WO2008065776A1 - Process for industrial production of high-quality aromatic polycarbonate - Google Patents

Process for industrial production of high-quality aromatic polycarbonate Download PDF

Info

Publication number
WO2008065776A1
WO2008065776A1 PCT/JP2007/064431 JP2007064431W WO2008065776A1 WO 2008065776 A1 WO2008065776 A1 WO 2008065776A1 JP 2007064431 W JP2007064431 W JP 2007064431W WO 2008065776 A1 WO2008065776 A1 WO 2008065776A1
Authority
WO
WIPO (PCT)
Prior art keywords
distillation column
carbonate
tower
column
continuous multistage
Prior art date
Application number
PCT/JP2007/064431
Other languages
French (fr)
Japanese (ja)
Inventor
Shinsuke Fukuoka
Hironori Miyaji
Hiroshi Hachiya
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to JP2008546891A priority Critical patent/JP5320071B2/en
Publication of WO2008065776A1 publication Critical patent/WO2008065776A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/307General preparatory processes using carbonates and phenols

Definitions

  • the present invention relates to an industrial process for producing an aromatic polycarbonate. More specifically, the present invention industrially and stably produces a high-quality, high-performance aromatic polycarbonate that is free of coloring and has excellent mechanical properties from a cyclic carbonate and an aromatic dihydroxy compound in a large amount for a long period of time. Regarding the method.
  • Aromatic polycarbonate is widely used in many fields as engineering plastics having excellent heat resistance, impact resistance and transparency.
  • Various researches have been conducted on the production method of this aromatic polycarbonate, and among them, aromatic dihydroxy compounds such as 2,2-bis (4-hydroxyphenyl) propane (hereinafter referred to as bisphenol A) are included.
  • bisphenol A 2,2-bis (4-hydroxyphenyl) propane
  • Various polymerizers are known as a polymerizer for producing an aromatic polycarbonate by a melting method.
  • a method using a vertical stirring tank type polymerizer equipped with a stirrer is generally well known.
  • the vertical stirred tank type polymerizer has the advantage of high volumetric efficiency and small size on a small scale, and can proceed with polymerization efficiently, but on an industrial scale, as described above.
  • As the polymerization proceeds it is difficult to efficiently extract phenol as a by-product out of the system, and the polymerization rate is extremely low.
  • a large-scale vertical stirred tank type polymerization apparatus usually has a larger liquid volume ratio to the evaporation area than a small scale, and the so-called liquid depth is large.
  • Aromatic dihydroxy compounds such as high-purity bisphenol A, are manufactured in large quantities industrially and are easy to obtain.To obtain high-purity diaryl carbonate in large quantities on an industrial scale, Impossible. It is therefore necessary to produce this.
  • diaryl carbonate As a method for producing diaryl carbonate, an aromatic monohydroxy compound and phosgene are used. Reaction methods have been known for a long time, and various studies have been made recently. However, in this method, in addition to the problem of using phosgene, the diaryl carbonate produced by this method contains chlorine-based impurities that are difficult to separate, and cannot be used as a raw material for aromatic polycarbonate as it is. This is because this chlorine-based impurity significantly inhibits the polymerization reaction of the transesterification aromatic polycarbonate carried out in the presence of a very small amount of a basic catalyst. Can't progress.
  • reaction systems are basically a batch system force and a switching system.
  • the inventors of the present invention continuously supply dialkyl carbonate and aromatic hydroxy compound to a multistage distillation column, continuously react in the column in the presence of a catalyst, and contain a by-product alcohol.
  • the boiling point component is continuously extracted by distillation, and the component containing the generated alkylaryl carbonate is extracted from the lower part of the column (see Patent Document 16).
  • the alkylaryl carbonate is continuously supplied to the multistage distillation column.
  • the reaction is continuously carried out in the column in the presence of a catalyst, and low-boiling components including dialkyl carbonate as a by-product are continuously extracted by distillation, and the generated components including diaryl carbonate are extracted from the bottom of the column.
  • Reactive distillation (see Patent Document 17), these reactions are carried out using two continuous multistage distillation towers, and by-product dialkyl carbonate is effectively used.
  • Reactive distillation method (see Patent Document 18), which continuously produces diaryl carbonate while being recycled, continuously supplies dialkyl carbonate and aromatic hydroxy compound to the multistage distillation column, and flows down in the column.
  • the liquid to be discharged is extracted from a side outlet provided in the middle stage and / or the lowermost stage of the distillation tower, introduced into a reactor provided outside the distillation tower and reacted, and then from the stage having the outlet.
  • These esters, such as reactive distillation (see Patent Document 19), in which the reaction is carried out in both the reactor and the distillation column by being introduced into the circulation inlet provided in the upper stage.
  • the applicant of the present invention has disclosed a high boiling point substance containing a catalyst component as an active substance as a method for stably producing a high-purity aromatic carbonate for a long time without requiring a large amount of catalyst in a reactive distillation system.
  • a catalyst component as an active substance
  • the polyvalent aromatic hydroxy compound in the reaction system is kept at a mass ratio of 2.0 or less with respect to the catalyst metal.
  • Patent Document 28 the present inventors use 70 to 99% by mass of phenol by-produced in the polymerization step as a raw material to produce diphenyl carbonate by a reactive distillation method and use this as a polymerization raw material for aromatic polycarbonate.
  • Patent Document 29 See also proposed (see Patent Document 29).
  • the production rate of the cart was only about 6.7 kg / hr, which was not strong on an industrial scale.
  • the dialkyl carbonate used in the step (II) of the present invention needs to be produced on an industrial scale and further does not contain a halogen.
  • the only method in which dialkyl carbonate is industrially produced in large quantities as a raw material for aromatic polycarbonate is the oxidative carbonylation method in which methanol is reacted with carbon monoxide and oxygen to produce dimethyl carbonate and water. Is due to.
  • this oxidative carbonylation method (see Patent Document 30) requires a reaction in a slurry state using a large amount of CuCl-HCl as a catalyst, and the reaction system and separation / purification system are extremely corrosive. The problem is.
  • carbon monoxide is easily oxidized to carbon dioxide by this method, the problem is that the selectivity based on carbon monoxide is as low as about 80%.
  • the reaction cannot be completed completely and the reaction rate is low.
  • the carbonate in order to increase the reaction rate of the cyclic carbonate, The carbonate must be distilled off using a very large amount of an aliphatic monohydric alcohol, requiring a long reaction time.
  • the reaction can proceed at a higher reaction rate than in (1), (2), and (3).
  • the method (4) that has been proposed so far is a method for producing a small amount of dialkyl carbonate and diol or a short-term production method, and is stable for a long time on an industrial scale. It was not about manufacturing.
  • the object is to stably produce dialkyl carbonate in a large amount continuously (for example, 2 tons or more per hour) for a long period of time (for example, 1000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more). It was not something to achieve.
  • Table 2 shows the maximum values for (cm), number of plates (n), dimethyl carbonate production P (kg / hr), and continuous production time T (hr).
  • Patent Document 38 (paragraph 0060) states that "this embodiment is preferable as shown in FIG. 1 above".
  • the process flow is the same as that of the embodiment, and the purpose is to operate a commercial scale apparatus for producing dimethyl carbonate and ethylene glycol by transesterification by a catalytic conversion reaction of ethylene carbonate and methanol.
  • the numerical values described below in this embodiment are sufficiently applicable to the operation of an actual apparatus. As an example, it is described that 3 750 kg / hr of dimethyl carbonate was specifically produced. Since this scale described in the examples corresponds to an annual output of 30,000 tons or more, at the time of filing of Patent Document 38 (April 9, 2002), the world's largest large-scale commercial plant was operated by this method.
  • Patent Document 1 Japanese Patent Publication No. 50-19600 (British Patent No. 1007302)
  • Patent Document 2 Japanese Patent Publication No. 52-36159
  • Patent Document 3 Japanese Patent Publication No. 53-5718 (US Pat. No. 3,888,826)
  • Patent Document 4 Japanese Patent Laid-Open No. 2-153923
  • Patent Document 5 JP-A-8-225641
  • Patent Document 6 JP-A-8-225643
  • Patent Document 7 JP-A-8-325373
  • Patent Document 8 WO 97-22650
  • Patent Document 9 Japanese Patent Laid-Open No. 10-81741
  • Patent Document 10 JP-A-10-298279
  • Patent Document l l WO 99/36457
  • Patent Document 12 WO 99/64492
  • Patent Document 13 JP-A-54-48732 (West German Patent Publication No. 736063, US Pat. No. 4,252,737)
  • Patent Document 14 Japanese Patent Laid-Open No. 58-185536 (US Pat. No. 410464)
  • Patent Document 15 Japanese Patent Laid-Open No. 56-123948 (US Pat. No. 4,182,726)
  • Patent Document 16 Japanese Patent Laid-Open No. 3- No.291257
  • Patent Document 17 Japanese Patent Laid-Open No. 4 9358
  • Patent Document 18 Japanese Patent Application Laid-Open No. 4-211038 (WO 91/09832 Publication, European Patent 046 1274, US Patent 5210268)
  • Patent Document 19 JP-A-4 235951
  • Patent Document 20 Japanese Patent Laid-Open No. 6-157424 (European Patent 0582931 Specification, US Patent ⁇ 5334742 ⁇
  • Patent Document 21 Japanese Patent Laid-Open No. 6-184058 (European Patent 0582930, US Patent 5344954)
  • Patent Document 22 JP-A-9 40616
  • Patent Document 23 JP-A-9 59225
  • Patent Document 24 JP-A-9 176094
  • Patent document 25 WO 00/18720 (US Pat. No. 6093842)
  • Patent Document 26 JP 2001-64235 A
  • Patent Document 27 WO 97/11049 (European Patent No. 0855384, US Patent No. 5 872275 Uzuki Itoda)
  • Patent Document 28 Japanese Patent Laid-Open No. 11 92429 (European Patent No. 1016648, US Patent H6262210 ⁇ " spirit »)
  • Patent Document 29 JP-A-9 255772 (European Patent 0892001 Specification, US Patent) ⁇ 5747609 ⁇
  • Patent Document 30 WO 03/016257
  • Patent Document 31 Japanese Patent Laid-Open No. 4 198141
  • Patent Document 32 JP-A-9 194435
  • Patent Document 33 WO99 / 64382 (European Patent No. 1086940, US Patent H6346638 ⁇ " course »)
  • Patent Document 34 WO00 / 51954 (European Patent No. 1174406, US Patent H6479689 ⁇ " date »)
  • Patent Document 35 Japanese Patent Laid-Open No. 5-213830 (European Patent No. 0530615, US Patent No. 5231212)
  • Patent Document 36 Japanese Patent Laid-Open No. 6-9507 (European Patent No. 0569812, US Patent No. 5359118)
  • Patent Document 37 Japanese Patent Laid-Open No. 2003-119168 (WO03 / 006418)
  • Patent Document 38 Japanese Patent Laid-Open No. 2003-300936
  • Patent Document 39 Japanese Patent Laid-Open No. 2003-342209
  • the problem to be solved by the present invention is that a large amount of high-quality, high-performance aromatic polycarbonate having no mechanical coloring and excellent mechanical properties from a cyclic carbonate and an aromatic dihydroxy compound (for example, a large amount (for example, It is to provide a specific method capable of stable production over a long period (for example, 1000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more) over 1 ton per hour.
  • An industrial production method for continuously producing high-quality aromatic polycarbonate from a cyclic carbonate and an aromatic dihydroxy compound (I) Cyclic carbonate and aliphatic monohydric alcohol are continuously fed into a continuous multistage distillation column T in which a catalyst exists, and reaction and distillation are simultaneously performed in the column to produce dialkyl power.
  • Dialkyl carbonate and diols are obtained by a reactive distillation system in which a low-boiling reaction mixture containing bonates is continuously withdrawn in the form of gas from the top of the column and a high-boiling reaction mixture containing diols is continuously withdrawn in the form of liquid from the bottom of the column. Step (I) for continuously producing
  • the dialkyl carbonate and the aromatic monohydroxy compound are used as raw materials, and this raw material is continuously fed into a first continuous multistage distillation column in which a catalyst exists, and the reaction and distillation are simultaneously performed in the first column.
  • the first column low-boiling point reaction mixture containing the resulting alcohols is continuously withdrawn from the upper portion of the first column in the form of a gas, and the first column high-boiling point reaction mixture containing the generated alkylaryl carbonates is removed from the first column.
  • the liquid is continuously withdrawn from the bottom of the first column, and the high-boiling point reaction mixture of the first column is continuously fed into the second continuous multi-stage distillation column in which the catalyst exists, and the reaction and distillation are simultaneously performed in the second column.
  • the second tower low-boiling point reaction mixture containing dialkyl carbonates to be produced is continuously withdrawn in the form of a gas from the upper part of the second tower, and the second tower high-boiling point reaction mixture containing diaryl carbonates to be produced is removed from the second tower. Liquid and continuous from the bottom On the other hand, continuously supplying diaryl carbonate by continuously feeding the second column low boiling point reaction mixture containing dialkyl carbonates into the first continuous multi-stage distillation column, (II),
  • the continuous multi-stage distillation column has a cylindrical body having a T force S, a length L (cm), and an inner diameter D (cm),
  • the first continuous multi-stage distillation column has a cylindrical body having a length L (cm) and an inner diameter D (cm), and has an internal structure having an internal number n of stages.
  • a gas outlet with an inner diameter d (cm), at the bottom of the tower or near the bottom of the tower.
  • the second continuous multi-stage distillation column has a cylindrical body having a length L (cm) and an inner diameter D (cm).
  • the tapered bottom casing constituting the bottom of the polymerization reaction zone is connected to the upper side casing at an angle C degree inside, and the angle C degree satisfies the formula (21).
  • the continuous multistage distillation column ⁇ is a tray type distillation column having a tray as the internal
  • the continuous multistage distillation column The perforated plate tray having a perforated plate portion and a downcomer portion
  • the perforated plate tray of the continuous multi-stage distillation column is 100-1 per lm 2 of the perforated plate portion.
  • D / ⁇ force S 2000 ⁇ L ⁇ 6000, 150 ⁇ D ⁇ 1000, 3 ⁇ L / ⁇ ⁇ 3 0, 30 ⁇ ⁇ 100, 8 ⁇ D / ⁇ ⁇ 25, 5 ⁇ D / ⁇ ⁇ 18 And
  • L, D, L / D, n, D / d, D / d of the second continuous multistage distillation column are 2 respectively.
  • D, L / ⁇ , n, D / d, D / d are 2500 ⁇ L ⁇ 5000, 200 ⁇ D, respectively
  • the first continuous multistage distillation column is a tray-type distillation column having a tray as the internal
  • the second continuous multistage distillation column is a distillation column having both a packing and a tray as the internal.
  • Each of the trays of the first continuous multistage distillation column and the second continuous multistage distillation column is 17.
  • the perforated plate tray has 100 to 1000 holes per area lm 2 of the multi-hole plate portion.
  • the cross-sectional area per hole of the perforated plate tray of the first continuous multistage distillation column and the second continuous multistage distillation column is 0.5 to 5 cm 2 , Method,
  • the ordered packing of the second continuous multi-stage distillation column is at least one selected from melapack, gempack, technopack, flexipack, sulza packing, good roll packing, and glitch grid force. 22. The method according to item 21 above,
  • the side casing of the polymerization reaction zone is a cylindrical shape having an inner diameter D (cm) and a length L (cm), and is connected to the lower part thereof.
  • the bottom casing has a tapered shape, and the lowermost discharge port of the tapered bottom casing has a cylindrical shape with an inner diameter d (cm), and D, L, and d are the formulas (27), (28) , (29) and (30) are satisfied,
  • One of the guides is a cylindrical shape having an outer diameter r (cm) or a pipe shape in which a molten prepolymer is prevented from entering inside, and r satisfies the formula (32).
  • step (IV) polymerization is carried out by connecting two or more guide contact flow type polymerization reactors.
  • the two or more guide contact flow type polymerizers according to claim 27 are two polymerizers of a guide contact flow type first polymerizer and a guide contact flow type second polymerizer, the degree of polymerization in this order.
  • the total external surface area SI (m 2 ) of the entire guide of the first polymerization vessel and the external total surface area S2 (m 2 ) of the entire guide of the second polymerization vessel satisfy the formula (33).
  • a cyclic carbonate and an aromatic dihydroxy compound are combined. It has been found that high-quality, high-performance aromatic polycarbonates with no coloring and excellent mechanical properties can be produced on an industrial scale of 1 ton or more per hour at a high polymerization rate. It has also been found that high-quality aromatic polycarbonates can be stably produced over a long period of time with little variation in molecular weight, such as 2000 hours or more, preferably 3 000 hours or more, more preferably 5000 hours or more. Therefore, the present invention is an extremely effective method as an industrial production method for high-quality aromatic polycarbonate.
  • step (I) for continuously producing dialkyl carbonate and diol on an industrial scale from cyclic carbonate and aliphatic monohydric alcohol is performed.
  • the reaction in step (I) is a reversible transesterification reaction represented by the following formula.
  • R 1 represents a divalent group — (CH 2) ⁇ (k is an integer of 2 to 6),
  • the element may be substituted by an alkyl group having 1 to 10 carbon atoms or a carbaryl group.
  • R 2 represents a monovalent aliphatic group having 1 to 12 carbon atoms, and one or more hydrogen atoms thereof may be substituted with an alkyl group having 1 to 10 carbon atoms or a aryl group.
  • Examples of such cyclic carbonates include alkylene carbonates such as ethylene carbonate and propylene power carbonate, 1,3-dioxacyclohexan 2-one, 1,3-dioxacyclohepter 2- On and the like are preferably used, ethylene carbonate and propylene carbonate are more preferably used from the viewpoint of easy availability, and ethylene carbonate is particularly preferably used.
  • aliphatic monohydric alcohols those having a boiling point lower than that of the generated diols are used. Therefore, although it may vary depending on the type of cyclic carbonate used, for example, methanol, ethanol, propanol (each isomer), aryl alcohol, butano (Each isomer), 3-butene 1 ol, amyl alcohol (each isomer), hexyl alcohol (each isomer), heptyl alcohol (each isomer), octyl alcohol (each isomer), nonyl Alcohol (each isomer), decyl alcohol (each isomer), undecyl alcohol (each isomer), dodecyl alcohol (each isomer), cyclopentanol, cyclohexanol, cycloheptanonore, cyclootanonore, methinore Cyclopentano monore (each isomer), e
  • halogen lower alkoxy group, cyan group, alkoxycarbonyl group, It may be substituted with a substituent such as aryloxycarbonyl group, acyloxy group, nitro group.
  • alcohols having 1 to 6 carbon atoms are preferably used, and more preferably methanol, ethanol, propanol (each heterogeneous substance), butanol ( Each isomer) is an alcohol having 1 to 4 carbon atoms.
  • methanol and ethanol are preferable, and methanol is particularly preferable.
  • any method may be used for allowing the catalyst to be present in the reactive distillation column.
  • the catalyst can be present in the liquid phase in the reactive distillation column by continuously supplying the catalyst into the reactive distillation column, or it does not dissolve in the reaction solution under the reaction conditions.
  • a catalyst can be present in the reaction system by disposing a solid catalyst in the reactive distillation column, or a method using these in combination.
  • the homogeneous catalyst When the homogeneous catalyst is continuously supplied into the reactive distillation column, it may be supplied simultaneously with the cyclic carbonate and / or the aliphatic monohydric alcohol, or supplied at a position different from the raw material. May be. Since the reaction actually proceeds in the distillation column is a region under the catalyst supply position force, it is preferable to supply the catalyst to a region between the top of the column and the raw material supply position.
  • the stage where the catalyst exists must be at least 5 stages, preferably 7 More than 10 stages, more preferably more than 10 stages.
  • the number of stages in which the catalyst exists needs to be 5 or more, preferably 7 or more, and more preferably 10 or more.
  • a solid catalyst that also has an effect as a packing for a distillation column can be used.
  • Examples of the catalyst used in the step (I) include:
  • Alkali metals and alkaline earth metals such as lithium, sodium, potassium, norevidium, cesium, magnesium, canoleum, strontium, barium;
  • Basic compounds such as alkali metal and alkaline earth metal hydrides, hydroxides, alkoxides, aryl-oxides, amidates, etc .;
  • Basic compounds such as alkali metal and alkaline earth metal carbonates, bicarbonates, organic acid salts;
  • Tertiary amines such as trichinoleamine, tribubutenoleamine, trihexenoleamine, benzyljetylamine;
  • Cyclic amidines such as diazabicycloundecene (DBU) and diazabicyclononene (DBN);
  • Thallium compounds such as thallium oxide, thallium halide, thallium hydroxide, thallium carbonate, thallium nitrate, thallium sulfate, organic acid salts of thallium;
  • tributyl methoxytin tributyl ethoxy tin
  • dibutyl dimethoxy tin jetyl methoxy tin
  • dibutyl methoxy tin dibutyl phenoxy tin
  • diphenyl methoxy tin dibutyl tin acetate
  • tributyl tin chloride tin 2-ethylhexanoate, etc.
  • dumbbell compounds Dimethoxy nitro diethoxy nitro ethylene bismuth, dibutoxy dumbbell, etc. dumbbell compounds; Aluminum compounds such as aluminum trimethoxide, aluminum triisopropoxide, aluminum tributoxide;
  • Phosphorus compounds such as trimethylphosphine, triethylphosphine, tributylphosphine, triphenylphosphine, tributylmethylphosphonium halide, trioctylbutylphosphonium halide, triphenylmethylphosphonium halide;
  • Zirconium compounds such as zirconium halide, zirconium acetyl cetate, zirconium alkoxide, zirconium acetate;
  • Lead and compounds containing lead for example, lead oxides such as PbO, PbO, PbO; PbS
  • Lead salts such as PbO and CaPbO
  • Mouth carbonates such as PbC ⁇ , 2PbCO -Pb (OH)
  • lead minerals such as howenite and senyanite, and hydrates of these lead compounds.
  • These compounds can be used as homogeneous catalysts when they are dissolved in reaction raw materials, reaction mixtures, reaction byproducts, etc., and can be used as solid catalysts when they are not dissolved. Furthermore, it is also preferable to use a mixture obtained by dissolving these compounds in advance with reaction raw materials, reaction mixtures, reaction by-products or the like, or using a mixture obtained by reaction as a homogeneous catalyst. Is the method.
  • an anion exchange resin having a tertiary amino group an ion exchange resin having an amide group, an ion exchange resin having at least one exchange group of a sulfonic acid group, a carboxylic acid group, and a phosphoric acid group
  • Ion exchangers such as solid strongly basic anion exchangers with quaternary ammonium groups as exchange groups; silica, silica-alumina, silica-magnesia, aluminosilicates, gallium silicates, various zeolites, various metal-exchanged zeolites, Solid inorganic compounds such as ammonium exchanged zeolites are used as catalysts.
  • a solid strong basic anion exchanger having a quaternary ammonium group as an exchange group is particularly preferably used.
  • a solid catalyst include a quaternary ammonium group as an exchange group.
  • Strong basic anion exchange resin, cellulose strong basic anion exchanger having a quaternary ammonium group as an exchange group, inorganic carrier-supported strong basic anion exchange having a quaternary ammonium group as an exchange group, etc. are listed.
  • the strongly basic anion exchange resin having a quaternary ammonium group as an exchange group for example, a styrenic strongly basic anion exchange resin is preferably used.
  • a styrene-based strong base anion exchange resin is a strong base anion exchange resin having a quaternary ammonium (type I or type II) as an exchange group based on a copolymer of styrene and dibutenebenzene. For example, it is schematically shown by the following formula.
  • X represents an anion, and usually X is F_, Cl_, Br_, ⁇ , HCO_, CO
  • anion is used.
  • gel type gel type
  • macroreticular type (MR type) V the ability to use misalignment, high resistance to organic solvents, and MR type are particularly preferred from the viewpoint.
  • Examples of the strong cellulose basic anion exchanger having a quaternary ammonium group as an exchange group include, for example, OCH CH NR obtained by trialkylaminoethylation of a part or all of —OH groups of cellulose. Examples thereof include cellulose having an exchange group of X.
  • R represents an alkyl group, and methyl, ethyl, propyl, butyl, etc. are usually used, and methyl and ethyl are preferably used.
  • X represents an anion as described above.
  • An inorganic carrier-supported strong basic cation exchange having a quaternary ammonium group as an exchange group is a quaternary ammonium group by modifying part or all of the surface hydroxyl group OH of the inorganic carrier.
  • ⁇ (CH) This means that NR X is introduced. However, R and X are
  • silica, alumina, silica alumina, titania, zeolite, and the like can be used, preferably silica, alumina, silica alumina, and particularly preferably silica.
  • any method for modifying the surface hydroxyl group of the inorganic carrier any method can be used.
  • solid strongly basic ayuone exchangers having a quaternary ammonium group as an exchange group can also be used. In that case, it can be used as a transesterification catalyst after ion exchange with a desired anion species in advance as a pretreatment.
  • the solid catalyst is preferably used as a transesterification catalyst. Furthermore, solid catalysts in which some or all of these nitrogen-containing heterocyclic groups are quaternized are also used. In addition, solid catalysts such as ion exchangers function as packing materials. Achieving power S
  • the amount of the catalyst used in step (I) varies depending on the type of catalyst used, but when a homogeneous catalyst that is dissolved in the reaction solution under the reaction conditions is continuously supplied, a percentage of the total mass of the cyclic carbonate and an aliphatic monohydric alcohol as a raw material to Table Wa, usually 0.000;! ⁇ 50 weight 0/0, preferably from 0.005 to 20 mass 0/0, more preferably 0 01 ⁇ ; Used at 10% by mass.
  • a solid catalyst is used in the distillation column, it is 0.0;! To 75% by volume, preferably 0.05 to 60% by volume with respect to the empty volume of the distillation column. More preferably, 0.;! ⁇ 60% by volume of catalyst is preferably used.
  • step (I) the continuous multistage distillation column T, which is a reactive distillation column, is added to the cyclic carbon as a raw material.
  • the nate and the aliphatic monohydric alcohol there is no particular limitation that they are catalysts in the region of at least 5 or more, preferably 7 or more, more preferably 10 or more of the distillation column. Any supply method can be used as long as it can be brought into contact with the substrate.
  • the cyclic carbonate and the aliphatic monohydric alcohol can be continuously supplied from the necessary number of inlets to the stage satisfying the above conditions of the continuous multistage distillation column. Further, the cyclic carbonate and the aliphatic monohydric alcohol may be introduced into the same stage of the distillation column, or may be introduced into different stages.
  • the cyclic carbonate and aliphatic monohydric alcohol as raw materials are continuously supplied to the continuous multistage distillation column T as a liquid, a gas, or a mixture of a liquid and a gas. In this way
  • a gaseous raw material from the lower portion of the distillation column intermittently or continuously.
  • cyclic carbonate is continuously supplied to the distillation column in a liquid or gas-liquid mixed state to the upper stage from the stage where the catalyst exists, and the aliphatic monohydric alcohol is gaseous and / or lower to the lower part of the distillation tower.
  • a continuous supply method in a liquid state is also a preferable method. In this case, it goes without saying that an aliphatic monohydric alcohol is contained in the cyclic carbonate.
  • the feedstock may contain dialkyl carbonate and / or diol as the product.
  • the content of the dialkyl carbonate is usually 0 to 40% by mass, preferably 0 to 30% by mass, and more preferably represented by the mass% of dialkyl carbonate in the aliphatic monohydric alcohol / dialkyl carbonate mixture.
  • it is 0 to 20% by mass
  • the diol is represented by mass% in the cyclic carbonate / diol mixture, and is usually 0 to; 10% by mass, preferably 0 to 7% by mass, and more preferably 0 to 5%. % By mass.
  • step (I) When the reaction of step (I) is carried out industrially, in addition to the cyclic carbonate and / or aliphatic monohydric alcohol newly introduced into the reaction system, it is recovered in this step or / and other processes. It is preferable that the material mainly composed of cyclic carbonate and / or aliphatic monohydric alcohol can be used as these raw materials.
  • the present invention makes this possible and is an excellent feature of the present invention.
  • the other process includes, for example, a process (II) for producing diaryl carbonate from a dialkyl carbonate and an aromatic monohydroxy compound. In this process (II), an aliphatic monohydric alcohol is by-produced. Is collected.
  • This recovered by-product aliphatic monohydric alcohol usually contains dialkyl carbonates, aromatic monohydroxy compounds, alkylaryl ethers, etc., and even small amounts of alkylaryl carbonates, diaryl carbonates, etc. May occur.
  • the by-product aliphatic monohydric alcohol can be used as it is as the raw material for step (I), or after the content of substances having a boiling point higher than that of the aliphatic monohydric alcohol is reduced by distillation or the like (I ).
  • preferable cyclic carbonates used in the step (I) are those produced by reaction of alkylene oxide such as ethylene oxide, propylene oxide and styrene oxide with carbon dioxide, One round carbon dioxide containing a small amount of the above compound can be used as a raw material for the step (I).
  • step (I) the amount ratio between the cyclic carbonate and the aliphatic monohydric alcohol supplied to the reactive distillation column varies depending on the type and amount of the transesterification catalyst and the reaction conditions, but is usually supplied.
  • the aliphatic monohydric alcohols can be supplied in a molar ratio of 0.01 to 1000 times with respect to the cyclic carbonate.
  • the molar ratio of the aliphatic monohydric alcohol to the cyclic carbonate is preferably 2 to 20, more preferably 3 to 15, and even more preferably 5 to 12; Unreacted annular carbon If a large amount of acid remains, it reacts with the product diols to produce by-products such as dimers and trimers. Is preferably reduced as much as possible.
  • the reaction rate of the cyclic carbonate can be 97% or more, preferably 98% or more, and more preferably 99% or more. This is also one of the features of the present invention.
  • step (I) preferably a force that continuously produces about 0.4 tons or more of dialkyl carbonate per hour.
  • the amount is usually 0.44 tons / hr, preferably 0.42 tons / hr, more preferably 0.4 tons / hr, relative to the amount of aromatic polycarbonate to be produced (P tons / hr). is there . In a more preferred case, it can be less than 0 ⁇ 39 P ton / hr.
  • the continuous multistage distillation column T used in step (I) is a length (cm) and an inner diameter D (cm).
  • a gas outlet with an inner diameter d (cm), the bottom of the tower or
  • L, D, L / D, n, D / d, D / d forces satisfy the formulas (;!) To (6) respectively.
  • top of the tower or near the top of the tower used in the present invention means a portion of about 0.25 L downward from the top of the tower, and the term “bottom of the tower or near the bottom of the tower”
  • distillation column it is 0 ⁇ 25L and 0 ⁇ 25L respectively.
  • a continuous multi-stage distillation column T that simultaneously satisfies the formulas (1), (2), (3), (4), (5) and (6) is used.
  • the dialkyl strength-bonate is preferably 0.4 ton or more and / or the diol is preferably 0.26 ton or more per hour. Since it was found that it can be stably produced for a long period of time, such as 1000 hours or more, preferably 3000 hours or more, and more preferably 5000 hours or more, on an industrial scale, with a high reaction rate and high selectivity. is there. The reason why it is possible to produce dialkyl carbonates and diols on an industrial scale having such excellent effects by carrying out the step (I) is not clear! ) To (6) are presumed to be due to the combined effect. The preferred range of each factor is shown below.
  • L must be 8000 or less in order to reduce equipment costs while ensuring a reaction rate that can achieve the target production volume.
  • the more preferable range of L (cm) is 2300 ⁇ L ⁇
  • the preferred range of D (cm) is 200 ⁇ D ⁇ 1000, more preferably 210 ⁇ D
  • n is less than 10, the reaction rate decreases and the target production volume cannot be achieved.
  • n is not less than 120.
  • n is 30 ⁇ n ⁇ 100, more preferably 40 ⁇ n ⁇ 90.
  • the more preferred range of D / d is 4 ⁇ D / d ⁇ 15, and more preferably 5 ⁇ D / d
  • the range of 0 02 is 7 ⁇ D / d ⁇ 25, more preferably 9 ⁇ D / d ⁇ 20.
  • the d and d of the continuous multistage distillation column T used in the step (I) satisfy the formula (24).
  • the long-term stable operation in the process (I) is based on operating conditions where there is no flooding, piping clogging or erosion for 1000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more! This means that a certain amount of dialkyl carbonate and diol can be produced while maintaining a high reaction rate, high selectivity, and high productivity.
  • the selectivity of the dialkyl carbonate and the diol is relative to the reacted cyclic carbonate, and in the present invention, the selectivity is usually 95% or more, preferably 97%. As described above, a high selectivity of 99% or more can be achieved.
  • the reaction rate in the step (I) usually represents the reaction rate of the cyclic carbonate. In the present invention, the reaction rate of the cyclic carbonate is 95% or more, preferably 97% or more, more preferably 99% or more, and further It is preferably 99.5 or more, and even more preferably 99.9% or more.
  • One of the excellent features of step (I) is that a high reaction rate can be achieved while maintaining a high selectivity.
  • the continuous multi-stage distillation column T used in step (I) is used as an internal tray and / or Is preferably a distillation column with packing.
  • the term “internal” as used in the present invention means a portion where the gas-liquid contact is actually performed in the distillation column.
  • a tray for example, a foam tray, a perforated plate tray, a valve tray, a counter-flow tray, a super flack tray, a max flack tray, etc. are preferred fillings such as Raschig rings, less rings, pole rings, Berle saddles.
  • Irregular packing such as Interlocks saddle, Dixon packing, McMahon packing, Helipac, etc.
  • n internal plate number in the present invention means the number of trays in the case of trays, and the theoretical plate number in the case of packing.
  • the number of stages n is the sum of the number of trays and the number of theoretical stages.
  • the continuous continuous multi-stage distillation column and / or the packing comprising a tray and / or a packing having a predetermined number of internal plates High reaction rate using any of the tower-type continuous multistage distillation columns
  • the internal distillation column-type distillation column was found to be more preferable. Furthermore, it has been found that a perforated plate tray having a perforated plate portion and a downcomer portion is particularly excellent in terms of function and equipment cost. It was also found that the perforated plate tray preferably has 100 to 1000 holes per area lm 2 of the perforated plate portion. More preferably, the number of holes is 120 to 900 per lm 2 , and more preferably 150 to 800. It has also been found that the cross-sectional area per hole of the perforated plate tray is preferably 0.5 to 5 cm 2 .
  • the cross-sectional area per hole is more preferably 0.7 to 4 cm 2 , and further preferably 0.9 to 3 cm 2 .
  • the perforated plate tray has 100 to 1000 holes per lm 2 area of the perforated plate portion, and has a cross-sectional area of 0.5 to 5 cm 2 per hole. In particular, it has been found to be particularly preferred.
  • the aperture ratio of the perforated plate tray is preferably 1.5 to 15%. It was. More preferably, the aperture ratio is 1.7 to 13%, and more preferably 1.9 to 11%.
  • the aperture ratio of the perforated plate tray represents the ratio of the cross-sectional area of all the holes existing in the perforated plate to the area of the perforated plate portion (total hole cross-sectional area).
  • the force S may be different in the area of the perforated plate portion and / or the total hole cross-sectional area, and in this case also, the aperture ratio of each multi-holed plate tray is preferably in the above range.
  • the number of holes in the perforated plate portion may be the same in all perforated plates, or may be different.
  • the cyclic carbonate as a raw material and the aliphatic monohydric alcohol are continuously fed into a continuous multistage distillation column in which a catalyst exists, and the reaction and distillation are carried out in the column.
  • the low-boiling reaction mixture containing dialkyl carbonate to be produced is continuously withdrawn in the form of gas from the top of the tower, and the high boiling point reaction mixture containing diols is continuously withdrawn in the form of liquid from the bottom of the tower. Diols are produced continuously.
  • step (I) in order to continuously supply the raw material cyclic carbonate and aliphatic monohydric alcohol into the continuous multistage distillation column T, the gas outlet at the top of the distillation column is more than
  • It may be supplied in liquid and / or gaseous form as a raw material mixture or separately from one or several inlets installed in the lower part but at the upper part or the middle part of the tower.
  • the raw material containing a large amount thereof is supplied in the form of an introduction loca in the upper part or middle part of the distillation column, and the aliphatic monohydric alcohol or the raw material containing a large amount of the raw material is provided above the liquid outlet at the lower part of the distillation column. It is also preferable to supply it in the form of gas from the inlet installed in the middle or lower part.
  • the reaction time of the transesterification performed in the step (I) is the reaction time in the continuous multistage distillation column T.
  • the reaction temperature in the step (I) varies depending on the type of raw material compound used and the type and amount of the catalyst, and is usually 30 to 300 ° C. Increasing the reaction temperature to increase the reaction rate However, when the reaction temperature is high, side reactions are liable to occur.
  • Preferred reaction temperatures range from 40 to 250 ° C, more preferably from 50 to 200 ° C, even more preferably from 60 to;
  • the reaction distillation can be carried out at a column bottom temperature of 150 ° C. or lower, preferably 130 ° C. or lower, more preferably 110 ° C. or lower, and even more preferably 100 ° C. or lower. .
  • the reaction pressure may vary depending on the type and composition of the raw material compound used, the reaction temperature, etc., and may be any of reduced pressure, normal pressure, and increased pressure, usually 1 Pa to 2 X 10 7 Pa, preferably 10 3 Pa. To 10 7 Pa, more preferably 10 4 to 5 ⁇ 10 6 .
  • the reflux ratio of the continuous multistage distillation column T in step (I) is usually from 0 to 10;
  • the material constituting the continuous multistage distillation column T used in step (I) is mainly carbon steel, stainless steel.
  • Stainless steel is preferred from the viewpoint of the quality of the metal material such as stainless steel and the quality of the dialkyl carbonate to be produced.
  • step (II) for continuously producing diaryl carbonate on an industrial scale from the dialkyl carbonate produced in step (I) and the aromatic monohydroxy compound is performed.
  • the dialkyl carbonate used in the step (II) is represented by the following formula described in the following formula.
  • R 2 is as described above.
  • dialkyl carbonates having R 2 examples include dimethyl carbonate, jetyl carbonate, dipropyl carbonate (each isomer), diaryl carbonate, dibutyr carbonate (each isomer), dibutyl carbonate (each Isomer), dipentyl carbonate (each isomer), dihexyl carbonate (each isomer), diheptyl carbonate (each isomer), dioctyl carbonate (each isomer), dinonyl carbonate (each Isomers), didecyl carbonate (each isomer), dicyclopentyl carbonate, dicyclohexenole carbonate, dicycloheptinole carbonate, dibenzino carbonate, diphenetino carbonate (each different organism), di (Fuenore propinore) carbonate (each Isomers), di (phenylbutyl) carbonate (each isomer) di (black benzyl) carbonate (each iso
  • R 2 is preferably a dialkyl carbonate composed of an alkyl group containing 4 or less carbon atoms that does not contain halogen, and dimethyl carbonate is particularly preferred.
  • dialkyl carbonates more preferred are dialkyl carbonates prepared in a substantially halogen-free state, for example, alkylene carbonate and halogen substantially free of halogen. Alcohol power not included in the product.
  • the aromatic monohydroxy compound used in the step (II) is represented by the following general formula, and any compound may be used as long as the hydroxyl group is directly bonded to the aromatic group. It may be.
  • Ar 3 represents an aromatic group having 5 to 30 carbon atoms.
  • aromatic monohydroxy compounds having Ar 3 include phenol, talesol (each isomer), xylenol (each isomer), trimethylphenol (each isomer), tetramethylphenol (each isomer), Ethylphenol (each isomer), propylphenol (each isomer), butylphenol (each isomer), jetylphenol (each isomer), methylethylphenol (each isomer), methylpropylphenol (each) Isomers), dipropylphenol (each isomer), methylbutinophenol (each isomer), pentylphenol (each isomer), hexylphenol (each isomer), cyclohexylphenol (each isomer), etc.
  • Alkylphenols methoxyphenol (each isomer), ethoxyphenol (each isomer), etc.
  • Various alkoxyphenols arylpropylphenols such as phenylpropylphenol (each isomer); naphthol (each isomer) and various substituted naphthols; hydroxypyridine (each isomer), hydroxycoumarin (each isomer) ), And heteroaromatic monohydroxy compounds such as hydroxyquinoline (each isomer).
  • aromatic monohydroxy compounds are used as a mixture of one or more. That power S.
  • aromatic monohydroxy compounds those preferably used in the present invention are aromatic monohydroxy compounds in which Ar 3 is an aromatic group having 6 to 10 carbon atoms, particularly preferably phenol. is there.
  • Ar 3 is an aromatic group having 6 to 10 carbon atoms, particularly preferably phenol. is there.
  • those that are preferably used in the present invention are those that do not substantially contain halogen.
  • diaryl carbonate as used in the present invention is generally represented by the following formula.
  • Ar 3 and Ar 4 each represent a monovalent aromatic group.
  • Ar 3 and Ar 4 each represent a monovalent carbocyclic or heterocyclic aromatic group.
  • one or more hydrogen atoms are other groups that do not adversely affect the reaction.
  • Substituents such as halogen atoms, alkyl groups having 1 to 10 carbon atoms, alkoxy groups having 1 to 10 carbon atoms, phenyl groups, phenoxy groups, bur groups, cyan groups, ester groups, amide groups, nitro groups, etc. It may be what was done.
  • Ar 3 and Ar 4 may be the same or different.
  • Representative examples of the monovalent aromatic groups Ar 3 and Ar 4 include a phenyl group, a naphthyl group, a biphenyl group, and a pyridyl group. These may be substituted with one or more substituents as described above.
  • Ar 3 and Ar 4 include those represented by the following formulas, respectively.
  • a particularly preferred diaryl carbonate is a substituted or unsubstituted diphenyl carbonate represented by the following formula.
  • R 9 and R 1 () are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkoxy group having 10 to 10 carbon atoms, or a ring having 5 to 5 carbon atoms.
  • 10 represents a cycloalkyl group or a phenyl group
  • p and q are integers of 1 to 5, and when p is 2 or more, each R 9 may be different, or q is 2 In the above case, each R 1 () may be different.
  • diaryl carbonates symmetrical diaryl carbonates such as unsubstituted diphenyl carbonate and lower alkyl-substituted diphenyl carbonates such as ditolyl carbonate and di-butyl phenyl carbonate are preferable. Particularly preferred is diphenyl carbonate having the simplest structure.
  • diallyl carbonates may be used alone or in combination of two or more! /, With respect to an aromatic monohydroxy compound of dialkyl carbonate used as a raw material in step (II).
  • the amount ratio is preferably a molar ratio of 0.
  • the molar ratio is preferably 0.5 to 5 forces, more preferably 0.8 to 3, and still more preferably!
  • Step (II) a force that continuously produces 1 ton or more of aromatic polycarbonate per hour.
  • a high-purity diaryl force of about 0.85 ton or more per hour is continuously applied. It needs to be manufactured. Therefore, in Step (II), the minimum amount of aromatic monohydroxy compound continuously supplied is usually 15 P ton / hr with respect to the amount of aromatic polycarbonate to be produced (P ton / hr). And preferably 13 P ton / hr, more preferably 10 P ton / hr. If more preferable, it can be less than 8P ton / hr
  • the dialkyl carbonate and aromatic monohydroxy compound used as raw materials in the step (II) each have high purity! /, Even if it is! /, And le, which contains other compounds.
  • it may contain a compound or reaction byproduct produced in the first continuous multistage distillation column or / and the second continuous multistage distillation column.
  • these raw materials were recovered from the first continuous multistage distillation column and / or the second continuous multistage distillation column in addition to the dialkyl carbonate and aromatic monohydroxy compound newly introduced into the reaction system. It is preferable to use also.
  • the top component which is a low boiling point reaction mixture in the second continuous multistage distillation column
  • the second column low boiling point reaction mixture may be supplied as it is to the first continuous multistage distillation column! /, Or after a part of the components are separated! / ,.
  • the raw materials supplied to the first continuous multistage distillation column include alcohols, alkylaryl carbonate, dialyl carbonate, alkylaryl ether, and the like.
  • the product is preferably used even if it contains a small amount of high-boiling by-products such as a fleece transfer product of alkylaryl carbonate or diallyl carbonate and its derivatives.
  • dimethyl carbonate as a dialkyl carbonate and phenol as an aromatic monohydroxy compound are used as raw materials.
  • diphenyl carbonate it is preferable that the raw material contains methyl alcohol as a reaction product, methyl phenyl carbonate and diphenyl carbonate.
  • anisole is salicylic acid as a reaction byproduct. It may contain a small amount of phenyl, methyl salicylate and high-boiling by-products derived from these.
  • step (II) most of the aromatic monohydroxy compound used in step (II) is composed of the aromatic monohydroxy compound by-produced in step (IV) of the present invention. This by-product aromatic monohydroxy compound needs to be recycled to step (II) by step (V).
  • the diaryl carbonate produced in the step (II) is produced by the transesterification reaction between the dialkyl carbonate and the aromatic monohydroxy compound.
  • This transesterification reaction involves one or two alkoxy compounds of the dialkyl carbonate. A group is exchanged with the aryloxy group of an aromatic monohydroxy compound to remove alcohols, and a disproportionation reaction that is a transesterification reaction between two molecules of the generated alkylaryl carbonate.
  • the reaction to be converted is included.
  • mainly alkylaryl carbonate is obtained
  • this alkylaryl power is mainly obtained by the disproportionation reaction of the carbonate.
  • dialkyl carbonate dialkyl carbonate.
  • the diaryl carbonate obtained in the step (II) does not contain any halogen, it is important as a raw material for industrially producing the aromatic polycarbonate of the present invention. This is because if the amount of halogen present in the polymerization raw material is less than, for example, 1 ppm, the polymerization reaction is inhibited, the stable production of aromatic polycarbonate is inhibited, and the strength is also generated. This is because the physical properties of the aromatic polycarbonate are deteriorated and coloring is caused.
  • the catalyst used in the first continuous multistage distillation column and / or the second continuous multistage distillation column in step (II) is selected from the following compounds, for example.
  • Lead salts such as Ca PbO and CaPbO; Lead carbonates such as PbCO and 2PbCO 2 -Pb (OH) And its basic salts; Pb (OCOCH), Pb (OCOCH), Pb (OCOCH) -PbO-3H
  • Ph represents a phenyl group.
  • Alkoxyleads such as Pb—Na, Pb—Ca, Pb—Ba, Pb—Sn, Pb—Sb, etc .
  • Lead minerals such as howenite, senyanite, and these Hydrates of lead compounds
  • ⁇ Copper group metal compounds > CuCl, CuCl, CuBr, CuBr, Cul, Cul, Cu (OAc), Cu (acac), copper oleate, Bu Cu, (CH 2 O) Cu, AgNO, AgBr, silver picrate, A
  • Alkali metal complexes such as Li (acac) and LiN (C H);
  • Zinc complex such as Zn (acac);
  • ⁇ Zirconium complex Zr complexes such as Zr (acac) and zirconocene;
  • ⁇ Lewis acid compounds > A1X, TiX, TiX, VOX, VX, ZnX, FeX, SnX (here
  • X is halogen, acetoxy group, an alkoxy group or an aryloxy group.
  • Organotin compounds such as SnO (OH);
  • a metal-containing compound such as is used as a catalyst such as is used as a catalyst.
  • These catalysts may be solid catalysts fixed in a multistage distillation column! /, Or may be soluble catalysts that dissolve in the reaction system! /.
  • organic compounds in which these catalyst components are present in the reaction system for example, aliphatic alcohols, aromatic monohydroxy compounds, alkylaryl carbonates, diaryl carbonates, dialkyl carbonates, etc. It may have been reacted, or may have been heat-treated with raw materials or products prior to the reaction.
  • step (II) When the step (II) is carried out with a soluble catalyst that dissolves in the reaction system, these catalysts must be under the reaction conditions! / And have high solubility in the reaction solution! /. I like it! Preferred catalysts in this sense include, for example, PbO, Pb (OH), Pb (OPh); TiCl, Ti (OMe), (M
  • the catalyst used in the first continuous multistage distillation column and the catalyst used in the second continuous multistage distillation column may be the same or different.
  • the first continuous multi-stage distillation column used in step (II) is a cylindrical body having a length L (cm) and an inner diameter D cm), and an internal having n stages inside.
  • the second continuous multistage distillation column used in step (II) is a length (cm), an inner diameter D
  • dialkyl carbonate and aromatic monohydroxy compound can be used.
  • the reason why it is possible to produce an aromatic carbonate on an industrial scale having such excellent effects by carrying out the method of the present invention is not clear, but the formulas (7) to (; It is presumed that this is due to the combined effect brought about when the conditions in 18) are combined.
  • the preferred range of each factor constituting the continuous multistage distillation column used in step (II) is shown below.
  • L and L In order to reduce the equipment cost while securing the reaction rate that can achieve the target production volume, L and L must be 8000 or less respectively.
  • More preferred L (cm) and L (cm) ranges are 2000 ⁇ L ⁇ 6000 and
  • D (cm) and D (cm) are 150 ⁇ D ⁇ 1000 and
  • the inner diameter may be the same from the upper part to the lower part of the tower, or the inner diameters may be partially different.
  • the inner diameter of the upper part of the column may be smaller or larger than the inner diameter of the lower part of the tower.
  • the pressure difference between the top and bottom of the column becomes too large, and long-term stable operation becomes difficult. This leads to a decrease in selectivity.
  • the more preferred L / ⁇ and L / ⁇ ranges are 3 ⁇ L / D ⁇ 30 and 3 ⁇ L / D ⁇ 30, respectively.
  • 5 ⁇ L / ⁇ 15 and 5 ⁇ L / ⁇ 15 Preferably, 5 ⁇ L / ⁇ 15 and 5 ⁇ L / ⁇ 15.
  • n force is less than 3 ⁇ 40, the reaction rate decreases, so the target production amount in the first continuous multistage distillation column cannot be achieved, and the equipment cost is reduced while ensuring the reaction rate that can achieve the target production amount.
  • n In order to lower it, n must be 120 or less.
  • the n force is greater than 20, the pressure difference between the top and bottom of the column becomes too large, and the long-term stable operation of the first continuous multistage distillation column becomes difficult, and the temperature at the bottom of the column must be increased. Side reactions are likely to occur, leading to a decrease in selectivity.
  • a more preferable range of n is 30 ⁇ n ⁇ 100, and more preferably 40 ⁇ n ⁇ 90.
  • n In order to reduce equipment costs while securing a reaction rate that can achieve the desired production volume, n must be 80 or less. If n is greater than 80
  • n 15 ⁇ n ⁇ 6
  • a more preferable range of D / ⁇ is 5 ⁇ D / ⁇ 18, and
  • the range of 2 is 7 ⁇ D / d ⁇ 25, more preferably 9 ⁇ D / d ⁇ 20
  • step (II) the d and the d satisfy the formula (25), and the d and the d satisfy the formula (26).
  • the long-term stable operation in the step (II) means 1000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more, such as flooding, piping clogging or erosion. This means that the operation can be continued in a steady state based on the driving conditions, and a predetermined amount of diaryl carbonate is produced while maintaining a high selectivity.
  • the step (II) is characterized by stably producing a gear reel carbonate at a high selectivity for a long period of time with a high productivity of preferably 1 ton or more per hour. Is to produce a gear reel of 2 tons or more per hour, more preferably 3 tons or more per hour.
  • L, D, L / D, n, D / d, D / d force S of the first continuous multistage distillation column are 2000 ⁇ L ⁇ 6000, 150 ⁇ D ⁇ 1000,
  • It is characterized by producing a dial reel carbonate of 2.5 tons or more, more preferably 3 tons or more per hour.
  • step (II) L, D, L / D, n, D / d, D / ⁇ S of the first continuous multistage distillation column, 2500 ⁇ L ⁇ 5000, 200 ⁇ D ⁇ 800, respectively. , 5 ⁇ L / D ⁇ 15,
  • L, D, L / ⁇ , n, D / d, D / d of the tower are 2500 ⁇ L ⁇ 5000
  • diallyl carbonate of 4 tons or more per hour.
  • the selectivity of diaryl carbonate in step (II) refers to the reacted aromatic monohydroxy compound, and in step (II), the selectivity is usually 95% or higher, which is favorable. A high selectivity of preferably 97% or more, more preferably 98% or more can be achieved.
  • the first continuous multistage distillation column and the second continuous multistage distillation column used in step (II) are distillation columns having trays and / or packings as internal.
  • the term “rear internal” refers to a portion where the distillation column is actually brought into contact with gas and liquid. As such a tray, those described in the section of step (I) are preferable.
  • the number of internal stages n is as described above.
  • step (II) a reaction for mainly producing an alkylaryl carbonate from a dialkyl carbonate and an aromatic monohydroxy compound is carried out, but this reaction has an extremely small equilibrium constant. Since the reaction force is slow, it has been found that the first continuous multistage distillation column used for the reaction distillation is preferably an internal column type distillation column. Further, in the second continuous multi-stage distillation column, the reaction force S, in which the reaction for disproportionating the alkylaryl carbonate is mainly performed, and this reaction also has a small equilibrium constant, and the reaction rate is slow.
  • the second continuous multistage distillation column used for reactive distillation, it has been found that an internal distillation column having both a packing and a tray is more preferable. It was also found that the second continuous multistage distillation column is preferably one with a packing at the top and a tray at the bottom. It has also been found that the packing of the second continuous multistage distillation column is particularly preferred among the ordered packings that are preferred for ordered packings.
  • the tray installed in each of the first continuous multistage distillation column and the second continuous multistage distillation column has a perforated plate tray having a perforated plate portion and a downcomer portion. It was found to be excellent. It was also found that the perforated plate tray had 100 to 1000 holes per area lm 2 of the perforated plate part! /, A force S preferred! /. More preferred! / The number of pores is 120-900 per lm 2 of the area, more preferably 150-800
  • the cross-sectional area per hole of the perforated plate tray is preferably 0.5 to 5 cm2.
  • the cross-sectional area per hole is more preferably 0.7 to 4 cm 2 , and even more preferably 0.9 to 3 cm 2 .
  • the perforated plate tray has 100 to 1000 holes per area lm 2 of the perforated plate portion, and the cross-sectional area per hole is 0.5 to 5 cm 2.
  • the raw material dialkyl carbonate and the aromatic monohydroxy compound are continuously fed into the first continuous multistage distillation column in which the catalyst is present, and the reaction is carried out in the first column.
  • 1st column low boiling point reaction mixture containing alcohols The product is continuously withdrawn in the form of gas from the upper part of the first column, and the first tower high-boiling point reaction mixture containing the generated alkylaryl carbonates is continuously withdrawn in liquid form from the lower part of the first column,
  • the first column high boiling point reaction mixture is continuously fed into the second continuous multistage distillation column in which the catalyst is present, and the reaction and distillation are simultaneously performed in the second column.
  • a low boiling point reaction mixture is continuously withdrawn in the form of gas from the upper part of the second tower, and a second tower high boiling point reaction mixture containing the generated diaryl carbonate is continuously withdrawn in liquid form from the lower part of the second tower,
  • diaryl carbonate is continuously produced by continuously feeding the second column low boiling point reaction mixture containing dialkyl carbonates into the first continuous multistage distillation column.
  • This raw material contains reaction by-products such as alcohols, alkylaryl carbonates, diaryl carbonates, alkylaryl ethers, and high-boiling compounds as reaction products! /, Even! /, Les, as described above. Considering the equipment and cost for separation and purification in other steps, in the case of the present invention which is actually carried out industrially, it is preferable to contain a small amount of these compounds.
  • step (II) in order to continuously supply the raw material dialkyl carbonate and aromatic monohydroxy compound into the first continuous multi-stage distillation column, from the gas outlet at the top of the first distillation column
  • it may be supplied in liquid and / or gaseous form from one or several inlets installed in the upper or middle part of the tower, or a raw material rich in aromatic monohydroxy compounds.
  • step (II) the first high-boiling point reaction mixture containing alkylaryl carbonates continuously extracted from the lower part of the first continuous multistage distillation column is continuously supplied to the second continuous multistage distillation column.
  • the supply position is lower than the gas outlet at the top of the second distillation column, it is liquid and / or from one or several inlets installed at the top or middle of the column. It is preferable to supply in gaseous form.
  • at least one of the inlets is installed between the packed portion and the tray portion. Is preferred.
  • the packing is composed of two or more regular packings, it is also a preferable method to install introduction ports at intervals that constitute these multiple packings.
  • step (II) after condensing the gas components extracted from the top of the first continuous multistage distillation column and the second continuous multistage distillation column, respectively, a part of them is returned to the upper part of each distillation column.
  • the reflux ratio of the first continuous multistage distillation column is from 0 to 10; the reflux ratio of the second continuous multistage distillation column is from 0.01 to 10; preferably from 0.08 to 5, Preferably, it is in the range of 0.1 to 2.
  • a reflux operation is not performed, and a reflux ratio of 0 is also preferred! /.
  • step (II) any method may be used in which the catalyst is present in the first continuous multistage distillation column.
  • the catalyst when the catalyst is in a solid state insoluble in the reaction solution, It is preferable to fix in the tower by a method of installing in a stage in a single continuous multi-stage distillation column or a method of installing in a packed form.
  • the catalyst solution dissolved in the raw material or the reaction solution may be introduced together with the raw material, or the catalyst solution may be introduced from an inlet different from the raw material.
  • the amount of catalyst used in the first continuous multi-stage distillation column of the present invention varies depending on the type of catalyst used, the type of raw material and its ratio, reaction temperature, reaction pressure, and other reaction conditions. expressed as a percentage of the total mass, usually 0.000;! ⁇ 30 mass 0/0, preferably ⁇ is 0. 0005 ⁇ ; 10 mass 0/0, more preferably ⁇ is 0. 0 0;! ⁇ 1 mass Used in%.
  • any method may be used for allowing the catalyst to be present in the second continuous multistage distillation column.
  • the second continuous multi-stage distillation column is preferably fixed in the column by a method of being installed in a stage or a method of being installed in a packed form.
  • the catalyst solution dissolved in the raw material or the reaction liquid may be introduced together with the raw material, or the catalyst liquid may be introduced from an inlet different from the raw material.
  • the amount of catalyst used in the second continuous multi-stage distillation column of the present invention varies depending on the type of catalyst used, the type of raw material and its ratio, the reaction temperature and the reaction pressure, but the total amount of raw materials. Ratio to mass Expressed in normal 0.000;! ⁇ 30 mass 0/0, preferably ⁇ is 0. 0005 ⁇ ; 10 mass 0/0, more preferably ⁇ is 0. 00; as used to 1 mass%! .
  • the catalyst used in the first continuous multistage distillation column and the catalyst used in the second continuous multistage distillation column may be the same type or different types. Preferably, it is preferable to use the same type of catalyst. Further preferred are catalysts of the same type that can be dissolved in both reaction solutions. In this case, the catalyst is usually dissolved in the high boiling point reaction mixture of the first continuous multi-stage distillation column, and is extracted from the lower part of the first distillation column together with the alkylaryl carbonate, etc., and is directly used in the second continuous multi-stage distillation column. This is a preferred embodiment. If necessary, a new catalyst can be added to the second continuous multi-stage distillation column.
  • the reaction time of the transesterification reaction performed in step (II) is considered to correspond to the average residence time of the respective reaction liquids in the first continuous multistage distillation column and the second continuous multistage distillation column. This differs depending on the internal shape and number of stages of each distillation column, the amount of raw material supply, the type and amount of the catalyst, the reaction conditions, etc., but in each of the first continuous multistage distillation column and the second continuous multistage distillation column. Is usually from 0.01 to 10 hours, preferably from 0.05 to 5 hours, more preferably from 0.;! To 3 hours.
  • the reaction temperature of the first continuous multistage distillation column varies depending on the type of raw material compound and the type and amount of the catalyst used, but is usually in the range of 100 to 350 ° C. In order to increase the reaction rate, it is preferable to increase the reaction temperature. However, if the reaction temperature is high, side reactions are liable to occur. For example, by-products such as alkylaryl ethers are increased. In this sense, the preferable reaction temperature in the first continuous multistage distillation column is in the range of 130 to 280 ° C, more preferably 150 to 260 ° C, and still more preferably 180 to 250 ° C.
  • the reaction temperature of the second continuous multistage distillation column varies depending on the type of raw material compound and the type and amount of the catalyst used, but is usually in the range of 100 to 350 ° C. In order to increase the reaction rate, it is preferable to increase the reaction temperature. However, if the reaction temperature is high, side reactions are likely to occur. For example, alkyl aryl ethers and alkyl aryl carbonates that are raw materials and products are used. This is not preferable because by-products such as the product of fries rearrangement of diols and carbonates and their derivatives increase. In this sense, the preferred reaction in the second continuous multistage distillation column. Response temperature is 130-280. C, more preferably 150-260. C, more preferably in the range of 180-250 ° C.
  • the reaction pressure of the first continuous multistage distillation column varies depending on the type and composition of the raw material compound used, the reaction temperature, and the like.
  • the reaction pressure is any of reduced pressure, normal pressure, and increased pressure.
  • the column top pressure is 0.;! ⁇ 2 X 10 7 Pa, preferably 10 5 ⁇ ; 10 7 Pa, more preferably 2 X 10 5 to 5 X 10 6 .
  • the reaction pressure of the second continuous multi-stage distillation column is different from the force S, the reduced pressure, the normal pressure, and the increased pressure depending on the type and composition of the raw material compound used, the reaction temperature, etc. It is carried out in the range of 0.1 to 2 ⁇ 10 7 Pa, preferably 10 3 to; 10 6 Pa, more preferably 5 ⁇ 10 3 to 10 5 .
  • Two or more distillation towers may be used as the first continuous multi-stage distillation tower in the step (II). In this case, two or more distillation columns can be connected in series, connected in parallel, or combined in series and parallel. In addition, two or more distillation towers can be used as the second continuous multistage distillation tower in the step (II). In this case, it is possible to connect two or more distillation columns in series, connect them in parallel, or connect a combination of series and parallel.
  • the materials constituting the first continuous multistage distillation column and the second continuous multistage distillation column used in step (II) are mainly metallic materials such as carbon steel, stainless steel, etc. Quality of aromatic carbonate produced From the above aspect, stainless steel is preferred.
  • the high boiling point reaction mixture in the second column extracted continuously in liquid form from the bottom of the second continuous multistage distillation column in step (II) is a force mainly composed of diaryl carbonate. It contains alkyl reel carbonate, a small amount of unreacted raw material, a small amount of high-boiling by-products, etc., and when a homogeneous catalyst is used, this catalyst component is also included. Therefore, it is necessary to carry out a purification step (III) for obtaining high-purity diaryl carbonate from the second tower high boiling point reaction mixture.
  • Step (III) may be any method as long as it can obtain high-purity diaryl carbonate from the second tower high boiling point reaction mixture.
  • step (III) is performed using two distillation towers (a high-boiling substance separation tower, a diaryl carbonate purification tower having a side cut outlet), and the high-boiling substance separation tower.
  • a column top component mainly composed of unreacted alkylaryl carbonate, a small amount of unreacted raw material and diaryl carbonate
  • a column bottom component mainly composed of a small amount of high-boiling by-products and / or a catalyst component.
  • the top component of the high-boiling-point material separation tower is continuously supplied to the dialyl carbonate purification tower.
  • the dial reel carbonate purification tower It has been found that a distillation separation method in which a high-purity diaryl carbonate is obtained as a side-cut component, which is continuously separated into three components, ie, a component and a bottom component, is more preferable.
  • the whole or part of the bottom component of the high-boiling-point material separation tower is recycled to the first continuous multistage distillation tower and / or the second continuous multistage distillation tower as the catalyst component in step (II). It is preferable to use it.
  • this tower top component is left as it is or a low boiling point component contained in the tower top component is separated.
  • all or part of the bottom component of the distillation column is returned to the high boiling point separation column and / or the diaryl carbonate purification column to be recovered as high purity diaryl carbonate. Both are preferable methods.
  • high-purity diaryl carbonate of usually 99.9% or more, preferably 99.99% or more is obtained.
  • the content of high-boiling by-products is usually 10 ppm or less, preferably 50 ppm or less, and more preferably 10 ppm or less.
  • the halogen content of the obtained high-purity diaryl carbonate is 0.1 ppm or less, preferably 10 ppm or less, and more preferably Is less than lppb.
  • step (IV) is performed. That is, an aromatic dihydroxy compound is reacted with the high-purity diaryl carbonate to produce a molten prepolymer of an aromatic polycarbonate, and the molten prepolymer is allowed to flow along the surface of the guide, and the molten prepolymer is melted during the flow.
  • This is a process for producing an aromatic polycarbonate using a guide contact flow type polymerization apparatus for polymerizing a prepolymer.
  • the aromatic dihydroxy compound used is a compound represented by the following general formula.
  • Ar represents a divalent aromatic group
  • the divalent aromatic group Ar is preferably represented by the following general formula, for example.
  • Ar 1 and Ar 2 each independently represent a divalent carbocyclic or heterocyclic aromatic group having 5 to 70 carbon atoms, and Y represents a divalent carbocyclic or heterocyclic aromatic group having 1 to 30 carbon atoms. O represents an alkane group
  • one or more hydrogen atoms are not substituted with other substituents that do not adversely influence the reaction, for example, a halogen atom, an alkyl group having 1 to 10 carbon atoms, It may be substituted by an aralkoxy group, phenyl group, phenoxy group, vinylol group, cyanol group, ester group, amide group, nitro group or the like having 10 to 10 carbon atoms.
  • substituents for example, a halogen atom, an alkyl group having 1 to 10 carbon atoms, It may be substituted by an aralkoxy group, phenyl group, phenoxy group, vinylol group, cyanol group, ester group, amide group, nitro group or the like having 10 to 10 carbon atoms.
  • the heterocyclic aromatic group include aromatic groups having one or more ring-forming nitrogen atoms, oxygen atoms or sulfur atoms.
  • Ar 2 represents, for example, a group such as substituted or unsubstituted phenylene, substituted or unsubstituted biphenylene, substituted or unsubstituted pyridylene.
  • the substituents here are as described above.
  • the divalent alkane group Y is, for example, an organic group represented by the following formula.
  • R 4 each independently represents hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 10 carbon atoms, a 5- to 10-carbon ring structure; a cycloalkyl group having 10 to 10-carbon atoms.
  • R 4 In R 5 and R 6 , other substituents such as a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms and an alkyl group having 10 to 10 carbon atoms as long as one or more hydrogen atoms do not adversely influence the reaction. It may be substituted with a silyl group, a phenyl group, a phenoxy group, a bur group, a cyan group, an ester group, an amide group, a nitro group, or the like. )
  • Such a divalent aromatic group Ar includes, for example, those represented by the following formulae:
  • R 7 and R 8 are each independently a hydrogen atom, a halogen atom, an alkyl having 1 to 10 carbon atoms; A group having 1 to 10 carbon atoms, an alkoxy group having 10 to 10 carbon atoms, a cycloalkyl group or a phenyl group having 5 to 10 carbon atoms, and m and n are integers of !! to 4 and m is 24
  • Each R 7 may be the same or different! /, And when n is 24, R 8 may be the same or different.
  • divalent aromatic group Ar may be represented by the following formula.
  • Ar 1 and Ar 2 are as described above, and Z represents a single bond or a divalent group such as —O— —CO— —S— —SO 2 SO COO CON (R 1 ) —, where R 1 is before
  • Examples of such a divalent aromatic group Ar include those represented by the following formulae:
  • divalent aromatic group Ar examples include substituted or unsubstituted phenylene, substituted or unsubstituted naphthylene, substituted or unsubstituted pyridylene, and the like.
  • the aromatic dihydroxy compound used in the present invention may be a single type or two or more types.
  • a typical example of the aromatic dihydroxy compound is bisphenol A.
  • a trivalent aromatic trihydroxy compound for introducing a branched structure may be used in combination as long as the object of the present invention is not impaired.
  • the aromatic dihydroxy compound and high-purity diaryl carbonate in step (IV) The usage ratio (preparation ratio) varies depending on the type of aromatic dihydroxy compound and diaryl carbonate used, the polymerization temperature, and other polymerization conditions, but diaryl carbonate is usually used for 1 mol of aromatic dihydroxy compound. It is used in an amount of 0.9 to 2.5 mol, preferably 0.95 to 2.0 monole, more preferably 0.98 to 1.5 monole.
  • a molten state prepolymer (hereinafter referred to as a molten prepolymer) produced from an aromatic dihydroxy compound and diaryl carbonate is produced from an aromatic dihydroxy compound and diaryl carbonate. It means a melt in the middle of polymerization having a degree of polymerization lower than that of an aromatic polycarbonate having a desired degree of polymerization, and may of course be an oligomer.
  • a melted prepolymer used in step (IV) may be obtained by any known method.
  • a molten mixture of a predetermined amount of an aromatic dihydroxy compound and diaryl carbonate is usually used in a temperature range of about 120 ° C. to about 280 ° C.
  • a method of continuously producing a melted polymer having a required degree of polymerization by sequentially increasing the degree of polymerization using two or more vertical stirring tanks connected in series is particularly preferable.
  • this molten prepolymer is continuously supplied to a guide contact flow type polymerization apparatus to continuously produce an aromatic polycarbonate having a desired degree of polymerization.
  • This guide contact flow type polymerizer is a polymerizer in which a polymer is melted and flowed along a guide, and can produce an aromatic polycarbonate of 1 ton or more per hour.
  • the guide contact flow type polymerization reactor is
  • the tapered bottom case of the polymerization reaction zone is connected to the upper side casing at an angle C degree inside the upper side casing, and the angle C degree satisfies the formula (21).
  • A is less than 0.7 m 2 , the target production volume cannot be achieved, and in order to achieve this production volume while reducing the equipment cost, A must be 300 m 2 or less. It is. [0160] In addition, the ratio of the between A (m 2), the internal cross-sectional area in the horizontal plane of the aromatic polycarbonate discharge port 7 (b-b 'surface) B (m 2) is, satisfies equation (20) Is also necessary.
  • a / B is expressed by the formula (20) Must be satisfied.
  • a tapered bottom casing 11 constituting the bottom of the polymerization reaction zone 5 is provided at an angle C degrees with respect to the upper side casing 10 at an angle C degrees. It is also necessary to satisfy (21).
  • the length h (cm) of the guide satisfies the formula (22).
  • the degree of polymerization of the melted polymer can be increased, but the degree is not sufficient, and the variation in the degree of polymerization becomes about 200 or more in number average molecular weight, which is not preferable.
  • the h force is longer than S5000cm, the difference in the melt viscosity of the melted prepolymer between the upper and lower parts of the guide becomes too large, so the variation in the degree of polymerization is about 300 or more (in some cases, about 500 or more). This is not preferable because the physical properties of the resulting aromatic polycarbonate vary with increasing size.
  • the large variation in the degree of polymerization means, for example, a variation in which there is a difference of about 200 or more, expressed in terms of number average molecular weight.
  • the total external surface area S (m 2 ) of the guide 4 needs to satisfy the formula (23).
  • S is less than 2m 2 , the target production volume cannot be achieved, and in order to achieve this production volume while reducing equipment costs and to eliminate variations in physical properties, S should be 50000m 2 or less. is required.
  • Step (IV) it is not clear why it is possible to produce an aromatic polycarbonate having such excellent effects on an industrial scale, but in addition to the above reasons, This is presumed to be due to the combined effects that appear when conditions are combined.
  • the molten prepolymer can be polymerized at a relatively low temperature, and a large amount of high-quality aromatic polycarbonate having the desired molecular weight can be produced.
  • the taper-shaped bottom casing that satisfies formula (21) can reduce the time it takes for this large quantity of high quality product aromatic polycarbonate falling from the guide to reach the outlet, As a result, it is presumed that the thermal history of the produced aromatic polycarbonate can be reduced.
  • step (IV) is a guide contact flow type polymerization reactor satisfying the equations (19), (20), (21), (22) and (23). Therefore, the facility cost can be reduced as an industrial production facility.
  • a more preferable range of the internal cross-sectional area A (m 2 ) in the horizontal plane of the side casing of the polymerization reaction zone is 0.8 ⁇ A ⁇ 250, more preferably 1 ⁇ A ⁇ 200.
  • a more preferable range of the ratio to (m 2 ) is 25 ⁇ A / B ⁇ 900, and more preferably 30 ⁇ A / B ⁇ 800.
  • the more preferable range of the angle C degrees formed inside the tapered bottom casing constituting the bottom of the polymerization reaction zone with respect to the upper side casing is 125 ⁇ C ⁇ 160, and more preferably Is 135 ⁇ C ⁇ 165.
  • the corresponding angles are Cl, C2, C3, ..., C1 ⁇ C2 ⁇ C3 ⁇ ... is preferable
  • the required length h (cm) of the guide depends on factors such as the degree of polymerization of the raw material prepolymer, the polymerization temperature and pressure, the degree of polymerization of the aromatic polycarbonate or prepolymer to be produced in the polymerization vessel, and the production amount. More preferred range of forces depending on the difference is 200 ⁇ h ⁇ 3000, more preferably 250 ⁇ h ⁇ 2500. It is particularly preferable when h satisfies the formula (31).
  • the total external surface area S (m 2 ) of the entire guide required also varies depending on the same factors as above.
  • the more preferable range is 4 ⁇ S ⁇ 40000, more preferably 10 ⁇ S ⁇ 30000. 15 ⁇ S ⁇ 20000 °, the preferred range.
  • the external total surface area of the entire guide referred to in the present invention means the entire surface area of the guide that flows down in contact with the molten polymer.
  • a guide such as a pipe
  • it means the outer surface area.
  • the surface area of the inner surface of the pipe that does not allow the prepolymer to flow down is not included.
  • the shape of the internal cross section in the horizontal plane of the side casing of the polymerization reaction zone may be any shape such as a polygon, an ellipse, and a circle. . Since the polymerization reaction zone is usually operated under reduced pressure, it may be of any type as long as it can withstand it, but preferably it is circular or has a shape close to it. Therefore, the side casing of the polymerization reaction zone of the present invention is preferably cylindrical. In this case, it is preferable that a tapered bottom casing is connected to the lower part of the cylindrical side casing, and a cylindrical aromatic polycarbonate discharge port is provided at the lowermost part of the bottom casing.
  • a more preferable range of D (cm) is 150 ⁇ D ⁇ 1500, and more preferably 200 ⁇ D ⁇ 1200. Further, a more preferable range of D / d is 6 ⁇ D / d ⁇ 45, and more preferably 7 ⁇ D / d ⁇ 40. Further, a more preferable range of L / D is 0.6 ⁇ L / D ⁇ 25, and more preferably 0.7 ⁇ L / D ⁇ 20. Further, a more preferable range of L (cm) is h—10 ⁇ L ⁇ h + 250, and more preferably h ⁇ L ⁇ h + 200. If D, d, L, and h do not satisfy these relationships at the same time, it is difficult to achieve the object of the present invention.
  • process (IV) a high-quality, high-performance aromatic polycarbonate with high polymerization rate, no coloration, and excellent mechanical properties is produced stably on an industrial scale with no molecular weight variation over a long period of time.
  • the exact reason for this is not clear, but the following are possible.
  • the molten precursor polymer is guided from the receiving port 1 to the guide 4 via the supply zone 3 and the perforated plate 2, and along the guide.
  • the degree of polymerization increases while flowing down.
  • the molten prepolymers are effectively agitated and renewed while flowing down along the guide, and phenol and the like are extracted effectively, so that the polymerization proceeds at a high speed.
  • the melt viscosity increases, so that the adhesive strength to the guide increases, and the amount of the melt sticking to the guide increases as it goes to the bottom of the guide.
  • the residence time of the molten prepolymer on the guide that is, the polymerization reaction time is increased.
  • the melted polymer that flows down under its own weight while being supported by the guide has a very large surface area per mass, and its surface is renewed efficiently.
  • the high molecular weight in the latter half of the polymerization, which was possible, can be easily achieved. This is one of the excellent features of the polymerization vessel used in step (IV).
  • Aromatic polycarbonate accumulated at the bottom of the tapered bottom casing is continuously withdrawn by the discharge pump 8 through the discharge port 7, and is normally pelletized continuously through an extruder. In this case, additives such as stabilizers and weathering agents can be added by an extruder.
  • the perforated plate constituting the guided contact flow type polymerization reactor used in step (IV) is usually selected from a flat plate, a corrugated plate, a plate with a thick central portion, etc.
  • a shape force such as circular, oval, triangular or polygonal is selected.
  • the holes of the perforated plate are usually selected from shapes such as a circle, an ellipse, a triangle, a slit, a polygon, and a star.
  • the cross-sectional area of the hole is usually from 0.01 to 100 cm 2 , preferably from 0.05 to 10 cm 2 , particularly preferably from 0.;! To 5 cm 2 .
  • the distance between the holes is usually 1 to 500 mm, preferably 25 to 100 mm, based on the distance between the centers of the holes.
  • the hole in the perforated plate may be a hole penetrating the perforated plate or may be a case where a tube is attached to the perforated plate. Further, it may be tapered.
  • the guide constituting the guide contact flow type polymerization reactor used in the step (IV) has a very high ratio of the length in the vertical direction to the average length of the outer periphery of the horizontal cross section. It represents a large material.
  • the ratio is usually in the range of 10-; 1,000,000, preferably 50-; 100,000.
  • the shape of the cross section in the horizontal direction is usually selected from shapes such as a circle, an ellipse, a triangle, a quadrangle, a polygon, and a star.
  • the shape of the cross section may be the same or different in the length direction.
  • the guide may be hollow.
  • the guide has no wire or thin rod, and the melted prepolymer does not enter inside.
  • a single one such as a thin pipe-like one may be used, or a plurality of such may be combined by a method such as twisting. Further, a net-like one or a punching plate-like one may be used.
  • the surface of the guide may be smooth or uneven, or may have a projection or the like partially.
  • a preferable guide is a cylindrical shape such as a wire shape or a thin rod shape, a net shape such as the above-mentioned thin pipe shape, or a punching plate shape.
  • the guide itself may have a heat source such as an electric heater or a heat source inside the guide.
  • a heat source such as an electric heater or a heat source inside the guide.
  • ⁇ ⁇ A guide that does not have a heat source has no concern about thermal denaturation of the prepolymer or aromatic polycarbonate on its surface. , So especially preferred.
  • the guided contact flow type polymerizer of the present invention that enables production of high-quality aromatic polycarbonate on an industrial scale (production amount, long-term stable production, etc.), it is particularly preferable to use a plurality of wires. / Or rod-shaped or the above-mentioned narrow! /, A guide of the type of pipe that connects the guides at appropriate intervals above and below using a horizontal support material from the top to the bottom of the pipe-shaped guide. is there.
  • a plurality of wire-like or thin rod-like or wire-like nets fixed at appropriate intervals above and below, for example, lcm to 200 cm, using a horizontal support material from the top to the bottom of the thin pipe-shaped guide.
  • a guide a three-dimensional guide in which a plurality of wire mesh guides are arranged at the front and back, and they are joined at a suitable distance above and below using a lateral support material, for example, a distance of lc m to 200 cm, or a plurality of wires
  • a lateral support material for example, a distance of lc m to 200 cm, or a plurality of wires
  • a jungle-gym standing body that is fixed at appropriate intervals above and below, for example, 1 cm to 200 cm, using horizontal support materials on the front and back, left and right of the rod-shaped or thin pipe-shaped guide.
  • the support material in the horizontal direction not only helps to keep the distance between the guides approximately the same, but also helps to strengthen the guides that are flat or curved as a whole or three-dimensional guides. These supporting materials may be the same material as the guide, or may be different.
  • r is represented by the formula (3 2 ) Satisfied! /, Preferable to!
  • This guide advances the polymerization reaction while flowing the molten prepolymer, but also has a function of holding the molten prepolymer for a certain period of time.
  • This holding time is related to the polymerization reaction time, and as described above, the holding time and the holding amount increase as the melt viscosity increases as the polymerization proceeds.
  • the amount that the guide retains the melted prepolymer varies depending on the external surface area of the guide, that is, in the case of a cylindrical shape or a pipe shape, even if the melt viscosity is the same.
  • the guide installed in the polymerization vessel of the present invention needs to be strong enough to hold and support the weight of the molten prepolymer.
  • the thickness of the guide is important. In the case of a columnar shape or a pipe shape, it is preferable that the formula (32) is satisfied. If r is less than 0.1, it will be difficult to perform stable operation for a long time in terms of strength. When r is larger than 1, the guide itself becomes very heavy, and the melted prepolymer has only the inconvenience, for example, the thickness of the perforated plate has to be very thick in order to hold them in the polymerizer. There are inconveniences such as an increase in the portion where the amount of retention increases too much and the variation in molecular weight increases. In this sense, the more preferred range of r is 0.15 ⁇ r ⁇ 0.8, and even more preferred is 0.2 ⁇ r ⁇ 0.6.
  • a preferable material for such a guide is selected from metals such as stainless steel, carbon steel, hastelloy, nickel, titanium, chromium, aluminum and other alloys, and a polymer material having high heat resistance. Particularly preferred is stainless steel.
  • the surface of the guide may be subjected to various treatments such as plating, lining, passivation treatment, acid washing, and phenol washing as necessary.
  • the positional relationship between the guide and the perforated plate and the positional relationship between the guide and the hole in the perforated plate are not particularly limited as long as the molten polymer pre-guide flow is possible! /, .
  • the guide and the perforated plate may or may not be in contact with each other.
  • the guide is preferably installed in correspondence with the holes of the perforated plate, but is not limited thereto. This is because the molten pre-bolimer falling from the perforated plate may be designed to come into contact with the guide at an appropriate position.
  • (1) The upper end of the guide is fixed to the upper inner wall surface of the polymerization vessel, etc.
  • a method of flowing down the molten prepolymer through the perforated plate along the guide a method of flowing down with a liquid head or its own weight, or by pressurizing with a pump or the like, the perforated plate force is also reduced.
  • a method such as extrusion is exemplified. It is preferable to supply a predetermined amount of the raw molten polymer to the polymerizer supply zone under pressure using a supply pump, and the molten polymer delivered to the guide through the perforated plate flows down along the guide under its own weight. It is a method.
  • the molten prepolymer is usually continuously supplied to the guide contact flow type polymerization reactor while being heated to a predetermined polymerization temperature.
  • a jacket or the like is usually provided on the outer wall surface of the guide contact flow type polymerization reactor, and it is preferable to heat the jacket to a predetermined temperature through a heating medium or the like. Accordingly, it is preferable to heat / preheat the molten prepolymer, the prepolymer supply zone and the perforated plate, and heat the polymerization reaction zone, the side casing, and the tapered bottom casing.
  • the temperature of the reaction for producing an aromatic polycarbonate by polymerizing a molten polymer obtained from an aromatic dihydroxy compound and diaryl carbonate in a guide contact flow type polymerization reactor is usually It is in the range of 80-350 ° C.
  • the polymerization apparatus of the present invention since efficient surface renewal with internal stirring is performed, the polymerization reaction can proceed at a relatively low temperature. Therefore, the preferred reaction temperature is 100 to 290 ° C, and more preferred is 150 to 270 ° C. In conventional reactors for horizontal biaxial stirring type ultra-high viscosity polymers, it was necessary to stir for a long time under a high vacuum of 133 Pa or less, usually at a high temperature of 300 ° C or higher.
  • the polymerizer of the present invention does not have mechanical stirring, there is no seal portion of the stirrer, so that leakage of air or the like is very small.
  • the polymerization can proceed sufficiently at a temperature as low as about 20 to 50 ° C. as compared with a conventional reactor for a horizontal biaxial stirring type ultrahigh viscosity polymer. This also means that the present invention produces a high-quality aromatic polycarbonate with no coloring or deterioration of physical properties. It is a big cause that can be.
  • step (IV) an aromatic monohydroxy compound is produced as the polymerization reaction proceeds, and the reaction rate can be increased by removing this from the reaction system. Therefore, an inert gas that does not adversely influence the reaction, such as nitrogen, argon, helium, carbon dioxide, or lower hydrocarbon gas, is introduced into the polymerization reactor, and the aromatic monohydroxy compounds that are produced are introduced into these gases.
  • an inert gas that does not adversely influence the reaction such as nitrogen, argon, helium, carbon dioxide, or lower hydrocarbon gas
  • a method in which the reaction is carried out together with the solvent and a method in which the reaction is carried out under reduced pressure are preferably used.
  • a method in which these are used in combination is also a force that can be preferably used. In these cases, it is not necessary to introduce a large amount of inert gas into the polymerization vessel, and the inside may be maintained in an inert gas atmosphere.
  • the preferable reaction pressure in the polymerization vessel in the step (IV) varies depending on the type of aromatic polycarbonate to be produced, the molecular weight, the polymerization temperature, etc. For example, from a molten polymer from bisphenol A and diphenyl carbonate to an aromatic In the case of producing polycarbonate, when the number average molecular weight is 5,000 or less, 400 to 3, OOOPa range force S is preferable, and when the number average molecular weight is 5,000 to 10,000, the range is 50 to 500 Pa. preferable. When the number average molecular weight is 10,000 or more, 300 Pa or less is preferable, and a range force of 20 to 250 Pa is preferably used.
  • step (IV) it is possible to produce an aromatic polycarbonate having the desired degree of polymerization with only one guided contact flow type polymerizer, but it is possible to produce a solution as a raw material.
  • each polymerizer is a preferred method because guides and reaction conditions suitable for the degree of polymerization of the prepolymer or aromatic polycarbonate to be produced can be adopted separately.
  • a guide contact flow type first polymerization device For example, use a guide contact flow type first polymerization device, a guide contact flow type second polymerization device, a guide contact flow type third polymerization device, and a guide contact flow type fourth polymerization device.
  • the force S can be obtained as S1 ⁇ S2 ⁇ S3 ⁇ S4 ⁇ '—.
  • the polymerization temperature may be the same in each polymerization vessel, or may be raised in order.
  • the polymerization pressure can also be lowered in each polymerization vessel in turn.
  • S1 / S2 is less than 1, there will be inconveniences such as large variations in molecular weight, making stable production difficult for a long period of time, and difficulty in obtaining a predetermined production amount.
  • S 1 / S2 is more than 20 If it is large, the flow rate of the molten polymer that flows down the guide in the second polymerization vessel increases, and as a result, the residence time of the molten polymer is reduced and the aromatic polycarbonate having the required molecular weight can be obtained. Inconvenience occurs. In this sense, it is a more preferable range (or 1.5 ⁇ S 1 / S2 ⁇ 15.
  • step (IV) 1 ton or more of aromatic polycarbonate is produced per hour, but since the aromatic monohydroxy compound by-produced by the polymerization reaction is discharged out of the system, More than 1 ton of molten prepolymer polymerizer needs to be fed. Therefore, the amount of melted polymer to be supplied varies depending on the degree of polymerization and the degree of polymerization of the aromatic polycarbonate to be produced, but it is usually 10-500 kg / per 1 ton / hr of aromatic polycarbonate production. hr more, 1. 01 ⁇ ; 1.5 in the range of 5 tons / hr is there.
  • the reaction for producing an aromatic polycarbonate from an aromatic dihydroxy compound and diaryl carbonate in step (IV) can be carried out without adding a catalyst.
  • a catalyst In order to increase the polymerization rate, in the presence of a catalyst, if necessary. Done.
  • the catalyst is not particularly limited as long as it is used in this field, but alkali metal and alkaline earth metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, and calcium hydroxide are used.
  • Alkali metal salts, alkaline earth metal salts, quaternary ammonium salts of hydrides of boron and aluminum such as lithium aluminum hydride, sodium borohydride, tetramethylammonium borohydride; lithium hydride, sodium hydride, hydrogen Hydrogenation of alkali metals and alkaline earth metals such as russia; alkali metals and alkaline earth metal alkoxides such as lithium methoxide, sodium ethoxide and calcium methoxide; lithium phenoxide, sodium phenoxide Cid, magnesium phenoxy Alkali metal and alkaline earth metal alkoxides such as LiO—Ar—OLi and NaO—Ar—ONa (Ar is aryl); Alkali metals and alkaline earth such as lithium acetate, calcium acetate and sodium benzoate Organic acid salts of metals, zinc compounds such as zinc oxide, zinc acetate, zinc phenoxide; boron oxide, boric acid, sodium boric
  • Boron compounds such as) oxides; sodium oxides, sodium silicates, tetraalkyl cages, tetraaryl cages, diphenylethyl ethoxy ketones; germanium oxides, tetrachlorides Genolenium compounds such as genoremanium, genoremanium ethoxide, genoremanium phenoxide; alkoxy groups such as tin oxide, dialkyltin oxide, dialkyltin carboxylate, tin acetate, ethyltin tributoxide Or tin compounds bonded to aryloxy groups, tin compounds such as organic tin compounds; lead oxides such as lead oxide, lead acetate, lead carbonate, basic carbonates, lead and organic lead alkoxides, Compound: Onium compound such as quaternary ammonium salt, quaternary phosphonium salt, quaternary arsonium salt, etc.
  • Antimony compounds such as antimony oxide and antimony acetate;
  • Manganese compounds such as manganese acetate, manganese carbonate, and manganese borate; titanium compounds such as titanium oxide, alkoxide of titanium, and aryl-toxide; zirconium acetate, zirconium oxide, alkoxide or aryloxide of zirconium, Catalysts such as zirconium compounds such as zirconium acetylacetone can be mentioned.
  • these catalysts may be used alone or in combination of two or more.
  • the amount of these catalysts, the aromatic dihydroxy compound of the raw materials usually 10_ 1 () to 1 wt%, preferably from 10_ 9 ⁇ ; ⁇ mass. /. , Rather more preferably is 10 8 ⁇ ; selected at 10- 2% by weight range.
  • the polymerization catalyst used is the force remaining in the aromatic polycarbonate of the product.
  • These polymerization catalysts usually have an adverse effect on the physical properties of the polymer. Therefore, it is preferable to reduce the amount of catalyst used as much as possible. In the method of the present invention, since the polymerization can be performed efficiently, the amount of the catalyst used can be reduced. This is another feature of the present invention that enables the production of high-quality aromatic polycarbonate.
  • step (IV) There are no particular restrictions on the material of the guide contact flow type polymerizer and piping used in step (IV). Usually stainless steel, carbon steel, hastelloy, nickel, titanium, chromium, and other alloys Metals such as manufactured products and medium heat resistant polymer materials are selected. In addition, the surface of these materials may be subjected to various treatments such as plating, lining, passivation treatment, pickling, and phenol washing as necessary. Particularly preferred are stainless steel, nickel, glass lining and the like.
  • a large amount of aromatic monohydroxy compound by-produced by the reaction is usually continuously extracted in the form of a gas during the production of the prepolymer in step (IV) and the polymerization in the guide contact flow type polymerization reactor. It is condensed into a liquid and recovered.
  • the by-product aromatic monohydroxy compound by-produced and recovered in step (IV) of the present invention usually contains diaryl carbonate.
  • the aromatic polycarbonate produced by carrying out the system of the present invention has a repeating unit represented by the following chemical formula 9.
  • aromatic polycarbonate containing 85 mol% or more of a repeating unit represented by the following chemical formula 10 among all repeating units.
  • the terminal group of the aromatic polycarbonate produced by carrying out the method of the present invention is usually composed of a hydroxy group or an aryl carbonate group represented by the following formula.
  • the ratio of hydroxy group to aryl carbonate group is not particularly limited, but is usually in the range of 95: 5 to 5:95, preferably in the range of 90:10 to 10:90, and more preferably in the range of 80:20 to The range is 20:80.
  • Particularly preferred is an aromatic polycarbonate in which the proportion of the phenyl carbonate group in the terminal group is 60 mol% or more.
  • the aromatic polycarbonate produced by carrying out the method of the present invention may be partially branched with respect to the main chain via a hetero bond such as an ester bond or an ether bond.
  • the amount of the heterologous binding to carbonate bonds is usually 0.005 to 2 mol%, good Mashiku is 0. 01 ;! Monore 0/0, a, more preferred, 0.05 -0. 5 Monore is 0/0.
  • This amount of dissimilar bonds improves flow characteristics during melt molding without deteriorating other polymer properties, making it suitable for precision molding and molding with relatively low temperature and excellent performance. Can be manufactured.
  • the molding cycle can be shortened, contributing to energy saving during molding.
  • the aromatic polycarbonate produced by carrying out the method of the present invention contains almost no impurities, but an alkali metal and / or alkaline earth metal is used as the metal element.
  • An aromatic polycarbonate containing! ⁇ Lppm can be produced.
  • this content power is 0.005-0.5 ppm, more preferably (0.01-0.1 ppm).
  • Such a metal element is 1 ppm or less, preferably 0.5 ppm or less, more preferably In the case of 0. lp pm, since the physical properties of the product aromatic polycarbonate are not adversely affected, the aromatic polycarbonate produced in the present invention is of high quality.
  • aromatic polycarbonates produced by carrying out the method of the present invention particularly preferred are those produced by using a halogen-free aromatic dihydroxy compound and diaryl carbonate,
  • the halogen content is usually less than lOppb.
  • those having a halogen content of 5 ppb or less can be produced, and more preferably, aromatic polycarbonates having a halogen content of 1 ppb or less can be produced, resulting in a very high quality product. It will be.
  • Mn 'Number average molecular weight (Mn): Measured by gel permeation chromatography (GPC) method using tetrahydrofuran as a carrier solvent, and calculated using the converted molecular weight calibration curve of the following formula obtained using standard monodisperse polystyrene. Average molecular weight (Mn) was determined.
  • M is the molecular weight of the aromatic polycarbonate and M is the molecular weight of polystyrene.
  • the catalyst is ⁇ ⁇ 1 (48% by weight aqueous solution) 2.
  • This catalyst solution was continuously introduced into the distillation column T from the inlet (3-e) provided at the 54th stage from the bottom (K concentration: 0.1 with respect to the supplied ethylene carbonate).
  • Reactive distillation was carried out continuously under the conditions that the temperature at the bottom of the column was 98 ° C., the pressure at the top of the column was about 1.118 ⁇ 10 5 Pa, and the reflux ratio was 0.42.
  • the actual production amount of dimethyl carbonate per hour was 3.340 tons, and excluding ethylene glycol contained in the catalyst solution, the actual production amount of ethylene glycol per hour was 2. It was 301 tons.
  • the reaction rate of ethylene carbonate was 99.88%, the selectivity of dimethyl carbonate was 99.99% or more, and the selectivity of ethylene glycol was 99.99% or more.
  • the reaction rate of ethylene carbonate 99.90%, 99.89%, 99.89%, 99.88%, 99.88%, and the selectivity of dimethyl carbonate is 99.99% or more, 99.99% or more, 99.99% Less than 99.99% or more, 99.99% or more, ethylene glycol selectivity is 99.99% or more, 99.99% or more, 99.99% or more, 99.99% or more, 99.99% That was all.
  • Diphenyl carbonate was produced by reactive distillation using an apparatus in which the first continuous multistage distillation column 101 and the second continuous multistage distillation column 201 were connected as shown in FIG.
  • the catalyst is Pb (OPh)
  • the reaction solution was about lOOppm.
  • the temperature at the bottom of the column was 225 ° C, and the reactive distillation was performed continuously under the conditions of the pressure at the top of the column S7 X 10 5 Pa.
  • the first tower low boiling point reaction mixture containing methyl alcohol, dimethyl carbonate, phenol, etc. is added to the top of the first tower 13
  • the gas was continuously extracted in a gaseous state, passed through the heat exchanger 14, and extracted from the extraction port 16 at a flow rate of 34 tons / hr.
  • the first tower high boiling point reaction mixture containing methyl phenyl carbonate, dimethyl carbonate, phenol, diphenyl carbonate, catalyst and the like was continuously extracted in liquid form from the bottom 17 of the first tower.
  • the reaction distillation was continuously performed under the conditions that the temperature at the bottom of the column was 210 ° C, the pressure at the top of the column was 3 ⁇ 10 4 Pa, and the reflux ratio was 0.3. After 24 hours, stable steady operation was achieved.
  • the second tower low boiling point reaction mixture containing 35% by mass of dimethyl carbonate and 56% by mass of phenol was continuously withdrawn from the top 23 of the second column, and the flow rate at the outlet 26 was 55.6 tons / hr.
  • the second tower high boiling point reaction mixture containing 38.4% by weight of methyl phenyl carbonate and 55.6% by weight of diphenyl carbonate was continuously withdrawn from the bottom 27 of the second tower.
  • the second column low boiling point reaction mixture was continuously supplied from the inlet 11 to the first continuous multistage distillation column 101. At this time, the amount of dimethyl carbonate and phenol to be newly supplied is adjusted so as to maintain the composition and amount of raw material 1 and raw material 2 in consideration of the composition and amount of the second tower low boiling point reaction mixture. Arranged. Diphenyl carbonate production was found to be 5.74 tons per hour. The selectivity for diphenyl carbonate was 98% with respect to the reacted phenol.
  • a long-term continuous operation was performed under these conditions. After 500 hours, 2000 hours, 4000 hours, 5000 hours, and 6000 hours, the production of diphenyl carbonate (excluding diphenyl carbonate contained in the raw material) is 5 ⁇ 74 tons per hour, 5 75 tons, 5.74 tons, 5.74 tons, 5.75 tons, and the selection rates were 98%, 98%, 98%, 98%, and were very stable. In addition, the produced aromatic carbonate was substantially free of halogen! / And not (lppb or less).
  • Step of obtaining high-purity diphenyl carbonate The second high boiling point reaction mixture extracted from the bottom of the second continuous multistage distillation column is continuously fed to a high boiling point material separation column (length 1700 cm, inner diameter 340 cm, 30 stages). Distillation was continuously performed at a temperature of 206 ° C, a pressure at the top of the column of 3800 Pa, and a reflux ratio of 0.6.
  • the top component extracted continuously from the top of the high-boiling-point material separation tower is directly used as a diaryl carbonate purification tower having a side cut outlet (length: 2200 cm, inner diameter: 280 cm, the upper part from the inlet is 12 stages, 18 stages between the inlet and the side cut installed at the bottom, and 5 stages below the side cut.
  • the diaryl carbonate purification tower distillation was continuously performed at a temperature of 213 ° C. at the bottom of the tower, a pressure of 5000 Pa at the top of the tower, and a reflux ratio of 1.5.
  • the purity of diphenyl carbonate continuously extracted from the side cut outlet was 99.999% or more and the halogen content was 1ppb or less.
  • the high purity diphenyl carbonate thus obtained was once stored in a molten state in a storage tank.
  • Aromatic polycarbonate was produced using a guide contact flow type polymerizer as shown in Fig. 6.
  • the material of this polymerization vessel is all stainless steel.
  • the molten polymer supplied from the supply port 1 is uniformly distributed to each guide 4 by the perforated plate 2.
  • An inert gas supply port 9 is provided at the lower part of the polymerization vessel, and a vacuum vent port 6 is provided at the upper part.
  • the outside of the reactor is a jacket that is heated by a heating medium!
  • the produced aromatic polycarbonate that has entered the bottom 11 of the polymerization vessel from the bottom of the guide 4 is discharged from the discharge port 7 at a flow rate of 5.5 tons / hr by the discharge pump 8 so that the amount at the bottom becomes constant. Continuously I left.
  • the number average molecular weight Mn of the aromatic polycarbonate extracted from the extraction port 50 after 50 hours from the start of operation was 10,500, indicating a good color (b * value 3.2). .
  • the tensile elongation was 98%. 60 hours, 100 hours, 500 hours, 1,000 hours, 2,000 hours, 3,000 hours, 4,000 hours, 5,000 hours and 5,000 hours after the start of operation
  • the Mn values of the extracted aromatic polycarbonates are 10, 500, 10, 550, 10, 500, 10, 550, 10, 500, 10, 500, 10, 550, and 10, 500, respectively. there were.
  • the aromatic polycarbonate produced in this way has an alkali metal and / or alkaline earth metal compound content of 0.04-0.05ppm in terms of these metal elements and a chlorine content. Was less than lppb.
  • the content of heterogeneous bonds was 0.12 to 0.15 monole%.
  • the phenol recovered from the top of the column was once stored in a tank and then recycled to step (II).
  • the diphenyl carbonate recovered from the side cut portion was supplied to the high boiling point substance separation column in step (III) and recovered as high purity diphenyl carbonate.
  • Liquid ethylene carbonate 2.61 tons / hr was continuously introduced into the distillation column at the inlet (3-a) force installed at the 55th stage from the bottom.
  • the catalyst was continuously fed to the distillation column in the same manner as in Example 1. Reactive distillation was continuously carried out under the conditions that the temperature at the bottom of the column was 93 ° C, the pressure at the top of the column was about 1.04 6 X 10 5 Pa, and the reflux ratio was 0.48.
  • the actual production amount of dimethyl carbonate per hour was 2.669 tons, and excluding ethylene glycol contained in the catalyst solution, the actual production amount of ethylene glycol per hour was 1. It was 839 tons.
  • the reaction rate of ethylene carbonate was 99.99%, the selectivity of dimethyl carbonate was 99.99% or more, and the selectivity of ethylene glycol was 99.99% or more.
  • the catalyst is Pb (OPh)
  • the reaction solution was about 250 ppm.
  • the temperature at the bottom of the column was 235 ° C, and the reactive distillation was continuously carried out under the pressure of S9 X 10 5 Pa at the top of the column.
  • the first tower low boiling point reaction mixture containing methyl alcohol, dimethyl carbonate, phenol, etc. is continuously withdrawn from the top 13 of the first tower in the form of gas, passed through the heat exchanger 14, and from the outlet 16 to 43 tons / hr. It was extracted at a flow rate of.
  • the first tower high boiling point reaction mixture containing methyl phenyl carbonate, dimethyl carbonate, phenol, diphenyl carbonate, catalyst and the like was continuously extracted in liquid form from the bottom 17 of the first tower.
  • the high-boiling reaction mixture in the first column was passed through the raw material inlet 21 installed between the melapack and the perforated plate tray in the second continuous multistage distillation column 201 as it was.
  • the liquid supplied to the second continuous multistage distillation column 201 contained 20.7% by mass of methyl phenyl carbonate and 1.0% by mass of diphenyl carbonate.
  • reactive distillation was continuously performed under the conditions that the temperature at the bottom of the column was 205 ° C, the pressure at the top of the column was 2 ⁇ 10 4 Pa, and the reflux ratio was 0.5.
  • the second tower low boiling point reaction mixture is continuously withdrawn from the second tower top 23, and the second tower bottom 27 contains 36.2% by weight methylphenyl carbonate and 60.8% by weight diphenyl carbonate.
  • Two towers high boiling point reaction mixture was continuously withdrawn.
  • the second column low boiling point reaction mixture was continuously supplied to the first continuous multistage distillation column 101 from the inlet 11.
  • the amount of dimethyl carbonate and phenol to be newly supplied should be such that the composition and amount of raw material 1 and raw material 2 are maintained in consideration of the composition and amount of the second tower low boiling point reaction mixture. It was adjusted. Production of diphenyl carbonate was found to be 4.03 tonnes per hour. The selectivity for diphenyl carbonate was 97% with respect to the reacted phenol.
  • an aromatic polycarbonate melt prepolymer (number average molecular weight Mn is 3,5) produced from bisphenol A and high-purity diphenyl carbonate (molar ratio of bisphenol A to 1 ⁇ 05). 500) Continuously supplied from supply port 1 to supply zone 3 by 1S supply pump. An aromatic polycarbonate was produced by polymerization in the same manner as in Example 1 except that the pressure in the polymerization reaction zone was maintained at l OOPa.
  • the Mn of the aromatic poly-bonate discharged from the outlet 19 is 7,600, 7,600, 7,650 7,600, 7,650, 7,65 0, respectively. 7, 600, 7, 600 and stable.
  • the aromatic polycarbonate produced in this manner has an alkali metal and / or alkaline earth metal compound content of 0.03 force, et al.
  • the content was lppb or less. Further, the content of heterogeneous bonds was 0.08 to 0.1 monole%.
  • Liquid ethylene carbonate 3.773 tons / hr was continuously introduced into the distillation column from the inlet (3-a) installed at the 55th stage from the bottom.
  • the catalyst was continuously fed to the distillation column in the same manner as in Example 1. Reactive distillation was continuously carried out under the conditions that the temperature at the bottom of the column was 98 ° C., the pressure at the top of the column was about 1.118 ⁇ 10 5 Pa, and the reflux ratio was 0.42.
  • the actual production amount of dimethyl carbonate per hour was 3,854 tons, and excluding ethylene glycol contained in the catalyst solution, the actual production amount of ethylene glycol per hour was 2. It was 655 tons.
  • the reaction rate of ethylene carbonate was 99.88%, the selectivity of dimethyl carbonate was 99.99% or more, and the selectivity of ethylene glycol was 99.99% or more.
  • a long-term continuous operation was performed under these conditions. After 1000 hours, 2000 hours, 3000 hours, and 5000 hours, the actual production volume per hour is 3.854 tons, 3.854 tons, 3.854 tons, and 3.854 tons for dimethyl carbonate.
  • the ethylene glycol power is 2.655, 2.655, 2.655, 2.655 and the reaction rate of ethylene carbonate is 99.9%, 99. 99%, 99.99% and 99.99 0/0, the selectivity of dimethylol Honoré carbonate (or 99.99% or more, 99.99% or more, with 99.99% or more, 99.99% or more, ethylene Glycol selection rates were 99 ⁇ 99% or higher, 99.99% or higher, 99.99% or higher, 99.99% or higher.99% or higher.
  • Reactive distillation was performed under the following conditions using the same apparatus as in Example 1 except that the cross-sectional area per hole of the perforated plate tray in the second continuous multistage distillation column 201 was about 1.8 cm 2 .
  • the catalyst is Pb (OPh)
  • the reaction solution was about 150 ppm.
  • the temperature at the bottom of the column was 220 ° C., and the reactive distillation was continuously carried out under the conditions of the pressure at the top of the column of S8 ⁇ 10 5 Pa.
  • the first tower low boiling point reaction mixture containing methyl alcohol, dimethyl carbonate, phenol, etc. is continuously withdrawn in the form of a gas from the top 13 of the first tower, passed through the heat exchanger 14, and from the outlet 16 to 82 tons / hr. It was extracted at a flow rate of.
  • the first tower high boiling point reaction mixture containing methyl phenyl carbonate, dimethyl carbonate, phenol, diphenyl carbonate, catalyst and the like was continuously extracted in liquid form from the bottom 17 of the first tower.
  • the high-boiling reaction mixture in the first column was passed through the raw material inlet 21 installed between the melapack and the perforated plate tray in the second continuous multistage distillation column 201 as it was.
  • the liquid supplied to the second continuous multistage distillation column 201 contained 16.0% by mass of methylphenyl carbonate and 0.5% by mass of diphenyl carbonate.
  • the reaction distillation is continuously performed under the conditions that the temperature at the bottom of the column is 215 ° C, the pressure at the top of the column is 2.5 X 10 4 Pa, and the reflux ratio is 0.4. It was broken.
  • the second tower low boiling point reaction mixture is continuously withdrawn from the second tower top 23, and the second tower bottom 27 contains 35.5% by weight of methyl phenyl carbonate and 59.5% by weight of diphenyl carbonate.
  • Second column The high boiling point reaction mixture was continuously withdrawn.
  • the second column low boiling point reaction mixture was continuously supplied to the first continuous multistage distillation column 101 from the inlet 11. At this time, the amount of dimethyl carbonate and phenol to be newly supplied should be such that the composition and amount of raw material 1 and raw material 2 are maintained in consideration of the composition and amount of the second tower low boiling point reaction mixture. It was adjusted. Diphenyl carbonate production was found to be 7.28 tons per hour. Reacted eno The selectivity for diphenyl carbonate was 98%.
  • the production volume of diphenyl carbonate was 7.28, 7.29, and 7.29, compared to the reacted phenol.
  • the selectivity was 98%, 98% and 98%, and was very stable.
  • the produced aromatic carbonate contained substantially no halogen (lppb or less).
  • Aromatic polycarbonate was produced using a polymerization apparatus in which two guided contact flow type polymerization reactors as shown in Fig. 6 were arranged in series.
  • the material of these polymerization vessels is all stainless steel.
  • the second polymerization vessel is the same as that used in Example 1.
  • An aromatic polycarbonate melt polymer (number average molecular weight Mn is 2,500) made from bisphenol A and high-purity diphenyl carbonate (molar ratio of bisphenol A to 1.06) is supplied by a feed pump. 1 Continuously fed to feed zone 3 from feed port 1 of the polymerization vessel. The molten prepolymer, which was continuously supplied to the polymerization reaction zone through the perforated plate 2 in the first polymerization vessel, proceeded with the polymerization reaction while flowing down along the guide 4. The polymerization reaction zone of the first polymerization vessel is maintained at a pressure of 800 Pa through the vacuum vent 6.
  • An aromatic polycarbonate molten prepolymer (number average molecular weight Mn is 5,500) having increased degree of polymerization that has entered the bottom 11 of the polymerization vessel from the bottom of the guide 4 so that the amount at the bottom is constant. Then, it was continuously extracted from the discharge port 7 at a constant flow rate by the discharge pump 8. This molten prepolymer was continuously fed to feed zone 3 from feed port 1 of the second polymerization vessel by a feed pump. The molten prepolymer, which was continuously supplied to the polymerization reaction zone through the perforated plate 2 in the second polymerization vessel, proceeded with the polymerization reaction while flowing down along the guide 4.
  • the polymerization reaction zone of the second polymerization vessel is maintained at a pressure of 50 Pa through the vacuum vent 6.
  • Aroma produced from the bottom of the guide 4 into the bottom 11 of the second polymerization vessel The group polycarbonate was continuously extracted from the discharge port 7 at a flow rate of 6 tons / hr by the discharge pump 8 so that the amount at the bottom was constant.
  • the number average molecular weight Mn of the aromatic polycarbonate extracted from the outlet 12 of the second polymerization vessel 50 hours after the start of operation was 11,500, indicating a good color (b * value 3.2). ) Met.
  • the tensile elongation was 99%. 60 hours, 100 hours, 500 hours, 1,000 hours, 2,000 hours, 3,000 hours, 4,000 hours, 5,000 hours and 5,000 hours after the start of operation Mn of the extracted aromatic polycarbonate is 11, 500, 11, 550, 11, 500, 11, 550, 11, 500, 11, 500, 11, 550, 11, 500 and stable Met.
  • the aromatic polycarbonate produced in this manner has an alkali metal and / or alkaline earth metal compound content of 0.03 force, et al.
  • the content was lppb or less.
  • the content of heterogeneous bonds was 0.11 to 0.16 monole%.
  • a high-quality, high-performance aromatic polycarbonate that is not colored and has excellent mechanical properties from a cyclic carbonate and an aromatic dihydroxy compound is 1 ton or more per hour at a high polymerization rate.
  • a high-quality aromatic polycarbonate can be stably produced for a long period of time with little variation in molecular weight, for example, 2000 hours or longer, preferably 3000 hours or longer, more preferably 5000 hours or longer. Therefore, the present invention is a method having an extremely excellent effect as an industrial production method of high-quality aromatic polycarbonate.
  • FIG. 1 is a schematic view of a continuous reaction distillation column preferable for carrying out the present invention. Inside the torso
  • FIG. 2 is a schematic view of a first continuous reaction distillation column preferable for carrying out the present invention.
  • An internal is installed inside the torso.
  • 3 It is a schematic view of a second continuous reaction distillation column preferable for carrying out the present invention.
  • Inside the barrel is an internal packing consisting of regular packing at the top and a perforated plate tray at the bottom.
  • FIG. 4 is a schematic view of an apparatus in which a first continuous reactive distillation column and a second continuous reactive distillation column are connected, which is preferable for carrying out the present invention.
  • FIG. 5 is a schematic view of a preferred guide contact flow type polymerization apparatus for carrying out the present invention.
  • 6] is a schematic view of a guide contact flow type polymerizer having a cylindrical side casing and a tapered bottom casing which are preferable for carrying out the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The invention aims at providing a specific process by which a high-quality and high-performance aromatic polycarbonate which is little discolored and is excellent in mechanical properties can be stably produced from a cyclic carbonate and an aromatic dihydroxyl compound industrially on a large scale (e.g., in an amount of at least one ton per hour) over a long period (e.g., over a period of 1000 hours or longer, preferably 3000 hours or longer, still preferably 5000 hours or longer). The aim can be attained by a process for the production of an aromatic polycarbonate from a cyclic carbonate and an aromatic dihydroxyl compound which comprises the step (I) of preparing a dialkyl carbonate and a diol by using a reaction-distillation column having specific structure, the step (II) of preparing a diaryl carbonate by using two reaction-distillation columns having specific structure, the step (III) of purifying the diaryl carbonate to obtain a high-purity diaryl carbonate, the step (IV) of converting a molten prepolymer prepared from an aromatic dihydroxyl compound and the high-purity diaryl carbonate into an aromatic polycarbonate by using a guide-contact flowing down type polymerizer having specific structure, and the step (V) recycling an aromatic monohydroxyl compound formed as by-product to the step (II).

Description

明 細 書  Specification
高品質芳香族ポリカーボネートの工業的製造法  Industrial production of high-quality aromatic polycarbonate.
技術分野  Technical field
[0001] 本発明は、芳香族ポリカーボネートの工業的製造法に関する。更に詳しくは、本発 明は、環状カーボネートと芳香族ジヒドロキシ化合物から、着色がなく機械的物性に 優れた高品質 ·高性能の芳香族ポリカーボネートを、工業的に大量に長期間安定的 に製造する方法に関する。  [0001] The present invention relates to an industrial process for producing an aromatic polycarbonate. More specifically, the present invention industrially and stably produces a high-quality, high-performance aromatic polycarbonate that is free of coloring and has excellent mechanical properties from a cyclic carbonate and an aromatic dihydroxy compound in a large amount for a long period of time. Regarding the method.
背景技術  Background art
[0002] 芳香族ポリカーボネートは、耐熱性、耐衝撃性、透明性などに優れたエンジニアリ ングプラスチックスとして、多くの分野において幅広く用いられている。この芳香族ポリ カーボネートの製造方法については、従来種々の研究が行われ、その中で、芳香族 ジヒドロキシ化合物、例えば 2, 2—ビス(4ーヒドロキシフエニル)プロパン(以下、ビス フエノール Aという)とホスゲンとの界面重縮合法が工業化されている。し力もながら、 この界面重縮合法においては、有毒なホスゲンを用いなければならないこと、健康や 環境に問題のある塩化メチレンを重合溶媒としてポリカーボネートあたり 10倍以上も の大量使用しなければならないこと、副生する塩化水素や塩化ナトリウム及び、塩化 メチレンなどの含塩素化合物により装置が腐食すること、ポリマー物性に悪影響を及 ぼす塩化ナトリウム、塩化メチレンなどの塩素系残留不純物の分離が困難なこと、塩 化メチレンや未反応ビスフエノール Aなどを含む大量のプロセス廃水の処理が必要 なこと等、多くの課題がある。  Aromatic polycarbonate is widely used in many fields as engineering plastics having excellent heat resistance, impact resistance and transparency. Various researches have been conducted on the production method of this aromatic polycarbonate, and among them, aromatic dihydroxy compounds such as 2,2-bis (4-hydroxyphenyl) propane (hereinafter referred to as bisphenol A) are included. The interfacial polycondensation process between phosgene and phosgene has been industrialized. However, in this interfacial polycondensation method, toxic phosgene must be used, methylene chloride, which is harmful to health and the environment, must be used in a large amount of more than 10 times per polycarbonate as a polymerization solvent, The equipment is corroded by by-product hydrogen chloride, sodium chloride, and chlorine-containing compounds such as methylene chloride, and it is difficult to separate residual chlorine impurities such as sodium chloride and methylene chloride, which adversely affect the physical properties of the polymer. There are many issues such as the need to treat a large amount of process wastewater containing methylene chloride and unreacted bisphenol A.
[0003] 一方、芳香族ジヒドロキシ化合物とジァリールカーボネートとから、芳香族ポリカー ボネートを製造する方法としては、例えば、ビスフエノール Aとジフエニルカーボネート を溶融状態でエステル交換し、副生するフエノールを抜き出しながら重合する溶融法 が以前から知られている。このエステル交換反応は平衡反応であってし力、もその平 衡定数が小さいので、フエノールを溶融物の表面から効率的に抜き出さない限り重 合が進行しない。溶融法は、界面重縮合法と異なり、溶媒を使用しないなどの利点が ある一方、重合がある程度進行するとポリマーの粘度が急上昇し、副生するフエノー ルなどを効率よく系外に抜き出す事が困難になり、実質的に重合度を上げることがで きなくなるという芳香族ポリカーボネートそのものに基づく本質的な問題があった。す なわち、芳香族ポリカーボネートの場合、ポリアミドやポリエステルなど他の縮合系ポ リマーの溶融重縮合の場合と異なり、低分子量状態、例えば重合度 (n)が 15— 20程 度であっても、その溶融粘度が極端に高くなり、通常の攪拌では表面更新が非常に 困難になる。そして、ポリマー表面からのフエノールの抜出しが実質的に起こらなくな り、製品として必要な重合度 (n = 35— 65程度)のポリマーを製造することができない 。このことは、当業界ではよく知られていることである。 [0003] On the other hand, as a method for producing an aromatic polycarbonate from an aromatic dihydroxy compound and diaryl carbonate, for example, bisphenol A and diphenyl carbonate are transesterified in a molten state, and by-product phenol is obtained. Melting methods that polymerize while being extracted have been known for a long time. This transesterification reaction is an equilibrium reaction, and the force, but its equilibrium constant is small, so that the polymerization does not proceed unless phenol is efficiently extracted from the surface of the melt. Unlike the interfacial polycondensation method, the melting method has the advantage of not using a solvent. On the other hand, when the polymerization proceeds to some extent, the viscosity of the polymer rises rapidly, resulting in by-product phenol. There is an essential problem based on the aromatic polycarbonate itself that it is difficult to efficiently remove the catalyst from the system and the degree of polymerization cannot be substantially increased. In other words, in the case of aromatic polycarbonate, unlike the case of melt polycondensation of other condensation polymers such as polyamide and polyester, even if the low molecular weight state, for example, the degree of polymerization (n) is about 15-20, Its melt viscosity becomes extremely high, and surface renewal becomes very difficult with normal stirring. Further, phenol is not extracted from the polymer surface substantially, and a polymer having a degree of polymerization necessary for a product (n = 35 to 65) cannot be produced. This is well known in the art.
[0004] 芳香族ポリカーボネートを溶融法で製造するための重合器としては、種々の重合器 が知られている。攪拌機を備えた縦型の攪拌槽型重合器を用いる方法は一般に広く 知られている。し力、しながら、縦型の撹拌槽型重合器は小スケールでは容積効率が 高ぐシンプルであるという利点を有し、効率的に重合を進められるが、工業的規模 では、上述したように重合の進行と共に副生するフエノールを効率的に系外に抜き出 す事が困難となり重合速度が極めて低くなるという問題を有している。さらに、大スケ 一ルの縦型の撹拌槽型重合器は、通常、蒸発面積に対する液容量の比率が小スケ ールの場合に比べて大きくなり、いわゆる液深が大きな状態となる。このため、重合 度を高めるために真空度を高めていっても、撹拌槽の下部は液深があるために、上 部の空間部よりも液深に相当する高い圧力で重合されることになり、フエノール等は 効率的に抜き出すことが困難になってしまう。従って、大スケールの縦型の撹拌槽型 重合器は、プレボリマーを製造する場合のみにし力、使用することができない。必要な 重合度を達成するためには、このプレボリマーからさらに重縮合反応を進行させるた めの重合器が必須である。  [0004] Various polymerizers are known as a polymerizer for producing an aromatic polycarbonate by a melting method. A method using a vertical stirring tank type polymerizer equipped with a stirrer is generally well known. However, the vertical stirred tank type polymerizer has the advantage of high volumetric efficiency and small size on a small scale, and can proceed with polymerization efficiently, but on an industrial scale, as described above. As the polymerization proceeds, it is difficult to efficiently extract phenol as a by-product out of the system, and the polymerization rate is extremely low. Furthermore, a large-scale vertical stirred tank type polymerization apparatus usually has a larger liquid volume ratio to the evaporation area than a small scale, and the so-called liquid depth is large. For this reason, even if the degree of vacuum is increased in order to increase the degree of polymerization, the lower part of the stirring tank has a liquid depth, so that the polymerization is performed at a higher pressure corresponding to the liquid depth than the upper space part. Therefore, it becomes difficult to efficiently extract phenol and the like. Therefore, a large-scale vertical stirring tank type polymerization apparatus cannot be used only when producing a prepolymer. In order to achieve the required degree of polymerization, a polymerizer for further proceeding the polycondensation reaction from this prepolymer is essential.
[0005] この問題を解決しょうと、高粘度状態のポリマーからフエノール等を効率的に抜き出 すための種々の工夫がなされている。これらの工夫の大部分は、機械的攪拌の改良 に関するものであり、例えば、ベント部を有するスクリュー型重合器を用いる方法(特 許文献 1参照。)、嚙合型 2軸押出機を用いる方法 (特許文献 2参照。)、また、薄膜 蒸発型反応器、例えばスクリュー蒸発器や遠心薄膜蒸発器等を用いる方法 (特許文 献 3参照。)が記載されており、さらに、遠心薄膜型蒸発装置と横型 2軸撹拌式重合 器を組み合わせて用いる方法(特許文献 4参照。)が具体的に開示されている。これ らの方法は、いずれも機械的攪拌を行うことを技術の根幹としているため、 自ずと限 界があり、この問題を解決するには至っていない。すなわち、超高溶融粘度に対応で きる機械的攪拌そのものに限界があるため、芳香族ポリカーボネートの超高溶融粘 度にかかわる種々の問題を解決することができないままである。これらの方法では、 温度を上げその溶融粘度を少しでも下げることで解決して!/、こうとして!/、る。 [0005] In order to solve this problem, various contrivances have been made to efficiently extract phenol and the like from a polymer having a high viscosity state. Most of these devices are related to improvements in mechanical stirring. For example, a method using a screw-type polymerizer having a vent (see Patent Document 1), a method using a combined twin-screw extruder ( Patent Document 2)), and a method using a thin film evaporation reactor such as a screw evaporator or a centrifugal thin film evaporator (see Patent Document 3) is described. Horizontal biaxial stirring polymerization A method of using a combination of vessels (see Patent Document 4) is specifically disclosed. All of these methods are based on the mechanical agitation, and have their own limitations, and have not yet solved this problem. In other words, since there is a limit to the mechanical agitation itself that can cope with the ultra-high melt viscosity, various problems relating to the ultra-high melt viscosity of the aromatic polycarbonate remain unsolvable. These methods can be solved by raising the temperature and lowering the melt viscosity as much as possible!
[0006] すなわち、 300°C近くの高温、高真空下で溶融プレボリマーを機械的攪拌で表面 更新を図りながら重合を行うのがこれらの方法である力 この温度でもなおその溶融 粘度が非常に高いため、その表面更新の程度を高くすることができない。従って、こ れらの方法では製造できるポリカーボネートの重合度に制限があり、高分子量グレー ドの製品を製造することは困難である。さらに、これらの方法では 300°C近くの高温で 反応させるため、得られるポリマーの着色や物性低下が起こり易いことに加え、攪拌 装置の真空シール部からの空気や異物の漏れこみなどによるポリマーの着色や物性 低下も起こり易いことなど、高品質のポリカーボネートを長期間安定的に製造するた めには、なお多くの解決すべき多くの課題がある。  [0006] That is, it is the power of these methods to perform polymerization while renewing the surface of the molten prepolymer with mechanical stirring under a high temperature and high vacuum near 300 ° C. Even at this temperature, the melt viscosity is still very high. For this reason, the degree of surface renewal cannot be increased. Therefore, the degree of polymerization of polycarbonate that can be produced by these methods is limited, and it is difficult to produce high molecular weight grade products. Furthermore, since these methods react at a high temperature close to 300 ° C, the resulting polymer is likely to be colored or deteriorated in physical properties, and in addition, the polymer may be leaked due to leakage of air or foreign matter from the vacuum seal of the stirrer. There are still many problems to be solved in order to stably produce high-quality polycarbonate for a long period of time, such as coloration and deterioration of physical properties.
[0007] 本発明者らは、機械的攪拌を行わな!/、で、溶融プレボリマーをワイヤーなどのガイ ドに沿わせて自重で落下させながら重合させるガイド接触流下式重合器を用いる方 法を開発することによってこれらの課題を完全に解決できることを見出し、先に出願し た。 (例えば、特許文献 5〜; 12参照。)し力もながら、これらの方法には、芳香族ポリ力 ーボネートを 1時間あたり 1トン以上生産できるような工業的製造法に関する具体的な 方法の開示や示唆はなされていなかった。  [0007] The inventors of the present invention have used a guide contact flow type polymerization apparatus in which the molten polymer is polymerized while dropping by its own weight along a guide such as a wire without mechanical stirring. We found out that these problems could be solved completely by developing, and filed earlier. (For example, see Patent Documents 5 to 12). However, these methods include disclosure of specific methods related to industrial production methods that can produce 1 ton or more of aromatic polycarbonate per hour. There was no suggestion.
[0008] さらに、エステル交換反応による芳香族ポリカーボネートを工業的規模で製造する ためには、高純度ジァリールカーボネートを工業的規模で大量に入手することが必 要である。芳香族ジヒドロキシ化合物、例えば、高純度ビスフエノール Aは、工業的に 大量に製造されており、これを入手することは容易である力 高純度ジァリールカー ボネートを工業的規模で大量に入手することは、不可能である。従って、これを製造 する必要がある。  [0008] Furthermore, in order to produce an aromatic polycarbonate by an ester exchange reaction on an industrial scale, it is necessary to obtain a large amount of high-purity diaryl carbonate on an industrial scale. Aromatic dihydroxy compounds, such as high-purity bisphenol A, are manufactured in large quantities industrially and are easy to obtain.To obtain high-purity diaryl carbonate in large quantities on an industrial scale, Impossible. It is therefore necessary to produce this.
[0009] ジァリールカーボネートの製法としては、芳香族モノヒドロキシ化合物とホスゲンとの 反応による方法が古くから知られており、最近も種々検討されている。しかしながら、 この方法はホスゲン使用の問題に加え、この方法によって製造されたジァリールカー ボネートには分離が困難な塩素系不純物が存在しており、そのままでは芳香族ポリ カーボネートの原料として用いることはできない。なぜならば、この塩素系不純物は、 極微量の塩基性触媒の存在下で行うエステル交換法芳香族ポリカーボネートの重合 反応を著しく阻害し、たとえば、 lppmでもこのような塩素系不純物が存在すると殆ど 重合を進行させることができない。そのため、エステル交換法芳香族ポリカーボネート の原料とするには、希アルカリ水溶液と温水による十分な洗浄と油水分離、蒸留など の多段階の面倒な分離 ·精製工程が必要であり、さらにこのような分離 ·精製工程で の加水分解ロスや蒸留ロスのため収率が低下するなど、この方法を経済的に見合つ た工業的規模で実施するには多くの課題がある。 [0009] As a method for producing diaryl carbonate, an aromatic monohydroxy compound and phosgene are used. Reaction methods have been known for a long time, and various studies have been made recently. However, in this method, in addition to the problem of using phosgene, the diaryl carbonate produced by this method contains chlorine-based impurities that are difficult to separate, and cannot be used as a raw material for aromatic polycarbonate as it is. This is because this chlorine-based impurity significantly inhibits the polymerization reaction of the transesterification aromatic polycarbonate carried out in the presence of a very small amount of a basic catalyst. Can't progress. Therefore, in order to use as a raw material for transesterification aromatic polycarbonate, sufficient washing with dilute alkaline aqueous solution and warm water, oil-water separation, and distillation, etc., are required. · There are many problems in implementing this method on an industrial scale that is economically reasonable, such as a decrease in yield due to hydrolysis loss and distillation loss in the purification process.
[0010] 一方、ジアルキルカーボネートと芳香族モノヒドロキシ化合物とのエステル交換反応 による芳香族カーボネートの製造方法も知られている。し力、しながら、これらのエステ ル交換反応は全て平衡反応であって、し力、もその平衡が原系に極端に偏っているこ とに加えて反応速度が遅いことから、この方法によって芳香族カーボネート類を工業 的に大量に製造するのは多大な困難を伴っていた。  [0010] On the other hand, a method for producing an aromatic carbonate by a transesterification reaction between a dialkyl carbonate and an aromatic monohydroxy compound is also known. However, these ester exchange reactions are all equilibrium reactions, and the reaction rate is slow in addition to the fact that the equilibrium is extremely biased toward the original system. It was very difficult to industrially produce large quantities of aromatic carbonates.
[0011] これを改良するためにいくつかの提案がなされている力 その大部分は、反応速度 を高めるための触媒開発に関するものである。このタイプのエステル交換反応用触媒 として数多くの金属化合物が提案されている。し力もながら、触媒開発だけでは、不 禾 IJな平衡の問題を解決できないので、大量生産を目的とする工業的製造法にするた めには、反応方式の検討を含め、非常に多くの検討課題がある。  [0011] Several proposals have been made to improve this, most of which relates to the development of catalysts to increase reaction rates. Many metal compounds have been proposed as catalysts for this type of transesterification reaction. However, the catalyst development alone cannot solve the problem of unsatisfactory IJ equilibrium. There are challenges.
[0012] 一方、反応方式を工夫することによって平衡をできるだけ生成系側にずらし、芳香 族カーボネート類の収率を向上させる試みもなされている。例えば、ジメチルカーボ ネートとフエノールの反応において、副生してくるメタノールを共沸形成剤とともに共 沸によって留去する方法(特許文献 13参照。)、副生してくるメタノールをモレキユラ 一シーブで吸着させて除去する方法 (特許文献 14参照。)が提案されている。また、 反応器の上部に蒸留塔を設けた装置によって、反応で副生してくるアルコール類を 反応混合物から分離させながら同時に蒸発してくる未反応原料との蒸留分離を行う 方法も提案されている(特許文献 15参照。)。 [0012] On the other hand, attempts have been made to improve the yield of aromatic carbonates by devising the reaction system to shift the equilibrium to the production system as much as possible. For example, in the reaction of dimethyl carbonate and phenol, by-product methanol is distilled off together with the azeotropic agent by azeotropic distillation (see Patent Document 13), and by-product methanol is adsorbed by molecular sieves. And a method of removing it (see Patent Document 14). In addition, the apparatus equipped with a distillation tower at the top of the reactor performs distillation separation of unreacted raw materials that simultaneously evaporate while separating alcohols by-produced from the reaction from the reaction mixture. A method has also been proposed (see Patent Document 15).
[0013] しかしながら、これらの反応方式は基本的にはバッチ方式力、、切り替え方式である。  However, these reaction systems are basically a batch system force and a switching system.
触媒開発による反応速度の改良もこれらのエステル交換反応に対しては限度があり 、反応速度が遅いことから、連続方式よりもバッチ方式の方が好ましいと考えられてい たからである。これらのなかには、連続方式として蒸留塔を反応器の上部に備えた連 続攪拌槽型反応器 (CSTR)方式も提案されて!/ヽるが、反応速度が遅!/ヽことや反応 器の気液界面が液容量に対して小さレ、ことから反応率を高くできな!/、などの問題が ある。従って、これらの方法で芳香族カーボネートを連続的に大量に、長期間安定的 に製造するという目的を達成することは困難であり、経済的に見合う工業的実施にい たるには、なお多くの解決すべき課題が残されている。  This is because the improvement of the reaction rate due to the development of the catalyst has a limit for these transesterification reactions, and the reaction rate is slow, so that the batch method was considered preferable to the continuous method. Among these, a continuous stirred tank reactor (CSTR) system with a distillation column at the top of the reactor has also been proposed as a continuous system! There is a problem that the gas-liquid interface is small relative to the liquid volume, so the reaction rate cannot be increased! Therefore, it is difficult to achieve the objective of stably producing a large amount of aromatic carbonate continuously by these methods for a long period of time, and there are still many in order to achieve economically reasonable industrial implementation. Issues to be solved remain.
[0014] 本発明者等は、ジアルキルカーボネートと芳香族ヒドロキシ化合物を連続的に多段 蒸留塔に供給し、触媒を存在させた該塔内で連続的に反応させ、副生するアルコー ルを含む低沸点成分を蒸留によって連続的に抜き出すと共に、生成したアルキルァ リールカーボネートを含む成分を塔下部より抜き出す反応蒸留法 (特許文献 16参照 。)、アルキルァリールカーボネートを連続的に多段蒸留塔に供給し、触媒を存在さ せた該塔内で連続的に反応させ、副生するジアルキルカーボネートを含む低沸成分 を蒸留によって連続的に抜き出すと共に、生成したジァリールカーボネートを含む成 分を塔下部より抜き出す反応蒸留法 (特許文献 17参照。)、これらの反応を 2基の連 続多段蒸留塔を用いて行い、副生するジアルキルカーボネートを効率的にリサイクル させながらジァリールカーボネートを連続的に製造する反応蒸留法(特許文献 18参 照。)、ジアルキルカーボネートと芳香族ヒドロキシ化合物等を連続的に多段蒸留塔 に供給し、塔内を流下する液を蒸留塔の途中段及び/又は最下段に設けられたサ イド抜き出し口より抜き出し、蒸留塔の外部に設けられた反応器へ導入して反応させ た後に、該抜き出し口のある段よりも上部の段に設けられた循環用導入口へ導入す ることによって、該反応器内と該蒸留塔内の両方で反応を行う反応蒸留法(特許文 献 19参照。)等、これらのエステル交換反応を連続多段蒸留塔内で反応と蒸留分離 とを同時に行う反応蒸留法を開発し、これらのエステル交換反応に対して反応蒸留 方式が有用であることを世界で初めて開示した。 [0015] 本発明者等が提案したこれらの反応蒸留法は、芳香族カーボネート類を効率よぐ かつ連続的に製造することを可能とする初めてのものであり、その後これらの開示に 基づいて、 2基の連続多段蒸留塔を用いてジアルキルカーボネートからジァリール力 ーボネートを製造する方法が提案されて!/、る(特許文献 20〜26参照。 )。 [0014] The inventors of the present invention continuously supply dialkyl carbonate and aromatic hydroxy compound to a multistage distillation column, continuously react in the column in the presence of a catalyst, and contain a by-product alcohol. The boiling point component is continuously extracted by distillation, and the component containing the generated alkylaryl carbonate is extracted from the lower part of the column (see Patent Document 16). The alkylaryl carbonate is continuously supplied to the multistage distillation column. The reaction is continuously carried out in the column in the presence of a catalyst, and low-boiling components including dialkyl carbonate as a by-product are continuously extracted by distillation, and the generated components including diaryl carbonate are extracted from the bottom of the column. Reactive distillation (see Patent Document 17), these reactions are carried out using two continuous multistage distillation towers, and by-product dialkyl carbonate is effectively used. Reactive distillation method (see Patent Document 18), which continuously produces diaryl carbonate while being recycled, continuously supplies dialkyl carbonate and aromatic hydroxy compound to the multistage distillation column, and flows down in the column. The liquid to be discharged is extracted from a side outlet provided in the middle stage and / or the lowermost stage of the distillation tower, introduced into a reactor provided outside the distillation tower and reacted, and then from the stage having the outlet. These esters, such as reactive distillation (see Patent Document 19), in which the reaction is carried out in both the reactor and the distillation column by being introduced into the circulation inlet provided in the upper stage. We have developed a reactive distillation method in which the exchange reaction is carried out in a continuous multistage distillation column at the same time and the distillation separation, and we disclosed for the first time in the world that the reactive distillation method is useful for these transesterification reactions. [0015] These reactive distillation methods proposed by the present inventors are the first to make it possible to produce aromatic carbonates efficiently and continuously, and then based on these disclosures, There has been proposed a method for producing diaryl force-bonate from dialkyl carbonate using two continuous multi-stage distillation columns (see Patent Documents 20 to 26).
[0016] さらに、本出願人は、反応蒸留方式において、多量の触媒を必要とせずに高純度 芳香族カーボネートを長時間、安定に製造できる方法として、触媒成分を含む高沸 点物質を作用物質と反応させた上で分離し、触媒成分をリサイクルする方法 (特許文 献 27参照。)や、反応系内の多価芳香族ヒドロキシ化合物を触媒金属に対して質量 比で 2. 0以下に保ちながら行う方法 (特許文献 28参照。)を提案した。またさらに、本 発明者等は、重合工程で副生するフエノールの 70〜99質量%を原料として用いて、 反応蒸留法でジフエ二ルカーボネートを製造しこれを芳香族ポリカーボネートの重合 原料とする方法をも提案した (特許文献 29参照)。  [0016] Further, the applicant of the present invention has disclosed a high boiling point substance containing a catalyst component as an active substance as a method for stably producing a high-purity aromatic carbonate for a long time without requiring a large amount of catalyst in a reactive distillation system. (See Patent Document 27), and the polyvalent aromatic hydroxy compound in the reaction system is kept at a mass ratio of 2.0 or less with respect to the catalyst metal. (See Patent Document 28). Furthermore, the present inventors use 70 to 99% by mass of phenol by-produced in the polymerization step as a raw material to produce diphenyl carbonate by a reactive distillation method and use this as a polymerization raw material for aromatic polycarbonate. Was also proposed (see Patent Document 29).
[0017] しかしながら、これら反応蒸留法による芳香族カーボネート類の製造を提案する全 ての先行文献には、工業的規模の大量生産 (例えば、 1時間あたり 1トン)を可能とす る具体的な方法や装置の開示は全くなぐまたそれらを示唆する記述もない。例えば 、ジメチルカーボネートとフエノールから主としてジフエ二ルカーボネート(DPC)を製 造するために開示された 2基の反応蒸留塔の高さ(Hおよび H : cm)、直径 (Dおよ  [0017] However, all the prior literatures proposing the production of aromatic carbonates by these reactive distillation methods include specific examples that enable mass production on an industrial scale (for example, 1 ton per hour). There is no disclosure of methods or devices, nor is there any description suggesting them. For example, the height (H and H: cm) and diameter (D and D) of two reactive distillation columns disclosed to produce mainly diphenyl carbonate (DPC) from dimethyl carbonate and phenol.
1 2 1 び D : cm)、段数 (nおよび n )と反応原料液導入量 (Qおよび Q : kg/hr)に関す 1 2 1 and D: cm), the number of plates (n and n) and the amount of reaction raw material introduced (Q and Q: kg / hr)
2 1 2 1 2 2 1 2 1 2
る記述は、表 1のとおりである。  Table 1 shows the descriptions.
[0018] [表 1] [0018] [Table 1]
Hi Di Π1 Qi H2 D2 Π2 Q2 义献 Hi Di Π1 Qi H 2 D 2 Π2 Q 2
600 25 20 66 600 25 20 23 18  600 25 20 66 600 25 20 23 18
350 2.8 ― 0.2 305 5〜10 15+ 0.6 21  350 2.8 ― 0.2 305 5 ~ 10 15+ 0.6 21
充 物  Filling
500 5 50 0.6 400 8 50 0.6 22  500 5 50 0.6 400 8 50 0.6 22
100 4 - 1.4 200 4 - 0.8 23  100 4-1.4 200 4-0.8 23
300 5 40 1.5 - 5 25 0.7 24  300 5 40 1.5-5 25 0.7 24
1200 20 40 86 600 25 20 31 27  1200 20 40 86 600 25 20 31 27
28  28
600 一 20 66 600 一 20 22 29 [0019] すなわち、この反応を反応蒸留方式で実施するにあたり用いられた 2基の連続多段 蒸留塔の最大のものは、本出願人が特許文献 27、 28において開示したものである。 このようにこの反応用に開示されている連続多段蒸留塔における各条件の最大値は 、 H = 1200cm, H = 600cm、 D = 20cm、 D = 25cm、 n =n = 50 (この条件の600 one 20 66 600 one 20 22 29 That is, the largest of the two continuous multistage distillation columns used for carrying out this reaction by the reactive distillation method is the one disclosed by the present applicant in Patent Documents 27 and 28. Thus, the maximum value of each condition in the continuous multistage distillation column disclosed for this reaction is H = 1200 cm, H = 600 cm, D = 20 cm, D = 25 cm, n = n = 50 (under this condition
1 2 1 2 1 2 1 2 1 2 1 2
み特許文献 22参照)、 Q = 86kg/hr、 Q = 31kg/hrであり、ジフエニルカーボネ  Patent Document 22), Q = 86 kg / hr, Q = 31 kg / hr, and diphenyl carbon
1 2  1 2
ートの生産量は約 6. 7kg/hrに過ぎず、工業的規模の生産量ではな力 た。  The production rate of the cart was only about 6.7 kg / hr, which was not strong on an industrial scale.
[0020] 本発明の工程 (II)で用いられるジアルキルカーボネートは、工業的規模で製造さ れる必要があり、さらにハロゲンを含有しないことが必要である。芳香族ポリカーボネ ート原料として、ジアルキルカーボネートが工業的に大量に製造されている唯一の方 法は、メタノールを一酸化炭素と酸素と反応させて、ジメチルカーボネートと水を製造 する酸化的カルボニル化法によるものである。しかしながら、この酸化的カルボニル 化法(特許文献 30参照。)は、大量の CuCl— HClを触媒として用いるスラリー状態で 反応させる必要があり、反応系および分離 ·精製系が、非常に腐食性が高いことが問 題である。しかも、この方法では一酸化炭素が二酸化炭素に酸化されやすいので、 一酸化炭素基準の選択率が 80%程度と低いことも問題である。 [0020] The dialkyl carbonate used in the step (II) of the present invention needs to be produced on an industrial scale and further does not contain a halogen. The only method in which dialkyl carbonate is industrially produced in large quantities as a raw material for aromatic polycarbonate is the oxidative carbonylation method in which methanol is reacted with carbon monoxide and oxygen to produce dimethyl carbonate and water. Is due to. However, this oxidative carbonylation method (see Patent Document 30) requires a reaction in a slurry state using a large amount of CuCl-HCl as a catalyst, and the reaction system and separation / purification system are extremely corrosive. The problem is. Moreover, since carbon monoxide is easily oxidized to carbon dioxide by this method, the problem is that the selectivity based on carbon monoxide is as low as about 80%.
[0021] 一方、環状カーボネートと脂肪族 1価アルコール類の反応から、ジアルキルカーボ ネートとジオール類を製造する方法力 いくつかの提案されている。この反応では、 ハロゲンを使用せずにジアルキルカーボネートが製造できるので、好ましい方法であ る。その反応方式として、 4つの方式が提案されている。これら 4つの反応方式は、最 も代表的な反応例であるエチレンカーボネートとメタノールからのジメチルカーボネー トとエチレングリコールの製造方法において用いられており、これらは、(1)完全なバ ツチ反応方式、(2)蒸留塔を上部に設けた反応釜を用いるバッチ反応方式、(3)管 式リアクターを用いる液状流通反応方式、(4)本発明者等が初めて開示した反応蒸 留方式 (特許文献 3;!〜 39参照。)である。し力もながら、これらの方式では、それぞ れ、以下に述べるような問題点があった。 [0021] On the other hand, several proposals have been made on the process power for producing dialkyl carbonates and diols from the reaction of cyclic carbonates and aliphatic monohydric alcohols. This reaction is a preferred method because dialkyl carbonate can be produced without using halogen. Four methods have been proposed for this reaction. These four reaction methods are used in the most typical reaction example, a method for producing dimethyl carbonate and ethylene glycol from ethylene carbonate and methanol. These are (1) a complete batch reaction method. (2) Batch reaction method using a reaction kettle with a distillation column at the top, (3) Liquid flow reaction method using a tubular reactor, (4) Reaction distillation method disclosed by the present inventors for the first time (Patent Literature) 3; see! -39.). However, each of these methods has the following problems.
[0022] すなわち、(1)、(3)の場合には、環状カーボネートの反応率の上限は仕込み組成 と温度から決まるため、反応を完全に終結させることはできず、反応率が低い。また、 (2)の場合には環状カーボネートの反応率を高めるためには、生成するジアルキル カーボネートを、極めて大量の脂肪族 1価アルコールを使用して留去しなければなら ず、長い反応時間を必要とする。 (4)の場合には、(1)、(2)、(3)と比較して、高い 反応率で反応を進行させることが可能である。し力もながら、これまで提案されている (4)の方法は、少量のジアルキルカーボネートとジオール類を製造する方法であるか 、短期間の製造方法に関するものであり、工業的規模での長期間安定製造に関する ものではなかった。すなわち、ジアルキルカーボネートを連続的に大量(例えば、 1時 間あたり 2トン以上)に、長期間(例えば 1000時間以上、好ましくは 3000時間以上、 より好ましくは 5000時間以上)安定的に製造するという目的を達成するものではなか つた。 That is, in the cases of (1) and (3), since the upper limit of the reaction rate of the cyclic carbonate is determined by the charged composition and temperature, the reaction cannot be completed completely and the reaction rate is low. In the case of (2), in order to increase the reaction rate of the cyclic carbonate, The carbonate must be distilled off using a very large amount of an aliphatic monohydric alcohol, requiring a long reaction time. In the case of (4), the reaction can proceed at a higher reaction rate than in (1), (2), and (3). However, the method (4) that has been proposed so far is a method for producing a small amount of dialkyl carbonate and diol or a short-term production method, and is stable for a long time on an industrial scale. It was not about manufacturing. That is, the object is to stably produce dialkyl carbonate in a large amount continuously (for example, 2 tons or more per hour) for a long period of time (for example, 1000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more). It was not something to achieve.
[0023] 例えば、エチレンカーボネートとメタノールからジメチルカーボネート(DMC)とェチ レングリコール (EG)を製造するために開示されている実施例における反応蒸留塔の 高さ(H : cm)、直径(D : cm)、段数(n)、ジメチルカーボネートの生産量 P (kg/hr) 、連続製造時間 T (hr)に関する最大値を示す記述は、表 2のとおりである。  [0023] For example, the height (H: cm), diameter (D) of the reactive distillation column in the examples disclosed for producing dimethyl carbonate (DMC) and ethylene glycol (EG) from ethylene carbonate and methanol. Table 2 shows the maximum values for (cm), number of plates (n), dimethyl carbonate production P (kg / hr), and continuous production time T (hr).
[0024] [表 2]  [0024] [Table 2]
Figure imgf000010_0001
Figure imgf000010_0001
(注 1} オールダ一ショウ蒸留塔。  (Note 1) Older show distillation column.
(注 2) 蒸留塔を規定する記述はまったく無い。  (Note 2) There is no description specifying the distillation column.
(注 3) 蒸留塔を規定する記述は段数のみ。  (Note 3) The description specifying the distillation column is only the number of plates.
(注 4) 生産量の記述はまったく無い。  (Note 4) There is no description of production volume.
(注 5) 長期間の安定製造に関する記述はまつたく無い。  (Note 5) There is no description of long-term stable production.
[0025] なお、特許文献 38 (第 0060段落)には、「本実施例は上記の図 1に示した好ましい 態様と同様のプロセスフローを採用し、エチレンカーボネートとメタノールの接触転化 反応によりエステル交換させてジメチルカーボネート及びエチレングリコールを製造 する商業的規模装置の操業を目的になされたものである。なお、本実施例で下記す る数値は実装置の操作にも十分適用可能である。」と記載され、その実施例として、 3 750kg/hrのジメチルカーボネートを具体的に製造したとの記載がなされている。実 施例に記載のこの規模は年産 3万トン以上に相当するので、特許文献 38の出願当 時(2002年 4月 9日)としては、この方法による世界一の大規模商業プラントの操業 が実施されたことになる。し力もながら、このような事実は全くない。また、特許文献 38 の実施例では、ジメチルカーボネートの生産量は理論計算値と全く同一の値が記載 されている力、エチレングリコールの収率は約 85. 6%で、選択率は約 88. 4%であり 、高収率 ·高選択率を達成しているとはいい難い。特に選択率が低いことは、この方 法が工業的製造法として、致命的な欠点を有していることを表している。 (なお、特許 文献 38は、 2005年 7月 26日、未審査請求によるみなし取下処分がなされている。 ) [0026] 反応蒸留法は、蒸留塔内での反応による組成変化と蒸留による組成変化と、塔内 の温度変化と圧力変化等の変動要因が非常に多ぐ長期間の安定運転の継続させ ることは困難を伴うことが多ぐ特に大量を扱う場合にはその困難性はさらに増大する 。反応蒸留法によるジアルキルカーボネートとジオール類を高収率'高選択率を維持 しつつ、それらの大量生産を長期間安定的に継続させるためには、反応蒸留装置に 工夫をすることが必要である。し力もながら、これまでに提案されている反応蒸留法に おける、長期間の連続安定製造に関する記述は、特許文献 31の 400時間のみであ つた。 [0025] It should be noted that Patent Document 38 (paragraph 0060) states that "this embodiment is preferable as shown in FIG. 1 above". The process flow is the same as that of the embodiment, and the purpose is to operate a commercial scale apparatus for producing dimethyl carbonate and ethylene glycol by transesterification by a catalytic conversion reaction of ethylene carbonate and methanol. It should be noted that the numerical values described below in this embodiment are sufficiently applicable to the operation of an actual apparatus. As an example, it is described that 3 750 kg / hr of dimethyl carbonate was specifically produced. Since this scale described in the examples corresponds to an annual output of 30,000 tons or more, at the time of filing of Patent Document 38 (April 9, 2002), the world's largest large-scale commercial plant was operated by this method. It has been implemented. However, there is no such fact at all. Further, in the example of Patent Document 38, the production amount of dimethyl carbonate is the same as the theoretically calculated value, the yield of ethylene glycol is about 85.6%, and the selectivity is about 88. It is 4% and it is difficult to say that high yield and high selectivity are achieved. The low selectivity indicates that this method has a fatal defect as an industrial production method. (Note that Patent Document 38 was deemed to be dismissed by an unexamined request on July 26, 2005.) [0026] The reactive distillation method uses a composition change caused by a reaction in a distillation column and a composition caused by distillation. It is often difficult to continue stable operation over a long period of time because of the large number of fluctuation factors such as changes in temperature and pressure changes in the tower, especially when dealing with large quantities. Increase. It is necessary to devise a reactive distillation device in order to continue high-volume production of dialkyl carbonates and diols by reactive distillation while maintaining high yield and high selectivity for a long period of time. . However, the description of long-term continuous stable production in the reactive distillation method proposed so far was only 400 hours of Patent Document 31.
[0027] 特許文献 1 :特公昭 50— 19600号公報 (英国特許第 1007302号明細書)  Patent Document 1: Japanese Patent Publication No. 50-19600 (British Patent No. 1007302)
特許文献 2:特公昭 52— 36159号公報  Patent Document 2: Japanese Patent Publication No. 52-36159
特許文献 3 :特公昭 53— 5718号公報 (米国特許第 3, 888, 826号明細書) 特許文献 4:特開平 2— 153923号公報  Patent Document 3: Japanese Patent Publication No. 53-5718 (US Pat. No. 3,888,826) Patent Document 4: Japanese Patent Laid-Open No. 2-153923
特許文献 5:特開平 8— 225641号公報  Patent Document 5: JP-A-8-225641
特許文献 6 :特開平 8— 225643号公報  Patent Document 6: JP-A-8-225643
特許文献 7 :特開平 8— 325373号公報 特許文献 8 : WO 97— 22650号公報 Patent Document 7: JP-A-8-325373 Patent Document 8: WO 97-22650
特許文献 9:特開平 10— 81741号 Patent Document 9: Japanese Patent Laid-Open No. 10-81741
特許文献 10 :特開平 10— 298279号公報 Patent Document 10: JP-A-10-298279
特許文献 l l :WO 99/36457号公報 Patent Document l l: WO 99/36457
特許文献 12 : WO 99/64492号公報 Patent Document 12: WO 99/64492
特許文献 13:特開昭 54— 48732号公報(西独特許公開公報第 736063号明細書、 米国特許第 4252737号明細書) Patent Document 13: JP-A-54-48732 (West German Patent Publication No. 736063, US Pat. No. 4,252,737)
特許文献 14 :特開昭 58— 185536号公報 (米国特許第 410464号明細書) 特許文献 15 :特開昭 56— 123948号公報 (米国特許第 4182726号明細書) 特許文献 16 :特開平 3— 291257号公報 Patent Document 14: Japanese Patent Laid-Open No. 58-185536 (US Pat. No. 410464) Patent Document 15: Japanese Patent Laid-Open No. 56-123948 (US Pat. No. 4,182,726) Patent Document 16: Japanese Patent Laid-Open No. 3- No.291257
特許文献 17:特開平 4 9358号公報 Patent Document 17: Japanese Patent Laid-Open No. 4 9358
特許文献 18 :特開平 4— 211038号公報 (WO 91/09832号公報、欧州特許 046 1274号明細書、米国特許第 5210268号明細書) Patent Document 18: Japanese Patent Application Laid-Open No. 4-211038 (WO 91/09832 Publication, European Patent 046 1274, US Patent 5210268)
特許文献 19 :特開平 4 235951号公報 Patent Document 19: JP-A-4 235951
特許文献 20 :特開平 6— 157424号公報(欧州特許 0582931号明細書、米国特許 ϋ5334742^|·„») Patent Document 20: Japanese Patent Laid-Open No. 6-157424 (European Patent 0582931 Specification, US Patent ϋ5334742 ^ | · „»)
特許文献 21 :特開平 6— 184058号公報(欧州特許 0582930号明細書、米国特許 第 5344954号明細書) Patent Document 21: Japanese Patent Laid-Open No. 6-184058 (European Patent 0582930, US Patent 5344954)
特許文献 22 :特開平 9 40616号公報 Patent Document 22: JP-A-9 40616
特許文献 23:特開平 9 59225号公報 Patent Document 23: JP-A-9 59225
特許文献 24:特開平 9 176094号公報 Patent Document 24: JP-A-9 176094
特許文献 25 : WO 00/18720公報(米国特許第 6093842号明細書) Patent document 25: WO 00/18720 (US Pat. No. 6093842)
特許文献 26:特開 2001— 64235号公報 Patent Document 26: JP 2001-64235 A
特許文献 27 : WO 97/11049公報(欧州特許 0855384号明細書、米国特許第 5 872275 曰月糸田 ·) Patent Document 27: WO 97/11049 (European Patent No. 0855384, US Patent No. 5 872275 Uzuki Itoda)
特許文献 28 :特開平 11 92429号公報(欧州特許 1016648号明細書、米国特許 H6262210^"„») Patent Document 28: Japanese Patent Laid-Open No. 11 92429 (European Patent No. 1016648, US Patent H6262210 ^ "„ »)
特許文献 29:特開平 9 255772号公報(欧州特許 0892001号明細書、米国特許 ϋ5747609^|·„») Patent Document 29: JP-A-9 255772 (European Patent 0892001 Specification, US Patent) ϋ5747609 ^ | · „»)
特許文献 30 : WO 03/016257号公報  Patent Document 30: WO 03/016257
特許文献 31:特開平 4 198141号公報  Patent Document 31: Japanese Patent Laid-Open No. 4 198141
特許文献 32:特開平 9 194435号公報  Patent Document 32: JP-A-9 194435
特許文献 33 :W〇99/64382号公報(欧州特許第 1086940号明細書、米国特許 H6346638^"„»)  Patent Document 33: WO99 / 64382 (European Patent No. 1086940, US Patent H6346638 ^ "„ »)
特許文献 34 :WO00/51954号公報(欧州特許第 1174406号明細書、米国特許 H6479689^"„»)  Patent Document 34: WO00 / 51954 (European Patent No. 1174406, US Patent H6479689 ^ "„ »)
特許文献 35 :特開平 5— 213830号公報(欧州特許第 0530615号明細書、米国特 許第 5231212号明細書)  Patent Document 35: Japanese Patent Laid-Open No. 5-213830 (European Patent No. 0530615, US Patent No. 5231212)
特許文献 36 :特開平 6— 9507号公報(欧州特許第 0569812号明細書、米国特許 第 5359118号明細書)  Patent Document 36: Japanese Patent Laid-Open No. 6-9507 (European Patent No. 0569812, US Patent No. 5359118)
特許文献 37:特開 2003— 119168号公報(WO03/006418号公報)  Patent Document 37: Japanese Patent Laid-Open No. 2003-119168 (WO03 / 006418)
特許文献 38:特開 2003— 300936号公報  Patent Document 38: Japanese Patent Laid-Open No. 2003-300936
特許文献 39:特開 2003— 342209号公報  Patent Document 39: Japanese Patent Laid-Open No. 2003-342209
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0028] 本発明が解決しょうとする課題は、環状カーボネートと芳香族ジヒドロキシ化合物か ら、着色がなく機械的物性に優れた高品質 ·高性能の芳香族ポリカーボネートを、ェ 業的に大量 (例えば、 1時間あたり 1トン以上)に長期間(例えば、 1000時間以上、好 ましくは 3000時間以上、より好ましくは 5000時間以上)、安定的に製造できる具体 的な方法を提供することにある。 [0028] The problem to be solved by the present invention is that a large amount of high-quality, high-performance aromatic polycarbonate having no mechanical coloring and excellent mechanical properties from a cyclic carbonate and an aromatic dihydroxy compound (for example, a large amount (for example, It is to provide a specific method capable of stable production over a long period (for example, 1000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more) over 1 ton per hour.
課題を解決するための手段  Means for solving the problem
[0029] 本発明者等は、上記の課題を達成できる具体的な方法を見出すべき検討を重ねた 結果、本発明に到達した。 [0029] The inventors of the present invention have arrived at the present invention as a result of repeated studies to find out a specific method capable of achieving the above-mentioned problems.
[0030] すなわち、本発明の第 1の態様では、 [0030] That is, in the first aspect of the present invention,
1.環状カーボネートと芳香族ジヒドロキシ化合物から、高品質芳香族ポリカーボネ ートを連続的に製造する工業的製造方法であって、 (I)環状カーボネートと脂肪族 1価アルコールとを触媒が存在する連続多段蒸留塔 T内に連続的に供給し、該塔内で反応と蒸留を同時に行い、生成するジアルキル力1. An industrial production method for continuously producing high-quality aromatic polycarbonate from a cyclic carbonate and an aromatic dihydroxy compound, (I) Cyclic carbonate and aliphatic monohydric alcohol are continuously fed into a continuous multistage distillation column T in which a catalyst exists, and reaction and distillation are simultaneously performed in the column to produce dialkyl power.
0 0
ーボネートを含む低沸点反応混合物を塔上部よりガス状で連続的に抜出し、ジォー ル類を含む高沸点反応混合物を塔下部より液状で連続的に抜出す反応蒸留方式に よって、ジアルキルカーボネートとジオール類を連続的に製造する工程 (I)と、 Dialkyl carbonate and diols are obtained by a reactive distillation system in which a low-boiling reaction mixture containing bonates is continuously withdrawn in the form of gas from the top of the column and a high-boiling reaction mixture containing diols is continuously withdrawn in the form of liquid from the bottom of the column. Step (I) for continuously producing
(II)該ジアルキルカーボネートと芳香族モノヒドロキシ化合物とを原料とし、この原 料を触媒が存在する第 1連続多段蒸留塔内に連続的に供給し、該第 1塔内で反応と 蒸留を同時に行い、生成するアルコール類を含む第 1塔低沸点反応混合物を該第 1 塔上部よりガス状で連続的に抜出し、生成するアルキルァリールカーボネート類を含 む第 1塔高沸点反応混合物を該第 1塔下部より液状で連続的に抜出し、該第 1塔高 沸点反応混合物を触媒が存在する第 2連続多段蒸留塔内に連続的に供給し、該第 2塔内で反応と蒸留を同時に行い、生成するジアルキルカーボネート類を含む第 2塔 低沸点反応混合物を該第 2塔上部よりガス状で連続的に抜出し、生成するジァリー ルカーボネート類を含む第 2塔高沸点反応混合物を該第 2塔下部より液状で連続的 に抜出し、一方、ジアルキルカーボネート類を含む第 2塔低沸点反応混合物を第 1連 続多段蒸留塔内に連続的に供給することによって、ジァリールカーボネートを連続的 に製造する工程 (II)と、  (II) The dialkyl carbonate and the aromatic monohydroxy compound are used as raw materials, and this raw material is continuously fed into a first continuous multistage distillation column in which a catalyst exists, and the reaction and distillation are simultaneously performed in the first column. The first column low-boiling point reaction mixture containing the resulting alcohols is continuously withdrawn from the upper portion of the first column in the form of a gas, and the first column high-boiling point reaction mixture containing the generated alkylaryl carbonates is removed from the first column. The liquid is continuously withdrawn from the bottom of the first column, and the high-boiling point reaction mixture of the first column is continuously fed into the second continuous multi-stage distillation column in which the catalyst exists, and the reaction and distillation are simultaneously performed in the second column. The second tower low-boiling point reaction mixture containing dialkyl carbonates to be produced is continuously withdrawn in the form of a gas from the upper part of the second tower, and the second tower high-boiling point reaction mixture containing diaryl carbonates to be produced is removed from the second tower. Liquid and continuous from the bottom On the other hand, continuously supplying diaryl carbonate by continuously feeding the second column low boiling point reaction mixture containing dialkyl carbonates into the first continuous multi-stage distillation column, (II),
(III)該ジァリールカーボネートを精製し、高純度ジァリールカーボネートを取得す る精製工程 (III)と、  (III) purification step (III) for purifying the diaryl carbonate to obtain high purity diaryl carbonate;
(IV)該芳香族ジヒドロキシ化合物と該高純度ジァリールカーボネートとを反応させ て芳香族ポリカーボネートの溶融プレボリマーを製造し、該溶融プレボリマーをガイド の表面に沿って流下せしめ、その流下中に該溶融プレボリマーの重合を行わせるガ イド接触流下式重合器を用いて芳香族ポリカーボネートを製造する工程 (IV)と、 (IV) The aromatic dihydroxy compound and the high-purity diaryl carbonate are reacted to produce an aromatic polycarbonate molten polymer, and the molten polymer is allowed to flow along the surface of the guide. A step (IV) of producing an aromatic polycarbonate using a guide contact flow type polymerization reactor for polymerizing a prepolymer; and
(V)工程 (IV)で副生する芳香族モノヒドロキシ化合物をジァリールカーボネート製 造工程 (II)に循環する芳香族モノヒドロキシ化合物のリサイクル工程 (V)と、 (V) Aromatic monohydroxy compound recycling step (V) in which the aromatic monohydroxy compound by-produced in step (IV) is circulated to the diaryl carbonate production step (II);
を含み、  Including
(a)該連続多段蒸留塔 T力 S、長さ L (cm)、内径 D (cm)の円筒形の胴部を有し、  (a) The continuous multi-stage distillation column has a cylindrical body having a T force S, a length L (cm), and an inner diameter D (cm),
0 0 0  0 0 0
内部に段数 nをもつインターナルを有する構造をしており、塔頂部またはそれに近い 塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近い塔の下部に内It has an internal structure with n stages inside, and is at or near the top of the tower A gas outlet with an inner diameter d (cm) at the top of the tower, inside the bottom of the tower or near the bottom of the tower
01 01
径 d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上部および/またLiquid outlet with diameter d (cm), below the gas outlet, at the top of the tower and / or
02 02
は中間部に 1つ以上の第 1の導入口、該液抜出し口より上部であって塔の中間部お よび/または下部に 1つ以上の第 2の導入口を有するものであって、 L、 D 、 L /D Has one or more first inlets in the middle part and one or more second inlets above the liquid outlet and in the middle part and / or lower part of the column. , D, L / D
0 0 0 0 0 0
、 n、 D /d 、 D /d ί それぞれ式(1)〜(6)を満足するものであり、 , N, D / d, D / d ί satisfy formulas (1) to (6),
0 01 0 02  0 01 0 02
2100 < L ≤ 8000 式 (1)  2100 <L ≤ 8000 (1)
0  0
180 < D ≤ 2000 式 (2)  180 <D ≤ 2000 (2)
0  0
4 < L /Ε ) ≤ 40 式 (3)  4 <L / Ε) ≤ 40 (3)
0 0  0 0
10 < η ≤ 120 式 (4)  10 <η ≤ 120 (4)
0  0
3 < D /ά ≤ 20 式 (5)  3 <D / ά ≤ 20 Equation (5)
0 01  0 01
5 < D /ά ≤ 30 式 (6)  5 <D / ά ≤ 30 (6)
(b)該第 1連続多段蒸留塔が、長さ L (cm)、内径 D (cm)の円筒形の胴部を有し 、内部に段数 nをもつインターナルを有する構造をしており、塔頂部またはそれに近 い塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近い塔の下部に  (b) The first continuous multi-stage distillation column has a cylindrical body having a length L (cm) and an inner diameter D (cm), and has an internal structure having an internal number n of stages. At the top of the tower or near the top of the tower is a gas outlet with an inner diameter d (cm), at the bottom of the tower or near the bottom of the tower.
11  11
内径 d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上部および/まA liquid outlet with an inner diameter d (cm), below the gas outlet and above the tower and / or
12 12
たは中間部に 1つ以上の第 3の導入口、該液抜出し口より上部であって塔の中間部 および/または下部に 1つ以上の第 4の導入口を有するものであって、 L、 D 、 L / D 、n、D /d 、D /d 力、それぞれ式(7)〜(; 12)を満足するものであり、Or one or more third inlets in the middle part and one or more fourth inlets above the liquid outlet and in the middle part and / or lower part of the tower, , D, L / D, n, D / d, D / d force, respectively satisfying the formulas (7) to (; 12),
1500 < L < 8000 式 (7) 1500 <L <8000 (7)
1  1
100 < D < 2000 式 (8)  100 <D <2000 (8)
1  1
2 < L / ' ≤ 40 式 (9)  2 <L / '≤ 40 (9)
1 1  1 1
20 < n < 120 式(10)  20 <n <120 Formula (10)
1  1
5 < D , Zd ≤ 30 式(11)  5 <D, Zd ≤ 30 (11)
1 11  1 11
3 < D , Zd ≤ 20 式(12)  3 <D, Zd ≤ 20 (12)
1 12  1 12
(c)該第 2連続多段蒸留塔が、長さ L (cm)、内径 D (cm)の円筒形の胴部を有し  (c) The second continuous multi-stage distillation column has a cylindrical body having a length L (cm) and an inner diameter D (cm).
2 2  twenty two
、内部に段数 nをもつインターナルを有する構造をしており、塔頂部またはそれに近  It has an internal structure with n stages inside, and the top of the tower or near it
2  2
い塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近い塔の下部に A gas outlet with an inner diameter d (cm) at the top of the tower, at the bottom of the tower or near the bottom of the tower
21  twenty one
内径 d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上部および/ま たは中間部に 1つ以上の第 5の導入口、該液抜出し口より上部であって塔の中間部 および/または下部に 1つ以上の第 6の導入口を有するものであって、 L、 D 、 L / A liquid outlet with an inner diameter d (cm), below the gas outlet and above the tower and / or Or one or more fifth inlets in the middle, and one or more sixth inlets above the liquid outlet and in the middle and / or lower part of the column, , D, L /
2 2 2 2 2 2
D 、n、D /d 、D /d 力 それぞれ式(13)〜(18)を満足するものであり、D, n, D / d, D / d force satisfy the equations (13) to (18),
2 2 2 21 2 22 2 2 2 21 2 22
1500 ≤ L ≤ 8000 式(13)  1500 ≤ L ≤ 8000 formula (13)
2  2
100 ≤ D ≤ 2000 式(14)  100 ≤ D ≤ 2000 (14)
2  2
2 ≤ L /D ≤ 40 式(15)  2 ≤ L / D ≤ 40 Equation (15)
2 2  twenty two
10 ≤ n ≤ 80 式(16)  10 ≤ n ≤ 80 Equation (16)
2  2
2 ≤ D /d ≤ 15 式(17)  2 ≤ D / d ≤ 15 Equation (17)
2 21  2 21
5 ≤ D /d ≤ 30 式(18)  5 ≤ D / d ≤ 30 Equation (18)
2 22  2 22
(d)該ガイド接触流下式重合器が、  (d) the guide contact flow type polymerizer,
(1)溶融プレボリマー受給口、多孔板、該多孔板を通して該溶融プレボリマーを重 合反応ゾーンのガイドに供給するための溶融プレボリマー供給ゾーン、該多孔板と側 面ケーシングとテーパー形の底部ケーシングとに囲まれた空間に該多孔板から下方 に延びる複数のガイドが設けられた重合反応ゾーン、該重合反応ゾーンに設けられ た真空ベント口、テーパー形の底部ケーシングの最下部に設けられた芳香族ポリ力 ーボネート排出口、及び該排出口に接続された芳香族ポリカーボネート排出ポンプ を有するものであって、  (1) Molten prepolymer receiving port, perforated plate, a molten prepolymer feed zone for feeding the molten prepolymer to the guide of the polymerization reaction zone through the perforated plate, the perforated plate, the side casing, and the tapered bottom casing A polymerization reaction zone provided with a plurality of guides extending downward from the perforated plate in the enclosed space, a vacuum vent port provided in the polymerization reaction zone, and an aromatic polymer provided at the bottom of the tapered bottom casing A power-bonate discharge port, and an aromatic polycarbonate discharge pump connected to the discharge port,
(2)該重合反応ゾーンの側面ケーシングの水平面における内部断面積 A (m2)が、 式(19)を満足するものであって、 (2) The internal cross sectional area A (m 2 ) in the horizontal plane of the side casing of the polymerization reaction zone satisfies the formula (19),
0. 7 ≤ A ≤ 300 式(19)  0. 7 ≤ A ≤ 300 Equation (19)
(3)該 A (m2)と、芳香族ポリカーボネート排出口の水平面における内部断面積 B ( m2)との比が、式(20)を満足するものであって、 (3) The ratio of the A (m 2 ) and the internal cross-sectional area B (m 2 ) in the horizontal plane of the aromatic polycarbonate outlet satisfies the formula (20),
20 ≤ A/B ≤ 1000 式(20)  20 ≤ A / B ≤ 1000 formula (20)
(4)該重合反応ゾーンの底部を構成するテーパー形の底部ケーシングが、上部の 側面ケーシングに対してその内部において、角度 C度で接続されており、該角度 C度 が式(21)を満足するものであって、  (4) The tapered bottom casing constituting the bottom of the polymerization reaction zone is connected to the upper side casing at an angle C degree inside, and the angle C degree satisfies the formula (21). To do,
120 ≤ C ≤ 165 式(21)  120 ≤ C ≤ 165 Equation (21)
(5)該ガイドの長さ h (cmWS、式(22)を満足するものであって、 150 ≤ h ≤ 5000 式(22) (5) The length h of the guide (cmWS, which satisfies equation (22), 150 ≤ h ≤ 5000 (22)
(6)該ガイド全体の外部総表面積 S (m2)が式(23)を満足するものである、 (6) The total external surface area S (m 2 ) of the entire guide satisfies the formula (23).
2 ≤ S ≤ 50000 式(23)  2 ≤ S ≤ 50000 Equation (23)
ことを特徴とする高品質芳香族ポリカーボネートの工業的製造法、 An industrial process for producing high-quality aromatic polycarbonate, characterized by
2.製造される芳香族ポリカーボネートが 1時間あたり 1トン以上であることを特徴と する前項 1に記載の方法、  2. The method according to item 1 above, wherein the aromatic polycarbonate produced is 1 ton or more per hour,
3.工程 (I)で用いられる該連続多段蒸留塔 Tの該 d と該 d が式(24)を満足する  3. The d and d of the continuous multistage distillation column T used in step (I) satisfy the formula (24)
0 01 02  0 01 02
ことを特徴とする前項 1または 2に記載の方法、 The method according to item 1 or 2, wherein
1 ≤ d /d ≤ 5 式(24)  1 ≤ d / d ≤ 5 Equation (24)
01 02  01 02
4.該連続多段蒸留塔 Tの L、 D 、 L /D 、 n、 D /d 、 D /d がそれぞれ、  4.L, D, L / D, n, D / d, D / d of the continuous multistage distillation column T are
0 0 0 0 0 0 0 01 0 02  0 0 0 0 0 0 0 01 0 02
2300≤L ≤6000、 200≤D ≤1000、 5≤L /Ό ≤30、 30≤η ≤100、  2300≤L ≤6000, 200≤D ≤1000, 5≤L / Ό ≤30, 30≤η ≤100,
0 0 0 0 0 0 0 0 0 0
4≤D /ά ≤15、 7≤D /ά ≤25であることを特徴とする前項 1〜3のうち何れ4≤D / ά ≤15, 7≤D / ά ≤25
0 01 0 02 0 01 0 02
、ずれか一項に記載の方法、  , The method described in one of the above,
5.該連続多段蒸留塔 Τの L、 D 、 L /D 、 n、 D /d 、 D /d がそれぞれ、  5.L, D, L / D, n, D / d, D / d of the continuous multistage distillation column
0 0 0 0 0 0 0 01 0 02  0 0 0 0 0 0 0 01 0 02
2500≤L ≤5000、 210≤D ≤800、 7≤L /Ό ≤20、 40≤η ≤90、 5  2500≤L ≤5000, 210≤D ≤800, 7≤L / Ό ≤20, 40≤η ≤90, 5
0 0 0 0 0 0 0 0 0 0
≤Ό /ά ≤13、 9≤D /ά ≤20であることを特徴とする前項 1〜4のうち何れいAny of items 1 to 4 above, wherein ≤Ό / ά ≤13, 9≤D / ά ≤20
0 01 0 02 0 01 0 02
ずれか一項に記載の方法、 The method according to any one of the above,
6.該連続多段蒸留塔 Τ力 該インターナルとしてトレイおよび/または充填物を有  6.Continuous multistage distillation column Repulsion Has internal and tray and / or packing
0  0
する蒸留塔であることを特徴とする前項 1〜5のうち何れいずれか一項に記載の方法 The method according to any one of 1 to 5 above, which is a distillation column
7.該連続多段蒸留塔 Τ 、該インターナルとしてトレィを有する棚段式蒸留塔で 7. The continuous multistage distillation column Τ is a tray type distillation column having a tray as the internal
0  0
あることを特徴とする前項 6記載の方法、 The method according to item 6 above, characterized in that:
8.該連続多段蒸留塔 Τの該トレイが多孔板部とダウンカマー部を有する多孔板ト  8. The continuous multistage distillation column The perforated plate tray having a perforated plate portion and a downcomer portion
0  0
レイであることを特徴とする前項 6または 7記載の方法、 8. The method according to item 6 or 7, wherein the method is a ray.
9.該連続多段蒸留塔 Τの該多孔板トレイが該多孔板部の面積 lm2あたり 100〜1 9. The perforated plate tray of the continuous multi-stage distillation column is 100-1 per lm 2 of the perforated plate portion.
0  0
000個の孔を有するものであることを特徴とする前項 8記載の方法、  The method according to item 8 above, which has 000 holes,
10.該連続多段蒸留塔 Tの該多孔板トレイの孔 1個あたりの断面積が 0. 5〜5cm  10. Cross-sectional area per hole of the perforated plate tray of the continuous multi-stage distillation column T is 0.5-5cm
0  0
2であることを特徴とする前項 8または 9記載の方法、 1 1.該連続多段蒸留塔 τの該多孔板トレイの開口率(多孔板部の面積に対する全 2. The method according to item 8 or 9, wherein 1 1. Opening ratio of the perforated plate tray of the continuous multistage distillation column τ (total with respect to the area of the perforated plate portion)
0 0
孔断面積の割合)が 1. 5〜; 15%であることを特徴とする前項 8〜; 10のうち何れか一 項に記載の方法、 11. The method according to any one of items 8 to 10 above, wherein the ratio of the hole cross-sectional area is 1.5 to 15%;
12.工程 (II)で用いられる該第 1連続多段蒸留塔と該第 1連続多段蒸留塔該 d と  12. The first continuous multistage distillation column used in step (II) and the first continuous multistage distillation column d and
11 該 d が式(25)を満足し、且つ該 d と該 d が式(26)を満足することを特徴とする前  11 wherein d satisfies equation (25), and d and d satisfy equation (26)
12 21 22  12 21 22
項;!〜 1 1のうち何れか一項に記載の方法、 The method according to any one of 1 to 1;
1 ≤ d /d ≤ 5 式(25)  1 ≤ d / d ≤ 5 Equation (25)
12 11  12 11
1 ≤ d /d ≤ 6 式(26)  1 ≤ d / d ≤ 6 Equation (26)
21 22  21 22
13.工程 (II)で用いられる該第 1連続多段蒸留塔の L、 D 、 L /D 、 n、 D /d 13. L, D, L / D, n, D / d of the first continuous multistage distillation column used in step (II)
、 D /ά 力 Sそれぞれ、 2000≤L ≤6000, 150≤D ≤1000, 3≤L /Ό ≤3 0、 30≤η ≤100, 8≤D /ά ≤25, 5≤D /ά ≤18であり、且つ , D / ά force S, 2000≤L ≤6000, 150≤D ≤1000, 3≤L / Ό ≤3 0, 30≤η ≤100, 8≤D / ά ≤25, 5≤D / ά ≤18 And
1 1 11 1 12  1 1 11 1 12
該第 2連続多段蒸留塔の L、 D 、 L /D 、 n、 D /d 、 D /d がそれぞれ、 2  L, D, L / D, n, D / d, D / d of the second continuous multistage distillation column are 2 respectively.
2 2 2 2 2 2 21 2 22  2 2 2 2 2 2 21 2 22
000≤L ≤6000、 150≤D ≤1000、 3≤L /D ≤30、 15≤n ≤60、 2. 5 000≤L ≤6000, 150≤D ≤1000, 3≤L / D ≤30, 15≤n ≤60, 2.5
2 2 2 2 2 2 2 2 2 2
≤D /d ≤12、 7≤D /d ≤25であることを特徴とする前項 1〜12のうち何れ  ≤D / d ≤12, 7≤D / d ≤25
2 21 2 22  2 21 2 22
か一項に記載の方法、 Or the method according to claim 1.
14.該第 1連続多段蒸留塔の L、 D、 L /D 、 n、 D /d 、 D /d がそれぞ  14.L, D, L / D, n, D / d, D / d of the first continuous multi-stage distillation column are
1 1 1 1 1 1 11 1 12  1 1 1 1 1 1 11 1 12
れ、 2500≤L ≤5000、 200≤D ≤800 , 5≤L /D ≤15, 40≤n ≤90, 10≤D /d ≤25, 7≤D /d ≤ 15であり、且つ、該第 2連続多段蒸留塔の L、 2500≤L≤5000, 200≤D≤800, 5≤L / D≤15, 40≤n≤90, 10≤D / d≤25, 7≤D / d≤15, and L of 2 continuous multi-stage distillation column,
1 11 1 12 2 1 11 1 12 2
D 、 L /Ό 、 n、 D /d 、 D /d がそれぞれ、 2500≤L ≤5000、 200≤DD, L / Ό, n, D / d, D / d are 2500≤L≤5000, 200≤D, respectively
2 2 2 2 2 21 2 22 2 22 2 2 2 2 21 2 22 2 2
≤800、 5≤L /D ≤15, 20≤n ≤50, 3≤D /d ≤10、 9≤D /d ≤2 ≤800, 5≤L / D ≤15, 20≤n ≤50, 3≤D / d ≤10, 9≤D / d ≤2
2 2 2 2 21 2 22 2 2 2 2 21 2 22
0であることを特徴とする前項 1〜; 13のうち何れか一項に記載の方法、 The method according to any one of items 1 to 13 above, characterized in that it is 0,
15.該第 1連続多段蒸留塔および該第 2連続多段蒸留塔が、それぞれ該インター ナルとしてトレイおよび/または充填物を有する蒸留塔であることを特徴とする前項 1 〜 14のうち何れか一項に記載の方法、  15. Any one of items 1 to 14 above, wherein the first continuous multistage distillation column and the second continuous multistage distillation column are distillation columns each having a tray and / or a packing as the internal. The method according to the paragraph,
16.該第 1連続多段蒸留塔が、該インターナルとしてトレィを有する棚段式蒸留塔 であり、該第 2連続多段蒸留塔が、該インターナルとして充填物およびトレイの両方を 有する蒸留塔であることを特徴とする前項 15記載の方法、  16. The first continuous multistage distillation column is a tray-type distillation column having a tray as the internal, and the second continuous multistage distillation column is a distillation column having both a packing and a tray as the internal. 15. The method according to item 15 above, wherein
17.該第 1連続多段蒸留塔および該第 2連続多段蒸留塔の該トレイそれぞれが、 多孔板部とダウンカマー部を有する多孔板トレイであることを特徴とする前項 15また は 16記載の方法、 17. Each of the trays of the first continuous multistage distillation column and the second continuous multistage distillation column is 17. The method according to item 15 or 16 above, wherein the tray is a perforated plate tray having a perforated plate portion and a downcomer portion.
18.該第 1連続多段蒸留塔および該第 2連続多段蒸留塔の該多孔板トレイが該多 孔板部の面積 lm2あたり 100〜1000個の孔を有するものであることを特徴とする前 項 17記載の方法、 18. Before the first continuous multi-stage distillation column and the second continuous multi-stage distillation column, the perforated plate tray has 100 to 1000 holes per area lm 2 of the multi-hole plate portion. The method according to paragraph 17,
19.該第 1連続多段蒸留塔および該第 2連続多段蒸留塔の該多孔板トレイの孔 1 個あたりの断面積が 0. 5〜5cm2であることを特徴とする前項 17または 18記載の方 法、 19. The cross-sectional area per hole of the perforated plate tray of the first continuous multistage distillation column and the second continuous multistage distillation column is 0.5 to 5 cm 2 , Method,
20.該第 2連続多段蒸留塔が、該インターナルとして充填物を上部に、トレィを下 部に有する蒸留塔であることを特徴とする前項 15または 16に記載の方法、  20. The method according to item 15 or 16 above, wherein the second continuous multi-stage distillation column is a distillation column having a packing at the upper part and a tray at the lower part as the internal,
21.該第 2連続多段蒸留塔の該インターナルの該充填物が 1基または 2基以上の 規則充填物であることを特徴とする前項 15〜20のうち何れか一項に記載の方法、 21. The method according to any one of items 15 to 20 above, wherein the packing of the internal of the second continuous multistage distillation column is one or two or more ordered packings,
22.該第 2連続多段蒸留塔の該規則充填物が、メラパック、ジェムパック、テクノバ ック、フレキシパック、スルザ一パッキング、グッドロールパッキング、グリッチグリッド力、 ら選ばれた少なくとも一種であることを特徴とする前項 21に記載の方法、 22. The ordered packing of the second continuous multi-stage distillation column is at least one selected from melapack, gempack, technopack, flexipack, sulza packing, good roll packing, and glitch grid force. 22. The method according to item 21 above,
23.ジァリールカーボネート精製工程 (III)が蒸留であることを特徴とする請求項 1 〜22のうち何れか一項に記載の方法、  23. The method according to any one of claims 1 to 22, wherein the diaryl carbonate purification step (III) is distillation,
24.工程 (IV)で用いられる該ガイド接触流下式重合器において、重合反応ゾーン の側面ケーシングが内径 D (cm)、長さ L (cm)の円筒形であって、その下部に接続さ れた底部のケーシングがテーパー形であり、該テーパー形の底部ケーシングの最下 部の排出口が内径 d (cm)の円筒形であって、 D、 L、 d が式(27)、 (28)、 (29)およ び(30)を満足する、  24. In the guided contact flow type polymerization reactor used in step (IV), the side casing of the polymerization reaction zone is a cylindrical shape having an inner diameter D (cm) and a length L (cm), and is connected to the lower part thereof. The bottom casing has a tapered shape, and the lowermost discharge port of the tapered bottom casing has a cylindrical shape with an inner diameter d (cm), and D, L, and d are the formulas (27), (28) , (29) and (30) are satisfied,
100 ≤ D ≤ 1800 式(27)  100 ≤ D ≤ 1800 Formula (27)
5 ≤ D/d ≤ 50 式(28)  5 ≤ D / d ≤ 50 Equation (28)
0. 5 ≤ L/D ≤ 30 式(29)  0.5 ≤ L / D ≤ 30 (29)
h- 20 ≤ L ≤ h+ 300 式(30)  h-20 ≤ L ≤ h + 300 (30)
ことを特徴とする前項;!〜 23のうち何れか一項に記載の方法、 The method according to any one of the preceding items;
25.ガイドの該 hが式(31)を満足する、 400 < h ≤ 2500 式(31) 25. The h of the guide satisfies the formula (31). 400 <h ≤ 2500 formula (31)
ことを特徴とする前項;!〜 24のうち何れか一項に記載の方法、  The method according to any one of the preceding items, characterized in that;
26. 1つの該ガイドが外径 r(cm)の円柱状または内側に溶融プレボリマーが入ら ないようにしたパイプ状のものであって、 r が式(32)を満足する、  26. One of the guides is a cylindrical shape having an outer diameter r (cm) or a pipe shape in which a molten prepolymer is prevented from entering inside, and r satisfies the formula (32).
0. 1 ≤ r ≤ 1 式(32)  0. 1 ≤ r ≤ 1 (32)
ことを特徴とする前項;!〜 25のうち何れか一項に記載の方法、  The method according to any one of the preceding paragraphs, characterized in that
27.工程 (IV)において、該ガイド接触流下式重合器 2基以上を連結して重合を行 うこと特徴とする請求項 1〜26のうち何れか一項に記載の方法、  27. The method according to any one of claims 1 to 26, wherein in step (IV), polymerization is carried out by connecting two or more guide contact flow type polymerization reactors.
28.請求項 27記載の 2基以上のガイド接触流下式重合器が、ガイド接触流下式第 1重合器、ガイド接触流下式第 2重合器の 2基の重合器であって、この順に重合度を 上げていく方法において、該第 1重合器のガイド全体の外部総表面積 S I (m2)と該 第 2重合器のガイド全体の外部総表面積 S2 (m2)とが式(33)を満足する、 28. The two or more guide contact flow type polymerizers according to claim 27 are two polymerizers of a guide contact flow type first polymerizer and a guide contact flow type second polymerizer, the degree of polymerization in this order. The total external surface area SI (m 2 ) of the entire guide of the first polymerization vessel and the external total surface area S2 (m 2 ) of the entire guide of the second polymerization vessel satisfy the formula (33). To
1 ≤ S1/S2 ≤ 20 式(33)  1 ≤ S1 / S2 ≤ 20 Equation (33)
ことを特徴とする前項 27に記載の方法、  28. The method according to item 27 above,
を提供する。  I will provide a.
[0031] また、本発明の第 2の態様では、 [0031] In the second aspect of the present invention,
29.前項 1〜28のいずれかの方法によって 1時間あたり 1トン以上製造された高品 質芳香族ポリカーボネート、  29. A high-quality aromatic polycarbonate produced by 1 ton or more per hour by any one of the methods 1 to 28 above,
30.アルカリ金属および/またはアルカリ土類金属化合物の含有量力 をこれらの 金属元素に換算して、 0. ;!〜 0. Olppmであり、且つ、ハロゲン含有量が、 lppb以 下であることを特徴とする前項 29記載の高品質芳香族ポリカーボネート、  30. When the content power of alkali metal and / or alkaline earth metal compound is converted to these metal elements, it is 0.;! To 0. Olppm, and the halogen content is less than lppb. 29. The high-quality aromatic polycarbonate according to item 29,
31.主鎖に対してエステル結合やエーテル結合等の異種結合を介して部分的に 分岐している芳香族ポリカーボネートであって、該異種結合の含有量が、カーボネー ト結合に対して、 0. 05-0. 5モル%であることを特徴とする前項 29または 30記載の 高品質芳香族ポリカーボネート、  31. An aromatic polycarbonate partially branched from the main chain through a hetero bond such as an ester bond or an ether bond, and the content of the hetero bond is 0. 05-0. High-quality aromatic polycarbonate according to item 29 or 30, characterized by being 5 mol%,
を提供する。  I will provide a.
発明の効果  The invention's effect
[0032] 本発明の方法を実施することによって、環状カーボネートと芳香族ジヒドロキシ化合 物から、着色がなく機械的物性に優れた高品質 ·高性能の芳香族ポリカーボネートが 、高い重合速度で、 1時間当り 1トン以上の工業的規模で製造できることが見出され た。し力、も分子量のバラツキが少なぐ長期間、たとえば 2000時間以上、好ましくは 3 000時間以上、さらに好ましくは 5000時間以上、安定的に高品質芳香族ポリカーボ ネートが製造できることも見出された。従って、本発明は高品質芳香族ポリカーボネ ートの工業的製造方法として極めて優れた効果のある方法である。 [0032] By carrying out the method of the present invention, a cyclic carbonate and an aromatic dihydroxy compound are combined. It has been found that high-quality, high-performance aromatic polycarbonates with no coloring and excellent mechanical properties can be produced on an industrial scale of 1 ton or more per hour at a high polymerization rate. It has also been found that high-quality aromatic polycarbonates can be stably produced over a long period of time with little variation in molecular weight, such as 2000 hours or more, preferably 3 000 hours or more, more preferably 5000 hours or more. Therefore, the present invention is an extremely effective method as an industrial production method for high-quality aromatic polycarbonate.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0033] 以下、本発明について具体的に説明する。 [0033] The present invention will be specifically described below.
本発明では、先ず、環状カーボネートと脂肪族 1価アルコール類とから、ジアルキル カーボネートとジオール類を工業的規模で連続的に製造する工程 (I)が行われる。 工程 (I)の反応は、下記式で表わされる可逆的なエステル交換反応である。  In the present invention, first, step (I) for continuously producing dialkyl carbonate and diol on an industrial scale from cyclic carbonate and aliphatic monohydric alcohol is performed. The reaction in step (I) is a reversible transesterification reaction represented by the following formula.
[0034] [化 1] [0034] [Chemical 1]
R1 R2Q OR2 R1 R 1 R2Q OR 2 R1
+ 2R20H ゝ + H0, ヽ 0H し II + 2R20H ゝ + H0 , ヽ0H II
» 0  »0
0  0
[0035] (式中、 R1は 2価の基—(CH ) - (kは 2〜6の整数)を表わし、その 1個以上の水 [0035] (wherein R 1 represents a divalent group — (CH 2) − (k is an integer of 2 to 6),
2 k  2k
素は炭素数 1〜; 10のアルキル基ゃァリール基によって置換されていてもよい。また、 R2は炭素数 1〜; 12の 1価の脂肪族基を表わし、その 1個以上の水素は炭素数 1〜; 10 のアルキル基ゃァリール基で置換されていてもよい。 ) The element may be substituted by an alkyl group having 1 to 10 carbon atoms or a carbaryl group. R 2 represents a monovalent aliphatic group having 1 to 12 carbon atoms, and one or more hydrogen atoms thereof may be substituted with an alkyl group having 1 to 10 carbon atoms or a aryl group. )
[0036] このような環状カーボネートとしては、例えば、エチレンカーボネート、プロピレン力 ーボネート等のアルキレンカーボネート類や、 1 , 3—ジォキサシクロへキサー 2—ォ ン、 1 , 3—ジォキサシクロヘプター 2—オンなどが好ましく用いられ、エチレンカーボ ネートおよびプロピレンカーボネートが入手の容易さなどの点から更に好ましく使用さ れ、エチレンカーボネートが特に好ましく使用される。 [0036] Examples of such cyclic carbonates include alkylene carbonates such as ethylene carbonate and propylene power carbonate, 1,3-dioxacyclohexan 2-one, 1,3-dioxacyclohepter 2- On and the like are preferably used, ethylene carbonate and propylene carbonate are more preferably used from the viewpoint of easy availability, and ethylene carbonate is particularly preferably used.
[0037] また、脂肪族 1価アルコール類としては、生成するジオール類より沸点が低!/、ものが 用いられる。したがって、使用する環状カーボネートの種類によっても変わり得るが、 例えば、メタノール、エタノール、プロパノール(各異性体)、ァリルアルコール、ブタノ ール(各異性体)、 3—ブテン 1 オール、ァミルアルコール(各異性体)、へキシル アルコール(各異性体)、ヘプチルアルコール(各異性体)、ォクチルアルコール(各 異性体)、ノニルアルコール(各異性体)、デシルアルコール(各異性体)、ゥンデシル アルコール(各異性体)、ドデシルアルコール(各異性体)、シクロペンタノール、シク 口へキサノーノレ、シクロヘプタノ一ノレ、シクロオタタノ一ノレ、メチノレシクロペンタノ一ノレ( 各異性体)、ェチルシクロペンタノール(各異性体)、メチルシクロへキサノール(各異 性体)、ェチルシクロへキサノール(各異性体)、ジメチルシクロへキサノール(各異性 体)、ジェチルシクロへキサノール(各異性体)、フエニルシクロへキサノール(各異性 体)、ベンジルアルコール、フエネチルアルコール(各異性体)、フエニルプロパノール (各異性体)などが挙げられ、さらにこれらの脂肪族 1価アルコール類において、ハロ ゲン、低級アルコキシ基、シァノ基、アルコキシカルボニル基、ァリーロキシカルボ二 ル基、ァシロキシ基、ニトロ基等の置換基によって置換されていてもよい。 [0037] As the aliphatic monohydric alcohols, those having a boiling point lower than that of the generated diols are used. Therefore, although it may vary depending on the type of cyclic carbonate used, for example, methanol, ethanol, propanol (each isomer), aryl alcohol, butano (Each isomer), 3-butene 1 ol, amyl alcohol (each isomer), hexyl alcohol (each isomer), heptyl alcohol (each isomer), octyl alcohol (each isomer), nonyl Alcohol (each isomer), decyl alcohol (each isomer), undecyl alcohol (each isomer), dodecyl alcohol (each isomer), cyclopentanol, cyclohexanol, cycloheptanonore, cyclootanonore, methinore Cyclopentano monore (each isomer), ethylcyclopentanol (each isomer), methylcyclohexanol (each isomer), ethylcyclohexanol (each isomer), dimethylcyclohexanol (each isomer) , Jetylcyclohexanol (each isomer), Phenylcyclohexanol (each isomer), Benzyl Examples include alcohol, phenethyl alcohol (each isomer), and phenylpropanol (each isomer). Further, in these aliphatic monohydric alcohols, halogen, lower alkoxy group, cyan group, alkoxycarbonyl group, It may be substituted with a substituent such as aryloxycarbonyl group, acyloxy group, nitro group.
[0038] このような脂肪族 1価アルコール類の中で、好ましく用いられるのは炭素数 1〜6の アルコール類であり、さらに好ましいのはメタノール、エタノール、プロパノール(各異 性体)、ブタノール (各異性体)の炭素数 1〜4のアルコール類である。環状カーボネ ートとしてエチレンカーボネートやプロピレンカーボネートを使用する場合に好ましい のはメタノール、エタノールであり、特に好ましいのはメタノールである。  [0038] Among such aliphatic monohydric alcohols, alcohols having 1 to 6 carbon atoms are preferably used, and more preferably methanol, ethanol, propanol (each heterogeneous substance), butanol ( Each isomer) is an alcohol having 1 to 4 carbon atoms. When ethylene carbonate or propylene carbonate is used as the cyclic carbonate, methanol and ethanol are preferable, and methanol is particularly preferable.
[0039] 工程 (I)の反応蒸留を行うにあたって、反応蒸留塔内に触媒を存在させる方法はど のような方法であってもよいが、例えば、反応条件下で反応液に溶解するような均一 系触媒の場合、反応蒸留塔内に連続的に触媒を供給することにより、反応蒸留塔内 の液相に触媒を存在させることもできるし、あるいは反応条件下で反応液に溶解しな いような不均一系触媒の場合、反応蒸留塔内に固体触媒を配置することにより、反応 系に触媒を存在させることもできるし、これらを併用した方法であってもよい。  [0039] In carrying out the reactive distillation in step (I), any method may be used for allowing the catalyst to be present in the reactive distillation column. In the case of a homogeneous catalyst, the catalyst can be present in the liquid phase in the reactive distillation column by continuously supplying the catalyst into the reactive distillation column, or it does not dissolve in the reaction solution under the reaction conditions. In the case of such a heterogeneous catalyst, a catalyst can be present in the reaction system by disposing a solid catalyst in the reactive distillation column, or a method using these in combination.
[0040] 均一系触媒を反応蒸留塔内に連続的に供給する場合には、環状カーボネート及 び/又は脂肪族 1価アルコールと同時に供給してもよいし、原料とは異なる位置に供 給してもよい。該蒸留塔内で実際に反応が進行するのは触媒供給位置力 下の領 域であることから、塔頂から原料供給位置までの間の領域に該触媒を供給することが 好ましい。そして該触媒が存在する段は 5段以上あることが必要であり、好ましくは 7 段以上であり、さらに好ましくは 10段以上である。 [0040] When the homogeneous catalyst is continuously supplied into the reactive distillation column, it may be supplied simultaneously with the cyclic carbonate and / or the aliphatic monohydric alcohol, or supplied at a position different from the raw material. May be. Since the reaction actually proceeds in the distillation column is a region under the catalyst supply position force, it is preferable to supply the catalyst to a region between the top of the column and the raw material supply position. The stage where the catalyst exists must be at least 5 stages, preferably 7 More than 10 stages, more preferably more than 10 stages.
[0041] また、不均一系の固体触媒を用いる場合、該触媒の存在する段の段数が 5段以上 あることが必要であり、好ましくは 7段以上であり、さらに好ましくは 10段以上である。 蒸留塔の充填物としての効果をも併せ持つ固体触媒を用いることもできる。 [0041] When a heterogeneous solid catalyst is used, the number of stages in which the catalyst exists needs to be 5 or more, preferably 7 or more, and more preferably 10 or more. . A solid catalyst that also has an effect as a packing for a distillation column can be used.
[0042] 工程 (I)において用いられる触媒としては、例えば、 [0042] Examples of the catalyst used in the step (I) include:
リチウム、ナトリウム、カリウム、ノレビジゥム、セシウム、マグネシウム、カノレシゥム、スト ロンチウム、バリウム等のアルカリ金属およびアルカリ土類金属類;  Alkali metals and alkaline earth metals such as lithium, sodium, potassium, norevidium, cesium, magnesium, canoleum, strontium, barium;
アルカリ金属およびアルカリ土類金属の水素化物、水酸化物、アルコキシド化物類 、ァリ一口キシド化物類、アミド化物類等の塩基性化合物類;  Basic compounds such as alkali metal and alkaline earth metal hydrides, hydroxides, alkoxides, aryl-oxides, amidates, etc .;
アルカリ金属およびアルカリ土類金属の炭酸塩類、重炭酸塩類、有機酸塩類等の 塩基性化合物類;  Basic compounds such as alkali metal and alkaline earth metal carbonates, bicarbonates, organic acid salts;
トリエチノレアミン、トリブチノレアミン、トリへキシノレアミン、ベンジルジェチルァミン等の 3級ァミン類;  Tertiary amines such as trichinoleamine, tribubutenoleamine, trihexenoleamine, benzyljetylamine;
N—アルキルピロ一ノレ、 N—アルキルインドーノレ、ォキサゾール、 N—アルキルイミ ダゾール、 N—アルキルピラゾール、ォキサジァゾール、ピリジン、アルキルピリジン、 キノリン、アルキルキノリン、イソキノリン、アルキルイソキノリン、アタリジン、アルキルァ クリジン、フエナント口リン、アルキルフエナント口リン、ピリミジン、アルキルピリミジン、 ピラジン、アルキルビラジン、トリアジン、アルキルトリァジン等の含窒素複素芳香族化 合物類;  N-alkylpyrrolone, N-alkylindanol, oxazole, N-alkylimidazole, N-alkylpyrazole, oxadiazole, pyridine, alkylpyridine, quinoline, alkylquinoline, isoquinoline, alkylisoquinoline, atalidine, alkylacridine, phenanthorin, Nitrogen-containing heteroaromatic compounds such as alkylphenantorin, pyrimidine, alkylpyrimidine, pyrazine, alkylvilazine, triazine, alkyltriazine;
ジァザビシクロウンデセン(DBU)、ジァザビシクロノネン(DBN)等の環状アミジン 類;  Cyclic amidines such as diazabicycloundecene (DBU) and diazabicyclononene (DBN);
酸化タリウム、ハロゲン化タリウム、水酸化タリウム、炭酸タリウム、硝酸タリウム、硫酸 タリウム、タリウムの有機酸塩類等のタリウム化合物類;  Thallium compounds such as thallium oxide, thallium halide, thallium hydroxide, thallium carbonate, thallium nitrate, thallium sulfate, organic acid salts of thallium;
トリブチルメトキシ錫、トリブチルエトキシ錫、ジブチルジメトキシ錫、ジェチルジェト キシ錫、ジブチルジェトキシ錫、ジブチルフエノキシ錫、ジフエニルメトキシ錫、酢酸ジ ブチル錫、塩化トリブチル錫、 2—ェチルへキサン酸錫等の錫化合物類;  Such as tributyl methoxytin, tributyl ethoxy tin, dibutyl dimethoxy tin, jetyl methoxy tin, dibutyl methoxy tin, dibutyl phenoxy tin, diphenyl methoxy tin, dibutyl tin acetate, tributyl tin chloride, tin 2-ethylhexanoate, etc. Tin compounds;
ジメトキシ亜 ジエトキシ亜 エチレンジ才キシ亜鈴、ジブトキシ亜鈴等の亜鈴 化合物類; アルミニウムトリメトキシド、アルミニウムトリイソプロポキシド、アルミニウムトリブトキシ ド等のアルミニウム化合物類; Dimethoxy nitro diethoxy nitro ethylene bismuth, dibutoxy dumbbell, etc. dumbbell compounds; Aluminum compounds such as aluminum trimethoxide, aluminum triisopropoxide, aluminum tributoxide;
テトラメトキシチタン、テトラエトキシチタン、テトラブトキシチタン、ジクロロジメトキシ タン化合物類;  Tetramethoxytitanium, tetraethoxytitanium, tetrabutoxytitanium, dichlorodimethoxytan compounds;
トリメチルホスフィン、トリェチルホスフィン、トリブチルホスフィン、トリフエニルホスフィ ン、トリブチルメチルホスホニゥムハライド、トリオクチルブチルホスホニゥムハライド、ト リフエニルメチルホスホニゥムハライド等のリン化合物類;  Phosphorus compounds such as trimethylphosphine, triethylphosphine, tributylphosphine, triphenylphosphine, tributylmethylphosphonium halide, trioctylbutylphosphonium halide, triphenylmethylphosphonium halide;
ハロゲン化ジルコニウム、ジルコニウムァセチルァセトナート、ジルコニウムアルコキ シド、酢酸ジルコニウム等のジルコニウム化合物類;  Zirconium compounds such as zirconium halide, zirconium acetyl cetate, zirconium alkoxide, zirconium acetate;
鉛および鉛を含む化合物類、例えば、 PbO、 PbO 、 Pb Oなどの酸化鉛類; PbS  Lead and compounds containing lead, for example, lead oxides such as PbO, PbO, PbO; PbS
2 3 4  2 3 4
、 Pb S 、 PbSなどの硫化鉛類; Pb (〇H) 、 Pb O (OH) 、 Pb [PbO (OH) ]、 P  , Pb S, PbS and other lead sulfides; Pb (〇H), Pb O (OH), Pb [PbO (OH)], P
2 3 2 2 3 2 2 2 2 2 b〇(〇H) などの水酸化鉛類; Na PbO 、 K PbO 、 NaHPbO 、 KHPbOなどの 2 3 2 2 3 2 2 2 2 2 Lead hydroxides such as b〇 (〇H); Na PbO, K PbO, NaHPbO, KHPbO, etc.
2 2 2 2 2 2 2 2 亜ナマリ酸塩類; Na PbO 、 Na H PbO、 K PbO 、 K [Pb (OH) ]、 K PbO 、 Ca 2 2 2 2 2 2 2 2 Nymaliates; Na PbO, Na H PbO, K PbO, K [Pb (OH)], K PbO, Ca
2 3 2 2 4 2 3 2 6 4 4 2 3 2 2 4 2 3 2 6 4 4
PbO 、 CaPbOなどの鉛酸塩類; PbC〇、 2PbCO -Pb (OH) などの 口、の炭酸塩Lead salts such as PbO and CaPbO; Mouth carbonates such as PbC〇, 2PbCO -Pb (OH)
2 4 3 3 3 2 2 4 3 3 3 2
およびその塩基性塩類; Pb (〇CH ) 、 (CH O) Pb (OPh) , Pb (OPh) などのァノレ And its basic salts: Pb (〇CH), (CH 2 O) Pb (OPh), Pb (OPh), etc.
3 2 3 2  3 2 3 2
コキシ鉛類、ァリールォキシ鉛類; Pb (〇C〇CH ) 、Pb (〇C〇CH ) 、 Pb (〇C〇C Coxileads, aryloxyleads; Pb (〇C〇CH), Pb (〇C〇CH), Pb (〇C〇C)
3 2 3 4  3 2 3 4
H ) -PbO - 3H Oなどの有機酸の鉛塩およびその炭酸塩や塩基性塩類; Bu Pb、 P H) -PbO-Lead salts of organic acids such as 3H O and their carbonates and basic salts; Bu Pb, P
3 2 2 4 h Pb、 Bu PbCl、 Ph PbBr、 Ph Pb (または Ph Pb ) , Bu PbOH、 Ph PbOなどの3 2 2 4 h Pb, Bu PbCl, Ph PbBr, Ph Pb (or Ph Pb), Bu PbOH, Ph PbO, etc.
4 3 3 3 6 2 3 2 4 3 3 3 6 2 3 2
有機鉛化合物類(Buはブチル基、 Phはフエ二ル基を示す); Pb— Na、 Pb— Ca、 Pb — Ba、 Pb— Sn、 Pb— Sbなどの鉛の合金類; Organic lead compounds (Bu represents butyl group, Ph represents phenyl group); Lead alloys such as Pb—Na, Pb—Ca, Pb—Ba, Pb—Sn, Pb—Sb;
ホウェン鉱、センァェン鉱などの鉛鉱物類、およびこれらの鉛化合物の水和物類; を挙げられる。  And lead minerals such as howenite and senyanite, and hydrates of these lead compounds.
これらの化合物は、反応原料や、反応混合物、反応副生物などに溶解する場合に は、均一系触媒として用いることができるし、溶解しない場合には固体触媒として用 いること力 Sできる。さらには、これらの化合物を反応原料や、反応混合物、反応副生 物などで事前に溶解させたり、あるいは反応させることによって溶解させた混合物を 均一系触媒としてもちレ、ることも好ましレ、方法である。 [0044] さらに 3級アミノ基を有する陰イオン交換樹脂、アミド基を有するイオン交換樹脂、ス ルホン酸基、カルボン酸基、リン酸基のうちの少なくとも一つの交換基を有するイオン 交換樹脂、第 4級アンモニゥム基を交換基として有する固体強塩基性ァニオン交換 体等のイオン交換体類;シリカ、シリカ一アルミナ、シリカ一マグネシア、アルミノシリケ ート、ガリウムシリケート、各種ゼォライト類、各種金属交換ゼォライト類、アンモニゥム 交換ゼォライト類などの固体の無機化合物類等が触媒として用いられる These compounds can be used as homogeneous catalysts when they are dissolved in reaction raw materials, reaction mixtures, reaction byproducts, etc., and can be used as solid catalysts when they are not dissolved. Furthermore, it is also preferable to use a mixture obtained by dissolving these compounds in advance with reaction raw materials, reaction mixtures, reaction by-products or the like, or using a mixture obtained by reaction as a homogeneous catalyst. Is the method. [0044] Further, an anion exchange resin having a tertiary amino group, an ion exchange resin having an amide group, an ion exchange resin having at least one exchange group of a sulfonic acid group, a carboxylic acid group, and a phosphoric acid group, Ion exchangers such as solid strongly basic anion exchangers with quaternary ammonium groups as exchange groups; silica, silica-alumina, silica-magnesia, aluminosilicates, gallium silicates, various zeolites, various metal-exchanged zeolites, Solid inorganic compounds such as ammonium exchanged zeolites are used as catalysts.
[0045] 固体触媒として、特に好ましく用いられるのは第 4級アンモニゥム基を交換基として 有する固体強塩基性ァニオン交換体であり、このようなものとしては、例えば、第 4級 アンモニゥム基を交換基として有する強塩基性ァニオン交換樹脂、第 4級アンモニゥ ム基を交換基として有するセルロース強塩基性ァニオン交換体、第 4級アンモニゥム 基を交換基として有する無機質担体担持型強塩基性ァユオン交換体などが挙げら れる。第 4級アンモニゥム基を交換基として有する強塩基性ァニオン交換樹脂として は、例えば、スチレン系強塩基性ァニオン交換樹脂などが好ましく用いられる。スチ レン系強塩基性ァニオン交換樹脂は、スチレンとジビュルベンゼンの共重合体を母 体として、交換基に第 4級アンモニゥム(I型あるいは II型)を有する強塩基性ァニオン 交換樹脂であり、例えば、次式で模式的に示される。  [0045] As the solid catalyst, a solid strong basic anion exchanger having a quaternary ammonium group as an exchange group is particularly preferably used. Examples of such a solid catalyst include a quaternary ammonium group as an exchange group. Strong basic anion exchange resin, cellulose strong basic anion exchanger having a quaternary ammonium group as an exchange group, inorganic carrier-supported strong basic anion exchange having a quaternary ammonium group as an exchange group, etc. Are listed. As the strongly basic anion exchange resin having a quaternary ammonium group as an exchange group, for example, a styrenic strongly basic anion exchange resin is preferably used. A styrene-based strong base anion exchange resin is a strong base anion exchange resin having a quaternary ammonium (type I or type II) as an exchange group based on a copolymer of styrene and dibutenebenzene. For example, it is schematically shown by the following formula.
[0046] [化 2]  [0046] [Chemical 2]
Figure imgf000025_0001
Figure imgf000025_0001
Figure imgf000025_0002
[0047] 式中、 Xはァニオンを示し、通常、 Xとしては、 F_、 Cl_、 Br_、厂、 HCO _、 CO
Figure imgf000025_0002
[0047] In the formula, X represents an anion, and usually X is F_, Cl_, Br_, 厂, HCO_, CO
3 3 3 3
、 CH CO―、 HCO―、 IO―、 BrO―、 CIO—の中から選ばれた少なくとも 1種のァ, CH CO-, HCO-, IO-, BrO-, CIO-
3 2 2 3 3 3 3 2 2 3 3 3
二オンが使用され、好ましくは Cl_、 Br_、 HCO _、 CO 2_の中から選ばれた少なくと Two on are used, preferably Cl_, Br_, HCO _, the least selected from among CO 2 _
3 3  3 3
も 1種のァニオンが使用される。また、樹脂母体の構造としては、ゲル型、マクロレティ キュラー型 (MR型) V、ずれも使用できる力 耐有機溶媒性が高!/、点から MR型が特 に好ましい。  Also one kind of anion is used. In addition, as the structure of the resin matrix, gel type, macroreticular type (MR type) V, the ability to use misalignment, high resistance to organic solvents, and MR type are particularly preferred from the viewpoint.
[0048] 第 4級アンモニゥム基を交換基として有するセルロース強塩基性ァニオン交換体と しては、例えば、セルロースの— OH基の一部または全部をトリアルキルアミノエチル 化して得られる、 OCH CH NR Xなる交換基を有するセルロースが挙げられる。  [0048] Examples of the strong cellulose basic anion exchanger having a quaternary ammonium group as an exchange group include, for example, OCH CH NR obtained by trialkylaminoethylation of a part or all of —OH groups of cellulose. Examples thereof include cellulose having an exchange group of X.
2 2 3  2 2 3
ただし、 Rはアルキル基を示し、通常、メチル、ェチル、プロピル、ブチルなどが用い られ、好ましくはメチル、ェチルが使用される。また、 Xは前述のとおりのァニオンを示 す。  However, R represents an alkyl group, and methyl, ethyl, propyl, butyl, etc. are usually used, and methyl and ethyl are preferably used. X represents an anion as described above.
[0049] 第 4級アンモユウム基を交換基として有する無機質担体担持型強塩基性ァユオン 交換体とは、無機質担体の表面水酸基 OHの一部または全部を修飾することによ り、 4級アンモニゥム基—〇(CH ) NR Xを導入したものを意味する。ただし、 R、 Xは  [0049] An inorganic carrier-supported strong basic cation exchange having a quaternary ammonium group as an exchange group is a quaternary ammonium group by modifying part or all of the surface hydroxyl group OH of the inorganic carrier. 〇 (CH) This means that NR X is introduced. However, R and X are
2 n 3  2 n 3
前述のとおりである。 nは通常 1〜6の整数であり、好ましくは n = 2である。無機質担 体としては、シリカ、アルミナ、シリカアルミナ、チタニア、ゼォライトなどを使用すること ができ、好ましくはシリカ、アルミナ、シリカアルミナが用いられ、特に好ましくはシリカ が使用される。無機質担体の表面水酸基の修飾方法としては、任意の方法を用いる こと力 Sでさる。  As described above. n is usually an integer of 1 to 6, preferably n = 2. As the inorganic carrier, silica, alumina, silica alumina, titania, zeolite, and the like can be used, preferably silica, alumina, silica alumina, and particularly preferably silica. As a method for modifying the surface hydroxyl group of the inorganic carrier, any method can be used.
[0050] 第 4級アンモユウム基を交換基として有する固体強塩基性ァユオン交換体は、市販 のものを使用することもできる。その場合には、前処理として予め所望のァニオン種 でイオン交換を行なった後に、エステル交換触媒として使用することもできる。  [0050] Commercially available solid strongly basic ayuone exchangers having a quaternary ammonium group as an exchange group can also be used. In that case, it can be used as a transesterification catalyst after ion exchange with a desired anion species in advance as a pretreatment.
[0051] また、少なくとも 1個の窒素原子を含む複素環基が結合している巨大網状およびゲ ルタイプの有機ポリマー、または少なくとも 1個の窒素原子を含む複素環基が結合し ている無機質担体からなる固体触媒もエステル交換触媒として好ましく用いられる。 また、さらにはこれらの含窒素複素環基の一部または全部が 4級塩化された固体触 媒も同様に用いられる。なお、イオン交換体などの固体触媒は、充填物としての機能 あ果たすこと力 Sでさる。 [0051] Further, from a macroreticular and gel-type organic polymer to which a heterocyclic group containing at least one nitrogen atom is bonded, or from an inorganic carrier to which a heterocyclic group containing at least one nitrogen atom is bonded. The solid catalyst is preferably used as a transesterification catalyst. Furthermore, solid catalysts in which some or all of these nitrogen-containing heterocyclic groups are quaternized are also used. In addition, solid catalysts such as ion exchangers function as packing materials. Achieving power S
[0052] 工程 (I)で用いられる触媒の量は、使用する触媒の種類によっても異なるが、反応 条件下で反応液に溶解するような均一系触媒を連続的に供給する場合には、供給 原料である環状カーボネートと脂肪族 1価アルコールの合計質量に対する割合で表 わして、通常 0. 000;!〜 50質量0 /0、好ましくは 0. 005〜20質量0 /0、さらに好ましくは 0. 01〜; 10質量%で使用される。また、固体触媒を該蒸留塔内に設置して使用する 場合には、該蒸留塔の空塔容積に対して、 0. 0;!〜 75容積%、好ましくは 0. 05〜6 0容積%、さらに好ましくは 0. ;!〜 60容積%の触媒量が好ましく用いられる。 [0052] The amount of the catalyst used in step (I) varies depending on the type of catalyst used, but when a homogeneous catalyst that is dissolved in the reaction solution under the reaction conditions is continuously supplied, a percentage of the total mass of the cyclic carbonate and an aliphatic monohydric alcohol as a raw material to Table Wa, usually 0.000;! ~ 50 weight 0/0, preferably from 0.005 to 20 mass 0/0, more preferably 0 01 ~; Used at 10% by mass. When a solid catalyst is used in the distillation column, it is 0.0;! To 75% by volume, preferably 0.05 to 60% by volume with respect to the empty volume of the distillation column. More preferably, 0.;! ~ 60% by volume of catalyst is preferably used.
[0053] 工程 (I)において反応蒸留塔である連続多段蒸留塔 Tに、原料である環状カーボ  [0053] In step (I), the continuous multistage distillation column T, which is a reactive distillation column, is added to the cyclic carbon as a raw material.
0  0
ネートおよび脂肪族 1価アルコールを連続的に供給する方法については、特別な限 定はなぐそれらが該蒸留塔の少なくとも 5段以上、好ましくは 7段以上、より好ましく は 10段以上の領域において触媒と接触させることができるような供給方法であれば 如何なる方法であってもよい。すなわち、該環状カーボネートと該脂肪族 1価アルコ ールは、連続多段蒸留塔の上記の条件を満たす段に必要な数の導入口から連続的 に供給すること力 Sできる。また、該環状カーボネートと該脂肪族 1価アルコールは該 蒸留塔の同じ段に導入されてもよいし、それぞれ別の段に導入してもよい。  With regard to the method for continuously supplying the nate and the aliphatic monohydric alcohol, there is no particular limitation that they are catalysts in the region of at least 5 or more, preferably 7 or more, more preferably 10 or more of the distillation column. Any supply method can be used as long as it can be brought into contact with the substrate. In other words, the cyclic carbonate and the aliphatic monohydric alcohol can be continuously supplied from the necessary number of inlets to the stage satisfying the above conditions of the continuous multistage distillation column. Further, the cyclic carbonate and the aliphatic monohydric alcohol may be introduced into the same stage of the distillation column, or may be introduced into different stages.
[0054] 原料である環状カーボネートおよび脂肪族 1価アルコールは液状、ガス状または液 とガスとの混合物として該連続多段蒸留塔 Tに連続的に供給される。このようにして [0054] The cyclic carbonate and aliphatic monohydric alcohol as raw materials are continuously supplied to the continuous multistage distillation column T as a liquid, a gas, or a mixture of a liquid and a gas. In this way
0  0
原料を該蒸留塔に供給する以外に、付加的にガス状の原料を該蒸留塔の下部から 断続的または連続的に供給することも好ましい方法である。また、環状カーボネート を触媒の存在する段よりも上部の段に液状または気液混合状態で該蒸留塔に連続 的に供給し、該蒸留塔の下部に該脂肪族 1価アルコールをガス状および/または液 状で連続的に供給する方法も好ましい方法である。この場合、環状カーボネート中に 、脂肪族 1価アルコールが含まれていても、もちろん構わない。  In addition to supplying the raw material to the distillation column, it is also preferable to supply a gaseous raw material from the lower portion of the distillation column intermittently or continuously. In addition, cyclic carbonate is continuously supplied to the distillation column in a liquid or gas-liquid mixed state to the upper stage from the stage where the catalyst exists, and the aliphatic monohydric alcohol is gaseous and / or lower to the lower part of the distillation tower. Alternatively, a continuous supply method in a liquid state is also a preferable method. In this case, it goes without saying that an aliphatic monohydric alcohol is contained in the cyclic carbonate.
[0055] 工程 (I)において、供給原料中に、生成物であるジアルキルカーボネートおよび/ またはジオール類が含まれていてもよい。その含有量は、ジアルキルカーボネートが 、脂肪族 1価アルコール/ジアルキルカーボネート混合物中のジアルキルカーボネ ートの質量%で表わして、通常、 0〜40質量%、好ましくは 0〜30質量%、さらに好 ましくは 0〜20質量%であり、ジオール類が環状カーボネート/ジオール混合物中 の質量%で表わして、通常、 0〜; 10質量%、好ましくは 0〜7質量%、さらに好ましく は 0〜5質量%である。 [0055] In step (I), the feedstock may contain dialkyl carbonate and / or diol as the product. The content of the dialkyl carbonate is usually 0 to 40% by mass, preferably 0 to 30% by mass, and more preferably represented by the mass% of dialkyl carbonate in the aliphatic monohydric alcohol / dialkyl carbonate mixture. Preferably, it is 0 to 20% by mass, and the diol is represented by mass% in the cyclic carbonate / diol mixture, and is usually 0 to; 10% by mass, preferably 0 to 7% by mass, and more preferably 0 to 5%. % By mass.
[0056] 工程 (I)の反応を工業的に実施する場合、新規に反応系に導入される環状カーボ ネートおよび/または脂肪族 1価アルコールに加え、この工程または/および他のェ 程で回収された、環状カーボネートおよび/または脂肪族 1価アルコールを主成分と する物質が、これらの原料として使用できることは好ましいことである。本発明はこのこ とを可能にするものであり、これは本発明の優れた特徴である。他の工程とは、例え ば、ジアルキルカーボネートと芳香族モノヒドロキシ化合物からジァリールカーボネー トを製造する工程 (II)があり、この工程 (II)では、脂肪族 1価アルコールが副生し、回 収される。この回収副生脂肪族 1価アルコールには、通常ジアルキルカーボネート、 芳香族モノヒドロキシ化合物、アルキルァリールエーテルなどが含まれる場合が多ぐ さらには少量のアルキルァリールカーボネート、ジァリールカーボネートなどが含まれ る場合がある。副生脂肪族 1価アルコールはそのままで工程 (I)の原料とすることもで きるし、蒸留等により該脂肪族 1価アルコールよりも沸点の高い含有物質量を減少さ せた後に工程 (I)の原料とすることもできる。  [0056] When the reaction of step (I) is carried out industrially, in addition to the cyclic carbonate and / or aliphatic monohydric alcohol newly introduced into the reaction system, it is recovered in this step or / and other processes. It is preferable that the material mainly composed of cyclic carbonate and / or aliphatic monohydric alcohol can be used as these raw materials. The present invention makes this possible and is an excellent feature of the present invention. The other process includes, for example, a process (II) for producing diaryl carbonate from a dialkyl carbonate and an aromatic monohydroxy compound. In this process (II), an aliphatic monohydric alcohol is by-produced. Is collected. This recovered by-product aliphatic monohydric alcohol usually contains dialkyl carbonates, aromatic monohydroxy compounds, alkylaryl ethers, etc., and even small amounts of alkylaryl carbonates, diaryl carbonates, etc. May occur. The by-product aliphatic monohydric alcohol can be used as it is as the raw material for step (I), or after the content of substances having a boiling point higher than that of the aliphatic monohydric alcohol is reduced by distillation or the like (I ).
[0057] また、工程 (I)で用いられる好ましい環状カーボネートは、例えば、エチレンォキシド 、プロピレンォキシド、スチレンォキシドなどのアルキレンォキシドと二酸化炭素との反 応によって製造されたものであるので、これらの化合物などを少量含む環状カーボネ 一卜を、工程 (I)の原料として用いることあできる。  [0057] Further, preferable cyclic carbonates used in the step (I) are those produced by reaction of alkylene oxide such as ethylene oxide, propylene oxide and styrene oxide with carbon dioxide, One round carbon dioxide containing a small amount of the above compound can be used as a raw material for the step (I).
[0058] 工程 (I)において、反応蒸留塔に供給する環状カーボネートと脂肪族 1価アルコー ル類との量比は、エステル交換触媒の種類や量および反応条件によっても異なるが 、通常、供給される環状カーボネートに対して、脂肪族 1価アルコール類はモル比で 0. 01〜; 1000倍の範囲で供給することができる。環状カーボネートの反応率を上げ るためには脂肪族 1価アルコール類を 2倍モル以上の過剰量供給することが好ましい 1S あまり大過剰に用いると装置を大きくする必要がある。このような意味において、 環状カーボネートに対する脂肪族 1価アルコール類のモル比は、 2〜20が好ましぐ さらに好ましくは 3〜15、さらにより好ましくは 5〜; 12である。なお、未反応環状カーボ ネートが多く残存していると、生成物であるジオール類と反応して 2量体、 3量体など の多量体を副生するので、工業的に実施する場合、未反応環状カーボネートの残存 量をできるだけ減少させることが好ましい。本発明の方法では、このモル比が 10以下 であっても、環状カーボネートの反応率を 97%以上、好ましくは 98%以上、さらに好 ましくは 99%以上にすることが可能である。このことも本発明の特徴のひとつである。 [0058] In step (I), the amount ratio between the cyclic carbonate and the aliphatic monohydric alcohol supplied to the reactive distillation column varies depending on the type and amount of the transesterification catalyst and the reaction conditions, but is usually supplied. The aliphatic monohydric alcohols can be supplied in a molar ratio of 0.01 to 1000 times with respect to the cyclic carbonate. In order to increase the reaction rate of the cyclic carbonate, it is preferable to supply an excess of aliphatic monohydric alcohols in an amount of 2 times or more. When 1S is used in a very large excess, it is necessary to enlarge the apparatus. In this sense, the molar ratio of the aliphatic monohydric alcohol to the cyclic carbonate is preferably 2 to 20, more preferably 3 to 15, and even more preferably 5 to 12; Unreacted annular carbon If a large amount of acid remains, it reacts with the product diols to produce by-products such as dimers and trimers. Is preferably reduced as much as possible. In the method of the present invention, even when the molar ratio is 10 or less, the reaction rate of the cyclic carbonate can be 97% or more, preferably 98% or more, and more preferably 99% or more. This is also one of the features of the present invention.
[0059] 工程(I)においては、好ましくは 1時間あたり約 0. 4トン以上のジアルキルカーボネ ートを連続的に製造するのである力 そのために連続的に供給される環状カーボネ ートの最低量は、製造すべき芳香族ポリカーボネートの量 (Pトン/ hr)に対して、通 常 0. 44Pトン/ hr、好ましくは、 0. 42Pトン/ hr、より好ましくは 0. 4Pトン/ hrである 。さらに好ましい場合は、 0· 39Pトン/ hrよりも少なくできる。  [0059] In step (I), preferably a force that continuously produces about 0.4 tons or more of dialkyl carbonate per hour. The amount is usually 0.44 tons / hr, preferably 0.42 tons / hr, more preferably 0.4 tons / hr, relative to the amount of aromatic polycarbonate to be produced (P tons / hr). is there . In a more preferred case, it can be less than 0 · 39 P ton / hr.
[0060] 工程 (I)において用いられる連続多段蒸留塔 Tとは、長さし (cm)、内径 D (cm)  [0060] The continuous multistage distillation column T used in step (I) is a length (cm) and an inner diameter D (cm).
0 0 0 の円筒形の胴部を有し、内部に段数 nをもつインターナルを有する構造をしており、  Has a cylindrical body of 0 0 0, and has an internal structure with an internal number n of stages,
0  0
塔頂部またはそれに近い塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそ  At the top of the tower or near the top of the tower is a gas outlet with an inner diameter d (cm), the bottom of the tower or
01  01
れに近い塔の下部に内径 d (cm)の液抜出し口、該ガス抜出し口より下部であって  A liquid outlet with an inner diameter d (cm) at the lower part of the tower close to this, and below the gas outlet,
02  02
塔の上部および/または中間部に 1つ以上の第 1の導入口、該液抜出し口より上部 であって塔の中間部および/または下部に 1つ以上の第 2の導入口を有するもので あって、 L、 D、 L /D 、n、D /d 、 D /d 力 それぞれ式(;!)〜(6)を満足  One or more first inlets in the upper part and / or middle part of the tower, and one or more second inlets in the middle part and / or lower part of the tower above the liquid outlet. L, D, L / D, n, D / d, D / d forces satisfy the formulas (;!) To (6) respectively.
0 0 0 0 0 0 01 0 02  0 0 0 0 0 0 01 0 02
するものであることが必要である。  It is necessary to be.
2100 < L < 8000 式 (1)  2100 <L <8000 (1)
0  0
180 < D < 2000 式 (2)  180 <D <2000 (2)
0  0
4 < L / ) ≤ 40 式 (3)  4 <L /) ≤ 40 (3)
0 0  0 0
10 < n < 120 式 (4)  10 <n <120 (4)
0  0
3 < D , Zd ≤ 20 式 (5)  3 <D, Zd ≤ 20 (5)
0 01  0 01
5 < D , Zd ≤ 30 式 (6)  5 <D, Zd ≤ 30 (6)
なお、本発明で用いる用語「塔頂部またはそれに近い塔の上部」とは、塔頂部から 下方に約 0. 25Lまでの部分を意味し、用語「塔底部またはそれに近い塔の下部」と  The term “top of the tower or near the top of the tower” used in the present invention means a portion of about 0.25 L downward from the top of the tower, and the term “bottom of the tower or near the bottom of the tower”
0  0
は、塔底部から上方に約 0. 25Lまでの部分を意味する。 (第 1および第 2連続多段  Means the portion up to about 0.25 L from the bottom of the tower. (First and second continuous multistage
0  0
蒸留塔においては、それぞれ 0· 25Lおよび 0· 25Lである。 ) [0062] 式(1)、(2)、(3)、(4)、(5)および (6)を同時に満足する連続多段蒸留塔 Tを用 In the distillation column, it is 0 · 25L and 0 · 25L respectively. ) [0062] A continuous multi-stage distillation column T that simultaneously satisfies the formulas (1), (2), (3), (4), (5) and (6) is used.
0 いることによって、環状カーボネートと脂肪族 1価アルコール類とから、ジアルキル力 ーボネートを 1時間あたり好ましくは 0. 4トン以上、および/またはジオール類を 1時 間あたり好ましくは 0. 26トン以上の工業的規模で、高反応率'高選択率'高生産性 で、例えば 1000時間以上、好ましくは 3000時間以上、さらに好ましくは 5000時間 以上の長期間、安定的に製造できることが見出されたのである。工程 (I)を実施する ことによって、このような優れた効果を有する工業的規模でのジアルキルカーボネー トとジオール類の製造が可能になった理由は明らかではな!/、が、式(1)〜(6)の条件 が組み合わさった時にもたらされる複合効果のためであると推定される。なお、各々 の要因の好ましい範囲は下記に示される。  0 from the cyclic carbonate and the aliphatic monohydric alcohol, the dialkyl strength-bonate is preferably 0.4 ton or more and / or the diol is preferably 0.26 ton or more per hour. Since it was found that it can be stably produced for a long period of time, such as 1000 hours or more, preferably 3000 hours or more, and more preferably 5000 hours or more, on an industrial scale, with a high reaction rate and high selectivity. is there. The reason why it is possible to produce dialkyl carbonates and diols on an industrial scale having such excellent effects by carrying out the step (I) is not clear! ) To (6) are presumed to be due to the combined effect. The preferred range of each factor is shown below.
[0063] L (cm)が 2100より小さいと、反応率が低下するため目的とする生産量を達成でき [0063] If L (cm) is less than 2100, the reaction rate decreases and the target production volume can be achieved.
0  0
ないし、 目的の生産量を達成できる反応率を確保しつつ設備費を低下させるには、 L を 8000以下にすることが必要である。より好ましい L (cm)の範囲は、 2300≤L ≤ In addition, L must be 8000 or less in order to reduce equipment costs while ensuring a reaction rate that can achieve the target production volume. The more preferable range of L (cm) is 2300≤L≤
0 0 00 0 0
6000 であり、さらに好ましくは、 2500≤L ≤5000 である。 6000, more preferably 2500≤L≤5000.
0  0
D (cm)が 180よりも小さいと、 目的とする生産量を達成できないし、 目的の生産量 If D (cm) is smaller than 180, the target production volume cannot be achieved and the target production volume
0 0
を達成しつつ設備費を低下させるには、 Dを 2000以下にすることが必要である。よ  In order to reduce equipment costs while achieving the above, D must be 2000 or less. Yo
0  0
り好ましい D (cm)の範囲は、 200≤D ≤1000 であり、さらに好ましくは、 210≤D  The preferred range of D (cm) is 200≤D ≤1000, more preferably 210≤D
0 0  0 0
≤800 である。  ≤800.
0  0
[0064] L /Ό力 より小さい時や 40より大きい時は安定運転が困難となり、特に 40より大  [0064] When L / repulsive force is less than or greater than 40, stable operation becomes difficult, especially greater than 40
0 0  0 0
きいと塔の上下における圧力差が大きくなりすぎるため、長期安定運転が困難となる だけでなぐ塔下部での温度を高くしなければならないため、副反応が起こりやすくな り選択率の低下をもたらす。より好ましい L /Όの範囲は、 5≤L /Ό ≤30 であり  Since the pressure difference between the top and bottom of the tower becomes too large, long-term stable operation becomes difficult, and the temperature at the bottom of the tower must be increased, which leads to side reactions and lowers selectivity. . The more preferred range of L / Ό is 5≤L / Ό ≤30
0 0 0 0  0 0 0 0
、さらに好ましくは、 7≤L /Ό ≤20 である。  More preferably, 7≤L / Ό≤20.
0 0  0 0
[0065] nが 10より小さいと反応率が低下するため目的とする生産量を達成できないし、 目  [0065] If n is less than 10, the reaction rate decreases and the target production volume cannot be achieved.
0  0
的の生産量を達成できる反応率を確保しつつ設備費を低下させるには、 nを 120以  In order to reduce the equipment cost while ensuring the reaction rate that can achieve the desired production volume, n is not less than 120.
0 下にすることが必要である。さらに、 n力 20よりも大きいと塔の上下における圧力差  0 Must be down. Furthermore, if the n force is greater than 20, the pressure difference between the top and bottom of the tower
0  0
が大きくなりすぎるため、長期安定運転が困難となるだけでなぐ塔下部での温度を 高くしなければならないため、副反応が起こりやすくなり選択率の低下をもたらす。よ り好ましい nの範囲は、 30≤n≤100 であり、さらに好ましくは、 40≤n≤90 であAs the temperature becomes too large, the temperature at the bottom of the tower must be increased as well as long-term stable operation becomes difficult, and side reactions are likely to occur, leading to a decrease in selectivity. Yo The preferred range of n is 30≤n≤100, more preferably 40≤n≤90.
0 0 0 d * o 0 0 0 d * o
[0066] D /ά 力 ¾より小さいと設備費が高くなるだけでなく大量のガス成分が系外に出や  [0066] If the D / ά force is less than ¾, not only will the equipment cost be high, but a large amount of gas components may be removed from the system.
0 01  0 01
すくなるため、安定運転が困難になり、 20よりも大きいとガス成分の抜出し量が相対 的に小さくなり、安定運転が困難になるだけでなぐ反応率の低下をもたらす。より好 ましい D /d の範囲は、 4≤D /d ≤15 であり、さらに好ましくは、 5≤D /d Therefore, stable operation becomes difficult, and if it is greater than 20, the amount of gas components extracted becomes relatively small, which leads to a decrease in reaction rate as well as difficulty in stable operation. The more preferred range of D / d is 4≤D / d≤15, and more preferably 5≤D / d
0 01 0 01 0 010 01 0 01 0 01
≤13 である。 ≤13.
[0067] D /ά 力^より小さいと設備費が高くなるだけでなく液抜出し量が相対的に多くな  [0067] If D / ά power ^ is smaller, not only will the equipment cost increase, but the amount of liquid drained will be relatively large.
0 02  0 02
り、安定運転が困難になり、 30よりも大きいと液抜出し口や配管での流速が急激に速 くなりエロージョンを起こしやすくなり装置の腐食をもたらす。より好ましい D /d の  Therefore, stable operation becomes difficult, and if it is larger than 30, the flow velocity at the liquid outlet and the piping increases rapidly, and erosion is likely to occur, resulting in corrosion of the device. More preferred D / d
0 02 範囲は、 7≤D /d ≤25 であり、さらに好ましくは、 9≤D /d ≤20 である。  The range of 0 02 is 7≤D / d≤25, more preferably 9≤D / d≤20.
0 02 0 02  0 02 0 02
[0068] さらに工程 (I)で用いられる連続多段蒸留塔 Tの該 d と該 d が式(24)を満足す  [0068] Further, the d and d of the continuous multistage distillation column T used in the step (I) satisfy the formula (24).
0 01 02  0 01 02
る場合、さらに好ましいことがわ力 た。  When this is the case, it is more preferable.
1 ≤ d /d ≤ 5 式(24)  1 ≤ d / d ≤ 5 Equation (24)
01 02  01 02
[0069] 工程 (I)でいう長期安定運転とは、 1000時間以上、好ましくは 3000時間以上、さら に好ましくは 5000時間以上、フラッデイングや、配管のつまりやエロージョンがなぐ 運転条件に基づ!/、た定常状態で運転が継続でき、高反応率 ·高選択率 ·高生産性を 維持しながら、所定量のジアルキルカーボネートとジオール類が製造されていること を意味する。  [0069] The long-term stable operation in the process (I) is based on operating conditions where there is no flooding, piping clogging or erosion for 1000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more! This means that a certain amount of dialkyl carbonate and diol can be produced while maintaining a high reaction rate, high selectivity, and high productivity.
[0070] 工程 (I)でいぅジアルキルカーボネートおよびジオール類の選択率とは、反応した 環状カーボネートに対するものであって、本発明では通常 95%以上の高選択率であ り、好ましくは 97%以上、さらに好ましくは 99%以上の高選択率を達成することがで きる。また工程 (I)でいう反応率とは、通常、環状カーボネートの反応率を表し、本発 明では環状カーボネートの反応率を 95%以上、好ましくは 97%以上、より好ましくは 99%以上、さらに好ましくは 99. 5以上、さらにより好ましくは 99. 9%以上にすること が可能である。このように高選択率を維持しながら、高反応率を達成できることも工程 (I)の優れた特徴のひとつである。  [0070] In the step (I), the selectivity of the dialkyl carbonate and the diol is relative to the reacted cyclic carbonate, and in the present invention, the selectivity is usually 95% or more, preferably 97%. As described above, a high selectivity of 99% or more can be achieved. The reaction rate in the step (I) usually represents the reaction rate of the cyclic carbonate. In the present invention, the reaction rate of the cyclic carbonate is 95% or more, preferably 97% or more, more preferably 99% or more, and further It is preferably 99.5 or more, and even more preferably 99.9% or more. One of the excellent features of step (I) is that a high reaction rate can be achieved while maintaining a high selectivity.
[0071] 工程 (I)で用いられる連続多段蒸留塔 Tは、インターナルとしてトレイおよび/また は充填物を有する蒸留塔であることが好ましい。なお、本発明でいうインターナルと は、蒸留塔において実際に気液の接触を行わせる部分のことを意味する。このような トレイとしては、例えば泡鍾トレイ、多孔板トレイ、バルブトレイ、向流トレイ、スーパー フラックトレイ、マックスフラックトレイ等が好ましぐ充填物としては、ラシヒリング、レツ シングリング、ポールリング、ベルルサドル、インタロックスサドル、ディクソンパッキン グ、マクマホンパッキング、ヘリパック等の不規則充填物やメラパック、ジェムパック、 テクノバック、フレキシパック、スノレザーパッキング、グッドローノレパッキング、グリッチ グリッド等の規則充填物が好ましレ、。トレイ部と充填物の充填された部分とを合わせ 持つ多段蒸留塔も用いることができる。また、本発明でいう用語「インターナルの段数 n」とは、トレイの場合は、トレイの数を意味し、充填物の場合は、理論段数を意味する[0071] The continuous multi-stage distillation column T used in step (I) is used as an internal tray and / or Is preferably a distillation column with packing. The term “internal” as used in the present invention means a portion where the gas-liquid contact is actually performed in the distillation column. As such a tray, for example, a foam tray, a perforated plate tray, a valve tray, a counter-flow tray, a super flack tray, a max flack tray, etc. are preferred fillings such as Raschig rings, less rings, pole rings, Berle saddles. Irregular packing such as Interlocks saddle, Dixon packing, McMahon packing, Helipac, etc. and regular packing such as Melapack, Gempack, Technoback, Flexipack, Snow Leather Packing, Goodronor Packing, Glitch Grid etc. Les. A multi-stage distillation column having both a tray part and a part filled with packing can also be used. Further, the term “internal plate number n” in the present invention means the number of trays in the case of trays, and the theoretical plate number in the case of packing.
Yes
したがって、トレイ部と充填物の充填された部分とを合わせて持つ多段蒸留塔の場 合、段数 nはトレイの数と理論段数の合計である。  Therefore, in the case of a multi-stage distillation column having both a tray part and a packed part, the number of stages n is the sum of the number of trays and the number of theoretical stages.
[0072] 環状カーボネートと脂肪族 1価アルコール類とを反応させる工程 (I)において、イン ターナルが所定の段数を有するトレイおよび/または充填物からなる棚段式連続多 段蒸留塔および/または充填塔式連続多段蒸留塔のいずれを用いても、高反応率[0072] In the step (I) of reacting the cyclic carbonate and the aliphatic monohydric alcohol, the continuous continuous multi-stage distillation column and / or the packing comprising a tray and / or a packing having a predetermined number of internal plates High reaction rate using any of the tower-type continuous multistage distillation columns
•高選択率 ·高生産性を達成することができる力、インターナルカ^レイである棚段式 蒸留塔がより好ましいことが見出された。さらに、該トレイが多孔板部とダウンカマー 部を有する多孔板トレイが機能と設備費との関係で特に優れていることが見出された 。そして、該多孔板トレイが該多孔板部の面積 lm2あたり 100〜; 1000個の孔を有し ていることが好ましいことも見出された。より好ましい孔数は該面積 lm2あたり 120〜9 00個であり、さらに好ましくは、 150〜800個である。また、該多孔板トレイの孔 1個あ たりの断面積が 0. 5〜5cm2であることが好ましいことも見出された。より好ましい孔 1 個あたりの断面積は、 0. 7〜4cm2であり、さらに好ましくは 0. 9〜3cm2である。さら には、該多孔板トレイが該多孔板部の面積 lm2あたり 100〜; 1000個の孔を有してお り、かつ、孔 1個あたりの断面積が 0. 5〜5cm2である場合、特に好ましいことが見出 された。 • High selectivity • The ability to achieve high productivity, the internal distillation column-type distillation column was found to be more preferable. Furthermore, it has been found that a perforated plate tray having a perforated plate portion and a downcomer portion is particularly excellent in terms of function and equipment cost. It was also found that the perforated plate tray preferably has 100 to 1000 holes per area lm 2 of the perforated plate portion. More preferably, the number of holes is 120 to 900 per lm 2 , and more preferably 150 to 800. It has also been found that the cross-sectional area per hole of the perforated plate tray is preferably 0.5 to 5 cm 2 . The cross-sectional area per hole is more preferably 0.7 to 4 cm 2 , and further preferably 0.9 to 3 cm 2 . Further, the perforated plate tray has 100 to 1000 holes per lm 2 area of the perforated plate portion, and has a cross-sectional area of 0.5 to 5 cm 2 per hole. In particular, it has been found to be particularly preferred.
[0073] さらに、該多孔板トレイの開口率が 1. 5〜; 15%であることが好ましいことが見出され た。より好ましい該開口率は、 1. 7〜; 13%であり、さらに好ましくは 1. 9〜; 11 %である 。ここで、多孔板トレイの開口率とは、該多孔板部の面積に対する該多孔板に存在す る孔全部の断面積 (全孔断面積)の割合を表す。各多孔板トレイにおいて、多孔板部 の面積および/または全孔断面積が異なる場合がある力 S、この場合においても各多 孔板トレイの開口率が上記の範囲であることが好ましい。なお、該多孔板部の孔数は 、全ての多孔板において同じであってもよいし、異なるものであってもよい。連続多段 蒸留塔 Tに上記の条件を付加することによって、工程 (I)における課題が、より容易 [0073] Further, it has been found that the aperture ratio of the perforated plate tray is preferably 1.5 to 15%. It was. More preferably, the aperture ratio is 1.7 to 13%, and more preferably 1.9 to 11%. Here, the aperture ratio of the perforated plate tray represents the ratio of the cross-sectional area of all the holes existing in the perforated plate to the area of the perforated plate portion (total hole cross-sectional area). In each perforated plate tray, the force S may be different in the area of the perforated plate portion and / or the total hole cross-sectional area, and in this case also, the aperture ratio of each multi-holed plate tray is preferably in the above range. The number of holes in the perforated plate portion may be the same in all perforated plates, or may be different. By adding the above conditions to the continuous multi-stage distillation column T, the problem in step (I) can be made easier.
0  0
に達成されることが判明したのである。  It was found that this was achieved.
[0074] 工程 (I)を実施する場合、原料である環状カーボネートと脂肪族 1価アルコール類と を触媒が存在する連続多段蒸留塔内に連続的に供給し、該塔内で反応と蒸留を同 時に行い、生成するジアルキルカーボネートを含む低沸点反応混合物を塔上部より ガス状で連続的に抜出し、ジオール類を含む高沸点反応混合物を塔下部より液状 で連続的に抜出すことによりジアルキルカーボネートとジオール類が連続的に製造さ れる。  [0074] When the step (I) is carried out, the cyclic carbonate as a raw material and the aliphatic monohydric alcohol are continuously fed into a continuous multistage distillation column in which a catalyst exists, and the reaction and distillation are carried out in the column. At the same time, the low-boiling reaction mixture containing dialkyl carbonate to be produced is continuously withdrawn in the form of gas from the top of the tower, and the high boiling point reaction mixture containing diols is continuously withdrawn in the form of liquid from the bottom of the tower. Diols are produced continuously.
[0075] また、工程 (I)において、原料である環状カーボネートと脂肪族 1価アルコール類を 連続多段蒸留塔 T内に連続的に供給するには、蒸留塔の上部のガス抜出し口よりも  [0075] Further, in step (I), in order to continuously supply the raw material cyclic carbonate and aliphatic monohydric alcohol into the continuous multistage distillation column T, the gas outlet at the top of the distillation column is more than
0  0
下部であるが塔の上部または中間部に設置された 1箇所または数箇所の導入口から 、原料混合物として、またはそれぞれ別々に、液状および/またはガス状で供給して もよいし、環状カーボネートまたはそれを多く含む原料を蒸留塔の上部または中間部 の導入ロカ 液状で供給し、脂肪族 1価アルコール類またはそれを多く含む原料を 蒸留塔の下部の液抜出し口よりも上部であって塔の中間部または下部に設置された 導入口からガス状で供給することも好ましレ、方法である。  It may be supplied in liquid and / or gaseous form as a raw material mixture or separately from one or several inlets installed in the lower part but at the upper part or the middle part of the tower. The raw material containing a large amount thereof is supplied in the form of an introduction loca in the upper part or middle part of the distillation column, and the aliphatic monohydric alcohol or the raw material containing a large amount of the raw material is provided above the liquid outlet at the lower part of the distillation column. It is also preferable to supply it in the form of gas from the inlet installed in the middle or lower part.
[0076] 工程 (I)で行われるエステル交換反応の反応時間は連続多段蒸留塔 T内での反  [0076] The reaction time of the transesterification performed in the step (I) is the reaction time in the continuous multistage distillation column T.
0 応液の平均滞留時間に相当すると考えられるが、これは蒸留塔のインターナルの形 状や段数、原料供給量、触媒の種類や量、反応条件などによって異なるが、通常 0. ;!〜 20時間、好ましくは 0. 5〜; 15時間、より好ましくは;!〜 10時間である。  0 It is thought that this corresponds to the average residence time of the reaction liquid, but this varies depending on the internal shape and number of stages of the distillation column, the amount of feed, the type and amount of the catalyst, the reaction conditions, etc. 20 hours, preferably 0.5 to 15 hours, more preferably;! To 10 hours.
[0077] 工程 (I)の反応温度は、用いる原料化合物の種類や触媒の種類や量によって異な る力 通常、 30〜300°Cである。反応速度を高めるためには反応温度を高くすること が好ましいが、反応温度が高いと副反応も起こりやすくなる。好ましい反応温度は 40 〜250°C、より好ましくは 50〜200°C、さらに好ましくは、 60〜; 150°Cの範囲である。 本発明においては、塔底温度として 150°C以下、好ましくは 130°C以下、より好ましく は 110°C以下、さらにより好ましくは 100°C以下にして反応蒸留を実施することが可 能である。このような低!/、塔底温度であっても高反応率 ·高選択率 ·高生産性を達成 できることは、工程 (I)の優れた特徴のひとつである。また、反応圧力は、用いる原料 化合物の種類や組成、反応温度などにより異なる力 減圧、常圧、加圧のいずれで あってもよく、通常 lPa〜2 X 107Pa、好ましくは、 103Pa〜; 107Pa、より好ましくは 104 〜5 X 106の範囲で行われる。 [0077] The reaction temperature in the step (I) varies depending on the type of raw material compound used and the type and amount of the catalyst, and is usually 30 to 300 ° C. Increasing the reaction temperature to increase the reaction rate However, when the reaction temperature is high, side reactions are liable to occur. Preferred reaction temperatures range from 40 to 250 ° C, more preferably from 50 to 200 ° C, even more preferably from 60 to; In the present invention, the reaction distillation can be carried out at a column bottom temperature of 150 ° C. or lower, preferably 130 ° C. or lower, more preferably 110 ° C. or lower, and even more preferably 100 ° C. or lower. . Achieving high reaction rate, high selectivity, and high productivity even at such a low temperature / bottom temperature is one of the excellent features of process (I). The reaction pressure may vary depending on the type and composition of the raw material compound used, the reaction temperature, etc., and may be any of reduced pressure, normal pressure, and increased pressure, usually 1 Pa to 2 X 10 7 Pa, preferably 10 3 Pa. To 10 7 Pa, more preferably 10 4 to 5 × 10 6 .
[0078] また、工程 (I)の連続多段蒸留塔 Tの還流比は、通常 0〜; 10が用いられ、好ましく [0078] The reflux ratio of the continuous multistage distillation column T in step (I) is usually from 0 to 10;
0  0
は 0. 0;!〜 5が、さらに好ましくは 0. 05〜3が用いられる。  Is from 0.0;! To 5, more preferably from 0.05 to 3.
[0079] 工程 (I)で用いられる連続多段蒸留塔 Tを構成する材料は、主に炭素鋼、ステンレ [0079] The material constituting the continuous multistage distillation column T used in step (I) is mainly carbon steel, stainless steel.
0  0
ススチールなどの金属材料であるカ、製造するジアルキルカーボネートの品質の面 からは、ステンレススチールが好ましい。  Stainless steel is preferred from the viewpoint of the quality of the metal material such as stainless steel and the quality of the dialkyl carbonate to be produced.
[0080] 本発明では、続いて、工程 (I)で製造されたジアルキルカーボネートと芳香族モノヒ ドロキシ化合物とからジァリールカーボネートを工業的規模で連続的に製造する工程 (II)が行われる。工程 (II)で用いられるジアルキルカーボネートとは、下記式に記載 の下式で表されるものである。 [0080] In the present invention, subsequently, step (II) for continuously producing diaryl carbonate on an industrial scale from the dialkyl carbonate produced in step (I) and the aromatic monohydroxy compound is performed. The dialkyl carbonate used in the step (II) is represented by the following formula described in the following formula.
R'OCOOR2 R'OCOOR 2
ここで、 R2は前記のとおりである。 Here, R 2 is as described above.
このような R2を有するジアルキルカーボネートとしては、例えば、ジメチルカーボネ ート、ジェチルカーボネート、ジプロピルカーボネート(各異性体)、ジァリルカーボネ ート、ジブテュルカーボネート(各異性体)、ジブチルカーボネート(各異性体)、ジぺ ンチルカーボネート(各異性体)、ジへキシルカーボネート(各異性体)、ジヘプチル カーボネート(各異性体)、ジォクチルカーボネート(各異性体)、ジノニルカーボネー ト(各異性体)、ジデシルカーボネート(各異性体)、ジシクロペンチルカーボネート、 ジシクロへキシノレカーボネート、ジシクロへプチノレカーボネート、ジベンジノレカーボネ ート、ジフエネチノレカーボネート(各異十生体)、ジ(フエ二ノレプロピノレ)カーボネート(各 異性体)、ジ(フエニルブチル)カーボネート(各異性体)ジ(クロ口ベンジル)カーボネ ート(各異性体)、ジ (メトキシベンジル)カーボネート (各異性体)、ジ (メトキシメチル) カーボネート、ジ (メトキシェチル)カーボネート(各異性体)、ジ(クロロェチル)カーボ ネート(各異性体)、ジ (シァノエチル)カーボネート (各異性体)等が挙げられる。 Examples of such dialkyl carbonates having R 2 include dimethyl carbonate, jetyl carbonate, dipropyl carbonate (each isomer), diaryl carbonate, dibutyr carbonate (each isomer), dibutyl carbonate (each Isomer), dipentyl carbonate (each isomer), dihexyl carbonate (each isomer), diheptyl carbonate (each isomer), dioctyl carbonate (each isomer), dinonyl carbonate (each Isomers), didecyl carbonate (each isomer), dicyclopentyl carbonate, dicyclohexenole carbonate, dicycloheptinole carbonate, dibenzino carbonate, diphenetino carbonate (each different organism), di (Fuenore propinore) carbonate (each Isomers), di (phenylbutyl) carbonate (each isomer) di (black benzyl) carbonate (each isomer), di (methoxybenzyl) carbonate (each isomer), di (methoxymethyl) carbonate, di ( Methoxyethyl) carbonate (each isomer), di (chloroethyl) carbonate (each isomer), di (cyanoethyl) carbonate (each isomer) and the like.
[0081] これらの中で、本発明において好ましく用いられるのは、 R2がハロゲンを含まない 炭素数 4以下のアルキル基からなるジアルキルカーボネートであり、特に好ましいの はジメチルカーボネートである。また、好ましいジアルキルカーボネートのなかで、さら に好ましいのは、ハロゲンを実質的に含まない状態で製造されたジアルキルカーボ ネートであって、例えばハロゲンを実質的に含まないアルキレンカーボネートとハロゲ ンを実質的に含まないアルコール力 製造されたものである。 [0081] Of these, R 2 is preferably a dialkyl carbonate composed of an alkyl group containing 4 or less carbon atoms that does not contain halogen, and dimethyl carbonate is particularly preferred. Among the preferred dialkyl carbonates, more preferred are dialkyl carbonates prepared in a substantially halogen-free state, for example, alkylene carbonate and halogen substantially free of halogen. Alcohol power not included in the product.
[0082] 工程 (II)で用いられる芳香族モノヒドロキシ化合物とは、下記一般式で表されるもの であり、芳香族基に直接ヒドロキシル基が結合しているものであれば、どの様なもので あってもよい。  [0082] The aromatic monohydroxy compound used in the step (II) is represented by the following general formula, and any compound may be used as long as the hydroxyl group is directly bonded to the aromatic group. It may be.
Ar3OH Ar 3 OH
ここで Ar3は炭素数 5〜30の芳香族基を表す。このような Ar3を有する芳香族モノヒ ドロキシ化合物としては、例えば、フエノール、タレゾール(各異性体)、キシレノール( 各異性体)、トリメチルフエノール(各異性体)、テトラメチルフエノール(各異性体)、ェ チルフエノール(各異性体)、プロピルフエノール(各異性体)、ブチルフエノール(各 異性体)、ジェチルフエノール(各異性体)、メチルェチルフエノール(各異性体)、メ チルプロピルフエノール(各異性体)、ジプロピルフエノール(各異性体)、メチルブチ ノレフエノール(各異性体)、ペンチルフエノール(各異性体)、へキシルフェノール(各 異性体)、シクロへキシルフェノール(各異性体)等の各種アルキルフエノール類;メト キシフエノール(各異性体)、エトキシフエノール(各異性体)等の各種アルコキシフエ ノール類;フエニルプロピルフエノール(各異性体)等のァリールアルキルフエノール 類;ナフトール(各異性体)及び各種置換ナフトール類;ヒドロキシピリジン(各異性体) 、ヒドロキシクマリン (各異性体)、ヒドロキシキノリン(各異性体)等のへテロ芳香族モノ ヒドロキシ化合物類等が用いられる。 Here, Ar 3 represents an aromatic group having 5 to 30 carbon atoms. Examples of such aromatic monohydroxy compounds having Ar 3 include phenol, talesol (each isomer), xylenol (each isomer), trimethylphenol (each isomer), tetramethylphenol (each isomer), Ethylphenol (each isomer), propylphenol (each isomer), butylphenol (each isomer), jetylphenol (each isomer), methylethylphenol (each isomer), methylpropylphenol (each) Isomers), dipropylphenol (each isomer), methylbutinophenol (each isomer), pentylphenol (each isomer), hexylphenol (each isomer), cyclohexylphenol (each isomer), etc. Alkylphenols; methoxyphenol (each isomer), ethoxyphenol (each isomer), etc. Various alkoxyphenols; arylpropylphenols such as phenylpropylphenol (each isomer); naphthol (each isomer) and various substituted naphthols; hydroxypyridine (each isomer), hydroxycoumarin (each isomer) ), And heteroaromatic monohydroxy compounds such as hydroxyquinoline (each isomer).
[0083] これらの芳香族モノヒドロキシ化合物は、 1種またはそれ以上の混合物として用いる こと力 Sできる。これらの芳香族モノヒドロキシ化合物の中で、本発明において好ましく 用いられるのは、 Ar3が炭素数 6から 10の芳香族基からなる芳香族モノヒドロキシ化 合物であり、特に好ましいのはフエノールである。また、これらの芳香族モノヒドロキシ 化合物の中で、本発明において好ましく用いられるのは、ハロゲンを実質的に含まな いものである。 [0083] These aromatic monohydroxy compounds are used as a mixture of one or more. That power S. Among these aromatic monohydroxy compounds, those preferably used in the present invention are aromatic monohydroxy compounds in which Ar 3 is an aromatic group having 6 to 10 carbon atoms, particularly preferably phenol. is there. Of these aromatic monohydroxy compounds, those that are preferably used in the present invention are those that do not substantially contain halogen.
[0084] したがって、本発明でいうジァリールカーボネートとは、一般的には下記式で表され るものである。  Therefore, the diaryl carbonate as used in the present invention is generally represented by the following formula.
[0085] [化 3] [0085] [Chemical 3]
0 0
II  II
Ar^-OCO-Ar4 Ar ^ -OCO-Ar 4
[0086] (式中、 Ar3、 Ar4はそれぞれ 1価の芳香族基を表す。 ) [In the formula, Ar 3 and Ar 4 each represent a monovalent aromatic group.]
Ar3及び Ar4は、 1価の炭素環式又は複素環式芳香族基を表すが、この Ar3、 Ar4に おいて、 1つ以上の水素原子が、反応に悪影響を及ぼさない他の置換基、例えば、 ハロゲン原子、炭素数 1〜10のアルキル基、炭素数 1〜10のアルコキシ基、フエニル 基、フエノキシ基、ビュル基、シァノ基、エステル基、アミド基、ニトロ基などによって置 換されたものであってもよい。 Ar3、 Ar4は同じものであってもよいし、異なるものであつ てもよい。 1価の芳香族基 Ar3及び Ar4の代表例としては、フエニル基、ナフチル基、 ビフエ二ル基、ピリジル基を挙げることができる。これらは、上述の 1種以上の置換基 で置換されたものでもよレ、。 Ar 3 and Ar 4 each represent a monovalent carbocyclic or heterocyclic aromatic group. In Ar 3 and Ar 4 , one or more hydrogen atoms are other groups that do not adversely affect the reaction. Substituents such as halogen atoms, alkyl groups having 1 to 10 carbon atoms, alkoxy groups having 1 to 10 carbon atoms, phenyl groups, phenoxy groups, bur groups, cyan groups, ester groups, amide groups, nitro groups, etc. It may be what was done. Ar 3 and Ar 4 may be the same or different. Representative examples of the monovalent aromatic groups Ar 3 and Ar 4 include a phenyl group, a naphthyl group, a biphenyl group, and a pyridyl group. These may be substituted with one or more substituents as described above.
[0087] 好ましい Ar3及び Ar4としては、それぞれ例えば、下記式に示されるものなどが挙げ られる。 Preferred examples of Ar 3 and Ar 4 include those represented by the following formulas, respectively.
[0088] [化 4]
Figure imgf000037_0001
[0088] [Chemical 4]
Figure imgf000037_0001
[0089] 特に好ましいジァリールカーボネートは、下記式で示される置換又は非置換のジフ ェニルカーボネートである。 [0089] A particularly preferred diaryl carbonate is a substituted or unsubstituted diphenyl carbonate represented by the following formula.
[0090] [化 5]  [0090] [Chemical 5]
Figure imgf000037_0002
Figure imgf000037_0002
[0091] (式中、 R9及び R1()は、各々独立に水素原子、炭素数 1〜; 10を有するアルキル基、炭 素数 1〜; 10を有するアルコキシ基、環構成炭素数 5〜; 10のシクロアルキル基又はフ ェニル基を示し、 p及び qは 1〜5の整数で、 pが 2以上の場合には、各 R9はそれぞれ 異なるものであってもよいし、 qが 2以上の場合には、各 R1()は、それぞれ異なるもので あってもよい。 ) [0091] (wherein R 9 and R 1 () are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, an alkoxy group having 10 to 10 carbon atoms, or a ring having 5 to 5 carbon atoms. 10 represents a cycloalkyl group or a phenyl group, p and q are integers of 1 to 5, and when p is 2 or more, each R 9 may be different, or q is 2 In the above case, each R 1 () may be different.
[0092] このジァリールカーボネート類の中でも、非置換のジフエニルカーボネートや、ジトリ ルカーボネート、ジー t ブチルフエニルカーボネートのような低級アルキル置換ジフ ェニルカーボネートなどの対称型ジァリールカーボネートが好ましいが、特に好まし いのは、もっとも簡単な構造のジフエ二ルカーボネートが好適である。これらのジァリ ールカーボネート類は単独で用いてもよ!/、し、 2種以上を組み合わせて用いてもよ!/、 工程 (II)で原料として用いられるジアルキルカーボネートの芳香族モノヒドロキシ化 合物に対する量比は、モル比で、 0. ;!〜 10であることが好ましい。この範囲外では、 目的とするのジァリールカーボネートの所定生産量に対して、残存する未反応の原 料が多くなり、効率的でないし、またそれらを回収するために多くのエネルギーを要 する。この意味で、このモル比は、 0· 5〜5力 り好ましく、より好ましくは 0. 8〜3であ り、さらに好ましくは、;!〜 2である。 [0092] Among these diaryl carbonates, symmetrical diaryl carbonates such as unsubstituted diphenyl carbonate and lower alkyl-substituted diphenyl carbonates such as ditolyl carbonate and di-butyl phenyl carbonate are preferable. Particularly preferred is diphenyl carbonate having the simplest structure. These diallyl carbonates may be used alone or in combination of two or more! /, With respect to an aromatic monohydroxy compound of dialkyl carbonate used as a raw material in step (II). The amount ratio is preferably a molar ratio of 0. Outside this range, The amount of unreacted raw material that remains is increased with respect to the desired production amount of diaryl carbonate, which is not efficient, and a large amount of energy is required to recover them. In this sense, the molar ratio is preferably 0.5 to 5 forces, more preferably 0.8 to 3, and still more preferably!
[0094] 本発明においては、 1時間あたり 1トン以上の芳香族ポリカーボネートを連続的に製 造するのである力 そのためには 1時間あたり約 0. 85トン以上の高純度ジァリール力 ーボネートを連続的に製造する必要がある。従って、工程 (II)において、連続的に供 給される芳香族モノヒドロキシ化合物の最低量は、製造すべき芳香族ポリカーボネー トの量(Pトン/ hr)に対して、通常 15Pトン/ hrであり、好ましくは、 13Pトン/ hr、より 好ましくは 10Pトン/ hrである。さらに好ましい場合は、 8Pトン/ hrよりも少なくできる[0094] In the present invention, a force that continuously produces 1 ton or more of aromatic polycarbonate per hour. For that purpose, a high-purity diaryl force of about 0.85 ton or more per hour is continuously applied. It needs to be manufactured. Therefore, in Step (II), the minimum amount of aromatic monohydroxy compound continuously supplied is usually 15 P ton / hr with respect to the amount of aromatic polycarbonate to be produced (P ton / hr). And preferably 13 P ton / hr, more preferably 10 P ton / hr. If more preferable, it can be less than 8P ton / hr
Yes
[0095] なお、工程(II)において原料として用いられるジアルキルカーボネートと芳香族モノ ヒドロキシ化合物はそれぞれ純度の高!/、ものであっても!/、レ、が、他の化合物を含むも のであってもよぐ例えば、第 1連続多段蒸留塔または/および第 2連続多段蒸留塔 で生成する化合物や反応副生物を含むものであってもよい。工業的に実施する場合 、これらの原料として、新規に反応系に導入されるジアルキルカーボネートと芳香族 モノヒドロキシ化合物に加え、第 1連続多段蒸留塔または/および第 2連続多段蒸留 塔から回収されたものをも使用することが好ましい。本発明の方法では、第 2連続多 段蒸留塔での低沸点反応混合物である塔頂成分が第 1連続多段蒸留塔に供給され る。この場合、第 2塔低沸点反応混合物はそのままで第 1連続多段蒸留塔に供給し てもよ!/、し、成分の一部を分離した後に供給してもよ!/、。  [0095] It should be noted that the dialkyl carbonate and aromatic monohydroxy compound used as raw materials in the step (II) each have high purity! /, Even if it is! /, And le, which contains other compounds. For example, it may contain a compound or reaction byproduct produced in the first continuous multistage distillation column or / and the second continuous multistage distillation column. When industrially implemented, these raw materials were recovered from the first continuous multistage distillation column and / or the second continuous multistage distillation column in addition to the dialkyl carbonate and aromatic monohydroxy compound newly introduced into the reaction system. It is preferable to use also. In the method of the present invention, the top component, which is a low boiling point reaction mixture in the second continuous multistage distillation column, is supplied to the first continuous multistage distillation column. In this case, the second column low boiling point reaction mixture may be supplied as it is to the first continuous multistage distillation column! /, Or after a part of the components are separated! / ,.
[0096] 従って、工業的に実施する本発明においては、第 1連続多段蒸留塔に供給される 原料中には、アルコール類、アルキルァリールカーボネート、ジァリールカーボネート 、アルキルァリールエーテルなどが含まれているものが好ましぐさらには生成物であ るアルキルァリールカーボネートゃジァリールカーボネートのフリース転移生成物や その誘導体などの高沸点副生物を少量含むものであっても好ましく用いられる。本発 明において例えば、ジアルキルカーボネートとしてジメチルカーボネートを、芳香族 モノヒドロキシ化合物としてフエノールを原料にして、メチルフエニルカーボネートおよ びジフヱニルカーボネートを製造する場合、その原料中に反応生成物であるメチル アルコールや、メチルフエニルカーボネートおよびジフエニルカーボネートを含んで いること力 S好ましく、さらには反応副生物であるァニソールゃサリチル酸フエニル、サリ チル酸メチルやこれらから誘導される高沸点副生物を少量含んでレ、てもよレ、。 Accordingly, in the present invention that is industrially implemented, the raw materials supplied to the first continuous multistage distillation column include alcohols, alkylaryl carbonate, dialyl carbonate, alkylaryl ether, and the like. Further, the product is preferably used even if it contains a small amount of high-boiling by-products such as a fleece transfer product of alkylaryl carbonate or diallyl carbonate and its derivatives. In the present invention, for example, dimethyl carbonate as a dialkyl carbonate and phenol as an aromatic monohydroxy compound are used as raw materials. When producing diphenyl carbonate, it is preferable that the raw material contains methyl alcohol as a reaction product, methyl phenyl carbonate and diphenyl carbonate. Further, anisole is salicylic acid as a reaction byproduct. It may contain a small amount of phenyl, methyl salicylate and high-boiling by-products derived from these.
[0097] さらに、工程 (II)で使用される芳香族モノヒドロキシ化合物の大部分は、本発明の 工程 (IV)で副生する芳香族モノヒドロキシ化合物から成っている。この副生芳香族モ ノヒドロキシ化合物は工程 (V)によって、工程 (II)に循環されることが必要である。  [0097] Furthermore, most of the aromatic monohydroxy compound used in step (II) is composed of the aromatic monohydroxy compound by-produced in step (IV) of the present invention. This by-product aromatic monohydroxy compound needs to be recycled to step (II) by step (V).
[0098] 工程(II)において製造されるジァリールカーボネートは、ジアルキルカーボネートと 芳香族モノヒドロキシ化合物とのエステル交換反応によって得られる力 このエステル 交換反応には、ジアルキルカーボネートの 1つまたは 2つのアルコキシ基が芳香族モ ノヒドロキシ化合物のァリーロキシ基と交換されアルコール類を離脱する反応と、生成 したアルキルァリールカーボネート 2分子間のエステル交換反応である不均化反応 によってジァリールカーボネートとジアルキルカーボネートに変換される反応が含ま れている。工程 (II)の第 1連続多段蒸留塔においては主としてアルキルァリールカー ボネートが得られ、第 2連続多段蒸留塔においては主としてこのアルキルァリール力 ーボネートの不均化反応よつて、ジァリールカーボネートとジアルキルカーボネートが 得られる。工程 (II)で得られたジァリールカーボネートは、ハロゲンを全く含まないた め、本発明の芳香族ポリカーボネートを工業的に製造するときの原料として重要であ る。なぜならば、重合原料中にハロゲンがたとえば lppmよりも少ない量であっても存 在しておれば、重合反応を阻害するし、芳香族ポリカーボネートの安定製造を阻害 するし、し力、も生成した芳香族ポリカーボネートの物性低下や、着色の原因となるから である。  [0098] The diaryl carbonate produced in the step (II) is produced by the transesterification reaction between the dialkyl carbonate and the aromatic monohydroxy compound. This transesterification reaction involves one or two alkoxy compounds of the dialkyl carbonate. A group is exchanged with the aryloxy group of an aromatic monohydroxy compound to remove alcohols, and a disproportionation reaction that is a transesterification reaction between two molecules of the generated alkylaryl carbonate. The reaction to be converted is included. In the first continuous multi-stage distillation column of step (II), mainly alkylaryl carbonate is obtained, and in the second continuous multi-stage distillation column, this alkylaryl power is mainly obtained by the disproportionation reaction of the carbonate. And dialkyl carbonate. Since the diaryl carbonate obtained in the step (II) does not contain any halogen, it is important as a raw material for industrially producing the aromatic polycarbonate of the present invention. This is because if the amount of halogen present in the polymerization raw material is less than, for example, 1 ppm, the polymerization reaction is inhibited, the stable production of aromatic polycarbonate is inhibited, and the strength is also generated. This is because the physical properties of the aromatic polycarbonate are deteriorated and coloring is caused.
[0099] 工程 (II)の第 1連続多段蒸留塔または/および第 2連続多段蒸留塔で使用される 触媒としては、例えば下記の化合物から選択される。  [0099] The catalyst used in the first continuous multistage distillation column and / or the second continuous multistage distillation column in step (II) is selected from the following compounds, for example.
<鉛化合物〉 PbO、 PbO、 Pb O等の酸化鉛類; PbS、 Pb S等の硫化鉛類; Pb (  <Lead compounds> Lead oxides such as PbO, PbO and PbO; Lead sulfides such as PbS and Pb S; Pb (
2 3 4 2  2 3 4 2
OH) 、 Pb O (OH)等の水酸化鉛類; Na PbO、 K PbO、 NaHPbO、 KHPbO 等の亜ナマリ酸塩類; Na PbO、 Na H PbO、 K PbO、 K [Pb (OH) ]、 K PbO、  Lead hydroxides such as OH) and Pb 2 O (OH); Nymaleates such as Na PbO, K PbO, NaHPbO and KHPbO; Na PbO, Na H PbO, K PbO, K [Pb (OH)], K PbO,
2 3 2 2 4 2 3 2 6 4 4 2 3 2 2 4 2 3 2 6 4 4
Ca PbO、 CaPbO等の鉛酸塩類; PbCO、 2PbCO -Pb (OH)等の鉛の炭酸塩及 びその塩基性塩類; Pb (OCOCH ) 、Pb (OCOCH ) 、Pb (OCOCH ) -PbO - 3H Lead salts such as Ca PbO and CaPbO; Lead carbonates such as PbCO and 2PbCO 2 -Pb (OH) And its basic salts; Pb (OCOCH), Pb (OCOCH), Pb (OCOCH) -PbO-3H
3 2 3 4 3 2  3 2 3 4 3 2
O等の有機酸の鉛塩及びその炭酸塩や塩基性塩類; Bu Pb、 Ph Pb、 Bu PbCl、 P Lead salts of organic acids such as O and their carbonates and basic salts; Bu Pb, Ph Pb, Bu PbCl, P
2 4 4 3 h PbBr、 Ph Pb (又は Ph Pb ) , Bu PbOH、 Ph PbO等の有機鉛化合物類(Butt2 4 4 3 h Organic lead compounds such as PbBr, Ph Pb (or Ph Pb), Bu PbOH, Ph PbO (Butt
3 3 6 2 3 3 3 3 6 2 3 3
ブチル基、 Phはフエ二ル基を示す。); Pb (OCH ) 、 (CH O) Pb (OPh)、 Pb (OPh Butyl group, Ph represents a phenyl group. ); Pb (OCH), (CH 2 O) Pb (OPh), Pb (OPh
3 2 3  3 2 3
) 等のアルコキシ鉛類、ァリールォキシ鉛類; Pb— Na、 Pb— Ca、 Pb— Ba、 Pb— Sn 、 Pb— Sb等の鉛の合金類;ホウェン鉱、センァェン鉱等の鉛鉱物類、及びこれらの 鉛化合物の水和物;  ) Alkoxyleads such as Pb—Na, Pb—Ca, Pb—Ba, Pb—Sn, Pb—Sb, etc .; Lead minerals such as howenite, senyanite, and these Hydrates of lead compounds;
<銅族金属の化合物〉 CuCl、 CuCl、 CuBr、 CuBr、 Cul、 Cul、 Cu (OAc) 、 Cu (acac) 、ォレイン酸銅、 Bu Cu、 (CH O) Cu、 AgNO、 AgBr、ピクリン酸銀、 A  <Copper group metal compounds> CuCl, CuCl, CuBr, CuBr, Cul, Cul, Cu (OAc), Cu (acac), copper oleate, Bu Cu, (CH 2 O) Cu, AgNO, AgBr, silver picrate, A
2 2 3 2 3  2 2 3 2 3
gC H CIO 、 [AuC≡C-C (CH ) ]n、 [Cu (C H ) C1]等の銅族金属の塩及び錯Salts and complexes of copper group metals such as gC H CIO, [AuC≡C-C (CH)] n, and [Cu (C H) C1]
6 6 4 3 3 7 8 4 6 6 4 3 3 7 8 4
体(acacはァセチルアセトンキレート配位子を表す。 ); (Acac represents a acetylacetone chelate ligand);
<アルカリ金属の錯体〉 Li (acac)、 LiN (C H )等のアルカリ金属の錯体;  <Alkali metal complexes> Alkali metal complexes such as Li (acac) and LiN (C H);
4 9 2  4 9 2
<亜鉛の錯体〉 Zn (acac)等の亜鉛の錯体;  <Zinc complex> Zinc complex such as Zn (acac);
くカドミウムの錯体 > Cd (acac) 等のカドミウムの錯体;  Cadmium complexes> Cd (acac) and other cadmium complexes;
<鉄族金属の化合物〉 Fe (C H ) (CO) 、 Fe (CO) 、 Fe (C H ) (CO) 、 Co (メ  <Compounds of iron group metals> Fe (C H) (CO), Fe (CO), Fe (C H) (CO), Co (Me
10 8 5 5 4 6 3 シチレン) (PEt Ph) 、 CoC F (CO) 、 Ni- π—C H N〇、フエ口セン等の鉄族金  10 8 5 5 4 6 3 Citylene) (PEt Ph), CoC F (CO), Ni-π—C H N〇, Huekousen, etc.
2 2 2 5 5 7 5 5  2 2 2 5 5 7 5 5
属の錯体; A complex of the genus;
<ジルコニウム錯体〉 Zr (acac) ,ジルコノセン等のジルコニウムの錯体;  <Zirconium complex> Zr complexes such as Zr (acac) and zirconocene;
4  Four
<ルイス酸類化合物〉 A1X、 TiX , TiX、 VOX、 VX、 ZnX、 FeX、 SnX (ここ  <Lewis acid compounds> A1X, TiX, TiX, VOX, VX, ZnX, FeX, SnX (here
3 3 4 3 5 2 3 4 で、 Xはハロゲン、ァセトキシ基、アルコキシ基、ァリールォキシ基である。)等のルイ ス酸及びルイス酸を発生する遷移金属化合物;  3 3 4 3 5 2 3 4, X is halogen, acetoxy group, an alkoxy group or an aryloxy group. ) And the like, a transition metal compound that generates Lewis acid and Lewis acid;
<有機スズ化合物〉(CH ) SnOCOCH、(C H ) SnOCOC H、 Bu SnOCO  <Organic tin compounds> (CH) SnOCOCH, (C H) SnOCOC H, Bu SnOCO
3 3 3 2 5 3 6 5 3  3 3 3 2 5 3 6 5 3
CH、 Ph SnOCOCH、 Bu Sn (OCOCH ) 、 Bu Sn (OCOC H ) , Ph SnOC CH, Ph SnOCOCH, Bu Sn (OCOCH), Bu Sn (OCOC H), Ph SnOC
3 3 3 2 3 2 2 11 23 2 33 3 3 2 3 2 2 11 23 2 3
H、(C H ) SnOPh、 Bu Sn (OCH ) 、 Bu Sn (OC H ) , Bu Sn (OPh) 、 Ph SnH, (C H) SnOPh, Bu Sn (OCH), Bu Sn (OC H), Bu Sn (OPh), Ph Sn
3 2 5 3 2 3 2 2 2 5 2 2 2 23 2 5 3 2 3 2 2 2 5 2 2 2 2
(OCH ) 、(C H ) SnOH、 Ph SnOH、 Bu SnO、 (C H ) SnO、 Bu SnCl、 Bu(OCH), (C H) SnOH, Ph SnOH, Bu SnO, (C H) SnO, Bu SnCl, Bu
3 2 2 5 3 3 2 8 17 2 2 23 2 2 5 3 3 2 8 17 2 2 2
SnO (OH)等の有機スズ化合物; Organotin compounds such as SnO (OH);
等の金属含有化合物が触媒として用いられる。これらの触媒は多段蒸留塔内に固定 された固体触媒であっても!/、レ、し、反応系に溶解する可溶性触媒であってもよ!/、。 [0100] もちろん、これらの触媒成分が反応系中に存在する有機化合物、例えば、脂肪族 アルコール類、芳香族モノヒドロキシ化合物類、アルキルァリールカーボネート類、ジ ァリールカーボネート類、ジアルキルカーボネート類等と反応したものであってもよい し、反応に先立って原料や生成物で加熱処理されたものであってもよい。 A metal-containing compound such as is used as a catalyst. These catalysts may be solid catalysts fixed in a multistage distillation column! /, Or may be soluble catalysts that dissolve in the reaction system! /. Of course, organic compounds in which these catalyst components are present in the reaction system, for example, aliphatic alcohols, aromatic monohydroxy compounds, alkylaryl carbonates, diaryl carbonates, dialkyl carbonates, etc. It may have been reacted, or may have been heat-treated with raw materials or products prior to the reaction.
[0101] 工程 (II)を反応系に溶解する可溶性触媒で実施する場合は、これらの触媒は、反 応条件にお!/、て反応液への溶解度の高!/、ものであることが好まし!/、。この意味で好 ましい触媒としては、例えば、 PbO、 Pb (OH) 、 Pb (OPh) ; TiCl、 Ti (OMe) 、 (M  [0101] When the step (II) is carried out with a soluble catalyst that dissolves in the reaction system, these catalysts must be under the reaction conditions! / And have high solubility in the reaction solution! /. I like it! Preferred catalysts in this sense include, for example, PbO, Pb (OH), Pb (OPh); TiCl, Ti (OMe), (M
2 2 4 4 eO) Ti (OPh) 、 (MeO) Ti (OPh) 、 (MeO) Ti (OPh)、 Ti (OPh) ; SnCl、 Sn (  2 2 4 4 eO) Ti (OPh), (MeO) Ti (OPh), (MeO) Ti (OPh), Ti (OPh); SnCl, Sn (
3 2 2 3 4 4 3 2 2 3 4 4
OPh) 、 Bu SnO、 Bu Sn (OPh) ; FeCl、 Fe (OH) 、 Fe (OPh)等、又はこれらをOPh), Bu SnO, Bu Sn (OPh); FeCl, Fe (OH), Fe (OPh), etc., or these
4 2 2 2 3 3 3 フエノール又は反応液等で処理したもの等が挙げられる。第 1連続多段蒸留塔で用 いられる触媒と第 2連続多段蒸留塔で用いられる触媒は同じ種類であっても、異なる 種類のものであってもよレ、。 4 2 2 2 3 3 3 Examples include those treated with phenol or reaction solution. The catalyst used in the first continuous multistage distillation column and the catalyst used in the second continuous multistage distillation column may be the same or different.
[0102] 工程 (II)において用いられる該第 1連続多段蒸留塔とは、長さ L (cm) ,内径 D c m)の円筒形の胴部を有し、内部に段数 nをもつインターナルを有する構造をしてお り、塔頂部またはそれに近い塔の上部に内径 d (cm)のガス抜出し口、塔底部また  [0102] The first continuous multi-stage distillation column used in step (II) is a cylindrical body having a length L (cm) and an inner diameter D cm), and an internal having n stages inside. A gas outlet with an inner diameter d (cm) at the top of the tower or near the top of the tower, the bottom of the tower or
11  11
はそれに近い塔の下部に内径 d (cm)の液抜出し口、該ガス抜出し口より下部であ  Is a liquid outlet with an inner diameter d (cm) at the lower part of the tower close to it, below the gas outlet.
12  12
つて塔の上部および/または中間部に 1つ以上の第 3の導入口、該液抜出し口より 上部であって塔の中間部および/または下部に 1つ以上の第 4の導入口を有するも のであって、 L、 D 、 L /D 、 n、 D /d 、 D /d 力 それぞれ式(7)〜(; 13)を  One or more third inlets in the upper and / or middle part of the tower, and one or more fourth inlets in the middle and / or lower part of the tower above the liquid outlet. L, D, L / D, n, D / d, D / d force, respectively (7) to (; 13)
12  12
満足するものであることが必要である。  It is necessary to be satisfied.
1500 < L < 8000 式 (7)  1500 <L <8000 (7)
1  1
100 < D < 2000 式 (8)  100 <D <2000 (8)
1  1
2 < L , ≤ 40 式 (9)  2 <L, ≤ 40 (9)
1 1  1 1
20 < n < 120 式(10)  20 <n <120 Formula (10)
1  1
5 < D , /d ≤ 30 式(1 1 )  5 <D, / d ≤ 30 (1 1)
式(12) Formula (12)
Figure imgf000041_0001
Figure imgf000041_0001
[0103] また、工程 (II)において用いられる第 2連続多段蒸留塔とは、長さし (cm) ,内径 D  [0103] The second continuous multistage distillation column used in step (II) is a length (cm), an inner diameter D
(cm)の円筒形の胴部を有し、内部に段数 nをもつインターナルを有する構造をし (cm) cylindrical body and internal structure with n steps inside.
: 2 ており、塔頂部またはそれに近い塔の上部に内径 d (cm)のガス抜出し口、塔底部 : 2 A gas outlet with an inner diameter d (cm) at the top of the tower or near the top of the tower, the bottom of the tower
21  twenty one
またはそれに近い塔の下部に内径 d (cm)の液抜出し口、該ガス抜出し口より下部  Or a liquid outlet with an inner diameter d (cm) at the bottom of the tower close to it, below the gas outlet
22  twenty two
であって塔の上部および/または中間部に 1つ以上の第 5の導入口、該液抜出し口 より上部であって塔の中間部および/または下部に 1つ以上の第 6の導入口を有す るものであって、 L、 D、 L /D 、 n、 D /d 、 D /d 力 それぞれ式(13)〜(1  One or more fifth inlets at the top and / or middle of the tower, and one or more sixth inlets above the liquid outlet and at the middle and / or bottom of the tower L, D, L / D, n, D / d, D / d force respectively (13) to (1
2 2 2 2 2 2 21 2 22  2 2 2 2 2 2 21 2 22
8)を満足するものであることが必要である。  It is necessary to satisfy 8).
1500 < L < 8000 式(13)  1500 <L <8000 formula (13)
2  2
100 < D < 2000 式(14)  100 <D <2000 (14)
2  2
2 < L / ' ≤ 40 式(15)  2 <L / '≤ 40 (15)
2 2  twenty two
10 < n < 80 式(16)  10 <n <80 Formula (16)
2  2
2 < D , Zd ≤ 15 式(17)  2 <D, Zd ≤ 15 (17)
2 21  2 21
5 < D , Zd ≤ 30 式(18)  5 <D, Zd ≤ 30 (18)
[0104] 式(7)〜(; 18)の全てを同時に満足する第 1連続多段蒸留塔および第 2連続多段 蒸留塔を用いることによって、ジアルキルカーボネートと芳香族モノヒドロキシ化合物 とから、ジァリールカーボネートを 1時間あたり約 0. 85トン以上、好ましくは 1トン以上 の工業的規模で、高選択率'高生産性で、例えば 2000時間以上、好ましくは 3000 時間以上、さらに好ましくは 5000時間以上の長期間、安定的に製造できることが見 出されたのである。本発明の方法を実施することによって、このような優れた効果を有 する工業的規模での芳香族カーボネートの製造が可能になった理由は明らかでは なレ、が、式(7)〜(; 18)の条件が組み合わさった時にもたらされる複合効果のためで あると推定される。なお、工程 (II)で用いる連続多段蒸留塔を構成する各々の要因 の好ましい範囲は下記に示される。  [0104] By using the first continuous multi-stage distillation column and the second continuous multi-stage distillation column satisfying all of the formulas (7) to (; 18) at the same time, dialkyl carbonate and aromatic monohydroxy compound can be used. Carbonate on an industrial scale of about 0.85 tons per hour, preferably 1 ton or more, with high selectivity and high productivity, for example 2000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more It was found that it could be manufactured stably for a long time. The reason why it is possible to produce an aromatic carbonate on an industrial scale having such excellent effects by carrying out the method of the present invention is not clear, but the formulas (7) to (; It is presumed that this is due to the combined effect brought about when the conditions in 18) are combined. The preferred range of each factor constituting the continuous multistage distillation column used in step (II) is shown below.
[0105] L (cm)および L (cm)がそれぞれ 1500より小さいと、反応率が低下するため目的  [0105] If L (cm) and L (cm) are less than 1500 respectively, the reaction rate will decrease and the purpose will be
1 2  1 2
とする生産量を達成できないし、 目的の生産量を達成できる反応率を確保しつつ設 備費を低下させるには、 Lおよび Lをそれぞれ 8000以下にすることが必要である。  In order to reduce the equipment cost while securing the reaction rate that can achieve the target production volume, L and L must be 8000 or less respectively.
1 2  1 2
より好ましい L (cm)および L (cm)の範囲は、それぞれ、 2000≤L ≤6000 およ  More preferred L (cm) and L (cm) ranges are 2000≤L ≤6000 and
1 2 1  1 2 1
び 2000≤L≤6000 であり、さらに好ましくは、 2500≤L≤5000 および 2500  2000≤L≤6000, more preferably 2500≤L≤5000 and 2500
2 1  twenty one
≤L≤5000 でである。 [0106] D (cm)および D (cm)がそれぞれ 100よりも小さいと、 目的とする生産量を達成で≤L≤5000. [0106] If D (cm) and D (cm) are each less than 100, the target production volume can be achieved.
I 2 I 2
きないし、 目的の生産量を達成しつつ設備費を低下させるには、 Dおよび Dをそれ  To reduce equipment costs while achieving the desired output, use D and D
1 2 ぞれ 2000以下にすることが必要である。  1 2 Each must be 2000 or less.
[0107] より好ましい D (cm)および D (cm)の範囲は、それぞれ 150≤D ≤ 1000 およ [0107] The more preferred ranges of D (cm) and D (cm) are 150≤D ≤ 1000 and
1 2 1  1 2 1
t 150≤D ≤1000 であり、さらに好ましくは、それぞれ 200≤D ≤800 および 2  t 150≤D ≤1000, more preferably 200≤D ≤800 and 2 respectively
2 1  twenty one
00≤D ≤ 800である。  00≤D ≤ 800.
2  2
[0108] なお、第 1連続多段蒸留塔および第 2連続多段蒸留塔において、 Dおよび D  [0108] In the first continuous multistage distillation column and the second continuous multistage distillation column, D and D
1 2 上記の範囲にある限り、塔の上部から下部までそれぞれ同じ内径であってもよいし、 部分的に内径が異なっていてもよい。例えば、これらの連続多段蒸留塔において、 塔上部の内径が塔下部の内径よりも小さくてもよいし、大きくてもよい。  1 2 As long as it is in the above range, the inner diameter may be the same from the upper part to the lower part of the tower, or the inner diameters may be partially different. For example, in these continuous multistage distillation columns, the inner diameter of the upper part of the column may be smaller or larger than the inner diameter of the lower part of the tower.
[0109] L /D および L /D がそれぞれ 2より小さい時や 40より大きい時は安定運転 [0109] Stable operation when L / D and L / D are less than 2 or greater than 40, respectively
I I 2 2  I I 2 2
が困難となり、特に 40より大きいと塔の上下における圧力差が大きくなりすぎるため、 長期安定運転が困難となるだけでなぐ塔下部での温度を高くしなければならないた め、副反応が起こりやすくなり選択率の低下をもたらす。より好ましい L /Ό および L /Ό の範囲はそれぞれ、 3≤L /D ≤30 および 3≤L /D ≤30 であり、さら In particular, if the ratio is greater than 40, the pressure difference between the top and bottom of the column becomes too large, and long-term stable operation becomes difficult. This leads to a decrease in selectivity. The more preferred L / Ό and L / Ό ranges are 3≤L / D≤30 and 3≤L / D≤30, respectively.
2 2 1 1 2 2 2 2 1 1 2 2
に好ましくは、 5≤L /Ό ≤15 および 5≤L /Ό ≤ 15である。  Preferably, 5≤L / Ό≤15 and 5≤L / Ό≤15.
1 1 2 2  1 1 2 2
[0110] n力 ¾0より小さいと反応率が低下するため第 1連続多段蒸留塔での目的とする生 産量を達成できないし、 目的の生産量を達成できる反応率を確保しつつ設備費を低 下させるには、 nを 120以下にすることが必要である。さらに n力 20よりも大きいと 塔の上下における圧力差が大きくなりすぎるため、第 1連続多段蒸留塔の長期安定 運転が困難となるだけでなぐ塔下部での温度を高くしなければならないため、副反 応が起こりやすくなり選択率の低下をもたらす。より好ましい nの範囲は、 30≤n ≤1 00 であり、さらに好ましくは、 40≤n ≤90 である。  [0110] If the n force is less than ¾0, the reaction rate decreases, so the target production amount in the first continuous multistage distillation column cannot be achieved, and the equipment cost is reduced while ensuring the reaction rate that can achieve the target production amount. In order to lower it, n must be 120 or less. Furthermore, if the n force is greater than 20, the pressure difference between the top and bottom of the column becomes too large, and the long-term stable operation of the first continuous multistage distillation column becomes difficult, and the temperature at the bottom of the column must be increased. Side reactions are likely to occur, leading to a decrease in selectivity. A more preferable range of n is 30≤n≤100, and more preferably 40≤n≤90.
[0111] また、 n力 S 10より小さいと反応率が低下するため第 2連続多段蒸留塔での目的とす  [0111] In addition, since the reaction rate decreases when n force S is less than 10, it is the target in the second continuous multistage distillation column.
2  2
る生産量を達成できないし、 目的の生産量を達成できる反応率を確保しつつ設備費 を低下させるには、 nを 80以下にすることが必要である。さらに nが 80よりも大きいと  In order to reduce equipment costs while securing a reaction rate that can achieve the desired production volume, n must be 80 or less. If n is greater than 80
2 2  twenty two
塔の上下における圧力差が大きくなりすぎるため、第 2連続多段蒸留塔の長期安定 運転が困難となるだけでなぐ塔下部での温度を高くしなければならないため、副反 応が起こりやすくなり選択率の低下をもたらす。より好ましい nの範囲は、 15≤n≤6 Since the pressure difference between the top and bottom of the column becomes too large, the long-term stable operation of the second continuous multistage distillation column becomes difficult, and the temperature at the bottom of the column must be increased. The response tends to occur and the selectivity is lowered. The more preferable range of n is 15≤n≤6
2 2 twenty two
0 であり、さらに好ましくは、 20≤n≤50 である。 0, more preferably 20≤n≤50.
2  2
[0112] D /ά 力^より小さいと第 1連続多段蒸留塔の設備費が高くなるだけでなく大量の  [0112] If the D / ά power ^ is smaller, not only the equipment cost of the first continuous multi-stage distillation column is increased, but also a large amount
1 11  1 11
ガス成分が系外に出やすくなるため、第 1連続多段蒸留塔の安定運転が困難になり Since gas components are likely to go out of the system, stable operation of the first continuous multistage distillation column becomes difficult.
、 30よりも大きいとガス成分の抜出し量が相対的に小さくなり、安定運転が困難にな るだけでなぐ反応率の低下をもたらす。より好ましい D /ά の範囲は、 8≤DIf it is greater than 30, the amount of extracted gas components will be relatively small, resulting in a decrease in reaction rate as well as difficulty in stable operation. The more preferable range of D / ά is 8≤D
≤25 であり、さらに好ましくは、 10≤D /ά ≤20 である。また、 D /ά 力 ¾より≤25, and more preferably 10≤D / ά ≤20. Also from D / ά power ¾
11 1 11 2 21 小さいと第 2連続多段蒸留塔の設備費が高くなるだけでなく大量のガス成分が系外 に出やすくなるため、第 2連続多段蒸留塔の安定運転が困難になり、 15よりも大きい とガス成分の抜出し量が相対的に小さくなり、安定運転が困難になるだけでなぐ反 応率の低下をもたらす。より好ましい D /d の範囲は、 5≤D /d ≤12 であり、 11 1 11 2 21 If it is small, not only will the equipment cost of the second continuous multi-stage distillation column increase, but also a large amount of gas components will easily come out of the system, making stable operation of the second continuous multi-stage distillation column difficult. If the value is larger than that, the amount of extracted gas components becomes relatively small, and the reaction rate is lowered as well as the stable operation becomes difficult. A more preferable range of D / d is 5≤D / d≤12,
2 21 2 21  2 21 2 21
さらに好ましくは、 3≤D /d ≤10 である。  More preferably, 3≤D / d≤10.
2 21  2 21
[0113] D /d 力 ¾より小さいと第 1連続多段蒸留塔の設備費が高くなるだけでなく液抜出  [0113] If the D / d force is less than ¾, not only will the equipment cost of the first continuous multistage distillation column increase, but also the liquid will be extracted.
1 12  1 12
し量が相対的に多くなり、第 1連続多段蒸留塔の安定運転が困難になり、 20よりも大 きレ、と液抜出し口や配管での流速が急激に速くなりエロージョンを起こしやすくなり装 置の腐食をもたらす。より好ましい D /ά の範囲は、 5≤D /ά ≤18 であり、さら  As a result, the amount of water used in the first continuous multi-stage distillation column becomes difficult, and the flow rate is higher than 20 and the flow rate at the liquid discharge port and piping is rapidly increased and erosion is likely to occur. This causes corrosion of the device. A more preferable range of D / ά is 5≤D / ά≤18, and
1 12 1 12  1 12 1 12
に好ましくは、 7≤D /d ≤15 である。また、 D /d 力 ¾より小さいと第 2連続多  Preferably, 7≤D / d≤15. If the D / d force is less than ¾, the second continuous
1 12 2 22  1 12 2 22
段蒸留塔の設備費が高くなるだけでなく液抜出し量が相対的に多くなり、第 2連続多 段蒸留塔の安定運転が困難になり、 30よりも大きいと液抜出し口や配管での流速が 急激に速くなりエロージョンを起こしやすくなり装置の腐食をもたらす。より好ましい D  Not only will the equipment cost of the column distillation column increase, but the amount of liquid extraction will be relatively large, making it difficult to operate the second continuous multi-stage distillation column stably. Becomes rapidly faster and more prone to erosion, leading to equipment corrosion. More preferred D
2 の範囲は、 7≤D /d ≤25 であり、さらに好ましくは、 9≤D /d ≤20 で  The range of 2 is 7≤D / d≤25, more preferably 9≤D / d≤20
2 22 2 22 ある。  There are 2 22 2 22
[0114] さらに工程 (II)では、該 d と該 d が式(25)を満足し、且つ該 d と該 d が式(26)  Furthermore, in step (II), the d and the d satisfy the formula (25), and the d and the d satisfy the formula (26).
11 12 21 22 を満足する場合、さらに好ましいことがわ力 た。  When 11 12 21 22 was satisfied, it was more preferable.
l≤d /d ≤5 式(25)  l≤d / d ≤5 Equation (25)
12 11  12 11
l≤d /ά ≤6 式(26)  l≤d / ά ≤6 Formula (26)
21 22  21 22
[0115] 工程 (II)でいう長期安定運転とは、 1000時間以上、好ましくは 3000時間以上、さ らに好ましくは 5000時間以上、フラッデイングや、配管のつまりやエロージョンなどが なぐ運転条件に基づいた定常状態で運転が継続でき、高選択率を維持しながら、 所定量のジァリールカーボネートが製造されていることを意味する。 [0115] The long-term stable operation in the step (II) means 1000 hours or more, preferably 3000 hours or more, more preferably 5000 hours or more, such as flooding, piping clogging or erosion. This means that the operation can be continued in a steady state based on the driving conditions, and a predetermined amount of diaryl carbonate is produced while maintaining a high selectivity.
[0116] 工程 (II)では、 1時間あたり好ましくは 1トン以上の高生産性でジァリールカーボネ 一トを高選択率で長期間安定的に生産することを特徴としているが、より好ましくは 1 時間あたり 2トン以上、さらに好ましくは 1時間あたり 3トン以上のジァリールカーボネ ートを生産することにある。また、工程 (II)では、第 1連続多段蒸留塔の L、 D、 L / D、n、D /d 、D /d 力 Sそれぞれ、 2000≤L ≤6000、 150≤D ≤1000,[0116] The step (II) is characterized by stably producing a gear reel carbonate at a high selectivity for a long period of time with a high productivity of preferably 1 ton or more per hour. Is to produce a gear reel of 2 tons or more per hour, more preferably 3 tons or more per hour. In step (II), L, D, L / D, n, D / d, D / d force S of the first continuous multistage distillation column are 2000≤L≤6000, 150≤D≤1000,
1 1 1 11 1 12 1 11 1 1 11 1 12 1 1
3≤L /Ό ≤30, 30≤η ≤100, 8≤D /ά ≤25, 5≤D /ά ≤18であ3≤L / Ό ≤30, 30≤η ≤100, 8≤D / ά ≤25, 5≤D / ά ≤18
1 1 1 1 11 1 12 つて、第 2連続多段蒸留塔の L、 D、 L /D、 n、 D /d 、 D /d がそれぞれ、 1 1 1 1 11 1 12 Therefore, L, D, L / D, n, D / d, D / d of the second continuous multistage distillation column are
2 2 2 2 2 2 21 2 22  2 2 2 2 2 2 21 2 22
2000≤L ≤6000、 150≤D ≤1000、 3≤L /D ≤30、 15≤n ≤60、 2.  2000≤L ≤6000, 150≤D ≤1000, 3≤L / D ≤30, 15≤n ≤60, 2.
2 2 2 2 2  2 2 2 2 2
5≤D /d ≤12, 7≤D /d ≤25の場合は、 1時間あたり 2トン以上、好ましくは If 5≤D / d≤12, 7≤D / d≤25, more than 2 tons per hour, preferably
2 21 2 22 2 21 2 22
1時間あたり 2. 5トン以上、さらに好ましくは 1時間あたり 3トン以上のジァリールカー ボネートを製造することを特徴とするものである。  It is characterized by producing a dial reel carbonate of 2.5 tons or more, more preferably 3 tons or more per hour.
[0117] さらに、工程 (II)では、第 1連続多段蒸留塔の L、 D、 L /D、 n、 D /d 、 D /ά 力 Sそれぞれ、 2500≤L ≤5000、 200≤D ≤800, 5≤L /D ≤15, [0117] Furthermore, in step (II), L, D, L / D, n, D / d, D / άS of the first continuous multistage distillation column, 2500≤L≤5000, 200≤D≤800, respectively. , 5≤L / D ≤15,
12 1 1 1 1  12 1 1 1 1
40≤n ≤90, 10≤D /d ≤25, 7≤D /d ≤ 15であって、第 2連続多段蒸 40≤n ≤90, 10≤D / d ≤25, 7≤D / d ≤ 15, and second continuous multi-stage steam
1 1 11 1 12 1 1 11 1 12
留塔の L、 D、 L /Ό、 n、 D /d 、 D /d がそれぞれ、 2500≤L ≤5000,  L, D, L / Ό, n, D / d, D / d of the tower are 2500≤L≤5000,
2 2 2 2 2 2 21 2 22 2  2 2 2 2 2 2 21 2 22 2
200≤D ≤800, 5≤L /Ό ≤10. 20≤η ≤50, 3≤D /ά ≤10, 9≤  200≤D ≤800, 5≤L / Ό ≤10. 20≤η ≤50, 3≤D / ά ≤10, 9≤
2 2 2 2 2 21  2 2 2 2 2 21
D /d ≤ 20の場合は、 1時間あたり 3トン以上、好ましくは 1時間あたり 3. 5トン以上 If D / d ≤ 20, 3 tons or more per hour, preferably 3.5 tons or more per hour
2 22 2 22
、さらに好ましくは 1時間あたり 4トン以上のジァリールカーボネートを製造することを 特徴とするものである。  More preferably, it is characterized by producing diallyl carbonate of 4 tons or more per hour.
[0118] 工程 (II)でいぅジァリールカーボネートの選択率とは、反応した芳香族モノヒドロキ シ化合物に対するものであって、工程 (II)では通常 95 %以上の高選択率であり、好 ましくは 97%以上、さらに好ましくは 98 %以上の高選択率を達成することができる。 工程 (II)で用いられる第 1連続多段蒸留塔および第 2連続多段蒸留塔は、インター ナルとしてトレイおよび/または充填物を有する蒸留塔であることが好ましレ、。本発明 でレ、うインターナルとは、蒸留塔にぉレ、て実際に気液の接触を行わせる部分のことを 意味する。このようなトレイとしては、工程 (I)の項に記載のものが好ましい。また、「ィ ンターナルの段数 n」とは、前記のとおりである。 [0118] The selectivity of diaryl carbonate in step (II) refers to the reacted aromatic monohydroxy compound, and in step (II), the selectivity is usually 95% or higher, which is favorable. A high selectivity of preferably 97% or more, more preferably 98% or more can be achieved. Preferably, the first continuous multistage distillation column and the second continuous multistage distillation column used in step (II) are distillation columns having trays and / or packings as internal. In the present invention, the term “rear internal” refers to a portion where the distillation column is actually brought into contact with gas and liquid. As such a tray, those described in the section of step (I) are preferable. In addition, " The number of internal stages n ”is as described above.
[0119] 工程 (II)の第 1連続多段蒸留塔においては、主としてジアルキルカーボネートと芳 香族モノヒドロキシ化合物からアルキルァリールカーボネートを生成させる反応が行 われるが、この反応は平衡定数が極端に小さぐし力、も反応速度が遅いので、反応蒸 留に用いる第 1連続多段蒸留塔としては、インターナルカ^レイである棚段式蒸留塔 力はり好ましいことが見出された。また、第 2連続多段蒸留塔においては主として、該 アルキルァリールカーボネートを不均化させる反応が行われる力 S、この反応も平衡定 数が小さぐし力、も反応速度が遅い。し力もながら、反応蒸留に用いる第 2連続多段 蒸留塔としては、インターナルが充填物およびトレイの両方を有する蒸留塔がより好 ましいことが見出された。さらに第 2連続多段蒸留塔としては、上部に充填物、下部に トレィを設置したものが好ましいことも見出された。第 2連続多段蒸留塔の該充填物 は規則充填物が好ましぐ規則充填物のなかでもメラパックが特に好ましいことも見出 された。 [0119] In the first continuous multi-stage distillation column of step (II), a reaction for mainly producing an alkylaryl carbonate from a dialkyl carbonate and an aromatic monohydroxy compound is carried out, but this reaction has an extremely small equilibrium constant. Since the reaction force is slow, it has been found that the first continuous multistage distillation column used for the reaction distillation is preferably an internal column type distillation column. Further, in the second continuous multi-stage distillation column, the reaction force S, in which the reaction for disproportionating the alkylaryl carbonate is mainly performed, and this reaction also has a small equilibrium constant, and the reaction rate is slow. However, as a second continuous multistage distillation column used for reactive distillation, it has been found that an internal distillation column having both a packing and a tray is more preferable. It was also found that the second continuous multistage distillation column is preferably one with a packing at the top and a tray at the bottom. It has also been found that the packing of the second continuous multistage distillation column is particularly preferred among the ordered packings that are preferred for ordered packings.
[0120] さらに、第 1連続多段蒸留塔および第 2連続多段蒸留塔にそれぞれ設置される該ト レイが多孔板部とダウンカマー部を有する多孔板トレイが機能と設備費との関係で特 に優れていることが見出された。 そして、該多孔板トレイが該多孔板部の面積 lm2 あたり 100〜; 1000個の孔を有して!/、ること力 S好まし!/、ことも見出された。より好まし!/ヽ 孔数は該面積 lm2あたり 120〜900個であり、さらに好ましくは、 150〜800個である[0120] Furthermore, the tray installed in each of the first continuous multistage distillation column and the second continuous multistage distillation column has a perforated plate tray having a perforated plate portion and a downcomer portion. It was found to be excellent. It was also found that the perforated plate tray had 100 to 1000 holes per area lm 2 of the perforated plate part! /, A force S preferred! /. More preferred! / The number of pores is 120-900 per lm 2 of the area, more preferably 150-800
Yes
[0121] また、該多孔板トレイの孔 1個あたりの断面積が 0. 5〜5cm2であることが好ましいこ とも見出された。より好ましい孔 1個あたりの断面積は、 0. 7〜4cm2であり、さらに好 ましくは 0. 9〜3cm2である。さらには、該多孔板トレイが該多孔板部の面積 lm2あた り 100〜1000個の孔を有しており、且つ、孔 1個あたりの断面積が 0. 5〜5cm2であ る場合、特に好ましいことが見出された。連続多段蒸留塔に上記の条件を付加する ことによって、本発明の課題が、より容易に達成されることが判明したのである。 [0121] It has also been found that the cross-sectional area per hole of the perforated plate tray is preferably 0.5 to 5 cm2. The cross-sectional area per hole is more preferably 0.7 to 4 cm 2 , and even more preferably 0.9 to 3 cm 2 . Further, the perforated plate tray has 100 to 1000 holes per area lm 2 of the perforated plate portion, and the cross-sectional area per hole is 0.5 to 5 cm 2. In particular, it has been found to be particularly preferred. It has been found that the object of the present invention can be achieved more easily by adding the above-mentioned conditions to a continuous multistage distillation column.
[0122] 工程 (II)を実施する場合、原料であるジアルキルカーボネートと芳香族モノヒドロキ シ化合物とを触媒が存在する第 1連続多段蒸留塔内に連続的に供給し、該第 1塔内 で反応と蒸留を同時に行い、生成するアルコール類を含む第 1塔低沸点反応混合 物を該第 1塔上部よりガス状で連続的に抜出し、生成するアルキルァリールカーボネ 一ト類を含む第 1塔高沸点反応混合物を該第 1塔下部より液状で連続的に抜出し、 該第 1塔高沸点反応混合物を触媒が存在する第 2連続多段蒸留塔内に連続的に供 給し、該第 2塔内で反応と蒸留を同時に行い、生成するジアルキルカーボネート類を 含む第 2塔低沸点反応混合物を該第 2塔上部よりガス状で連続的に抜出し、生成す るジァリールカーボネート類を含む第 2塔高沸点反応混合物を該第 2塔下部より液状 で連続的に抜出し、一方、ジアルキルカーボネート類を含む第 2塔低沸点反応混合 物を第 1連続多段蒸留塔内に連続的に供給することによって、ジァリールカーボネー トが連続的に製造される。 [0122] When carrying out the step (II), the raw material dialkyl carbonate and the aromatic monohydroxy compound are continuously fed into the first continuous multistage distillation column in which the catalyst is present, and the reaction is carried out in the first column. 1st column low boiling point reaction mixture containing alcohols The product is continuously withdrawn in the form of gas from the upper part of the first column, and the first tower high-boiling point reaction mixture containing the generated alkylaryl carbonates is continuously withdrawn in liquid form from the lower part of the first column, The first column high boiling point reaction mixture is continuously fed into the second continuous multistage distillation column in which the catalyst is present, and the reaction and distillation are simultaneously performed in the second column. A low boiling point reaction mixture is continuously withdrawn in the form of gas from the upper part of the second tower, and a second tower high boiling point reaction mixture containing the generated diaryl carbonate is continuously withdrawn in liquid form from the lower part of the second tower, On the other hand, diaryl carbonate is continuously produced by continuously feeding the second column low boiling point reaction mixture containing dialkyl carbonates into the first continuous multistage distillation column.
[0123] この原料中には、反応生成物であるアルコール類、アルキルァリールカーボネート 、ジァリールカーボネートやアルキルァリールエーテルや高沸点化合物などの反応 副生物が含まれて!/、ても!/、レ、ことは前述のとおりである。他の工程での分離'精製に かかる設備、費用のことを考慮すれば、実際に工業的に実施する本発明の場合は、 これらの化合物を少量含んでレ、ることが好ましレ、。  [0123] This raw material contains reaction by-products such as alcohols, alkylaryl carbonates, diaryl carbonates, alkylaryl ethers, and high-boiling compounds as reaction products! /, Even! /, Les, as described above. Considering the equipment and cost for separation and purification in other steps, in the case of the present invention which is actually carried out industrially, it is preferable to contain a small amount of these compounds.
[0124] 工程(II)において、原料であるジアルキルカーボネートと芳香族モノヒドロキシ化合 物を第 1連続多段蒸留塔内に連続的に供給するには、該第 1蒸留塔の上部のガス 抜出し口よりも下部であるが塔の上部または中間部に設置された 1箇所または数箇 所の導入口から、液状および/またはガス状で供給してもよいし、芳香族モノヒドロキ シ化合物を多く含む原料を該第 1蒸留塔の上部の導入口から液状で供給し、ジアル キルカーボネートを多く含む原料を該第 1蒸留塔の下部の液抜出し口よりも上部であ つて塔の下部に設置された導入口からガス状で供給することも好ましい方法である。  [0124] In step (II), in order to continuously supply the raw material dialkyl carbonate and aromatic monohydroxy compound into the first continuous multi-stage distillation column, from the gas outlet at the top of the first distillation column However, it may be supplied in liquid and / or gaseous form from one or several inlets installed in the upper or middle part of the tower, or a raw material rich in aromatic monohydroxy compounds. An inlet that is supplied in liquid form from an inlet at the upper part of the first distillation column and is provided at a lower part of the column at a position higher than the liquid outlet at the lower part of the first distillation column. It is also a preferable method to supply in gaseous form.
[0125] また工程 (II)においては、第 1連続多段蒸留塔下部より連続的に抜き出されるアル キルァリールカーボネート類を含む第 1塔高沸点反応混合物が第 2連続多段蒸留塔 に連続的に供給されるが、その供給位置は第 2蒸留塔の上部のガス抜出し口よりも 下部であるが塔の上部または中間部に設置された 1箇所または数箇所の導入口から 、液状および/またはガス状で供給することが好ましい。また、本発明の好ましい実 施態様である上部に充填物部、下部にトレィ部を有する蒸留塔を用いる場合、導入 口の少なくとも 1箇所は充填物部とトレイ部との間に設置されることが好ましい。また、 充填物が 2基以上の複数の規則充填物からなっている場合は、これらの複数の規則 充填物を構成する間隔に導入口を設置することも好ましレ、方法である。 [0125] In step (II), the first high-boiling point reaction mixture containing alkylaryl carbonates continuously extracted from the lower part of the first continuous multistage distillation column is continuously supplied to the second continuous multistage distillation column. Although the supply position is lower than the gas outlet at the top of the second distillation column, it is liquid and / or from one or several inlets installed at the top or middle of the column. It is preferable to supply in gaseous form. In the case of using a distillation tower having a packed portion in the upper portion and a tray portion in the lower portion, which is a preferred embodiment of the present invention, at least one of the inlets is installed between the packed portion and the tray portion. Is preferred. Also, If the packing is composed of two or more regular packings, it is also a preferable method to install introduction ports at intervals that constitute these multiple packings.
[0126] また、工程 (II)において第 1連続多段蒸留塔および第 2連続多段蒸留塔の塔頂ガ ス抜き出し成分をそれぞれ凝縮した後、その一部をそれぞれの蒸留塔上部にもどす 還流操作を実施することも好ましい方法である。この場合、第 1連続多段蒸留塔の還 流比は 0〜; 10、であり、第 2連続多段蒸留塔の還流比は 0. 01〜; 10の範囲、好ましく は 0. 08〜5、さらに好ましくは、 0. 1から 2の範囲である。第 1連続多段蒸留塔では 還流操作をしなレ、還流比 0も好まし!/、実施態様である。  [0126] Further, in step (II), after condensing the gas components extracted from the top of the first continuous multistage distillation column and the second continuous multistage distillation column, respectively, a part of them is returned to the upper part of each distillation column. Implementing is also a preferred method. In this case, the reflux ratio of the first continuous multistage distillation column is from 0 to 10; the reflux ratio of the second continuous multistage distillation column is from 0.01 to 10; preferably from 0.08 to 5, Preferably, it is in the range of 0.1 to 2. In the first continuous multistage distillation column, a reflux operation is not performed, and a reflux ratio of 0 is also preferred! /.
[0127] 工程 (II)において、第 1連続多段蒸留塔内に触媒を存在させる方法はどのようなも のであってもよいが、触媒が反応液に不溶解性の固体状の場合は、第 1連続多段蒸 留塔内の段に設置する方法や、充填物状にして設置する方法などによって塔内に固 定させることが好ましい。また、原料や反応液に溶解する触媒の場合は、該第 1蒸留 塔の中間部より上部の位置力 蒸留塔内に供給することが好ましい。この場合、原料 または反応液に溶解させた触媒液を原料と一緒に導入してもよレ、し、原料とは別の 導入口からこの触媒液を導入してもよい。本発明の第 1連続多段蒸留塔で用いる触 媒の量は、使用する触媒の種類、原料の種類やその量比、反応温度並びに反応圧 力などの反応条件の違いによっても異なるが、原料の合計質量に対する割合で表し て、通常 0. 000;!〜 30質量0 /0、好まし <は 0. 0005〜; 10質量0 /0、より好まし <は 0. 0 0;!〜 1質量%で使用される。 [0127] In step (II), any method may be used in which the catalyst is present in the first continuous multistage distillation column. However, when the catalyst is in a solid state insoluble in the reaction solution, It is preferable to fix in the tower by a method of installing in a stage in a single continuous multi-stage distillation column or a method of installing in a packed form. Further, in the case of a catalyst that dissolves in the raw material or the reaction solution, it is preferable to supply the catalyst in the position force distillation column above the middle part of the first distillation column. In this case, the catalyst solution dissolved in the raw material or the reaction solution may be introduced together with the raw material, or the catalyst solution may be introduced from an inlet different from the raw material. The amount of catalyst used in the first continuous multi-stage distillation column of the present invention varies depending on the type of catalyst used, the type of raw material and its ratio, reaction temperature, reaction pressure, and other reaction conditions. expressed as a percentage of the total mass, usually 0.000;! ~ 30 mass 0/0, preferably <is 0. 0005~; 10 mass 0/0, more preferably <is 0. 0 0;! ~ 1 mass Used in%.
[0128] また、工程 (II)において、第 2連続多段蒸留塔内に触媒を存在させる方法はどのよ うなものであってもよいが、触媒が反応液に不溶解性の固体状の場合は、第 2連続 多段蒸留塔内の段に設置する方法や、充填物状にして設置する方法などによって 塔内に固定させることが好ましい。また、原料や反応液に溶解する触媒の場合は、該 第 2蒸留塔の中間部より上部の位置力 蒸留塔内に供給することが好ましい。この場 合、原料または反応液に溶解させた触媒液を原料と一緒に導入してもよいし、原料と は別の導入口からこの触媒液を導入してもよい。本発明の第 2連続多段蒸留塔で用 いる触媒の量は、使用する触媒の種類、原料の種類やその量比、反応温度並びに 反応圧力などの反応条件の違いによっても異なるが、原料の合計質量に対する割合 で表して、通常 0. 000;!〜 30質量0 /0、好まし <は 0. 0005〜; 10質量0 /0、より好まし < は 0. 00;!〜 1質量%で使用される。 [0128] In Step (II), any method may be used for allowing the catalyst to be present in the second continuous multistage distillation column. However, when the catalyst is in a solid state insoluble in the reaction solution, The second continuous multi-stage distillation column is preferably fixed in the column by a method of being installed in a stage or a method of being installed in a packed form. In addition, in the case of a catalyst that dissolves in the raw material or the reaction solution, it is preferable to supply the catalyst in the position force distillation column above the middle part of the second distillation column. In this case, the catalyst solution dissolved in the raw material or the reaction liquid may be introduced together with the raw material, or the catalyst liquid may be introduced from an inlet different from the raw material. The amount of catalyst used in the second continuous multi-stage distillation column of the present invention varies depending on the type of catalyst used, the type of raw material and its ratio, the reaction temperature and the reaction pressure, but the total amount of raw materials. Ratio to mass Expressed in normal 0.000;! ~ 30 mass 0/0, preferably <is 0. 0005~; 10 mass 0/0, more preferably <is 0. 00; as used to 1 mass%! .
[0129] 工程 (II)においては、第 1連続多段蒸留塔で用いる触媒と第 2連続多段蒸留塔で 用いる触媒は、同じ種類のものであってもよいし、異なる種類のものであってもよいが 、好ましくは、同じ種類の触媒を用いることである。さらに好ましいのは、同じ種類であ つて、両方の反応液に溶解することのできる触媒である。この場合、触媒は通常第 1 連続多段蒸留塔の高沸点反応混合物中に溶解した状態で、アルキルァリールカー ボネート等とともに該第 1蒸留塔の下部から抜き出され、そのまま第 2連続多段蒸留 塔に供給されるので、好ましい実施態様である。なお、必要に応じて第 2連続多段蒸 留塔に新たに触媒を追加することも可能である。  [0129] In step (II), the catalyst used in the first continuous multistage distillation column and the catalyst used in the second continuous multistage distillation column may be the same type or different types. Preferably, it is preferable to use the same type of catalyst. Further preferred are catalysts of the same type that can be dissolved in both reaction solutions. In this case, the catalyst is usually dissolved in the high boiling point reaction mixture of the first continuous multi-stage distillation column, and is extracted from the lower part of the first distillation column together with the alkylaryl carbonate, etc., and is directly used in the second continuous multi-stage distillation column. This is a preferred embodiment. If necessary, a new catalyst can be added to the second continuous multi-stage distillation column.
[0130] 工程 (II)で行われるエステル交換反応の反応時間は第 1連続多段蒸留塔内およ び第 2連続多段蒸留塔内でのそれぞれの反応液の平均滞留時間に相当すると考え られるが、これはそれぞれの該蒸留塔のインターナルの形状や段数、原料供給量、 触媒の種類や量、反応条件などによって異なるが、第 1連続多段蒸留塔内および第 2連続多段蒸留塔内のそれぞれにおいて、通常 0. 01〜; 10時間、好ましくは 0. 05 〜5時間、より好ましくは 0. ;!〜 3時間である。  [0130] The reaction time of the transesterification reaction performed in step (II) is considered to correspond to the average residence time of the respective reaction liquids in the first continuous multistage distillation column and the second continuous multistage distillation column. This differs depending on the internal shape and number of stages of each distillation column, the amount of raw material supply, the type and amount of the catalyst, the reaction conditions, etc., but in each of the first continuous multistage distillation column and the second continuous multistage distillation column. Is usually from 0.01 to 10 hours, preferably from 0.05 to 5 hours, more preferably from 0.;! To 3 hours.
[0131] 第 1連続多段蒸留塔の反応温度は、用いる原料化合物の種類や触媒の種類や量 によって異なるが、通常 100〜350°Cの範囲である。反応速度を高めるためには反 応温度を高くすることが好ましいが、反応温度が高いと副反応も起こりやすくなり、例 えばアルキルァリールエーテルなどの副生が増えるので好ましくない。このような意味 で、第 1連続多段蒸留塔での好ましい反応温度は 130〜280°C、より好ましくは 150 〜260°C、さらに好ましくは、 180〜250°Cの範囲である。  [0131] The reaction temperature of the first continuous multistage distillation column varies depending on the type of raw material compound and the type and amount of the catalyst used, but is usually in the range of 100 to 350 ° C. In order to increase the reaction rate, it is preferable to increase the reaction temperature. However, if the reaction temperature is high, side reactions are liable to occur. For example, by-products such as alkylaryl ethers are increased. In this sense, the preferable reaction temperature in the first continuous multistage distillation column is in the range of 130 to 280 ° C, more preferably 150 to 260 ° C, and still more preferably 180 to 250 ° C.
[0132] 第 2連続多段蒸留塔の反応温度は、用いる原料化合物の種類や触媒の種類や量 によって異なるが、通常 100〜350°Cの範囲である。反応速度を高めるためには反 応温度を高くすることが好ましいが、反応温度が高いと副反応も起こりやすくなり、例 えばアルキルァリールエーテルや、原料や生成物であるアルキルァリールカーボネ ートゃジァリールカーボネートのフリース転移反応生成物やその誘導体などの副生 が増えるので好ましくない。このような意味で、第 2連続多段蒸留塔での好ましい反 応温度は 130〜280。C、より好ましくは 150〜260。C、さらに好ましくは、 180—250 °Cの範囲である。 [0132] The reaction temperature of the second continuous multistage distillation column varies depending on the type of raw material compound and the type and amount of the catalyst used, but is usually in the range of 100 to 350 ° C. In order to increase the reaction rate, it is preferable to increase the reaction temperature. However, if the reaction temperature is high, side reactions are likely to occur. For example, alkyl aryl ethers and alkyl aryl carbonates that are raw materials and products are used. This is not preferable because by-products such as the product of fries rearrangement of diols and carbonates and their derivatives increase. In this sense, the preferred reaction in the second continuous multistage distillation column. Response temperature is 130-280. C, more preferably 150-260. C, more preferably in the range of 180-250 ° C.
[0133] また、第 1連続多段蒸留塔の反応圧力は、用いる原料化合物の種類や組成、反応 温度などにより異なるが、第 1連続多段蒸留塔では減圧、常圧、加圧のいずれであつ てもよぐ通常塔頂圧力が 0. ;!〜 2 X 107Pa、好ましくは、 105〜; 107Pa、より好ましく は 2 X 105〜5 X 106の範囲で行われる。 [0133] The reaction pressure of the first continuous multistage distillation column varies depending on the type and composition of the raw material compound used, the reaction temperature, and the like. In the first continuous multistage distillation column, the reaction pressure is any of reduced pressure, normal pressure, and increased pressure. Usually, the column top pressure is 0.;! ~ 2 X 10 7 Pa, preferably 10 5 ~; 10 7 Pa, more preferably 2 X 10 5 to 5 X 10 6 .
[0134] 第 2連続多段蒸留塔の反応圧力は、用いる原料化合物の種類や組成、反応温度 などにより異なる力 S、減圧、常圧、加圧のいずれであってもよぐ通常塔頂圧力が 0. 1 〜2 X 107Pa、好ましくは、 103〜; 106Pa、より好ましくは 5 X 103〜; 105の範囲で行わ れる。 [0134] The reaction pressure of the second continuous multi-stage distillation column is different from the force S, the reduced pressure, the normal pressure, and the increased pressure depending on the type and composition of the raw material compound used, the reaction temperature, etc. It is carried out in the range of 0.1 to 2 × 10 7 Pa, preferably 10 3 to; 10 6 Pa, more preferably 5 × 10 3 to 10 5 .
[0135] なお、工程 (II)における第 1連続多段蒸留塔として、 2基以上の蒸留塔を用いること もできる。この場合、 2基以上の蒸留塔を直列に連結することも、並列に連結すること も、さらに直列と並列を組み合わせて連結することも可能である。また、工程 (II)にお ける第 2連続多段蒸留塔として、 2基以上の蒸留塔を用いることもできる。この場合、 2 基以上の蒸留塔を直列に連結することも、並列に連結することも、さらに直列と並列 を組み合わせて連結することも可能である。  [0135] Two or more distillation towers may be used as the first continuous multi-stage distillation tower in the step (II). In this case, two or more distillation columns can be connected in series, connected in parallel, or combined in series and parallel. In addition, two or more distillation towers can be used as the second continuous multistage distillation tower in the step (II). In this case, it is possible to connect two or more distillation columns in series, connect them in parallel, or connect a combination of series and parallel.
[0136] 工程 (II)で用いられる第 1連続多段蒸留塔および第 2連続多段蒸留塔を構成する 材料は、主に炭素鋼、ステンレススチールなどの金属材料である力 製造する芳香族 カーボネートの品質の面からは、ステンレススチーノレが好ましい。  [0136] The materials constituting the first continuous multistage distillation column and the second continuous multistage distillation column used in step (II) are mainly metallic materials such as carbon steel, stainless steel, etc. Quality of aromatic carbonate produced From the above aspect, stainless steel is preferred.
[0137] 工程 (II)の第 2連続多段蒸留塔の塔下部より液状で連続的に抜出された第 2塔高 沸点反応混合物は、ジァリールカーボネートが主成分である力 通常、未反応アルキ ルァリールカーボネート、少量の未反応原料、少量の高沸点副生物等を含んでおり 、均一系触媒を用いた場合は、この触媒成分も含まれている。従って、第 2塔高沸点 反応混合物から、高純度ジァリールカーボネートを取得するための精製工程 (III)を 実施することが必要である。工程 (III)は、第 2塔高沸点反応混合物から高純度ジァリ ールカーボネートが取得できる方法であれば、どのような方法でもよい。たとえば、蒸 留および/または、再結晶、などの方法である。このなかで、本発明では、工程 (III) を蒸留法で行うことが特に好ましいことが見出された。 [0138] さらに、本発明では、工程 (III)を 2基の蒸留塔 (高沸点物質分離塔、サイドカット抜 き出し口を有するジァリールカーボネート精製塔)を用い、該高沸点物質分離塔にお いて、未反応アルキルァリールカーボネート、少量の未反応原料、ジァリールカーボ ネートを主成分とする塔頂成分と、少量の高沸点副生物等および/または触媒成分 を主成分とする塔底成分とに連続的に分離するとともに、該高沸点物質分離塔の塔 頂成分をジァリールカーボネート精製塔に連続的に供給し、該ジァリールカーボネ ート精製塔において、塔頂成分、サイドカット成分、および塔底成分の 3つの成分に 連続的に分離し、サイドカット成分として高純度ジァリールカーボネートを取得する蒸 留分離法が、さらに好ましいことが見出された。 [0137] The high boiling point reaction mixture in the second column extracted continuously in liquid form from the bottom of the second continuous multistage distillation column in step (II) is a force mainly composed of diaryl carbonate. It contains alkyl reel carbonate, a small amount of unreacted raw material, a small amount of high-boiling by-products, etc., and when a homogeneous catalyst is used, this catalyst component is also included. Therefore, it is necessary to carry out a purification step (III) for obtaining high-purity diaryl carbonate from the second tower high boiling point reaction mixture. Step (III) may be any method as long as it can obtain high-purity diaryl carbonate from the second tower high boiling point reaction mixture. For example, methods such as distillation and / or recrystallization. Among these, it has been found that in the present invention, it is particularly preferable to perform the step (III) by a distillation method. [0138] Furthermore, in the present invention, step (III) is performed using two distillation towers (a high-boiling substance separation tower, a diaryl carbonate purification tower having a side cut outlet), and the high-boiling substance separation tower. In addition, a column top component mainly composed of unreacted alkylaryl carbonate, a small amount of unreacted raw material and diaryl carbonate, and a column bottom component mainly composed of a small amount of high-boiling by-products and / or a catalyst component. And the top component of the high-boiling-point material separation tower is continuously supplied to the dialyl carbonate purification tower. In the dial reel carbonate purification tower, It has been found that a distillation separation method in which a high-purity diaryl carbonate is obtained as a side-cut component, which is continuously separated into three components, ie, a component and a bottom component, is more preferable.
[0139] なお、該該高沸点物質分離塔の塔底成分の全量または一部は、工程 (II)の触媒 成分として、第 1連続多段蒸留塔および/または第 2連続多段蒸留塔に循環再使用 することは好ましい。また、該ジァリールカーボネート精製塔の塔頂成分には、通常、 少量のジァリールカーボネートが含まれるので、この塔頂成分をそのままで、または その塔頂成分に含まれる低沸点成分を別の蒸留塔で分離を行なった後その蒸留塔 の塔底成分の全部または一部を、高沸点物質分離塔および/またはジァリールカー ボネート精製塔に戻すことによって、高純度ジァリールカーボネートとして回収するこ とも好ましい方法である。  [0139] Note that the whole or part of the bottom component of the high-boiling-point material separation tower is recycled to the first continuous multistage distillation tower and / or the second continuous multistage distillation tower as the catalyst component in step (II). It is preferable to use it. In addition, since a small amount of diaryl carbonate is usually contained in the tower top component of the diaryl carbonate purification tower, this tower top component is left as it is or a low boiling point component contained in the tower top component is separated. After separation in the distillation column, all or part of the bottom component of the distillation column is returned to the high boiling point separation column and / or the diaryl carbonate purification column to be recovered as high purity diaryl carbonate. Both are preferable methods.
[0140] 工程(III)においては、通常 99. 9%以上、好ましくは 99. 99%以上の高純度ジァ リールカーボネートが取得される。そして、高沸点副生物の含有量は、通常 lOOppm 以下であり、好ましくは 50ppm以下、さらに好ましくは lOppm以下である。また、本発 明では通常、ハロゲンを含まない原料と触媒を使用するので、取得される高純度ジァ リールカーボネートのハロゲン含有量は 0. lppm以下であり、好ましくは lOppb以下 であり、さらに好ましくは lppb以下である。  [0140] In the step (III), high-purity diaryl carbonate of usually 99.9% or more, preferably 99.99% or more is obtained. The content of high-boiling by-products is usually 10 ppm or less, preferably 50 ppm or less, and more preferably 10 ppm or less. In addition, since the present invention normally uses a raw material and a catalyst that do not contain halogen, the halogen content of the obtained high-purity diaryl carbonate is 0.1 ppm or less, preferably 10 ppm or less, and more preferably Is less than lppb.
[0141] 続いて、工程 (IV)が実施される。すなわち、芳香族ジヒドロキシ化合物と該高純度 ジァリールカーボネートとを反応させて芳香族ポリカーボネートの溶融プレポリマーを 製造し、該溶融プレボリマーをガイドの表面に沿って流下せしめ、その流下中に該溶 融プレポリマーの重合を行わせるガイド接触流下式重合器を用いて芳香族ポリカー ボネートを製造する工程である。 [0142] 工程 (IV)において、用いられる芳香族ジヒドロキシ化合物とは、下記一般式で示さ れる化合物である。 [0141] Subsequently, step (IV) is performed. That is, an aromatic dihydroxy compound is reacted with the high-purity diaryl carbonate to produce a molten prepolymer of an aromatic polycarbonate, and the molten prepolymer is allowed to flow along the surface of the guide, and the molten prepolymer is melted during the flow. This is a process for producing an aromatic polycarbonate using a guide contact flow type polymerization apparatus for polymerizing a prepolymer. [0142] In step (IV), the aromatic dihydroxy compound used is a compound represented by the following general formula.
HO -Ar- OH  HO -Ar- OH
(式中、 Arは 2価の芳香族基を表す。)。  (In the formula, Ar represents a divalent aromatic group).
[0143] 2価の芳香族基 Arは、好ましくは例えば、下記一般式で示されるものである。 [0143] The divalent aromatic group Ar is preferably represented by the following general formula, for example.
-Ar' -Y-Ar2--Ar '-Y-Ar 2-
(式中、 Ar1及び Ar2は、各々独立にそれぞれ炭素数 5〜70を有する 2価の炭素環式 又は複素環式芳香族基を表し、 Yは炭素数 1〜30を有する 2価のアルカン基を表す o ) (In the formula, Ar 1 and Ar 2 each independently represent a divalent carbocyclic or heterocyclic aromatic group having 5 to 70 carbon atoms, and Y represents a divalent carbocyclic or heterocyclic aromatic group having 1 to 30 carbon atoms. O represents an alkane group)
[0144] 2価の芳香族基 A 、 Ar2において、 1つ以上の水素原子が、反応に悪影響を及ぼ さない他の置換基、例えば、ハロゲン原子、炭素数 1〜; 10のアルキル基、炭素数;!〜 10のァノレコキシ基、フエニル基、フエノキシ基、ビニノレ基、シァノ基、エステル基、アミ ド基、ニトロ基などによって置換されたものであってもよい。複素環式芳香族基の好ま しい具体例としては、 1ないし複数の環形成窒素原子、酸素原子又は硫黄原子を有 する芳香族基を挙げることができる。
Figure imgf000052_0001
Ar2は、例えば、置換又は 非置換のフエ二レン、置換又は非置換のビフエ二レン、置換または非置換のピリジレ ンなどの基を表す。ここでの置換基は前述のとおりである。
[0144] In the divalent aromatic group A 1 or Ar 2 , one or more hydrogen atoms are not substituted with other substituents that do not adversely influence the reaction, for example, a halogen atom, an alkyl group having 1 to 10 carbon atoms, It may be substituted by an aralkoxy group, phenyl group, phenoxy group, vinylol group, cyanol group, ester group, amide group, nitro group or the like having 10 to 10 carbon atoms. Preferable specific examples of the heterocyclic aromatic group include aromatic groups having one or more ring-forming nitrogen atoms, oxygen atoms or sulfur atoms.
Figure imgf000052_0001
Ar 2 represents, for example, a group such as substituted or unsubstituted phenylene, substituted or unsubstituted biphenylene, substituted or unsubstituted pyridylene. The substituents here are as described above.
2価のアルカン基 Yは、例えば、下記式で示される有機基である。  The divalent alkane group Y is, for example, an organic group represented by the following formula.
[0145] [化 6]  [0145] [Chemical 6]
-
Figure imgf000052_0002
-
Figure imgf000052_0002
[0146] (式中、
Figure imgf000052_0003
R4は、各々独立に水素、炭素数 1〜; 10のアルキル基、炭素数 1 〜; 10のアルコキシ基、環構成炭素数 5〜; 10のシクロアルキル基、環構成炭素数 5〜 10の炭素環式芳香族基、炭素数 6〜; 10の炭素環式ァラルキル基を表す。 kは 3〜1 1の整数を表し、 R5および R6は、各 Xについて個々に選択され、お互いに 立に、水 素または炭素数 1〜6のアルキル基を表し、 Xは炭素を表す。また、 R4、 R5、 R6において、一つ以上の水素原子が反応に悪影響を及ぼさない範囲で他の置 換基、例えばハロゲン原子、炭素数 1〜; 10のアルキル基、炭素数 1〜; 10のアルコキ シ基、フエニル基、フエノキシ基、ビュル基、シァノ基、エステル基、アミド基、ニトロ基 等によって置換されたものであってもよい。 )
[0146] (where
Figure imgf000052_0003
R 4 each independently represents hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 10 carbon atoms, a 5- to 10-carbon ring structure; a cycloalkyl group having 10 to 10-carbon atoms. A carbocyclic aromatic group, a C6-C10 carbocyclic aralkyl group; k represents an integer of 3 to 11, R 5 and R 6 are individually selected for each X, and stand for each other to represent hydrogen or an alkyl group having 1 to 6 carbon atoms, and X represents carbon . R 4 , In R 5 and R 6 , other substituents such as a halogen atom, an alkyl group having 1 to 10 carbon atoms, an alkyl group having 1 to 10 carbon atoms and an alkyl group having 10 to 10 carbon atoms as long as one or more hydrogen atoms do not adversely influence the reaction. It may be substituted with a silyl group, a phenyl group, a phenoxy group, a bur group, a cyan group, an ester group, an amide group, a nitro group, or the like. )
[0147] このような 2価の芳香族基 Arとしては、例えば、下記式で示されるものが挙げられる [0147] Such a divalent aromatic group Ar includes, for example, those represented by the following formulae:
[0148] [化 7] [0148] [Chemical 7]
) m CH3 (R8)n ) m CH 3 (R 8 ) n
Figure imgf000054_0001
^
Figure imgf000054_0001
^
Figure imgf000054_0002
Figure imgf000054_0003
Figure imgf000054_0002
Figure imgf000054_0003
(式中、 R7、 R8は、各々独立に水素原子、ハロゲン原子、炭素数 1〜; 10のアルキル 基、炭素数 1〜; 10のアルコキシ基、環構成炭素数 5〜; 10のシクロアルキル基または フエニル基であって、 mおよび nは;!〜 4の整数で、 mが 2 4の場合には各 R7はそれ ぞれ同一でも異なるものであってもよ!/、し、 nが 2 4の場合には R8はそれぞれ同一 でも異なるものであってもよい。 ) (Wherein R 7 and R 8 are each independently a hydrogen atom, a halogen atom, an alkyl having 1 to 10 carbon atoms; A group having 1 to 10 carbon atoms, an alkoxy group having 10 to 10 carbon atoms, a cycloalkyl group or a phenyl group having 5 to 10 carbon atoms, and m and n are integers of !! to 4 and m is 24 Each R 7 may be the same or different! /, And when n is 24, R 8 may be the same or different. )
[0149] さらに、 2価の芳香族基 Arは、次式で示されるものであってもよい。 [0149] Furthermore, the divalent aromatic group Ar may be represented by the following formula.
— Ar1— Z— Ar2— Ar 1 — Z— Ar 2
(式中、 Ar1及び Ar2は前述の通りで、 Zは単結合又は—O— —CO— —S— —S O SO COO CON (R1)—などの 2価の基を表す。ただし、 R1は前(In the formula, Ar 1 and Ar 2 are as described above, and Z represents a single bond or a divalent group such as —O— —CO— —S— —SO 2 SO COO CON (R 1 ) —, where R 1 is before
2 2
述のとおりである。 )  As described above. )
[0150] このような 2価の芳香族基 Arとしては、例えば、下記式に示されるものが挙げられる  [0150] Examples of such a divalent aromatic group Ar include those represented by the following formulae:
[0151] [化 8] [0151] [Chemical 8]
Figure imgf000056_0001
Figure imgf000056_0001
s ^ s ^
Figure imgf000056_0002
Figure imgf000056_0003
Figure imgf000056_0002
Figure imgf000056_0003
(式中、 R7、 R8、 mおよび nは、前述のとおりである。 ) (Wherein R 7 , R 8 , m and n are as described above.)
さらに、 2価の芳香族基 Arの具体例としては、置換または非置換のフエ二レン、置 換または非置換のナフチレン、置換または非置換のピリジレン等が挙げられる。  Furthermore, specific examples of the divalent aromatic group Ar include substituted or unsubstituted phenylene, substituted or unsubstituted naphthylene, substituted or unsubstituted pyridylene, and the like.
[0152] 本発明で用いられる芳香族ジヒドロキシ化合物は、単一種類でも 2種類以上でもか まわなレ、。芳香族ジヒドロキシ化合物の代表的な例としてはビスフエノール Aが挙げら れる。また、本発明においては、本発明の目的を損なわない範囲で、分岐構造を導 入するための 3価の芳香族トリヒドロキシ化合物を併用してもよい。  [0152] The aromatic dihydroxy compound used in the present invention may be a single type or two or more types. A typical example of the aromatic dihydroxy compound is bisphenol A. In the present invention, a trivalent aromatic trihydroxy compound for introducing a branched structure may be used in combination as long as the object of the present invention is not impaired.
[0153] 工程 (IV)における芳香族ジヒドロキシ化合物と高純度ジァリールカーボネートとの 使用割合 (仕込み比率)は、用いられる芳香族ジヒドロキシ化合物とジァリールカーボ ネートの種類や、重合温度その他の重合条件によって異なるが、ジァリールカーボネ ートは芳香族ジヒドロキシ化合物 1モルに対して、通常 0. 9〜2. 5モル、好ましくは 0 . 95—2. 0モノレ、より好ましくは 0. 98— 1. 5モノレの害 ij合で用いられる。 [0153] The aromatic dihydroxy compound and high-purity diaryl carbonate in step (IV) The usage ratio (preparation ratio) varies depending on the type of aromatic dihydroxy compound and diaryl carbonate used, the polymerization temperature, and other polymerization conditions, but diaryl carbonate is usually used for 1 mol of aromatic dihydroxy compound. It is used in an amount of 0.9 to 2.5 mol, preferably 0.95 to 2.0 monole, more preferably 0.98 to 1.5 monole.
[0154] 工程 (IV)における、芳香族ジヒドロキシ化合物とジァリールカーボネートとから製造 された溶融状態のプレボリマー(以下、溶融プレボリマーと表す)とは、芳香族ジヒドロ キシ化合物とジァリールカーボネートから製造される、 目的とする重合度を有する芳 香族ポリカーボネートより重合度の低い重合途中の溶融物を意味しており、もちろん オリゴマーであってもよい。工程(IV)で用いられるこのような溶融プレポリマーは、公 知のいかなる方法によって得られたものでよい。たとえば、所定量の芳香族ジヒドロキ シ化合物とジァリールカーボネートとからなる溶融混合物を 1基またはそれ以上の縦 型撹拌槽を用いて、約 120°C〜約 280°Cの温度範囲で、常圧および/または減圧 下に撹拌しながら、反応によって副生する芳香族モノヒドロキシ化合物を除去するこ とによって、製造すること力 Sできる。直列に連結された 2基以上の縦型撹拌槽を用い て、順に重合度を上げていく必要な重合度を有する溶融プレボリマーを連続的に製 造する方法が特に好ましい。  [0154] In the step (IV), a molten state prepolymer (hereinafter referred to as a molten prepolymer) produced from an aromatic dihydroxy compound and diaryl carbonate is produced from an aromatic dihydroxy compound and diaryl carbonate. It means a melt in the middle of polymerization having a degree of polymerization lower than that of an aromatic polycarbonate having a desired degree of polymerization, and may of course be an oligomer. Such a melted prepolymer used in step (IV) may be obtained by any known method. For example, a molten mixture of a predetermined amount of an aromatic dihydroxy compound and diaryl carbonate is usually used in a temperature range of about 120 ° C. to about 280 ° C. using one or more vertical stirring tanks. It can be produced by removing aromatic monohydroxy compounds by-produced by the reaction while stirring under pressure and / or reduced pressure. A method of continuously producing a melted polymer having a required degree of polymerization by sequentially increasing the degree of polymerization using two or more vertical stirring tanks connected in series is particularly preferable.
[0155] 工程 (IV)では、この溶融プレボリマーが、ガイド接触流下式重合器に連続的に供 給され、 目的の重合度を有する芳香族ポリカーボネートを連続的に製造する。このガ イド接触流下式重合器とは、ガイドに沿ってプレボリマーを溶融流下せしめて重合を させる重合器であって、 1時間あたり 1トン以上の芳香族ポリカーボネートを生産でき るものである。  [0155] In step (IV), this molten prepolymer is continuously supplied to a guide contact flow type polymerization apparatus to continuously produce an aromatic polycarbonate having a desired degree of polymerization. This guide contact flow type polymerizer is a polymerizer in which a polymer is melted and flowed along a guide, and can produce an aromatic polycarbonate of 1 ton or more per hour.
[0156] 該ガイド接触流下式重合器は、  [0156] The guide contact flow type polymerization reactor is
(1)溶融プレボリマー受給口、多孔板、該多孔板を通して該溶融プレボリマーを重合 反応ゾーンのガイドに供給するための溶融プレボリマー供給ゾーン、該多孔板と側面 ケーシングとテーパー形の底部ケーシングとに囲まれた空間に該多孔板から下方に 延びる複数のガイドが設けられた重合反応ゾーン、該重合反応ゾーンに設けられた 真空ベント口、テーパー形の底部ケーシングの最下部に設けられた芳香族ポリカー ボネート排出口、及び該排出口に接続された芳香族ポリカーボネート排出ポンプを 有するものであって、 (1) Molten prepolymer receiving port, perforated plate, polymerized through the perforated plate, the molten prepolymer is supplied to the guide of the reaction zone, surrounded by the perforated plate, the side casing, and the tapered bottom casing. A polymerization reaction zone provided with a plurality of guides extending downward from the perforated plate in the open space, a vacuum vent port provided in the polymerization reaction zone, and an aromatic polycarbonate exhaust provided at the bottom of the tapered bottom casing. An aromatic polycarbonate discharge pump connected to the outlet and the outlet Having
(2)該重合反応ゾーンの側面ケーシングの水平面における内部断面積 A (m2)が、 式(19)を満足するものであって、 (2) The internal cross sectional area A (m 2 ) in the horizontal plane of the side casing of the polymerization reaction zone satisfies the formula (19),
0. 7≤A≤300 式(19)  0. 7≤A≤300 Formula (19)
(3)該 A (m2)と、芳香族ポリカーボネート排出口の水平面における内部断面積 B (m2 )との比が、式(20)を満足するものであって、 (3) The ratio of the A (m 2 ) to the internal cross-sectional area B (m 2 ) in the horizontal plane of the aromatic polycarbonate outlet satisfies the formula (20),
20≤A/B≤1000 式(20)  20≤A / B≤1000 formula (20)
(4)該重合反応ゾーンの底部を構成するテーパー形の底部ケーシンダカ 上部の側 面ケーシングに対してその内部において、角度 C度で接続されており、該角度 C度が 式(21)を満足するものであって、  (4) The tapered bottom case of the polymerization reaction zone is connected to the upper side casing at an angle C degree inside the upper side casing, and the angle C degree satisfies the formula (21). And
120≤C≤165 式(21)  120≤C≤165 Formula (21)
(5)該ガイドの長さ h (cm)が、式(22)を満足するものであって、  (5) The length h (cm) of the guide satisfies the formula (22),
150≤h≤5000 式(22)  150≤h≤5000 formula (22)
(6)該ガイド全体の外部総表面積 S (m2)が式(23)を満足するものである、 (6) The total external surface area S (m 2 ) of the entire guide satisfies the formula (23).
2≤S≤50000 式(23)  2≤S≤50000 Formula (23)
ことが必要である。  It is necessary.
[0157] 高品質'高性能の芳香族ポリカーボネートを 1時間あたり 1トン以上の工業的規模の 生産量で、分子量のバラツキなどがなぐ長期間安定的に製造するためには、種々 の条件を満足させる重合器であることが必要であり、本発明はこれらの条件を見出し たものである。なお、本発明においては、分子量のバラツキがないとは、数平均分子 量で 200以下のバラツキの場合を意味している。本発明では、数平均分子量のバラ ツキが好ましくは 150以下であり、より好ましくは 100以下の芳香族ポリカーボネート が長時間安定的に製造できる。  [0157] In order to produce high-quality 'high-performance aromatic polycarbonates on an industrial scale with production of 1 ton or more per hour and stable production over a long period without variations in molecular weight, various conditions are satisfied. Therefore, the present invention has been made to find these conditions. In the present invention, “there is no variation in molecular weight” means a variation in number average molecular weight of 200 or less. In the present invention, an aromatic polycarbonate having a number average molecular weight variation of preferably 150 or less, more preferably 100 or less, can be produced stably for a long time.
[0158] より具体的には、概念図(図 5)に示されるような、重合反応ゾーン 5の側面ケーシン グ 10の水平面(a— a '面)における内部断面積 A (m2)力 S、式( 19)を満足するもので あることが必要である。 More specifically, as shown in the conceptual diagram (FIG. 5), the internal cross-sectional area A (m 2 ) force S in the horizontal plane (a—a ′ plane) of the side casing 10 in the polymerization reaction zone 5 It is necessary to satisfy the equation (19).
[0159] Aが 0. 7m2よりも小さいと、 目的とする生産量を達成できないし、設備費を低下させ つっこの生産量を達成するためには、 Aは 300m2以下にすることが必要である。 [0160] さらに、該 A (m2)と、芳香族ポリカーボネート排出口 7の水平面(b— b '面)における 内部断面積 B (m2)との比が、式(20)を満足することも必要ある。 [0159] If A is less than 0.7 m 2 , the target production volume cannot be achieved, and in order to achieve this production volume while reducing the equipment cost, A must be 300 m 2 or less. It is. [0160] In addition, the ratio of the between A (m 2), the internal cross-sectional area in the horizontal plane of the aromatic polycarbonate discharge port 7 (b-b 'surface) B (m 2) is, satisfies equation (20) Is also necessary.
[0161] 製造された芳香族ポリカーボネートまたは重合度の高められた芳香族ポリカーボネ ートプレポリマーの品質を低下させることなく溶融粘度の高いこれらの溶融物を排出 するためには、 A/Bは式(20)を満足していなければならない。  [0161] In order to discharge these melts having a high melt viscosity without degrading the quality of the produced aromatic polycarbonate or the aromatic polycarbonate prepolymer having a high degree of polymerization, A / B is expressed by the formula (20) Must be satisfied.
[0162] さらに、該重合反応ゾーン 5の底部を構成するテーパー形の底部ケーシング 11が、 上部の側面ケーシング 10に対してその内部において、角度 C度で設けられており、 該角度 C度が式(21)を満足することも必要である。  [0162] Further, a tapered bottom casing 11 constituting the bottom of the polymerization reaction zone 5 is provided at an angle C degrees with respect to the upper side casing 10 at an angle C degrees. It is also necessary to satisfy (21).
[0163] 設備費を低下させるためには、 Cはできるだけ 90度に近い方がいいのである力 ガ イド 4の下端から落下してくる芳香族ポリカーボネートまたは重合度の高められた芳 香族ポリカーボネートプレボリマーの品質を低下させることなく溶融粘度の高いこれら の溶融物を排出口 7に移動させるためには、 Cは式(21)を満足していなければなら ない。  [0163] In order to reduce the equipment cost, C should be as close to 90 degrees as possible. Force Guide 4 Aromatic polycarbonate falling from the lower end of the guide 4 or aromatic polycarbonate pre-bottle with an increased degree of polymerization In order to move these melts with high melt viscosity to the outlet 7 without degrading the quality of the limer, C must satisfy equation (21).
[0164] さらに、該ガイドの長さ h (cm)が、式(22)を満足することも必要である。 hが 150c mより短い場合、溶融プレボリマーの重合度を高めることはできるが、その程度が十 分ではなぐまた、重合度のバラツキが数平均分子量で約 200以上大きくなり、好まし くない。 h力 S5000cmより長い場合、ガイドの上部と下部での溶融プレポリマーの溶融 粘度の違いが大きくなりすぎるため、重合度のバラツキが数平均分子量で約 300以 上 (場合によっては、約 500以上)大きくなり、得られる芳香族ポリカーボネートの物性 にバラツキがでるので好ましくない。なお、本発明において重合度のバラツキが大き いとは、例えば数平均分子量で表して、約 200以上の差があるバラツキの場合を意 味している。  [0164] Further, it is necessary that the length h (cm) of the guide satisfies the formula (22). When h is shorter than 150 cm, the degree of polymerization of the melted polymer can be increased, but the degree is not sufficient, and the variation in the degree of polymerization becomes about 200 or more in number average molecular weight, which is not preferable. If the h force is longer than S5000cm, the difference in the melt viscosity of the melted prepolymer between the upper and lower parts of the guide becomes too large, so the variation in the degree of polymerization is about 300 or more (in some cases, about 500 or more). This is not preferable because the physical properties of the resulting aromatic polycarbonate vary with increasing size. In the present invention, the large variation in the degree of polymerization means, for example, a variation in which there is a difference of about 200 or more, expressed in terms of number average molecular weight.
[0165] さらに、該ガイド 4の外部総表面積 S (m2)が式(23)を満足する必要がある。 [0165] Furthermore, the total external surface area S (m 2 ) of the guide 4 needs to satisfy the formula (23).
Sが 2m2よりも小さいと、 目的とする生産量を達成できないし、設備費を低下させつつ この生産量を達成し、且つ物性にバラツキをなくすためには、 Sは 50000m2以下に することが必要である。 If S is less than 2m 2 , the target production volume cannot be achieved, and in order to achieve this production volume while reducing equipment costs and to eliminate variations in physical properties, S should be 50000m 2 or less. is required.
[0166] 式(19)、(20)、(21)、(22)および(23)を同時に満足するガイド接触流下式重合 器を用いることによって、驚くべきことに、着色がなく機械的物性に優れた高品質-高 性能の芳香族ポリカーボネートを、 1時間あたり 1トン以上の生産量でし力、も、数 1 , 0 00時間以上、たとえば 5, 000時間以上の長期間、分子量のバラツキなどなく安定的 に製造できることが見出された。これらの条件を同時に満足していない場合には、 目 的とする生産量が得られない、分子量のバラツキが数平均分子量で表して約 200以 上の差があるバラツキがでる、安定製造が 1 , 000時間もできない、着色がしゃすくな るなどの不都合が起こる。 [0166] Surprisingly, there is no coloring and mechanical properties can be improved by using a guide contact flow type polymerization reactor that simultaneously satisfies the equations (19), (20), (21), (22) and (23). Excellent high quality-high High performance aromatic polycarbonate with a production capacity of 1 ton or more per hour can be stably produced without fluctuations in molecular weight for a long period of several hundred hours or more, for example, 5,000 hours or more. Was found. If these conditions are not satisfied at the same time, the target production volume cannot be obtained, the molecular weight variation is expressed in terms of number average molecular weight, and there is a variation with a difference of about 200 or more. Inconveniences such as inability to color for 1,000 hours and faint coloring.
[0167] 工程 (IV)において、このような優れた効果を有する工業的規模での芳香族ポリ力 ーボネートの製造が可能となった理由は明らかではないが、上述の理由に加えて、 それらの条件が組み合わさった時にもたらされる複合効果が現れたためであると推定 される。例えば式(22)および(23)を満足する高表面積のガイドを用いると、溶融プ レポリマーを比較的低温度で重合させることができ、 目的とする分子量を有する大量 の高品質の芳香族ポリカーボネートを製造できるし、また、式(21)を満足するテーパ 一形の底部ケーシングは、ガイドから落下してくるこの大量の高品質の生成芳香族ポ リカーボネートが排出口に達するの時間を短縮でき、その結果、生成芳香族ポリカー ボネートの熱履歴を減らせるためと推定される。  [0167] In Step (IV), it is not clear why it is possible to produce an aromatic polycarbonate having such excellent effects on an industrial scale, but in addition to the above reasons, This is presumed to be due to the combined effects that appear when conditions are combined. For example, by using a high surface area guide that satisfies formulas (22) and (23), the molten prepolymer can be polymerized at a relatively low temperature, and a large amount of high-quality aromatic polycarbonate having the desired molecular weight can be produced. The taper-shaped bottom casing that satisfies formula (21) can reduce the time it takes for this large quantity of high quality product aromatic polycarbonate falling from the guide to reach the outlet, As a result, it is presumed that the thermal history of the produced aromatic polycarbonate can be reduced.
[0168] なお、このような工業的規模での製造技術は、大規模な製造設備を用いる長時間 運転によって初めて確立できるものである力 その際の製造設備費は考慮すべき重 要な因子であることは、論を待たない。本発明の別な効果は、工程 (IV)で用いる重 合器を、式(19)、 (20)、 (21)、 (22)および(23)を満足するガイド接触流下式重合 器とすることによって、工業的製造設備として設備費を低下させることができることに ある。  [0168] It should be noted that such manufacturing technology on an industrial scale can only be established for a long time using large-scale manufacturing equipment. Manufacturing equipment costs at that time are an important factor to consider. There is nothing to wait for. Another effect of the present invention is that the polymerization reactor used in step (IV) is a guide contact flow type polymerization reactor satisfying the equations (19), (20), (21), (22) and (23). Therefore, the facility cost can be reduced as an industrial production facility.
[0169] 工程 (IV)において用いられるガイド接触流下式重合器における寸法 ·角度等に要 求される範囲は、上記のとおりであるが、さらに好ましい範囲は次のとおりである。重 合反応ゾーンの側面ケーシングの水平面における内部断面積 A (m2)のより好ましい 範囲は、 0. 8≤A≤250 であり、さらに好ましくは、 1≤A≤200 である。 [0169] The range required for the size, angle, and the like in the guide contact flow type polymerization reactor used in step (IV) is as described above, and more preferable ranges are as follows. A more preferable range of the internal cross-sectional area A (m 2 ) in the horizontal plane of the side casing of the polymerization reaction zone is 0.8≤A≤250, more preferably 1≤A≤200.
[0170] また、該 A (m2)と、芳香族ポリカーボネート排出口の水平面における内部断面積 B [0170] Further, the A (m 2 ) and the internal cross-sectional area B in the horizontal plane of the aromatic polycarbonate outlet
(m2)との比のより好ましい範囲は、 25≤A/B≤900 であり、さらに好ましくは、 30 ≤A/B≤800 である。 [0171] また、重合反応ゾーンの底部を構成するテーパー形の底部ケーシングが、上部の 側面ケーシングに対してその内部においてなす角度 C度のより好ましい範囲は、 125 ≤C≤160 であり、さらに好ましくは、 135≤C≤165 である。なお、複数のガイド 接触流下式重合器を用いて順に重合度を上げていく場合には、それぞれに対応す る角度を、 Cl、 C2、 C3、 · · ·とすれば、 C1≤C2≤C3≤ · · · とすることが好ましいA more preferable range of the ratio to (m 2 ) is 25≤A / B≤900, and more preferably 30≤A / B≤800. [0171] Further, the more preferable range of the angle C degrees formed inside the tapered bottom casing constituting the bottom of the polymerization reaction zone with respect to the upper side casing is 125 ≤ C ≤ 160, and more preferably Is 135≤C≤165. In addition, when increasing the polymerization degree sequentially using multiple guided contact flow type polymerization reactors, if the corresponding angles are Cl, C2, C3, ..., C1≤C2≤C3 ≤ ... is preferable
Yes
[0172] また、ガイドの必要な長さ h (cm)は、原料プレボリマーの重合度、重合温度、圧力、 その重合器で製造すべき芳香族ポリカーボネートまたはプレボリマーの重合度、生 産量等の要因の違いによって異なる力 より好ましい範囲は、 200≤h≤3000 であ り、さらに好ましくは、 250≤h≤2500 である。 hが、式(31)を満足する場合、特に 好ましい。  [0172] Further, the required length h (cm) of the guide depends on factors such as the degree of polymerization of the raw material prepolymer, the polymerization temperature and pressure, the degree of polymerization of the aromatic polycarbonate or prepolymer to be produced in the polymerization vessel, and the production amount. More preferred range of forces depending on the difference is 200≤h≤3000, more preferably 250≤h≤2500. It is particularly preferable when h satisfies the formula (31).
400<h≤2500 式(31)  400 <h≤2500 Formula (31)
[0173] 必要なガイド全体の外部総表面積 S (m2)も、上記と同様の要因の違いによって異 なる力 そのより好ましい範囲は、 4≤S≤40000 であり、さらに好ましくは、 10≤S ≤ 30000 である。 15≤S≤ 20000 ίま、特 ίこ好ましレヽ範囲である。本発明で言う ガイド全体の外部総表面積とは、溶融プレボリマーが接触して流下するガイドの表面 積全体を意味しており、例えばパイプなどのガイドの場合、外側の表面積を意味して おり、溶融プレポリマーを流下させないパイプ内側の面の表面積は含めない。 [0173] The total external surface area S (m 2 ) of the entire guide required also varies depending on the same factors as above. The more preferable range is 4≤S≤40000, more preferably 10≤S ≤ 30000. 15≤S≤ 20000 °, the preferred range. The external total surface area of the entire guide referred to in the present invention means the entire surface area of the guide that flows down in contact with the molten polymer. For example, in the case of a guide such as a pipe, it means the outer surface area. The surface area of the inner surface of the pipe that does not allow the prepolymer to flow down is not included.
[0174] 工程 (IV)で用いられるガイド接触流下式重合器において、重合反応ゾーンの側面 ケーシングの水平面における内部断面の形状は多角形、楕円形、円形等、どのよう な形状であってもよい。重合反応ゾーンは、通常減圧下で操作されるため、それに耐 えるものであればどのようなものでもよいが、好ましくはそれが円形または、それに近 い形状の場合である。従って、本発明の重合反応ゾーンの側面ケーシングは、円筒 形であることが好ましい。この場合、円筒形の側面ケーシングの下部にテーパー形の 底部ケーシングが接続され、該底部ケーシングの最下部に円筒形の芳香族ポリカー ボネート排出口が設けられることが好ましい。そして、該側面ケーシングの円筒形部 の内径を D (cm)、長さを L (cm)とし、該排出口の内径を d (cm)とした時、 D、 L、 d が式(27)、 (28)、 (29)および(30)を満足していることが好ましい。 100≤D≤1800 式(27) [0174] In the guide contact flow type polymerization reactor used in the step (IV), the shape of the internal cross section in the horizontal plane of the side casing of the polymerization reaction zone may be any shape such as a polygon, an ellipse, and a circle. . Since the polymerization reaction zone is usually operated under reduced pressure, it may be of any type as long as it can withstand it, but preferably it is circular or has a shape close to it. Therefore, the side casing of the polymerization reaction zone of the present invention is preferably cylindrical. In this case, it is preferable that a tapered bottom casing is connected to the lower part of the cylindrical side casing, and a cylindrical aromatic polycarbonate discharge port is provided at the lowermost part of the bottom casing. When the inner diameter of the cylindrical portion of the side casing is D (cm), the length is L (cm), and the inner diameter of the discharge port is d (cm), D, L, and d are expressed by the formula (27) (28), (29) and (30) are preferably satisfied. 100≤D≤1800 formula (27)
5≤D/d≤50 式(28)  5≤D / d≤50 formula (28)
0. 5≤L/D ≤30 式(29)  0. 5≤L / D ≤30 (29)
h- 20≤L≤h + 300 式(30)  h-20 ≤ L ≤ h + 300 formula (30)
[0175] 該ガイド接触流下式重合器において、 D (cm)のより好ましい範囲は、 150≤D ≤ 1500 であり、さらに好ましくは、 200≤D≤1200 である。また、また、 D/d のより 好ましい範囲は、 6≤D/d≤45 であり、さらに好ましくは、 7≤ D/d≤40 であ る。また、 L/Dのより好ましい範囲は、 0. 6≤L/D≤25 であり、さらに好ましくは、 0. 7≤L/D≤20 である。 また、 L (cm)のより好ましい範囲は、 h— 10≤L≤h + 250 であり、さらに好ましくは、 h≤L≤h+ 200 である。なお、 D、 d、 L、 h がこれ らの関係を同時に満足しない場合は、本発明の課題を達成することが困難になる。  [0175] In the guide contact flow type polymerization reactor, a more preferable range of D (cm) is 150≤D≤1500, and more preferably 200≤D≤1200. Further, a more preferable range of D / d is 6≤D / d≤45, and more preferably 7≤D / d≤40. Further, a more preferable range of L / D is 0.6≤L / D≤25, and more preferably 0.7≤L / D≤20. Further, a more preferable range of L (cm) is h—10≤L≤h + 250, and more preferably h≤L≤h + 200. If D, d, L, and h do not satisfy these relationships at the same time, it is difficult to achieve the object of the present invention.
[0176] 工程 (IV)において、速い重合速度で、着色が無く機械的物性に優れた高品質-高 性能の芳香族ポリカーボネートが、工業的規模で長期間分子量のバラツキがなく安 定的に製造できる正確な理由は明らかではないが、以下のことが考えられる。すなわ ち、工程 (IV)のガイド接触流下式重合法においては、原料の溶融プレボリマーは受 給口 1から、供給ゾーン 3および多孔板 2を経由して、ガイド 4に導かれ、ガイドに沿つ て流下しながら重合度が上昇していく。この場合、溶融プレボリマーはガイドに沿って 流下しながら効果的な内部攪拌と表面更新が行われ、フエノール等の抜出しが効果 的に行われるため、速い速度で重合が進行する。重合の進行とともにその溶融粘度 が高くなつてくるために、ガイドに対する粘着力が増大し、ガイドに粘着する溶融物の 量はガイドの下部に行くに従って増えてくる。このことは、溶融プレボリマーのガイド上 での滞留時間、すなわち重合反応時間が増えることを意味している。しかも、ガイドに 支えられながら自重で流下している溶融プレボリマーは、質量当たりの表面積が非常 に広く、その表面更新が効率的に行われているので、これまでの機械的攪拌重合器 ではどうしても不可能であった重合後半の高分子量化が容易に達成できるのである 。これが工程 (IV)で用いられる重合器の持つ、優れた特徴の 1つである。  [0176] In process (IV), a high-quality, high-performance aromatic polycarbonate with high polymerization rate, no coloration, and excellent mechanical properties is produced stably on an industrial scale with no molecular weight variation over a long period of time. The exact reason for this is not clear, but the following are possible. In other words, in the guide contact flow polymerization method in step (IV), the molten precursor polymer is guided from the receiving port 1 to the guide 4 via the supply zone 3 and the perforated plate 2, and along the guide. The degree of polymerization increases while flowing down. In this case, the molten prepolymers are effectively agitated and renewed while flowing down along the guide, and phenol and the like are extracted effectively, so that the polymerization proceeds at a high speed. As the polymerization progresses, the melt viscosity increases, so that the adhesive strength to the guide increases, and the amount of the melt sticking to the guide increases as it goes to the bottom of the guide. This means that the residence time of the molten prepolymer on the guide, that is, the polymerization reaction time is increased. In addition, the melted polymer that flows down under its own weight while being supported by the guide has a very large surface area per mass, and its surface is renewed efficiently. The high molecular weight in the latter half of the polymerization, which was possible, can be easily achieved. This is one of the excellent features of the polymerization vessel used in step (IV).
[0177] ガイドの中間部より下部の重合の後半では、ガイドに粘着する溶融物の量が増えて くる力 S、その溶融粘度に見合った粘着保持力しかないので、複数のガイドの同じ高さ においては、ほぼ同じ溶融粘度をもつほぼ同じ量の溶融物力 それぞれのガイドに 支えられていることになる。一方ガイドには上部から溶融物が連続的に供給されてい るので、ほぼ同じ溶融粘度をもつ重合度の高められた溶融物が、ガイドの下端からテ 一パー形の底部ケーシングに連続的に落下して行くことになる。すなわち、テーパー 形の底部ケーシングの底部では、ガイドを流下しながら生成したほぼ同じ重合度の 芳香族ポリカーボネートが溜まってくることになり、分子量のバラツキのない芳香族ポ リカーボネートが連続的に製造できることになる。このことは本発明の重合器の持つ 他の優れた特徴の 1つである。テーパー形の底部ケーシングの底部に溜まった芳香 族ポリカーボネートは、排出口 7を経て、排出ポンプ 8によって連続的に抜き出され、 通常は押出し機を経て連続的にペレット化される。この場合、押出し機で、安定剤、 耐候剤等の添加剤を添加することも可能である。 [0177] In the second half of the polymerization below the middle part of the guide, the amount of the melt sticking to the guide increases S, and since there is only an adhesive holding force commensurate with the melt viscosity, the same height of the multiple guides In, the same amount of melt force with almost the same melt viscosity is supported by each guide. On the other hand, since the melt is continuously supplied from the top to the guide, the melt having a high degree of polymerization having substantially the same melt viscosity continuously falls from the lower end of the guide to the taper-shaped bottom casing. Will go. In other words, at the bottom of the tapered bottom casing, aromatic polycarbonate having almost the same degree of polymerization produced while flowing down the guide accumulates, and it is possible to continuously produce aromatic polycarbonate with no variation in molecular weight. become. This is one of the other excellent features of the polymerizer of the present invention. Aromatic polycarbonate accumulated at the bottom of the tapered bottom casing is continuously withdrawn by the discharge pump 8 through the discharge port 7, and is normally pelletized continuously through an extruder. In this case, additives such as stabilizers and weathering agents can be added by an extruder.
[0178] 工程 (IV)で用いられるガイド接触流下式重合器を構成する多孔板は、通常、平板 、波板、中心部が厚くなつた板などから選ばれ、多孔板の形状についは、通常、円状 、長円状、三角形状、多角形状などの形状力 選ばれる。多孔板の孔は、通常、円 状、長円状、三角形状、スリット状、多角形状、星形状などの形状から選ばれる。孔の 断面積は、通常、 0. 01〜; 100cm2であり、好ましくは 0. 05〜; 10cm2であり、特に好 ましくは 0. ;!〜 5cm2の範囲である。孔と孔との間隔は、孔の中心と中心の距離で通 常、 l〜500mmであり、好ましくは 25〜100mmである。多孔板の孔は、多孔板を貫 通させた孔であっても、多孔板に管を取り付けた場合でもよい。また、テーパー状に なっていてもよい。 [0178] The perforated plate constituting the guided contact flow type polymerization reactor used in step (IV) is usually selected from a flat plate, a corrugated plate, a plate with a thick central portion, etc. A shape force such as circular, oval, triangular or polygonal is selected. The holes of the perforated plate are usually selected from shapes such as a circle, an ellipse, a triangle, a slit, a polygon, and a star. The cross-sectional area of the hole is usually from 0.01 to 100 cm 2 , preferably from 0.05 to 10 cm 2 , particularly preferably from 0.;! To 5 cm 2 . The distance between the holes is usually 1 to 500 mm, preferably 25 to 100 mm, based on the distance between the centers of the holes. The hole in the perforated plate may be a hole penetrating the perforated plate or may be a case where a tube is attached to the perforated plate. Further, it may be tapered.
[0179] また、工程 (IV)で用いられるガイド接触流下式重合器を構成するガイドとは、水平 方向断面の外周の平均長さに対して該断面と垂直方向の長さの比率が非常に大き い材料を表すものである。該比率は、通常、 10〜; 1 , 000, 000の範囲であり、好まし くは 50〜; 100, 000の範囲である。水平方向の断面の形状は、通常、円状、長円状 、三角形状、四角形状、多角形状、星形状などの形状から選ばれる。該断面の形状 は長さ方向に同一でもよいし異なっていてもよい。また、ガイドは中空状のものでもよ い。  [0179] Further, the guide constituting the guide contact flow type polymerization reactor used in the step (IV) has a very high ratio of the length in the vertical direction to the average length of the outer periphery of the horizontal cross section. It represents a large material. The ratio is usually in the range of 10-; 1,000,000, preferably 50-; 100,000. The shape of the cross section in the horizontal direction is usually selected from shapes such as a circle, an ellipse, a triangle, a quadrangle, a polygon, and a star. The shape of the cross section may be the same or different in the length direction. The guide may be hollow.
[0180] ガイドは、針金状のものや細い棒状のものや内側に溶融プレポリマーが入らないよ うにした細いパイプ状のもの等の単一なものでもよいが、捩り合わせる等の方法によ つて複数組み合わせたものでもよい。また、網状のものや、パンチングプレート状のも のであってもよい。ガイドの表面は平滑であっても凹凸があるものであってもよぐ部 分的に突起等を有するものでもよい。好ましいガイドは、針金状や細い棒状等の円柱 状のもの、前記の細いパイプ状のもの網状のもの、パンチングプレート状のものであ [0180] The guide has no wire or thin rod, and the melted prepolymer does not enter inside. A single one such as a thin pipe-like one may be used, or a plurality of such may be combined by a method such as twisting. Further, a net-like one or a punching plate-like one may be used. The surface of the guide may be smooth or uneven, or may have a projection or the like partially. A preferable guide is a cylindrical shape such as a wire shape or a thin rod shape, a net shape such as the above-mentioned thin pipe shape, or a punching plate shape.
[0181] このガイドはそれ自身内部に熱媒ゃ電気ヒーターなどの加熱源をもっていてもよい ヽ加熱源を持たないガイドは、その表面におけるプレポリマーや芳香族ポリカーボ ネートの熱変性の懸念がなレ、ので、特に好ましレ、。 [0181] The guide itself may have a heat source such as an electric heater or a heat source inside the guide. 持 た A guide that does not have a heat source has no concern about thermal denaturation of the prepolymer or aromatic polycarbonate on its surface. , So especially preferred.
[0182] 工業的規模 (生産量、長期安定製造等)での高品質の芳香族ポリカーボネートの製 造を可能とする本発明のガイド接触流下式重合器において、特に好ましいのは、複 数の針金状または細!/、棒状または前記の細!/、パイプ状のガイドの上部から下部まで において横方向の支持材を用いて上下の適当な間隔で各々のガイド間を結合したタ イブのガイドである。例えば、複数の針金状または細い棒状または前記の細いパイプ 状のガイドの上部から下部までにおいて横方向の支持材を用いて上下の適当な間 隔、たとえば、 lcm〜200cmの間隔で固定した金網状ガイド、複数の金網状のガイ ドを前後に配置しそれらを横方向の支持材を用いて上下の適当な間隔、たとえば lc m〜200cmの間隔で結合させた立体的なガイド、または複数の針金状または細!/ヽ 棒状または前記の細いパイプ状のガイドの前後左右を横方向の支持材を用いて上 下の適当な間隔、たとえば 1 cm〜 200cmの間隔で固定したジャングルジム状の立 体的なガイドである。横方向の支持材は各ガイド間の間隔をほぼ同じに保っために 役立つだけでなぐ全体として平面状や曲面状になるガイド、あるいは立体的になる ガイドの強度の強化に役立っている。これらの支持材はガイドと同じ素材であってもよ いし、異なるものであってもよい。  [0182] In the guided contact flow type polymerizer of the present invention that enables production of high-quality aromatic polycarbonate on an industrial scale (production amount, long-term stable production, etc.), it is particularly preferable to use a plurality of wires. / Or rod-shaped or the above-mentioned narrow! /, A guide of the type of pipe that connects the guides at appropriate intervals above and below using a horizontal support material from the top to the bottom of the pipe-shaped guide. is there. For example, a plurality of wire-like or thin rod-like or wire-like nets fixed at appropriate intervals above and below, for example, lcm to 200 cm, using a horizontal support material from the top to the bottom of the thin pipe-shaped guide. A guide, a three-dimensional guide in which a plurality of wire mesh guides are arranged at the front and back, and they are joined at a suitable distance above and below using a lateral support material, for example, a distance of lc m to 200 cm, or a plurality of wires A jungle-gym standing body that is fixed at appropriate intervals above and below, for example, 1 cm to 200 cm, using horizontal support materials on the front and back, left and right of the rod-shaped or thin pipe-shaped guide. Guide. The support material in the horizontal direction not only helps to keep the distance between the guides approximately the same, but also helps to strengthen the guides that are flat or curved as a whole or three-dimensional guides. These supporting materials may be the same material as the guide, or may be different.
[0183] ガイド接触流下式重合器において、 1つのガイドが外径 r (cm)の円柱状または内 側に溶融プレボリマーがはいらないようにしたパイプ状のものである場合、 r が式(3 2)を満足して!/、ることが好まし!/、。  [0183] In a guide contact flow type polymerization reactor, when one guide is a cylindrical shape having an outer diameter r (cm) or a pipe shape in which a molten prepolymer is not allowed to enter, r is represented by the formula (3 2 ) Satisfied! /, Preferable to!
0. l≤r≤l 式(32) [0184] このガイドは、溶融プレボリマーを流下させながら、重合反応を進めるものであるが 、溶融プレボリマーをある時間保持する機能も有している。この保持時間は、重合反 応時間に関連するものであり、重合の進行とともにその溶融粘度が上昇していくため に、その保持時間および保持量は増加していくことは前記のとおりである。ガイドが溶 融プレポリマーを保持する量は、同じ溶融粘度であってもガイドの外部表面積、即ち 、円柱状またはパイプ状の場合、その外径によって異なってくる。 0. l≤r≤l Equation (32) [0184] This guide advances the polymerization reaction while flowing the molten prepolymer, but also has a function of holding the molten prepolymer for a certain period of time. This holding time is related to the polymerization reaction time, and as described above, the holding time and the holding amount increase as the melt viscosity increases as the polymerization proceeds. The amount that the guide retains the melted prepolymer varies depending on the external surface area of the guide, that is, in the case of a cylindrical shape or a pipe shape, even if the melt viscosity is the same.
[0185] また、本発明の重合器に設置されたガイドは、ガイド自身の重量に加え、保持して V、る溶融プレボリマーの重量をも支えるだけの強度が必要である。このような意味に おいて、ガイドの太さは重要であり、円柱状またはパイプ状の場合、式(32)を満足し ていることが好ましい。 rが 0. 1より小さいと、強度的な面で長時間の安定運転ができ にくくなつてくる。 rが 1よりも大きいと、ガイド自身が非常に重くなり、たとえばそれらを 重合器に保持するために多孔板の厚みを非常に厚くしなければならないなどの不都 合があるだけでなぐ溶融プレボリマーを保持する量が多くなりすぎる部分が増え、分 子量のバラツキが大きくなるなどの不都合が起こってくる。このような意味で、より好ま しい rの範囲は、 0. 15≤r≤0. 8 であり、さらに好ましいのは、 0. 2≤r≤0. 6 であ  [0185] In addition to the weight of the guide itself, the guide installed in the polymerization vessel of the present invention needs to be strong enough to hold and support the weight of the molten prepolymer. In this sense, the thickness of the guide is important. In the case of a columnar shape or a pipe shape, it is preferable that the formula (32) is satisfied. If r is less than 0.1, it will be difficult to perform stable operation for a long time in terms of strength. When r is larger than 1, the guide itself becomes very heavy, and the melted prepolymer has only the inconvenience, for example, the thickness of the perforated plate has to be very thick in order to hold them in the polymerizer. There are inconveniences such as an increase in the portion where the amount of retention increases too much and the variation in molecular weight increases. In this sense, the more preferred range of r is 0.15≤r≤0.8, and even more preferred is 0.2≤r≤0.6.
[0186] このようなガイドの好ましい材質は、ステンレススチール、カーボンスチール、ハステ ロイ、ニッケル、チタン、クロム、アルミニウム及びその他の合金等の金属や、耐熱性 の高いポリマー材料等の中から選ばれる。特に好ましいのはステンレススチールであ る。また、ガイドの表面は、メツキ、ライニング、不働態処理、酸洗浄、フエノール洗浄 等必要に応じて種々の処理がなされてもよい。 [0186] A preferable material for such a guide is selected from metals such as stainless steel, carbon steel, hastelloy, nickel, titanium, chromium, aluminum and other alloys, and a polymer material having high heat resistance. Particularly preferred is stainless steel. The surface of the guide may be subjected to various treatments such as plating, lining, passivation treatment, acid washing, and phenol washing as necessary.
[0187] ガイドと多孔板との位置関係及びガイドと多孔板の孔との位置関係につ!/、ては、溶 融プレポリマーのガイド接触流下が可能である限り特に限定されな!/、。ガイドと多孔 板は互いに接触していてもよいし、接触していなくてもよい。ガイドを多孔板の孔に対 応させて設置するのが好ましいがこれに限定されない。なぜならば、多孔板から落下 する溶融プレボリマーが適当な位置でガイドに接触するように設計されていてもいい 力、らである。ガイドを多孔板の孔に対応させて設置するの好ましい具体例としては、 ( 1)ガイドの上端を重合器の上部内壁面などに固定して、ガイドが多孔板の孔の中心 部付近を貫通した状態でガイドを設ける方法や、(2)ガイドの上端を多孔板の孔の上 端の周縁部に固定して、ガイドが多孔板の孔を貫通した状態でガイドを設ける方法 や、(3)ガイドの上端を多孔板の下側面に固定する方法、などが挙げられる。 [0187] The positional relationship between the guide and the perforated plate and the positional relationship between the guide and the hole in the perforated plate are not particularly limited as long as the molten polymer pre-guide flow is possible! /, . The guide and the perforated plate may or may not be in contact with each other. The guide is preferably installed in correspondence with the holes of the perforated plate, but is not limited thereto. This is because the molten pre-bolimer falling from the perforated plate may be designed to come into contact with the guide at an appropriate position. As a preferable specific example of installing the guide in correspondence with the hole of the perforated plate, (1) The upper end of the guide is fixed to the upper inner wall surface of the polymerization vessel, etc. (2) A method in which the upper end of the guide is fixed to the peripheral edge of the upper end of the hole in the perforated plate and the guide is provided in a state in which the guide passes through the hole in the perforated plate. And (3) a method of fixing the upper end of the guide to the lower surface of the perforated plate.
[0188] この多孔板を通じて溶融プレボリマーをガイドに沿わせて流下させる方法としては、 液ヘッドまたは自重で流下させる方法、またはポンプなどを使って加圧にすることに より、多孔板力も溶融プレボリマーを押し出す等の方法が挙げられる。好ましいのは、 供給ポンプを用いて加圧下、所定量の原料溶融プレボリマーを重合器の供給ゾーン に供給し、多孔板を経てガイドに導かれた溶融プレボリマーが自重でガイドに沿って 流下していく方式である。該溶融プレボリマーは、通常、所定の重合温度に加熱され た状態で、ガイド接触流下式重合器に連続的に供給される。したがって、このガイド 接触流下式重合器の外壁面には、通常ジャケット等が設置されていることが好ましく 、このジャケットに熱媒等を通じて所定の温度に加熱することが好ましい。このことによ つて、溶融プレポリマーおよび、プレポリマー供給ゾーンや多孔板の加熱/および保 温と、重合反応ゾーンや側面ケーシングおよびテーパー形の底部ケーシングの保温 を行うことが好ましい。 [0188] As a method of flowing down the molten prepolymer through the perforated plate along the guide, a method of flowing down with a liquid head or its own weight, or by pressurizing with a pump or the like, the perforated plate force is also reduced. A method such as extrusion is exemplified. It is preferable to supply a predetermined amount of the raw molten polymer to the polymerizer supply zone under pressure using a supply pump, and the molten polymer delivered to the guide through the perforated plate flows down along the guide under its own weight. It is a method. The molten prepolymer is usually continuously supplied to the guide contact flow type polymerization reactor while being heated to a predetermined polymerization temperature. Therefore, it is preferable that a jacket or the like is usually provided on the outer wall surface of the guide contact flow type polymerization reactor, and it is preferable to heat the jacket to a predetermined temperature through a heating medium or the like. Accordingly, it is preferable to heat / preheat the molten prepolymer, the prepolymer supply zone and the perforated plate, and heat the polymerization reaction zone, the side casing, and the tapered bottom casing.
[0189] 工程 (IV)において、芳香族ジヒドロキシ化合物とジァリールカーボネートとから得ら れる溶融プレボリマーをガイド接触流下式重合器で重合させて芳香族ポリカーボネ ートを製造する反応の温度は、通常 80〜350°Cの範囲である。し力もながら、本発明 の重合器では内部攪拌を伴う効率的な表面更新が行われてレ、るので、比較的低温 で重合反応を進行させることができる。したがって、好ましい反応温度は、 100〜290 °Cであり、さらに好ましいのは、 150〜270°Cである。従来の重合器である横型 2軸撹 拌式超高粘度ポリマー用リアクターでは、通常 300°C以上の高温下で、 133Pa以下 の高真空下で長時間撹拌する必要があった。しかも撹拌軸シール部からの空気の漏 れこみによる黄変や、異物の混入がさけられなかった。本発明の重合器は機械的攪 拌がないので、攪拌機のシール部もないので空気等の漏れこみが非常に少ない。し かも、従来の横型 2軸撹拌式超高粘度ポリマー用リアクターの場合よりも約 20〜50 °Cも低温で十分に重合を進めることができるの力 本発明の特徴である。このことも、 本発明におレ、て、着色や物性低下のなレ、高品質の芳香族ポリカーボネートを製造す ることができる大きな原因である。 [0189] In the step (IV), the temperature of the reaction for producing an aromatic polycarbonate by polymerizing a molten polymer obtained from an aromatic dihydroxy compound and diaryl carbonate in a guide contact flow type polymerization reactor is usually It is in the range of 80-350 ° C. However, in the polymerization apparatus of the present invention, since efficient surface renewal with internal stirring is performed, the polymerization reaction can proceed at a relatively low temperature. Therefore, the preferred reaction temperature is 100 to 290 ° C, and more preferred is 150 to 270 ° C. In conventional reactors for horizontal biaxial stirring type ultra-high viscosity polymers, it was necessary to stir for a long time under a high vacuum of 133 Pa or less, usually at a high temperature of 300 ° C or higher. In addition, yellowing due to air leakage from the stirring shaft seal and contamination with foreign matter were not avoided. Since the polymerizer of the present invention does not have mechanical stirring, there is no seal portion of the stirrer, so that leakage of air or the like is very small. Moreover, it is a feature of the present invention that the polymerization can proceed sufficiently at a temperature as low as about 20 to 50 ° C. as compared with a conventional reactor for a horizontal biaxial stirring type ultrahigh viscosity polymer. This also means that the present invention produces a high-quality aromatic polycarbonate with no coloring or deterioration of physical properties. It is a big cause that can be.
[0190] また、従来の横型 2軸撹拌式超高粘度ポリマー用リアクターを用いても、中粘度グ レード以上の芳香族ポリカーボネートを製造することは、その超高粘性のため、不可 能であるが、本発明のガイド接触流下式重合器では、高粘度グレードの芳香族ポリ力 ーボネートも容易に製造することができる。すなわち、本発明のガイド接触流下式重 合器では、分子量の比較的低いディスクグレードから、高粘度グレードまでの全ての グレードの芳香族ポリカーボネートを製造することだできる。このことも本発明の大き な特徴である。 [0190] In addition, it is impossible to produce an aromatic polycarbonate having a medium viscosity grade or higher even with a conventional horizontal biaxially stirred ultrahigh viscosity polymer reactor because of its ultrahigh viscosity. In the guide contact flow type polymerization apparatus of the present invention, high viscosity grade aromatic polycarbonate can be easily produced. In other words, the guide contact flow type mixer of the present invention can produce all grades of aromatic polycarbonate from a disk grade having a relatively low molecular weight to a high viscosity grade. This is also a major feature of the present invention.
[0191] 工程 (IV)では、重合反応の進行にともなって、芳香族モノヒドロキシ化合物が生成 してくるが、これを反応系外へ除去する事によって反応速度が高められる。従って、 窒素、アルゴン、ヘリウム、二酸化炭素や低級炭化水素ガスなど反応に悪影響を及 ぼさない不活性なガスを重合器に導入して、生成してくる芳香族モノヒドロキシ化合 物をこれらのガスに同伴させて除去する方法や、減圧下に反応を行う方法などが好 ましく用いられる。あるいはこれらを併用した方法も好ましく用いられる力 これらの場 合も重合器に大量の不活性ガスを導入する必要はなぐ内部を不活性ガス雰囲気に 保持する程度でもよい。  [0191] In step (IV), an aromatic monohydroxy compound is produced as the polymerization reaction proceeds, and the reaction rate can be increased by removing this from the reaction system. Therefore, an inert gas that does not adversely influence the reaction, such as nitrogen, argon, helium, carbon dioxide, or lower hydrocarbon gas, is introduced into the polymerization reactor, and the aromatic monohydroxy compounds that are produced are introduced into these gases. For example, a method in which the reaction is carried out together with the solvent and a method in which the reaction is carried out under reduced pressure are preferably used. Alternatively, a method in which these are used in combination is also a force that can be preferably used. In these cases, it is not necessary to introduce a large amount of inert gas into the polymerization vessel, and the inside may be maintained in an inert gas atmosphere.
[0192] なお、溶融プレボリマーをガイド接触流下式重合器に供給するに先立って、前記不 活性ガスを吸収させ、次!/、で該不活性ガス吸収溶融プレボリマーを重合させることも 好ましい方法である。  [0192] It is also a preferred method to absorb the inert gas and polymerize the inert gas-absorbing molten prepolymer in the next step / before the molten prepolymer is supplied to the guide contact flow type polymerization reactor. .
[0193] 工程 (IV)の重合器内の好ましい反応圧力は、製造する芳香族ポリカーボネートの 種類や分子量、重合温度等によっても異なる力 例えばビスフエノール Aとジフエ二 ルカーボネートからの溶融プレボリマーから芳香族ポリカーボネートを製造する場合 、数平均分子量が 5, 000以下の範囲では、 400〜3, OOOPa範囲力 S好ましく、数平 均分子量が 5, 000—10, 000の場合は、 50〜500Paの範囲が好ましい。数平均分 子量が 10, 000以上の場合は、 300Pa以下が好ましぐ特に 20〜250Paの範囲力 S 好ましく用いられる。  [0193] The preferable reaction pressure in the polymerization vessel in the step (IV) varies depending on the type of aromatic polycarbonate to be produced, the molecular weight, the polymerization temperature, etc. For example, from a molten polymer from bisphenol A and diphenyl carbonate to an aromatic In the case of producing polycarbonate, when the number average molecular weight is 5,000 or less, 400 to 3, OOOPa range force S is preferable, and when the number average molecular weight is 5,000 to 10,000, the range is 50 to 500 Pa. preferable. When the number average molecular weight is 10,000 or more, 300 Pa or less is preferable, and a range force of 20 to 250 Pa is preferably used.
[0194] 工程 (IV)を実施するにあたり、ガイド接触流下式重合器 1基だけで、 目的とする重 合度を有する芳香族ポリカーボネートを製造することも可能であるが、原料とする溶 融プレポリマーの重合度や芳香族ポリカーボネートの生産量などに応じて、 2基以上 の複数のガイド接触流下式重合器を連結して、順に重合度をあげて!/、く方式も好ま しい。この場合、それぞれの重合器において、製造すべきプレボリマーまたは芳香族 ポリカーボネートの重合度に適したガイドや反応条件を別々に採用することができる ので、好ましい方式である。例えば、ガイド接触流下式第 1重合器、ガイド接触流下 式第 2重合器、ガイド接触流下式第 3重合器、ガイド接触流下式第 4重合器 · · · ·を用 い、この順に重合度を上げていく方式の場合、それぞれの重合器がもつガイド全体 の外部総表面積を Sl、 S2、 S3、 S4—'とすれば、 S1≥S2≥S3≥S4≥'— と すること力 Sできる。 また、重合温度も、それぞれの重合器において同じ温度でもよい し、順に上げていくことも可能である。重合圧力も、それぞれの重合器で、順に下げ ていくことも可能である。 [0194] In carrying out step (IV), it is possible to produce an aromatic polycarbonate having the desired degree of polymerization with only one guided contact flow type polymerizer, but it is possible to produce a solution as a raw material. Depending on the degree of polymerization of the melted prepolymer and the amount of aromatic polycarbonate produced, it is preferable to connect two or more guide contact flow type polymerizers and increase the degree of polymerization in order. In this case, each polymerizer is a preferred method because guides and reaction conditions suitable for the degree of polymerization of the prepolymer or aromatic polycarbonate to be produced can be adopted separately. For example, use a guide contact flow type first polymerization device, a guide contact flow type second polymerization device, a guide contact flow type third polymerization device, and a guide contact flow type fourth polymerization device. In the case of the increasing method, if the external total surface area of the entire guide of each polymerizer is Sl, S2, S3, S4— ', the force S can be obtained as S1≥S2≥S3≥S4≥'—. Further, the polymerization temperature may be the same in each polymerization vessel, or may be raised in order. The polymerization pressure can also be lowered in each polymerization vessel in turn.
[0195] このような意味において、例えば、ガイド接触流下式第 1重合器、ガイド接触流下式 第 2重合器の 2基の重合器を用いてこの順に重合度を上げていく場合、該第 1重合 器のガイド全体の外部総表面積 SI (m2)と該第 2重合器のガイド全体の外部総表面 積 S2 (m2)とが式(33)を満足するようなガイドを用いることが好ましい。 [0195] In this sense, for example, when the polymerization degree is increased in this order using two polymerizers, a guide contact flow type first polymerization vessel and a guide contact flow type second polymerization vessel, the first It is preferable to use a guide in which the external total surface area SI (m 2 ) of the entire guide of the polymerization vessel and the external total surface area S2 (m 2 ) of the overall guide of the second polymerization vessel satisfy the formula (33). .
1≤S1/S2≤20 式(33)  1≤S1 / S2≤20 Formula (33)
[0196] S1/S2が 1よりも小さいと、分子量のバラツキが大きくなり長期間安定製造が困難 になる、所定の生産量が得にくい、などの不都合が起こり、 S 1/S2が 20よりも大きい と、第 2重合器でのガイドを流下する溶融プレボリマーの流量が多くなり、その結果、 溶融プレボリマーの滞留時間が少なくなり必要とする分子量の芳香族ポリカーボネー トが得られに《なる、などの不都合が生じてくる。このような意味でさらに好ましい範 囲 (ま、 1. 5≤S 1/S2≤15 である。  [0196] If S1 / S2 is less than 1, there will be inconveniences such as large variations in molecular weight, making stable production difficult for a long period of time, and difficulty in obtaining a predetermined production amount. S 1 / S2 is more than 20 If it is large, the flow rate of the molten polymer that flows down the guide in the second polymerization vessel increases, and as a result, the residence time of the molten polymer is reduced and the aromatic polycarbonate having the required molecular weight can be obtained. Inconvenience occurs. In this sense, it is a more preferable range (or 1.5≤S 1 / S2≤15.
[0197] 工程 (IV)においては、 1時間当り 1トン以上の芳香族ポリカーボネートが製造する のであるが、重合反応によって副生した芳香族モノヒドロキシ化合物は系外に排出さ れるので、 1時間当り 1トンよりも多量の溶融プレボリマー力 重合器に供給される必 要がある。従って、供給される溶融プレボリマーの量は、その重合度および製造すベ き芳香族ポリカーボネートの重合度によって変化するが、通常、芳香族ポリカーボネ ートの生産量 1トン/ hr当り、 10〜500kg/hr多い、 1. 01〜; 1. 5トン/ hrの範囲で ある。 [0197] In step (IV), 1 ton or more of aromatic polycarbonate is produced per hour, but since the aromatic monohydroxy compound by-produced by the polymerization reaction is discharged out of the system, More than 1 ton of molten prepolymer polymerizer needs to be fed. Therefore, the amount of melted polymer to be supplied varies depending on the degree of polymerization and the degree of polymerization of the aromatic polycarbonate to be produced, but it is usually 10-500 kg / per 1 ton / hr of aromatic polycarbonate production. hr more, 1. 01 ~; 1.5 in the range of 5 tons / hr is there.
工程 (IV)における芳香族ジヒドロキシ化合物とジァリールカーボネートから芳香族 ポリカーボネートを製造する反応は触媒を加えずに実施する事ができる力 重合速 度を高めるため、必要に応じて触媒の存在下で行われる。触媒としては、この分野で 用いられているものであれば特に制限はないが、水酸化リチウム、水酸化ナトリウム、 水酸化カリウム、水酸化カルシウムなどのアルカリ金属及びアルカリ土類金属の水酸 化物類;水素化アルミニウムリチウム、水素化ホウ素ナトリウム、水素化ホウ素テトラメ チルアンモニゥムなどのホウ素やアルミニウムの水素化物のアルカリ金属塩、アルカリ 土類金属塩、第四級アンモユウム塩類;水素化リチウム、水素化ナトリウム、水素化力 ルシゥムなどのアルカリ金属及びアルカリ土類金属の水素化合物類;リチウムメトキシ ド、ナトリウムエトキシド、カルシウムメトキシドなどのアルカリ金属及びアルカリ土類金 属のアルコキシド類;リチウムフエノキシド、ナトリウムフエノキシド、マグネシウムフエノ キシド、 LiO— Ar— OLi、 NaO— Ar— ONa (Arはァリール基)などのアルカリ金属 及びアルカリ土類金属のァリ一口キシド類;酢酸リチウム、酢酸カルシウム、安息香酸 ナトリウムなどのアルカリ金属及びアルカリ土類金属の有機酸塩類;酸化亜鉛、酢酸 亜鉛、亜鉛フエノキシドなどの亜鉛化合物類;酸化ホウ素、ホウ酸、ホウ酸ナトリウム、 ホウ酸トリメチル、ホウ酸トリブチル、ホウ酸トリフエ二ノレ、 (R^E^R R^ NB O^I^R R4) または(I^I^R R4) PB (R'R'R'R4)で表されるアンモニゥムボレート類またはホスホ 二ゥムボレート類
Figure imgf000069_0001
R4は上記式の説明通りである。)などのホウ素の化合 物類;酸化ケィ素、ケィ酸ナトリウム、テトラアルキルケィ素、テトラァリールケィ素、ジ フエ二ルーェチルーエトキシケィ素などのケィ素の化合物類;酸化ゲルマニウム、四 塩化ゲノレマニウム、ゲノレマニウムェトキシド、ゲノレマニウムフエノキシドなどのゲノレマ二 ゥムの化合物類;酸化スズ、ジアルキルスズォキシド、ジアルキルスズカルボキシレー ト、酢酸スズ、ェチルスズトリブトキシドなどのアルコキシ基またはァリーロキシ基と結 合したスズ化合物、有機スズ化合物などのスズの化合物類;酸化鉛、酢酸鉛、炭酸 鉛、塩基性炭酸塩、鉛及び有機鉛のアルコキシドまたはァリ一口キシドなどの鉛の化 合物;第四級アンモニゥム塩、第四級ホスホニゥム塩、第四級アルソニゥム塩などの ォニゥム化合物類;酸化アンチモン、酢酸アンチモンなどのアンチモンの化合物類; 酢酸マンガン、炭酸マンガン、ホウ酸マンガンなどのマンガンの化合物類;酸化チタ ン、チタンのアルコキシドまたはァリ一口キシドなどのチタンの化合物類;酢酸ジルコ 二ゥム、酸化ジルコニウム、ジルコニウムのアルコキシド又はァリーロキシド、ジルコ二 ゥムァセチルアセトンなどのジルコニウムの化合物類などの触媒を挙げることができる
The reaction for producing an aromatic polycarbonate from an aromatic dihydroxy compound and diaryl carbonate in step (IV) can be carried out without adding a catalyst. In order to increase the polymerization rate, in the presence of a catalyst, if necessary. Done. The catalyst is not particularly limited as long as it is used in this field, but alkali metal and alkaline earth metal hydroxides such as lithium hydroxide, sodium hydroxide, potassium hydroxide, and calcium hydroxide are used. ; Alkali metal salts, alkaline earth metal salts, quaternary ammonium salts of hydrides of boron and aluminum such as lithium aluminum hydride, sodium borohydride, tetramethylammonium borohydride; lithium hydride, sodium hydride, hydrogen Hydrogenation of alkali metals and alkaline earth metals such as russia; alkali metals and alkaline earth metal alkoxides such as lithium methoxide, sodium ethoxide and calcium methoxide; lithium phenoxide, sodium phenoxide Cid, magnesium phenoxy Alkali metal and alkaline earth metal alkoxides such as LiO—Ar—OLi and NaO—Ar—ONa (Ar is aryl); Alkali metals and alkaline earth such as lithium acetate, calcium acetate and sodium benzoate Organic acid salts of metals, zinc compounds such as zinc oxide, zinc acetate, zinc phenoxide; boron oxide, boric acid, sodium borate, trimethyl borate, tributyl borate, triphenolate borate, (R ^ E ^ RR ^ NB O ^ I ^ RR 4 ) or (I ^ I ^ RR 4 ) PB (R'R'R'R 4 ) Ammonium borates or phosphoneumborates
Figure imgf000069_0001
R 4 is as described in the above formula. Boron compounds such as) oxides; sodium oxides, sodium silicates, tetraalkyl cages, tetraaryl cages, diphenylethyl ethoxy ketones; germanium oxides, tetrachlorides Genolenium compounds such as genoremanium, genoremanium ethoxide, genoremanium phenoxide; alkoxy groups such as tin oxide, dialkyltin oxide, dialkyltin carboxylate, tin acetate, ethyltin tributoxide Or tin compounds bonded to aryloxy groups, tin compounds such as organic tin compounds; lead oxides such as lead oxide, lead acetate, lead carbonate, basic carbonates, lead and organic lead alkoxides, Compound: Onium compound such as quaternary ammonium salt, quaternary phosphonium salt, quaternary arsonium salt, etc. Antimony compounds such as antimony oxide and antimony acetate; Manganese compounds such as manganese acetate, manganese carbonate, and manganese borate; titanium compounds such as titanium oxide, alkoxide of titanium, and aryl-toxide; zirconium acetate, zirconium oxide, alkoxide or aryloxide of zirconium, Catalysts such as zirconium compounds such as zirconium acetylacetone can be mentioned.
Yes
[0199] 触媒を用いる場合、これらの触媒は 1種だけで用いてもよいし、 2種以上を組み合 わせて用いてもよい。また、これらの触媒の使用量は、原料の芳香族ジヒドロキシ化 合物に対して、通常 10_1()〜1質量%、好ましくは 10_9〜; ^ 質量。/。、さらに好まし くは 10— 8〜; 10— 2質量%の範囲で選ばれる。溶融エステル交換法の場合、使用した 重合触媒は、製品の芳香族ポリカーボネート中に残存している力 これらの重合触媒 は通常ポリマー物性に悪影響を及ぼすものが多い。従って、触媒の使用量はできる だけ、下げること力 S好ましい。本発明の方法では、重合が効率的に行えるので触媒の 使用量を少なくできる。このことも高品質の芳香族ポリカーボネートを製造できる本発 明の特徴の 1つである。 [0199] When a catalyst is used, these catalysts may be used alone or in combination of two or more. The amount of these catalysts, the aromatic dihydroxy compound of the raw materials, usually 10_ 1 () to 1 wt%, preferably from 10_ 9 ~; ^ mass. /. , Rather more preferably is 10 8 ~; selected at 10- 2% by weight range. In the case of the melt transesterification method, the polymerization catalyst used is the force remaining in the aromatic polycarbonate of the product. These polymerization catalysts usually have an adverse effect on the physical properties of the polymer. Therefore, it is preferable to reduce the amount of catalyst used as much as possible. In the method of the present invention, since the polymerization can be performed efficiently, the amount of the catalyst used can be reduced. This is another feature of the present invention that enables the production of high-quality aromatic polycarbonate.
[0200] 工程 (IV)で用いられるガイド接触流下式重合器や配管の材質に特に制限はなぐ 通常ステンレススチール製、カーボンスチール製、ハステロィ製、ニッケル製、チタン 製、クロム製、及びその他の合金製等の金属や、耐熱性の高いポリマー材料等の中 力、ら選ばれる。また、これらの材質の表面は、メツキ、ライニング、不働態処理、酸洗 浄、フエノール洗浄等必要に応じて種々の処理がなされてもよい。特に好ましいのは 、ステンレススチールやニッケル、グラスライニング等である。  [0200] There are no particular restrictions on the material of the guide contact flow type polymerizer and piping used in step (IV). Usually stainless steel, carbon steel, hastelloy, nickel, titanium, chromium, and other alloys Metals such as manufactured products and medium heat resistant polymer materials are selected. In addition, the surface of these materials may be subjected to various treatments such as plating, lining, passivation treatment, pickling, and phenol washing as necessary. Particularly preferred are stainless steel, nickel, glass lining and the like.
[0201] 工程 (IV)のプレボリマー製造時と、ガイド接触流下式重合器での重合時、反応に よって副生する大量の芳香族モノヒドロキシ化合物は通常、ガス状で連続的に抜き出 され、液状に凝縮されて回収される。本発明においては、工程 (IV)で副生する芳香 族モノヒドロキシ化合物をジァリールカーボネート製造工程 (II)に循環する芳香族モ ノヒドロキシ化合物のリサイクル工程 (V)を行うことが必要である。工業的製造方法に おいては、副生する芳香族モノヒドロキシ化合物を全量、またはできるだけロスを少な くして回収し、これを循環'再使用することが重要である。本発明の工程 (IV)で副生 し、回収された副生芳香族モノヒドロキシ化合物には、通常ジァリールカーボネートが 一部含まれるが、純度が高いのでそのままで、ジァリールカーボネート製造工程 (II) に循環、再使用することも可能である。なお、回収された該芳香族モノヒドロキシ化合 物中に少量の芳香族ジヒドロキシ化合物や、微量のオリゴマーが混在する場合には 、さらに蒸留を行ってこれらの高沸点物質を除去した後に、ジァリールカーボネート 製造工程 (II)に循環、再使用することが好ましい。 [0201] A large amount of aromatic monohydroxy compound by-produced by the reaction is usually continuously extracted in the form of a gas during the production of the prepolymer in step (IV) and the polymerization in the guide contact flow type polymerization reactor. It is condensed into a liquid and recovered. In the present invention, it is necessary to perform the aromatic monohydroxy compound recycling step (V) in which the aromatic monohydroxy compound by-produced in step (IV) is circulated to the diaryl carbonate production step (II). . In the industrial production method, it is important to recover the entire amount of aromatic monohydroxy compounds by-produced with as little loss as possible and to circulate and reuse them. The by-product aromatic monohydroxy compound by-produced and recovered in step (IV) of the present invention usually contains diaryl carbonate. Although it is partially contained, it can be recycled and reused in the diaryl carbonate production process (II) as it is because of its high purity. In addition, when a small amount of aromatic dihydroxy compound or a small amount of oligomer is mixed in the recovered aromatic monohydroxy compound, further distillation is performed to remove these high-boiling substances, It is preferable to circulate and reuse in the carbonate production process (II).
本発明のシステムを実施することによって製造される芳香族ポリカーボネートは、下 記化 9で示される繰り返し単位を有する。  The aromatic polycarbonate produced by carrying out the system of the present invention has a repeating unit represented by the following chemical formula 9.
[0202]  [0202]
[0203] (式中 Arは前述と同じである。 ) [0203] (In the formula, Ar is the same as described above.)
特に好ましいのは、全繰り返し単位中、下記化 10で示される繰り返し単位が 85モ ル%以上含まれる芳香族ポリカーボネートである。  Particularly preferred is an aromatic polycarbonate containing 85 mol% or more of a repeating unit represented by the following chemical formula 10 among all repeating units.
[0204] [化 10] [0204] [Chemical 10]
Figure imgf000071_0001
Figure imgf000071_0001
[0205] また、本発明の方法を実施して製造される芳香族ポリカーボネートの末端基は、通 常ヒドロキシ基または、下記式で示されるァリールカーボネート基からなっている。 [0205] Further, the terminal group of the aromatic polycarbonate produced by carrying out the method of the present invention is usually composed of a hydroxy group or an aryl carbonate group represented by the following formula.
[0206] [化 11] [0206] [Chemical 11]
0 C 0 A r 5 0 C 0 A r 5
[0207] (式中 Ar5は、前述の Ar3、 Ar4と同じである。 ) ヒドロキシ基とァリールカーボネート基の比率に特に制限はないが、通常 95 : 5〜5: 95の範囲であり、好ましくは 90 : 10〜10: 90の範囲であり、さらに好ましくは 80: 20 〜20 : 80の範囲である。特に好ましいのは、末端基中のフエニルカーボネート基の 占める割合が 60モル%以上の芳香族ポリカーボネートである。 (In the formula, Ar 5 is the same as Ar 3 and Ar 4 described above.) The ratio of hydroxy group to aryl carbonate group is not particularly limited, but is usually in the range of 95: 5 to 5:95, preferably in the range of 90:10 to 10:90, and more preferably in the range of 80:20 to The range is 20:80. Particularly preferred is an aromatic polycarbonate in which the proportion of the phenyl carbonate group in the terminal group is 60 mol% or more.
[0208] 本発明の方法を実施して製造される芳香族ポリカーボネートは、主鎖に対してエス テル結合やエーテル結合等の異種結合を介して部分的に分岐したものであってもよ い。該異種結合の量はカーボネート結合に対して、通常 0. 005〜2モル%であり、好 ましくは、 0. 01〜;!モノレ0 /0、であり、さらに好ましいのは、 0. 05—0. 5モノレ0 /0である 。このような量の異種結合は、他のポリマー物性を悪化させることなぐ溶融成形時の 流れ特性を向上させるので、精密成形に適しているし、比較的低温でも成形でき、性 能の優れた成形物を製造することができる。成形サイクルを短縮することもでき成形 時の省エネルギーにも貢献できる。 [0208] The aromatic polycarbonate produced by carrying out the method of the present invention may be partially branched with respect to the main chain via a hetero bond such as an ester bond or an ether bond. The amount of the heterologous binding to carbonate bonds is usually 0.005 to 2 mol%, good Mashiku is 0. 01 ;! Monore 0/0, a, more preferred, 0.05 -0. 5 Monore is 0/0. This amount of dissimilar bonds improves flow characteristics during melt molding without deteriorating other polymer properties, making it suitable for precision molding and molding with relatively low temperature and excellent performance. Can be manufactured. The molding cycle can be shortened, contributing to energy saving during molding.
[0209] 本発明の方法を実施して製造される芳香族ポリカーボネート中には、不純物は殆ど 含まれないが、アルカリ金属および/またはアルカリ土類金属をそれらの金属元素と して、 0. 00;!〜 lppm含有する芳香族ポリカーボネートを製造することができる。好ま しく (ま、この含有量力 0. 005—0. 5ppm、より好ましく (ま、 0. 01—0. lppmである。 このような金属元素が lppm以下、好ましくは、 0. 5ppm以下、より好ましくは、 0. lp pmである場合、製品芳香族ポリカーボネートの物性に悪影響を与えないので、本発 明で製造される芳香族ポリカーボネートは高品質である。  [0209] The aromatic polycarbonate produced by carrying out the method of the present invention contains almost no impurities, but an alkali metal and / or alkaline earth metal is used as the metal element. An aromatic polycarbonate containing! ~ Lppm can be produced. Preferably (this content power is 0.005-0.5 ppm, more preferably (0.01-0.1 ppm). Such a metal element is 1 ppm or less, preferably 0.5 ppm or less, more preferably In the case of 0. lp pm, since the physical properties of the product aromatic polycarbonate are not adversely affected, the aromatic polycarbonate produced in the present invention is of high quality.
[0210] 本発明の方法を実施して製造される芳香族ポリカーボネートの中で特に好ましいの は、ハロゲンを含まない芳香族ジヒドロキシ化合物とジァリールカーボネートを用いる ことにより製造されたものであって、ハロゲン含有量が通常、 lOppb以下である。本発 明の方法では、ハロゲン含有量が 5ppb以下のものも製造できるし、さらに好ましくは ハロゲン含有量が lppb以下の芳香族ポリカーボネートを製造することができるので、 非常に高品質の製品が得られることになる。  [0210] Among the aromatic polycarbonates produced by carrying out the method of the present invention, particularly preferred are those produced by using a halogen-free aromatic dihydroxy compound and diaryl carbonate, The halogen content is usually less than lOppb. According to the method of the present invention, those having a halogen content of 5 ppb or less can be produced, and more preferably, aromatic polycarbonates having a halogen content of 1 ppb or less can be produced, resulting in a very high quality product. It will be.
[0211] 本発明の方法で、分子量のバラツキのない芳香族ポリカーボネートを長時間安定 的に製造できるのは、特定の重合器を用いているためであることは、実施例によって 明らかである。 実施例 [0211] It is clear from the examples that the method of the present invention can stably produce an aromatic polycarbonate having no variation in molecular weight for a long time because a specific polymerization vessel is used. Example
[0212] 以下、実施例により本発明をさらに具体的に説明する力 本発明は以下の実施例 に限定されるものではない。  [0212] Hereinafter, the present invention will be described more specifically by way of examples. The present invention is not limited to the following examples.
'数平均分子量 (Mn):テトラヒドロフランを搬送溶媒として用い、ゲルパーミエーショ ンクロマトグラフィー(GPC)法で測定し、標準単分散ポリスチレンを用いて得た下式 による換算分子量較正曲線を用いて数平均分子量 (Mn)を求めた。  'Number average molecular weight (Mn): Measured by gel permeation chromatography (GPC) method using tetrahydrofuran as a carrier solvent, and calculated using the converted molecular weight calibration curve of the following formula obtained using standard monodisperse polystyrene. Average molecular weight (Mn) was determined.
M = 0. 3591M 0388 M = 0. 3591M 0388
PC PS  PC PS
(式中、 M は芳香族ポリカーボネートの分子量、 M はポリスチレンの分子量を示  (Where M is the molecular weight of the aromatic polycarbonate and M is the molecular weight of polystyrene.
PC PS  PC PS
す。)  The )
•カラー:射出成形機を用い、芳香族ポリカーボネートをシリンダー温度 290°C、金型 温度 90°Cで、縦 50mm X横 50mm X厚さ 3. 2mmの試験片を連続成形した。得ら れた試験片の色調は CIELAB法(Commission Internationale de l ' Eclairag e 1976 Lab Diagram)により測定し、黄色度を b *値で示した。  • Color: Using an injection molding machine, aromatic polycarbonate was continuously molded with a cylinder temperature of 290 ° C and a mold temperature of 90 ° C, 50mm long x 50mm wide x 3.2mm thick. The color tone of the obtained specimen was measured by the CIELAB method (Commission Internationale de l'Eclairage 1976 Lab Diagram), and the yellowness was indicated by b * value.
•引張伸度:射出成形機を用レ、、芳香族ポリカーボネ一トをシリンダー温度 290°C、 金型温度 90°Cで射出成形した。得られた厚み 3. 2mmの試験片の引張伸度(%)は 、ASTM D638に準じて測定した。  • Tensile elongation: An injection molding machine was used, and an aromatic polycarbonate was injection molded at a cylinder temperature of 290 ° C and a mold temperature of 90 ° C. The tensile elongation (%) of the obtained specimen having a thickness of 3.2 mm was measured according to ASTM D638.
•異種結合の量は、 W097/32916号公報記載の方法で測定され、アルカリ金属/ アルカリ土類金属は ICP法により、ハロゲンはイオンクロマト法でそれぞれ測定された • The amount of heterogeneous bonds was measured by the method described in W097 / 32916, alkali metal / alkaline earth metal was measured by ICP method, and halogen was measured by ion chromatography method.
Yes
[0213] [実施例 1 ]  [0213] [Example 1]
( 1 )ジメチルカーボネートとエチレンダリコールを連続的に製造する工程 (I) <連続多段蒸留塔 T >  (1) Process for continuously producing dimethyl carbonate and ethylene dalycol (I) <Continuous multistage distillation column T>
0  0
図 1に示されるような L = 3300cm、 D = 300cm、 L /Ό = 1 1、 η = 60、 D /ά  L = 3300cm, D = 300cm, L / Ό = 1 1, η = 60, D / ά as shown in Figure 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
= 7. 5、 D /ά = 12 である連続多段蒸留塔を用いた。なお、この実施例では、ィA continuous multistage distillation column with = 7.5, D / ά = 12 was used. In this embodiment,
1 0 02 1 0 02
ンターナルとして、多孔板部の孔 1個あたりの断面積 =約 1. 3cm2,孔数 =約 180〜 320個/ m2を有する多孔板トレイを用いた。 As the internal plate, a perforated plate tray having a cross-sectional area per hole in the perforated plate portion = about 1.3 cm 2 and the number of holes = about 180 to 320 holes / m 2 was used.
<反応蒸留〉  <Reactive distillation>
液状のエチレンカーボネート 3. 27トン/ hrが下から 55段目に設置された導入口( 3— a)から蒸留塔 Tに連続的に導入された。ガス状のメタノール (ジメチルカーボネ Liquid ethylene carbonate 3. 27 tons / hr is installed at the 55th level from the bottom (inlet ( It was continuously introduced into the distillation column T from 3—a). Gaseous methanol (dimethyl carbonate
0  0
ートを 8. 96質量0 /0含む) 3. 238トン/ hrと液状のメタノール(ジメチルカーボネート を 6. 66質量%含む) 7. 489トン/ hrが、下から 31段目に設置された導入口(3— b および 3— c)から蒸留塔 Tに連続的に導入された。蒸留塔 Tに導入された原料の Over preparative containing 8.96 mass 0/0) 3.238 t / hr and a liquid methanol (containing dimethyl carbonate 6.66 wt%) 7.489 t / hr was placed on 31 stage from the bottom It was continuously introduced into the distillation column T from the inlets (3-b and 3-c). Of raw materials introduced into the distillation column T
0 0  0 0
モノレ比は、メタノール/エチレンカーボネート = 8. 36であった。  The monore ratio was methanol / ethylene carbonate = 8.36.
触媒は 〇^1 (48質量%の水溶液) 2. 5トンにエチレングリコール 4. 8トンを加え、 約 130°Cに加熱し、徐々に減圧にし、約 1300Paで約 3時間加熱処理し、均一溶液 にしたものを用いた。この触媒溶液を、下から 54段目に設けられた導入口(3— e)か ら、蒸留塔 Tに連続的に導入した (K濃度:供給エチレンカーボネートに対して 0. 1  The catalyst is ◯ ^ 1 (48% by weight aqueous solution) 2. Add 4.8 tons of ethylene glycol to 5 tons, heat to about 130 ° C, gradually reduce the pressure, and heat-treat at about 1300 Pa for about 3 hours, and uniform The solution was used. This catalyst solution was continuously introduced into the distillation column T from the inlet (3-e) provided at the 54th stage from the bottom (K concentration: 0.1 with respect to the supplied ethylene carbonate).
0  0
質量%)。塔底部の温度が 98°Cで、塔頂部の圧力が約 1. 118 X 105Pa,還流比が 0. 42の条件下で連続的に反応蒸留が行われた。 mass%). Reactive distillation was carried out continuously under the conditions that the temperature at the bottom of the column was 98 ° C., the pressure at the top of the column was about 1.118 × 10 5 Pa, and the reflux ratio was 0.42.
[0214] 24時間後には安定的な定常運転が達成できた。塔頂部 1からガス状で抜き出され た低沸点反応混合物は熱交換器で冷却され液体にされた。蒸留塔から 10. 678トン /hrで連続的に抜き出された液状の低沸点反応混合物中のジメチルカーボネート は 4. 129卜ン/ hrで、メタノーノレは 6. 549卜ン/ hrであった。塔底咅 力、ら 3. 382卜 ン/ hrで連続的に抜出された液中の、エチレングリコールは、 2. 356トン/ hrで、メ タノールは 1. 014トン/ hr、未反応エチレンカーボネート 4kg/hrであった。原料に 含まれるジメチルカーボネートを除いた、ジメチルカーボネートの 1時間あたりの実質 生産量は 3. 340トン、触媒溶液に含まれるエチレングリコールを除いた、エチレング リコールの 1時間あたりの実質生産量は 2. 301トンであった。エチレンカーボネート の反応率は 99. 88%で、ジメチルカーボネートの選択率は 99. 99%以上で、ェチレ ングリコールの選択率は 99. 99%以上であった。  [0214] Stable steady operation was achieved after 24 hours. The low boiling point reaction mixture withdrawn in the form of gas from the top 1 of the column was cooled with a heat exchanger to be liquid. The dimethyl carbonate in the liquid low boiling point reaction mixture continuously withdrawn from the distillation column at 10.678 tons / hr was 4.129 // hr and methanol was 6. 549 // hr. In the liquid continuously extracted at 3.382 卜 / hr, ethylene glycol is 2. 356 tons / hr and methanol is 1.014 tons / hr, unreacted ethylene. The carbonate was 4 kg / hr. Excluding dimethyl carbonate contained in the raw material, the actual production amount of dimethyl carbonate per hour was 3.340 tons, and excluding ethylene glycol contained in the catalyst solution, the actual production amount of ethylene glycol per hour was 2. It was 301 tons. The reaction rate of ethylene carbonate was 99.88%, the selectivity of dimethyl carbonate was 99.99% or more, and the selectivity of ethylene glycol was 99.99% or more.
[0215] この条件で長期間の連続運転を行った。 500時間後、 2000時間後、 4000時間後 、 5000時間後、 6000時間後の 1時間あたりの実質生産量は、ジメチルカーボネート 力 3. 340卜ン、 3. 340卜ン、 3. 340卜ン、 3. 340卜ン、 3. 340卜ン、 mチレングジ 一 ノレ力 2. 301トン、 2. 301トン、 2. 301トン、 2. 301トン、 2. 301トンであり、ェチレ ンカーボネー卜の反応率は 99. 90%、 99. 89%、 99. 89%、 99. 88%、 99. 88% 、で、ジメチルカーボネートの選択率は 99. 99%以上、 99. 99%以上、 99. 99%以 上、 99. 99%以上、 99. 99%以上で、エチレングリコールの選択率は 99. 99%以 上、 99. 99%以上、 99. 99%以上、 99. 99%以上、 99. 99%以上であった。 [0215] Under these conditions, long-term continuous operation was performed. After 500 hours, 2000 hours, 4000 hours, 5000 hours, 6000 hours, the actual production amount per hour is dimethyl carbonate power 3.340 、, 3.340 、, 3.340 、, 3. 340 tons, 3. 340 tons, m chilling force Nore force 2. 301 tons, 2. 301 tons, 2. 301 tons, 2. 301 tons, 2. 301 tons, the reaction rate of ethylene carbonate 99.90%, 99.89%, 99.89%, 99.88%, 99.88%, and the selectivity of dimethyl carbonate is 99.99% or more, 99.99% or more, 99.99% Less than 99.99% or more, 99.99% or more, ethylene glycol selectivity is 99.99% or more, 99.99% or more, 99.99% or more, 99.99% or more, 99.99% That was all.
[0216] (2)ジフエニルカーボネートを連続的に製造する工程 (II) [0216] (2) Step of continuously producing diphenyl carbonate (II)
<第 1連続多段蒸留塔 101〉  <First continuous multistage distillation column 101>
図 2に示されるような L = 3300cm、 D = 500cm, L /Ό = 6. 6、 η = 80、 D / d = 17、 D /d = 9 である連続多段蒸留塔を用いた。なお、この実施例では、ィ As shown in FIG. 2, a continuous multistage distillation column having L = 3300 cm, D = 500 cm, L / Ό = 6.6, η = 80, D / d = 17, D / d = 9 was used. In this embodiment,
11 1 12 11 1 12
ンターナルとして、孔 1個あたりの断面積 =約 1. 5cm2,孔数 =約 250個/ m2を有 する多孔板トレイを用いた。 As the internal plate, a perforated plate tray having a cross-sectional area per hole = about 1.5 cm 2 and the number of holes = about 250 holes / m 2 was used.
<第 2連続多段蒸留塔 201〉  <Second continuous multistage distillation column 201>
図 3に示されるような L = 3100cm、 D = 500cm, L /Ό = 6. 2、 η = 30、 D /  L = 3100cm, D = 500cm, L / Ό = 6.2, η = 30, D / as shown in Figure 3
2 2 2 2 2 2 d = 3. 85、D /d = 11. 1 である連続多段蒸留塔を用いた。なお、この実施例 A continuous multi-stage distillation column with 2 2 2 2 2 2 d = 3.85 and D / d = 11.1 was used. This example
21 2 22 21 2 22
では、インターナルとして、上部にメラパック 2基 (合計理論段数 11段)を設置し、下 部に孔 1個あたりの断面積 =約 1. 3cm2、孔数 =約 250個/ m2を有する多孔板トレ ィを用いた。 With the, as internal, upper portion placed Mellapak 2 group (the total number of theoretical plates 11 stages), the cross-sectional area = about 1. 3 cm 2 per one hole at the bottom, the number of holes of approximately 250 / m 2 A perforated plate tray was used.
[0217] <反応蒸留〉 [0217] <Reactive distillation>
図 4に示されるような第 1連続多段蒸留塔 101と第 2連続多段蒸留塔 201が接続さ れた装置を用いて反応蒸留を行い、ジフエ二ルカーボネートを製造した。  Diphenyl carbonate was produced by reactive distillation using an apparatus in which the first continuous multistage distillation column 101 and the second continuous multistage distillation column 201 were connected as shown in FIG.
フエノール/ジメチルカーボネート = 1. 9 (重量比)からなる原料 1を第 1連続多段 蒸留塔 101の上部導入口 11から液状で 50トン/ hrの流量で連続的に導入した。一 方、ジメチルカーボネート/フエノール = 3. 6 (重量比)からなる原料 2を第 1連続多 段蒸留塔 101の下部導入口 12からガス状で 50トン/ hrの流量で連続的に導入した 。第 1連続多段蒸留塔 101に導入された原料のモル比は、ジメチルカーボネート/フ ェノール = 1. 35であった。この原料にはハロゲンは実質的に含まれていなかった(ィ オンクロマトグラフィーでの検出限界外で lppb以下)。触媒は Pb (OPh) として、反  Raw material 1 consisting of phenol / dimethyl carbonate = 1.9 (weight ratio) was continuously introduced in liquid form from the upper inlet 11 of the first continuous multistage distillation column 101 at a flow rate of 50 ton / hr. On the other hand, the raw material 2 consisting of dimethyl carbonate / phenol = 3.6 (weight ratio) was continuously introduced in a gaseous state from the lower inlet 12 of the first continuous multi-stage distillation column 101 at a flow rate of 50 tons / hr. The molar ratio of the raw materials introduced into the first continuous multistage distillation column 101 was dimethyl carbonate / phenol = 1.35. This raw material was substantially free of halogen (outside the limit of detection by ion chromatography, lppb or less). The catalyst is Pb (OPh)
2 応液中に約 lOOppmとなるように第 1連続多段蒸留塔 101の上部導入口 11から導 入された。第 1連続多段蒸留塔 101では塔底部の温度が 225°Cで、塔頂部の圧力 力 S7 X 105Paの条件下で連続的に反応蒸留が行われた。メチルアルコール、ジメチ ルカーボネート、フエノール等を含む第 1塔低沸点反応混合物を第 1塔の塔頂部 13 よりガス状で連続的に抜き出し、熱交換器 14を経て、抜出し口 16から 34トン/ hrの 流量で抜出した。一方、メチルフエ二ルカーボネート、ジメチルカーボネート、フエノー ノレ、ジフエ二ルカーボネート、触媒等を含む第 1塔高沸点反応混合物を第 1塔底部 1 7より液状で連続的に抜き出した。 2 It was introduced from the upper inlet 11 of the first continuous multi-stage distillation column 101 so that the reaction solution was about lOOppm. In the first continuous multistage distillation column 101, the temperature at the bottom of the column was 225 ° C, and the reactive distillation was performed continuously under the conditions of the pressure at the top of the column S7 X 10 5 Pa. The first tower low boiling point reaction mixture containing methyl alcohol, dimethyl carbonate, phenol, etc. is added to the top of the first tower 13 The gas was continuously extracted in a gaseous state, passed through the heat exchanger 14, and extracted from the extraction port 16 at a flow rate of 34 tons / hr. On the other hand, the first tower high boiling point reaction mixture containing methyl phenyl carbonate, dimethyl carbonate, phenol, diphenyl carbonate, catalyst and the like was continuously extracted in liquid form from the bottom 17 of the first tower.
[0218] 24時間後には安定した定常状態に達したので、第 1塔高沸点反応混合物をそのま ま第 2連続多段蒸留塔 201のメラパックと多孔板トレイとの間に設置されている原料 導入口 21から、 66トン /hrの流量で連続的に供給した。第 2連続多段蒸留塔 201に 供給された液には、メチルフエニルカーボネートが 18. 2質量%、ジフエニルカーボ ネートが 0. 8質量%含まれていた。第 2連続多段蒸留塔 201では塔底部の温度が 2 10°Cで、塔頂部の圧力が 3 X 104Pa、還流比が 0. 3の条件下で連続的に反応蒸留 が行われた。 24時間後には安定的な定常運転が達成できた。第 2塔塔頂部 23から ジメチルカーボネート 35質量%、フエノール 56質量%を含む第 2塔低沸点反応混合 物が連続的に抜き出され、抜出し口 26での流量は 55. 6トン/ hrで、第 2塔塔底部 2 7からはメチルフエニルカーボネート 38. 4質量%、ジフエニルカーボネート 55. 6質 量%を含む第 2塔高沸点反応混合物が連続的に抜出された。第 2塔低沸点反応混 合物は、導入口 11から第 1連続多段蒸留塔 101に連続的に供給された。この際、新 規に供給されるジメチルカーボネートとフエノールの量は、第 2塔低沸点反応混合物 の組成、量を勘案した上で、上記原料 1および原料 2の組成、量を維持するように調 整した。ジフエニルカーボネートの生産量は 1時間あたり 5. 74トンであることがわかつ た。反応したフエノールに対して、ジフエニルカーボネートの選択率は 98%であった[0218] After 24 hours, a steady steady state was reached, and the raw material installed between the melapack and perforated plate tray of the second continuous multistage distillation column 201 was introduced as it was, with the high-boiling point reaction mixture in the first column introduced. It was continuously supplied from the port 21 at a flow rate of 66 tons / hr. The liquid supplied to the second continuous multistage distillation column 201 contained 18.2% by mass of methyl phenyl carbonate and 0.8% by mass of diphenyl carbonate. In the second continuous multistage distillation column 201, the reaction distillation was continuously performed under the conditions that the temperature at the bottom of the column was 210 ° C, the pressure at the top of the column was 3 × 10 4 Pa, and the reflux ratio was 0.3. After 24 hours, stable steady operation was achieved. The second tower low boiling point reaction mixture containing 35% by mass of dimethyl carbonate and 56% by mass of phenol was continuously withdrawn from the top 23 of the second column, and the flow rate at the outlet 26 was 55.6 tons / hr. The second tower high boiling point reaction mixture containing 38.4% by weight of methyl phenyl carbonate and 55.6% by weight of diphenyl carbonate was continuously withdrawn from the bottom 27 of the second tower. The second column low boiling point reaction mixture was continuously supplied from the inlet 11 to the first continuous multistage distillation column 101. At this time, the amount of dimethyl carbonate and phenol to be newly supplied is adjusted so as to maintain the composition and amount of raw material 1 and raw material 2 in consideration of the composition and amount of the second tower low boiling point reaction mixture. Arranged. Diphenyl carbonate production was found to be 5.74 tons per hour. The selectivity for diphenyl carbonate was 98% with respect to the reacted phenol.
Yes
[0219] この条件で長期間の連続運転を行った。 500時間後、 2000時間後、 4000時間後 、 5000時間後、 6000時間後のジフエニルカーボネートの生産量(原料中に含まれ るジフエニルカーボネートを除く)は、 1時間あたり 5· 74トン、 5. 75トン、 5. 74トン、 5 . 74トン、 5. 75トンであり、選択率は 98%、 98%、 98%、 98%、 98%、であり、非常 に安定していた。また、製造された芳香族カーボネートには、ハロゲンは実質的に含 まれて!/、なかった(lppb以下)。  [0219] A long-term continuous operation was performed under these conditions. After 500 hours, 2000 hours, 4000 hours, 5000 hours, and 6000 hours, the production of diphenyl carbonate (excluding diphenyl carbonate contained in the raw material) is 5 · 74 tons per hour, 5 75 tons, 5.74 tons, 5.74 tons, 5.75 tons, and the selection rates were 98%, 98%, 98%, 98%, 98%, and were very stable. In addition, the produced aromatic carbonate was substantially free of halogen! / And not (lppb or less).
[0220] (3)高純度ジフエニルカーボネートを取得する工程 (III) 該第 2連続多段蒸留塔の塔底部から抜き出された第 2塔高沸点反応混合物を高沸 点物質分離塔 (長さ 1700cm、内径 340cm、 30段)に連続的に供給し、塔底部の温 度 206°C、塔頂部の圧力 3800Pa、還流比 0. 6で連続的に蒸留を行った。該高沸点 物質分離塔の塔頂部から連続的に抜き出された塔頂成分をそのまま、サイドカット抜 き出し口を有するジァリールカーボネート精製塔(長さ 2200cm、内径 280cm、導入 口より上部が 12段、導入口とその下部に設置されたサイドカット口との間が 18段、サ イドカット口より下部が 5段)の導入口に連続的に供給された。該ジァリールカーボネ ート精製塔では、塔底部の温度 213°C、塔頂部の圧力 5000Pa、還流比 1. 5で連続 的に蒸留が行われた。サイドカット抜き出し口から連続的に抜き出されたジフエニル カーボネートの純度は 99. 999%以上で、ハロゲン含有量は lppb以下であった。 このようにして取得された高純度ジフエ二ルカーボネートは、一旦貯蔵タンクに溶融 状態で貯蔵された。 [0220] (3) Step of obtaining high-purity diphenyl carbonate (III) The second high boiling point reaction mixture extracted from the bottom of the second continuous multistage distillation column is continuously fed to a high boiling point material separation column (length 1700 cm, inner diameter 340 cm, 30 stages). Distillation was continuously performed at a temperature of 206 ° C, a pressure at the top of the column of 3800 Pa, and a reflux ratio of 0.6. The top component extracted continuously from the top of the high-boiling-point material separation tower is directly used as a diaryl carbonate purification tower having a side cut outlet (length: 2200 cm, inner diameter: 280 cm, the upper part from the inlet is 12 stages, 18 stages between the inlet and the side cut installed at the bottom, and 5 stages below the side cut. In the diaryl carbonate purification tower, distillation was continuously performed at a temperature of 213 ° C. at the bottom of the tower, a pressure of 5000 Pa at the top of the tower, and a reflux ratio of 1.5. The purity of diphenyl carbonate continuously extracted from the side cut outlet was 99.999% or more and the halogen content was 1ppb or less. The high purity diphenyl carbonate thus obtained was once stored in a molten state in a storage tank.
(4)高品質芳香族ポリカーボネートを製造する工程 (IV)  (4) Process for producing high-quality aromatic polycarbonate (IV)
図 6に示すようなガイド接触流下式重合器を用いて芳香族ポリカーボネートの製造 をおこなった。この重合器の材質は、すべてステンレススチールである。この重合器 は円筒形ケーシングとコーン部を有するものであって、 L= l , 000cm, h = 900cm、 D = 500cm、 d = 40cm、 C = 155度 、 S = 250m2 である。供給口 1力、ら供給され た溶融ポリマーは多孔板 2により各ガイド 4に均一に分配される。重合器下部には不 活性ガス供給口 9が備えられており、上部には真空ベント口 6が備えられている。重 合器の外側はジャケットになっており、熱媒で加温されて!/、る。 Aromatic polycarbonate was produced using a guide contact flow type polymerizer as shown in Fig. 6. The material of this polymerization vessel is all stainless steel. This polymerization vessel has a cylindrical casing and a cone part, and L = l, 000 cm, h = 900 cm, D = 500 cm, d = 40 cm, C = 155 degrees, S = 250 m 2 . The molten polymer supplied from the supply port 1 is uniformly distributed to each guide 4 by the perforated plate 2. An inert gas supply port 9 is provided at the lower part of the polymerization vessel, and a vacuum vent port 6 is provided at the upper part. The outside of the reactor is a jacket that is heated by a heating medium!
ビスフエノール Aと該高純度ジフエニルカーボネート(対ビスフエノール Aモル比 1. 05)とから製造された 260°Cに保たれた芳香族ポリカーボネートの溶融プレボリマー( 数平均分子量 Mnは 4, 000)が、供給ポンプによって供給口 1より供給ゾーン 3に連 続的に供給された。重合器内の多孔板 2を通して重合反応ゾーン 5に連続的に供給 された、溶融プレボリマーは、ガイド 4に沿って流下しながら重合反応が進められた。 重合反応ゾーンは真空ベント口 6を通して 80Paに保持されている。ガイド 4の下部か ら重合器の底部 11に入ってきた生成芳香族ポリカーボネートは、該底部での量が一 定となるように排出ポンプ 8によって排出口 7から 5. 5トン/ hrの流量で連続的に抜き 出 れた。 A molten polymer polybolymer (number average molecular weight Mn is 4,000) of aromatic polycarbonate maintained at 260 ° C produced from bisphenol A and the high-purity diphenyl carbonate (molar ratio of bisphenol A to 1.05). Then, it was continuously supplied from the supply port 1 to the supply zone 3 by the supply pump. The molten polymer that was continuously supplied to the polymerization reaction zone 5 through the perforated plate 2 in the polymerization vessel was allowed to flow along the guide 4 while the polymerization reaction proceeded. The polymerization reaction zone is maintained at 80 Pa through the vacuum vent 6. The produced aromatic polycarbonate that has entered the bottom 11 of the polymerization vessel from the bottom of the guide 4 is discharged from the discharge port 7 at a flow rate of 5.5 tons / hr by the discharge pump 8 so that the amount at the bottom becomes constant. Continuously I left.
[0222] 運転を開始してから 50時間後に抜き出し口 12から抜き出された芳香族ポリカーボ ネートの数平均分子量 Mnは 10, 500であり、良好なカラー(b*値 3. 2)であった。ま た、引張伸度は 98%であった。運転開始から、 60時間後、 100時間後、 500時間後 、 1 , 000時間後、 2, 000時間後、 3, 000時間後、 4, 000時間後、 5, 000時間後 に抜き出し口 12から抜き出された芳香族ポリカーボネートの Mnは、それぞれ、 10, 500、 10, 550、 10, 500、 10, 550、 10, 500、 10, 500、 10, 550、 10, 500であ り、安定であった。  [0222] The number average molecular weight Mn of the aromatic polycarbonate extracted from the extraction port 50 after 50 hours from the start of operation was 10,500, indicating a good color (b * value 3.2). . The tensile elongation was 98%. 60 hours, 100 hours, 500 hours, 1,000 hours, 2,000 hours, 3,000 hours, 4,000 hours, 5,000 hours and 5,000 hours after the start of operation The Mn values of the extracted aromatic polycarbonates are 10, 500, 10, 550, 10, 500, 10, 550, 10, 500, 10, 500, 10, 550, and 10, 500, respectively. there were.
このようにして製造された芳香族ポリカーボネートは、アルカリ金属および/または アルカリ土類金属化合物の含有量はこれらの金属元素に換算して、 0. 04-0. 05p pmであり、塩素の含有量は lppb以下であった。また、異種結合の含有量は 0. 12〜 0. 15モノレ%であった。  The aromatic polycarbonate produced in this way has an alkali metal and / or alkaline earth metal compound content of 0.04-0.05ppm in terms of these metal elements and a chlorine content. Was less than lppb. The content of heterogeneous bonds was 0.12 to 0.15 monole%.
[0223] (5)フエノールのリサイクル工程 (V)  [0223] (5) Recycling process of phenol (V)
工程(IV)で副生し、液状で回収された約 10%のジフエニルカーボネートと微量の ビスフエノール Aを含むフエノール溶液力 フエノール精製塔(長さ 1500cm、内径 2 70cm, 9段)に連続的に供給された。塔底部の温度 185°C、塔頂部の圧力 2000Pa 、還流比 0. 9で連続的に蒸留が行われた。塔頂部から回収されたフエノールは、一 且、タンクに貯蔵された後、工程 (II)にリサイクルされた。サイドカット部から回収され たジフエニルカーボネートは、工程 (III)の高沸点物質分離塔に供給され、高純度ジ フエニルカーボネートとして回収された。  A phenol solution containing approximately 10% diphenyl carbonate and a small amount of bisphenol A recovered as a by-product in step (IV) and continuously in a phenol purification tower (length 1500 cm, internal diameter 2 70 cm, 9 stages) Supplied to Distillation was continuously carried out at a column bottom temperature of 185 ° C., a column top pressure of 2000 Pa and a reflux ratio of 0.9. The phenol recovered from the top of the column was once stored in a tank and then recycled to step (II). The diphenyl carbonate recovered from the side cut portion was supplied to the high boiling point substance separation column in step (III) and recovered as high purity diphenyl carbonate.
[0224] [実施例 2]  [Example 2]
( 1 )ジメチルカーボネートとエチレンダリコールを連続的に製造する工程 (I) 実施例 1と同じ連続多段蒸留塔を用いて、下記の条件で反応蒸留を行った。  (1) Step of continuously producing dimethyl carbonate and ethylene dalycol (I) Using the same continuous multi-stage distillation column as in Example 1, reactive distillation was performed under the following conditions.
液状のエチレンカーボネート 2. 61トン/ hrが下から 55段目に設置された導入口(3 — a)力も蒸留塔に連続的に導入された。ガス状のメタノール (ジメチルカーボネート を 2. 41質量0 /0含む) 4. 233トン/ hrと液状のメタノール(ジメチルカーボネートを 1. 46質量%含む) 4. 227トン/ hrが、下から 31段目に設置された導入口(3— bおよ び 3— c)から蒸留塔に連続的に導入された。蒸留塔に導入された原料のモル比は、 メタノール/エチレンカーボネート = 8. 73であった。触媒は実施例 1と同様にして、 蒸留塔に連続的に供給された。塔底部の温度が 93°Cで、塔頂部の圧力が約 1. 04 6 X 105Pa、還流比が 0. 48の条件下で連続的に反応蒸留が行われた。 Liquid ethylene carbonate 2.61 tons / hr was continuously introduced into the distillation column at the inlet (3-a) force installed at the 55th stage from the bottom. Gaseous methanol (dimethyl carbonate 2.41 wt 0/0 containing) 4.233 t / hr and liquid methanol (dimethyl carbonate containing 1.46 wt%) 4.227 t / hr is 31 stages from the bottom It was continuously introduced into the distillation column from the inlets (3-b and 3-c) installed in the eyes. The molar ratio of the raw materials introduced into the distillation tower is Methanol / ethylene carbonate = 8.73. The catalyst was continuously fed to the distillation column in the same manner as in Example 1. Reactive distillation was continuously carried out under the conditions that the temperature at the bottom of the column was 93 ° C, the pressure at the top of the column was about 1.04 6 X 10 5 Pa, and the reflux ratio was 0.48.
[0225] 24時間後には安定的な定常運転が達成できた。塔頂部 1からガス状で抜き出され た低沸点反応混合物は熱交換器で冷却され液体にされた。蒸留塔から 8. 17トン/ hrで連続的に抜き出された液状の低沸点反応混合物中のジメチルカーボネートは 2 . 84トン/ hrで、メタノーノレは 5. 33トン/ hrであった。塔底咅 力、ら 2. 937トン/ hr で連続的に抜出された液中の、エチレングリコールは、 1. 865トン/ hrで、メタノー ルは 1 · 062トン/ hr、未反応エチレンカーボネート 0· 2kg/hrであった。原料に含ま れるジメチルカーボネートを除いた、ジメチルカーボネートの 1時間あたりの実質生産 量は 2· 669トン、触媒溶液に含まれるエチレングリコールを除いた、エチレングリコー ルの 1時間あたりの実質生産量は 1. 839トンであった。エチレンカーボネートの反応 率は 99. 99%で、ジメチルカーボネートの選択率は 99. 99%以上で、エチレングリ コールの選択率は 99. 99%以上であった。  [0225] After 24 hours, stable steady operation was achieved. The low boiling point reaction mixture withdrawn in the form of gas from the top 1 of the column was cooled with a heat exchanger to be liquid. The dimethyl carbonate in the liquid low boiling point reaction mixture continuously withdrawn from the distillation column at 8.17 tons / hr was 2.84 tons / hr, and methanol was 5.33 tons / hr. In the liquid continuously extracted at 937 tons / hr, ethylene glycol is 1.865 tons / hr, methanol is 1 · 062 tons / hr, unreacted ethylene carbonate. 0 · 2kg / hr. Excluding dimethyl carbonate contained in the raw material, the actual production amount of dimethyl carbonate per hour was 2.669 tons, and excluding ethylene glycol contained in the catalyst solution, the actual production amount of ethylene glycol per hour was 1. It was 839 tons. The reaction rate of ethylene carbonate was 99.99%, the selectivity of dimethyl carbonate was 99.99% or more, and the selectivity of ethylene glycol was 99.99% or more.
[0226] この条件で長期間の連続運転を行った。 1000時間後、 2000時間後、 3000時間 後、 5000時間後の 1時間あたりの実質生産量は、ジメチルカーボネートが 2. 669ト ン、 2. 669卜ン、 2. 669卜ン、 2. 669卜ンであり、エチレング!;コーノレ力 1. 839卜ン、 1. 839トン、 1. 839トン、 1. 839トンであり、エチレンカーボネー卜の反応率は 99. 9 9% , 99. 99% , 99. 99% , 99. 990/0で、ジメチノレカーボネートの選択率 (ま 99. 99 %以上、 99. 99%以上、 99. 99%以上、 99. 99%以上で、エチレングリコールの選 択率は 99· 99%以上、 99. 99%以上、 99. 99%以上、 99. 99%以上であった。 [0226] A long-term continuous operation was performed under these conditions. After 1000 hours, 2000 hours, 3000 hours, and 5000 hours, the actual production per hour is 2.669 tons, 2.669 tons, 2.669 tons, 2.669 tons for dimethyl carbonate. And ethylene! ; Corole power 1. 839 tons, 1. 839 tons, 1. 839 tons, 1. 839 tons, the reaction rate of ethylene carbonate is 99.99%, 99.99%, 99.99%, in 99.99 0/0, the selectivity of dimethylol Honoré carbonate (or 99.99% or more, 99.99% or more, 99.99% or more, with 99.99% or more, selection択率ethylene glycol 99 - 99% or more, 99.99% or more, 99.99% or more, 99.99% or more.
[0227] (2)ジフエニルカーボネートを連続的に製造する工程 (II)  [0227] (2) Step of continuously producing diphenyl carbonate (II)
実施例 1と同じ装置を用いて、下記の条件で反応蒸留を行った。  Using the same apparatus as in Example 1, reactive distillation was performed under the following conditions.
フエノール/ジメチルカーボネート = 1. 1 (重量比)からなる原料 1を第 1連続多段 蒸留塔 101の上部導入口 11から液状で 40トン/ hrの流量で連続的に導入した。一 方、ジメチルカーボネート/フエノール = 3. 9 (重量比)からなる原料 2を第 1連続多 段蒸留塔 101の下部導入口 12からガス状で 43トン/ hrの流量で連続的に導入した 。第 1連続多段蒸留塔 101に導入された原料のモル比は、ジメチルカーボネート/フ ェノール = 1. 87であった。この原料にはハロゲンは実質的に含まれていなかった(ィ オンクロマトグラフィーでの検出限界外で lppb以下)。触媒は Pb (OPh) として、反 Raw material 1 consisting of phenol / dimethyl carbonate = 1.1 (weight ratio) was continuously introduced in liquid form at a flow rate of 40 tons / hr from the upper inlet 11 of the first continuous multi-stage distillation column 101. On the other hand, the raw material 2 consisting of dimethyl carbonate / phenol = 3.9 (weight ratio) was continuously introduced in a gaseous state from the lower inlet 12 of the first continuous multi-stage distillation column 101 at a flow rate of 43 ton / hr. The molar ratio of the raw materials introduced into the first continuous multistage distillation column 101 is dimethyl carbonate / Enol = 1.87. This raw material was substantially free of halogen (outside the limit of detection by ion chromatography, lppb or less). The catalyst is Pb (OPh)
2 応液中に約 250ppmとなるように第 1連続多段蒸留塔 101の上部導入口 11から導 入された。第 1連続多段蒸留塔 101では塔底部の温度が 235°Cで、塔頂部の圧力 力 S9 X 105Paの条件下で連続的に反応蒸留が行われた。メチルアルコール、ジメチ ルカーボネート、フエノール等を含む第 1塔低沸点反応混合物を第 1塔の塔頂部 13 よりガス状で連続的に抜き出し、熱交換器 14を経て、抜出し口 16から 43トン/ hrの 流量で抜出した。一方、メチルフエ二ルカーボネート、ジメチルカーボネート、フエノー ノレ、ジフエ二ルカーボネート、触媒等を含む第 1塔高沸点反応混合物を第 1塔底部 1 7より液状で連続的に抜き出した。 2 It was introduced from the upper inlet 11 of the first continuous multi-stage distillation column 101 so that the reaction solution was about 250 ppm. In the first continuous multi-stage distillation column 101, the temperature at the bottom of the column was 235 ° C, and the reactive distillation was continuously carried out under the pressure of S9 X 10 5 Pa at the top of the column. The first tower low boiling point reaction mixture containing methyl alcohol, dimethyl carbonate, phenol, etc. is continuously withdrawn from the top 13 of the first tower in the form of gas, passed through the heat exchanger 14, and from the outlet 16 to 43 tons / hr. It was extracted at a flow rate of. On the other hand, the first tower high boiling point reaction mixture containing methyl phenyl carbonate, dimethyl carbonate, phenol, diphenyl carbonate, catalyst and the like was continuously extracted in liquid form from the bottom 17 of the first tower.
24時間後には安定した定常状態に達したので、第 1塔高沸点反応混合物をそのま ま第 2連続多段蒸留塔 201のメラパックと多孔板トレイとの間に設置されている原料 導入口 21から、 40トン /hrの流量で連続的に供給した。第 2連続多段蒸留塔 201に 供給された液には、メチルフエニルカーボネートが 20. 7質量%、ジフエニルカーボ ネートが 1. 0質量%含まれていた。第 2連続多段蒸留塔 201では塔底部の温度が 2 05°Cで、塔頂部の圧力が 2 X 104Pa、還流比が 0. 5の条件下で連続的に反応蒸留 が行われた。 24時間後には安定的な定常運転が達成できた。第 2塔塔頂部 23から 第 2塔低沸点反応混合物が連続的に抜き出され、第 2塔塔底部 27からはメチルフエ ニルカーボネート 36. 2質量%、ジフエニルカーボネート 60. 8質量%を含む第 2塔 高沸点反応混合物が連続的に抜出された。第 2塔低沸点反応混合物は、導入口 11 から第 1連続多段蒸留塔 101に連続的に供給された。この際、新規に供給されるジメ チルカーボネートとフエノールの量は、第 2塔低沸点反応混合物の組成、量を勘案し た上で、上記原料 1および原料 2の組成、量を維持するように調整した。ジフエ二ルカ ーボネートの生産量は 1時間あたり 4. 03トンであることがわかった。反応したフエノー ルに対して、ジフエニルカーボネートの選択率は 97%であった。 After 24 hours, a stable steady state was reached, so that the high-boiling reaction mixture in the first column was passed through the raw material inlet 21 installed between the melapack and the perforated plate tray in the second continuous multistage distillation column 201 as it was. , Continuously fed at a flow rate of 40 tons / hr. The liquid supplied to the second continuous multistage distillation column 201 contained 20.7% by mass of methyl phenyl carbonate and 1.0% by mass of diphenyl carbonate. In the second continuous multi-stage distillation column 201, reactive distillation was continuously performed under the conditions that the temperature at the bottom of the column was 205 ° C, the pressure at the top of the column was 2 × 10 4 Pa, and the reflux ratio was 0.5. After 24 hours, stable steady operation was achieved. The second tower low boiling point reaction mixture is continuously withdrawn from the second tower top 23, and the second tower bottom 27 contains 36.2% by weight methylphenyl carbonate and 60.8% by weight diphenyl carbonate. Two towers high boiling point reaction mixture was continuously withdrawn. The second column low boiling point reaction mixture was continuously supplied to the first continuous multistage distillation column 101 from the inlet 11. At this time, the amount of dimethyl carbonate and phenol to be newly supplied should be such that the composition and amount of raw material 1 and raw material 2 are maintained in consideration of the composition and amount of the second tower low boiling point reaction mixture. It was adjusted. Production of diphenyl carbonate was found to be 4.03 tonnes per hour. The selectivity for diphenyl carbonate was 97% with respect to the reacted phenol.
この条件で長期間の連続運転を行った。 500時間後、 1000時間後、 2000時間後 のジフエ二ノレカーボネー卜の 1時間あたりの生産量は 4. 03卜ン、 4. 03卜ン、 4. 04卜ン であり、反応したフエノールに対して選択率は 97%、 97%、 97%であり、非常に安定 していた。また、製造された芳香族カーボネートには、ハロゲンは実質的に含まれて いなかった(l ppb以下)。 Long-term continuous operation was performed under these conditions. After 500 hours, 1000 hours, and 2000 hours, the production per hour for Diphenolino Carbonate was 4.03, 4.03, and 4.04, compared to the reacted phenol. Selectivity is 97%, 97%, 97%, very stable Was. Also, the produced aromatic carbonate was substantially free of halogen (l ppb or less).
[0229] (3)高純度ジフエニルカーボネートを取得する工程 (III) [0229] (3) Step of obtaining high-purity diphenyl carbonate (III)
実施例 1と同様な方法で行われた。  This was carried out in the same manner as in Example 1.
[0230] (4)高品質芳香族ポリカーボネートを製造する工程 (IV) [0230] (4) Process for producing high-quality aromatic polycarbonate (IV)
実施例 1と同じ重合器に、ビスフエノール Aと高純度ジフエ二ルカーボネート(対ビス フエノール Aモル比 1 · 05)とから製造された芳香族ポリカーボネートの溶融プレポリ マー(数平均分子量 Mnは 3, 500) 1S 供給ポンプによって供給口 1より供給ゾーン 3 に連続的に供給された。重合反応ゾーンの圧力が l OOPaに保持されている以外は 実施例 1と同様な方法により重合させて芳香族ポリカーボネートを製造した。運転開 台力、ら、 50日寺間後、 100日寺間後、 500日寺間後、 1 , 000日寺間後、 2, 000日寺間後、 3, 0 00時間後、 4, 000時間後、 5, 000時間後に排出口 19から排出された芳香族ポリ力 ーボネートの Mnは、それぞれ、 7, 600、 7, 600、 7 , 650 7, 600、 7, 650、 7, 65 0、 7, 600、 7, 600であり、安定であった。  In the same polymerization vessel as in Example 1, an aromatic polycarbonate melt prepolymer (number average molecular weight Mn is 3,5) produced from bisphenol A and high-purity diphenyl carbonate (molar ratio of bisphenol A to 1 · 05). 500) Continuously supplied from supply port 1 to supply zone 3 by 1S supply pump. An aromatic polycarbonate was produced by polymerization in the same manner as in Example 1 except that the pressure in the polymerization reaction zone was maintained at l OOPa. Start of operation Taihyo, La, 50 days after temple, 100 days after temple, 500 days after temple, 1,000 days after temple, 2,000 days after temple, 3, 00 hours later, 4, After 000 hours and after 5,000 hours, the Mn of the aromatic poly-bonate discharged from the outlet 19 is 7,600, 7,600, 7,650 7,600, 7,650, 7,65 0, respectively. 7, 600, 7, 600 and stable.
このようにして製造された芳香族ポリカーボネートは、アルカリ金属および/または アルカリ土類金属化合物の含有量はこれらの金属元素に換算して、 0. 03力、ら 0. 04 ppmであり、塩素の含有量は lppb以下であった。また、異種結合の含有量は 0. 08 〜0· 1モノレ%であった。  The aromatic polycarbonate produced in this manner has an alkali metal and / or alkaline earth metal compound content of 0.03 force, et al. The content was lppb or less. Further, the content of heterogeneous bonds was 0.08 to 0.1 monole%.
[0231] (5)フエノールのリサイクル工程 (V) [0231] (5) Recycling process of phenol (V)
実施例 1と同様な方法で行われた。  This was carried out in the same manner as in Example 1.
[0232] [実施例 3] [0232] [Example 3]
( 1 )ジメチルカーボネートとエチレンダリコールを連続的に製造する工程 (I) 図 1に示されるような L = 3300cm、 D = 300cm、 L /Ό = 1 1、 η = 60、 D /ά  (1) Process for continuous production of dimethyl carbonate and ethylene dalycol (I) L = 3300cm, D = 300cm, L / Ό = 1 1, η = 60, D / ά as shown in Fig. 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0
= 7. 5、 D /ά = 12 である連続多段蒸留塔を用いた。なお、この実施例では、ィA continuous multistage distillation column with = 7.5, D / ά = 12 was used. In this embodiment,
1 0 02 1 0 02
ンターナルとして、多孔板部の孔 1個あたりの断面積 =約 1. 3cm2,孔数 =約 220〜 340個/ m2を有する多孔板トレイを用いた。 As the internal plate, a perforated plate tray having a cross-sectional area per hole of the perforated plate portion = about 1.3 cm 2 and the number of holes = about 220 to 340 / m 2 was used.
液状のエチレンカーボネート 3. 773トン/ hrが下から 55段目に設置された導入口 (3— a)から蒸留塔に連続的に導入された。ガス状のメタノール (ジメチルカーボネー トを 8· 97質量0 /0含む) 3· 736トン/ hrと液状のメタノール(ジメチルカーボネートを 6 . 65質量%含む) 8. 641トン/ hr力 S、下から 31段目に設置された導入口(3— bおよ び 3— c)から蒸留塔に連続的に導入された。蒸留塔に導入された原料のモル比は、 メタノール/エチレンカーボネート = 8. 73であった。触媒は実施例 1と同様にして、 蒸留塔に連続的に供給された。塔底部の温度が 98°Cで、塔頂部の圧力が約 1. 11 8 X 105Pa、還流比が 0. 42の条件下で連続的に反応蒸留が行われた。 Liquid ethylene carbonate 3.773 tons / hr was continuously introduced into the distillation column from the inlet (3-a) installed at the 55th stage from the bottom. Gaseous methanol (dimethyl carbonate 8 - 97 mass DOO 0/0 included) 3 - 736 t / hr and liquid methanol (dimethyl carbonate 6.65 containing mass%) 8.641 t / hr force S, placed at the 31 st stage from the bottom It was continuously introduced into the distillation column from the inlet (3-b and 3-c). The molar ratio of the raw materials introduced into the distillation column was methanol / ethylene carbonate = 8.73. The catalyst was continuously fed to the distillation column in the same manner as in Example 1. Reactive distillation was continuously carried out under the conditions that the temperature at the bottom of the column was 98 ° C., the pressure at the top of the column was about 1.118 × 10 5 Pa, and the reflux ratio was 0.42.
[0233] 24時間後には安定的な定常運転が達成できた。塔頂部からガス状で抜き出された 低沸点反応混合物は熱交換器で冷却され液体にされた。蒸留塔から 12. 32トン/ h rで連続的に抜き出された液状の低沸点反応混合物中のジメチルカーボネートは 4. 764トン/ hrで、メタノーノレは 7. 556トン/ hrであった。塔底咅力、ら 3. 902トン/ hr で連続的に抜出された液中の、エチレングリコールは、 2. 718トン/ hrで、メタノー ノレは 1 · 17トン/ hr、未反応エチレンカーボネート 4· 6kg/hrであった。原料に含ま れるジメチルカーボネートを除いた、ジメチルカーボネートの 1時間あたりの実質生産 量は 3· 854トン、触媒溶液に含まれるエチレングリコールを除いた、エチレングリコー ルの 1時間あたりの実質生産量は 2. 655トンであった。エチレンカーボネートの反応 率は 99. 88%で、ジメチルカーボネートの選択率は 99. 99%以上で、エチレングリ コールの選択率は 99. 99%以上であった。  [0233] Stable steady operation was achieved after 24 hours. The low boiling point reaction mixture withdrawn in the form of gas from the top of the column was cooled to a liquid by a heat exchanger. The dimethyl carbonate in the liquid low-boiling-point reaction mixture continuously withdrawn from the distillation column at 12.32 ton / hr was 4. 764 ton / hr, and the methanol was 7.556 ton / hr. In the liquid continuously withdrawn at 902 tons / hr, ethylene glycol is 2.718 tons / hr, methanol is 1 · 17 tons / hr, unreacted ethylene carbonate It was 4.6kg / hr. Excluding dimethyl carbonate contained in the raw material, the actual production amount of dimethyl carbonate per hour was 3,854 tons, and excluding ethylene glycol contained in the catalyst solution, the actual production amount of ethylene glycol per hour was 2. It was 655 tons. The reaction rate of ethylene carbonate was 99.88%, the selectivity of dimethyl carbonate was 99.99% or more, and the selectivity of ethylene glycol was 99.99% or more.
[0234] この条件で長期間の連続運転を行った。 1000時間後、 2000時間後、 3000時間 後、 5000時間後の 1時間あたりの実質生産量は、ジメチルカーボネートが 3. 854ト ン、 3. 854卜ン、 3. 854卜ン、 3. 854卜ンであり、エチレングリコーノレ力 2. 655卜ン、 2. 655卜ン、 2. 655卜ン、 2. 655卜ンであり、エチレンカーボネー卜の反応率は 99. 9 9% , 99. 99% , 99. 99% , 99. 990/0で、ジメチノレカーボネートの選択率 (ま 99. 99 %以上、 99. 99%以上、 99. 99%以上、 99. 99%以上で、エチレングリコールの選 択率は 99· 99%以上、 99. 99%以上、 99. 99%以上、 99. 99%以上であった。 [0234] A long-term continuous operation was performed under these conditions. After 1000 hours, 2000 hours, 3000 hours, and 5000 hours, the actual production volume per hour is 3.854 tons, 3.854 tons, 3.854 tons, and 3.854 tons for dimethyl carbonate. The ethylene glycol power is 2.655, 2.655, 2.655, 2.655 and the reaction rate of ethylene carbonate is 99.9%, 99. 99%, 99.99% and 99.99 0/0, the selectivity of dimethylol Honoré carbonate (or 99.99% or more, 99.99% or more, with 99.99% or more, 99.99% or more, ethylene Glycol selection rates were 99 · 99% or higher, 99.99% or higher, 99.99% or higher, 99.99% or higher.
[0235] (2)ジフエニルカーボネートを連続的に製造する工程 (II)  [0235] (2) Step of continuously producing diphenyl carbonate (II)
第 2連続多段蒸留塔 201における多孔板トレイの孔 1個あたりの断面積 =約 1. 8c m2とする以外は実施例 1と同じ装置を用いて、下記の条件で反応蒸留を行った。 フエノール/ジメチルカーボネート = 1. 7 (重量比)からなる原料 1を第 1連続多段 蒸留塔 101の上部導入口 11から液状で 86トン/ hrの流量で連続的に導入した。一 方、ジメチルカーボネート/フエノール = 3. 5 (重量比)からなる原料 2を第 1連続多 段蒸留塔 101の下部導入口 12からガス状で 90トン/ hrの流量で連続的に導入した 。第 1連続多段蒸留塔 101に導入された原料のモル比は、ジメチルカーボネート/フ ェノール = 1. 44であった。この原料にはハロゲンは実質的に含まれていなかった(ィ オンクロマトグラフィーでの検出限界外で lppb以下)。触媒は Pb (OPh) として、反 Reactive distillation was performed under the following conditions using the same apparatus as in Example 1 except that the cross-sectional area per hole of the perforated plate tray in the second continuous multistage distillation column 201 was about 1.8 cm 2 . Raw material 1 consisting of phenol / dimethyl carbonate = 1.7 (weight ratio) in the first continuous multistage Liquid was continuously introduced at a flow rate of 86 tons / hr from the upper inlet 11 of the distillation column 101. On the other hand, raw material 2 composed of dimethyl carbonate / phenol = 3.5 (weight ratio) was continuously introduced in a gaseous state from the lower inlet 12 of the first continuous multi-stage distillation column 101 at a flow rate of 90 tons / hr. The molar ratio of the raw materials introduced into the first continuous multistage distillation column 101 was dimethyl carbonate / phenol = 1.44. This raw material was substantially free of halogen (outside the limit of detection by ion chromatography, lppb or less). The catalyst is Pb (OPh)
2 応液中に約 150ppmとなるように第 1連続多段蒸留塔 101の上部導入口 11から導 入された。第 1連続多段蒸留塔 101では塔底部の温度が 220°Cで、塔頂部の圧力 力 S8 X 105Paの条件下で連続的に反応蒸留が行われた。メチルアルコール、ジメチ ルカーボネート、フエノール等を含む第 1塔低沸点反応混合物を第 1塔の塔頂部 13 よりガス状で連続的に抜き出し、熱交換器 14を経て、抜出し口 16から 82トン/ hrの 流量で抜出した。一方、メチルフエ二ルカーボネート、ジメチルカーボネート、フエノー ノレ、ジフエ二ルカーボネート、触媒等を含む第 1塔高沸点反応混合物を第 1塔底部 1 7より液状で連続的に抜き出した。 2 It was introduced from the upper inlet 11 of the first continuous multi-stage distillation column 101 so that the reaction solution was about 150 ppm. In the first continuous multistage distillation column 101, the temperature at the bottom of the column was 220 ° C., and the reactive distillation was continuously carried out under the conditions of the pressure at the top of the column of S8 × 10 5 Pa. The first tower low boiling point reaction mixture containing methyl alcohol, dimethyl carbonate, phenol, etc. is continuously withdrawn in the form of a gas from the top 13 of the first tower, passed through the heat exchanger 14, and from the outlet 16 to 82 tons / hr. It was extracted at a flow rate of. On the other hand, the first tower high boiling point reaction mixture containing methyl phenyl carbonate, dimethyl carbonate, phenol, diphenyl carbonate, catalyst and the like was continuously extracted in liquid form from the bottom 17 of the first tower.
24時間後には安定した定常状態に達したので、第 1塔高沸点反応混合物をそのま ま第 2連続多段蒸留塔 201のメラパックと多孔板トレイとの間に設置されている原料 導入口 21から、 94トン /hrの流量で連続的に供給した。第 2連続多段蒸留塔 201に 供給された液には、メチルフエニルカーボネートが 16. 0質量%、ジフエニルカーボ ネートが 0. 5質量%含まれていた。第 2連続多段蒸留塔 201では塔底部の温度が 2 15°Cで、塔頂部の圧力が 2. 5 X 104Pa、還流比が 0. 4の条件下で連続的に反応蒸 留が行われた。 24時間後には安定的な定常運転が達成できた。第 2塔塔頂部 23か ら第 2塔低沸点反応混合物が連続的に抜き出され、第 2塔塔底部 27からはメチルフ ェニルカーボネート 35. 5質量%、ジフエニルカーボネート 59. 5質量%を含む第 2塔 高沸点反応混合物が連続的に抜出された。第 2塔低沸点反応混合物は、導入口 11 から第 1連続多段蒸留塔 101に連続的に供給された。この際、新規に供給されるジメ チルカーボネートとフエノールの量は、第 2塔低沸点反応混合物の組成、量を勘案し た上で、上記原料 1および原料 2の組成、量を維持するように調整した。ジフエ二ルカ ーボネートの生産量は 1時間あたり 7. 28トンであることがわかった。反応したフエノー ルに対して、ジフエニルカーボネートの選択率は 98%であった。 After 24 hours, a stable steady state was reached, so that the high-boiling reaction mixture in the first column was passed through the raw material inlet 21 installed between the melapack and the perforated plate tray in the second continuous multistage distillation column 201 as it was. , Continuously supplied at a flow rate of 94 tons / hr. The liquid supplied to the second continuous multistage distillation column 201 contained 16.0% by mass of methylphenyl carbonate and 0.5% by mass of diphenyl carbonate. In the second continuous multi-stage distillation column 201, the reaction distillation is continuously performed under the conditions that the temperature at the bottom of the column is 215 ° C, the pressure at the top of the column is 2.5 X 10 4 Pa, and the reflux ratio is 0.4. It was broken. After 24 hours, stable steady operation was achieved. The second tower low boiling point reaction mixture is continuously withdrawn from the second tower top 23, and the second tower bottom 27 contains 35.5% by weight of methyl phenyl carbonate and 59.5% by weight of diphenyl carbonate. Second column The high boiling point reaction mixture was continuously withdrawn. The second column low boiling point reaction mixture was continuously supplied to the first continuous multistage distillation column 101 from the inlet 11. At this time, the amount of dimethyl carbonate and phenol to be newly supplied should be such that the composition and amount of raw material 1 and raw material 2 are maintained in consideration of the composition and amount of the second tower low boiling point reaction mixture. It was adjusted. Diphenyl carbonate production was found to be 7.28 tons per hour. Reacted eno The selectivity for diphenyl carbonate was 98%.
この条件で長期間の連続運転を行った。 500時間後、 1000時間後、 2000時間後 のジフエニルカーボネー卜の 1時間あたりの生産量は 7. 28卜ン、 7. 29卜ン、 7. 29卜ン であり、反応したフエノールに対して選択率は 98%、 98%、 98%であり、非常に安定 していた。また、製造された芳香族カーボネートには、ハロゲンは実質的に含まれて いなかった(lppb以下)。  Long-term continuous operation was performed under these conditions. After 500 hours, 1000 hours, and 2000 hours, the production volume of diphenyl carbonate was 7.28, 7.29, and 7.29, compared to the reacted phenol. The selectivity was 98%, 98% and 98%, and was very stable. In addition, the produced aromatic carbonate contained substantially no halogen (lppb or less).
[0237] (3)高純度ジフエニルカーボネートを取得する工程 (III)  [0237] (3) Step of obtaining high-purity diphenyl carbonate (III)
実施例 1と同様な方法で行われた。  This was carried out in the same manner as in Example 1.
[0238] (4)高品質芳香族ポリカーボネートを製造する工程 (IV)  [0238] (4) Process for producing high-quality aromatic polycarbonate (IV)
図 6に示すようなガイド接触流下式重合器 2基を直列に配置した重合装置を用いて 芳香族ポリカーボネートの製造をおこなった。これらの重合器の材質は、すべてステ ンレススチールである。ガイド接触流下式第 1重合器は円筒形ケーシングとコーン部 を有するものであって、 L = 950cm、 h = 850cm、 D = 400cm、 d = 20cm、 C = 15 0度 、S = 750m2 である。第 2重合器は実施例 1で用いたものと同じものである。 Aromatic polycarbonate was produced using a polymerization apparatus in which two guided contact flow type polymerization reactors as shown in Fig. 6 were arranged in series. The material of these polymerization vessels is all stainless steel. Guide contact flow type first polymerizer has cylindrical casing and cone part, L = 950cm, h = 850cm, D = 400cm, d = 20cm, C = 150 degree, S = 750m 2 . The second polymerization vessel is the same as that used in Example 1.
[0239] ビスフエノール Aと高純度ジフエニルカーボネート(対ビスフエノール Aモル比 1. 06 )とから製造された芳香族ポリカーボネートの溶融プレボリマー(数平均分子量 Mnは 2, 500)が、供給ポンプによって第 1重合器の供給口 1より供給ゾーン 3に連続的に 供給された。第 1重合器内の多孔板 2を通して重合反応ゾーンに連続的に供給され た、該溶融プレボリマーは、ガイド 4に沿って流下しながら重合反応が進められた。第 1重合器の重合反応ゾーンは真空ベント口 6を通して 800Paの圧力に保持されてい る。ガイド 4の下部から重合器の底部 11に入ってきた重合度の高められた芳香族ポリ カーボネートの溶融プレポリマー(数平均分子量 Mnは 5, 500)は、該底部での量が 一定となるように排出ポンプ 8によって排出口 7から一定の流量で連続的に抜き出さ れた。この溶融プレボリマーが、供給ポンプによって第 2重合器の供給口 1より供給ゾ ーン 3に連続的に供給された。第 2重合器内の多孔板 2を通して重合反応ゾーンに 連続的に供給された、該溶融プレボリマーは、ガイド 4に沿って流下しながら重合反 応が進められた。第 2重合器の重合反応ゾーンは真空ベント口 6を通して 50Paの圧 力に保持されて!/、る。ガイド 4の下部から第 2重合器の底部 11に入ってきた生成芳香 族ポリカーボネートは、該底部での量が一定となるように排出ポンプ 8によって排出口 7から 6トン/ hrの流量で連続的に抜き出された。 [0239] An aromatic polycarbonate melt polymer (number average molecular weight Mn is 2,500) made from bisphenol A and high-purity diphenyl carbonate (molar ratio of bisphenol A to 1.06) is supplied by a feed pump. 1 Continuously fed to feed zone 3 from feed port 1 of the polymerization vessel. The molten prepolymer, which was continuously supplied to the polymerization reaction zone through the perforated plate 2 in the first polymerization vessel, proceeded with the polymerization reaction while flowing down along the guide 4. The polymerization reaction zone of the first polymerization vessel is maintained at a pressure of 800 Pa through the vacuum vent 6. An aromatic polycarbonate molten prepolymer (number average molecular weight Mn is 5,500) having increased degree of polymerization that has entered the bottom 11 of the polymerization vessel from the bottom of the guide 4 so that the amount at the bottom is constant. Then, it was continuously extracted from the discharge port 7 at a constant flow rate by the discharge pump 8. This molten prepolymer was continuously fed to feed zone 3 from feed port 1 of the second polymerization vessel by a feed pump. The molten prepolymer, which was continuously supplied to the polymerization reaction zone through the perforated plate 2 in the second polymerization vessel, proceeded with the polymerization reaction while flowing down along the guide 4. The polymerization reaction zone of the second polymerization vessel is maintained at a pressure of 50 Pa through the vacuum vent 6. Aroma produced from the bottom of the guide 4 into the bottom 11 of the second polymerization vessel The group polycarbonate was continuously extracted from the discharge port 7 at a flow rate of 6 tons / hr by the discharge pump 8 so that the amount at the bottom was constant.
[0240] 運転を開始してから 50時間後に第 2重合器の抜き出し口 12から抜き出された芳香 族ポリカーボネートの数平均分子量 Mnは 11 , 500であり、良好なカラー(b*値 3. 2) であった。また、引張伸度は 99%であった。運転開始から、 60時間後、 100時間後、 500時間後、 1 , 000時間後、 2, 000時間後、 3, 000時間後、 4, 000時間後、 5, 0 00時間後に抜き出し口 12から抜き出された芳香族ポリカーボネートの Mnは、それ ぞれ、 11 , 500、 11 , 550、 11 , 500、 11 , 550、 11 , 500、 11 , 500、 11 , 550、 11 , 500であり、安定であった。  [0240] The number average molecular weight Mn of the aromatic polycarbonate extracted from the outlet 12 of the second polymerization vessel 50 hours after the start of operation was 11,500, indicating a good color (b * value 3.2). ) Met. The tensile elongation was 99%. 60 hours, 100 hours, 500 hours, 1,000 hours, 2,000 hours, 3,000 hours, 4,000 hours, 5,000 hours and 5,000 hours after the start of operation Mn of the extracted aromatic polycarbonate is 11, 500, 11, 550, 11, 500, 11, 550, 11, 500, 11, 500, 11, 550, 11, 500 and stable Met.
このようにして製造された芳香族ポリカーボネートは、アルカリ金属および/または アルカリ土類金属化合物の含有量はこれらの金属元素に換算して、 0. 03力、ら 0. 05 ppmであり、塩素の含有量は lppb以下であった。また、異種結合の含有量は 0. 11 〜0· 16モノレ%であった。  The aromatic polycarbonate produced in this manner has an alkali metal and / or alkaline earth metal compound content of 0.03 force, et al. The content was lppb or less. The content of heterogeneous bonds was 0.11 to 0.16 monole%.
[0241] (5)芳香族モノヒドロキシ化合物のリサイクル工程 (V)  [0241] (5) Recycling process of aromatic monohydroxy compounds (V)
実施例 1と同様な方法で行われた。  This was carried out in the same manner as in Example 1.
産業上の利用可能性  Industrial applicability
[0242] 本発明によれば、環状カーボネートと芳香族ジヒドロキシ化合物から、着色がなく機 械的物性に優れた高品質 ·高性能の芳香族ポリカーボネートが、高い重合速度で、 1 時間当り 1トン以上の工業的規模で製造できる。しかも分子量のバラツキが少なぐ長 期間、たとえば 2000時間以上、好ましくは 3000時間以上、さらに好ましくは 5000時 間以上、安定的に高品質芳香族ポリカーボネートが製造できる。従って、本発明は 高品質芳香族ポリカーボネートの工業的製造方法として極めて優れた効果のある方 法である。 [0242] According to the present invention, a high-quality, high-performance aromatic polycarbonate that is not colored and has excellent mechanical properties from a cyclic carbonate and an aromatic dihydroxy compound is 1 ton or more per hour at a high polymerization rate. Can be manufactured on an industrial scale. In addition, a high-quality aromatic polycarbonate can be stably produced for a long period of time with little variation in molecular weight, for example, 2000 hours or longer, preferably 3000 hours or longer, more preferably 5000 hours or longer. Therefore, the present invention is a method having an extremely excellent effect as an industrial production method of high-quality aromatic polycarbonate.
図面の簡単な説明  Brief Description of Drawings
[0243] [図 1]本発明を実施するのに好ましい連続反応蒸留塔 Τの概略図である。胴部内部  [0243] FIG. 1 is a schematic view of a continuous reaction distillation column preferable for carrying out the present invention. Inside the torso
0  0
には多孔板トレイからなるインターナルが設置されている。  Is provided with an internal plate tray.
[図 2]本発明を実施するのに好ましい第 1連続反応蒸留塔の概略図である。胴部内 部にはインターナルが設置されている。 園 3]本発明を実施するのに好ましい第 2連続反応蒸留塔の概略図である。胴部内 部には上部に規則充填物、下部に多孔板トレイからなるインターナルが設置されて いる。 FIG. 2 is a schematic view of a first continuous reaction distillation column preferable for carrying out the present invention. An internal is installed inside the torso. 3] It is a schematic view of a second continuous reaction distillation column preferable for carrying out the present invention. Inside the barrel is an internal packing consisting of regular packing at the top and a perforated plate tray at the bottom.
[図 4]本発明を実施するのに好ましい、第 1連続反応蒸留塔と第 2連続反応蒸留塔と を連結した装置の概略図である。  FIG. 4 is a schematic view of an apparatus in which a first continuous reactive distillation column and a second continuous reactive distillation column are connected, which is preferable for carrying out the present invention.
園 5]本発明を実施するのに好ましいガイド接触流下式重合器の概略図である。 園 6]本発明を実施するのに好ましい円筒形の側面ケーシング及びテーパー形の底 部ケーシングを有するガイド接触流下式重合器の概略図である FIG. 5 is a schematic view of a preferred guide contact flow type polymerization apparatus for carrying out the present invention. 6] is a schematic view of a guide contact flow type polymerizer having a cylindrical side casing and a tapered bottom casing which are preferable for carrying out the present invention.
符号の説明 Explanation of symbols
(図 1) (Figure 1)
1:ガス抜出し口、 2:液抜出し口、 3— aから 3— e:導入口、 4— aから 4— b:導入口、 5 :鏡板部、 6:インターナル、 7:胴体部分、 10:連続多段蒸留塔、 L :胴部長さ(cm)、  1: Gas outlet, 2: Liquid outlet, 3—a to 3—e: Inlet, 4—a to 4—b: Inlet, 5: End plate, 6: Internal, 7: Body part, 10 : Continuous multistage distillation column, L: trunk length (cm),
0  0
0 :胴部内径(じ111)、(1 :ガス抜出し口の内径(cm)、 d :液抜出し口の内径(cm) 0: Body inner diameter (111), (1: Inner diameter of gas outlet (cm), d: Inner diameter of liquid outlet (cm)
0 01 02 0 01 02
(図 2、図 3および図 4)  (Figure 2, Figure 3 and Figure 4)
1:ガス抜出し口、 2:液抜出し口、 3:導入口、 4:導入口、 5:鏡板部、 L、 L :胴部長  1: Gas outlet, 2: Liquid outlet, 3: Inlet, 4: Inlet, 5: End plate, L, L: Body length
1 2 さ(cm)、 D、 D :月同部内径(cm)、 d 、d :ガス抜出し口内径(cm)、 d 、d :液抜  1 2 Depth (cm), D, D: Monthly inner diameter (cm), d, d: Gas outlet inner diameter (cm), d, d: Drain
1 1 11 21 12 22 出し口内径 (cm)、 101:第 1連続多段蒸留塔、 201:第 2連続多段蒸留塔、 11、 12、 21:導入口、 13、 23:塔頂ガス抜出し口、 14、 24、 18, 28:熱交換器、 17、 27:塔 底液抜出し口、 16、 26:塔頂成分抜出し口、 31:第 2連続多段蒸留塔塔底成分抜出 し口  1 1 11 21 12 22 Outlet inner diameter (cm), 101: First continuous multistage distillation column, 201: Second continuous multistage distillation column, 11, 12, 21: Inlet, 13, 23: Top gas outlet 14, 24, 18, 28: Heat exchanger, 17, 27: Tower bottom outlet, 16, 26: Tower top outlet, 31: Second bottom multistage distillation tower bottom outlet
(図 5および図 6)  (Fig. 5 and Fig. 6)
1:溶融プレボリマー受給口、 2:多孔板、 3:溶融プレボリマー供給ゾーン、 4:ガイド、 5:重合反応ゾーン、 6:真空ベント口、 7:芳香族ポリカーボネート排出口、 8:芳香族 ポリカーボネート排出ポンプ、 9:所望により使用される不活性ガス供給口、 10:重合 反応ゾーンの側面ケーシング、 11:重合反応ゾーンのテーパー形の底部ケーシング 、 12:芳香族ポリカーボネートの抜き出し口  1: Melt prepolymer receiving port, 2: Perforated plate, 3: Melt prepolymer feed zone, 4: Guide, 5: Polymerization reaction zone, 6: Vacuum vent port, 7: Aromatic polycarbonate discharge port, 8: Aromatic polycarbonate discharge pump 9: Inert gas supply port used as required 10: Side casing of polymerization reaction zone 11: Tapered bottom casing of polymerization reaction zone 12: Extraction port of aromatic polycarbonate

Claims

請求の範囲 環状カーボネートと芳香族ジヒドロキシ化合物から、高品質芳香族ポリカーボネート を連続的に製造する工業的製造方法であって、 (I)環状カーボネートと脂肪族 1価アルコールとを触媒が存在する連続多段蒸留塔 T内に連続的に供給し、該塔内で反応と蒸留を同時に行い、生成するジアルキル力0 ーボネートを含む低沸点反応混合物を塔上部よりガス状で連続的に抜出し、ジォー ル類を含む高沸点反応混合物を塔下部より液状で連続的に抜出す反応蒸留方式に よって、ジアルキルカーボネートとジオール類を連続的に製造する工程 (I)と、 (II)該ジアルキルカーボネートと芳香族モノヒドロキシ化合物とを原料とし、この原 料を触媒が存在する第 1連続多段蒸留塔内に連続的に供給し、該第 1塔内で反応と 蒸留を同時に行い、生成するアルコール類を含む第 1塔低沸点反応混合物を該第 1 塔上部よりガス状で連続的に抜出し、生成するアルキルァリールカーボネート類を含 む第 1塔高沸点反応混合物を該第 1塔下部より液状で連続的に抜出し、該第 1塔高 沸点反応混合物を触媒が存在する第 2連続多段蒸留塔内に連続的に供給し、該第 2塔内で反応と蒸留を同時に行い、生成するジアルキルカーボネート類を含む第 2塔 低沸点反応混合物を該第 2塔上部よりガス状で連続的に抜出し、生成するジァリー ルカーボネート類を含む第 2塔高沸点反応混合物を該第 2塔下部より液状で連続的 に抜出し、一方、ジアルキルカーボネート類を含む第 2塔低沸点反応混合物を第 1連 続多段蒸留塔内に連続的に供給することによって、ジァリールカーボネートを連続的 に製造する工程 (II)と、 (III)該ジァリールカーボネートを精製し、高純度ジァリールカーボネートを取得す る精製工程 (III)と、 (IV)該芳香族ジヒドロキシ化合物と該高純度ジァリールカーボネートとを反応させ て芳香族ポリカーボネートの溶融プレボリマーを製造し、該溶融プレボリマーをガイド の表面に沿って流下せしめ、その流下中に該溶融プレボリマーの重合を行わせるガ イド接触流下式重合器を用いて芳香族ポリカーボネートを製造する工程 (IV)と、(V)工程 (IV)で副生する芳香族モノヒドロキシ化合物をジァリールカーボネート製 造工程 (II)に循環する芳香族モノヒドロキシ化合物のリサイクル工程 (V)と、 を含み、 (a)該連続多段蒸留塔 T力 S、長さ L (cm)、内径 D (cm)の円筒形の胴部を有し、 0 0 0 内部に段数 nをもつインターナルを有する構造をしており、塔頂部またはそれに近い 0 塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近い塔の下部に内 01 径 d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上部および/また02 は中間部に 1つ以上の第 1の導入口、該液抜出し口より上部であって塔の中間部お よび/または下部に 1つ以上の第 2の導入口を有するものであって、 L、 D 、 L /D 0 0 0 0、 n、 D /d 、 D /d ί それぞれ式(1)〜(6)を満足するものであり、 0 01 0 02 2100 < L ≤ 8000 式 (1) 0 180 < D ≤ 2000 式 (2) 0 4 < L /Ε ) ≤ 40 式 (3) 0 0 10 < η ≤ 120 式 (4) 0 3 < D /ά ≤ 20 式 (5) 0 01 5 < D /ά ≤ 30 式 (6) (b)該第 1連続多段蒸留塔が、長さ L (cm)、内径 D (cm)の円筒形の胴部を有し 、内部に段数 nをもつインターナルを有する構造をしており、塔頂部またはそれに近 い塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近い塔の下部に 11 内径 d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上部および/ま12 たは中間部に 1つ以上の第 3の導入口、該液抜出し口より上部であって塔の中間部 および/または下部に 1つ以上の第 4の導入口を有するものであって、 L、 D 、 L / D 、n、D /d 、D /d 力、それぞれ式(7)〜(; 12)を満足するものであり、 1500 < L < 8000 式 (7) 1 100 < D < 2000 式 (8) 1 2 < L / ' ≤ 40 式 (9) 1 1 20 < n < 120 式(10) 1 5 < D , Zd ≤ 30 式(11) 1 11 3 < D , Zd ≤ 20 式(12) 1 12 (c)該第 2連続多段蒸留塔が、長さ L (cm)、内径 D (cm)の円筒形の胴部を有し 、内部に段数 nをもつインターナルを有する構造をしており、塔頂部またはそれに近2 い塔の上部に内径 d (cm)のガス抜出し口、塔底部またはそれに近い塔の下部に 21 内径 d (cm)の液抜出し口、該ガス抜出し口より下部であって塔の上部および/ま22 たは中間部に 1つ以上の第 5の導入口、該液抜出し口より上部であって塔の中間部 および/または下部に 1つ以上の第 6の導入口を有するものであって、 L 、 D 、 L / 2 2 2D 、 n 、 D /d 、 D /d 力 それぞれ式(13)〜(18)を満足するものであり、2 2 2 21 2 22 1500 ≤ L ≤ 8000 式(13) 2 100 ≤ D ≤ 2000 式(14) 2 2 ≤ L /Ό ≤ 40 式(15) 2 2 10 ≤ n ≤ 80 式(16) 2 2 ≤ D /d ≤ 15 式(17) 2 21 5 ≤ D /d ≤ 30 式(18) 2 22 (d)該ガイド接触流下式重合器が、 An industrial production method for continuously producing a high-quality aromatic polycarbonate from a cyclic carbonate and an aromatic dihydroxy compound, wherein (I) a continuous multistage in which a catalyst is present between the cyclic carbonate and an aliphatic monohydric alcohol. Continuously supplying into the distillation column T, reaction and distillation are simultaneously carried out in the column, and the low-boiling point reaction mixture containing the dialkyl strength 0-bonate formed is continuously withdrawn in the form of gas from the top of the column, A step (I) of continuously producing a dialkyl carbonate and a diol by a reactive distillation system in which a high boiling point reaction mixture containing liquid is continuously extracted from the bottom of the column in a liquid state; and (II) the dialkyl carbonate and aromatic monohydroxy Compound is used as a raw material, and this raw material is continuously fed into the first continuous multi-stage distillation column in which the catalyst exists, and the reaction and distillation are simultaneously performed in the first column to produce The first column low-boiling point reaction mixture containing alcohols is continuously withdrawn from the upper portion of the first column in the form of gas, and the first column high-boiling point reaction mixture containing the generated alkylaryl carbonates is removed from the lower portion of the first column. The liquid is continuously extracted in a liquid state, and the first tower high boiling point reaction mixture is continuously fed into the second continuous multistage distillation tower in which the catalyst is present, and the reaction and distillation are simultaneously performed in the second tower to produce. Second column low-boiling point reaction mixture containing dialkyl carbonates is continuously withdrawn in the form of gas from the upper part of the second column, and the second tower high-boiling point reaction mixture containing diaryl carbonates is liquidized from the lower part of the second column. On the other hand, the second column low boiling point reaction mixture containing dialkyl carbonates is continuously fed into the first continuous multistage distillation column to continuously produce diaryl carbonate ( II) and (III) purification step (III) for purifying the diaryl carbonate to obtain high purity diaryl carbonate; and (IV) reacting the aromatic dihydroxy compound with the high purity diaryl carbonate. An aromatic polycarbonate is produced by using a guide contact flow type polymerizer in which a molten polymer precursor of the aromatic polycarbonate is produced, the molten polymer is flowed down along the surface of the guide, and the molten polymer is polymerized during the flow. Step (IV), and (V) recycling step (V) of the aromatic monohydroxy compound in which the aromatic monohydroxy compound by-produced in step (IV) is recycled to the diaryl carbonate production step (II), (A) The continuous multi-stage distillation column has a cylindrical body having a T force S, a length L (cm), and an inner diameter D (cm), and has an internal with 0 0 0 inside n Structure and tower A gas outlet with an inner diameter d (cm) at the top or near the top of the 0 tower, a liquid outlet with an inner diameter of 01 (d) at the bottom or near the bottom of the tower, and below the gas outlet. And / or 02 has one or more first inlets in the middle and one or more second inlets in the middle and / or lower part of the tower above the liquid outlet. L, D, L / D 0 0 0 0, n, D / d, D / d ί satisfying formulas (1) to (6), and 0 01 0 02 2100 <L ≤ 8000 formula (1) 0 180 <D ≤ 2000 formula (2) 0 4 <L / Ε) ≤ 40 formula (3) 0 0 10 <η ≤ 120 formula (4) 0 3 <D / ά ≤ 20 formula ( 5) 0 01 5 <D / ά ≤ 30 (6) (b) The first continuous multi-stage distillation column has a cylindrical body having a length L (cm) and an inner diameter D (cm), and has an internal The gas outlet has an internal diameter d (cm) at the top of the tower or near the top of the tower. One or more third inlets at the bottom of the tower or near the bottom of the tower, with a liquid outlet of 11 inner diameter d (cm), below the gas outlet and above the tower and / or in the middle Having one or more fourth inlets above the liquid outlet and in the middle and / or lower part of the column, and L, D, L / D, n, D / d, D / d force, which satisfies Eqs. (7) to (; 12) respectively, 1500 <L <8000 formula (7) 1 100 <D <2000 formula (8) 1 2 <L / '≤ 40 formula ( 9) 1 1 20 <n <120 (10) 1 5 <D, Zd ≤ 30 (11) 1 11 3 <D, Zd ≤ 20 (12) 1 12 (c) The second continuous multi-stage distillation column Has a cylindrical body with a length L (cm) and an inner diameter D (cm), and has an internal structure with an internal number n, and the top of the tower or the top of the tower close to it A gas outlet with an inner diameter d (cm), a liquid outlet with an inner diameter d (cm) at the bottom of the tower or near the bottom of the tower, One or more fifth inlets below the gas outlet and at the top and / or middle of the tower and one above the liquid outlet and one at the middle and / or bottom of the tower It has the above sixth inlet, L, D, L / 22 2D, n, D / d, D / d force respectively satisfy the formulas (13) to (18), 2 2 2 21 2 22 1500 ≤ L ≤ 8000 Equation (13) 2 100 ≤ D ≤ 2000 Equation (14) 2 2 ≤ L / Ό ≤ 40 Equation (15) 2 2 10 ≤ n ≤ 80 Equation (16) 2 2 ≤ D / d ≤ 15 Equation (17) 2 21 5 ≤ D / d ≤ 30 Equation (18) 2 22 (d)
(1)溶融プレボリマー受給口、多孔板、該多孔板を通して該溶融プレボリマーを重 合反応ゾーンのガイドに供給するための溶融プレボリマー供給ゾーン、該多孔板と側 面ケーシングとテーパー形の底部ケーシングとに囲まれた空間に該多孔板から下方 に延びる複数のガイドが設けられた重合反応ゾーン、該重合反応ゾーンに設けけら れた真空ベント口、テーパー形の底部ケーシングの最下部に設けられた芳香族ポリ カーボネート排出口、及び該排出口に接続された芳香族ポリカーボネート排出ボン プを有するものであって、  (1) A molten prepolymer feed port, a perforated plate, a molten prepolymer feed zone for feeding the melted prepolymer to the guide of the polymerization reaction zone through the perforated plate, the perforated plate, a side casing, and a tapered bottom casing. A polymerization reaction zone provided with a plurality of guides extending downward from the perforated plate in the enclosed space, a vacuum vent port provided in the polymerization reaction zone, and an aromatic provided at the bottom of the tapered bottom casing A polycarbonate discharge port, and an aromatic polycarbonate discharge pump connected to the discharge port,
(2)該重合反応ゾーンの側面ケーシングの水平面における内部断面積 A (m2)が、 式(19)を満足するものであって、 (2) The internal cross sectional area A (m 2 ) in the horizontal plane of the side casing of the polymerization reaction zone satisfies the formula (19),
0. 7 ≤ A ≤ 300 式(19)  0. 7 ≤ A ≤ 300 Equation (19)
(3)該 A (m2)と、芳香族ポリカーボネート排出口の水平面における内部断面積 B ( m2)との比が、式(20)を満足するものであって、 (3) The ratio of the A (m 2 ) and the internal cross-sectional area B (m 2 ) in the horizontal plane of the aromatic polycarbonate outlet satisfies the formula (20),
20 ≤ A/B ≤ 1000 式(20)  20 ≤ A / B ≤ 1000 formula (20)
(4)該重合反応ゾーンの底部を構成するテーパー形の底部ケーシングが、上部の 側面ケーシングに対してその内部において、角度 C度で接続されており、該角度 C度 が式(21 )を満足するものであって、 (4) A tapered bottom casing constituting the bottom of the polymerization reaction zone is connected to the upper side casing at an angle C degree inside thereof, and the angle C degree Satisfies the formula (21),
120 ≤ C ≤ 165 式(21 )  120 ≤ C ≤ 165 Equation (21)
(5)該ガイドの長さ h (cmWS、式(22)を満足するものであって、  (5) The length h of the guide (cmWS, which satisfies equation (22),
150 ≤ h ≤ 5000 式(22)  150 ≤ h ≤ 5000 (22)
(6)該ガイド全体の外部総表面積 S (m2)が式(23)を満足するものである、 (6) The total external surface area S (m 2 ) of the entire guide satisfies the formula (23).
2 ≤ S ≤ 50000 式(23)  2 ≤ S ≤ 50000 Equation (23)
ことを特徴とする高品質芳香族ポリカーボネートの工業的製造法。  An industrial process for producing high-quality aromatic polycarbonate, characterized in that
[2] 製造される芳香族ポリカーボネートが 1時間あたり 1トン以上であることを特徴とする 請求項 1に記載の方法。  [2] The method according to claim 1, wherein the produced aromatic polycarbonate is 1 ton or more per hour.
[3] 工程 (I)で用いられる該連続多段蒸留塔 Tの該 d と該 d が式(24)を満足するこ  [3] The d and the d of the continuous multistage distillation column T used in the step (I) satisfy the formula (24).
0 01 02  0 01 02
とを特徴とする請求項 1または 2に記載の方法。  The method according to claim 1, wherein:
1 ≤ d /d ≤ 5 式(24)  1 ≤ d / d ≤ 5 Equation (24)
01 02  01 02
[4] 該連続多段蒸留塔 Tの L 、 D 、 L /D 、 n 、 D /d 、 D /d がそれぞれ、 2  [4] L, D, L / D, n, D / d, D / d of the continuous multistage distillation column T are 2 respectively.
0 0 0 0 0 0 0 01 0 02  0 0 0 0 0 0 0 01 0 02
300≤L ≤6000、 200≤D ≤1000、 5≤L /Ό ≤30、 30≤η ≤100、 4 300≤L ≤6000, 200≤D ≤1000, 5≤L / Ό ≤30, 30≤η ≤100, 4
0 0 0 0 0 0 0 0 0 0
≤Ό /ά ≤15、 7≤D /ά ≤25であることを特徴とする請求項 1〜3のうち何れ ≤Ό / ά ≤15, 7≤D / ά ≤25, any one of claims 1-3
0 01 0 02 0 01 0 02
、ずれか一項に記載の方法。  The method according to claim 1.
[5] 該連続多段蒸留塔 Τの L 、 D 、 L /D 、 n 、 D /d 、 D /d がそれぞれ、 2  [5] L, D, L / D, n, D / d, D / d of the continuous multistage distillation column 2 are 2
0 0 0 0 0 0 0 01 0 02  0 0 0 0 0 0 0 01 0 02
500≤L ≤5000、 210≤D ≤800、 7≤L /Ό ≤20、 40≤η ≤90、 5≤D 500≤L ≤5000, 210≤D ≤800, 7≤L / Ό ≤20, 40≤η ≤90, 5≤D
0 0 0 0 0 C0 0 0 0 0 C
/ά ≤13、 9≤D /ά ≤20であることを特徴とする請求項 1〜4のうち何れいずAny one of claims 1 to 4, wherein / ά ≤13, 9≤D / ά ≤20
01 0 02 01 0 02
れか一項に記載の方法。  The method according to any one of the above.
[6] 該連続多段蒸留塔 τ力 該インターナルとしてトレイおよび/または充填物を有す  [6] the continuous multistage distillation column τ force with tray and / or packing as the internal
0  0
る蒸留塔であることを特徴とする請求項 1〜5のうち何れいずれか一項に記載の方法 The method according to any one of claims 1 to 5, wherein the method is a distillation column.
Yes
[7] 該連続多段蒸留塔 Τ 、該インターナルとしてトレィを有する棚段式蒸留塔である  [7] The continuous multistage distillation column Τ is a plate type distillation column having a tray as the internal
0  0
ことを特徴とする請求項 6記載の方法。  The method according to claim 6.
[8] 該連続多段蒸留塔 Τの該トレイが多孔板部とダウンカマー部を有する多孔板トレイ  [8] Perforated plate tray in which the tray of the continuous multistage distillation column has a perforated plate portion and a downcomer portion
0  0
であることを特徴とする請求項 6または 7記載の方法。  The method according to claim 6 or 7, wherein:
[9] 該連続多段蒸留塔 Τの該多孔板トレイが該多孔板部の面積 lm2あたり 100〜; 100 0個の孔を有するものであることを特徴とする請求項 8記載の方法。 [9] The perforated plate tray of the continuous multi-stage distillation column is 100 to 100 per lm 2 of the perforated plate portion; 9. A method according to claim 8, characterized in that it has zero holes.
[10] 該連続多段蒸留塔 Tの該多孔板トレイの孔 1個あたりの断面積が 0. 5〜5cm2であ [10] The cross-sectional area per hole of the perforated plate tray of the continuous multistage distillation column T is 0.5 to 5 cm 2.
0  0
ることを特徴とする請求項 8または 9記載の方法。  10. A method according to claim 8 or 9, characterized in that
[11] 該連続多段蒸留塔 Tの該多孔板トレイの開口率(多孔板部の面積に対する全孔 [11] Opening ratio of the perforated plate tray of the continuous multi-stage distillation column T (total holes relative to the area of the perforated plate portion)
0  0
断面積の割合)が 1. 5〜; 15%であることを特徴とする請求項 8〜; 10のうち何れか一 項に記載の方法。  11. The method according to claim 8, wherein the ratio of the cross-sectional area is 1.5 to 15%.
[12] 工程 (II)で用いられる該第 1連続多段蒸留塔と該第 1連続多段蒸留塔該 d と該 d  [12] The first continuous multi-stage distillation column used in step (II), the first continuous multi-stage distillation column d and the d
11 1 が式(25)を満足し、且つ該 d と該 d が式(26)を満足することを特徴とする請求項 11 1 satisfies expression (25), and d and d satisfy expression (26),
2 21 22 2 21 22
;!〜 11のうち何れか一項に記載の方法。  ; The method according to any one of! To 11.
1 ≤ d /d ≤ 5 式(25)  1 ≤ d / d ≤ 5 Equation (25)
12 11  12 11
1 ≤ d /d ≤ 6 式(26)  1 ≤ d / d ≤ 6 Equation (26)
21 22  21 22
[13] 工程 (II)で用いられる該第 1連続多段蒸留塔の L、 D 、 L /D、 n、 D /d 、 D /ά 力 Sそれぞれ、 2000≤L≤6000、 150≤D ≤1000, 3≤L /D≤30,  [13] L, D, L / D, n, D / d, D / άS of the first continuous multistage distillation column used in step (II), 2000≤L≤6000, 150≤D≤1000 , 3≤L / D≤30,
12 1 1 1 1  12 1 1 1 1
30≤n≤100, 8≤D /d ≤25, 5≤D /d ≤18であり、且つ  30≤n≤100, 8≤D / d≤25, 5≤D / d≤18, and
1 1 11 1 12  1 1 11 1 12
該第 2連続多段蒸留塔の L、 D 、 L /D 、 n、 D /d 、 D /d がそれぞれ、 2  L, D, L / D, n, D / d, D / d of the second continuous multistage distillation column are 2 respectively.
2 2 2 2 2 2 21 2 22  2 2 2 2 2 2 21 2 22
000≤L≤6000、 150≤D ≤1000、 3≤L /D ≤30、 15≤n≤60、 2. 5  000≤L≤6000, 150≤D ≤1000, 3≤L / D ≤30, 15≤n≤60, 2.5
2 2 2 2 2  2 2 2 2 2
≤D /d ≤12、 7≤D /d ≤25であることを特徴とする請求項 1〜12のうち何 ≤D / d ≤12, 7≤D / d ≤25, any one of claims 1-12
2 21 2 22 2 21 2 22
れか一項に記載の方法。  The method according to any one of the above.
[14] 該第 1連続多段蒸留塔の L、 D 、 L /D 、 n、 D /d 、 D /d がそれぞれ、 2 [14] L, D, L / D, n, D / d, D / d of the first continuous multistage distillation column are 2 respectively.
1 1 1 1 1 1 11 1 12  1 1 1 1 1 1 11 1 12
500≤L≤5000、 200≤D ≤800、 5≤L /D ≤15、 40≤n≤90、 10≤ D /d ≤25、 7≤D /d ≤15であり、且つ、  500≤L≤5000, 200≤D≤800, 5≤L / D≤15, 40≤n≤90, 10≤D / d≤25, 7≤D / d≤15, and
1 11 1 12  1 11 1 12
該第 2連続多段蒸留塔の L、 D 、 L /D 、 n、 D /d 、 D /d がそれぞれ、 2  L, D, L / D, n, D / d, D / d of the second continuous multistage distillation column are 2 respectively.
2 2 2 2 2 2 21 2 22  2 2 2 2 2 2 21 2 22
500≤L≤5000、 200≤D ≤800、 5≤L /D ≤15、 20≤n≤50、 3≤D  500≤L≤5000, 200≤D ≤800, 5≤L / D ≤15, 20≤n≤50, 3≤D
2 2 2 2 2 2 2 2 2 2 2 2
/d ≤10、 9≤D /d ≤20であることを特徴とする請求項 1〜13のうち何れか一/ d ≤10, 9≤D / d ≤20, any one of claims 1-13
21 2 22 21 2 22
項に記載の方法。  The method according to item.
[15] 該第 1連続多段蒸留塔および該第 2連続多段蒸留塔が、それぞれ該インターナル としてトレイおよび/または充填物を有する蒸留塔であることを特徴とする請求項 1〜 14のうち何れか一項に記載の方法。 15. The method according to any one of claims 1 to 14, wherein the first continuous multistage distillation column and the second continuous multistage distillation column are distillation columns each having a tray and / or a packing as the internal. The method according to claim 1.
[16] 該第 1連続多段蒸留塔が、該インターナルとしてトレィを有する棚段式蒸留塔であ り、該第 2連続多段蒸留塔が、該インターナルとして充填物およびトレイの両方を有 する蒸留塔であることを特徴とする請求項 15記載の方法。 [16] The first continuous multi-stage distillation column is a tray-type distillation column having a tray as the internal, and the second continuous multi-stage distillation column has both a packing and a tray as the internal. The method according to claim 15, which is a distillation column.
[17] 該第 1連続多段蒸留塔および該第 2連続多段蒸留塔の該トレイそれぞれが、多孔 板部とダウンカマー部を有する多孔板トレイであることを特徴とする請求項 15または 1[17] The perforated plate tray of each of the first continuous multistage distillation column and the second continuous multistage distillation column is a perforated plate tray having a perforated plate portion and a downcomer portion.
6記載の方法。 6. The method according to 6.
[18] 該第 1連続多段蒸留塔および該第 2連続多段蒸留塔の該多孔板トレイが該多孔板 部の面積 lm2あたり 100〜1000個の孔を有するものであることを特徴とする請求項 1 7記載の方法。 [18] according to the porous plate tray of the first continuous multi-stage distillation column and said second continuous multi-stage distillation column is characterized in that having an area lm 2 100 to 1000 holes of the porous plate Item 17. The method according to item 7.
[19] 該第 1連続多段蒸留塔および該第 2連続多段蒸留塔の該多孔板トレイの孔 1個あ たりの断面積が 0. 5〜5cm2であることを特徴とする請求項 17または 18記載の方法。 [19] The cross-sectional area per hole of the perforated plate tray of the first continuous multistage distillation column and the second continuous multistage distillation column is 0.5 to 5 cm2, or 18. The method according to 18.
[20] 該第 2連続多段蒸留塔が、該インターナルとして充填物を上部に、トレィを下部に 有する蒸留塔であることを特徴とする請求項 15または 16に記載の方法。  20. The method according to claim 15 or 16, wherein the second continuous multi-stage distillation column is a distillation column having a packing as an upper part and a tray as a lower part as the internal.
[21] 該第 2連続多段蒸留塔の該インターナルの該充填物が 1基または 2基以上の規則 充填物であることを特徴とする請求項 15〜20のうち何れか一項に記載の方法。  [21] The packing according to any one of claims 15 to 20, wherein the packing of the internal of the second continuous multistage distillation column is one or two or more regular packings. Method.
[22] 該第 2連続多段蒸留塔の該規則充填物が、メラパック、ジェムパック、テクノバック、 フレキシパック、スルザ一パッキング、グッドロールパッキング、グリッチグリッドから選 ばれた少なくとも一種であることを特徴とする請求項 21に記載の方法。  [22] The regular packing of the second continuous multistage distillation column is at least one selected from a mela pack, a gem pack, a techno bag, a flexi pack, a sulza packing, a good roll packing, and a glitch grid. The method of claim 21.
[23] ジァリールカーボネート精製工程 (III)が蒸留であることを特徴とする請求項 1〜22 のうち何れか一項に記載の方法。  [23] The method according to any one of [1] to [22], wherein the diaryl carbonate purification step (III) is distillation.
[24] 工程 (IV)で用いられる該ガイド接触流下式重合器にお!/、て、重合反応ゾーンの側 面ケーシングが内径 D (cm)、長さ L (cm)の円筒形であって、その下部に接続された 底部のケーシングがテーパー形であり、該テーパー形の底部ケーシングの最下部の 排出口が内径 d (cm)の円筒形であって、 D、 L、 d が式(27)、 (28)、 (29)および( 30)を満足する、  [24] In the guided contact flow type polymerization reactor used in step (IV), the side casing of the polymerization reaction zone has a cylindrical shape with an inner diameter D (cm) and a length L (cm). The bottom casing connected to the lower part is tapered, and the lowermost discharge port of the tapered bottom casing is cylindrical with an inner diameter d (cm), and D, L, d are expressed by the formula (27 ), (28), (29) and (30) are satisfied,
100 ≤ D ≤ 1800 式(27)  100 ≤ D ≤ 1800 Formula (27)
5 ≤ D/d ≤ 50 式(28)  5 ≤ D / d ≤ 50 Equation (28)
0. 5 ≤ L/D ≤ 30 式(29) h- 20 ≤ L ≤ h+ 300 式(30) 0.5 ≤ L / D ≤ 30 (29) h-20 ≤ L ≤ h + 300 (30)
ことを特徴とする請求項 1〜23のうち何れか一項に記載の方法。  24. The method according to any one of claims 1 to 23, wherein:
[25] ガイドの該 hが式(31)を満足する、  [25] The h of the guide satisfies equation (31).
400 < h ≤ 2500 式(31)  400 <h ≤ 2500 formula (31)
ことを特徴とする請求項 1〜24のうち何れか一項に記載の方法。  25. The method according to any one of claims 1 to 24, wherein:
[26] 1つの該ガイドが外径 r (cm)の円柱状または内側に溶融プレボリマーが入らない ようにしたパイプ状のものであって、 r が式(32)を満足する、  [26] One of the guides is a cylindrical shape having an outer diameter r (cm) or a pipe shape in which a molten prepolymer is prevented from entering, and r satisfies the formula (32).
0. 1 ≤ r ≤ 1 式(32)  0. 1 ≤ r ≤ 1 (32)
ことを特徴とする請求項 1〜25のうち何れか一項に記載の方法。  26. The method according to any one of claims 1 to 25, wherein:
[27] 工程 (IV)において、該ガイド接触流下式重合器 2基以上を連結して重合を行うこと 特徴とする請求項 1〜26のうち何れか一項に記載の方法。  [27] The method according to any one of [1] to [26], wherein in the step (IV), the polymerization is carried out by connecting two or more guide contact flow type polymerization reactors.
[28] 請求項 27記載の 2基以上のガイド接触流下式重合器が、ガイド接触流下式第 1重 合器、ガイド接触流下式第 2重合器の 2基の重合器であって、この順に重合度を上げ ていく方法において、該第 1重合器のガイド全体の外部総表面積 S I (m2)と該第 2重 合器のガイド全体の外部総表面積 S2 (m2)とが式(33)を満足する、 [28] The two or more guide contact flow type polymerizers according to claim 27 are two polymerizers, a guide contact flow type first polymerizer and a guide contact flow type second polymerizer, in this order. In the method of increasing the degree of polymerization, the total external surface area SI (m 2 ) of the entire guide of the first polymerization apparatus and the external total surface area S2 (m 2 ) of the entire guide of the second polymerization apparatus are expressed by the equation (33). )
1 ≤ S1/S2 ≤ 20 式(33)  1 ≤ S1 / S2 ≤ 20 Equation (33)
ことを特徴とする請求項 27に記載の方法。  28. The method of claim 27, wherein:
[29] 請求項 1〜28のいずれかの方法によって 1時間あたり 1トン以上製造された高品質 芳香族ポリカーボネート。  [29] A high-quality aromatic polycarbonate produced by 1 ton or more per hour by the method according to any one of claims 1 to 28.
[30] アルカリ金属および/またはアルカリ土類金属化合物の含有量力 をこれらの金属 元素に換算して、 0. ;!〜 0. Olppmであり、且つ、ハロゲン含有量が、 lppb以下であ ることを特徴とする請求項 29記載の高品質芳香族ポリカーボネート。  [30] The content power of the alkali metal and / or alkaline earth metal compound is converted to these metal elements and is 0.;! To 0. Olppm, and the halogen content is lppb or less. 30. A high-quality aromatic polycarbonate according to claim 29.
[31] 主鎖に対してエステル結合やエーテル結合等の異種結合を介して部分的に分岐 している芳香族ポリカーボネートであって、該異種結合の含有量が、カーボネート結 合に対して、 0. 05-0. 5モル%であることを特徴とする請求項 29または 30記載の 高品質芳香族ポリカーボネート。  [31] An aromatic polycarbonate partially branched from the main chain via a hetero bond such as an ester bond or an ether bond, and the content of the hetero bond is 0 with respect to the carbonate bond. The high-quality aromatic polycarbonate according to claim 29 or 30, characterized in that the content is 05-0. 5 mol%.
PCT/JP2007/064431 2006-11-27 2007-07-23 Process for industrial production of high-quality aromatic polycarbonate WO2008065776A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008546891A JP5320071B2 (en) 2006-11-27 2007-07-23 Industrial production of high-quality aromatic polycarbonate.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-318887 2006-11-27
JP2006318887 2006-11-27

Publications (1)

Publication Number Publication Date
WO2008065776A1 true WO2008065776A1 (en) 2008-06-05

Family

ID=39467576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064431 WO2008065776A1 (en) 2006-11-27 2007-07-23 Process for industrial production of high-quality aromatic polycarbonate

Country Status (3)

Country Link
JP (1) JP5320071B2 (en)
TW (1) TW200829621A (en)
WO (1) WO2008065776A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09165443A (en) * 1995-12-15 1997-06-24 Jiemu P C Kk Manufacture of polycarbonate
JPH09255772A (en) * 1996-01-17 1997-09-30 Asahi Chem Ind Co Ltd Production of aromatic polycarbonate
JP2002226573A (en) * 2001-01-05 2002-08-14 Bayer Ag Method for producing polycarbonate
JP2004211107A (en) * 1998-06-05 2004-07-29 Asahi Kasei Chemicals Corp System for manufacturing aromatic polycarbonate
JP2005146050A (en) * 2003-11-12 2005-06-09 Mitsubishi Chemicals Corp Method for producing aromatic polycarbonate
WO2005121210A1 (en) * 2004-06-14 2005-12-22 Asahi Kasei Chemicals Corporation Improved process for producing aromatic polycarbonate
WO2005121211A1 (en) * 2004-06-14 2005-12-22 Asahi Kasei Chemicals Corporation Process for efficiently producing aromatic polycarbonate
WO2007069463A1 (en) * 2005-12-12 2007-06-21 Asahi Kasei Chemicals Corporation Process for industrially producing high quality aromatic polycarbonate
WO2007072705A1 (en) * 2005-12-19 2007-06-28 Asahi Kasei Chemicals Corporation Process for producing high-purity diphenyl carbonate on an industrial scale

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09165443A (en) * 1995-12-15 1997-06-24 Jiemu P C Kk Manufacture of polycarbonate
JPH09255772A (en) * 1996-01-17 1997-09-30 Asahi Chem Ind Co Ltd Production of aromatic polycarbonate
JP2004211107A (en) * 1998-06-05 2004-07-29 Asahi Kasei Chemicals Corp System for manufacturing aromatic polycarbonate
JP2002226573A (en) * 2001-01-05 2002-08-14 Bayer Ag Method for producing polycarbonate
JP2005146050A (en) * 2003-11-12 2005-06-09 Mitsubishi Chemicals Corp Method for producing aromatic polycarbonate
WO2005121210A1 (en) * 2004-06-14 2005-12-22 Asahi Kasei Chemicals Corporation Improved process for producing aromatic polycarbonate
WO2005121211A1 (en) * 2004-06-14 2005-12-22 Asahi Kasei Chemicals Corporation Process for efficiently producing aromatic polycarbonate
WO2007069463A1 (en) * 2005-12-12 2007-06-21 Asahi Kasei Chemicals Corporation Process for industrially producing high quality aromatic polycarbonate
WO2007072705A1 (en) * 2005-12-19 2007-06-28 Asahi Kasei Chemicals Corporation Process for producing high-purity diphenyl carbonate on an industrial scale

Also Published As

Publication number Publication date
JP5320071B2 (en) 2013-10-23
JPWO2008065776A1 (en) 2010-03-04
TW200829621A (en) 2008-07-16

Similar Documents

Publication Publication Date Title
JP5030788B2 (en) Industrial production method of high quality aromatic polycarbonate
JP4224103B2 (en) Method for industrial production of aromatic carbonates
JP5362223B2 (en) Method for producing high-purity diphenyl carbonate on an industrial scale
WO2006006588A1 (en) Process for producing aromatic carbonate on industrial scale
JP5030231B2 (en) Industrial production of high-quality aromatic polycarbonate
JP4936555B2 (en) Industrial production of high purity diaryl carbonate
JP4936556B2 (en) Industrial production of aromatic carbonates
JP5344927B2 (en) Process for producing high-quality aromatic polycarbonate on an industrial scale
JP5320071B2 (en) Industrial production of high-quality aromatic polycarbonate.
CN108586254B (en) Process for producing diaryl carbonate and process for producing aromatic polycarbonate
TWI850807B (en) Method of producing diphenyl carbonate
EP4421063A1 (en) Method for producing diphenyl carbonate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791164

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008546891

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07791164

Country of ref document: EP

Kind code of ref document: A1