WO2008065213A2 - Métodos y sistemas de simulación térmica para el análisis del fuego en objetos - Google Patents

Métodos y sistemas de simulación térmica para el análisis del fuego en objetos Download PDF

Info

Publication number
WO2008065213A2
WO2008065213A2 PCT/ES2006/070184 ES2006070184W WO2008065213A2 WO 2008065213 A2 WO2008065213 A2 WO 2008065213A2 ES 2006070184 W ES2006070184 W ES 2006070184W WO 2008065213 A2 WO2008065213 A2 WO 2008065213A2
Authority
WO
WIPO (PCT)
Prior art keywords
fire
heat transfer
transfer coefficients
computer
obtaining
Prior art date
Application number
PCT/ES2006/070184
Other languages
English (en)
French (fr)
Other versions
WO2008065213A9 (es
Inventor
Marta BERMEJO ÁLVAREZ
Victor PÉREZ BERMEJO
Patricia Pineda Espinosa
Original Assignee
Airbus España, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus España, S.L. filed Critical Airbus España, S.L.
Priority to EP06841791A priority Critical patent/EP2107481A1/en
Priority to PCT/ES2006/070184 priority patent/WO2008065213A2/es
Priority to US11/699,126 priority patent/US7647216B2/en
Publication of WO2008065213A2 publication Critical patent/WO2008065213A2/es
Publication of WO2008065213A9 publication Critical patent/WO2008065213A9/es

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/08Thermal analysis or thermal optimisation

Definitions

  • the present invention relates to thermal simulation methods and systems for the analysis of fire in objects designed to resist the effect of fire and in particular in aeronautical structures.
  • the engine and auxiliary power unit compartments are designated areas with respect to! fire. It is in these areas where flammable mixtures can be expected to occur as a result of any breakdown that causes losses or leaks and where there may be an explosive environment and consequently where they must be shown to be fireproof areas under different requirements: - Areas that must withstand the application of a flame and withstand the loads imposed by the design.
  • An object of the present invention is to provide analytical methods and systems that allow the certification of compliance by an object such as the structure of a specific area of an aircraft with predetermined requirements regarding the effects of the application of a fire during a fire. preset time period.
  • Another object of the present invention is to provide methods and systems to predict the temperature reached in an object such as the structure of a specific area of an airplane as a result of the application of a fire for a pre-established period of time and to provide information on its structural behavior
  • Another object of the present invention is to provide methods and systems to simulate the effect of a standard flame on an object such as the structure of a specific area of an airplane of some requirements together with other relevant boundary conditions in the design of the aircraft such as high zone temperatures, initial operating temperatures, calculations for ventilation or heat transfer to other structures.
  • these and other objects are achieved by providing a method for predicting the structural behavior of an object when a fire is applied for a preset period of time, comprising the following steps: - Preparation of a 3D Finite Element Model of said object, implemented in a computer, including its relevant thermal properties.
  • the aforementioned objects are achieved by providing a system for predicting the structural behavior of an object when a fire is applied for a predetermined period of time, comprising:
  • a calculation module implemented in a computer for obtaining the heat transfer coefficients of the object using said predictive information of the thermal effects within said object.
  • An analytical module implemented in computer that, applying said heat transfer coefficients and other thermally relevant boundary conditions, allows the simulation of the application of a fire to said object and obtaining a thermal map of the object during said application of a fire.
  • This invention relates to a computerized thermal analysis that is capable of reproducing the effect of a fire on, in particular, an area of an airplane, which introduces a new method for determining the effect of fire on the different structural areas of the aircraft.
  • the fire environment is a complex heat transfer scenario.
  • the main difficulty that must be faced in this type of simulation is the reproduction of a non-linear problem with a large number of factors that can influence the fine result!
  • An important feature of this invention is that it provides the possibility of simulating the effects of fire in a complex heat transfer scenario that includes a non-linear problem with a large number of factors that can influence the final result.
  • the simulation process is simplified with the determination of dependencies between variables and with the estimation of how these factors influence the final result. Additionally, each effect is implemented in the analysis using the most appropriate tool to achieve the best simulation.
  • Another important feature of this invention is the way to combine different calculation methodologies and different properties of matter! to be able to reproduce the rea behavior! on the object
  • An advantage of the present invention is that it provides the ability to handle a large number of design solutions of an airplane structure by analytically testing its behavior in fire conditions in a much easier way than doing the physical tests of the prior art.
  • Another advantage of this invention is that it allows a reduction in time and cost savings in the design process of an airplane structure.
  • Figure 1 shows an FEM mesh of an object analyzed according to the present invention.
  • Figure 2 shows a FEM Thermal Model of an object analyzed following the present invention, meshed and ready for the application of boundary conditions.
  • Figure 3 shows a graph of air flow velocity within an object analyzed according to the present invention.
  • Figure 4 shows a graph of the temperature and the trace of the flame within the object analyzed according to the present invention.
  • Figures 5 and 6 show flow charts illustrating the calculation of heat transfer coefficients according to the present invention.
  • Figure 7 shows an interface of a computer tool for establishing thermal boundary conditions to the object analyzed following the present invention.
  • Figure 8 shows a simulation of the trace of the flame by environmental zones of the object analyzed following the present invention.
  • Figure 8 shows a temperature map of the structure tested following the present invention.
  • Model Preparation a) The preparation of a Finite Element Model (EMF) comprises the following steps. a1) Import of the structural geometry of the area of the airplane to be analyzed.
  • the flame must be part of the model.
  • the size of the flame, its temperature and the distance to the structure are defined in the applicable regulations (eg ISO 2685 "Aircraft Environmental Test Procedure for Airborne Equipment Resistance to Fire in Designated Fire Zones", FAA AC 20-135 " Power-Plant Installation and Propulsion System components Fire protection Test Methods, Standards and Criteria ").
  • CFRP Plastic Reinforced Carbon Fiber
  • the mentioned properties can be entered as constant values or as variables dependent on time or temperature.
  • FIG. 2 illustrates the final FEM Thermal Model.
  • FVM 2D Finite Volume Models
  • the next step is to calculate the parameters for the heat transfer coefficients of each of the elements involved.
  • the heat convection coefficients are dependent on the surface temperature, the surrounding ambient temperature and the fluid velocity around the structural element.
  • the calculation (considering only the effect of conduction and convection) is carried out in an iterative process illustrated in Figures 5 and 6.
  • a FLUENT simulation is carried out with the first expected coefficients based on the expected temperatures for the structural element, for the ambient temperature and assuming a forced or natural convection due to the presence of a given speed around the structure. This first speed (if there is one) is obtained by means of a FLUENT calculation. Once these coefficients have been introduced (see Fig. 7) the thermal analysis is carried out. Secondly (see Fig. 6) an iterative process is carried out using the NASTRAN-PASTRAN tool. Its main steps are as follows:
  • the result of this step is the heat transfer coefficients for the complete model. These coefficients can be constant over time in the simulation or be time dependent.
  • Radiation The effect of the radiation is introduced between the structural elements and between the flame and the structure.
  • F ⁇ ⁇ A i coefficient of vision factor between Sas radiation surfaces.
  • A area of the radiation surface.
  • T1, T2 absolute radiation temperatures of surfaces 1 and 2 respectively.
  • the Vision Factors must be calculated and are a function of: - The relative position of the heat source (the standard flame)
  • the next step is the application of thermal boundary conditions and thermal effects as follows.
  • Conductivity There is no particular work to be carried out other than thermal meshing and material properties to be able to simulate heat transfer by conductivity between the different structural elements.
  • the thermal conduction process only requires that the elements involved be in contact in the generated mesh model.
  • Environmental thermal characteristics A prediction of the ambient temperature around the structure and other thermal effects such as radiation, solar flow ... that have an impact on the temperature of the structure is introduced into the model.
  • Thermal effects of the flame The effect of the flame is simulated by applying: - Convection between the heat source and the ambient air bordering the area affected by the flame.
  • the convection is established between the different structural parts and between the flame and the surroundings of the structures, using the environmental zones mentioned above.
  • the vision factors and the environmental zones are implemented in the radiation between parts of the structures and between the flame and the surroundings of the structures. Before carrying out the final thermal analysis, it must be validated that the flame meets the requirements of the applicable regulations. These requirements are oriented towards two main aspects:
  • the flame is 1100 ⁇ 80 ° C. This is achieved in the models keeping the simulated flame at a constant temperature. -
  • the density of the heat flux to the structure for a given condition must be 116 + 10 kW / m2. To validate this hypothesis, the heat transfer to the structure is calculated with an initial temperature of 2O 0 C and with the thermal coefficients calculated for this scenario.
  • the thermal convection coefficients to be used are those determined in the previous steps.
  • the final result of the simulation is a thermal map of the structure over time (see Fig. 9).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Description

MÉTODOS Y SISTEMAS DE SIMULACIÓN TÉRMICA PARA EL ANÁLISIS DEL FUEGO EN OBJETOS
CAMPO DE LA INVENCIÓN
La presente invención se refiere a métodos y sistemas de simulación térmica para el análisis del fuego en objetos diseñados para resistir el efecto del fuego y en particular en estructuras aeronáuticas.
ANTECEDENTES DE LA INVENCIÓN
El cumplimiento de los requerimientos relativos al efecto del fuego en el avión es uno de los elementos necesarios para obtener Ia certificación del avión.
En un avión hay un cierto número de zonas designadas respecto al fuego que deben ser capaces de resistir el efecto de un fuego aplicado durante un determinado período de tiempo establecido en función de los requerimientos correspondientes a Ia categoría de Ia zona, sin que se produzca un efecto perjudicial en sus prestaciones más allá de un margen preestablecido.
Las diferentes categorías establecidas en relación con Ia resistencia al fuego son las siguientes:
- Áreas sin requerimientos de resistencia ai efecto del fuego. - Áreas de resistencia al fuego. Las zonas afectadas por esta clasificación deben ser capaces de resistir el efecto de una llama estándar durante 5 minutos.
- Áreas a prueba de fuego. Las zonas afectadas por esta clasificación deben ser capaces de resistir el efecto de una llama estándar durante 15 minutos.
En términos generales, los compartimentos del motor y de Ia unidad de potencia auxiliar son zonas designadas respecto a! fuego. Es en estas áreas donde puede esperarse que se produzcan mezclas inflamables como consecuencia de alguna avería que cause pérdidas o escapes y donde puede haber un entorno explosivo y en consecuencia donde debe demostrarse que son zonas a prueba de fuego bajo distintos requerimientos: - Áreas que deben resistir Ia aplicación de una llama y soportar las cargas impuestas por el diseño.
- Áreas que deben resistir Ia aplicación de una llama sin que exista penetración de Ia llama.
El cumplimiento de esos requisitos se ha demostrado típicamente mediante ensayos físicos.
Este procedimiento es muy costoso y Ia presente invención está orientada a Ia solución de ese inconveniente.
SUMARIO DE LA INVENCIÓN
Un objeto de Ia presente invención es proporcionar métodos y sistemas analíticos que permitan Ia certificación del cumplimiento por parte de un objeto tal como Ia estructura de una zona específica de un avión de unos requerimientos predeterminados respecto a los efectos de Ia aplicación de un fuego durante un período de tiempo preestablecido.
Otro objeto de Ia presente invención es proporcionar métodos y sistemas para predecir Ia temperatura alcanzada en un objeto tal como Ia estructura de una zona específica de un avión como consecuencia de Ia aplicación de un fuego durante un período de tiempo preestablecido y para proporcionar información sobre su comportamiento estructural.
Otro objeto de Ia presente invención es proporcionar métodos y sistemas para simular el efecto de una llama estándar en un objeto tal como Ia estructura de una zona específica de un avión de unos requerimientos junto con otras condiciones de contorno relevantes en el diseño del avión tales como temperaturas zonales elevadas, temperaturas operativas iniciales, cálculos para Ia ventilación o Ia transferencia de calor a otras estructuras. En un aspecto, estos y otros objetos se consiguen proporcionando un método para predecir el comportamiento estructural de un objeto cuando se Ie aplica un fuego durante un período preestablecido de tiempo, que comprende los siguientes pasos: - Preparación de un Modelo de Elementos Finitos 3D de dicho objeto, implementado en ordenador, incluyendo sus propiedades térmicas relevantes.
- Preparación de un Modelo de Volumen Finito 2D implementado en ordenador para Ia simulación de un fuego dentro de dicho objeto y Ia obtención de información predictiva de sus efectos térmicos. - Obtención de los coeficientes de transferencia de calor del objeto usando dicha información predictiva de los efectos térmicos dentro de dicho objeto.
- Aplicación de dichos coeficientes de transferencia de calor y otras condiciones de contorno relevantes térmicamente a dicho Modelo de Elementos Finitos 3D, simulación de Ia aplicación de un fuego a dicho objeto y obtención de un mapa térmico del objeto durante dicha aplicación de un fuego.
En otro aspecto, los objetos mencionados anteriormente se consiguen proporcionando un sistema para predecir el comportamiento estructural de un objeto cuando se Ie aplica un fuego durante un período preestablecido de tiempo, que comprende:
- Un Modelo de Elementos Finitos 3D de dicho objeto, implementado en ordenador, incluyendo sus propiedades térmicas relevantes.
- Un Modelo de Volumen Finito 2D implementado en ordenador para Ia simulación de un fuego dentro de dicho objeto y Ia obtención de información predictiva de sus efectos térmicos.
- Un módulo de cálculo implementado en ordenador para Ia obtención de los coeficientes de transferencia de calor del objeto usando dicha información predictiva de los efectos térmicos dentro de dicho objeto.
- Un módulo analítico implementado en ordenador que, aplicando dichos coeficientes de transferencia de calor y otras condiciones de contorno relevantes térmicamente, permite Ia simulación de Ia aplicación de un fuego a dicho objeto y Ia obtención de un mapa térmico del objeto durante dicha aplicación de un fuego.
Esta invención se refiere a un análisis térmico informatizado que es capaz de reproducir el efecto de un fuego sobre, particularmente, una zona de un avión, que introduce un nuevo procedimiento para determinar el efecto del fuego sobre las diferentes zonas estructurales del avión.
El entorno del fuego es un escenario complejo de transferencia de calor. La principal dificultad a Ia que hay que hacer frente en este tipo de simulaciones es Ia reproducción de un problema no-lineal con una gran cantidad de factores que pueden tener influencia en el resultado fina!.
Debido a las circunstancias que acabamos de mencionar, los efectos del fuego no se vienen simulando y el comportamiento estructural en estas condiciones se viene estudiando mediante ensayos.
Una característica importante de este invención es que proporciona Ia posibilidad de simular los efectos del fuego en un escenario complejo de transferencia de calor que incluye un problema no-lineal con una gran cantidad de factores que pueden tener influencia en el resultado final. El proceso de simulación se simplifica con Ia determinación de dependencias entre variables y con Ia estimación de cómo influyen dichos factores en el resultado final. Adicionalmente cada efecto se implementa en el análisis utilizando Ia herramienta más apropiada para lograr Ia mejor simulación.
Otra característica importante de esta invención es Ia manera de combinar diferentes metodologías de cálculo y diferentes propiedades del materia! para ser capaz de reproducir el comportamiento rea! en el objeto. Una ventaja de Ia presente invención es que proporciona Ia capacidad de manejar un gran número de soluciones de diseño de una estructura de un avión al ensayar analíticamente su comportamiento en condiciones de fuego de una manera mucho más fácil que haciendo los ensayos físicos de Ia técnica anterior. Otra ventaja de esta invención es que permite una reducción de tiempo y un ahorro de costes en el procedimiento de diseño de una estructura de avión. Otras características y ventajas de Ia presente invención se harán evidentes de Ia siguiente descripción detallada de las realizaciones, ilustrativas de su objeto, junto con las figuras adjuntas.
DESCRIPCIÓN DE LAS FIGURAS
La Figura 1 muestra un mallado FEM de un objeto analizado siguiendo Ia presente invención.
La Figura 2 muestra un Modelo Térmico FEM de un objeto analizado siguiendo Ia presente invención, mallado y listo para Ia aplicación de las condiciones de contorno.
La Figura 3 muestra un gráfico de velocidad de flujo de aire dentro de un objeto analizado siguiendo Ia presente invención.
La Figura 4 muestra un gráfico de Ia temperatura y Ia traza de Ia llama dentro objeto analizado siguiendo Ia presente invención.
Las Figuras 5 y 6 muestran diagramas de flujo ilustrando el cálculo de los coeficientes de transferencia de calor según Ia presente invención.
La Figura 7 muestra una interfaz de una herramienta informática para establecer condiciones térmicas de contorno al objeto analizado siguiendo Ia presente invención.
La Figura 8 muestra una simulación de Ia traza de Ia llama por zonas ambientales del objeto analizado siguiendo Ia presente invención.
La Figura 8 muestra un mapa de temperaturas de Ia estructura ensayada siguiendo Ia presente invención.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Seguidamente describiremos una realización de un método siguiendo Ia presente invención para llevar a cabo el análisis de fuego del compartimento de Ia Unidad de Potencia Auxiliar de un avión que comprende las siguiente fases: Preparación de Modelos, Cálculo y Simulación y Análisis. I. Preparación de Modelos a) La preparación de un Modelo de Elementos Finitos (FEM) comprende los siguientes pasos. a1) Importación de Ia geometría estructural del área del avión que va a ser analizada.
Este proceso usa directamente los modelos CATIA o IRIS usados durante el diseño del avión. La geometría se importa directamente en un sistema informático dotado del paquete de software NASTRAN-PASTRAN
(una herramienta estándar para modelos de elementos finitos) para ser usada en el análisis de Ia simulación del fuego.
La llama debe ser parte del modelo. El tamaño de Ia llama, su temperatura y Ia distancia a Ia estructura se definen en Ia normativa aplicable (p. ej. ISO 2685 "Aircraft Environmental Test Procedure for Airborne Equipment Resistance to Fire in Designated Fire Zones", FAA AC 20-135 "Power-Plant Installation and Propulsión System components Fire protection Test Methods, Standards and Criteria"). a2) Generación del mallado térmico de Ia geometría estructural. Una vez que se ha importado Ia geometría se genera el mallado térmico (ver Fig. 1). Este mallado incluye: - Elementos 2D1 este tipo se mallado puede usarse para elementos estructurales que no tienen una variación de sus propiedades térmicas en sus diferentes ejes.
- Elementos 3D que pueden ser usados en todas las zonas estructurales. Sin embargo, es obligatorio usarlos para ¡os elementos que tienen diferentes propiedades térmicas en sus diferentes ejes. La Fibra de Carbono Reforzada con Plástico (CFRP), habitual en estructuras aeronáuticas se modela teniendo en cuenta su espesor real para considerar el comportamiento ortotrópico de los laminados de fibra de carbono. a3) Introducción de las propiedades del material para cada elemento estructural. El análisis requiere que se introduzcan las siguientes propiedades del material:
- Densidad del material (p).
- Conductividad del material (k). En algunos materiales esta propiedad depende de los ejes de orientación del elemento.
- Calor Específico del material (Cp).
Las propiedades mencionadas pueden introducirse como valores constantes o como variables dependientes del tiempo o Ia temperatura.
La Figura 2 lustral el Modelo Térmico FEM final. b) La preparación de los Modelos 2D de Volumen Finito (FVM) se lleva a cabo en un sistema informático dotado del paquete de software FLUENT (un paquete de software de cálculos de dinámica de fluidos para simular problemas de flujo de fluidos).
II. Cálculo Se lleva a cabo un análisis preliminar de simulación usando dicho FVM y calculándolo con CDF-Fluent para determinar Ia posible evolución y movimiento de Ia llama y del aire ambiental calentado por ella (ver Figs. 3 y 4).
Este estudio preliminar tiene en cuenta los requisitos de ISO 2685 y AC 20-135 para el modelado de Ia llama. La información obtenida a partir de los resultados de este análisis preliminar es Ia siguiente:
- La identificación de diferentes zonas ambientales dentro del modelo.
- La identificación de diferentes zonas ambientales dentro de las cavidades formadas entre las partes estructurales del modelo. - La predicción del movimiento de aire (si existe).
- La predicción de Ia posible traza de Ia llama en las partes estructurales. El siguiente paso es calcular los parámetros para los coeficientes de transferencia de calor de cada uno de los elementos involucrados.
Los coeficientes de convección de calor son dependientes de Ia temperatura de Ia superficie, Ia temperatura ambiental en los alrededores y Ia velocidad de fluido en torno al elemento estructural. El cálculo (considerando solamente el efecto de Ia conducción y Ia convección) se lleva a cabo en un proceso iterativo ilustrado en las Figuras 5 y 6.
En primer lugar (ver Fig. 5) se lleva a cabo una simulación FLUENT con unos primeros coeficientes previstos basados en las temperaturas previstas para el elemento estructural, para Ia temperatura ambiente y asumiendo una convección forzada o natural debida a Ia presencia de una velocidad dada en torno a Ia estructura. Esta primera velocidad (si Ia hay) se obtiene mediante un cálculo FLUENT. Una vez que se han introducido estos coeficientes (ver Fig. 7) se lleva a cabo el análisis térmico. En segundo lugar (ver Fig. 6) se lleva a cabo un proceso iterativo usando Ia herramienta NASTRAN-PASTRAN. Sus pasos principales son los siguientes:
- Establecimiento de unas temperaturas previstas iniciales Ti para las estructuras de acuerdo con los resultados de los mencionados análisis preliminares de simulación: Traza de Llama y Zonas Ambientales (ver Fig. 8).
- Calculo de los coeficientes de transferencia de calor a partir de dichas temperaturas previstas iniciales Ti, de Ia temperatura ambiente y de Ia geometría, usando fórmulas teóricas.
- Obtención de las temperaturas finales Tf. Si las temperaturas iniciales Ti y las finales Tf no difieren más de un
±10% se termina el proceso para el cálculo de los coeficientes de transferencia de calor.
El resultado de este paso son los coeficientes de transferencia de calor para el modelo completo. Estos coeficientes pueden ser constantes a largo del tiempo en Ia simulación o ser dependientes del tiempo.
Radiación. El efecto de Ia radiación se introduce entre los elementos estructurales y entre Ia llama y Ia estructura.
La tasa de transferencia de calor debida a los efectos de Ia radiación se obtiene mediante Ia siguiente fórmula:
σ: constante de Stefan-Boltzman.
F Λ ~Ai : coeficiente de factor de visión entre Sas superficies de radiación. A: área de Ia superficie de radiación.
T1 , T2: temperaturas absolutas de radiación de las superficies 1 y 2 respectivamente.
Los Factores de Visión deben calcularse y son una función de: - La posición relativa de Ia fuente de calor (Ia llama estándar)
- La geometría y dimensiones del objeto. III. Simulación y análisis
El siguiente paso es Ia aplicación de las condiciones térmicas de contorno y los efectos térmicos como sigue. Conductividad. No hay ningún trabajo particular a llevar a cabo distinto del mallado térmico y de las propiedades del material para ser capaz de simular Ia transferencia de calor por conductividad entre los diferentes elementos estructurales. El proceso de conducción térmica solo requiere que los elementos involucrados estén en contacto en el modelo mallado generado. Características térmicas ambientales. Se introduce en el modelo una predicción de Ia temperatura ambiente en los alrededores de Ia estructura y otros efectos térmicos como radiación, flujo solar .... que tengan impacto en Ia temperatura de Ia estructura.
Efectos térmicos de Ia llama. El efecto de Ia llama se simula aplicando: - Convección entre Ia fuente de calor y el aire ambiental bordeando Ia zona afectada por Ia llama.
- Radiación entre Ia fuente de calor y las zonas internas que están afectadas por Ia llama.
Convección. Se establece Ia convección entre las distintas partes estructurales y entre Ia llama y los alrededores de las estructuras, usando las zonas ambientales mencionadas anteriormente.
Radiación. Los factores de visión y las zonas ambientales se implementan en Ia radiación entre partes de las estructuras y entre Ia llama y los alrededores de las estructuras. Antes de llevar a Ia cabo el análisis térmico final debe validarse que Ia llama cumple los requisitos de Ia normativa aplicable. Estos requisitos están orientados hacia dos aspectos principales:
- Temperatura de Ia llama. La normativa impone que Ia temperatura de
Ia llama sea de 1100±80°C. Esto se consigue en los modelos manteniendo Ia llama simulada a una temperatura constante. - La densidad del flujo de calor a Ia estructura para una condiciones dadas debe ser de 116+10 kW/m2. Para validar está hipótesis, se calcula Ia transferencia de calor a Ia estructura con un temperatura inicial de 2O0C y con los coeficientes térmicos calculados para este escenario.
Una vez que se han llevado a cabo los pasos anteriores, se lleva a cabo el análisis teniendo en cuenta, entre otras, las siguientes consideraciones:
- Los coeficientes térmicos de convección a ser usados son los determinados en los pasos anteriores.
- Debe ser tenida en cuenta Ia máxima temperatura que puede ser soportada por los diferentes materiales incluidos en el modelo. Si esta temperatura máxima se alcanza el elemento debe ser eliminado del modelo.
- Debe tenerse un cuidado especial con el material compuesto porque este elemento está formado con diferentes capas de material. Estas capas deben ser progresivamente eliminadas del modelo cuando Ia temperatura se incrementa de acuerdo con los datos del material obtenidos antes de llevar a cabo el análisis.
El resultado final de Ia simulación es un mapa térmico de Ia estructura a Io largo del tiempo (ver Fig. 9).
Se pueden introducir en Ia realización preferida que hemos descrito aquellas modificaciones que estén comprendidas en el ámbito de las reivindicaciones siguientes.

Claims

REIVINDICACIONES
1.- Un método para predecir el comportamiento estructural de un objeto cuando se Ie aplica un fuego durante un período preestablecido de tiempo, caracterizado porque comprende los siguientes pasos: a) Preparación de un Modelo de Elementos Finitos 3D de dicho objeto, implementado en ordenador, incluyendo sus propiedades térmicas relevantes; b) Preparación de un Modelo de Volumen Finito 2D implementado en ordenador para Ia simulación de un fuego dentro de dicho objeto y Ia obtención de información predictiva de sus efectos térmicos; c) Obtención de los coeficientes de transferencia de calor del objeto usando dicha información predictiva de los efectos térmicos dentro de dicho objeto; d) Aplicación de dichos coeficientes de transferencia de calor y otras condiciones de contorno relevantes térmicamente a dicho Modelo de
Elementos Finitos 3D, simulación de Ia aplicación de un fuego a dicho objeto y obtención de un mapa térmico del objeto durante dicha aplicación de un fuego.
2. Un método según Ia reivindicación 1 caracterizado porque dicha información predictiva de los efectos térmicos dentro de dicho objeto incluye información relativa a Ia traza de Ia llama, a las diferentes zonas ambientales y a las temperaturas.
3. Un método según Ia reivindicación 2 caracterizado porque Ia obtención de los coeficientes de transferencia de calor se lleva a cabo en dos pasos: un primer paso en el que se obtienen unas primeras previsiones de los coeficientes de transferencia de calor usando dicho Modelo de Volumen Finito 2D implementado en ordenador y un segundo paso en el que se obtienen las previsiones finales de los coeficientes de transferencia de calor usando dicho Modelo de Elementos Finitos 3D.
4. Un método según cualquiera de las reivindicaciones 1-3, caracterizado porque el objeto es una estructura de un avión.
5. Un método según Ia reivindicación 4, caracterizado porque el objeto es el compartimento de una unidad de potencia auxiliar.
6. Un sistema para predecir el comportamiento estructural de un objeto cuando se Ie aplica un fuego durante un período preestablecido de tiempo, caracterizado porque comprende: a) Un Modelo de Elementos Finitos 3D de dicho objeto, implementado en ordenador, incluyendo sus propiedades térmicas relevantes; b) Un Modelo de Volumen Finito 2D implementado en ordenador para Ia simulación de un fuego dentro de dicho objeto y Ia obtención de información predictiva de sus efectos térmicos; c) Un módulo de cálculo implementado en ordenador para Ia obtención de los coeficientes de transferencia de calor del objeto usando dicha información predictiva de los efectos térmicos dentro de dicho objeto; d) Un módulo analítico implementado en ordenador que, aplicando dichos coeficientes de transferencia de calor y otras condiciones de contorno relevantes térmicamente, permite Ia simulación de Ia aplicación de un fuego a dicho objeto y Ia obtención de un mapa térmico del objeto durante dicha aplicación de un fuego.
7. Un sistema según Ia reivindicación 8 caracterizado porque dicha información predictiva de los efectos térmicos dentro de dicho objeto incluye información relativa a Ia traza de Ia llama, a las diferentes zonas ambientales y a las temperaturas.
8. Un sistema según Ia reivindicación 7 caracterizado porque Ia obtención de los coeficientes de transferencia de calor se lleva a cabo en dos pasos: un primer paso en el que se obtienen unas primeras previsiones de los coeficientes de transferencia de calor usando dicho Modelo de Volumen Finito 2D implementado en ordenador y un segundo paso en el que se obtienen las previsiones finales de los coeficientes de transferencia de calor usando dicho Modelo de Elementos Finitos 3D.
9. Un sistema según cualquiera de las reivindicaciones 6-8, caracterizado porque el objeto es una estructura de un avión.
10. Un sistema según Ia reivindicación 9, caracterizado porque el objeto es el compartimento de una unidad de potencia auxiliar.
PCT/ES2006/070184 2006-11-29 2006-11-29 Métodos y sistemas de simulación térmica para el análisis del fuego en objetos WO2008065213A2 (es)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06841791A EP2107481A1 (en) 2006-11-29 2006-11-29 Thermal simulation methods and systems for analysing fire in objects
PCT/ES2006/070184 WO2008065213A2 (es) 2006-11-29 2006-11-29 Métodos y sistemas de simulación térmica para el análisis del fuego en objetos
US11/699,126 US7647216B2 (en) 2006-11-29 2007-01-29 Methods and systems of thermal simulation for fire analysis of objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2006/070184 WO2008065213A2 (es) 2006-11-29 2006-11-29 Métodos y sistemas de simulación térmica para el análisis del fuego en objetos

Publications (2)

Publication Number Publication Date
WO2008065213A2 true WO2008065213A2 (es) 2008-06-05
WO2008065213A9 WO2008065213A9 (es) 2009-10-15

Family

ID=39464762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2006/070184 WO2008065213A2 (es) 2006-11-29 2006-11-29 Métodos y sistemas de simulación térmica para el análisis del fuego en objetos

Country Status (3)

Country Link
US (1) US7647216B2 (es)
EP (1) EP2107481A1 (es)
WO (1) WO2008065213A2 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113283131A (zh) * 2021-04-22 2021-08-20 杭州申弘智能科技有限公司 一种适用于变电站的火势蔓延预测方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8289327B1 (en) 2009-01-21 2012-10-16 Lucasfilm Entertainment Company Ltd. Multi-stage fire simulation
US8190402B2 (en) * 2009-05-04 2012-05-29 King Fahd University Of Petroleum & Minerals Method of modeling flexural characteristics of a bar subjected to local heating
US8437991B2 (en) * 2009-10-22 2013-05-07 GM Global Technology Operations LLC Systems and methods for predicting heat transfer coefficients during quenching
CN101799843B (zh) * 2010-03-12 2012-09-26 哈尔滨工业大学深圳研究生院 注水空心钢管混凝土构件的防火性能评估方法及应用
US8725476B1 (en) * 2010-05-04 2014-05-13 Lucasfilm Entertainment Company Ltd. Applying details in a simulation
US8970592B1 (en) 2011-04-19 2015-03-03 Lucasfilm Entertainment Company LLC Simulating an arbitrary number of particles
US9396296B2 (en) * 2011-09-05 2016-07-19 Airbus Engineering Centre India System and method for computing thermal boundary conditions from an unstructured CFD simulation on structural components
US9127597B2 (en) * 2011-09-23 2015-09-08 The Boeing Company Sensor system
US8600710B2 (en) 2011-10-05 2013-12-03 King Fahd University Of Petroleum And Minerals Method of modeling thermal problems using a non-dimensional finite element method
EP3091455A3 (en) * 2015-05-07 2016-11-16 Airbus Group India Private Limited Thermal analysis of electronics racks
US10366182B2 (en) * 2015-07-22 2019-07-30 The Boeing Company Methods and apparatus to model thermal mixing for prediction of multi-stream flows
CN105956286B (zh) * 2016-05-06 2018-12-21 北京航空航天大学 一种高超声速飞行器前舱热防护系统全弹道温度边界预测方法
CN106202649B (zh) * 2016-06-29 2018-09-25 河海大学 考虑软基固结和混凝土徐变的闸首施工仿真方法
CN106872195B (zh) * 2017-01-06 2019-04-09 北京临近空间飞行器系统工程研究所 一种高速飞行器气动热飞行试验数据的关联分析方法
CN108304595B (zh) * 2017-05-04 2021-04-02 北京空天技术研究所 一种用于高超声速飞行器半封闭区域的结构温度分析方法
CN112800652B (zh) * 2021-01-27 2023-07-14 中车长春轨道客车股份有限公司 一种耐火数据的确定方法、装置及电子设备
CN113722808B (zh) * 2021-09-14 2024-06-07 华东建筑集团股份有限公司 铝合金网格结构火灾全过程分析应用方法
WO2023180801A1 (en) * 2022-03-24 2023-09-28 Tyco Fire Products Lp Fire suppression design system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09229349A (ja) * 1996-02-23 1997-09-05 Toyota Motor Corp 熱流体発生炉
GB9825624D0 (en) * 1998-11-23 1999-01-13 Rolls Royce Plc Model test apparatus and method
US6500008B1 (en) * 1999-03-15 2002-12-31 Information Decision Technologies, Llc Augmented reality-based firefighter training system and method
ATE393651T1 (de) * 2000-03-01 2008-05-15 Kidde Ip Holdings Ltd Einrichtung zum trainieren von feuerwehrleuten
GB0123136D0 (en) * 2001-09-26 2001-11-14 Fabsec Ltd Structural Beam
US7239990B2 (en) * 2003-02-20 2007-07-03 Robert Struijs Method for the numerical simulation of a physical phenomenon with a preferential direction
US7819201B2 (en) * 2003-03-11 2010-10-26 Tyco Fire Products Lp Upright, early suppression fast response sprinkler
JP4422104B2 (ja) * 2003-12-16 2010-02-24 株式会社日立製作所 ガスタービン用燃焼器
US20050230544A1 (en) * 2004-04-17 2005-10-20 Heinz-Peter Busch Arrangement for coating interior trim components in passenger aircraft while complying with relevant fire protection standards and at the same time improving thermal comfort
US7195180B2 (en) * 2004-10-12 2007-03-27 The Boeing Company Methods and systems for simulating multi-phase fluid flows, including fire suppressant flows
CN102641566B (zh) * 2005-01-12 2015-05-06 伊克利普斯宇航有限公司 灭火系统和灭火方法
US7416412B2 (en) * 2005-07-19 2008-08-26 Segrest Roy R Firefighter training apparatus
US7688199B2 (en) * 2006-11-02 2010-03-30 The Boeing Company Smoke and fire detection in aircraft cargo compartments

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113283131A (zh) * 2021-04-22 2021-08-20 杭州申弘智能科技有限公司 一种适用于变电站的火势蔓延预测方法

Also Published As

Publication number Publication date
US7647216B2 (en) 2010-01-12
WO2008065213A9 (es) 2009-10-15
EP2107481A1 (en) 2009-10-07
US20080126038A1 (en) 2008-05-29

Similar Documents

Publication Publication Date Title
WO2008065213A2 (es) Métodos y sistemas de simulación térmica para el análisis del fuego en objetos
EP2287758A1 (en) System and method for numerically evaluating thermal comfort inside an enclosure
Gadgil On convective heat transfer in building energy analysis
Qian et al. Projection-based reduced-order modeling for spacecraft thermal analysis
McQuaid et al. Heat flux predictions for high speed flows with an immersed boundary method
Bordji et al. Investigation of a Nonlinear Reynolds-Averaged Navier–Stokes Closure for Corner Flows
Pu et al. An immersed boundary/wall modeling method for RANS simulation of compressible turbulent flows
Wang et al. Discussions of some myths and concerned practices of film cooling research
Vatsa et al. Simulation of synthetic jets using unsteady Reynolds-averaged Navier-Stokes equations
Morgado et al. Multi-fidelity approach for aerodynamic modelling and simulation of uncontrolled atmospheric destructive entry
Blades et al. Demonstration of Multiphysics Analysis Tools on Representative Hypersonic Vehicle Structures
Orhan Investigation of the effect of turbulence on entropy generation in turbomachinery
Hinderks et al. Simulation of hypersonic gap flow with consideration of fluid structure interaction
Liu et al. Dragonfly: lander computational fluid dynamics (CFD) thermal analysis on Titan surface
Mohan Development of CFD method to model thermal properties of laminates in a truck cab: Modeling solids and HVAC performance
Wang et al. Extension of analytical wall functions to supersonic and hypersonic flows
Silfwerbrand Feasibility study of modelling a virtual climate chamber with CFD
Millot et al. Thermal network for natural convection during engine soak-back
Gielda et al. The impact of computational fluid dynamics on automotive interior comfort engineering
Reuther et al. External Computational Aerothermodynamic Anaysis of the Space Shuttle Orbiter at STS-107 Flight Conditions
Cai A High-order Discontinuous Galerkin Method for Simulating Incompressible Fluid-Thermal-Structural Problems
Özkan et al. Development of Viscous CFD Analysis Model Including Real Gas Effects for Nose Optimization at Hypersonic Speeds
Ravindra Unsteady Interior Climate Simulation of Electric Buses
Fishwick et al. Lessons learned from thermal vacuum testing of lisa pathfinder over three system level thermal tests
WIENHOLTS et al. 3-D Flow/thermal analysis of a defect in the RSRM field joint

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06841791

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006841791

Country of ref document: EP