WO2008064496A2 - Utilization of metals and metal salts as fuel in thermal plasmas to create energy - Google Patents

Utilization of metals and metal salts as fuel in thermal plasmas to create energy Download PDF

Info

Publication number
WO2008064496A2
WO2008064496A2 PCT/CH2006/000676 CH2006000676W WO2008064496A2 WO 2008064496 A2 WO2008064496 A2 WO 2008064496A2 CH 2006000676 W CH2006000676 W CH 2006000676W WO 2008064496 A2 WO2008064496 A2 WO 2008064496A2
Authority
WO
WIPO (PCT)
Prior art keywords
metals
gases
motorr
nanoparticles
elements
Prior art date
Application number
PCT/CH2006/000676
Other languages
French (fr)
Inventor
Christian Daniel Assoun
Margit Hartwig
Original Assignee
Glycan Pharma Switzerland Sa
Neutral Metal Sa Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Glycan Pharma Switzerland Sa, Neutral Metal Sa Switzerland filed Critical Glycan Pharma Switzerland Sa
Priority to PCT/CH2006/000676 priority Critical patent/WO2008064496A2/en
Priority to PCT/EP2007/010357 priority patent/WO2008064888A1/en
Publication of WO2008064496A2 publication Critical patent/WO2008064496A2/en

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D7/00Arrangements for direct production of electric energy from fusion or fission reactions
    • G21D7/02Arrangements for direct production of electric energy from fusion or fission reactions using magneto-hydrodynamic generators
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/48Generating plasma using an arc
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/54Plasma accelerators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Definitions

  • the process which is utilized relies on MGD and MHD processes combining metals r metalloids, and metal salts using natural elements in conducting gases working with Lanthanides (Ln3+), Yttrium (Y), Lanthanum Hexaboride (LaB6), Boron (B), Boron Nitride, Silicon (Si), Uranium (U238), Thorium (Th), Aluminum (Al), Magnesium (Mg), Iron (Fe) and Zinc (Zn) among other elements.
  • the present invention is based on dynamic fundamental laws applied to plasmas, using conducting gases.
  • the plasmas used are in LTE (Local Thermal Equilibrium), NLTE (Non Local Thermal Equilibrium), PLTE (Partial Local Thermal Equilibrium) states, and generated with inductive, and resistive methods (RF-HF-and electrodes).
  • the invention creates nanoparticles from natural elements, i.e. metals, metal salts or metalloids ( B, Si, Fe, Mg, Zn, U, Th, Ge... ) and alkali elements (Li, K, Ca, Na, Cs).
  • the nanoparticles (10-500 nm) are analyzed with X-ray diffraction in plasmas of different shapes: linear, toroidal, spheric and hemispheric configurations.
  • the metals treated by plasmas are recycled in MHD, MGD and/or turbine systems to be used as FUELS in the presence of adapted gases or mixed gases ( CO2, 02, 03, NxOy, H2, D2, CO... ) and the energy liberated from combustion is directly recovered in Thermal Motors and/ or Generators.
  • This process of recovery includes the inner quantum energy emitted by the combustion and the energy transfer when Silicon is used, associated with other metals, i.e. Aluminum, Magnesium, Boron, Zinc, Uranium
  • Oxidiz ⁇ ng-Reducing system can be applied to nanoparticules (at 380 0 C to 780 0 C)
  • the temperature ignition is 800 0 C to 950 0 C under precise conditions dependent on each specific element (metals, metal salts of or metalloids).
  • the ignition time (500 ms-millisecond to 1,250 ms-millisecond) is depending on each element (metals, metal salts of or metalloids).
  • the invention claims the possibility to regulate the combustion time expressed (between 10 and 700 milliseconds) by using a special flow with adapted gases for oxidation and/or reduction phenomena.
  • the nanoparticles are reduced or oxidized as necessary all along the recycling process (MHD, MGD). Only one payload of metals (fuels) is necessary to keep the process active across a time period of several hours to several days; some additional payloads of metals or metalloids may be necessary to impede the loss of payloads deposited on the parietal zones in the plasma chambers. Generally, the payloads will be between 20 g and several kg or tons, depending upon the power, which has to be generated.
  • the present invention can be used either on earth or for exo- metallurgy on other planets. It can also be used for energy transfer in space and ground propulsion.
  • the gases to be used can be extracted from the ground of such planets, if, for example, these planets do not possess in their own atmosphere the necessary gases to generate plasmas.
  • the present invention will function without external gases; however, initially it will be necessary to have gases available.
  • Cryogenic machines would be useful in some phase of the invention to allow for a rapid recovery of nanoparticles.
  • the invention is also used to treat and destroy highly toxic molecules.
  • the ablation chamber utilized in the process focuses plasma energies on the ablation portion of the process
  • Fig 1 ABLATION CHAMBER The dimensions are energy dependant. For power supply units for boats or factories these dimensions are above one meter of diameter, for smaller units these dimensions may be under 100 cm, but the minimum has to be 20 cm. Thermal plasmas and/or laser CO2 can treat the raw materials (salts, metals, metal salts and metalloids).
  • Fig 2 GRAVITY CHAMBER (1 litre to 30 liters) The dimensions are energy dependant. The metals are considered as fuels.
  • the gravity chamber is coupled with the ablation chamber
  • Each station is customized with the general flow of gases needed.
  • Fig 5 RECYCLING PLASMA (toroidal chamber) MGD MHD system (creation of nanoparticles).
  • the toroidal chamber measures 30 cm to several meters diameter with sections between 2 - 6 cm diameter or 20 to 60 cm diameter.
  • Fig 6 RELAXATION SPHERE Measures 20 cm to several meters of diameter.
  • Fig 7 TESLA TURBINE Adapted to the exchanges of thermal energy and the needed acceleration flow.
  • Fig 8 DIFFUSION THERMAL SPHERE (Energy power production) IGNITION CHAMBER. The dimensions are 20 cm to several meters of diameter (energy dependant).
  • Fig 9 ANALYZERS STATION ICP-MS, GC-MS, X-ray for industrial plasma motors.
  • the invention utilizes at the beginning of the process a chamber that can receive a payload of metals and/or metal salts to be treated by thermal plasmas (RF, HF, inductive methods) or by resistive methods (electrodes) or hybrid systems using RF, HF and electrodes. Pulsed plasma method can be utilized in the process.
  • the chamber can receive powders that are inhomogeneous in size and/or composition.
  • the powders can be introduced in the ABLATION CHAMBER (Fig. 1) with pumps, turbines but also by gravity force.
  • the gases utilized are mainly inert gases (Argon Ar, Helium He, Nitrogen N2) or mixed gases.
  • the ABLATION CHAMBER (Fig. 1) recovers a determined quantity at the bottom and the thermal plasmas and/or laser C02 can treat the raw materials (salts, metals and metalloids).
  • the temperature gradient (NLTE 2000-3000K) is sufficient to create gaseous solutions like with natural elements.
  • the GRAVITY CHAMBER (Fig. 2) is coupled with the ablation chamber.
  • nanoparticles are introduced in the RELAXATION CHAMBER (Fig. 3).
  • the nanoparticles are reduced if necessary with gases in the RELAXATION CHAMBER where poly-injectors are used (N2, CO2, H2, Ar, He, N2O, NxOy, CO, D2).
  • the size of the particles are calculated with a mathematical program (Beer - Lambert) coupled to a quantum device (absorption of specific light - R, IR, UV).
  • the microparticles and nanoparticles can be introduced in the MHD-MGD recycling Plasma Process (Fig. 5) for special treatment and research, but the particles can also be introduced in the DIFFUSION THERMAL SPHERE (Fig. 6) which is a RELAXATION CHAMBER, where atomic species coming from recycling loop are recovered.
  • the atoms associated with plasmagene gases ( Ar, He, others ) are analyzed with ICP-MS and ICP-AES to appreciate the atomic concentration of natural elements introduced in plasma chambers Fig. 5, Fig. 3 and Fig. 1.
  • Temperature probes are arranged around the relaxation spheres, ablation chamber and Plasma chambers. The temperature is qualified as macroscopic temperature. (For plasmas three kinetic temperatures are calculated).
  • Plasma Temperature is calculated with Griem criteria and with diagnostics of the different plasmas created by RF Induction and Resistive Methods CI 2478.556 A° line, and neutral Argon 4300 A° and 4158.39 A° line. To avoid overheating of parietal surfaces of the plasma chambers in pulse mode, the instabilities of the plasma is negligible compared to the physical advantages of this simple methodology.
  • the pulse method can be utilized in some parts of the invention, but not in the whole process; for example in the ablation chamber, in the recycling toroidal chamber.
  • the pressure of the plasma gene gases can be decreased and the atomic species introduced like Ln3+ (Lanthanides) and Alkali (Li, K, Na, Ca, Cs...) and BN3 (Boron Nitride) are increased, therefore, the LTE is stressed and the temperature is decreasing very near to the plasma shutoff. The parietal zones are protected, even if the MHD-MGD system efficiency is considerably diminished.
  • the plasma temperature is quite adapted to recycle externally (via TESLA turbine Rg. 7) the gases to replace the loss of the payload and kinetics in the plasma.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Fluid Mechanics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Description

Title of the Invention:
Utilization of Metals and Metal salts as Fuels in Thermal Plasmas to create Energy
Metals, Metalloids and Metal salts used as Fuels in Thermal Plasmas(continuous and/ or pulsed mode) to create energy for Motors and/or Generator systems recycling atomic species with MGD and MHD processes using natural elements in conducting gases working with Lanthanides (Ln3+), Yttrium (Y), Lanthanum Hexaboride (LaB6), Boron (B), Boron Nitride, Silicon (Si), Uranium238 (U),Thorium and Aluminum (Al), Magnesium (Mg), Iron (Fe), Zinc (Zn), among other elements.
BACKGROUND OF THE INVENTION
The process which is utilized relies on MGD and MHD processes combining metalsr metalloids, and metal salts using natural elements in conducting gases working with Lanthanides (Ln3+), Yttrium (Y), Lanthanum Hexaboride (LaB6), Boron (B), Boron Nitride, Silicon (Si), Uranium (U238), Thorium (Th), Aluminum (Al), Magnesium (Mg), Iron (Fe) and Zinc (Zn) among other elements. The present invention is based on dynamic fundamental laws applied to plasmas, using conducting gases. The plasmas used are in LTE (Local Thermal Equilibrium), NLTE (Non Local Thermal Equilibrium), PLTE (Partial Local Thermal Equilibrium) states, and generated with inductive, and resistive methods (RF-HF-and electrodes).
The invention creates nanoparticles from natural elements, i.e. metals, metal salts or metalloids ( B, Si, Fe, Mg, Zn, U, Th, Ge... ) and alkali elements (Li, K, Ca, Na, Cs...). The nanoparticles (10-500 nm) are analyzed with X-ray diffraction in plasmas of different shapes: linear, toroidal, spheric and hemispheric configurations.
The metals treated by plasmas are recycled in MHD, MGD and/or turbine systems to be used as FUELS in the presence of adapted gases or mixed gases ( CO2, 02, 03, NxOy, H2, D2, CO... ) and the energy liberated from combustion is directly recovered in Thermal Motors and/ or Generators. This process of recovery includes the inner quantum energy emitted by the combustion and the energy transfer when Silicon is used, associated with other metals, i.e. Aluminum, Magnesium, Boron, Zinc, Uranium
Oxidizϊng-Reducing system (Redox) can be applied to nanoparticules (at 3800C to 7800C) The temperature ignition is 8000C to 9500C under precise conditions dependent on each specific element (metals, metal salts of or metalloids).
The ignition time (500 ms-millisecond to 1,250 ms-millisecond) is depending on each element (metals, metal salts of or metalloids).
The invention claims the possibility to regulate the combustion time expressed (between 10 and 700 milliseconds) by using a special flow with adapted gases for oxidation and/or reduction phenomena.
The nanoparticles are reduced or oxidized as necessary all along the recycling process (MHD, MGD). Only one payload of metals (fuels) is necessary to keep the process active across a time period of several hours to several days; some additional payloads of metals or metalloids may be necessary to impede the loss of payloads deposited on the parietal zones in the plasma chambers. Generally, the payloads will be between 20 g and several kg or tons, depending upon the power, which has to be generated.
The present invention can be used either on earth or for exo- metallurgy on other planets. It can also be used for energy transfer in space and ground propulsion.
The gases to be used can be extracted from the ground of such planets, if, for example, these planets do not possess in their own atmosphere the necessary gases to generate plasmas.
The present invention will function without external gases; however, initially it will be necessary to have gases available.
Cryogenic machines would be useful in some phase of the invention to allow for a rapid recovery of nanoparticles.
The invention is also used to treat and destroy highly toxic molecules.
DESCRIPTION OF PREFERRED EMBODIMENT
(Plasma MOTORR )
BRIEF DESCRIPTION OF FIGURES AND DRAWINGS
GENERAL PROCESS ( Fig. 1 ) Page 1
A The ablation chamber utilized in the process focuses plasma energies on the ablation portion of the process
B The gravity chamber utilized in the process
C X-rax and laser methodologies for the appreciation of nanoparticles sizing
D Reacting gases
E Recycling MHD-MGD
F The relaxation chamber in which the process is slowed and relaxed
G Tesla turbine
H Ignition Chamber, reacting gases, (diffusion thermal sphere)
I Analyzers
J Thermal conversion (energies production)
K Recycling loop (cryozone)
Drawing 1: PROCESS PROGRESSION ( Figs. 1 - 11) Page 2
Drawing 2: PROCESS PROGRESSION (Figs. 1 - 2 ) Page 3
Fig 1 ABLATION CHAMBER The dimensions are energy dependant. For power supply units for boats or factories these dimensions are above one meter of diameter, for smaller units these dimensions may be under 100 cm, but the minimum has to be 20 cm. Thermal plasmas and/or laser CO2 can treat the raw materials (salts, metals, metal salts and metalloids).
Fig 2 GRAVITY CHAMBER (1 litre to 30 liters) The dimensions are energy dependant. The metals are considered as fuels. The gravity chamber is coupled with the ablation chamber
Drawing 3: PROCESS PROGRESSION ( Figs. 3 - 4 ) Page 4
Fig 3 RECYCLING and RELAXATION CHAMBER 20 cm diameter to several meters diameter, where thin particles are introduced. The dimensions are energy dependant.
Fig 4 REACTING GASES and POLYINJECTORS STATION,
Each station is customized with the general flow of gases needed.
Drawing 4: PROCESS PROGRESSION ( Figs. 5 - 6) Page 5
Fig 5 RECYCLING PLASMA (toroidal chamber) MGD MHD system (creation of nanoparticles). The toroidal chamber measures 30 cm to several meters diameter with sections between 2 - 6 cm diameter or 20 to 60 cm diameter.
Fig 6 RELAXATION SPHERE Measures 20 cm to several meters of diameter.
Drawing 5: PROCESS PROGRESSION ( Figs. 7 - 8 - 9 ) Page 6
Fig 7 TESLA TURBINE Adapted to the exchanges of thermal energy and the needed acceleration flow.
Fig 8 DIFFUSION THERMAL SPHERE (Energy power production) IGNITION CHAMBER. The dimensions are 20 cm to several meters of diameter (energy dependant). Fig 9 ANALYZERS STATION ICP-MS, GC-MS, X-ray for industrial plasma motors.
Drawing 6: PROCESS PROGRESSION ( Figs. 10 - 11) Page 7
Fig 10 THERMAL CONVERSION The energies are directly utilized in motors or fuel cells or converters or thermal central power (invention can be developed on earth or on others planets with or without atmosphere)
Fig 11 CRYOZONE Recycling loop
Summary of the Invention
The invention utilizes at the beginning of the process a chamber that can receive a payload of metals and/or metal salts to be treated by thermal plasmas (RF, HF, inductive methods) or by resistive methods (electrodes) or hybrid systems using RF, HF and electrodes. Pulsed plasma method can be utilized in the process.
The chamber can receive powders that are inhomogeneous in size and/or composition. The powders can be introduced in the ABLATION CHAMBER (Fig. 1) with pumps, turbines but also by gravity force. The gases utilized are mainly inert gases (Argon Ar, Helium He, Nitrogen N2) or mixed gases.
The ABLATION CHAMBER (Fig. 1) recovers a determined quantity at the bottom and the thermal plasmas and/or laser C02 can treat the raw materials (salts, metals and metalloids).
The temperature gradient (NLTE 2000-3000K) is sufficient to create gaseous solutions like with natural elements. The GRAVITY CHAMBER (Fig. 2) is coupled with the ablation chamber.
Only the nanoparticles are introduced in the RELAXATION CHAMBER (Fig. 3). The nanoparticles are reduced if necessary with gases in the RELAXATION CHAMBER where poly-injectors are used (N2, CO2, H2, Ar, He, N2O, NxOy, CO, D2...). The size of the particles are calculated with a mathematical program (Beer - Lambert) coupled to a quantum device (absorption of specific light - R, IR, UV).
Some determination of the size particles can be appreciated with X-ray diffractometer methodology coupled to the RELAXATION CHAMBER (Fig. 3) and the ABLATION CHAMBER (fig. 1).
After the treatment, the microparticles and nanoparticles can be introduced in the MHD-MGD recycling Plasma Process (Fig. 5) for special treatment and research, but the particles can also be introduced in the DIFFUSION THERMAL SPHERE (Fig. 6) which is a RELAXATION CHAMBER, where atomic species coming from recycling loop are recovered.
The atoms associated with plasmagene gases ( Ar, He, others ) are analyzed with ICP-MS and ICP-AES to appreciate the atomic concentration of natural elements introduced in plasma chambers Fig. 5, Fig. 3 and Fig. 1.
Temperature probes are arranged around the relaxation spheres, ablation chamber and Plasma chambers. The temperature is qualified as macroscopic temperature. (For plasmas three kinetic temperatures are calculated).
Plasma Temperature is calculated with Griem criteria and with diagnostics of the different plasmas created by RF Induction and Resistive Methods CI 2478.556 A° line, and neutral Argon 4300 A° and 4158.39 A° line. To avoid overheating of parietal surfaces of the plasma chambers in pulse mode, the instabilities of the plasma is negligible compared to the physical advantages of this simple methodology.
The pulse method can be utilized in some parts of the invention, but not in the whole process; for example in the ablation chamber, in the recycling toroidal chamber.
The pressure of the plasma gene gases can be decreased and the atomic species introduced like Ln3+ (Lanthanides) and Alkali (Li, K, Na, Ca, Cs...) and BN3 (Boron Nitride) are increased, therefore, the LTE is stressed and the temperature is decreasing very near to the plasma shutoff. The parietal zones are protected, even if the MHD-MGD system efficiency is considerably diminished.
The plasma temperature is quite adapted to recycle externally (via TESLA turbine Rg. 7) the gases to replace the loss of the payload and kinetics in the plasma.
Around and inside toroidal chamber we place several pieces of equipment for diagnosing the plasma and the species (future FUEL) being created.

Claims

CLAIMS: MOTORR PROCESS
Claim n°l The process claims, in conformity with the invention, the construction of a plasma machine called MOTORR comprising MHD- MGD systems which allow the creation of nanometallic particles to be used as FUELS when reacting with appropriate gases.
Claim n°2 Plasma in LTE, NLTE, PLTE states are generated in continuous mode and/or pulsed mode.
Claim n°3 Metals and alkali-elements, metalloids, salts of preferred elements are utilized.
Claim n°4 Nanoparticles are created in several states (reduced and/or oxidized), creating a solution state). The dimensions of the nanoparticles (in gases, metals or metalloids) are 10 to 500 nm.
Claim n°5 The nanoparticles created in contact with appropriate reacting gases (N2, H2, D2, Ar, CO2, CO, NxOy...) produce energy.
Claim n°6 The quantity (payload) of natural elements involved in the MOTORR process is directly proportional to the power to be created.
Claim n°7 The metals and metalloid elements introduced in the MOTORR system can be neutral or chemical salts of natural elements. The majority of natural elements can be introduced in the process; mainly Iron, Aluminium (Al), Zinc (Zn) Lanthanides, Yttrium, Magnesium, Boron, Lanthanum Hexaboride, Alkalis (Na, Ca, K, Ca, Sc), Silicon (Si), Germanium, Uranium 238 (U), Thorium, Cs. The choice of the metals as Fuels depends upon the quality and scope of the energy to be generated.
Claim n°8 The nanoparticles are generated from powders of natural elements, but also from liquids.
Claim n°9 In the process we can utilize hydrated salts or a quantity of water H20, D2O can be introduced into the system. Claim n°10 The MOTORR process can be coupled to the recycling process.
Claim n°ll The process can be utilized for fuel cells.
Claim N°12 The process can be utilized as a irradiative converter using Silicon element.
Claim N°13 The process can be utilized for space propulsion, in order to avoid the liquid metal deposition and condensation of several tons of (mainly) aluminium. This happens mostly in the external limit of the propulsion engine area, where these aluminium depositions can produce unstability of the rocket.
Notes:
Drawings are following the claims and are described on additional pages l to 7
PCT/CH2006/000676 2006-11-30 2006-11-30 Utilization of metals and metal salts as fuel in thermal plasmas to create energy WO2008064496A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CH2006/000676 WO2008064496A2 (en) 2006-11-30 2006-11-30 Utilization of metals and metal salts as fuel in thermal plasmas to create energy
PCT/EP2007/010357 WO2008064888A1 (en) 2006-11-30 2007-11-29 Process for energy creation using plasma treatment of metals, metal salts and metalloids and device for the implemenation of such process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CH2006/000676 WO2008064496A2 (en) 2006-11-30 2006-11-30 Utilization of metals and metal salts as fuel in thermal plasmas to create energy

Publications (1)

Publication Number Publication Date
WO2008064496A2 true WO2008064496A2 (en) 2008-06-05

Family

ID=38230202

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CH2006/000676 WO2008064496A2 (en) 2006-11-30 2006-11-30 Utilization of metals and metal salts as fuel in thermal plasmas to create energy
PCT/EP2007/010357 WO2008064888A1 (en) 2006-11-30 2007-11-29 Process for energy creation using plasma treatment of metals, metal salts and metalloids and device for the implemenation of such process

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/010357 WO2008064888A1 (en) 2006-11-30 2007-11-29 Process for energy creation using plasma treatment of metals, metal salts and metalloids and device for the implemenation of such process

Country Status (1)

Country Link
WO (2) WO2008064496A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8323365B2 (en) 2007-05-22 2012-12-04 Praxair Technology, Inc. Dual mode reactor SMR integration
US20180073361A1 (en) * 2016-09-09 2018-03-15 Christian Daniel Assoun Plasmas for extraterrestrial resources and applied technologies (pert) space debris remediation, mining, and refining

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
LU101272B1 (en) 2019-06-19 2020-12-28 Glycan Poland Sp Z O O Route and engineering protocols for alzheimer's disease prevention, treatment and neuronal rebuilding

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU523583B2 (en) * 1978-07-13 1982-08-05 Interx Research Corp. Thiazolidine prodrugs
WO1996029143A1 (en) * 1995-03-20 1996-09-26 Schmidt, Hermann Fluid compound thermochemical conversion process and converter
US7026570B2 (en) * 2002-03-28 2006-04-11 Aerospace Consulting Corporation Spain, S.L. Transportable, self-controlled plasma neutralization of highly toxic bio-chemical waste and method therefore

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8323365B2 (en) 2007-05-22 2012-12-04 Praxair Technology, Inc. Dual mode reactor SMR integration
US20180073361A1 (en) * 2016-09-09 2018-03-15 Christian Daniel Assoun Plasmas for extraterrestrial resources and applied technologies (pert) space debris remediation, mining, and refining
WO2018049153A1 (en) * 2016-09-09 2018-03-15 Christian Assoun Pert space debris remediation, mining, and refining
CN109952618A (en) * 2016-09-09 2019-06-28 C·阿苏 Reparation, mining and the purification of PERT space trash
US10626479B2 (en) 2016-09-09 2020-04-21 Christian Daniel Assoun Plasmas for extraterrestrial resources and applied technologies (PERT) space debris remediation, mining, and refining

Also Published As

Publication number Publication date
WO2008064888A1 (en) 2008-06-05

Similar Documents

Publication Publication Date Title
US20230143022A1 (en) Magnetohydrodynamic hydrogen electrical power generator
Fridman Plasma chemistry
Dolan Fusion Research: Principles
Goede CO2 neutral fuels
JP2018027888A (en) Hydrogen-catalyst reactor
JP2015071536A5 (en)
Francis et al. Manganese oxide dissociation kinetics for the Mn2O3 thermochemical water-splitting cycle. Part 1: Experimental
US20090098421A1 (en) Hydrogen-Catalyst Reactor
Corgnale et al. High pressure thermal hydrogen compression employing Ti1. 1CrMn metal hydride material
WO2008064496A2 (en) Utilization of metals and metal salts as fuel in thermal plasmas to create energy
Romero-Paredes et al. Exergy and separately anergy analysis of a thermochemical nuclear cycle for hydrogen production
Ishihara et al. Two-step water splitting process with solid solution of YSZ and Ni-ferrite for solar hydrogen production (ISEC 2005-76151)
Tu et al. Plasma catalysis
Satpute et al. Effects of excess iodine and water on Bunsen reaction for over-azeotropic limit
Hoseinpur et al. Boron removal from silicon melt by gas blowing technique
Zhou et al. One-dimensional modeling of catalyzed H2O2 decomposition in microchannel flows
US20040137289A1 (en) Fuel cells that operate on nuclear reactions produced using rapid temperature changes
Fukada et al. Diffusion coefficient of tritium through molten salt flibe and rate of tritium leak from fusion reactor system
Ohashi et al. Numerical Study on Tritium Behavior by Using Isotope Exchange Reactions in Thermochemical Water-Splitting Iodine—Sulfur Process
Sakaba et al. Hydrogen production by thermochemical water-splitting IS process utilizing heat from high-temperature reactor HTTR
Ryazantsev et al. Hydrogen production, storage, and use at nuclear power plants
Alvani et al. Reactive pellets for improved solar hydrogen production based on sodium manganese ferrite thermochemical cycle
WO2008074162A1 (en) Thermal plasma treatment technologies for hazardous wastes remediation
US20120266863A1 (en) Solar-Hydrogen Hybrid Storage System for Naval and Other Uses
Kancherla et al. A Counter-flow Diffusion Flame study for the Supercritical CO2 Combustion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06817728

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06817728

Country of ref document: EP

Kind code of ref document: A1