのままでは第 2固相抽出ステップでは使用するこ とができない。そのために、第 1固相抽出ステップ得られた溶出液は、へキサンなどの溶媒で 水性に切リ替えて、 次の第 2固相抽出ス亍ップで処理される。  In the second solid phase extraction step, contaminants that were not removed in the first solid phase extraction step are removed by performing substantially the same operation as the first solid phase extraction step. However, the second solid phase extraction step is operated by a normal phase chromatograph that is different from the reverse phase chromatography used in the first solid phase extraction step. There is a need. In other words, the eluate obtained in the first solid phase extraction step cannot be used in the second solid phase extraction step as it is. For this purpose, the eluate obtained in the first solid phase extraction step is switched to aqueous with a solvent such as hexane and processed in the next second solid phase extraction step.
第 2固相抽出ステップは、小さい容量の固相担体を使用して第 1固相抽出ステップと実質的には 同じ操作を行って、 溶媒交換、濃縮ならびに夾雑物質の更なる除去である。  The second solid phase extraction step is substantially the same operation as the first solid phase extraction step using a small volume of the solid support, and is a solvent exchange, concentration and further removal of contaminants.
つまり、第 1固相抽出ステップで得られたジェチルエーテル (2%酢酸を添加)の溶出液はそのま ま LC-MS/MS分析に使用することは難しいので、溶媒交換と濃縮をする必要がある。つまり、イソプ ロスタンを定量するための内部標準品 (重水同位体)が酸性条件下では安定性が良くなぐまた、溶 出液中のイソプロスタンの濃度が低いので、そのままでは十分な感度がえられないからである。通常、 溶媒の交換と濃縮をするには、窒素ガスで溶媒を除去すればよいが、手間と時間がかかるだけでは なぐイソプロスタンが分解する可能性もある。これに対して、固相抽出を利用すれば、イソプロスタン を分解することなぐまた手間と時間を省いて、溶媒交換と濃縮を同時に行うことが可能である。  In other words, the eluate of jetyl ether (added with 2% acetic acid) obtained in the first solid phase extraction step is difficult to use for LC-MS / MS analysis as it is, so it is necessary to exchange and concentrate the solvent. There is. In other words, the internal standard for quantifying isoprostane (heavy water isotope) is not stable under acidic conditions, and the concentration of isoprostane in the eluate is low. Because there is no. Normally, the solvent can be exchanged and concentrated by removing the solvent with nitrogen gas. However, isoprostane may be decomposed if it takes time and effort. On the other hand, if solid phase extraction is used, it is possible to simultaneously perform solvent exchange and concentration without decomposing isoprostane and saving labor and time.
第 2固相抽出ステップで使用する第 2固相抽出担体は、例えば、第 1固相抽出担体よりも固 相容量が小さい固相担体、 例えば、 HLB 曰 utionプレートなどを使用するのがよい。 なお、 LC-MS/MSで分析するためには、 溶出したサンプルの最終メタノール濃度は 20%以下である 必要があるが、 HLB Elutionプレートなどの固相容量の小さい担体を使用すると、その溶出体積が 小さいことから、濃縮倍数を高めることができるという特徴がある。例えば、 2 mlの尿サンプルを 1 ml で溶出した場合は、濃縮倍数は 2倍であるので、含まれるイソプロスタンの濃度が低すぎて十分な測 定感度が得られない。したがって、かかる溶出液を LC-MS/MS分析に使用するには溶媒を飛ばして イソプロスタン濃度を高める必要が生じることになる。  As the second solid phase extraction carrier used in the second solid phase extraction step, for example, a solid phase carrier having a solid phase capacity smaller than that of the first solid phase extraction carrier, for example, an HLB unit plate or the like is preferably used. In order to analyze with LC-MS / MS, the final methanol concentration of the eluted sample must be 20% or less. However, if a carrier with a small solid volume such as an HLB Elution plate is used, its elution volume Since it is small, there is a feature that the concentration factor can be increased. For example, if a 2 ml urine sample is eluted with 1 ml, the concentration factor is twice, so the concentration of isoprostane contained is too low to provide sufficient measurement sensitivity. Therefore, in order to use such eluate for LC-MS / MS analysis, it is necessary to increase the isoprostane concentration by skipping the solvent.
ところが、第 2固相抽出ステップで Elutionプレートを使った場合の濃縮倍数は、 25 (1000 μΙ / 50 μ から 250倍になる。例えば、第 1ステップで得られた溶出液 40 μΙを水で 200 μほで 希釈しても 10倍の濃縮倍数が得られることになリ、抽出の時間と手間を省し、て効率を大幅に上げる ことができることになる。また、 水で希釈後のサンプル容積を 200 μΙにすると、 第 2固相抽出ス テツプで EIutionプレートを使った場合の濃縮倍数は、 5から 50倍になる。 なお、 尿中イソプ ロスタン分析の場合の最適範囲は、 10-20倍であると考えられるところから、 LC-MS/MSでの 分析に必要な濃縮倍率は容易に達成することができる。  However, the concentration factor when using the Elution plate in the second solid phase extraction step is 25 (from 1000 μΙ / 50 μ to 250 times. For example, the 40 μ 40 eluate obtained in the first step is Even when diluted with μ, it is possible to obtain a concentration factor of 10 times, which can greatly reduce the time and labor of extraction and greatly increase the efficiency of the sample after dilution with water. If the EIution plate is used in the second solid phase extraction step, the concentration factor will be 5 to 50 times.The optimal range for urinary isoprostane analysis is 10 to 20 times. Therefore, the concentration factor required for LC-MS / MS analysis can be easily achieved.
第 2固相抽出ステップで使用する第 2固相抽出担体は、固相容量が小さいことから、保持容量の大 きい第 1固相抽出担体 (例えば、 10 mg) と比較して、他の条件が同じでも、保持できる夾雑物質も 少ないことになる。したがって、第 2固相抽出ステップは、固相の容量に対するイソプロスタンと夾雑 物質の保持能力の違いを利用した、もうひとつの次元の分離機序を利用したものである。つまり、第 2固相抽出ステップは、夾雑物質を除去すると同時に LC-MS/MS分析ための溶媒交換、分析感度を 取るための濃縮ならびにサンプルのクリーンアップの 3つの処理を同時に短い時間で行うことができ る画期的が方法である。 Since the second solid phase extraction carrier used in the second solid phase extraction step has a small solid phase capacity, it has other conditions than the first solid phase extraction carrier (for example, 10 mg) having a large retention capacity. Even if they are the same, there are few contaminants that can be retained. Therefore, the second solid phase extraction step utilizes another dimension of separation mechanism that utilizes the difference in retention capacity of isoprostane and contaminants relative to the volume of the solid phase. In other words, the second solid-phase extraction step removes contaminants and at the same time provides solvent exchange and analytical sensitivity for LC-MS / MS analysis. It is an epoch-making method that can perform the three processes of concentration for sample collection and sample clean-up simultaneously in a short time.
この第 2固相抽出ステップにおいては、 ミクロ溶出 SPE プレート ( Elution SPE plate) を使用して、 順相クロマトグラフィー機序を利用して F 2—イソプロスタンを保持することが できる。 この第 2固相抽出ステップでは、 第 1固相抽出ステップと同様に、 F 2—イソプロス タンをサイズ排除クロマトグラフィ一と順相クロマトグラフィーを用いて担体に保持すると ともに、 順相クロマトグラフィ一で保持されない低極性の夾雑物質が除去される。 In this second solid phase extraction step, F 2 -isoprostane can be retained using normal phase chromatography mechanisms using a microelution SPE plate. In this second solid phase extraction step, as in the first solid phase extraction step, F 2 -isoprostane is retained on the support using size exclusion chromatography and normal phase chromatography, but not in normal phase chromatography. Low polarity contaminants are removed.
また、第 1固相抽出ステツプと第 2固相抽出ステツプで使用する第 1および第 2固相抽出担 体は、 その種類は実質的に同一であってもよく、 その保持容量が異なるように調製する。つま リ、第 1固相抽出ステップで使用する第 1固相抽出担体の保持容量は、第 2固相抽出ステップ で使用する第 2固相抽出担体の保持容量よりも大きくなるように調製する。なお、固相抽出担 体の保持容量は、 同じ種類の担体であれば、 担体の量 (mg) に比例する。 したがって、 この 発明おいては、第 1固相抽出担体の保持容量と第 2固相抽出担体の保持容量との比率は、一般 的には、 3 0 : 1 ~ 5 0 : 1、 好ましくは 1 0 : 1 ~ 2 0 : 1程度の範囲であるのがよい。例 えば、 第 1固相抽出ステップでは 1cc / 30 mgの固相抽出カートリッジを使用し、 第 2固相抽 出ステップでは固相抽出担体量の少ない(2 mg) μΕΙι^οη プレートを使用する場合、 1cc / HLB 固相抽出カートリッジ 30 mgと ΗΙ_Β μ曰 ution プレート 2 mgの保持容量比は 15: 1 となる。 この場合、 1cc / 30 mgの HLB固相抽出カートリッジには、 2 - 3 ml の尿サンプルを添加して も保持することができる。なお、夾雑物質を最大限度に減らしたいので、サンプルは必要以上 に添加しない方がよい。 また、 HLB固相抽出担体は、 親水性の化合物と親油性の化合物の両 方を保持できる特徴があることから、換言すると、選択性は低くなります。 したがって、サン プル量を増やした場合、 イソプロスタンの量は増えるが、 夾雑物質も増えることになります。 第 1固相抽出ステップで 1cc / 30 mgの固相抽出カートリッジを使用することによって、 大体 の夾雑物質を除去することができるので、第 2固相抽出ステップでは固相抽出担体量の少ない Elution プレートを使用することができることになる。  Also, the first and second solid phase extraction carriers used in the first solid phase extraction step and the second solid phase extraction step may be substantially the same type so that their holding capacities are different. Prepare. In other words, the holding capacity of the first solid phase extraction carrier used in the first solid phase extraction step is prepared to be larger than the holding capacity of the second solid phase extraction carrier used in the second solid phase extraction step. The retention capacity of the solid-phase extraction carrier is proportional to the amount (mg) of the carrier for the same type of carrier. Therefore, in this invention, the ratio between the holding capacity of the first solid phase extraction carrier and the holding capacity of the second solid phase extraction carrier is generally 30: 1 to 50: 1, preferably 1. 0: 1 to 2 0: It should be in the range of about 1. For example, if the first solid phase extraction step uses a 1cc / 30 mg solid phase extraction cartridge, and the second solid phase extraction step uses a small amount of solid phase extraction support (2 mg) μΕΙι ^ οη plate The retention capacity ratio of 1cc / HLB solid phase extraction cartridge 30 mg and 2_Β μ 曰 ution plate 2 mg is 15: 1. In this case, a 1 cc / 30 mg HLB solid phase extraction cartridge can hold 2 to 3 ml of urine sample. In order to reduce the amount of contaminants to the maximum extent, it is better not to add more samples than necessary. In addition, HLB solid-phase extraction supports are characterized by the ability to retain both hydrophilic and lipophilic compounds. In other words, selectivity is low. Therefore, if the amount of sample is increased, the amount of isoprostan will increase, but the amount of contaminants will increase. Most contaminants can be removed by using a 1cc / 30 mg solid phase extraction cartridge in the first solid phase extraction step, so the Elution plate with a small amount of solid phase extraction carrier in the second solid phase extraction step. Will be able to use.
ただし、従来の固相抽出法では、サンプル抽出後、 LC-MS/MSで分析するために、抽出溶媒 を窒素ガスで除去し、分析溶媒でサンプルを再溶解するために、サンプルを室温で長時間放置 する必要があった。  However, in the conventional solid-phase extraction method, the sample is extracted at room temperature to remove the extraction solvent with nitrogen gas and re-dissolve the sample with the analysis solvent for LC-MS / MS analysis after sample extraction. I had to leave it for hours.
この発明に係る新規多次元固相抽出法では、 第 2固相抽出ステップでサンプル抽出と LC-MS/MS分析のための溶媒交換を同時に行うことが可能である。さらに、第 2固相抽出ステ ップでは、 容量の小さい固相を用いることによってサンプル濃縮も同時に行うことができる。 また、サンプル中の測定物質を濃縮すると、サンプル中に含まれる夾雑物質も同時に濃縮さ れることから、サンプルの安定性と測定感度の安定性に影響を及ぼすことになる。 しかしなが ら、 この発明において、固相容量の小さい固相抽出を使用してサンプルを濃縮すると、測定物 質も濃縮されるが、夾雑物質が除去されるという利点がある。 このことによってサンプルの清 浄度合い (クリーンアップ) を上げ、 サンプル処理時間を大幅に短縮することができる。 さらに、 第 2固相抽出ステップでは、 サンプル溶出体積が小さいので (例えば、 40 ju l)、 容易に尿サンプル(例えば、 2 ml) を 1 0倍に濃縮することが可能である。 さらに、 溶出した サンプルは水で希釈するだけで、 LC-MS/MS測定ができるという利点もある。  In the novel multidimensional solid phase extraction method according to the present invention, sample extraction and solvent exchange for LC-MS / MS analysis can be simultaneously performed in the second solid phase extraction step. Furthermore, in the second solid phase extraction step, sample concentration can be performed at the same time by using a small volume solid phase. In addition, when the measurement substance in the sample is concentrated, the contaminants contained in the sample are also concentrated at the same time, which affects the stability of the sample and the stability of the measurement sensitivity. However, in the present invention, if the sample is concentrated using solid phase extraction having a small solid phase capacity, the measurement substance is also concentrated, but there is an advantage that contaminants are removed. This increases the cleanliness of the sample and significantly reduces sample processing time. Furthermore, in the second solid phase extraction step, since the sample elution volume is small (eg, 40 jul), it is possible to easily concentrate a urine sample (eg, 2 ml) 10 times. Furthermore, the eluted sample can be used for LC-MS / MS measurement simply by diluting with water.
上記のようなこの発明の多次元固相抽出法では、 2次元選択的固相抽出洗浄法と選択的 F 2 —イソプロスタン溶出法によって清浄なサンプルを抽出することができる。 使用できる HLB ポリマ一吸着剤は pH 1— 14の範囲で使用することができる。 また、 2次元洗浄法は、 F 2— イソプロスタンと尿中夾雑物質の pHとメタノールに対する保持特性の違いを利用して開発し たものである。 HLB吸着剤の場合、 低 pHと高 pHにおいては酸性化合物と塩基性化合物は正 反対な保持力を示す。 低 pHでは、 酸性化合物が強い保持力を有しているのに対して、 塩基性 化合物は弱い保持力しか有していない。 一方、 高 pHでは、 酸性化合物は弱い保持力しか有し ていないのに対して、塩基性化合物が強い保持を有している。従って、例えば、尿サンプルに 酸を加えて pHを低くした後、 10%メタノールを添加してから固相抽出カートリッジに注入す ると、 塩基性化合物を除去することができる。 また、 15%メタノール/ 2%ギ酸での酸性側で洗 浄すると、更に塩基性化合物を除去することができる。他方、 5%メタノール/ 2%アンモニアを 使用した塩基側での洗浄は酸性夾雑物質を除去することができる。なお、塩基側での洗浄では、 黄色の夾雑物質が除去されるのが観察されている。 In the multidimensional solid phase extraction method of the present invention as described above, a clean sample can be extracted by a two-dimensional selective solid phase extraction washing method and a selective F 2 -isoprostane elution method. HLB available Polymeric adsorbents can be used in the pH range of 1-14. The two-dimensional cleaning method was developed by taking advantage of the difference in pH and methanol retention characteristics of F 2 -isoprostane and urinary contaminants. In the case of HLB adsorbents, acidic and basic compounds show opposite retention at low and high pH. At low pH, acidic compounds have strong retention, whereas basic compounds have weak retention. On the other hand, at high pH, acidic compounds have only weak retention, whereas basic compounds have strong retention. Therefore, for example, by adding acid to a urine sample to lower the pH, adding 10% methanol and then injecting it into a solid phase extraction cartridge, the basic compound can be removed. Further, the basic compound can be further removed by washing on the acidic side with 15% methanol / 2% formic acid. On the other hand, washing on the base side using 5% methanol / 2% ammonia can remove acidic contaminants. It has been observed that yellow contaminants are removed by washing on the base side.
尿中に存在する中性夾雑物質はへキサン洗浄によって除去することができる。へキサンはメ タノ一ルと水とは混和しないので、へキサン洗浄液にジェチルエーテルを加えるのがよい。ま た、 齚酸ェチルは水と混和できるために、更にへキサン一酢酸ェチル (例えば、 9 ·· 1 ) の混 合液での洗浄ステップを加えることによって HLBカートリッジに残存する水を除去するのが よい。 というのは、 ジェチルエーテル/ 2%酢酸によるサンプルの溶出効率を高くするために、 固相に残っている水を除去する必要があるからである。 なお、第 1固相抽出ステップで、 ジェ チルエーテル/ 2%酢酸を使うと、 F 2—イソプロスタンを選択的に溶出することができる。 ジ ェチルエーテルは酢酸ェチルより極性が低く、 選択性が高いので、 夾雑物質の溶出が少なく、 F 2—イソプロスタンを溶出した後、 固相カートリッジに黄色の夾雑物質が残っているのは観 察されている。 従って、 夾雑物質の選択的洗浄と F 2—イソプロスタンの選択的溶出により、 清浄なサンプル抽出が可能である。 Neutral contaminants present in urine can be removed by hexane washing. Hexane is not miscible with methanol and water, so it is recommended to add jetyl ether to the hexane wash. In addition, since ethyl oxalate is miscible with water, the water remaining in the HLB cartridge can be removed by adding a washing step with a mixed solution of ethyl hexane monoacetate (for example, 9 1). Is good. This is because it is necessary to remove the water remaining in the solid phase in order to increase the elution efficiency of the sample with jetyl ether / 2% acetic acid. In the first solid phase extraction step, F 2 -isoprostane can be selectively eluted by using diethyl ether / 2% acetic acid. Diethyl ether is less polar and more selective than ethyl acetate, so there is less elution of contaminants, and it is observed that yellow contaminants remain in the solid phase cartridge after elution of F 2 -isoprostane. ing. Therefore, clean sample extraction is possible by selective washing of contaminants and selective elution of F 2 -isoprostane.
有機溶媒の濃度や pHなどの抽出パラメータ一の僅かな変動ではサンプルの抽出は顕著な影 響を受けることはなかった。 このことは、選択的 SPE処理が確固たるものであることを示し ている。また、 Oasis HLBポリマーカートリッジなどのポリマー吸着剤の他の固相抽出ポリマ 一力一トリッジ、例えば、 Strata X固相カートリッジなども同様に使用することができ、 同様 なサンプル抽出ならびに回収が可能であることも、この発明に係る多次元固相抽出法が確立さ れたものであることを示している。  Small variations in extraction parameters such as organic solvent concentration and pH did not significantly affect sample extraction. This indicates that selective SPE treatment is robust. Other solid phase extraction polymers such as Oasis HLB polymer cartridges, such as Strata X solid phase cartridges, can be used as well, allowing similar sample extraction and recovery. This also indicates that the multidimensional solid-phase extraction method according to the present invention has been established.
この発明に係る新規多次元固相抽出 (MD-SPE)法には大きな利点がある。 つまり、 液体ク ロマトグラフィ一一タンデム質量分析(LC-MS/MS)分析のためのサンプル処理を短時間で行 うことができて、清浄なサンカレ抽出ができるという点である。本発明者の経験では、通常 3 時間以内で 8サンブルの抽出処理が可能であるが、この処理法が確固たるものであるところか ら、 自動処理によってサンプル処理効率を更に上げることも可能であると考えられる。 また、 この MD-SPE処理方法に僅かな補正を行うことによ άて、 この MD-SPE法は、 例えば、 細 胞 (内皮細胞、 平滑筋細胞など) 培養液 (10 ml) またはの動物 (ゥサギ、 ラッ卜など) の尿 サンプル(1一 2 ml)に応用することも可能である。なお、かかる補正としては、例えば、 Captiva Filterカートリッジ (0.2 ju m, 3 ml) を Captiva Filterカートリッジ (10 μ m, 10 ml) に代え ることなどが含まれる。  The novel multidimensional solid phase extraction (MD-SPE) method according to the present invention has significant advantages. In other words, sample processing for liquid chromatographic and tandem mass spectrometry (LC-MS / MS) analysis can be performed in a short period of time, and a clean sample extraction can be achieved. According to the inventor's experience, extraction of 8 samples is usually possible within 3 hours. However, since this processing method is solid, it is possible to further increase the sample processing efficiency by automatic processing. Conceivable. In addition, this MD-SPE method can be performed by, for example, cell (endothelial cells, smooth muscle cells, etc.) culture solution (10 ml) or animal ( It is also possible to apply it to urine samples (1 to 2 ml) of magpies, rabbits, etc. Such correction includes, for example, replacing the Captiva Filter cartridge (0.2 jum, 3 ml) with a Captiva Filter cartridge (10 μm, 10 ml).
しかし、 この発明の新規多次元固相抽出法は、 LC-MS/MSを使用して F 2—イソプロスタン を分析するために血漿サンカレを調製する際には、 修正する必要がある。 F 2 -イソプロスタ ンは血漿リン脂質と結合しているので、 トータル F 2—イソプロスタンを測定するためには、 アルカリ水解で F 2—イソプロスタンを遊離 F 2—イソプロスタンに解離させる必要がある。ま た、血漿の場合、サンプル分離、保存ならびに処理過程中に起こりうるァラキドン酸の自動酸 化を防ぐために、プチルヒドロキシトルエンのようなフリーラジカルスカベンジャーやインド メタシンのようなシクロォキシゲナーゼ抑制剤を EDTA添加血漿に添加する必要がある。文献 には、 [2H8]ァラキドン酸を血槳サンプルに加えて体外での 8-iso-PGF2 aの生成を検出したこ とが報告されている (非特許文献 2 0 )。 本発明者は、 Oasis HLB カートリッジによる [3 HI8-iso-PGF2 aの保持は、 15% KOHでアルカリ処理後の血漿サンプルでは、 アルカリ処理し ていない血漿サンプルと比較して、 明らかに低いことを観察した。 つまり、 F 2—イソプロス タンだけではなく、 他の脂肪酸も解離するために血槳サンプルを調製する場合には、 F 2_ィ ソプロスタンを保持するためにより大きな保持容量を持つ固相カートリッジ (例えば、 60 mg 又は 200 mgの Oasis HLB又は Strata X固相カートリッジ) などが必要であると考えられ る。 However, the novel multi-dimensional solid phase extraction method of this invention needs to be modified when preparing plasma samples for analysis of F 2 -isoprostane using LC-MS / MS. Since F 2 -isoprostan is bound to plasma phospholipids, to measure total F 2 -isoprostane, It is necessary to dissociate the isoprostane - the isoprostanes free F 2 - F 2 in alkaline water solution. In the case of plasma, free radical scavengers such as ptylhydroxytoluene and cycloxygenase inhibitors such as indomethacin are used to prevent the automatic oxidation of arachidonic acid that may occur during sample separation, storage and processing. Should be added to EDTA-added plasma. It has been reported in the literature that [ 2 H 8 ] arachidonic acid was added to a blood clot sample to detect the production of 8-iso-PGF 2 a in vitro (Non-patent Document 20). The present inventors have, [3 HI8-iso-PGF 2 a of the retention by Oasis HLB cartridge, in plasma samples after alkali treatment with 15% KOH, compared to plasma sample not treated with alkali, it clearly lower Was observed. This means that when preparing clot samples to dissociate not only F 2 -isoprostanes but also other fatty acids, solid phase cartridges with a larger retention capacity to hold F 2 _isoprostane (for example, 60 mg or 200 mg Oasis HLB or Strata X solid phase cartridge) is considered necessary.
F 2—イソプロスタン化合物は、 F 2—プロスタグランジンの異性体であって、多数の立体異 性体が存在する (非特許文献 1、 7 )。 F 2—ィゾプロスタン異性体の特異的,網羅的測定は、 様々な病態における酸化ストレスの総合的評価に利用できると考えられる。 F 2—イソプロス タンの特異的-網羅的測定をするために、これらの異性体の HPLC特異的分離法が必要である。 尿中 8—イソプロスタン (8-iso-PGF2 a) は、 F 2—イソプロスタンの 1つで、 現在、 酸化ス トレスのマーカーとして一般に測定されている。 文献には、 Hypersil BDS カラム (3 〃m、 C18、 5 cm x 2.1 mmに d.) を使って 15(R) 8-iso-PGF 2 aと 8-iso-PGF2 aをベースライン分離 したと報告されている (非特許文献 1 8 )。本発明者は、 より短しゝ Hypersil BDS カラム(3 u m、 C18、 15 cm x 2.1 mm i.d.) を使って 15(R) 8-iso-PGF 2 a と 8-iso-PGF 2 aとを良好に分離 した。 15(R) 8-iso-PGF 2 α と 8-iso-PGF2 a の立体異性体は C18 カラムで分離できることは 他にも報告がある。 しかしながら、本発明者は、はじめて、 15(R) 8-iso-PGF 2„ と 8-iso-PGF 2 a の間で、 8-iso-PGF2 aの隣りに新しい未知の 8-iso-PGF2„異性体が存在することを見出し た (図 A参照)。 つまり、 これまでの報告では分離できなかった 8-iso-PGF2 a と同じ保持時 間を有する 8-iso-PGF2 a異性体は、 Hypersil BDS カラム (3 u m C8) で分離できた。 このこ とは、 今までの分析法で分離された 8-iso-PGF2。 には、 未知の 8-iso-PGF 2。異性体が含ま れていたことを示している。 したがって、 この発明の HPLC分析法においては、 C8カラムが C18 カラムよりもより高い選択性を有していると考えられる。 The F 2 -isoprostane compound is an isomer of F 2 -prostaglandin, and there are many stereoisomers (Non-patent Documents 1 and 7). Specific and exhaustive measurements of F 2 —isoprostane isomers may be used for comprehensive assessment of oxidative stress in various pathologies. An HPLC-specific separation of these isomers is required to make a specific-exhaustive measurement of F 2 -isoprostanes. Urinary 8-isoprostane (8-iso-PGF 2 a ) is one of F 2 -isoprostanes and is currently measured as a marker of oxidative stress. In literature, 15 (R) 8-iso-PGF 2 a and 8-iso-PGF 2 a were baseline separated using a Hypersil BDS column (3 〃m, C18, d to 5 cm x 2.1 mm) (Non-patent document 1 8). The inventor has achieved better 15 (R) 8-iso-PGF 2 a and 8-iso-PGF 2 a using shorter ゝ Hypersil BDS columns (3 um, C18, 15 cm x 2.1 mm id) Separated. There are other reports that the stereoisomers of 15 (R) 8-iso-PGF 2 α and 8-iso-PGF 2 a can be separated on a C18 column. However, the present inventors have for the first time, 15 (R) 8-iso -PGF 2 and between 8-iso-PGF 2 a " , 8-iso-PGF in 2 a next new unknown 8-iso-PGF 2 „We found that an isomer exists (see Fig. A). In other words, the 8-iso-PGF 2a isomer, which had the same retention time as 8-iso-PGF 2a, which could not be separated in previous reports, could be separated on a Hypersil BDS column (3 um C8). This is 8-iso-PGF 2 which has been separated by the conventional analysis method. In the unknown 8-iso-PGF 2 . This indicates that isomers were included. Therefore, in the HPLC analysis method of the present invention, the C8 column is considered to have higher selectivity than the C18 column.
本発明者は、バッファ一添加物が F 2—イソプロスタンのィォン抑制を惹起しかつ F 2—イソ プロスタンの分離が抽出尿サンプルに酢酸を添加しても影響されなかったことを見出した結 果、 p H制御にバッファーを使用しない HPLC法を開発した。 また、 LC-MS/MS分析のため には LC-MS グレードの水を使用するのがよい。 The present inventor has buffer one additive F 2 - results the finding that separation of iso prostanoic was not affected even by the addition of acetic acid to extract urine sample - isoproterenol induced vital to Ion suppression stun F 2 An HPLC method that does not use a buffer for pH control was developed. LC-MS grade water should be used for LC-MS / MS analysis.
従来の HPLCによる 8-iso-PGF2 a分離法では、バッファ一を有機溶媒に添加して pHを一定 の範囲に制御している。本発明者は、 ポストカラムにより、齚酸アンモニア、ギ酸などのバッ ファー添加物を添加すると、 F 2—イソプロスタンのイオン化効率が明らかに低下することを 観察した。 また、 バッファー添加物として一般に使用されているアンモニアの F 2—イソプロ スタンのイオン化効率について検討したが、安定な結果が得られなかった。その原因は、 アン モニァは空気中の二酸化炭素と反応して酢酸アンモニア塩が生成することにあると考えられ る。 つまり、 アンモニアをバッファー添加物として使用するには作りたてである必要がある。 また、酢酸は F 2—ィソプロスタンのイオン化を抑制することも、 F 2—イソプロスタンの分離 にも影響を及ぼさなかった。つまり、 F 2—イソプロスタン立体異性体の分離には、 pHは影響 しないことが分かった。 このことは、 F 2—イソプロスタン立体異性体の分離には、 バッファ 一で pHを制御する必要はないことを示している。 従って、 本発明者は、 バッファ一を使用し ない HPLC分離法を開発することにした。 In the conventional 8-iso-PGF 2a separation method using HPLC, a buffer is added to an organic solvent to control the pH within a certain range. The present inventor has observed that the ionization efficiency of F 2 -isoprostane clearly decreases when a buffer additive such as ammonia oxalate or formic acid is added by a post column. In addition, the ionization efficiency of F 2 -isoprostane, an ammonia commonly used as a buffer additive, was examined, but stable results were not obtained. The cause of this is thought to be that ammonia reacts with carbon dioxide in the air to produce ammonia acetate. This means that ammonia must be freshly made to use it as a buffer additive. Further, acetic acid F 2 - suppressing the ionization of Isopurosutan also, F 2 - of isoprostanes separation Also had no effect. In other words, it was found that pH did not affect the separation of F 2 -isoprostane stereoisomers. This indicates that it is not necessary to control the pH with a single buffer for the separation of F 2 -isoprostane stereoisomers. Therefore, the present inventor decided to develop an HPLC separation method that does not use a buffer.
この発明においては、バッファ一を使用しない代わりに、市販されている純度の高い(LC-MS 級)水を使用している。また、中性条件下でピークテーリング(ピークが尾を引いている状態) をしない HPLCカラムをスクリーニングした。 中性条件下で F 2—イソプロスタン標準品を分 析した場合、 カラム (3 01,〇8と 8) は、 F 2—イソプロスタンの分離が良好かつ分離のバ ランスが良く、分離ピークの対称性が良好で、 またカラム背圧が低く、 カラム再現性も良好で あるなどの特徴を有していることが分かった。 そこで、 この発明においては、 カラム (C8) は、 カラム (3 μηι, C18)より、 尿サンプル分析の際の F 2—イソプロスタン分離の選択性がい いことから、 カラム (3 μηι,〇8) を分析カラムとして使用した。 In this invention, instead of using a buffer, commercially available high purity (LC-MS grade) water is used. We also screened HPLC columns that do not tail peak under neutral conditions. When the F 2 —isoprostan standard is analyzed under neutral conditions, the columns (3 01, 08 and 8) have a good separation of F 2 —isoprostane and a good balance. It was found that it has characteristics such as good symmetry, low column back pressure, and good column reproducibility. Therefore, in the present invention, the column (C8) is less selective than the column (3 μηι, C18) for the separation of F 2 —isoprostane during urine sample analysis. Was used as the analytical column.
この分析結果から、 この発明の LC-MSまたは LC-MS/MS法に使用できる液体クロマトグラフ ィー (HPLC)用充填剤としては、 例えば、シリカ担体を使用するのがよい。つまり、 F 2—イソプロ スタンの分子量は小さいので、 低分子量分析で一般的に選択されるシリカ担体が好ましい。シリ 力ゲル系ポリマーは、シリカゲルに様々な官能基を導入することによって各種分離モードの充填剤と して合成されている。逆相カラムに使用される充填剤は、 C6— C20、好ましくは C8— C1 8、より好 ましくは C8長鎖アルキル基などをシリカゲルに化学結合したものが多く用いられます。また、 C18力 ラムは、 C18アルキル基(18個の炭素からなるォクタデシル基)をシリカゲルし結合した充填剤、つま リ、シリカゲル表面のシラノール基にォクタデシル (ODS)シランを反応させて合成した充填剤、を充 填したカラムのことで、ォクタデシル (ODS)カラムともいわれている。 C8カラムは、 C8アルキル基 (8 個の炭素からなるォクチル基)をシリカゲルし結合した充填剤、つまり、シリカゲル表面のシラノール 基にォクチルシランを反応させて合成した充填剤を充填したカラムである。 From this analysis result, it is preferable to use, for example, a silica support as a packing material for liquid chromatography (HPLC) that can be used in the LC-MS or LC-MS / MS method of the present invention. That is, since the molecular weight of F 2 -isoprostane is small, a silica carrier generally selected for low molecular weight analysis is preferred. Silica gel polymers are synthesized as fillers in various separation modes by introducing various functional groups into silica gel. The packing material used for reversed phase columns is often C6—C20, preferably C8—C18, more preferably C8 long chain alkyl group chemically bonded to silica gel. The C18 force ram is a filler in which a C18 alkyl group (octadecyl group consisting of 18 carbons) is bound with silica gel, that is, a filler synthesized by reacting octadecyl (ODS) silane with a silanol group on the silica gel surface. The column is filled with, and is also called Octadecyl (ODS) column. The C8 column is a column packed with a filler in which a C8 alkyl group (octyl group consisting of 8 carbons) is bonded by silica gel, that is, a filler synthesized by reacting octylsilane with a silanol group on the surface of the silica gel.
また、 F2-イソプロスタンの分析には逆相のカラムが必要である。 逆相クロマトグラフィー では、 固定相が非極性で、移動相が極性である。かかる充填剤としては、 一般的に、 シリカべ ースの担体に脂肪族炭化水素の官能基を結合したタィプのものが多く使用されている。  Also, a reversed-phase column is required for the analysis of F2-isoprostane. In reverse phase chromatography, the stationary phase is nonpolar and the mobile phase is polar. As such a filler, in general, a type in which a functional group of an aliphatic hydrocarbon is bonded to a silica-based carrier is often used.
なお、 F2-イソプロスタンの分析をバッファーを使わない中性条件下で行う場合、 F2-イソプ ロスタンはイオンとして存在すると考えられることから、 イオン化、 つまり、分析の感度には 有利でるが、 ピークテーリングが起こらないために、高純度シリカで完全にエンドキヤッピン グ (活性シラノール基を不活性化) したシリカ充填剤である必要がある。  Note that when F2-isoprostane is analyzed under neutral conditions without using a buffer, F2-isoprostane is considered to exist as an ion, which is advantageous for ionization, that is, sensitivity of analysis, but peak tailing Therefore, it is necessary that the silica filler be completely end-capped (inactivated active silanol groups) with high-purity silica.
さらに、この発明において使用することができる液体クロマトグラフィー (HPLC)用充填剤は、ポア サイズが 10 nm (130 A)以下の球状であって、粒径が、例え 4 im以下、好ましくは 3.5 μη 以下で あるのがよい。  Furthermore, the packing material for liquid chromatography (HPLC) that can be used in the present invention has a spherical shape with a pore size of 10 nm (130 A) or less and a particle size of, for example, 4 im or less, preferably 3.5 μηι. It should be:
また、 従来の LC-MS/MS分離法では、 ァセトニトリルを主成分として、 5%メタノールとの 混合溶媒を HPLC溶媒として使用していた。 しかし、ァセトニトリルとメタノールの溶媒比を 文献通りの 95:5に調整した場合は、 C8カラムを使っても 15(R) 8-iso-PGF2 aと 8-iso-PGF2„ の間に存在する新しい未知異性体の分離は不可能であった。 In the conventional LC-MS / MS separation method, acetonitrile is the main component and a mixed solvent with 5% methanol is used as the HPLC solvent. However, when the solvent ratio of acetonitrile and methanol is adjusted to 95: 5 as in the literature, even if a C8 column is used, it exists between 15 (R) 8-iso-PGF 2 a and 8-iso-PGF 2 „. New unknown isomers could not be separated.
そこで、 この発明における液体クロマトグラフィー (HPLC)に使用する溶媒組成を変化させて、 ァセトニトリルまたはメタノ一ルとの混合溶媒の混合比を代えて使用したところ、新しい未知 異性体を 8-iso-PGF 2„から分離することができることを見出した。 このことは、 従来の LC-MS/MS法では、 8-iso-PGF2 aの特異的測定は不可能であることを示すとともに、 特定の力 ラムの選択性と有機溶媒組成の選択性との組み合わせを 用したこの発明の新規 HPLC法に よって、 始めて 8-iso-PGF2 aの特異的分析を可能にしたことを示している。 Therefore, when the solvent composition used in the liquid chromatography (HPLC) in the present invention was changed and the mixed ratio of the mixed solvent with acetonitrile or methanol was changed, a new unknown isomer was 8-iso-PGF. It was found that it can be separated from 2 „. LC-MS / MS shows that specific measurement of 8-iso-PGF 2 a is not possible and uses a combination of selectivity of specific force and organic solvent composition. This shows that the novel HPLC method of the invention has enabled the specific analysis of 8-iso-PGF 2 a for the first time.
したがって、 この発明で使用できる溶媒組成は、ァセトニトリルまたは特定の混合比を有す るァセトニトリルとメタノールとの混合溶媒であるのがよく、 8-iso-PGF2aと未知異性体につ いていえば、 その混合比は、例えば 4 0: 6 0以下、 好ましくは 5 0: 5 0以下であるのがよ い。この場合、ァセトニトリル単独でも 8-iso-PGF2aと未知異性体とを分離することができる。 この発明に使用するバッファーフリー HPLC法は、 LC-MS/MS分析機器の維持管理を最小 限にすることを可能にすると共に、 日常のバッファー調製の時間を削減することができる。 こ のバッファーフリー HPLC法では、 3溶媒システムを使い、 水、 メタノールとァセトニトリ ルを時々補給するだけで分析ができるので、手間がかからないだけではなく、安定した連続分 析が可能である。 また、 この LC-MS/MS法によれば、 分析温度、 移動相組成、 グラジェント の傾斜、 pH、 サンプルインジェクション量などの僅かな変動ならびに分析カラムの交換など は、 F 2—イソプロスタン標準品 (図 1参照) の分離には顕著な影響を及ぼさなかった。 この ことは、 新規開発された HPLC法が確固たる F 2—イソプロスタン異性体の分離法であること を示している。 Therefore, the solvent composition that can be used in the present invention should be acetonitrile or a mixed solvent of acetonitrile and methanol having a specific mixing ratio. For 8-iso-PGF 2a and unknown isomers, The mixing ratio is, for example, 40:60 or less, preferably 50:50 or less. In this case, 8-iso-PGF 2a and the unknown isomer can be separated even with acetonitrile alone. The buffer-free HPLC method used in this invention makes it possible to minimize the maintenance of LC-MS / MS analytical instruments and reduce the time required for routine buffer preparation. This buffer-free HPLC method uses a three-solvent system and can perform analysis by simply supplementing water, methanol, and acetonitrile with occasional replenishment. In addition, according to this LC-MS / MS method, F 2 —isoprostan standard is used for slight fluctuations in analysis temperature, mobile phase composition, gradient gradient, pH, sample injection volume, etc. The separation of (see Figure 1) had no significant effect. This indicates that the newly developed HPLC method is a solid F 2 -isoprostane isomer separation method.
また、 この新規 HPLC分離法が確固たるものであることを示すために、 本発明者は、 シス テムボリュームの異なる HPLC機器 (Waters Alliance 2796と 2695分離モジュール) で F 2 一イソプロスタン標準品と抽出した尿サンプルを分析した。その結果、 prevolumeパラメータ —とグラジェント傾斜を調整するだけで同様の F 2—イソプロスタン分離ができることを示し た。 この結果は、 立体異性体の分離が温度とグラジェントによる関数として DryLabを使った コンピュータシミュレーションによって予測できるとの報告(2 6非特許文献) を支持するも のである。 これによつて、本発明者は、初めてコンピュータシミュレーションソフトウェアを 使って効率よいかつ確固たる HPLC法を開発した。 Further, in order to show that this novel HPLC separation method is firmly established, the present inventors have extracted and F 2 one isoprostane standards on different HPLC instruments of the system volume (Waters Alliance 2796 with 2695 separation module) Urine samples were analyzed. The results showed that the same F 2 -isoprostane separation can be achieved simply by adjusting the prevolume parameter and gradient gradient. This result supports the report that the separation of stereoisomers can be predicted by computer simulation using DryLab as a function of temperature and gradient (26 Non-Patent Literature). As a result, the inventor has developed an efficient and robust HPLC method for the first time using computer simulation software.
この発明に係る新規多次元固相抽出(MD-SPE) とパッファ―—フリー HPLC法では、 HPLC カラムのトラブルをなくし、質量分析計のイオン源の汚れを軽減することができる。 この多次 元固相抽出法で抽出した尿サンプルを 400回も注入しても HPLCカラム背圧の明らかな上昇 は見られなかった。また、従来の HPLC分析で使うようなガードカラムと前フィルターも使う 必要が無かった。抽出した尿サンプルを HPLCカラムに 40回以上の注入した後でも、 質量分 析計検出器のサンプルコーンには目に見える汚れはなかった。 このことから、 この発明の方法 は、質量分析計の維持管理の手間を大幅に減少するだけではなく、検出感度を安定することが できる。また、この新規 MD-SPE-バッファーフリー HPLC法は、尿中に添加した iPF2„-lll と iPF2„-VI の内部標準品を安定した回収率で抽出することができ、かつ、 iPF2 tt-lll と iPF2 a-VI のイオン化効率に対するマトリックスによるイオンを制御することができる (表 1参照)。 上記記載は、この発明を実施するための最良の形態を具体的にかつ例示的に説明したもので あって、 この発明は上記記載に一切限定されるものではなく、上記記載から当業者であれば容 易に類推することができるあらゆる改良ならびに修飾等は、この発明の範囲に包含されるもの と理解されるべきである。 同様に、下記の実施例は、 この発明の特定の具体例を更に詳細に説 明するために記載されるのであって、当然、 この発明は下記実施例に一切限定されるものでは ないことも理解されるべきである。 The novel multi-dimensional solid phase extraction (MD-SPE) and the puffer-free HPLC method according to the present invention can eliminate the trouble of the HPLC column and reduce the contamination of the ion source of the mass spectrometer. Even when the urine sample extracted by this multi-dimensional solid-phase extraction method was injected 400 times, the HPLC column back pressure was not clearly increased. In addition, there was no need to use a guard column and pre-filter as used in conventional HPLC analysis. Even after the extracted urine sample was injected more than 40 times into the HPLC column, the sample cone of the mass spectrometer detector had no visible contamination. For this reason, the method of the present invention not only greatly reduces the labor for maintenance of the mass spectrometer, but also stabilizes the detection sensitivity. In addition, this new MD-SPE-buffer-free HPLC method can extract iPF 2 „-llll and iPF 2 „ -VI internal standards added in urine with a stable recovery rate, and iPF 2 The matrix ion controls the ionization efficiency of tt -lll and iPF 2 a -VI (see Table 1). The above description specifically and exemplarily describes the best mode for carrying out the present invention, and the present invention is not limited to the above description at all. It should be understood that all improvements and modifications that can be easily inferred are included in the scope of the present invention. Similarly, the following examples are set forth in order to explain specific embodiments of the present invention in more detail. Of course, the present invention is not limited to the following examples. Should be understood.
【実施例 1】 (タンデム質量分析) [Example 1] (Tandem mass spectrometry)
F2—イソプロスタンの検出は、 MassLynx (version 4.1 )で制御した Quattro Premierタンデ 厶質量分析計で行った。 イオン化は負イオンモードエレクトロスプレーイオン化(ESI) によ つて実現した。 ESIプローブの位置とシングル質量検出(MS)及びタンデム質量検出(MS/MS) のパラメータ一は、 マイクロシリンジでィンフュージヨンした 200 ng/ml 8-iso-PGF2 a標準液 が最大感度を得られるように最適化した。エレクトロスプレーイオン化の最適チューニング条 件は次の通りである:キヤビラリ一電圧、 3 kV;イオンSプロック温度、 120 °C;ェクスト ラクタ, 3.0 kV;高周波数レンズ、 0.1 V;脱溶媒和ガス (窒素ガス) 温度、 400 °C;流速、 1200 l/h;コーンガス流速、 50l/h;イオンエネルギー、 1.0;乗数、 650V;低質量と高質量分 解能、 13。 MS/MSチューニングの入口電圧、 出口電圧および衝突ガス (アルゴンガス) 流速 はそれぞれ、 -2V、 2Vおよび 0.35ml/minに設定した。 Detection of F 2 —isoprostane was performed with a Quattro Premier tandem mass spectrometer controlled with MassLynx (version 4.1). Ionization was achieved by negative ion mode electrospray ionization (ESI). The position of the ESI probe and single mass detection (MS) and tandem mass detection (MS / MS) parameters are set so that a 200 ng / ml 8-iso-PGF 2 a standard solution infused with a microsyringe can achieve maximum sensitivity. Optimized for. Optimum tuning conditions for electrospray ionization are as follows: Cavity voltage, 3 kV; Ion S block temperature, 120 ° C; Extractor, 3.0 kV; High frequency lens, 0.1 V; Desolvation gas (nitrogen) Gas) Temperature, 400 ° C; Flow rate, 1200 l / h; Cone gas flow rate, 50 l / h; Ion energy, 1.0; Multiplier, 650 V; Low and high mass resolution, 13. MS / MS tuning inlet voltage, outlet voltage and collision gas (argon gas) flow rates were set to -2V, 2V and 0.35ml / min, respectively.
静的校正、走査校正とスキャン速度校正を含む質量キヤリブレーシヨンは MassLynxソフト ウェアにて正イオン ESIモードで NAに Sキャリブレーション参照ファイルを使って行った。  Mass calibration, including static calibration, scan calibration, and scan speed calibration, was performed using the S calibration reference file for NA in positive ion ESI mode with MassLynx software.
MSチューニングパラメ一ターは次の通りである:キヤビラリ一電圧、 3kV;コーン電圧、 40 V;イオン源ブロック温度、 80 °C;ェクス小ラクタ, 3.0 kV:高周波数レンズ、 0.1 V;脱溶媒 和ガス(窒素ガス)温度: 150 °C、流速: 350 l/h。大気圧イオン化キャリブレーション溶液(NaCsl) (Waters Corp., USA) は 10 (1/minの流速でシリンジポンプによって導入した。 MS tuning parameters are as follows: Capillary voltage, 3 kV; cone voltage, 40 V; Ion source block temperature, 80 ° C; Ex small lacta, 3.0 kV: High frequency lens, 0.1 V; Desolvation Gas (nitrogen gas) temperature: 150 ° C, flow rate: 350 l / h. Atmospheric pressure ionization calibration solution (NaCsl) (Waters Corp., USA) was introduced by syringe pump at a flow rate of 10 (1 / min).
2,3-dinor-8-iso-PGF2a(2,3"dinor-iPF2a-lll)、 iPF2a-llk iPF2a-ll卜 d4、 iPF2a-VIおよび iPF2 a-VI-d11 の整数質量データ取得パラメータ一は、フローインジェクション(HPLCカラムを接 続していない状態) でそれぞれの化合物の (1000 ng/ml) の標準品を注入して決定した。 それ ぞれの化合物の前駆イオン (分子量関連イオン) の質量電荷比 (m/z) は MSスキャンモード で決定した。 選択反応モニタリングモードで脱プロトンイオン [M-H】一のイオン強度が最大に なるサンプルコーン電圧を決定した。衝突ガスによリ脱プロトン分子から生じたフラグメント イオンは MS/MSチューニングで検出した。 F2—イソプロスタンと内部標準品のイオン強度 が最も高いドーターイオン (フラグメントイオン) はド一ターイオン (フラグメントイオン) スキャンモードで決定した。 多反応モニタリング (MRM) モードで前駆プロダクトイオン強 度が最大になる衝突エネルギーを決定した。データ収集のチャンネル間の遅延時間は 0.01 秒、 スキャン間遅延時間は 0.01 秒、ドエル時間(検出器からのイオン質量データを取得する時間) は 0.1 秒であった。 それぞれの化合物の最適化したコーン電圧と衝突エネルギーは図 2に示 した。 2,3-dinor-8-iso-PGF 2a (2,3 "dinor-iPF 2a -lll), iPF 2a -llk iPF 2a -ll 卜 d4, iPF 2a -VI and iPF 2 a -VI-d11 The mass data acquisition parameters were determined by injecting a standard (1000 ng / ml) standard for each compound by flow injection (without HPLC column connected). The mass-to-charge ratio (m / z) of the molecular weight-related ions (m / z) was determined in the MS scan mode, and the sample cone voltage that maximizes the ion intensity of the deprotonated ion [MH] was determined in the selective reaction monitoring mode. Fragment ions generated from deprotonated molecules were detected by MS / MS tuning F2—Daughter ion (fragment ion) with the highest ionic strength of isoprostane and internal standard was the fragment ion (fragment ion) scan mode The collision energy that maximizes the precursor product ion intensity in the multi-reaction monitoring (MRM) mode was determined, the delay time between data acquisition channels was 0.01 seconds, the delay time between scans was 0.01 seconds, and the dwell time (detection) The time to acquire the ion mass data from the chamber was 0.1 s) Figure 2 shows the optimized cone voltage and collision energy for each compound.
タンデム質量分析によって検出される F2—ィソプロスタン異性体について説明する。 The F 2 -isoprostane isomer detected by tandem mass spectrometry is explained.
ァラキドン酸の酸化により、 4つのグループの F2—イソプロスタン位置異性体が生成する。 その 4つのグループは、 グループ III (15シリーズ)、 グループ IV (8シリーズ)、 グルー プ V (12シリーズ)およびグループ VI (5シリーズ)からなつていて、グループ III (iPF 2a-lll)とグループ VI (iPF2a-VI) F2—イソプロスタンが最も豊富な F2—イソプロスタンで ある。 Oxidation of arachidonic acid produces four groups of F 2 -isoprostane positional isomers. The four groups consist of Group III (15 Series), Group IV (8 Series), Group V (12 Series), and Group VI (5 Series). Group III (iPF 2a -lll) and Group VI (iPF 2a -VI) F 2 - isoprostanes is the most abundant F 2 - is a isoprostanes.
図 1は、 市販のグループ III F2—イソプロスタン (A: 8-iso-PGF2a G: 8-iso-PGF2i; J: 8-iso-15(R)PGF2a)、グループ VI F2—プロスタグランジン (し: (土) 5-iPF2a-VI)、 (B: PGF ; C: 11i8-PGF2a; F: 5-trans-PGF2a; H: PGF2 I, 5-trans-PGF2i; K: 15(R) PGF2a) と、 8-iso-PGF2a及び PGF2aの代謝物 (M: 2, 3-dinor-8-iso-PGF2a N: 2, 3-dinor-1ip-PGF2a) の 化学構造を示す。 内部標準品である iPF2a-lll、 PGF2a及び iPF2a-VI の同位体 (D; 8-iso-PGF 2 a-d4; E: PGF2 a-d4;ひ ±) 5-iPF2 a-VI -d") の構造も図 1に示す。 Figure 1 shows commercially available group III F 2 —isoprostane (A: 8-iso-PGF 2a G: 8-iso-PGF 2i ; J: 8-iso-15 (R) PGF 2a ), group VI F 2 — Prostaglandins (N: (Sat) 5-iPF 2a -VI), (B: PGF ; C: 11i8-PGF 2a ; F: 5-trans-PGF 2a ; H: PGF 2 I, 5-trans-PGF 2i ; K: 15 (R) PGF 2a ) and metabolites of 8-iso-PGF 2a and PGF 2a (M: 2, 3-dinor-8-iso-PGF 2a N: 2, 3-dinor-1ip- The chemical structure of PGF 2a ) is shown. Isotopes of internal standard products iPF 2a -lll, PGF 2a and iPF 2a -VI (D; 8-iso-PGF The structure of 2 a -d 4 ; E: PGF 2 a -d 4 ; ± ±) 5-iPF 2 a -VI -d ") is also shown in FIG.
図 2に、 F 2—イソプロスタンのプロダクト (生成) イオンのスペクトルを示す。 「 一イソ プロスタンが負イオンエレクトロスプレー (ES) モードで生成した分子量関連イオンは次の 通りである: 8-iso-PGF2 a (図 2 A) と (土) 5-iPF2 a-VI (図 2 D)、 m/z 353; 8-iso-PGF2 a -d4 (図 2 B)、 m/z 357; 2, 3-dinor-8-iso-PG^ a (図 2 C)、 m/z 325; (土) 5-iPF2 a-V卜 d" (図 2 E )、 m/z 364、 8-iso-PGF2 (Iと (土) 5-iPF2 a-VIから、特異的に m/z 193と m/z 115のプロ ダクトイオンが生成される。 8-iso-PGF2 a-d4 (図 2 B)、 2, 3-dinor-8-iso-PGF2 a (図 2 C) お よび (土) 5-iPF2 a-V卜 d (図 2 E) のプロダクトイオンはそれぞれ m/z 197、 m/z 237および m/z 115であった。従って、 MRMモードでの F 2—イソプロスタンの検出に用いる前駆/プロ ダクトイオンペアは次の通りである: 8-iso-PGF2 (l、 m/z 353/193; 8-iso-PGF2 a-d4、 m/z 357/197; 2, 3-dinor-8-iso-PGF2 a、 m/z 325/237; iPF2。-Vし m/z 353/115; iPF2 a-VI -d"、 m/z 364/115。 Figure 2 shows the spectrum of the product (product) ion of F 2 —isoprostane. “The molecular weight related ions produced by monoisoprostane in negative ion electrospray (ES) mode are as follows: 8-iso-PGF 2 a (Fig. 2 A) and (Sat) 5-iPF 2 a -VI ( Fig. 2 D), m / z 353; 8-iso-PGF 2 a -d 4 (Fig. 2 B), m / z 357; 2, 3-dinor-8-iso-PG ^ a (Fig. 2 C), m / z 325; (Sat) 5-iPF 2 a -V 卜 d "(Fig. 2 E), m / z 364, 8-iso-PGF 2 (I and (Sat) 5-iPF 2 a -VI, Specifically, product ions of m / z 193 and m / z 115 are generated 8-iso-PGF 2 a -d 4 (Fig. 2 B), 2, 3-dinor-8-iso-PGF 2 a The product ions for (Fig. 2 C) and (Sat) 5-iPF 2 a -V 卜 d (Fig. 2 E) were m / z 197, m / z 237 and m / z 115, respectively. The precursor / product ion pairs used to detect F 2 —isoprostan in the mode are: 8-iso-PGF 2 (l , m / z 353/193; 8-iso-PGF 2 a -d 4 M / z 357/197; 2,3-dinor-8-iso-PGF 2 a , m / z 325/237; iPF 2 -V and m / z 353 / 115; iPF 2 a -VI -d ", m / z 364/115.
なお、 8-iso-PGF2„と PGF2 aは同じようなフラグメンテーション(断片化)パターンを示す ために、 タンデム質量分析では分離できない。 従って、 8-iso-PGF2 (rを特異的に測定するため には、 8-iso-PGF2 aとその異性体である PGF2 aは HPLC法で分離する必要がある。 Since 8-iso-PGF 2 „and PGF 2a show the same fragmentation pattern, they cannot be separated by tandem mass spectrometry. Therefore, 8-iso-PGF 2 (r is specifically measured. To achieve this, 8-iso-PGF 2a and its isomer PGF 2a must be separated by HPLC.
【実施例 2】  [Example 2]
(サンプルの前処理)  (Sample pretreatment)
尿サンプル 2 mlに 10%メタノール 0.4 ml と、 内部同位体と、 1%ギ酸 1-3 mlを添加して、 サンプルの pHを約 3に調整した。このサンプルを Captive フィルタ一カートリッジ(0.2 μηι) に通して固形粒子を除去した。 このように処理したサンプルを次の固相抽出に使用した。 (選択的固相抽出法)  The pH of the sample was adjusted to about 3 by adding 0.4 ml of 10% methanol, internal isotopes, and 1-3 ml of 1% formic acid to 2 ml of the urine sample. The sample was passed through a Captive filter cartridge (0.2 μηι) to remove solid particles. The sample thus treated was used for the next solid phase extraction. (Selective solid phase extraction method)
F 2—イソプロスタンは弱酸性、 弱極性ならびに親油性化合物であるため、 尿サンプル中の F 2—イソプロスタンに対する 3種類のポリマー固相吸着剤、つまリ HLB (hydrophilic-lipophilic balance) MAX (mixed-mode anion exchange) およひ MCX (mixed-mode cation exchange) の保持容量についてスクリーニングした。 図 4 A に、 尿サンプル中に添加した【3HI8-iso-PGF 2 αの Oasis HLB、 MAX および MCX固相カートリッジ (3 cc 60 mg) での保持容量曲線を示 す。図に示すように、 Oasis HLB固相カートリッジは 10 mlまでのサンプルを安定して保持し たのに対して、 Oasis MAXならびに MCX固相カートリッジは【3H】8-iso-PGF2 aに対して比較 して弱い保持力を示した。 この結果から、 Oasis HLB固相カートリッジが尿中 F 2—イソプロ スタンに対して最も大きい保持容量を有していることが分かった。従って、 Oasis HLB固相は 次の固相抽出法の開発に用いた。 F 2 —Isoprostan is a weakly acidic, weakly polar and lipophilic compound, so three polymer solid-phase adsorbents for F 2 —Isoprostane in urine samples, HSL (hydrophilic-lipophilic balance) MAX (mixed -mode anion exchange) and MCX (mixed-mode cation exchange) retention capacity were screened. Figure 4 A, shows the retention volume curve in and added to the urine sample [3 HI8-iso-PGF 2 Oasis HLB of alpha, MAX and MCX solid phase cartridge (3 cc 60 mg). As shown in the figure, the Oasis HLB solid phase cartridge stably held samples up to 10 ml, while the Oasis MAX and MCX solid phase cartridges were compatible with [ 3 H] 8-iso-PGF 2 a. Compared to the above, it showed weak holding power. This result showed that the Oasis HLB solid phase cartridge had the largest retention capacity for urinary F 2 -isoprostane. Therefore, the Oasis HLB solid phase was used for the development of the next solid phase extraction method.
尿中 F 2—イソプロスタンを選択的に抽出して夾雑物質を除去するために、 酸性 pH (2%ギ 酸)、 中性 pH (水) ならびにアルカリ性 pH (2。/0アンモニア) での洗浄条件下、 メタノールが 00 から 10%ずつ増加した場合の [3H]8-iso-PGF2 a の保持特性を検討した。 図 4 Bに示すよう に、 [3HI8-iso-PGF2 a は、 中性と酸性 pH での洗浄条件下で、 50%までのメタノール洗浄で保 持したが、 塩基 pH条件下では、 20%を超えるの濃度のメタノールで洗浄すると、 保持されな くなつた。この結果は、 [3H]8-iso-PGF2。 のメタノール濃度に対する溶出特性が低 pHと高 pH 条件下で異なることを示している。 これらの結果に基づいて、選択的固相抽出洗浄法を次の多 次元固相抽出法に組み込んだ。 F 2 urinary - to remove contaminating substances isoprostanes selectively extracted and acidic pH (2% formic acid), washing with a neutral pH (water) and alkaline pH (2. / 0 ammonia) Under the conditions, the retention characteristics of [ 3 H] 8-iso-PGF 2 a when methanol was increased by 10% from 00 were investigated. As shown in Figure 4B, [ 3 HI8-iso-PGF 2 a was maintained in methanol wash up to 50% under neutral and acidic pH wash conditions, but under basic pH conditions, 20 When it was washed with methanol at a concentration of more than%, it was not retained. The result is [ 3 H] 8-iso-PGF 2 . It shows that the elution characteristics with respect to methanol concentration differ between low pH and high pH conditions. Based on these results, a selective solid phase extraction washing method was incorporated into the next multidimensional solid phase extraction method.
尿中 F 2—イソプロスタンを効率よく選択的固相抽出するために、 [3H]8-iso-PGF2 aを pH調 整後の尿サンプルに添加して 8-iso^PGF2„と一緒に抽出した。 Oasis固相カートリッジ (3∞/60 mg) を 2 ml メタノールと 2%ギ酸で処理して、固相がサンプルを保持しやすくなるように調 整した。 固相抽出は真空下でマ二ホールドを使って行った。 異なる種類の Oasis固相吸着剤In order to efficiently and selectively extract urinary F 2 —isoprostane by solid phase extraction, [ 3 H] 8-iso-PGF 2 a is added to the pH-adjusted urine sample and 8-iso ^ PGF 2 „and Extracted together Oasis solid phase cartridge (3∞ / 60 mg) was treated with 2 ml methanol and 2% formic acid to adjust the solid phase to facilitate sample retention. Solid phase extraction was performed using vacuum hold under vacuum. Different types of Oasis solid phase adsorbents
(HLB. MAXおよび MCX)の保持容量の比較は固相カートリッジに尿サンプル(それぞれ 1 ml 〜10 ml) に添加して通過した液の放射線量を測定することによって行った。 200 μΙの廃液と 溶出液をシンチレーシヨン (放射線が蛍光物質に衝突したときに発する光) 溶液 3 ml と混和 後、 液体シンチレーシヨンカウンターを用いて放射線量を測定した。 Comparison of the retention capacities of (HLB. MAX and MCX) was performed by adding the urine sample (1 ml to 10 ml each) to the solid phase cartridge and measuring the radiation dose of the liquid passed through. 200 μΙ of waste solution and eluate were mixed with 3 ml of scintillation solution (light emitted when radiation collides with fluorescent material), and the radiation dose was measured using a liquid scintillation counter.
この選択的固相抽出洗浄法は、 F 2—イソプロスタンと尿サンプルマ卜リックスに存在する 夾雑物質の pH及び有機溶媒の濃度が変化したときの保持特性が異なる点を利用して開発した。 酸性側 (29ギ酸)、 中性側 (水) および塩基側 (2%アンモニア) での洗浄条件下で、 メタノ —ルの濃度 (10%— 100Q6) を変化させ、 廃液を回収して放射線量を測定することによって、 夾雑物質を除去するための洗浄法に使うメタノールの濃度を決定した。溶出容積は、ジェチル エーテル酢酸 (100 : 2) の溶出液を 0.5 mlずつ回収して放射線量を測定することによって決 定した。 This selective solid phase extraction washing method was developed by taking advantage of the fact that the retention characteristics of F 2 -isoprostane and urine sample matrix differed when the pH of the contaminants and the concentration of the organic solvent were changed. Under washing conditions on the acidic side (29 formic acid), neutral side (water) and base side (2% ammonia), the concentration of methanol (10% —100Q6) was changed, the waste liquid was recovered and the radiation dose was recovered. Was used to determine the concentration of methanol used in the cleaning method to remove contaminants. The elution volume was determined by collecting 0.5 ml each of the eluate of jetyl ether acetic acid (100: 2) and measuring the radiation dose.
【実施例 3】  [Example 3]
(多次元固相抽出法)  (Multidimensional solid phase extraction method)
Oasis HLBカートリッジ (1cc 30 mg) と Oasis HLB μ曰 utionプレート (750 μΙ/ 2 mg) を 2ステップ多次元固相抽出法に用いた。  Oasis HLB cartridge (1cc 30 mg) and Oasis HLB μ 曰 ution plate (750 μΙ / 2 mg) were used for the two-step multidimensional solid-phase extraction method.
遠心後の尿サンプル 2 mlと 5分の 1の量のメタノールとを混和し、 内部標準品 8-iso-PGF2 ff-d4 、 PGF2 a-d4と、 iPF2 a-V卜 d11との混合液を添加し、サンプル抽出前に氷上に 30分間放 置した。また、 1%ギ酸 1 - 2 mlでサンプルの pHを約 3になるように調整し、使用前に Oasis HLBカートリッジはメタノール 1 ml と 596メタノール/ 2%ギ酸 1 mlで処理した。 次に、 処 理した尿サンプルを、 Oasis HLBカートリッジの上部に直結した 0.2 m Captivaフィルタ一 力一卜リッジに、真空マ二ホールド使って 3 ml/min以下の流速で添加した。サンプル添加後、 フィルターカートリッジを廃棄し、固相抽出カートリッジを 5%メタノール 1 ml で洗浄した。 次の抽出は窒素ガスを使った加圧マ二ホールド (Cerexシステム 48) を使用して行った。 Mix 2 ml of the urine sample after centrifugation and 1/5 of the amount of methanol, and mix the internal standard products 8-iso-PGF 2 ff -d4, PGF 2 a -d4, and iPF 2 a -V 卜 d11 The mixture was added and left on ice for 30 minutes before sample extraction. The pH of the sample was adjusted to about 3 with 1-2 ml of 1% formic acid, and the Oasis HLB cartridge was treated with 1 ml of methanol and 1 ml of 596 methanol / 2% formic acid before use. Next, the treated urine sample was added to a 0.2 m Captiva filter directly connected to the top of the Oasis HLB cartridge using a vacuum manifold at a flow rate of 3 ml / min or less. After sample addition, the filter cartridge was discarded and the solid phase extraction cartridge was washed with 1 ml of 5% methanol. The next extraction was performed using a pressurized manifold (Cerex system 48) with nitrogen gas.
Oasis HLB固相力一トリッジからの溶出液は Oasis HLB μ Elutionプレー卜にアプライした。  The eluate from the Oasis HLB solid-phase force was applied to the Oasis HLB μ Elution plate.
Oasis HLB 曰 utionプレートでの固相抽出はプレート固相抽出マ二ホールドを使って行った。 Solid phase extraction on Oasis HLB® plates was performed using a plate solid phase extraction manifold.
Oasis HLB 曰 utionプレートからの溶出液は、水で希釈後、 そのまま LC-MS/MS分析に用い た。 The eluate from the Oasis HLB® ution plate was diluted with water and directly used for LC-MS / MS analysis.
多次元固相抽出法のうち、 LC-MS/MS分析のための尿サンプル処理法を図 4 Cを参照して説 明する。  A urine sample processing method for LC-MS / MS analysis among multidimensional solid-phase extraction methods is described with reference to FIG. 4C.
まず、 10%メタノールを含む酸性化尿サンプルを HLB固相カートリッジに添加した後、 5% メタノールで洗浄する。 このサンプル添加とカートリッジ洗浄ステップ 1では、孔径の小さい (8 nm) HLB固相吸着剤を利用して、 高分子量の夾雑物質 (例えば、 蛋白) をサイズ排除ク 口マトグラフィー機序で除去した。塩類やその他の炭水化合物などの極性夾雑物質は、逆相ク 口マトグラフィーでは保持されないので、 除去される。  First, an acidified urine sample containing 10% methanol is added to the HLB solid phase cartridge, and then washed with 5% methanol. In this sample addition and cartridge washing step 1, high molecular weight contaminants (eg, proteins) were removed by a size exclusion chromatography method using a small pore size (8 nm) HLB solid phase adsorbent. Polar contaminants such as salts and other carbohydrate compounds are removed because they are not retained by reversed-phase chromatography.
カートリッジ洗浄ステップ 2 (塩基側洗浄) では、酸性、 中極性ならびに疎水性の夾雑物質 は、 5%メタノール含む 2%アンモニアでの洗浄で除去される。 この洗浄ステップでは、尿サン プル中の黄色夾雑物質の溶出が観察された。  In cartridge wash step 2 (base wash), acidic, medium polarity and hydrophobic contaminants are removed by washing with 2% ammonia containing 5% methanol. In this washing step, elution of yellow contaminants in the urine sample was observed.
カートリツジ洗浄ステップ 3において、 pHを 5%メタノール含む 2%ギ酸で洗浄することに よって酸性側 pHに切り替えた後、 カートリッジ洗浄ステップ 4において、 塩基性、 中極性な らびに疎水性夾雑物質は、 15%メタノール含む 2%ギ酸の洗浄で除去される。 In Cartridge Cleaning Step 3, the pH is switched to acidic pH by washing with 2% formic acid containing 5% methanol. Rabbit and hydrophobic contaminants are removed by washing with 2% formic acid containing 15% methanol.
カートリツジ洗浄ステップ 5と 6では、中性夾雑物質は、へキサン ジェチルエーテル(9:1 ) 混合液とへキサン/酢酸ェチル (9:1 ) 混合液で洗浄することによって除去される。  In the cartridge washing steps 5 and 6, neutral contaminants are removed by washing with a hexane jetyl ether (9: 1) mixture and a hexane / ethyl acetate (9: 1) mixture.
溶出ステップ Aでは、脂肪酸分画は 2%酢酸を含むジェチルエーテルによって選択的に溶出 されたが、 黄色の夾雑物質が固相カートリッジに残存していた。  In elution step A, the fatty acid fraction was selectively eluted with jetyl ether containing 2% acetic acid, but yellow contaminants remained on the solid phase cartridge.
HLB固相カートリッジから溶出した分画 Aは、へキサンで希釈後、 HLB //曰 utionプレート に添加する。このステップでは、 F 2—イソプロスタンは順相クロマトグラフィー機序で SPE 吸着剤に保持された。 プレート洗浄ステップ 1では、 5%メタノールでの洗浄で溶出サンプル 中の酢酸を除去した。 プレート洗浄ステップ 2 (塩基側洗浄) では、残存する僅かな量の黄色 の夾雑物質を 5%メタノール含む 2%アンモニアの洗浄で除去した。 プレート洗浄ステップ 3 と 4では、 pHを 5%メタノール含む 2%ギ酸で酸性側に切リ替えた後、 ギ酸は 5<½メタノール での洗浄で除去し、 プレート洗浄ステップ 5では、 中極性ならびに疎水性夾雑物質を 15%メ タノ一ルでの洗浄で除去した。 Fraction A eluted from the HLB solid phase cartridge is diluted with hexane and added to the HLB // 曰 ution plate. In this step, F 2 -isoprostane was retained on the SPE adsorbent by a normal phase chromatography mechanism. In plate washing step 1, acetic acid in the eluted sample was removed by washing with 5% methanol. In the plate washing step 2 (base side washing), the remaining slight amount of yellow contaminants was removed by washing with 2% ammonia containing 5% methanol. In plate washing steps 3 and 4, the pH was switched to acidic side with 2% formic acid containing 5% methanol and then formic acid was removed by washing with 5 <½ methanol. In plate washing step 5, neutral and hydrophobic Sexual contaminants were removed by washing with 15% methanol.
溶出分画ステツプ Bにおいて、 F 2—イソプロスタン分画を 80%メタノールで洗浄して溶出 した。 この溶出液は透明で、 水で希釈後、 LC-MS/MS分析に直接に使用した。 In elution fraction step B, the F 2 -isoprostane fraction was washed with 80% methanol and eluted. This eluate was clear and diluted directly with water and used directly for LC-MS / MS analysis.
【実施例 4】  [Example 4]
( F 2—イソプロスタン立体異性体分離のための逆相 HPLC法) (Reversed-phase HPLC method for F 2 -isoprostane stereoisomer separation)
新規な HPLC法の開発のための最初のステップとして、 ACEカラム(3 i m, C8、 50 x 2.1 mmに d.) を使って移動相の有機溶媒組成が 8-iso-PGF2 a異性体分離に対して及ぼす影響を検 討した。 移動相がメタノールの場合、 ァセトニ卜リルの場合と比較して、 8-iso-PGF2 aのィォ ン化効率がよいために、 F 2—イソプロスタン異性体分離に使う移動相は、 メタノールにァセ トニトリルを添加した混合溶媒が使用した。メタノールに対するァセトニトリルの割合を増加 した場合に、 15 (R) -iPF2 a-lll, iPF2 a-lll, 15 (R) PGF2 aおよび PGF2 aの分離は良くなつた。ま たァセトニトリルとメタノールの比が 1:2になったときに、 十分な分離が得られた。 しかし、 同じ分離条件下で、 ACE カラム (3 〃m、 C18、 50 x 2.1 mm i.d.) では、 十分な異性体の分 離が得られなかった。 このことは、 C8カラムが 8-iso-PGF2 a立体異性体全てに対する分離選 択性が C18カラムよりいいことを示している。 As the first step in developing a new HPLC method, the ACE column (3 im, C8, 50 x 2.1 mm d.) Is used to separate the 8-iso-PGF 2 a isomers in the organic solvent composition of the mobile phase. The effect on the environment was examined. When the mobile phase is methanol, 8-ion-PGF 2 a is more efficiently ionized than methanol, so the mobile phase used for the F 2 —isoprostane isomer separation is methanol. A mixed solvent in which acetonitrile was added was used. When the ratio of acetonitrile to methanol was increased, the separation of 15 (R) -iPF 2 a -lll, iPF 2 a -lll, 15 (R) PGF 2 a and PGF 2 a improved. Also, sufficient separation was obtained when the ratio of acetonitrile to methanol was 1: 2. However, under the same separation conditions, the ACE column (3 〃m, C18, 50 x 2.1 mm id) did not provide sufficient isomer separation. This indicates that the C8 column has better separation selectivity for all 8-iso-PGF 2a stereoisomers than the C18 column.
アンモニアは LC-MS/MSによる 8-iso-PGF2 a分析に一般的に使われているバッファー添加 物である。 この発明では、 酢酸アンモニアを 15 (R) iPF2 a-llし iPF2 a-lll、 15 (R) PGF2 aおよ び PGF2 aの標準品液に添加して、 これら異性体のイオン化効率に対する影響を検討した。 驚 いたことに、 酢酸アンモニアが低濃度であっても、 8-iso-PGF2„異性体のイオン強度を大幅に 減少した。酢酸アンモニアは 8-iso-PGF2 a異性体の保持時間を減少させたが、異性体の分離に は影響を及ぼさなかった。 Ammonia is a commonly used buffer additive for 8-iso-PGF 2a analysis by LC-MS / MS. In the present invention, by the addition of ammonium acetate 15 (R) iPF 2 a -ll and iPF 2 a -LLL, the 15 (R) PGF 2 a Oyo standard solution of beauty PGF 2 a, the ionization of these isomers The effect on efficiency was examined. Surprisingly, even at low concentrations of ammonia acetate, the ionic strength of the 8-iso-PGF 2 „isomer was significantly reduced. Ammonium acetate reduced the retention time of the 8-iso-PGF 2 a isomer. However, it did not affect the separation of isomers.
8-iso-PGF2 a異性体の分離に対する pHの影響は、 0.0001%、 0.01%ならびに 0.1%酢酸で作 成した標準品溶液で検討した。 酢酸は、 8-iso-PGF2 a異性体の保持時間を増加したが、 分離に は影響を及ぼさなかった。 従って、 バッファーによる pHを制御する必要がなく、 中性条件で F 2—イソプロスタン異性体の分離は可能であると判断して、バッファーを使わない HPLC法、 いわゆるバッファ一フリー HPLC法を開発した。 The effect of pH on the separation of 8-iso-PGF 2a isomers was examined with standard solutions made with 0.0001%, 0.01% and 0.1% acetic acid. Acetic acid increased the retention time of the 8-iso-PGF 2a isomer, but did not affect the separation. Therefore, it was determined that the F 2 -isoprostane isomer could be separated under neutral conditions without the need to control the pH with a buffer, and a buffer-free HPLC method, the so-called buffer-free HPLC method, was developed. .
8-iso-PGF 2。異性体の逆相分離特性を把握するために、 8-iso-PGF2 a異性体分離の最適温度 とグラジェント条件はコンピューターシミュレーションソフトウエア DryLab 2000 Plusを利 用して検討した。 温度 (20°Cと 40°C) とグラジェントの傾斜 (グラジェント時間、 6分と 1 8分、 グラジェントレンジ、 40-90% MeOH/ACN (2:1)) を同時に変化させて実験をコンビュ —タシミュレーションによって行った。その結果、低い分離温度と傾斜の浅いグラジェント条 件下では、 8-iso-PGF2。異性体の分離がよいことは分かった。 8-iso-PGF 2 . In order to understand the reverse phase separation characteristics of the isomers, the optimal temperature and gradient conditions for the 8-iso-PGF 2a isomer separation were examined using the computer simulation software DryLab 2000 Plus. Temperature (20 ° C and 40 ° C) and gradient slope (gradient time, 6 minutes and 1 The experiment was performed by computer simulation with 8 minutes, gradient range, 40-90% MeOH / ACN (2: 1)) changed at the same time. As a result, 8-iso-PGF 2 under low separation temperature and shallow gradient conditions. It was found that the separation of isomers was good.
また、 中性条件下での 8-iso-PGF2a異性体のピーク形状と分離条件を最適化するために、異 なる種類の多数の C8カラムを使用して、 6つの 8-iso-PGF2a異性体 (8-iso-15(R) PGF2a、 8-iso-PGF2a、 11(-PGF2a、 15(R)PGF2a、 5-trans-PGF2a、 PGF2a) に対する分離能力につい てスクリーニングテストした。 その結果、 HypersilBDSC8カラム (3 μηι、 50x2.1 mm i.d.) は、 8-iso-PGF2c (異性体に対して、良い分離が得られ、ピークの対称性もよく、また、 ACE C8 カラムより強い保持を持ったために、 分析カラムとして選択した。 Further, in order to optimize the 8-iso-PGF 2a isomer peak shape and separation conditions under neutral conditions, using a number of C8 column different types, six 8-iso-PGF 2a Screening for separation ability against isomers (8-iso-15 (R) PGF 2a , 8-iso-PGF 2a , 11 (-PGF 2a , 15 (R) PGF 2a , 5-trans-PGF 2a , PGF 2a ) As a result, the HypersilBDSC8 column (3 μηι, 50x2.1 mm id) is 8-iso-PGF2c (good separation for isomers, good peak symmetry, and ACE C8 column) It was chosen as the analytical column because it had a stronger retention.
図 3は、 LC-MS/MSによる F 2—イソプロスタンと F 2—プロスタグランジン異性体の標準 品分析の結果を示す。 図 3 Aに示すように、 iPF2a-lll (8-iso-PGF 2 a) は 8-iso-15(R) PGF2 a、 11(-PGF2a、 15(R)PGF2a、 5-trans-PGF2a、 PGF2aとベースライン分離された。 図 3 Bに示すように、 8-iso-PGF 2 aと PGF2(は iPF2a-lllと同じ保持時間を有し、 5-trans-PGF 2αは 11(-PGF2aと同じ保持時間を有するために分離ができなかった。 図 3C— Fには、 他 の立体異性体ペア、つまリ iPF 2 a-l Il"d4 (8-iso-PGF 2 α Ι4)と PGF2a-d4、2, 3-dinor-8-iso-PGF 2aと 2, 3-dinor-PGF2a、 iPF2a-VIと 5-epi-iPF 2 a-VU 及び iPF2a-V卜 d11と 5-epi-iPF2 a-VI-d11、もお互いにベースライン分離されたことを示す。また、図 3に示すように、 Hypersil BDS (3 μπη. C8) カラムでは、 F 2—イソプロスタン立体異性体がベースラインに分離され たばかりではなく、 尖ったピーク形状と良好な対称性を示すピークが得られた。  Figure 3 shows the results of standard analysis of F 2 -isoprostane and F 2 -prostaglandin isomers by LC-MS / MS. As shown in Figure 3A, iPF2a-lll (8-iso-PGF 2 a) is 8-iso-15 (R) PGF2 a, 11 (-PGF2a, 15 (R) PGF2a, 5-trans-PGF2a, PGF2a As shown in Figure 3B, 8-iso-PGF 2a and PGF2 (have the same retention time as iPF2a-ll, and 5-trans-PGF 2α has 11 (same as -PGF2a Figure 3C—F shows another stereoisomer pair, i.e. iPF 2 al Il "d4 (8-iso-PGF 2 α Ι4) and PGF2a-d4, 2 , 3-dinor-8-iso-PGF 2a and 2, 3-dinor-PGF2a, iPF2a-VI and 5-epi-iPF 2 a-VU and iPF2a-V 卜 d11 and 5-epi-iPF2 a-VI-d11 As shown in Figure 3, the Hypersil BDS (3 μπη. C8) column not only separated the F 2 -isoprostane stereoisomer into the baseline, as shown in Figure 3. A peak with a sharp peak shape and good symmetry was obtained.
【実施例 5】  [Example 5]
逆相 HPLCは、 質量分析計に接続している Waters Alliance 2796と 2695分離モジュールで 行った。機器の制御とデータ取得は MassLynx (version 4.1) ソフトウェアを用いて行った。 2 ポンプ Z4溶媒システムでグラジェントを作成した。 溶媒 Aは水、 溶媒 Bはメタノール、 溶 媒 Cはァセトニトリルを使用した。 ACE (3 〃m、 C8、 50x2.1 mm) 内径カラムと Hypersil BDS (3 〃m、 C8、 50x2.1 mm) カラムを HPLC分離と尿サンプルの分析に使用した。 初 期 HPLC分離条件は、コンピュータシミュレーションソフトウェア DryLab 2000 Plus を使つ て検討した。 カラム温度は 24°Cに、 移動相流速は 0.2 ml/min に設定した。 グラジェントプロ グラムは次の通りである: 0-6分、 21%から 40.5% B/C (B:C= 2:1又は 7:3)のリニァー(線形) グラジェント (カーブ 1)、 6-17分、 40.5%から 43.5%B/C(B:C=2:1又は 7:3)のリニア一グ ラジェン卜 (カーブ 6)、 17-22分、 43.5%から 100%B/C(B:C=2:1又は 7:3)のリニア一 (グ ラジェント (カーブ 1)、 22-27分、 100。/c^、 21%B/C(B:C=2:1又は 7:3)のリニア一グラジ ェント (カーブ 1)。  Reversed phase HPLC was performed on a Waters Alliance 2796 and 2695 separation module connected to a mass spectrometer. Instrument control and data acquisition were performed using MassLynx (version 4.1) software. A gradient was created with a 2 pump Z4 solvent system. Solvent A used water, solvent B used methanol, and solvent C used acetonitrile. ACE (3 〃m, C8, 50x2.1 mm) ID and Hypersil BDS (3 〃m, C8, 50x2.1 mm) columns were used for HPLC separation and analysis of urine samples. Initial HPLC separation conditions were examined using the computer simulation software DryLab 2000 Plus. The column temperature was set to 24 ° C and the mobile phase flow rate was set to 0.2 ml / min. The gradient program is as follows: 0-6 min, 21% to 40.5% B / C (B: C = 2: 1 or 7: 3) linear (linear) gradient (curve 1), 6 -17 minutes, 40.5% to 43.5% B / C (B: C = 2: 1 or 7: 3) linear gradient (curve 6), 17-22 minutes, 43.5% to 100% B / C ( B: C = 2: 1 or 7: 3) linear one (gradient (curve 1), 22-27 minutes, 100. / c ^, 21% B / C (B: C = 2: 1 or 7: 3) Linear gradient (Curve 1).
(LC-MS/MSによる尿抽出サンプルの分析)  (Analysis of urine extraction sample by LC-MS / MS)
図 5は MRMモードで検出した多次元固相抽出 LC-MS/MSによる尿サンプル分析の結果を 示す。 図 5 Aに示すように、 8-iso-15(R)PGF2aと 8-iso-PGF2aは PGF2a及び他の未知異性 体とベースライン分離された。 尿サンプル中 8-iso-15(R)PGF2a、 8-iso-PGF2a、 15(R) PGF と PGF2aのピークは、 抽出サンプルにこれらの化合物の標準品を添加することによって同 定した (図 5B)。 図 5Cは、 抽出した尿サンプルで分析した水素 Hの安定同位体 (重水素) ラベル 8-iso- PGF2„と PGF2aの MRMクロマトグラムを示す。図 5 Dは、 8-iso- PGF2a (8-iso- PGF 2a-d4) と PGF2a (PGF2a-d4) の安定同位体 (内部標準品) を添加しないブランクサン プルでは、 8-iso-PGF2i d4と PGF2a-d4の保持時間で夾雑物質がないことを示す。図 5 Eは、 2, 3-dinor-iPF2 a-lllが他の未知異性体とベースライン分離したことを示す。 グラジェント時間 の延長及び長いカラムの使用は他の異性体の分離もできた。 図 5 Fに示すように、 iPF2 a-VI と 5-epi-iPF2„-VIは他の異性体とベースライン分離された。図 5 Gは、尿サンプルから抽出し た iPF2 a-VI-d"と S-epi-iPFwVI-c^が互いに分離されたことを示す。 なお、 ブランクサンプ ルには、 iPF^-VI-d と S-epi-iPF^-VI-d と同じ保持時間を有する夾雑物質は存在していなか つた。 Figure 5 shows the results of urine sample analysis by multi-dimensional solid-phase extraction LC-MS / MS detected in MRM mode. As shown in Figure 5A, 8-iso-15 (R) PGF 2a and 8-iso-PGF 2a were baseline separated from PGF 2a and other unknown isomers. The peaks of 8-iso-15 (R) PGF 2a , 8-iso-PGF 2a , 15 (R) PGF and PGF 2a in urine samples were identified by adding these compounds to the extracted sample. (Figure 5B). Figure 5C shows the MRM chromatogram of the stable isotopes of hydrogen H (deuterium) labeled 8-iso-PGF 2 „and PGF 2a analyzed in the extracted urine sample. Figure 5D shows the 8-iso-PGF 2a (8-iso- PGF 2a -d 4 ) and a blank sample with no added stable isotopes PGF 2a (PGF 2a -d 4) (internal standard), 8-iso-PGF 2i d 4 and PGF 2a - d Shows no contaminants at a retention time of 4. Figure 5 E shows 2,3-dinor-iPF 2 a -lll is baseline separated from other unknown isomers. Increasing the gradient time and using a longer column could also separate other isomers. . As shown in FIG. 5 F, iPF 2 a -VI and 5-epi-iPF 2 "-VI were other isomers and baseline resolution FIG 5 G is, iPF 2 a extracted from the urine sample - VI-d "and S-epi-iPFwVI-c ^ are separated from each other. In the blank sample, there were no contaminants with the same retention time as iPF ^ -VI-d and S-epi-iPF ^ -VI-d.
【実施例 6】  [Example 6]
メタノールとァセトニトリルの混合比率を変化させて、 8-iso-PGF2aと未知異性体の分離能 を調べた結果を図 7に示す。図に示す結果から明らかなように、 8-iso-PGF2aと未知異性体は、 メタノールとァセトニトリルの混合比率が 4 0: 6 0であるときに、分離を開始して、 メタノ —ルとァセトニトリルの混合比率が 5 0: 5 0のときに明確に分離するのが観察された。また、 ァセトニトリルが 100%であっても分離した。 Figure 7 shows the results of examining the resolution of 8-iso-PGF 2a and unknown isomers by changing the mixing ratio of methanol and acetonitrile. As is clear from the results shown in the figure, 8-iso-PGF 2a and the unknown isomers began to separate when the mixing ratio of methanol and acetonitrile was 40:60, and methanol and acetonitrile A clear separation was observed when the mixing ratio was 50:50. In addition, it was separated even if the acetonitrile was 100%.
【実施例 7】  [Example 7]
iPF2 a-lllと iPF2 a-VIの回収量が尿サンプル量に比例するかどうかを検討するために、 8名 のボランティアから採取した 1 mlと 2 mlの尿サンプルに同量の iPF2 a-lll-d4と iPF^-VI-dTo examine whether iPF 2 a -lll and iPF 2 a -VI recoveries are proportional to urine sample volume, the same amount of iPF 2 was collected in 1 ml and 2 ml urine samples collected from 8 volunteers. a -lll-d 4 and iPF ^ -VI-d
(2 ng) を添加し、サンプルを多次元固相抽出法で抽出した。図 6に示すように、 1 mlと 2 ml の尿サンプルから抽出した iPF2 ff-lllと iPF2 a-IIUd4のピーク面積比(図 6及び iPF2 a-VIと iPF -VI-d"のピーク面積比はよく相関していることが分かった。 iPF2 a-lll と iPF2 a-VIの信号/ ノイズ (S/N) 比の範囲はそれぞれ 16 - 118と 143 - 355であった。 図 6に示すように、 2 ml の尿サンプルから抽出した iPF2 a-lll と iPF2 a-VIの S/N比は、 1 mlの尿サンプルから抽出し た場合より、大きいことが分かった。 これらの結果は、任意に選んだ 8名のポランティアから 尿サンプル 2 mlを抽出することで、 2 0以上のピーク間(peak-to-peak) S/Nが得られた。 つ まり、 2 mlの尿サンプルから十分な分析感度が得られることが示された。 (2 ng) was added and the sample was extracted by multidimensional solid phase extraction. As shown in Figure 6, the peak area ratio of iPF 2 ff -lll and iPF 2 a -IIUd 4 extracted from 1 ml and 2 ml urine samples (Figure 6 and iPF 2 a -VI and iPF -VI-d " The iPF 2 a -lll and iPF 2 a -VI signal / noise (S / N) ratio ranges were 16-118 and 143-355, respectively. As shown in Figure 6, the S / N ratio of iPF 2 a -lll and iPF 2 a -VI extracted from a 2 ml urine sample was found to be greater than when extracted from a 1 ml urine sample. These results indicate that a peak-to-peak S / N of 20 or more was obtained by extracting 2 ml of a urine sample from 8 volunteers selected arbitrarily. It was shown that sufficient analytical sensitivity was obtained from a 2 ml urine sample.
【実施例 8】  [Example 8]
(サンプル抽出回収率の評価)  (Evaluation of sample extraction recovery rate)
2ステツプ多次元固相抽出法による尿サンプルの回収率は、内部標準品の混合液(8-iso-PGF 2 a-d4と iPF^-VI-d ) をサンプル抽出前後に添加することにより評価した。回収率(%)は、 抽出前に尿サンプルに添加した内部標準品のピーク面積と抽出後に尿サンプルに添加した内 部標準品のピーク面積の比に 100を掛けて計算した。 固相抽出回収率は下記のデータ解析によって次のようにして計算した。 The recovery rate of urine samples by the two-step multidimensional solid-phase extraction method is determined by adding the internal standard mixture (8-iso-PGF 2 a -d 4 and iPF ^ -VI-d) before and after sample extraction. evaluated. The recovery rate (%) was calculated by multiplying the ratio of the peak area of the internal standard added to the urine sample before extraction to the peak area of the internal standard added to the urine sample after extraction by 100. The solid phase extraction recovery rate was calculated as follows by the following data analysis.
尿サンプル(1 ml と 2 ml) に抽出前後に、内部標準品 8-iso- PGF2 a-d4と iPF2 a-VI-d" を それぞれ添加してサンプル抽出の回収率を検討した(表 1 )。表 1に示すように、 4人のボラン ティアの 1 ml と 2 mlサンプルから添加内部標準品の回収率は約 50 - 70%でした。 4人から の 2 ml尿サンプルでの 4回橾リ返し抽出(抽出 1"4)は安定した回収率を得られた。 iPF2 a-lll-d4、 iPF2„-VI-d"および S-epi-iPF^-VI-d の回収率はそれぞれ 62土 8%、60土 10%および 61土 8%であった。 Before and after extraction, urine samples (1 ml and 2 ml) were added with internal standard products 8-iso-PGF 2 a -d 4 and iPF 2 a -VI-d "to examine the recovery rate of sample extraction ( Table 1) As shown in Table 1, the recovery rate of the internal standard added from 1 ml and 2 ml samples of 4 volunteers was about 50-70% in 2 ml urine samples from 4 people. Four-time repeated extraction (extraction 1 "4) gave a stable recovery. The recovery rates of iPF 2 a -lll-d 4 , iPF 2 „-VI-d” and S-epi-iPF ^ -VI-d were 62 soil 8%, 60 soil 10% and 61 soil 8%, respectively. .
【表 1】 TABLE 1. Recovery in solid-phase extraction of tiiine samples from four volunteers 【table 1】 TABLE 1. Recovery in solid-phase extraction of tiiine samples from four volunteers
Extraction 1 Extra don 2 Extraction 3 Extraction 4  Extraction 1 Extra don 2 Extraction 3 Extraction 4
1 ml of Urine 2 mt of Unnc 2 Urine 2 ml of Urine 2 ml of Urine Average
Figure imgf000022_0001
1 ml of Urine 2 mt of Unnc 2 Urine 2 ml of Urine 2 ml of Urine Average
Figure imgf000022_0001
Isopnwtane (n = 4) in = 4) (" =4) (n - 4) (n=4) Rctxwcry of Variation  Isopnwtane (n = 4) in = 4) ("= 4) (n-4) (n = 4) Rctxwcry of Variation
63 ± 10 72 13 57 68± 7 51 ± 16 62 ±8 Ϊ3 iPF -\T^U 54 ±4 62 ± 8 60 ± 12 68± 3 S6 ± 15 60 ± 6 10 δ-Epi-iPF^-VI-du 53 ± 8 58± 9 62 ± 8 74 ± 5 57 ± 9 61 ±8 13 iP, prostane. All values shown are percentages. 63 ± 10 72 13 57 68 ± 7 51 ± 16 62 ± 8 Ϊ3 iPF-\ T ^ U 54 ± 4 62 ± 8 60 ± 12 68 ± 3 S6 ± 15 60 ± 6 10 δ-Epi-iPF ^ -VI- du 53 ± 8 58 ± 9 62 ± 8 74 ± 5 57 ± 9 61 ± 8 13 iP, prostane.All values shown are percentages.
(マトリックスによるイオン抑制作用の評価)(Evaluation of ion suppression by matrix)
0 0  0 0
サンプルマトリックスのイオo t ン抑制作用は、 標準品 (23-dinor-8-iso-PGF2a 8-iso- PGF2 aおよび (土) 5-iPF2a-VI) と内部標準品 (8-iso- PGF2tr l4および (土) S-iPF^-VI-d") 溶 液を水と抽出した尿サンプルに添加することによって検討した。 マトリックス効果は、抽出し た尿サンプルに添加した標準品又は内部標品のピーク面積と水に添加した標準品又は内部標 品のピーク面積の比に 100を掛けて計算した。 Ion ot down inhibition sample matrices, standard (23-dinor-8-iso -PGF 2a 8-iso- PGF 2 a and (Sat) 5-iPF 2a -VI) and an internal standard (8-an iso- PGF 2tr l 4 and (soil) S-iPF ^ -VI-d ") were investigated by adding the solution to the extracted urine sample with water. Calculated by multiplying the ratio of the peak area of the internal standard to the peak area of the standard or internal standard added to water by 100.
尿サンプルマトリックスが F2—イソプロスタンのイオン化効率に対する影響は、 水と抽出 した尿サンプルに F 2—イソプロスタンの標準品液と内部標準液を添加することによつて検討 した。 表 2に示すように、 尿サンプル (1 ml及び 2 ml) から抽出した場合、 又は、 尿サンプ ル(2 ml)を繰り返し抽出した場合に、 2, 3-dinor-iPF2a-lllは約 12-23%イオン抑制を受けた(マ トリックス作用、 77 - 88%) o 他の F2—イソプロスタンに対するマトリックスの影響は 88% 一 127%で、 15(R)iPF2a-lll iPF2a-lll iPF2a-lll-d4. iPF2a-Vし 5-epi-iPF2a-Vし iPF2a-VI-d11 および S-epi-iPFwVI-d"が受けたマトリックス作用はそれぞれ 95土 6% 100 ± 6% 103 ± 5% 96 ±3% 100 ±3% 109 ± 15%および 104 ± 16%であった。 これらの結果は、 多次 元固相抽出で抽出したサンプルマトリックスのイオン抑制作用は F2_イソプロスタンのィォ ン化効率に著明な影響がなかったことを示している。 Urine samples matrix F 2 - effect on the ionization efficiency of isoprostanes, F 2 in urine samples extracted with water - have been conducted under consider adding standard solution and internal standard solution isoprostanes. As shown in Table 2, when extracted from urine samples (1 ml and 2 ml) or repeatedly extracted from urine samples (2 ml), 2,3-dinor-iPF 2a -lll is approximately 12 -23% ion suppression (Matrix action, 77-88%) o Matrix effects on other F 2 -isoprostanes were 88% to 127%, 15 (R) iPF 2a -lll iPF 2a -lll iPF 2a -lll-d 4 .iPF 2a -V and 5-epi-iPF 2a -V and iPF 2a -VI-d 11 and S-epi-iPFwVI-d "were each subjected to a matrix action of 95 soil 6% 100 ± 6% 103 ± 5% 96 ± 3% 100 ± 3% 109 ± 15% and 104 ± 16% These results show that the ion suppression effect of the sample matrix extracted by multidimensional solid-phase extraction is F This shows that there was no significant effect on the ionization efficiency of 2_isoprostane.
【表 2】  [Table 2]
TABLE 2. Matrix-related ion suppression effects TABLE 2. Matrix-related ion suppression effects
Extraction Extraction 2 Exiractimi 3 tx traction 4  Extraction Extraction 2 Exiractimi 3 tx traction 4
1 ml of Urine 2 ml of Urine 2 inl of Urine 2 ml of Urine 2 ml of Urine Av ragi- Matrix t-oeificicnt of  1 ml of Urine 2 ml of Urine 2 inl of Urine 2 ml of Urine 2 ml of Urine Av ragi- Matrix t-oeificicnt of
=4 in = 4i ίπ = 41 Effit Variation = 4 in = 4i ίπ = 41 Effit Variation
2, S-DinoHPF2u-in 85 ± 11 77 80 ± 8 82 ± 10 88 ± 13 82 ± 4 2, S-DinoHPF 2u -in 85 ± 11 77 80 ± 8 82 ± 10 88 ± 13 82 ± 4
I3(R) iPF '-m 100 ± 12 87 ± 3 91 ± 3 10] ± 5 95 ± 6  I3 (R) iPF '-m 100 ± 12 87 ± 3 91 ± 3 10] ± 5 95 ± 6
iPF2ft-in 106 ± 15 101 91 ± 6 96± 30 106 ± 6 100 ±6 iPF 2ft -in 106 ± 15 101 91 ± 6 96 ± 30 106 ± 6 100 ± 6
iPF2a-III-d4 IOI 10 97 702 ± 2 304 ± 8 M0i 4 s ± iPF 2a -III-d 4 IOI 10 97 702 ± 2 304 ± 8 M0i 4 s ±
98 ή 97 ± 6 100 U 98: 5 96 ± 3 4 98 ή 97 ± 6 100 U 98: 5 96 ± 3 4
5-Epi-iPF2a-VI 102 ± 4
Figure imgf000022_0002
101 ± 6 104 9 98 3 100 ± 3 3 iPF2a-\l-du 108 is 127 ± !4 103 119 ± 24 88 ± 25 109 i 15 14
5-Epi-iPF 2a -VI 102 ± 4
Figure imgf000022_0002
101 ± 6 104 9 98 3 100 ± 3 3 iPF 2a -! \ Ld u 108 is 127 ± 4 103 119 ± 24 88 ± 25 109 i 15 14
91 ± 9 7 1J2 9 126 ± 5 103 ± 2 ]04 ± 16 13 91 ± 9 7 1 J2 9 126 ± 5 103 ± 2] 04 ± 16 13
All values shown are percentages All values shown are percentages
なお、データ解析は次のようにして行った。マスク口マトグラムでの iPF2a-lllと 5-iPF2a-VI のピーク間信号雑音比(S/N比)は MassLynx (version 4.1)ソフトウエアにてピークを Moving Mean法でスムージングした後求めた。尿サンプル(1 mlと 2 ml)中の iPF2a-lllと 5-iPF2a-VI の S/N比の有意差は SASソフトウエアパッケージを用し、、 Wilcoxonの符号付き検定によって 検定した。 多反応モニタリング (MRM) クロマトグラムでのピーク自動識別と面積計算は QuanLynxソフトウエアにて行った。 求めた分析サンプルの面積はテキストファイルとしてェ クスポー卜し、自作の Excelマクロによって 1つのファイルに結合し、 SASソフトウエアパッ ケージを用いて回収率とマトリックス効果を計算した。 産業上の利用可能性 この発明に係る F 2—イソプロスタン異性体の分離測定方法は、 酸化ストレスマーカ一とし て隔離している F 2—ィソプロスタン異性体を高精度にかつ高効率に分離測定することができ ることから、 酸化ストレスに起因する F 2—イソプロスタン異性体を特定することができるこ とから、病態ならびに疾病の原因等を正確に診断することができる。 したがって、 この発明に 係る F 2—イソプロスタン異性体の分離測定方法は、 特に疾病の診断の分野に有効に適用する ことができる。 Data analysis was performed as follows. The signal-to-peak signal-to-peak ratio (S / N ratio) of iPF 2a -lll and 5-iPF 2a -VI in the mask mouth matogram was obtained after smoothing the peak using the Moving Mean method with MassLynx (version 4.1) software. Significant differences in the S / N ratio between iPF 2a -lll and 5-iPF 2a -VI in urine samples (1 ml and 2 ml) were tested by the Wilcoxon signed test using the SAS software package. Multiple reaction monitoring (MRM) Automatic peak identification and area calculation in chromatograms were performed with QuanLynx software. The calculated area of the analysis sample was exported as a text file, combined into one file using a self-made Excel macro, and the recovery rate and matrix effect were calculated using a SAS software package. F 2 according to the availability to the invention on the industrial - separation method for measuring isoprostane isomers, F is isolated by oxidative stress marker one 2 - and Isopurosutan isomer with high accuracy to measure the separation at high efficiency Therefore, F 2 -isoprostane isomers caused by oxidative stress can be identified, so that the pathological condition and the cause of the disease can be accurately diagnosed. Therefore, the method for separating and measuring F 2 -isoprostane isomers according to the present invention can be effectively applied particularly to the field of disease diagnosis.

Claims

請求の範囲 The scope of the claims
1 試料を F 2—イソプロスタン異性体分離可能な特定の粒径を有するク口マトグラフィー 用担体に添加して特定濃度比のメタノ一ル ァセトニトリル水溶液からなる溶出液を用いて、 クロマトグラフィ一によって F 2—イソプロスタン異性体を分離測定することからなる F 2— イソプロスタン異性体の分離測定方法において、 F 2—イソプロスタン異性体分離可能な特定 の粒径が 4 / m以下であり、 クロマトグラフィ一用担体が F 2—イソプロスタン異性体の保持 能を有してなく、 かつ、特定濃度比のメタノール/ァセトニトリル水溶液が 1 0 : 9 0 ~ 1 0 0 : 0であることからなる F 2—イソプロスタン異性体の分離測定方法。 1 Chromatographic analysis of F 2 -isoprostane isomers with a specific particle size capable of separating F 2 -isoprostane isomers and using an eluate consisting of an aqueous solution of methanol acetonitrile with a specific concentration ratio. In the method for separating and measuring the F 2 —isoprostan isomer, which consists of separating and measuring the 2 —isoprostane isomer, the specific particle size that can be separated by the F 2 —isoprostan isomer is 4 / m or less. use carrier F 2 - without a holding ability isoprostane isomers, and methanol / Asetonitoriru solution of a particular concentration ratio of 1 0: 9 0-1 0 0: 0 consists a F 2 - isoproterenol Separation measurement method of stan isomers.
2 請求の範囲第 1項に記載の F 2—イソプロスタン異性体の分離; II定方法において、 前記 F 2—イソプロスタン異性体分離可能な特定の粒径が 3 . 5 μ m以下であることからなる F 2 一イソプロスタン異性体の分離測定方法。 2 Separation of the F 2 -isoprostane isomer according to claim 1; In the II determination method, the specific particle size capable of separating the F 2 -isoprostane isomer is 3.5 μm or less A method for separating and measuring F 2 monoisoprostane isomers.
3 請求の範囲第 1項または第 2項に記載の F 2—イソプロスタン異性体の分離測定方法に おいて、 前記クロマトグラフィ一用担体力《C6— C20長鎖アルキル基がシリカゲルに化学結合し たシリカ担体であることからなる F 2—イソプロスタン異性体の分離測定方法。 3 In the method for separating and measuring the F 2 -isoprostane isomer according to claim 1 or 2, the chromatographic carrier force << C6-C20 long chain alkyl group is chemically bonded to silica gel. A method for separating and measuring F 2 -isoprostane isomers comprising a silica support.
4 請求の範囲第 3項に記載の F 2—イソプロスタン異性体の分離》定方法において、 前記 クロマトグラフィ一用担体が C8アルキル基がシリカゲルに化学結合したシリカ担体であることか らなる F 2—イソプロスタン異性体の分離測定方法。 4 F 2 ranges described in the third preceding claims - isoprostane in isomer separation "measuring method, the Can chromatography one carrier is a silica support C8 alkyl group is chemically bonded to silica gel Ranaru F 2 - Separation measurement method of isoprostane isomers.
5 請求の範囲第 1項ないし第 4項のいずれか 1項に記載の F 2—イソプロスタン異性体の 分離測定方法において、前記メタノール/ァセトニトリル水溶液の特定澹度比が 4 0 : 6 0〜 1 0 0 : 0であることからなる F z—イソプロスタン異性体の分離測定方法。 5 F as claimed in any one Claims first term to the fourth term 2 - in the separation method of measuring isoprostane isomers, specific澹度ratio of the methanol / Asetonitoriru aqueous solution 4 0: 6 0-1 A method for separating and measuring F z —isoprostane isomers consisting of 0 0: 0.
6 請求の範囲第 1項ないし第 5項のいずれか 1項に記載の F 2—イソプロスタン異性体の 分離測定方法において、前記メタノ一ル ァセトニトリル水溶液の特定漉度比が 5 0: 5 0〜 1 0 0 : 0であることからなる F 2—イソプロスタン異性体の分雕測定方法。 6. The method for separating and measuring F 2 -isoprostane isomer according to any one of claims 1 to 5, wherein the specific concentration ratio of the methanolic acetonitrile aqueous solution is 50:50 to 1 0 0: Method for measuring the fraction of F 2 -isoprostane isomers consisting of 0.
7 生体試料などの試料を、大きい固相容量の第 1固相抽出担体に通して、該試料中に含ま れる F 2—イソプロスタン化合物ならびにその同位体を該第 1固相抽出担体に保持するととも に、 該試料中に含まれる夾雑物質を除去することからなる第 1固相抽出ステップと、 7 When a sample such as a biological sample is passed through a first solid phase extraction carrier having a large solid phase capacity, the F 2 -isoprostane compound and its isotope contained in the sample are retained on the first solid phase extraction carrier. A first solid-phase extraction step comprising removing contaminants contained in the sample;
該第 1固相抽出担体を通過した試料を、該第 1固相抽出担体の固相容量よリも小さい固相容 量の第 2固相抽出担体を通して、 更に F 2—ィソプロスタン化合物ならびにその同位体を該第2固相抽出担体に保持するとともに、該試料中に含まれる夾雑物質を除去することからなる第 2固相抽出ステップと、 The sample that has passed through the first solid-phase extraction carrier passes through the second solid-phase extraction carrier having a solid volume smaller than the solid-phase capacity of the first solid-phase extraction carrier, and further passes through the F 2 -isoprostan compound and its isotope. A second solid phase extraction step comprising holding a body on the second solid phase extraction carrier, and removing contaminants contained in the sample;
からなる試料の処理方法。 A sample processing method comprising:
8 請求の範囲第 7項に記載の試料の処理方法において、前記第 1固相抽出ステップがサイ ズ抹除クロマトグラフィ一ならびに逆相クロマトグラフィ一で行われること、ならびに前記第 2固相抽出ステップがサイズ排除クロマトグラフィーならびに順相クロマトグラフィ一で行 8. The sample processing method according to claim 7, wherein the first solid-phase extraction step is performed by size-exclusion chromatography and reverse-phase chromatography, and the second solid-phase extraction step is sized. Exclusion chromatography and normal phase chromatography
^替え用紙 (規則 26) われることからなる試料の処理方法。 ^ Replacement form (Rule 26) Sample processing method.
9 生体試料などの試料を、大きい固相容量の第 1固相抽出担体に通して、該試料中に含ま れる F 2—イソプロスタン化合物ならびにその同位体を該第 1固相抽出担体に保持するととも に、 該試料中に含まれる夾雑物質を除去することからなる第 1固相抽出ステップと、 該第 1固相抽出担体を通過した試料を、該第 1固相抽出担体の固相容量よリも小さい固相容 量の第 2固相抽出担体を通して、 更に F 2—イソプロスタン化合物ならびにその同位体を該第 2固相抽出担体に保持するとともに、該試料中に含まれる夾雑物質を除去することからなる第 2固相抽出ステップと、 9 When a sample such as a biological sample is passed through a first solid phase extraction carrier having a large solid phase capacity, the F 2 -isoprostane compound and its isotope contained in the sample are retained on the first solid phase extraction carrier. In addition, a first solid phase extraction step consisting of removing contaminants contained in the sample, and a sample that has passed through the first solid phase extraction carrier are compared with the solid phase capacity of the first solid phase extraction carrier. In addition, the F 2 -isoprostane compound and its isotope are retained on the second solid-phase extraction support through the second solid-phase extraction support with a small solid-phase capacity, and contaminants contained in the sample are removed. A second solid phase extraction step comprising:
からなる試料の処理方法と、 A sample processing method comprising:
前記試料の処理方法で処理して得られた溶出液を、 を F 2—ィソプロスタン異性体分離可能 な特定の粒径を有するク口マトグラフィ一用担体に添加して特定濃度比のメタノ一ル Zァセ トニトリル水溶液からなる溶出液を用いて、 クロマトグラフィ一によって F 2—イソプロスタ ン異性体を分離測定することからなる F 2—イソプロスタン異性体の分離渊定方法において、 F 2—イソプロスタン異性体分離可能な特定の粒径が 4 // m以下であり、 クロマトグラフィ一 用担体が F 2—イソプロスタン異性体の保持能を有してなく、 かつ、 特定濃度比のメタノール /ァセトニトリル水溶液が 1 0 : 9 0 ~ 1 0 0: 0であることからなる F 2— ^ Tソプロスタン 異性体の分離溯定方法。 The eluate obtained by the above-mentioned sample processing method is added to a carrier for a chromatography matrix having a specific particle size capable of separating F 2 -isoprostan isomer, and methanol Z having a specific concentration ratio is added. with an elution solution comprising § Se Tonitoriru solution, F 2 by chromatography one - in the separation渊定method isoprostane isomer, F 2 - - Isopurosuta consists of a down isomer separating measure F 2 isoprostane isomers The specific particle size that can be separated is 4 // m or less, the chromatographic support is not capable of retaining the F 2 -isoprostane isomer, and a methanol / acetonitrile aqueous solution with a specific concentration ratio is 10 : 9 0 to 1 0 0: Method for separating and determining F 2 — ^ T soprostan isomers consisting of 0.
差替え招紙 (纏 y26) Replacement invitation (summary y26)
PCT/JP2007/072146 2006-11-08 2007-11-08 Method for separation/measurement of f2-isoprostane isomer WO2008065895A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US86485506P 2006-11-08 2006-11-08
US60/864,855 2006-11-08

Publications (1)

Publication Number Publication Date
WO2008065895A1 true WO2008065895A1 (en) 2008-06-05

Family

ID=39467688

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072146 WO2008065895A1 (en) 2006-11-08 2007-11-08 Method for separation/measurement of f2-isoprostane isomer

Country Status (1)

Country Link
WO (1) WO2008065895A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2492680A1 (en) 2011-02-28 2012-08-29 Tanita Corporation Method of purifying 8-isoprostane
EP2492679A1 (en) 2011-02-28 2012-08-29 Tanita Corporation Method of quantitatively determining 8-isoprostane
JP2014228315A (en) * 2013-05-20 2014-12-08 花王株式会社 Mass spectrometry method for multicomponent sample
CN114216951A (en) * 2021-12-08 2022-03-22 中国石油大学(北京) Separation method of sulfonate compounds in sewage and analysis method of soluble organic matter molecule composition

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
CLAESON BOHNSTEDT K. ET AL.: "Determination of isoprostanes in urine samples from Alzheimer patients using porous graphitic carbon liquid chromatography-tandem mass spectrometry", JOURNAL OF CHROMATOGRAPHY B, vol. 796, no. 1, 25 October 2003 (2003-10-25), pages 11 - 19, XP004461024 *
DOEHL J. ET AL.: "Determination of prostaglandins in human seminal fluid by solid-phase extraction, pyridinium dichromate derivatization and high-performance liquid chromatography", JOURNAL OF CHROMATOGRAPHY BIOMEDICAL APPLICATIONS, vol. 529, no. 1, 13 July 1990 (1990-07-13), pages 21 - 32 *
MOJGAN MASOODI ET AL.: "Lipidomic analysis of twenty-seven prostanoids and isoprostanes by liquid chromatography/electrospray tandem mass spectrometry", RAPID COMMUNICATIONS IN MASS SPECTROMETRY, vol. 20, no. 20, 12 September 2006 (2006-09-12), pages 3023 - 3029, XP002497393, DOI: doi:10.1002/rcm.2697 *
MUCHA I. ET AL.: "Separation of '125' I-labelled prostanoid derivatives by reversed-phase high-performance liquid chromatography", JOURNAL OF CHROMATOGRAPHY, vol. 483, 8 December 1989 (1989-12-08), pages 419 - 426, XP026475343, DOI: doi:10.1016/S0021-9673(01)93144-9 *
NOUROOZ-ZADEH J. ET AL.: "Analysis of F2-isoprostanes as indicators of non-enzymatic lipid peroxidation in vivo by gas chromatography-mass spectrometry: development of a solid-phase extraction procedure", JOURNAL OF CHROMATOGRAPHY B, vol. 667, no. 2, 19 May 1995 (1995-05-19), pages 199 - 208, XP004043856 *
OHASHI N.: "LC/MS-ho ni yoru Sanka Stress Marker 8-isoprostane no Kaiseki", BIO CLINICA, vol. 18, no. 14, 20 December 2003 (2003-12-20), pages 1286 - 1290 *
ROSTON D.A. ET AL.: "Two-Dimensional Liquid Chromatographic Method for Resolution of Prostaglandin Enantiomers", ANALYTICA CHEMISTRY, vol. 60, no. 9, 1 May 1988 (1988-05-01), pages 948 - 950 *
TAYLOR A.W. ET AL.: "Benefits of prolonged gradient separation for high-performance liquid chromatography-tandem mass spectrometry quantitation of plasma total 15-series F2-isoprostanes", ANALYTICAL BIOCHEMISTRY, vol. 350, no. 1, 1 March 2006 (2006-03-01), pages 41 - 51, XP005291689 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2492680A1 (en) 2011-02-28 2012-08-29 Tanita Corporation Method of purifying 8-isoprostane
EP2492679A1 (en) 2011-02-28 2012-08-29 Tanita Corporation Method of quantitatively determining 8-isoprostane
JP2012194178A (en) * 2011-02-28 2012-10-11 Tanita Corp Method for quantifying 8-isoprostane
JP2012194177A (en) * 2011-02-28 2012-10-11 Tanita Corp Method of purifying 8-isoprostane
US8652850B2 (en) 2011-02-28 2014-02-18 Tanita Corporation Method of quantitatively determining 8-isoprostane
US8692047B2 (en) 2011-02-28 2014-04-08 Tanita Corporation Method of purifying 8-isoprostane
JP2014228315A (en) * 2013-05-20 2014-12-08 花王株式会社 Mass spectrometry method for multicomponent sample
CN114216951A (en) * 2021-12-08 2022-03-22 中国石油大学(北京) Separation method of sulfonate compounds in sewage and analysis method of soluble organic matter molecule composition

Similar Documents

Publication Publication Date Title
EP2633325B1 (en) Lc-ms separation and detection of vitamin d metabolites
JP6462020B2 (en) Detection method of reverse triiodothyronine by mass spectrometry
CN111366652A (en) Method for determining 16 mycotoxins in tea by using ultra-high performance liquid chromatography-tandem mass spectrometry
JP5902357B2 (en) Thyroglobulin quantification by mass spectrometry
US11830715B2 (en) Mass spectrometric determination of fatty acids
JP6301362B2 (en) C-peptide detection by mass spectrometry
JP2022534288A (en) Quantification of antidepressants by mass spectrometry
WO2008065895A1 (en) Method for separation/measurement of f2-isoprostane isomer
WO2011156505A1 (en) Mass spectrometric determination of derivatized methylmalonic acid
JP2020530904A (en) Detection and quantification of guanidinoacetic acid, creatine, and creatinine by mass spectrometry
CN112198249A (en) Detection method of ethanolamine compound in soil
CN114019042B (en) Method and device for determining content of protease inhibitor of pelteobagrus fulvidraco based on graphene
JP2023550279A (en) Derivatization of at least one analyte of interest for mass spectrometry measurements in patient samples
CN111057067A (en) Multichannel mass spectrum derivative reagent for detecting sphingosine hexatriglycoside and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2008546941

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 07831876

Country of ref document: EP

Kind code of ref document: A1