WO2008062561A1 - Measuring device, fuel battery with same, and measuring method - Google Patents

Measuring device, fuel battery with same, and measuring method Download PDF

Info

Publication number
WO2008062561A1
WO2008062561A1 PCT/JP2007/001283 JP2007001283W WO2008062561A1 WO 2008062561 A1 WO2008062561 A1 WO 2008062561A1 JP 2007001283 W JP2007001283 W JP 2007001283W WO 2008062561 A1 WO2008062561 A1 WO 2008062561A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
permanent magnet
magnetic field
film
region
Prior art date
Application number
PCT/JP2007/001283
Other languages
French (fr)
Japanese (ja)
Inventor
Kuniyasu Ogawa
Tomoyuki Haishi
Kohei Ito
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006315563A external-priority patent/JP5046203B6/en
Application filed by Keio University filed Critical Keio University
Publication of WO2008062561A1 publication Critical patent/WO2008062561A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • G01N24/082Measurement of solid, liquid or gas content
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3808Magnet assemblies for single-sided MR wherein the magnet assembly is located on one side of a subject only; Magnet assemblies for inside-out MR, e.g. for MR in a borehole or in a blood vessel, or magnet assemblies for fringe-field MR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/383Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using permanent magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/561Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution by reduction of the scanning time, i.e. fast acquiring systems, e.g. using echo-planar pulse sequences
    • G01R33/5615Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE]
    • G01R33/5617Echo train techniques involving acquiring plural, differently encoded, echo signals after one RF excitation, e.g. using gradient refocusing in echo planar imaging [EPI], RF refocusing in rapid acquisition with relaxation enhancement [RARE] or using both RF and gradient refocusing in gradient and spin echo imaging [GRASE] using RF refocusing, e.g. RARE
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04492Humidity; Ambient humidity; Water content
    • H01M8/04529Humidity; Ambient humidity; Water content of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1007Fuel cells with solid electrolytes with both reactants being gaseous or vaporised
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/341Constructional details, e.g. resonators, specially adapted to MR comprising surface coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/50NMR imaging systems based on the determination of relaxation times, e.g. T1 measurement by IR sequences; T2 measurement by multiple-echo sequences
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • Measuring device fuel cell including the same, and measuring method
  • the present invention relates to a measuring apparatus, a fuel cell including the same, and a measuring method, and more particularly, to a background art relating to a technique for locally measuring the distribution of the amount of a protic solvent in a membrane
  • a functional material such as a membrane
  • the amount of solvent in the material may dominate the performance of the material.
  • functional materials include solid polymer electrolyte membranes used in fuel cells.
  • a gas containing water vapor is supplied as a fuel and an oxidant from a flow channel formed in a separator during operation.
  • the supply of fuel and oxidant causes a distribution in the amount of water in the solid polymer electrolyte membrane, and the distribution state changes with time.
  • Patent Document 1 As a technique for locally measuring the amount of the protonic solvent at a specific portion of a sample, there is a conventional one described in Patent Document 1.
  • the Malczech method is applied locally to a specific part of the sample, the relaxation time constant is measured by 1 H-NMR, and the amount of the protonic solvent in the specific part of the sample is measured locally.
  • the technology to do is described. According to this technique, it is possible to measure the amount of local protonic solvent at a specific location in a substance in a relatively short time using the measurement result of NMR.
  • Patent Document 2 As another conventional technique related to NMR measurement of a sample, Patent Document 2 and And those described in 3.
  • Patent Document 2 describes that NMR measurement of a sample is performed using a U-shaped magnet and a solenoid coil.
  • Patent Document 3 describes a moisture distribution measuring device for a polymer film. In this method, the MR I image of the polymer membrane is acquired and the moisture distribution is acquired.
  • Patent Document 1 International Publication No. 2006/030743 Pamphlet
  • Patent Document 2 Japanese Patent Application Laid-Open No. 54-1 27785
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2004_1070297
  • Non-special text ⁇ Tsushima Si ⁇ n 2 3 ⁇ 4 “Magnetic resonance imaging of the wa ter distribution within a polymer electrolyte membrane in fuel eel Is J, ELECTROCHEMICAL AND SOLID-STATE LETTERS, 7 (9), A269-A272, 2004
  • Non-Patent Document 2 Keigo Takenaka, “Solid Polymer Electrolyte Water Electrolysis Technology and Its Applications”, Soda and Chlorine, Vo, 37, p. 323-337 (1 986)
  • the characteristics of the film can be measured.
  • the above-described solid polymer electrolyte membrane of a fuel cell is useful for optimal control of the operating state during battery operation.
  • a device for measuring the spatial distribution of the amount of the protonic solvent in the membrane is required.
  • the conventional measuring device described above has a protonic solvent from a specific part of the membrane. It was not always suitable for measuring the amount of protonic solvent in the membrane as it diffused into the membrane.
  • a solvent amount calculation unit that calculates the amount of the protonic solvent at a specific location of the membrane
  • the permanent magnet is provided with a channel groove through which a fluid containing the protonic solvent flows.
  • a measuring device is provided in which the film is provided in parallel to the flow path forming surface of the permanent magnet.
  • a film is arranged in parallel to the flow path forming surface of the permanent magnet formed with the flow path groove, and the amount of the protonic solvent at a specific location in the film is locally measured using a nuclear magnetic resonance method.
  • a measurement method is provided.
  • a static magnetic field is applied to the film, and a proton solvent is flowed into the flow path groove so that the protons in the film.
  • a distribution can be formed in the amount of the organic solvent. Then, by applying an excitation oscillating magnetic field to the part of the film on which the distribution of the amount of the protonic solvent is formed using an RF coil, an echo signal is obtained, thereby distributing the protonic solvent in the film. Can be detected.
  • the film is arranged in parallel to the flow path forming surface of the permanent magnet, it is possible to reliably align the measurement location when performing the measurement using the permanent magnet having a specific shape and the RF coil.
  • the amount of protonic solvent in the membrane can be measured in situ.
  • the membrane can have a desired It can adjust so that it may become a tonality solvent amount.
  • an RF coil is used to excite part of the membrane.
  • the measuring apparatus of the present invention can be incorporated into a fuel cell, for example.
  • an echo signal can be obtained by performing measurement while flowing a fluid containing a protonic solvent in the flow channel groove of the permanent magnet. It is not essential in the present invention to flow the fluid in the flow channel, and the measurement may be performed in a state in which no fluid flows.
  • the protonic solvent include water and alcohols such as methanol and ethanol.
  • the “echo signal” may be a signal that corresponds to the excitation oscillating magnetic field and functions as an NMR signal capable of calculating the T 2 relaxation time constant.
  • static magnetic field is completely a magnetic field that is stable in time to such an extent that the echo signal and the T 2 relaxation time constant can be acquired stably. It does not have to be a stable magnetic field, and there may be some variation within that range.
  • the solvent amount calculating section from the intensity of the echo signal, and calculates the T 2 relaxation time constant, from the calculated said T 2 relaxation time constant, specific portions of the film
  • the amount of the protonic solvent in may be calculated.
  • the second step is from the strong degree of the echo signals, calculating a T 2 relaxation time constant, the pro tons of solvent content and T 2 relaxation time constant in the film acquires data indicating the correlation, including from the said data and T 2 wherein T 2 relaxation time constant calculated in the step of calculating the relaxation time constant, and determining the amount of the pro ton solvent, the You may go out.
  • the magnitude of the static magnetic field changes along the normal direction of the surface.
  • a spatial distribution different from the case where there is no flow path occurs in the magnitude of the static magnetic field in the upper part of the flow path forming surface.
  • the resonance frequency in the measurement of the membrane changes depending on the strength of the static magnetic field at the measurement location, so that the echo signal can be acquired reliably.
  • the flow path groove of the permanent magnet may include a plurality of groove portions arranged in parallel to each other.
  • the projections (flow channel forming surface) formed between the plurality of groove portions are separated from the flow channel forming surface at a specific interval. Can be supported. Therefore, the distance between the film and the flow path forming surface in the ray direction of the flow path forming surface can be maintained in a state of being regulated to a specific size, and the film can be stably held in the vicinity of the flow path forming surface.
  • one surface of the film may be in direct contact with the flow path forming surface of the permanent magnet, or the distance adjustment made of a nonmagnetic material between the flow path forming surface and the film.
  • a member may be interposed.
  • the RF coil may form the excitation oscillating magnetic field having an amplitude in a direction in the flow path forming plane and perpendicular to the extending direction of the groove. .
  • the magnetostatic field intensity in the plane parallel to the flow path formation surface is uniform in the following areas (i) and (ii) in the upper area of the flow path formation surface. Regions can be formed.
  • the region (i) is formed by extending the groove portion in a plane parallel to the flow path forming surface. This is a region where the change in the direction of the static magnetic field is small.
  • the region (ii) is defined by the extending direction of the groove in the plane parallel to the flow path forming surface. This is the region where the change of the static magnetic field is small.
  • the RF coil includes a pair of coil portions, and the excitation is performed in a region sandwiched between the pair of coil portions.
  • the RF coil is a plane in which the first coil portion including the first linear region and the second coil portion including the second linear region are connected.
  • the first coil portion and the second coil portion are conductive coils, and the first linear region and the second linear region are parallel to the extending direction of the groove portion.
  • the region sandwiched between the first straight region and the second straight region when viewed from above the flow path forming surface of the permanent magnet is located within the region sandwiched between the adjacent groove portions. It may be a configuration included in
  • the linear region of the RF coil By arranging the linear region of the RF coil on the upper part of the flow path forming surface of the permanent magnet, the region where the static magnetic field strength is uniform in the plane parallel to the flow channel groove forming surface is defined as the measurement region. can do.
  • the straight region can be directly or indirectly supported by the flow path forming surface by arranging the straight region above the flow path forming surface, the gap between the flow path forming surface and the straight region can be reduced. This further suppresses the measurement of the amount of protonic solvent with higher accuracy.
  • the RF coil is a planar coil in which a first coil portion including a first linear region and a first nicole portion including a second linear region are connected.
  • the first coil portion and the second coil portion have a conductive wire reversely wound, and the first linear region and the second linear region are arranged in parallel to the extending direction of the groove portion, and the permanent magnet As viewed from the top of the flow path forming surface
  • a region sandwiched between the first straight region and the second straight region may be included in a single groove forming region.
  • the static magnetic field strength becomes maximum at a specific distance from the flow path formation surface in the normal direction of the flow path formation surface.
  • the RF coil is provided between the flow path forming surface of the permanent magnet and the film.
  • An adjustment member may be arranged.
  • a fuel cell comprising the above-described measuring device of the present invention.
  • This fuel cell may include, for example, a solid polymer electrolyte membrane as a membrane. At this time, since the local amount of the protonic solvent in the solid polymer electrolyte membrane can be measured, the distribution of the protonic solvent in the solid polymer electrolyte membrane can be directly obtained.
  • the flow channel is provided on the surface facing the permanent magnet film, for example, a separator provided facing the fuel electrode or oxidant electrode of the fuel cell. At least a part of this can be constituted by a permanent magnet of the measuring device. This simplifies the overall configuration of the fuel cell, while supplying fuel or an oxidant, and even water vapor to the fuel cell electrode, and the amount of local protonic solvent in the polymer electrolyte membrane. Can be measured.
  • the flow path forming surface of the permanent magnet is disposed opposite to the fuel electrode of the fuel cell, and a fuel gas may be supplied to the flow path groove.
  • the flow path forming surface of the fuel cell may be disposed opposite to the oxidant electrode of the fuel cell, and an oxidant gas may be supplied to the flow path groove.
  • a specific shape permanent having a flow path forming surface is provided.
  • a distribution can be formed in the amount of the protonic solvent in the film, and the distribution state can be accurately detected.
  • the amount of protonic solvent in the membrane is adjusted, and multiple echo signals corresponding to this are obtained. It is possible to accurately detect the spatial distribution of the amount of protonic solvent in the membrane.
  • FIG. 1 is a diagram showing a configuration of a permanent magnet in an embodiment.
  • FIG. 2 is a diagram showing a configuration of a permanent magnet in the embodiment.
  • FIG. 3 is a diagram for explaining the measurement result of the z position distribution of the static magnetic field strength formed by the permanent magnet in the embodiment.
  • FIG. 4 is a diagram for explaining the measurement result of the y-position distribution of the static magnetic field strength formed by the permanent magnet in the embodiment.
  • FIG. 5 is a diagram for explaining the measurement result of the X position distribution of the static magnetic field strength formed by the permanent magnet in the embodiment.
  • FIG. 6 is a perspective view for explaining a static magnetic field formed by a permanent magnet in the embodiment.
  • FIG. 7 is a cross-sectional view showing the configuration of the fuel cell in the embodiment.
  • FIG. 8 is a diagram showing a configuration of a planar coil in the embodiment.
  • FIG. 9 is a diagram showing a configuration of a measuring apparatus in the embodiment.
  • FIG. 10 is a cross-sectional view showing the arrangement of permanent magnets, a flat coil, and a sample of the measuring apparatus according to the embodiment.
  • FIG. 11 is a diagram showing a configuration of a measuring apparatus in the embodiment.
  • FIG. 12 is a diagram showing a measurement result of an echo signal in an example.
  • FIG. 13 is a diagram showing the relationship between the distance between the coil and the sample and the echo signal intensity in the example.
  • FIG. 14 is a diagram showing a measurement result of an echo signal in an example.
  • FIG. 15 is a graph showing the relationship between the water content of a sample and T 2 in an example.
  • FIG. 16 is a graph showing the relationship between the moisture content of the sample and the echo signal intensity in the example.
  • FIG. 17 is a diagram showing a measurement result of an echo signal in an example.
  • FIG. 18 is a diagram showing a configuration of a Doub I e-D type coil in an example.
  • FIG. 19 is a diagram showing a configuration of a Doub I e-D type coil in an example.
  • FIG. 20 is a diagram for explaining a magnetic field analysis method in an example.
  • FIG. 21 is a diagram showing magnetic field analysis conditions in the example.
  • FIG. 22 is a diagram showing the ⁇ position distribution of the magnetic field strength in the ⁇ direction of the Doub I e-D type coil in the example.
  • FIG. 23 is a diagram showing contour lines of a magnetic field formed by a Doub I e-D type coil in an example.
  • FIG. 24 is a diagram showing the ⁇ position distribution of the ⁇ direction magnetic field strength of the Doub I e-D type coil in the example.
  • FIG. 25 is a diagram showing magnetic field analysis conditions in the example.
  • FIG. 26 is a diagram showing contour lines of a magnetic field formed by a Doub I e-D type coil in an example.
  • FIG. 27 is a diagram showing a ⁇ position distribution of ⁇ direction magnetic field strength of a Doub I e-D type coil in an example.
  • FIG. 28 is a diagram showing an X-direction magnetic field strength distribution ⁇ X of a Double-D type coil in an example.
  • FIG. 29 is a diagram showing a ⁇ position distribution of ⁇ direction magnetic field strength of a Doub I eD type coil in an example.
  • FIG. 30 is a diagram showing a ⁇ position distribution of ⁇ direction magnetic field strength of a Doub I eD type coil in an example.
  • FIG. 31 is a diagram showing an echo signal reception intensity distribution of a Doustill-D coil in an example.
  • FIG. 32 is a diagram showing a z-position distribution of echo signal reception intensity of a Doub I e-D type coil in an example.
  • FIG. 33 is a diagram showing an echo signal reception intensity distribution of the Doub I e-D type coil in the example.
  • FIG. 34 is a diagram showing a z-position distribution of echo signal reception intensity of the Doub I e-D type coil in the example.
  • FIG. 35 is a diagram showing a z-position distribution of echo signal reception intensity of a Doub I e-D type coil in an example.
  • FIG. 36 is a diagram showing a configuration of a fuel cell in an embodiment.
  • FIG. 37 is a diagram showing a cell configuration of a fuel cell in an embodiment.
  • the amount of the protonic solvent in the film is calculated using a nuclear magnetic resonance (NMR) method.
  • the number density and relaxation time constant can be obtained by detecting the motion of nuclear magnetization as an NMR signal due to the spin resonance phenomenon of a nucleus placed in a magnetic field.
  • the physical quantity corresponding to the atomic number density include the water content in the polymer electrolyte membrane.
  • the relaxation time constant for example, there are T T 2 relaxation time constant, the use of the CPMG method, strongly dependent on the T 2 (CPMG) relaxation time constant on the water content is obtained.
  • the CPMG method is used as an example to explain the case where the excitation vibration magnetic field is applied as a high-frequency pulse sequence.
  • the measuring apparatus of the present invention includes a permanent magnet having a specific shape having a flow channel and an RF detection coil (also simply referred to as "RF coil”) that applies an excitation oscillating magnetic field.
  • RF coil an RF detection coil
  • first specific examples of the permanent magnet and the RF coil constituting the measuring apparatus in the first embodiment and the second embodiment will be shown.
  • the third embodiment a specific configuration of a measuring apparatus in which the permanent magnet and the RF coil are combined will be described.
  • a specific example of a fuel cell including the measuring device described in the third embodiment is shown.
  • FIG. 1A and FIG. 1B are diagrams showing the configuration of the permanent magnet of the present embodiment.
  • Fig. 1 (b) is a partial cross-sectional view of ⁇ _ ⁇ 'in Fig. 1 (a).
  • FIG. 1 (a) and 1 (b) show an example of the shape and dimensions of the permanent magnet 1 1 3; however, the shape and dimensions of the permanent magnet 1 1 3 are not limited to those shown in the figure. .
  • the unit of the dimension attached to the double-sided arrow in Fig. 1 (b) is mm.
  • FIG. 2 is a view showing a permanent magnet manufactured with the dimensions shown in FIG.
  • the permanent magnet shown in FIGS. 1 and 2 is a member made of a magnetic material and applying a static magnetic field to a film to be measured in a protonic solvent amount measuring apparatus.
  • Examples of the material of the permanent magnet 1 1 3 include neodymium, iron, and boron materials such as NEOMAX (registered trademark) manufactured by NEOMAX.
  • the permanent magnet 1 1 3 force is exemplified by a configuration in which blocks made of a plurality of magnetic materials are joined, but the permanent magnet 1 1 3 is a single unit.
  • the structure which consists of these blocks and does not have a junction part may be sufficient.
  • the permanent magnet 1 13 is provided with a flow path forming surface, and the flow path forming surface is provided with a flow path groove 110 1 through which a fluid containing a protonic solvent flows.
  • the film to be measured is provided in parallel to the flow path forming surface of the permanent magnet 1 1 3.
  • the permanent magnets 1 1 3 apply the static magnetic field in the normal direction of the film.
  • the flow path forming surface of the permanent magnet 1 13 corresponds to the top surface of the convex part 103, and the groove part included in the flow path groove 101 corresponds to the concave part 105.
  • the flow path forming surface of the permanent magnet 1 1 3 has a plurality of recesses 1 provided alternately in succession. Including an uneven surface constituted by 0 5 and convex portions 1 0 3.
  • the plurality of convex portions 10 3 and the plurality of concave portions 10 5 all extend in parallel with each other. Both the convex portion 103 and the concave portion 105 extend linearly in one specific direction (the X direction in the figure).
  • top surfaces of the plurality of convex portions 10 3 are all located in the same plane, and the bottom surfaces of the plurality of concave portions 1 0 5 are all parallel to the top surface of the convex portion 10 3. Located in the same plane.
  • FIG. 1 (a) the case where the top surface of the convex portion 103 and the bottom surface of the concave portion 105 are both horizontal to the xy plane is illustrated.
  • the width of the plurality of convex portions 103 (y direction) and the width of the plurality of concave portions 105 are both substantially equal.
  • the permanent magnet 1 1 3 used in the present embodiment has a groove on the opposite side (lower surface side in FIG. 1 (a)) to the formation surface (the upper surface in FIG. 1 (a)) of the projections 1 0 3 and 1 5 5.
  • 1 0 5 a is formed.
  • the groove portion 10 5 a is formed by digging in a direction intersecting with the extending direction of the recess portion 10 5 (y direction in the figure). Further, the groove portion 10 5 a is formed deepest at the center in the extending direction of the recessed portion 10 (X direction in the figure) and shallowest at both end sides.
  • the specific transverse plane of the groove portion 10 5 a (cross section cut perpendicular to the y-axis in the figure)
  • the shape is not particularly limited, but in the present embodiment, this is a triangle.
  • the cross-sectional shape of the groove portion 10 5 a may be a semicircular shape or a parabolic shape.
  • the permanent magnet 1 1 3 having such a configuration When the permanent magnet 1 1 3 having such a configuration is arranged in the space, it is in the plane parallel to the flow path forming surface (the xy plane in the figure) on the upper part of the convex part 10 3 and the upper part of the concave part 1 5. A region having a uniform static magnetic field strength is formed.
  • a region having a uniform static magnetic field strength in a plane parallel to the flow path forming surface is formed along the extending direction of the convex portion 103.
  • the width of the convex portion 103 it is formed over a specific width.
  • a region having a uniform static magnetic field strength in a plane parallel to the flow path forming surface is formed along the extending direction of the concave portion 105, and the concave portion It is formed over a specific width in the width direction of 105. These areas can be used as measurement areas when performing local NMR measurement of the film.
  • a uniform static magnetic field plane is formed in the upper part of the convex portion 103 and the concave portion 105 along the extending direction.
  • a Gauss meter (TM-501 manufactured by KAN ET EC) was used as a measuring device.
  • For the static magnetic field strength only the z-direction component was measured.
  • Figures 3, 4 and 5 show the measured static magnetic field strength (z-direction component) in the z-axis direction (normal direction of the flow path forming surface), y-axis direction (cross-sectional direction of the groove), and X
  • the distribution of the position in the axial direction (extending direction of the groove) was shown.
  • FIGS. 3 (a) and 3 (b) are diagrams illustrating the measurement results of the position distribution of the static magnetic field strength H Q (z-direction component) in the z-axis direction.
  • 4 (a) and 4 (b) are diagrams illustrating the measurement results of the position distribution in the y-axis direction of the static magnetic field strength H Q (z-direction component).
  • the height of the concave portion 1 05 is higher than the height of the concave portion 1 05 on the flow path forming surface.
  • the measurement area can be a position of 1/4 or more of the depth of 05, preferably a position of 1/3 or more.
  • the upper limit of the height of the measurement area is not particularly limited. For example, from Fig. 3 (b), the static magnetic field in the z direction is rapidly increased up to about 1.5 times the depth of the recess 105. Fluctuations can be suppressed.
  • the area where the magnetic field strength becomes maximum is obtained.
  • a zone is formed.
  • the region where the magnetic field intensity is maximum is not formed on the plane of the permanent magnet having no flow channel 10 1, but is a phenomenon unique to the permanent magnet 1 1 3 having the flow channel 1 0 1. .
  • the vicinity of the region where the magnetic field strength at the top of the recess 105 is maximum for example, in the region of the height of 1/3 or more and 3/2 or less of the depth of the recess 105, it is horizontal to the flow path formation surface. Since the amount of change in the static magnetic field strength in the in-plane direction is even smaller, changes in the measured value due to the displacement of the measurement position can be further suppressed when performing NMR measurement of the film.
  • the magnetic field strength is about 0.2 to 0.3 Tes Ia even at a position away from the magnet, for example, z> 1 Omm. As shown in the examples described later, NMR measurement is sufficiently possible with such a magnetic field strength.
  • FIGS. 5 (a) to 5 (c) are diagrams for explaining the measurement results of the position distribution in the x-axis direction of the static magnetic field strength HQ (z-direction component).
  • Fig. 5 (a) shows a cross section of the permanent magnet 1 13 with respect to the extending direction of the convex portion 103 and the concave portion 105.
  • Fig. 5 (b) shows the extending direction of the convex portion 103 and the concave portion 105.
  • a cross section of a permanent magnet 1 1 3 perpendicular to is shown.
  • Fig. 5 (c) is a diagram showing the position distribution in the X-axis direction of the static magnetic field strength HQ (z-direction component).
  • Fig. 5 (c) shows the magnetic field strength in the groove direction. From FIG. 5 (c), it can be seen that the magnetic field strength is almost uniform along the extending direction of both the upper part of the convex part 103 and the upper part of the concave part 105. This is because, as described above, the groove 1 05 a is dug and formed on the surface opposite to the formation surface of the convex portion 103 and the concave portion 105, and the thickness of the permanent magnet 1 13 is set in the X direction (extension of the concave portion 105. Direction) due to being thin at the center and thick at both ends.
  • the static magnetic field strength H 0 was made uniform in the extending direction of the recess 105.
  • the nuclear magnetic resonance frequency of the film at the time of NMR measurement becomes uniform in the extending direction of the groove, that is, in the extending direction of the convex portion 103 and the concave portion 105.
  • FIG. 6 is a perspective view showing the first region 1 07 and the second region 1 0 9 which are NMR measurement smooth with the permanent magnet 1 13 of the present embodiment.
  • a region where the static magnetic field strength is uniform in a plane parallel to the flow path forming surface (first The region 10 7 and the second region 10 9) are formed as cylindrical regions on the upper part of the convex part 103 and the upper part of the concave part 105, respectively.
  • the width of the first region 1007 and the second region 1009 is the position in the z direction as shown in Fig. 4 (b).
  • the first region 1 07 for the region of about 1/4 of the width of the protrusion 1 0 3 on both sides from the center (maximum point) of the protrusion 1 0 3, It can be a region where the spatial non-uniformity of the static magnetic field is small.
  • the spatial nonuniformity of the static magnetic field is about 1/4 of the width of the recess 1 0 5 on both sides from the center (minimum point) of the recess 1 0 5. It can be a small area.
  • the permanent magnet 1 1 3 of this embodiment has a shape with an uneven surface, and the NMR measurement is performed with the uneven surface facing the film in parallel.
  • the permanent magnet 1 1 3 can be incorporated into the fuel cell as a separator (gas flow path). Is possible.
  • the permanent magnet 113 As a separator for the fuel cell, it is possible to measure the amount of the protonic solvent in the electrolyte layer of the fuel cell such as a solid polymer electrolyte membrane.
  • a configuration example of a fuel cell provided with a measuring device having permanent magnets 11 and 13 will be described in more detail in the fourth embodiment.
  • a configuration in which a plurality of recesses 10 5 (grooves) are independently provided on the flow path forming surface of the permanent magnet 1 13 is illustrated.
  • the shape of 1 is not limited as long as a plurality of protrusions 103 and recesses 105 are repeatedly provided in a cross-sectional view, and in a plan view, a plurality of groove portions communicate with each other. There may be. Even in the case where a plurality of grooves are connected, if the permanent magnet has the cross-sectional shape described above with reference to FIGS. 3 to 6, the static magnetic field distribution according to the static magnetic field distribution shown in FIGS. Since it is formed, it can be used as a permanent magnet used to measure the distribution of the amount of protonic solvent in the film.
  • the configuration in which the plurality of flow portions included in the flow channel groove extend in parallel to each other is illustrated, but the planar shape and the planar arrangement of the flow channel are not limited thereto.
  • the configuration of the RF coil used in the measurement apparatus of the third embodiment will be described.
  • the membrane to be measured is a solid polymer electrolyte membrane
  • the membrane to be measured is a solid polymer electrolyte membrane
  • the top surface of the convex portion 103 and the concave portion 1 0 5 A static magnetic field H Q is formed in a direction perpendicular to the bottom surface (z direction, upward in the figure).
  • the NMR measurement is further facilitated along the extending directions, and regions are formed.
  • a planar coil configured to form an oscillating magnetic field for excitation in the first region 10 7 or the second region 1 09 is used as the RF coil.
  • the planar coil forms an oscillating magnetic field for excitation in a direction perpendicular to the static magnetic field, specifically, it hangs in the direction in which the flow path is formed and in the direction in which the groove extends.
  • a case where an excitation oscillating magnetic field having an amplitude in a straight direction is formed will be described as an example.
  • FIG. 8 is a diagram schematically showing the configuration of the planar coil.
  • the number and shape of the planar coil are not limited to this.
  • the planar coil 1 1 4 shown in FIG. 8 includes a pair of coil portions (first coil portion 1 1 9, second coil portion 1 2 1) and is excited in a region sandwiched between the pair of coil portions. Form an oscillating magnetic field.
  • the planar coil 1 1 4 is, for example, a region sandwiched between a pair of coil portions when viewed from the upper part of the flow path forming surface of the permanent magnet 1 1 3, within a single groove portion forming region. Or it is used by arrangement
  • the first coil portion 1 1 9 force is a coil portion including the first linear region 1 23 and the conductive wire is wound in the right-handed direction.
  • the second coil portion 1 2 1 force is the second linear region 1
  • the winding method of the conductive wire in each coil portion is not limited to this. If current flows in the same direction in the first linear region 123 and the second linear region 125, an excitation oscillating magnetic field perpendicular to the linear region and parallel to the coil surface is formed between these linear regions.
  • the planar coil 1 1 4 is of the Doub Ie_D type (also called an 8-shaped coil or a butterfly coil).
  • Doub I e _D type coil has a shape in which a conducting wire is wound in a semicircular shape and two coils face each other, and the two semicircular strings correspond to the straight part, and the strings are arranged parallel to each other Is done.
  • FIG. 8 shows specific dimensions of the planar coil 114 and the LC resonance circuit.
  • a 0.2 mm diameter copper wire is wound in 5 semi-circles each having a diameter of 12 mm, and the strings are arranged in parallel at intervals of 1.2 mm.
  • three copper wires are shown schematically.
  • the resonance frequency of this coil is, for example, 13.07 MHz.
  • the Q value of the chlority factor of the manufactured coil is 25.
  • the dimensions and number of turns of the illustrated planar coil 1 14 are examples designed according to the dimensions of the permanent magnet 1 1 3 shown in FIG. 1, and are not limited to these dimensions.
  • the region near the symmetry axis of the pair of coil parts is a more preferable region for NMR measurement.
  • planar coil 1 1 4 of this embodiment By using the planar coil 1 1 4 of this embodiment in combination with the first embodiment, a region where the static magnetic field is uniform in the plane (first region 1 0 7, second region 1 0 9 ), And an oscillating magnetic field for excitation can be reliably formed in these regions. Then, a film is arranged on the upper part of the first area 10 07 or the second area 10 09, and the first signal 10 07 or the upper area of the second area 10 09 is used as a measurement area to output an eco signal. Acquiring can improve the accuracy of NMR measurement of the film.
  • the groove 1 0 5 a is dug on the opposite surface (lower surface) side of the formation surface (upper surface) of the protrusion 1 0 3 and the recess 1 0 5 as described above.
  • the static magnetic field strength in the extending direction (X direction) of the recess 1 0 5 is made uniform (see Fig. 1 (a) and Fig. 5 (c)). See).
  • the static magnetic field strength is made uniform throughout the detection region of the planar coil 114, and the resonance frequency of the proton in the sample becomes a more uniform frequency throughout the detection region. Therefore, the NMR signal, which is the sum of the vectors, increases, and the SN ratio can be improved.
  • the structure is suitable for multipoint measurement in the thickness direction of the film.
  • multiple planar coils 1 1 4 are stacked
  • the distribution of the amount of protonic solvent in the thickness direction at a specific location in the plane of the membrane can be measured. It is also possible to perform measurement at different positions in the thickness direction of the film by using one planar coil 1 14.
  • the resonance frequency in NMR measurement changes depending on the strength of the static magnetic field. With this magnet, the magnetic field strength changes in the direction of the film thickness, and the resonance frequency changes accordingly. NMR measurement can be performed by selecting the measurement position in the thickness direction of the film according to the difference in frequency. This difference in resonance frequency can also suppress the interference of NMR signals.
  • planar coils 1 1 4 are arranged in the first region 1 0 7 or the second region 1 0 9, multipoint measurement can be performed in the same static magnetic field.
  • This configuration is also suitable for measuring the distribution in the in-plane direction, and for measuring the amount of the protonic solvent multiple times in the region where the film faces a specific recess 105.
  • a planar coil 1 1 4 is arranged in each of these. Then, signal interference can be more effectively suppressed.
  • the permanent magnet 1 1 3 when used as a separator of a fuel cell, a polymer electrolyte membrane and a separator (the gas diffusion layer is on the separator side) It is desirable to sandwich an RF detection coil between them.
  • a cylindrical shape such as a solenoid type coil has a three-dimensional shape and cannot be sandwiched in the gap.
  • the RF detection coil is planar (sheet-like), it can be easily inserted into the gap.
  • the planar coil 1 1 4 as the RF coil, even when the solid polymer electrolyte membrane is measured using the permanent magnet 1 1 3 as the separator of the fuel cell, It is easy to incorporate, and the overall size of the fuel cell can be suppressed.
  • planar coil 1 1 4 is a Doub I e _ D type coil having two half-moon-shaped coil portions
  • the planar coil 1 1 4 is First coil part 1 1 9 and second straight line with first straight region 1 2 3
  • the second coil portion 1 2 1 including the region 1 2 5 is included, and the conductive wire of these coil portions may be configured to be reversely wound, and the planar shape of the coil portion is not limited to the half-moon shape.
  • the planar shape of the two coil portions may be a polygon such as a square, a rectangle, or a triangle.
  • planar coil 1 14 is not particularly limited in size as long as it is configured to apply an excitation oscillating magnetic field to a part of the film, but can be made smaller than the film to be measured, for example. .
  • the planar coil 1 1 4 can be made smaller than the flow path forming surface of the permanent magnet 1 1 3, for example. More specifically, in the cross-sectional view of the extending direction of the groove portion of the permanent magnet 1 1 3, the width of the planar coil 1 1 4 is set to the convex portion 10 3 and the concave portion 1 0 5 of the permanent magnet 1 1 3, respectively. It may be larger than the sum of the width of each piece.
  • the width of the planar coil 1 1 4 may be smaller than the sum of the widths of the concave portion 1 0 5 and the convex portion 1 0 3, or may be made smaller than the width of one convex portion 1 0 3. May be. In this way, when the planar coil 1 1 4 is placed between the flow path forming surface of the permanent magnet 1 1 3 and the film, the z direction between the planar coil 1 1 4 and the permanent magnet 1 1 3 and the film It is possible to more reliably regulate the interval.
  • the present embodiment relates to a measuring apparatus including the permanent magnet 1 1 3 described in the first embodiment and the RF coil (planar coil 1 1 4) described in the second embodiment.
  • FIG. 9 is a diagram showing a configuration of the measurement apparatus of the present embodiment.
  • the measuring device 100 shown in FIG. 9 is a device that locally measures the amount of the protonic solvent at a specific location in the film using the nuclear magnetic resonance method.
  • the proton solvent is water
  • Permanent magnet that applies a static magnetic field in a specific direction to the film 1 1 5 to be measured 1 1 3
  • a vibrating magnetic field for excitation is applied in a direction perpendicular to the static magnetic field to the film 1 1 5
  • an echo signal corresponding to the oscillating magnetic field for excitation, a planar coil 1 1 4, and
  • the permanent magnet 1 1 3 is made of a magnetic material.
  • the film 1 1 5 is disposed in parallel to the flow path forming surface of the permanent magnet 1 1 3.
  • the permanent magnet 1 1 3 applies a static magnetic field in the thickness direction of the film 1 1 5. With this static magnetic field applied, a high frequency pulse for excitation is applied to the film 1 15 and the T 2 relaxation time constant is measured.
  • planar coil 1 1 4 applies an excitation high-frequency pulse.
  • 14 is the Doub Ie_D type RF detection coil described in the second embodiment.
  • the arrangement of the force planar coil 1 1 4 in the example in which the two linear regions of the planar coil 1 1 4 are arranged on the upper part of the recess 1 0 5 is not limited to this. You may arrange
  • FIG. 10 is a cross-sectional view showing the arrangement of the permanent magnet 1 1 3, the planar coil 1 1 4, and the film 1 1 5 in more detail in the measuring apparatus 1 100 shown in FIG.
  • the planar coil 1 1 4 is disposed above the flow path forming surface of the permanent magnet 1 1 3.
  • the permanent magnet 1 1 3 has a convex portion 1 0 3 and a planar coil 1 1 4, and the planar coil 1 1 4 and a solid An interval adjusting member (first spacer 1 2 7, second spacer 1 2 9) with a specific thickness made of a non-magnetic material is placed between the polymer electrolyte membrane 1 1 7 Has been.
  • Permanent magnet 1 1 3 static magnetic field H o direction and Doub I e _ D type The direction of the oscillating magnetic field created by the coil (planar coil 1 1 4) is perpendicular
  • the echo signal intensity changes when the distance in the z direction from the solid polymer electrolyte membrane 1 17 is changed. This is because the intensity distribution of the oscillating magnetic field H and the reception sensitivity of the coil change depending on the distance.
  • the maximum echo signal intensity is obtained when the distance is about 1 mm. is there.
  • the first spacer 1 having a specific thickness between the permanent magnet 1 1 3 and the planar coil 1 1 4 is used. By placing 27, keep them at specific intervals. Further, by arranging a second spacer 1 29 between the planar coil 1 14 and the solid polymer electrolyte membrane 1 17, these are maintained at a specific interval. By using these spacers to adjust the relative position (z direction) of the uneven surface of the permanent magnet 1 1 3, the planar coil 1 1 4 installation surface and the solid polymer electrolyte membrane 1 1 7, the solid polymer By precisely adjusting the measurement position in the thickness direction of the electrolyte membrane 1 17, the reception sensitivity of the echo signal can be improved in the measurement region. Therefore, local T 2 measurement of the solid polymer electrolyte membrane 117 can be performed with high sensitivity and high accuracy.
  • the third spacer is formed on the upper portion of the convex portion 103 where the planar coil 11 14 is not disposed.
  • 1 3 5 and a bead-like spacing adjusting member (not shown) in the gap 1 3 7 formed between the third spacer 1 3 5 and the solid polymer electrolyte membrane 1 1 7 May be filled. In this way, the distance between the permanent magnet 1 1 3 and the solid polymer electrolyte membrane 1 1 7 can be adjusted more precisely, and the solid polymer electrolyte membrane 1 1 7 can be held in that state.
  • the thickness of the third spacer 1 3 5 is the same as the thickness of the first spacer 1 2 7, the second spacer 1 2 9 and the planar coil 1 1 4. More specifically, the thickness is set to be approximately equal to the total thickness of the first spacer 1 27 and the second spacer 1 29.
  • the arrangement shown in FIG. 10 is, for example, a solid polymer electrolyte membrane (PEM) for a fuel cell is held by a separator (permanent magnet 1 1 3), and Doub I 6_0 type in the gap between the two.
  • PEM solid polymer electrolyte membrane
  • the measuring device 100 is also suitably used for local moisture measurement of a solid polymer electrolyte membrane of a fuel cell.
  • the measuring apparatus 100 of the present embodiment can be used as an apparatus for evaluating the local water content of a membrane such as a solid polymer electrolyte membrane.
  • the planar coil 1 1 4 may be singular or plural. If the number is plural, it is possible to measure the moisture content distribution in the membrane 1 1 5. In this case, if it is arranged two-dimensionally along the surface of the membrane 115, the two-dimensional moisture content distribution on the membrane surface can be obtained. In addition, if three-dimensionally arranged in the membrane 1 15, the three-dimensional moisture content distribution in the membrane can be obtained.
  • the oscillating magnetic field (exciting oscillating magnetic field) applied by the planar coil 1 1 4 is R
  • the excitation high-frequency RF transmitted from the RF oscillator 102 is modulated by the modulator 104 based on the control by the pulse control unit 108 and becomes a pulse shape.
  • the generated RF pulse is amplified by the RF amplifier 106 and then sent to the planar coil 1 14.
  • the planar coil 1 14 applies this RF pulse to a specific part of the film.
  • the planar coil 1 14 detects the echo signal of the applied RF pulse. This echo signal is amplified by the preamplifier 1 1 2 and then sent to the phase detector 1 10.
  • the phase detector 1 1 0 detects this echo signal and sends it to the A / D converter 1 1 8.
  • a / D converter 1 1 8 After the A / D conversion of the echo signal, it is sent to the calculation unit 130.
  • the switch unit 1 61 is provided at a branching unit that connects the planar coil 1 14, RF signal generation unit, and echo signal detection unit.
  • the RF signal generation unit includes an RF oscillator 102, a modulator 104, and an RF amplifier 106, and generates an RF signal that causes the planar coil 1 14 to generate an oscillating magnetic field for excitation.
  • the echo signal detection unit is composed of a preamplifier 1 1 2, a phase detector 1 1 0, and an A / D converter 1 1 8, and detects the echo signal acquired by the planar coil 1 1 4, Is sent to the arithmetic unit 130.
  • the switch portion 1 61 is a planar coil 1 1 4? 3 ⁇ 4 “Signal generator (RF amplifier)
  • the switch unit 1 61 serves as such a “transmission / reception switching switch”.
  • the switch portion 1 61 By providing the switch portion 1 61 at the branch portion, the loss of the excitation high-frequency pulse signal applied from the planar coil 1 14 to the membrane 1 15 is reduced. As a result, the 90 ° pulse and 1 It becomes possible to control the pulse angle of 80 ° pulse accurately. Accurate control of the pulse angle is an important technical problem for reliably obtaining the compensation effect in the pulse echo method. In this embodiment, such a problem is solved by the arrangement of the switch unit 161.
  • the planar coil 1 14 for local measurement is miniaturized, and the reduction of noise during N MR reception is an important factor for ensuring the accuracy of measurement.
  • the noise that enters the preamplifier 1 1 2 mainly includes an RF wave transmission system, and “RF wave leakage” or “large” from the RF amplifier 1 06 that amplifies the excitation pulse. There is noise generated by power amplifiers.
  • the excitation high frequency pulse and the detection of the echo signal have been described above. However, these can be realized by an LC circuit including a small coil (Fig. 8).
  • the coil part (inductance part) of the resonance circuit is a small RF coil as described above.
  • the nuclear magnetic resonance (NMR) method can measure atomic density and spin relaxation time constant by detecting the motion of nuclear magnetization as an NMR signal by the spin resonance phenomenon of a nucleus placed in a magnetic field.
  • the spin resonance frequency in a magnetic field of 1 Tes Ia is about 43 MHz (this frequency band is called radio frequency), and in order to selectively detect that frequency band with high sensitivity, it is shown in Fig. 8.
  • Such an LC resonant circuit is used.
  • the high frequency pulse for excitation applied by the planar coil 1 1 4 to the film 1 1 5 is, for example,
  • the pulse sequence can consist of In order to clearly grasp the correlation between the T 2 relaxation time constant and the amount of moisture in the film, it is important to properly apply the oscillating magnetic field. By using the pattern as described above, it is possible to clearly grasp the correlation between the 2 relaxation time constant and the amount of moisture in the film.
  • the planar coil 1 14 it may be difficult to adjust the excitation pulse intensities (a) and (b).
  • the region to be measured that is, the region surrounded by the planar coil 1 14, there is a difference in the excitation method between the central portion and the peripheral portion, and the whole becomes a uniform excitation angle.
  • the pulse control unit 1 08 force In addition to the 90 ° pulse (a), another sequence is executed at a time just before the 90 ° pulse (a), plus the step of applying the 180 ° pulse. Then, by comparing the behavior of the decay curves of the 180 ° pulse (b) corresponding to these two sequences, the excitation pulse intensities of the 90 ° pulse (a) and the 180 ° pulse (b) Whether or not is accurate. As a result, even if the excitation pulse intensity is deviated due to an abnormality in the device, the abnormality can be detected before the measurement is performed, and the measurement value can be made more accurate.
  • the calculation unit 1 30 calculates the T 2 relaxation time constant from the intensity of the echo signal, and calculates the water content at a specific location in the film from the calculated ⁇ 2 relaxation time constant.
  • T 2 when relaxation time constant is calculated the data is sent to a solvent amount calculating unit 1 2 4.
  • the solvent amount calculation unit 1 2 4 accesses the calibration curve table (storage unit) 1 2 6 and acquires calibration curve data corresponding to the membrane.
  • the solvent amount calculation unit 1 24 uses the obtained calibration curve data and the 2 relaxation time constant calculated as described above to calculate the amount of water in the film.
  • the calculated water content is presented to the user by the output unit 1 3 2. There are no particular restrictions on the type of presentation, including display on the display, printer output, and file output.
  • a planar coil is formed inside the film, on the film surface, or in the vicinity of the film.
  • Multiple 1 1 4 can also be arranged. Thereby, it is configured to be able to apply the excitation oscillating magnetic field and acquire the echo signal corresponding to the excitation oscillating magnetic field to a plurality of locations on the membrane.
  • Solvent amount distribution calculation section 1 2 8 Based on the water content at the place, the water content distribution in the membrane is calculated. The output unit 1 32 outputs this moisture content distribution.
  • a film 1 15 is placed in parallel with the flow path forming surface of a permanent magnet 1 1 3 with a flow channel groove, and a specific location in the film 1 1 5 is detected using a nuclear magnetic resonance method.
  • a method for locally measuring the amount of a protic solvent comprising the following steps. First, a static magnetic field is applied in the thickness direction of the film 1 1 5 by the permanent magnet 1 1 3 while flowing the fluid containing the above-mentioned protonic solvent in the flow channel of the permanent magnet 1 1 3 (step (S ) 1 02). In this state, an excitation oscillating magnetic field is sequentially applied several times to a part of the film 1 15 placed in a static magnetic field using an RF coil (planar coil 1 1 4).
  • an excitation high-frequency pulse is applied to the membrane.
  • the excitation high-frequency pulse is a pulse sequence including a plurality of pulses, and an echo signal group corresponding to the pulse sequence is acquired. Is preferred. By doing so, it is possible to accurately determine the T 2 relaxation time constant.
  • the pulse sequence preferably comprises the following (a) and (b).
  • the CPMG method is an example of a method for providing such a pulse sequence.
  • the magnetization vector is first tilted in the positive direction of the vertical axis by a 90 ° pulse, and then 1 80 ° excitation pulse is irradiated from the outside in the “axial direction” after a period of time. Invert the vector “with the ⁇ axis as the symmetry axis”. As a result, after two hours, the magnetization vector converges on the “positive direction” of the heel axis, and an echo signal with a large amplitude is observed.
  • the magnetization vector was irradiated with an external 1 80 ° excitation pulse in the “axis direction” and converged again on the “positive direction” of the axis, and a large amplitude after 4 hours.
  • an echo signal with Furthermore, continue to irradiate 1 80 ° pulse at the same two intervals.
  • the peak intensity of the even-numbered echo signals of 2, 4, 6, 6 is extracted, and fitted with an exponential function to calculate ⁇ 2 (lateral) relaxation time constant by the CPMG method. be able to.
  • step 106 measure the relaxation time constant ⁇ 2 by using the spin echo method.
  • p is the density distribution of the target nuclide as a function of position (X, y, z)
  • TR is the 90 ° excitation pulse repetition time (from about 10 Oms to 10 seconds)
  • TE is the echo Time (2 t, about 1 ms to 10 Oms)
  • A is a constant that represents RF coil detection sensitivity and device characteristics such as amplifier.
  • Step 1 08 the moisture content is calculated from the relaxation time constant.
  • the water content and the T 2 relaxation time constant in the film with a positive correlation.
  • T 2 relaxation time constant is increased. Since this correlation varies depending on the type and form of the membrane, it is desirable to prepare a calibration curve for the same type of membrane as the measurement target membrane whose moisture concentration is known in advance. That is, the water content in pairs to a plurality of known standard samples film measurement of the relationship between water content and the T 2 relaxation time constant, it is desirable to seek beforehand roughness a calibration curve showing the relationship.
  • the amount of moisture in the film can be calculated from the measured value of ( 2) relaxation time constant.
  • permanent magnets 1 1 3 and planar coils 1 1 4 are used in specific shapes, and these are arranged in a specific positional relationship with the film 1 15.
  • a fluid containing a protonic solvent is caused to flow into the recesses 10 5 of the permanent magnets 1 1 3 to form a distribution in the amount of the protonic solvent in the film 1 15, and the distribution thus formed is planar.
  • Coil 1 1 4 can be measured. It is also possible to adjust the amount of the protonic solvent in the membrane 1 15 and measure the spatial distribution of the amount of the protonic solvent in the membrane 1 15 with the planar coil 1 14.
  • the moisture content distribution in the film 115 can be measured on the spot. It is also possible to evaluate the water dispersion behavior in the in-plane direction of the membrane 1 15.
  • the measurement region of the membrane 1 15 is included in the first region 1 07 and the second region 1 09, the local moisture content of the membrane 1 15 can be measured more. It can be performed with higher accuracy and good reproducibility.
  • the first region 10 07 that is the upper region of the convex portion 103 is perpendicular to the flow path forming surface of the permanent magnet 11 13. In the direction (z direction), there is a position where the static magnetic field becomes maximum. If measurement is performed at such a position, fluctuations in measurement values due to misalignment of the measurement area can be suppressed, and more accurate measurement can be performed.
  • a magnetic field is applied only to a position and place where measurement is desired with respect to a thin sheet-like film 1 15 such as a polymer electrolyte, and a planar shape is formed in the gap between the magnet and the film.
  • the local moisture content can be measured using an RF detection coil.
  • local measurement can be performed in a shorter time than MRI measurement.
  • the NMR sensor in the measuring apparatus 100, can be made compact, so that the restriction on the installation location of the apparatus is eased. In addition, the price of equipment can be reduced. In addition, if the unitary device is a combination of the planar coil 1 1 4 and the permanent magnet 1 1 3, there is no need to align the two, and measurement can be performed easily.
  • the permanent magnets 11 and 13 can be downsized. Here, in FIG. 9 and FIG. 11, the force that illustrates the configuration in which the uneven surface of the permanent magnet 1 1 3 is larger than the film 1 1 5, the permanent magnet 1 1 3 has a static magnetic field at the measurement location of the film 1 1 5. This is not limited to the case where the uneven surface is larger than the film 1 15.
  • a small magnet is used as a permanent magnet and a magnetic field is applied only to a part of the film, and an NMR signal can be received by a small RF detection coil only from the region where the magnetic field is applied, for example, the following advantages can be obtained. Is possible.
  • the dimensions of the membrane are arbitrary and are not limited to magnet dimensions.
  • the magnet shape can be arbitrarily set. Therefore, for example, when applied to a fuel cell, a structure in which a gas flow path portion is incorporated in a magnet can be obtained.
  • the local water content of the membrane can be measured at the position to be measured.
  • the NMR sensor can be made more compact, easier to install, and less expensive.
  • FIG. 11 is a diagram showing another configuration of a measuring apparatus including permanent magnets 1 1 3 and planar coils 1 1 4.
  • a large magnet is also incorporated into the actual fuel cell and used as a monitoring device.
  • the magnet is too large to be mounted and cannot be a practical sensor.
  • the measuring apparatus 100 described above in the third embodiment has a structure in which the concave portion 105 of the permanent magnet 11 13 can be used as a gas flow path portion. Therefore, in the present embodiment, the permanent magnet 113 is incorporated into the fuel cell device as a part of the separator of the fuel cell so that the moisture content of the membrane 1 15, that is, the solid polymer electrolyte membrane 1 17 can be measured.
  • the measuring device 100 By incorporating the measuring device 100 into the fuel cell, it is possible to constantly monitor the water content of the polymer electrolyte membrane of the fuel cell and control so that the polymer electrolyte membrane can always maintain high conductivity. become able to. For this reason, it is possible to control the operation of the fuel cell so that the power generation efficiency of the fuel cell is maintained high.
  • FIG. 36 is a diagram showing the configuration of the fuel cell of the present embodiment.
  • the fuel cell 1 3 1 shown in FIG. 3 includes a measuring device 1 0 0, a cell 1 3 3, and an oxidant gas supply unit 3 2 for supplying an oxidant gas (for example, oxygen or air) to the cell 1 3 3, Fuel gas supply unit 3 3 for supplying fuel gas (for example, hydrogen gas) to the cell 1 3 3 and oxidant gas and fuel gas supply unit 3 supplied from the oxidant gas supply unit 3 2 to the cell 1 3 3 It has a steam mixing section 3 4, a steam mixing section 3 5, and a control section 3 6 that mix steam with fuel gas supplied from 3 toward the cells 1 3 3.
  • oxidant gas for example, oxygen or air
  • Fuel gas supply unit 3 3 for supplying fuel gas (for example, hydrogen gas) to the cell 1 3 3 and oxidant gas and fuel gas supply unit 3 supplied from the oxidant gas supply unit 3 2 to the cell 1 3 3
  • It has a steam mixing section 3 4, a steam mixing section 3 5, and a control section 3 6 that mix steam with fuel gas supplied from 3 toward the cells 1 3 3.
  • FIG. 37 is a cross-sectional view showing a configuration of cell 1 33 of fuel cell 1 31 shown in FIG.
  • Cell 1 3 3 is a solid polymer electrolyte membrane 1 1 7 that is a sample to be measured, and a solid Polymer electrolyte membrane 1 1 7 Catalyst layer 3 1 1 A and catalyst layer 3 1 1 B provided on both sides, Porous diffusion layer 3 1 2 A and diffusion layer 3 1 2 B, Separator 3 1 3 A and a separator 3 1 3 B.
  • the fuel electrode 3 1 4 is composed of the catalyst layer 3 1 1 A and the diffusion layer 3 1 2 A, and the oxidant electrode 3 1 is composed of the catalyst layer 3 1 1 B and the diffusion layer 3 1 2 B. 5 is configured.
  • a groove serving as a fuel gas flow path is formed in the separator 3 1 3 A.
  • a fuel gas containing water vapor is supplied to the flow path groove of the separator 3 1 3 A as a fluid containing a protonic solvent.
  • the separator 3 1 3 B is formed with a groove serving as a flow path for the oxidizing gas.
  • An oxidant gas containing water vapor is supplied to the flow path groove of the separator 3 1 3 B as a fluid containing a protonic solvent.
  • the flow path forming surface of the permanent magnet 1 1 3 is disposed opposite to the fuel electrode 3 1 4 of the fuel cell 1 3 1 and fuel gas is supplied to the recess 1 0 5 or the fuel cell 1 3 1
  • the oxidant gas is supplied to the recesses 10 5 so as to be opposed to the oxidant electrodes 3 15.
  • the separator 3 1 3 A or the separator 3 1 3 B may be composed of a permanent magnet 1 1 3, or the permanent magnet 1 1 3 may be a separator 3 1 3 A or a separator.
  • 3 1 3 May constitute part of B.
  • the oxidant gas supply unit 3 2 supplies oxidant gas to the cells 1 3 3. Further, the fuel gas supply unit 3 3 supplies fuel gas to the cells 1 3 3. Between the oxidant gas supply unit 3 2 and the cells 1 3 3, a water vapor mixing unit 3 4 is provided. In the water vapor mixing unit 3 4, water vapor is generated and mixed with the oxidant gas supplied from the oxidant gas supply unit 3 2 toward the cell 1 3 3. The oxidant gas thus mixed with the water vapor is supplied to the cell 1 3 3. Similarly, the water vapor mixing unit 3 5 is provided between the fuel gas supply unit 3 3 and the cell 1 3 3. It has been. In this steam mixing section 35, steam is generated and fuel The fuel gas supplied from the gas supply unit 3 3 toward the cell 1 3 3 is mixed with water vapor. Fuel gas mixed with water vapor is sent to cells 1 3 3.
  • the solid polymer electrolyte membrane 1 1 7 of the cell 1 3 3 is wetted by mixing the water vapor with the oxidant gas and the fuel gas.
  • the control unit 36 is connected to the measuring device 100, the steam mixing unit 34, and the steam mixing unit 35.
  • control unit 36 the measurement result of the moisture content from the measuring device 100 and the distribution of the moisture content are obtained, and based on this measurement result, the steam mixing unit 34 and the steam mixing unit 35 generate the The water vapor mixing unit 34 and the water vapor mixing unit 35 are controlled so as to adjust the amount of water vapor supplied to the cells 13 3.
  • water is generated by the reaction of hydrogen ions and oxygen gas on the oxidizer electrode 3 1 5 side. Therefore, the water content in the solid polymer electrolyte membrane 1 17 may be excessive, particularly on the oxidant electrode 3 15 side. If the amount of water is excessive, water will aggregate in the flow path of the separator 3 1 3 B, impeding the flow of oxidant gas, which may reduce power generation efficiency.
  • the control unit 36 obtains the moisture content distribution from the measuring device 100 and determines whether the moisture content value in the obtained distribution is within a predetermined range. That is, it is determined whether or not the solid polymer electrolyte membrane 1 17 is in an appropriate wet state. When it is determined that the predetermined range is exceeded, the control unit 36 requests the water vapor mixing unit 34 or the water vapor mixing unit 35 to reduce the amount of water vapor generated.
  • the control unit 3 6 When it is determined that the moisture content in the moisture content distribution obtained from the measuring device 100 is out of the predetermined range and the moisture content is low, the control unit 3 6 The mixing unit 3 4 or the water vapor mixing unit 3 5 is requested to increase the amount of water vapor generated to prevent the solid polymer electrolyte membrane 1 1 7 from drying.
  • control unit 36 adjusts the water vapor generation amount of both the water vapor mixing unit 34 and the water vapor mixing unit 35, and the water vapor supply amount to the cell 13 33.
  • the present invention is not limited thereto, and for example, only the amount of steam generated in the steam mixing unit 35 and the amount of steam supplied to the cell 13 3 may be adjusted.
  • the permanent magnet 1 1 3 can be used as a separator, so that the solid polymer electrolyte membrane 1 1 7 The local moisture content distribution can be measured. Since the water content distribution in the solid polymer electrolyte membrane 1 1 7 can be measured in-situ, it is possible to control to improve the battery operating efficiency.
  • the amount of water in the solid polymer electrolyte membrane 1 1 7 at the top of the recess 10 5 is measured, the amount of water in the membrane in the vicinity of the region where fuel or oxidant is supplied into the membrane can be measured in real time. .
  • the diffusion state of the protonic solvent supplied from the channel groove can be grasped.
  • an RF detection coil that applies a magnetic field only to the position and location where measurement is desired is installed without significantly changing the overall shape of the battery. It needs to be possible.
  • the permanent magnet 1 1 3 is used as a separator, so that the solid polymer electrolyte membrane 1 1 7 force is arranged in parallel to the separator surface and the separator Located in the vicinity.
  • the configuration is suitable for the measurement of the solid polymer electrolyte membrane 1 17 disposed in the magnetic field formed in the vicinity of the flow path forming surface of the separator.
  • a planar coil 1 1 4 as the RF coil, the coil can be easily laminated at a predetermined position near the surface of the solid polymer electrolyte membrane 1 1 7. It is possible to incorporate a device for measuring the water content without significantly changing the thickness.
  • the configuration of the permanent magnet 1 1 3 and the planar coil 1 1 4 is adapted to the thin sheet-shaped solid polymer electrolyte membrane 1 1 7. It becomes possible to measure the local water content of the membrane at the position to be measured.
  • the magnetic field is applied only to a part of the apparatus, restrictions on the apparatus material that can be used are alleviated, and it is not necessary to use all of the apparatus as a non-magnetic material. It has a suitable configuration.
  • the planar coil 1 1 4 is applied to the surface of the solid polymer electrolyte membrane 1 1 7 on the fuel electrode 3 1 4 side and the surface of the oxidant electrode 3 1 5 side, respectively.
  • grasp the water content near the surface on the fuel electrode 3 1 4 side and the surface near the surface on the oxidizer electrode 3 1 5 side and grasp the relationship between the water content near the surface of each electrode and the power generation efficiency. It can also be done. This makes it possible to determine whether the supply of water vapor from either the fuel electrode 3 1 4 side or the oxidant electrode 3 1 5 side is effective for power generation efficiency.
  • the fuel cell 1 3 1 of the present embodiment has obtained useful data for searching for the cause of the decrease in power generation efficiency that occurs when the cell 1 3 3 is operated for a long time. Can be provided from the perspective of
  • FIG. 7 is a cross-sectional view showing a configuration of a stack type fuel cell including a plurality of cells including the solid polymer electrolyte membrane 1 1 7 a and the solid polymer electrolyte membrane 1 1 7 b.
  • the permanent magnet 1 1 3 force is provided as the outermost separator.
  • the permanent magnet 1 1 3 is provided opposite to the endmost cell (solid polymer electrolyte membrane 1 1 7 b) of the fuel cell stack, and the permanent magnet 1 1 3 is solid at the convex portion 1 0 3.
  • the polymer electrolyte membrane 1 1 7 b is held, and fuel gas or oxidant gas flows into the recess 1 0 5.
  • a separator 1 1 1 is a normal separator that does not have a permanent magnet 1 1 3.
  • the magnetic field strength is about 0.2 to 0.3 TesIa even at a position away from the magnet (z> 1 Om m). With this magnetic field strength, NMRR measurement is sufficiently possible. Therefore, even if a magnet is placed at the extreme end of the fuel cell stack, a magnetic field is formed even inside the stack. Moreover, since the static magnetic field strength gradually decreases as the distance increases, the resonance frequency also decreases as the distance from the magnet increases. If the resonance frequency is different, interference of excitation pulses in a plurality of RF coils is less likely to occur.
  • the use of the fuel cell of the present invention is not particularly limited.
  • it may be used not only as a battery but also as an evaluation device for the solid polymer electrolyte membrane 1 17.
  • the measuring apparatus 100 includes a plurality of planar coils 1 1 4 and a plurality of planar coils 1 1 4 force films 1 1 5 And an echo signal corresponding to the oscillating magnetic field for excitation is acquired, and the amount of protonic solvent at a plurality of locations of the solvent amount calculation unit 1 2 4 force membrane 1 1 5 is calculated. Also good.
  • the membrane By arranging planar coils 1 1 4 at multiple locations on the membrane 1 1 5 and measuring the amount of protonic solvent, the membrane It becomes possible to measure the distribution of the amount of 1 5 proton solvent in a shorter time. At this time, if a plurality of planar coils 1 1 4 are arranged on one first region 10 7 described above with reference to FIG. 6 or one second region 1 0 9, the film thickness direction can be increased. Suppresses the deviation of the static magnetic field intensity and enables more accurate multipoint measurement.
  • T 2 do not depend sensitivity of the RF coil, the magnification of the amplifier, the apparatus configuration of the filter one characteristics, Ri by the calculating the pro ton solvent amount in the film from the T 2, pro tons solvent The amount can be calculated more easily. Further, when calculating the amount of the protonic solvent from the signal intensity, a calibration curve for associating the signal intensity with the amount of the protonic solvent may be obtained in advance by an experiment in accordance with the configuration of the measuring apparatus.
  • a gas flow path is attached to the magnet, a magnet with a gas flow path that can be incorporated into a fuel cell device is used as part of the fuel cell separator, and it is suitable for thin sheet polymer electrolyte membranes.
  • the I e _ D type RF detection coil can measure the local water content of the membrane at the position (depth) to be measured.
  • a gas flow path magnet and a Doub Ie_D type coil are installed and measured at the position or location where the fuel cell is to be measured, it is only necessary to apply a magnetic field only to that location. This eliminates the need for a device other than the magnetic field application position to be made of a non-magnetic material, so that the NMR sensor can be applied to a more practical fuel cell device.
  • the NMR sensor can be made more compact, easier to install, and less expensive.
  • an integrated device combining an RF detection coil and a magnet is used, positioning of the two is unnecessary and measurement can be performed easily.
  • the water content of the polymer electrolyte membrane of the fuel cell can be constantly monitored and controlled so that it can always maintain high conductivity. It is possible to maintain high power generation efficiency.
  • the sample to be measured may be in the form of a membrane.
  • the sample is not limited to a solid sample as long as it is in a film form, and may be, for example, a liquid containing a protonic solvent filled in a space having a predetermined thickness. Further, the sample is not limited to a film made of a solid polymer electrolyte or the like, and for example, a predetermined layer such as a catalyst layer may be formed on one side or both sides of the membrane.
  • a predetermined layer such as a catalyst layer may be formed on one side or both sides of the membrane.
  • T 2 (CPMG) values of samples A to C shown below were measured by the CP MG method using the measurement apparatus (third embodiment) shown in FIG.
  • the permanent magnet shown in FIG. 2 was used.
  • the material of the permanent magnet was ⁇ ⁇ 01 ⁇ 1 Yawata Corporation ⁇ —44 ⁇ .
  • the sample was prepared according to the following procedure. First, two pieces of cover glass (dimensions 18 mm x 18 mm, thickness 0.1 2 mm) were bonded with a gap of 0.5 mm to produce a container. Water was poured into the container and the container was sealed. The dimensions of the water part are 15 mm X 15 thickness 0.5 mm. This sample is Also called “0.5 mm thick water sample”.
  • a 0.5 mm thick water sample was regarded as PEM, and placed at the position of the solid polymer electrolyte membrane (PEM) 1 17 having the arrangement shown in FIG. Specifically, a Doub Ie_D type coil was placed on a permanent magnet with a gas flow path, and a “0.5 mm thick water sample” was placed on it.
  • PEM solid polymer electrolyte membrane
  • N MR measurement parameters were as follows.
  • the 90-degree excitation pulse repetition time (TR) is 5 seconds
  • the 90-degree excitation pulse dummy count is 4
  • the NMR signal integration count is 64
  • the resonance frequency is 13.07 MHz.
  • the temperature of the 0.5mm thick water sample was about 25 ° C.
  • C PMG measurement was performed by changing the distance between the Doub I e _ D type RF detection coil and the 0.5 mm thick water sample in 0.5 mm increments, and the relationship with the echo signal intensity was obtained. The results are shown in Figure 13.
  • Figure 13 shows that the echo signal intensity is maximum when the distance (gap) between the coil and the sample is 1 mm. Since the sample thickness is 0.5 mm, a distance of 1 mm means that there is a water sample between 1. Omm and 1.5 mm from the coil. This distance corresponds to the distance (1.2 mm) between the two semicircular coils of the Doub I e _D type coil. From this result, the Doub Ie_D type coil can measure the position (depth) separated by about the gap of the half-moon shaped coil, and can measure a little inside of the sample.
  • the Doub I e _D type coil matches the geometric dimensions of the coil. It can be seen that the measurement depth changes. Therefore, it is possible to measure the thickness direction (depth direction) distribution in the polymer film by using a coil that matches the desired measurement depth.
  • PEM polymer electrolyte membrane
  • Flemion registered trademark manufactured by Asahi Glass Co., Ltd.
  • the dimension of PEM is 15mmX 15mmX thickness 0.5mm.
  • the membrane was standardized by soaking in advance for 3 hours each in the order of 80 ° C 3% hydrogen peroxide, ion exchange water, 1 N hydrochloric acid, and ion exchange water.
  • the water content of PEM was calculated from the increase in mass by measuring the mass of PEM fully dried using an electronic balance and measuring the mass of PEM in the water-containing state.
  • the water content of P EM 1 4. 9 - was performed by changing [H 2 0 / S0 3 H +] and 1 2. 4 [H 2 0 / S0 3 -H +] and.
  • the PEM sample itself is the same sample, and only the water content is different.
  • N MR measurement parameters were as follows.
  • the 90-degree excitation pulse repetition time (TR) is 5 seconds
  • the 90-degree excitation pulse dummy count is 0
  • the NMR signal integration count is 64
  • the resonance frequency is 13.07 MHz.
  • the temperature of the polymer electrolyte membrane (PEM) was about 25 ° C.
  • PEM polymer electrolyte membrane
  • FIG. 15 shows the calculated T 2 (CPMG) value by performing C PMG measurement three times with PEM of each water content. The straight line is based on the average of three T 2 (CPMG) values.
  • Figure 16 shows the relationship between echo signal intensity and water content obtained from two water content PEMs.
  • the echo signal strength used here is the average of the third, fourth, and sixth echo signal strengths obtained by CPMG measurement. This averaging operation was performed in order to suppress variations in signal intensity.
  • T 2 (CPMG) value acquisition experiments were conducted using an electrode-catalyzed polymer electrolyte membrane (MEA) with an electrode and catalyst applied to the surface of the polymer electrolyte membrane (PEM).
  • MEA electrode-catalyzed polymer electrolyte membrane
  • PEM polymer electrolyte membrane
  • ME A was conducted with reference to Non-Patent Document 2. Specifically, a polymer electrolyte membrane manufactured by Asahi Glass Co., Ltd. was prepared by electrolessly plating Pt and Ir on the anode side and Pt on the cathode side. The dimensions of 1 ⁇ 1 ⁇ 8 are 17 mm x 15 mm square, 500; Um thickness
  • the standardized MEA was lifted from the ion-exchanged water just before the experiment. The water was wiped off by pressing against the tip. The water content of MEA just before the experiment is about 15 [H 2 0 / S0 3 -H +]. After wiping off the water, the MEA was quickly sandwiched between two cover glasses (dimensions 18 mm x 18 mm, thickness 0.1 2 mm) and sealed with a polyimide film to prevent drying.
  • the MEA was placed at the position shown in FIG. A Doub I e-D type coil was placed on a permanent magnet with a gas flow path, and an “electrode / catalyst polymer electrolyte membrane (MEA)” was placed on it. This was placed in a brass shield box and CP MG measurement was performed to obtain an echo signal.
  • N MR measurement parameters were as follows.
  • the 90-degree excitation pulse repetition time (TR) is 5 seconds
  • the 90-degree excitation pulse dummy count is 0
  • the NMR signal integration count is 64
  • the resonance frequency is 13.07 MHz.
  • Electrode ⁇ The temperature of the polymer electrolyte membrane with catalyst (MEA) was about 25 ° C.
  • CPMG measurement of a polymer electrolyte membrane (ME A) with electrode and catalyst can be performed and calculated. It can also be seen that the water content in the polymer electrolyte membrane can be estimated from the T 2 (CPMG) value.
  • Non-Patent Document 1 describes that the water content value of the solid polymer electrolyte membrane of the fuel cell is about 4 to 6 [H 2 0 / S0 3 -H +]. , And for example, if a change in water content of about 2 [H 2 0 / S0 3 ⁇ H +] can be detected, it can be suitably used for evaluation of a solid polymer electrolyte membrane of a fuel cell. In this respect, it can be seen from the above measurement results that the method of this example has a detection sensitivity that can sufficiently detect fluctuations in the water content of the solid polymer membrane.
  • the concentration per unit volume of the proton solvent in the fuel gas and the oxidant gas flowing in the separator flow channel during the operation of the fuel cell is equal to the concentration of the proton solvent in the polymer electrolyte membrane.
  • the echo signal from the gas is negligibly small. For this reason, even if a gas containing a protonic solvent is allowed to flow through the flow channel groove of the permanent magnet, T 2 (C PMG) measurement can be performed with the same measurement accuracy as when the gas is not flowed.
  • the excitation magnetic field distribution ⁇ ⁇ created by the Double-D type coil is theoretically analyzed, and the echo signal intensity distribution received by the coil when using the CPMG method S SE , Detect (equivalent to the measurement region) was calculated quantitatively.
  • the distance L between the two D-shaped coils was changed, it was confirmed that the NMR signal acquisition region was separated from the coil. It was also shown that the measurement depth can be changed by adjusting the interval L.
  • FIGS. 18 (a) and 18 (b) are diagrams showing the configuration of the Doub I e-D type coil analyzed in this example.
  • Fig. 18 (a) shows the shape of the Double-D coil in the case of one turn. However, in actual calculations, as shown in Fig. 18 (b), three turns are used. did.
  • the distance L between two D-shaped coils was changed to 0.6 mm, 1.2 mm, 1.8 mm and 2.4 mm, and the NMR signal acquisition area (measurement area) received by the coil I examined the changes.
  • FIGS. 20 (a) and 20 (b) the circular coil shown in FIGS. 20 (a) and 20 (b) will be described as an example.
  • the planar shape of the coil is circular, but in the analysis, it is the shape shown in FIG. 18 (b).
  • Line integration is performed over the entire circumference of the coil.
  • the magnetic field generated at point ⁇ is obtained by moving point Q on the coil along the coil and integrating the magnetic field created at each point Q over the entire circumference of the coil (obtaining the sum).
  • the arc of the Double-D coil was divided into a number of sections and approximated as being represented by a straight line of length c L – d s [m] within the section. It is assumed that t in that interval changes smoothly with increasing angle 0.
  • the straight part of the coil was divided as a straight element. This makes it possible to calculate Equation (2) numerically.
  • one D-type coil on one side was divided into 16 straight lines, and the curved portion was also divided into 16 straight lines. This division method was the same for the first roll, the second roll, and the third roll (innermost).
  • Figure 21 shows the parameters when dividing.
  • Figure 18 (b) shows the overall shape of the divided elements with dots.
  • FIG. 23 is a diagram showing the overall contour lines of a 3-turn Double-D coil.
  • FIG. 24 shows the z-position distribution H x (z p ) of the magnetic field strength in the X direction.
  • FIG. 26 and FIG. 27 are enlarged views of only the straight conducting wire portion (FIG. 25) of FIG. 23 and FIG. 24, respectively.
  • Figure 23 and In Fig. 26, the cross section of the coil is indicated by a white circle ( ⁇ ).
  • a magnetic field that can be considered uniform is formed around the apex where the magnetic field strength is highest.
  • this region is the measurement region for the Double_D type coil, variations in the excitation oscillating magnetic field can be suppressed, and more accurate measurement can be performed. It can be seen that the measurement area should be about 0.6 to 0.7 mm away from the coil.
  • the same magnetic field analysis was performed by changing the distance L between the two D-shaped coils to 0.6 mm, 1.2 mm, 1.8 mm, and 2.4 mm.
  • the shape of the analysis model with the interval L of 1.2 mm corresponds to Fig. 18 (b).
  • the diameter (D-3) is also the same as the model shape shown in Fig. 18 (b).
  • the number of element divisions for the straight line and the arc is the same. Therefore, as the interval L was increased, the straight line portions of each coil were separated from each other in the soil Y direction, the center angle of the arc portion was reduced, and the analysis points were re-probed.
  • the X-direction magnetic field strength distribution H x (x p , y p , 2 of the 3-turn Double-D coil when the distance L between the two D-type coils is 2.4 mm is shown in Fig.
  • Fig. 29 shows the z-position distribution H x (z p ) of the magnetic field strength in the X direction when L is 2.4 mm.
  • Figure 30 shows the z-position distribution H x (0, 0, z p ) of the magnetic field strength in the X direction when the distance L between the linear conductors of the two D-type coils of the Double-D type coil is changed.
  • the signal reception sensitivity of the Double-D coil is based on the magnetic field H x (x p , y p , z
  • S SE illustrates Detect (x p, y p, z p) a.
  • the X z plane of only the central region of the Double-D coil is shown enlarged.
  • the cross section of the three straight line conductors of the Doubl eD type coil is shown schematically. The typical meaning is that the wire diameter is analyzed as zero.
  • a region where the signal intensity is approximately 0.8 or more is shown surrounded by a dotted line.
  • the echo signal is mainly acquired by the Double-D type coil, and this area can be regarded as the measurement area of the Double_D type coil in this case.
  • Figure 32 shows the echo signal received intensity distribution on the z-axis in Figure 31 S SE , Detect (0, 0, z p FIG.
  • the region where the signal intensity is approximately 0.8 or more as shown by the arrow is regarded as the measurement region with the Double-D coil, it is the same as the region surrounded by the dotted line in Fig. 31. Become.
  • reception intensity distribution S SE, Detect (X p, y p, Z p) is a diagram showing a. In FIG. 33, as in FIG. 31, the X z plane of only the central region of the Double-D coil is shown enlarged.
  • Fig. 33 the region where the signal intensity is approximately 0.8 or more is shown surrounded by a dotted line.
  • the region where the signal strength is approximately 0.8 or more is widened, and at the same time, the region moves away from the coil.
  • Fig. 34 shows the echo signal reception intensity distribution on the Z-axis in Fig. 33 S SE , Detect (0,
  • Fig. 34 the range that can be regarded as the measurement area of the Double-D coil is indicated by arrows. Also in Fig. 34, compared to Fig. 32, it can be seen that the measurement area expands and at the same time moves away from the coil.
  • Figure 35 shows the echo signal reception intensity distribution S SE on the z axis when the distance L between the two D-shaped coils is changed to 0.6 mm, 1.2 mm, 1.8 mm, and 2.4 mm.
  • det eot is a diagram showing a (0, 0, Z p) .
  • Example 2 a three-turn coil was analyzed, but it was used in Example 1.
  • the width of the coil bundle is almost the same as that of the coil used in this example. If this width is about the same, it can be considered that a magnetic field similar to that of the 5-turn coil used in Example 1 is formed.

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fuel Cell (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Vascular Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Signal Processing (AREA)

Abstract

A measuring device (100) locally measures the amount of protic solvent at a specific region in a membrane (115) by the nuclear magnetic resonance method. The measuring device (100) comprises a permanent magnet (113) for applying a magnetostatic field to the membrane (115), a flat coil (114) for applying an exciting oscillating field to a part of the membrane (115) and acquiring echo signals corresponding to the exciting oscillating field, and an amount-of-solvent calculating section (124) for calculating the T2 relaxation time constant from the intensities of the echo signals and calculating the amount of protic solvent in a specific region of the membrane (115) from the calculated T2 relaxation time constant. A passage groove through which a fluid containing the protic solvent flows is formed in the permanent magnet (113). The membrane (115) is formed parallel to the passage formation surface of the permanent magnet (113), and the permanent magnet (113) applies a magnetostatic field in the direction of the thickness of the membrane (115).

Description

明 細 書  Specification
測定装置およびこれを備える燃料電池、 ならびに測定方法 技術分野  Measuring device, fuel cell including the same, and measuring method
[0001 ] 本発明は、 測定装置およびこれを備える燃料電池、 ならびに測定方法に関 し、 特に、 膜中のプロ トン性溶媒量の分布を局所的に測定する技術に関する 背景技術  TECHNICAL FIELD [0001] The present invention relates to a measuring apparatus, a fuel cell including the same, and a measuring method, and more particularly, to a background art relating to a technique for locally measuring the distribution of the amount of a protic solvent in a membrane
[0002] 膜等の機能材料においては、 材料中の溶媒量がその材料の性能を支配する ことがある。 このような材料の設計開発にあっては、 溶媒量の分布を局所的 に計測することが重要な技術的課題となる。 こうした機能材料の例として、 燃料電池に用いられる固体高分子電解質膜が挙げられる。  [0002] In a functional material such as a membrane, the amount of solvent in the material may dominate the performance of the material. In the design and development of such materials, it is an important technical issue to measure the solvent distribution locally. Examples of such functional materials include solid polymer electrolyte membranes used in fuel cells.
[0003] 固体高分子電解質膜を備える燃料電池においては、 運転中、 セパレータに 形成された流路溝から、 燃料および酸化剤として、 水蒸気を含むガスが供給 される。 燃料および酸化剤の供給により、 固体高分子電解質膜中の水分量に は分布が生じ、 また、 分布状態が経時的に変化する。 こうした燃料電池の運 転効率を向上させるためには、 固体高分子電解質膜の湿潤状態を的確に把握 して、 燃料および酸化剤の供給を制御することが重要となる。  In a fuel cell including a solid polymer electrolyte membrane, a gas containing water vapor is supplied as a fuel and an oxidant from a flow channel formed in a separator during operation. The supply of fuel and oxidant causes a distribution in the amount of water in the solid polymer electrolyte membrane, and the distribution state changes with time. In order to improve the operation efficiency of such fuel cells, it is important to accurately grasp the wet state of the solid polymer electrolyte membrane and control the supply of fuel and oxidant.
[0004] 以上、 燃料電池の場合を例に挙げたが、 膜中に含まれるプロ トン性溶媒量 の分布をその場で局所的に把握することができれば、 材料の性能評価に有用 である。  As described above, the case of a fuel cell has been described as an example. If the distribution of the amount of the protonic solvent contained in the membrane can be grasped locally on the spot, it is useful for evaluating the performance of the material.
[0005] ここで、 試料の特定箇所のプロ トン性溶媒量を局所的に測定する技術とし て、 従来、 特許文献 1に記載のものがある。 同文献には、 試料の特定箇所に 対して局所的にマルチェコ一法を適用して、 1 H—N M Rにより緩和時定数 を測定し、 試料の特定箇所のプロ トン性溶媒量を局所的に測定する技術が記 載されている。 この技術によれば、 N M Rの測定結果を利用して物質中の特 定箇所の局所的プロ トン性溶媒量を比較的短時間で測定することができる。  [0005] Here, as a technique for locally measuring the amount of the protonic solvent at a specific portion of a sample, there is a conventional one described in Patent Document 1. In this document, the Malczech method is applied locally to a specific part of the sample, the relaxation time constant is measured by 1 H-NMR, and the amount of the protonic solvent in the specific part of the sample is measured locally. The technology to do is described. According to this technique, it is possible to measure the amount of local protonic solvent at a specific location in a substance in a relatively short time using the measurement result of NMR.
[0006] また、 試料の N M R測定に関する他の従来技術としては、 特許文献 2およ び 3に記載のものがある。 [0006] Further, as another conventional technique related to NMR measurement of a sample, Patent Document 2 and And those described in 3.
特許文献 2には、 U字磁石とソレノィ ドコイルを用いて試料の N MR測定 を行うことが記載されている。  Patent Document 2 describes that NMR measurement of a sample is performed using a U-shaped magnet and a solenoid coil.
また、 特許文献 3には、 高分子膜の水分分布測定装置が記載されている。 この方法では、 高分子膜の MR I画像を取得して、 水分分布を取得する。  Patent Document 3 describes a moisture distribution measuring device for a polymer film. In this method, the MR I image of the polymer membrane is acquired and the moisture distribution is acquired.
[0007] 特許文献 1 : 国際公開第 2006/030743号パンフレツト [0007] Patent Document 1: International Publication No. 2006/030743 Pamphlet
特許文献 2:特開昭 54— 1 27785号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 54-1 27785
特許文献 3:特開 2004 _ 1 70297号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 2004_1070297
非特^文 Ι ΐ : Tsushima Si^n 2 ¾ 「Magnetic resonance imaging of the wa ter distribution within a polymer electrolyte membrane in fuel eel Is J 、 ELECTROCHEMICAL AND SOLID-STATE LETTERS, 7 (9)、 A269-A272, 2004年 非特許文献 2 :竹中啓恭、 「固体高分子電解質水電解技術とその応用」 、 ソ一 ダと塩素、 Vo に 37、 p p. 323-337 ( 1 986)  Non-special text Ι : : Tsushima Si ^ n 2 ¾ “Magnetic resonance imaging of the wa ter distribution within a polymer electrolyte membrane in fuel eel Is J, ELECTROCHEMICAL AND SOLID-STATE LETTERS, 7 (9), A269-A272, 2004 Non-Patent Document 2: Keigo Takenaka, “Solid Polymer Electrolyte Water Electrolysis Technology and Its Applications”, Soda and Chlorine, Vo, 37, p. 323-337 (1 986)
発明の開示  Disclosure of the invention
[0008] ここで、 膜表面の一部からプロ トン性溶媒が膜中に厚さ方向と面方向に拡 散していく時のプロ トン性溶媒の分布を計測することができれば、 膜の特性 評価に有用である。 また、 たとえば上述の燃料電池の固体高分子電解質膜で は、 電池運転時における運転状態の最適制御に有用である。  [0008] Here, if the distribution of the protonic solvent when the protonic solvent diffuses in the thickness direction and the plane direction in the film from a part of the film surface, the characteristics of the film can be measured. Useful for evaluation. For example, the above-described solid polymer electrolyte membrane of a fuel cell is useful for optimal control of the operating state during battery operation.
[0009] 燃料電池の固体高分子電解質膜では、 湿潤ガス中の水 (プロ トン性溶媒成 分) 力 セパレータの溝部に対向している領域から膜中に拡散していく。 膜 のプロ トン性溶媒量は、 湿潤ガスからの水分供給と、 燃料ガスと酸化剤とが 反応して生成される水 (プロ トン性溶媒成分) によって調整されている。 燃 料電池のセパレ一タ内では、 入口と出口の間に燃料ガスと酸化剤の濃度に分 布があり、 さらには、 触媒の活性状態などによっても、 膜で生成される水 ( プロ トン性溶媒成分) の量に空間的な分布がある。 また、 膜の周囲に湿潤ガ スを流すことによって、 膜中のプロ トン性溶媒量を調整する場合でも、 湿潤 ガスの入口と出口ではプロ トン性溶媒の濃度に差があり、 セパレ一タ流路内 でもプロ トン性溶媒の濃度の空間的な分布が生ずる。 この結果、 膜のプロ ト ン性溶媒量には空間的な分布が形成されてしまう。 [0009] In a solid polymer electrolyte membrane of a fuel cell, water (protonic solvent component) force in a wet gas diffuses into the membrane from a region facing the groove of the separator. The amount of the protonic solvent in the membrane is adjusted by the water supply from the wet gas and the water (protonic solvent component) produced by the reaction of the fuel gas and the oxidant. Within the separator of a fuel cell, there is a distribution in the concentration of fuel gas and oxidant between the inlet and outlet, and the water produced by the membrane (proton properties) also depends on the active state of the catalyst. There is a spatial distribution in the amount of solvent component. Also, even when the amount of protonic solvent in the membrane is adjusted by flowing wet gas around the membrane, there is a difference in the concentration of the protonic solvent at the inlet and outlet of the wet gas. A spatial distribution of the concentration of the protonic solvent also occurs in the road. As a result, the membrane protocol A spatial distribution is formed in the amount of the organic solvent.
[0010] そこで、 このような膜のプロ トン性溶媒量分布をできるだけなくすような 膜の開発を行ったり、 最適なプロ トン性溶媒量で燃料電池を運転できるよう に供給する湿潤ガスのプロ トン性溶媒の濃度を制御したりすることが必要と なる。  [0010] Therefore, the development of a membrane that minimizes the distribution of the amount of protonic solvent in the membrane as much as possible, and the prototon of wet gas supplied so that the fuel cell can be operated with the optimum amount of protonic solvent. It is necessary to control the concentration of the organic solvent.
[001 1 ] このためには、 膜のプロ トン性溶媒量の空間分布を計測するための装置が 必要とされるが、 上述した従来の測定装置は、 膜の特定箇所からプロ トン性 溶媒が膜中に拡散する際の膜中のプロ トン性溶媒量を計測するのに、 必ずし も適した構成とはなっていなかった。  [001 1] For this purpose, a device for measuring the spatial distribution of the amount of the protonic solvent in the membrane is required. However, the conventional measuring device described above has a protonic solvent from a specific part of the membrane. It was not always suitable for measuring the amount of protonic solvent in the membrane as it diffused into the membrane.
[0012] 本発明によれば、  [0012] According to the present invention,
核磁気共鳴法を用いて膜中の特定箇所のプロ トン性溶媒の量を局所的に測 定する装置であって、  An apparatus for locally measuring the amount of a protic solvent at a specific location in a film using a nuclear magnetic resonance method,
前記膜に対して静磁場を印加する永久磁石と、  A permanent magnet for applying a static magnetic field to the film;
前記膜の一部に対して励起用振動磁場を印加するとともに、 前記励起用振 動磁場に対応するェコ一信号を取得する R Fコイルと、  Applying an oscillating magnetic field for excitation to a part of the film, and obtaining an echo signal corresponding to the oscillating magnetic field for excitation;
前記エコー信号の強度から、 前記膜の特定箇所における前記プロ トン性溶 媒の量を算出する溶媒量算出部と、  From the intensity of the echo signal, a solvent amount calculation unit that calculates the amount of the protonic solvent at a specific location of the membrane;
を備え、  With
前記永久磁石に、 前記プロ トン性溶媒を含む流体が流れる流路溝が設けら れ、  The permanent magnet is provided with a channel groove through which a fluid containing the protonic solvent flows.
前記膜が、 前記永久磁石の流路形成面に平行に設けられる、 測定装置が提 供される。  A measuring device is provided in which the film is provided in parallel to the flow path forming surface of the permanent magnet.
[0013] また、 本発明によれば、 [0013] Further, according to the present invention,
流路溝が形成された永久磁石の流路形成面に平行に膜を配置して、 核磁気 共鳴法を用いて前記膜中の特定箇所のプロ トン性溶媒の量を局所的に測定す る方法であって、  A film is arranged in parallel to the flow path forming surface of the permanent magnet formed with the flow path groove, and the amount of the protonic solvent at a specific location in the film is locally measured using a nuclear magnetic resonance method. A method,
前記永久磁石の前記流路溝に前記プロ トン性溶媒を含む流体を流しつつ、 前記永久磁石により前記膜に対して静磁場を印加し、 前記静磁場におかれた 前記膜の一部に対し、 R Fコイルを用いて励起用振動磁場を複数回順次印加 するとともに、 前記励起用振動磁場に対応する複数のエコー信号を取得する 第 1ステップと、 While flowing a fluid containing the protonic solvent in the flow channel of the permanent magnet, a static magnetic field was applied to the film by the permanent magnet, and the fluid was placed in the static magnetic field. A first step of sequentially applying an excitation oscillating magnetic field a plurality of times using an RF coil to a part of the film, and acquiring a plurality of echo signals corresponding to the excitation oscillating magnetic field;
前記複数のエコー信号の強度から、 前記膜の特定箇所における前記プロ ト ン性溶媒の量を求める第 2ステップと、  A second step of determining the amount of the protonic solvent at a specific location of the film from the intensity of the plurality of echo signals;
を含む、 測定方法が提供される。  A measurement method is provided.
[0014] 本発明においては、 流路形成面を有する特定の形状の永久磁石を用いるた め、 膜に静磁場を印加するとともに、 流路溝にプロ トン性溶媒を流して膜中 のプロ トン性溶媒量に分布を形成することができる。 そして、 プロ トン性溶 媒量の分布が形成された膜の一部に R Fコイルを用いて励起用振動磁場を印 加してエコー信号を取得することにより、 膜中のプロ トン性溶媒の分布を検 出することができる。 In the present invention, since a permanent magnet having a specific shape having a flow path forming surface is used, a static magnetic field is applied to the film, and a proton solvent is flowed into the flow path groove so that the protons in the film. A distribution can be formed in the amount of the organic solvent. Then, by applying an excitation oscillating magnetic field to the part of the film on which the distribution of the amount of the protonic solvent is formed using an RF coil, an echo signal is obtained, thereby distributing the protonic solvent in the film. Can be detected.
また、 膜が永久磁石の流路形成面と平行に配置されるため、 特定形状の永 久磁石と R Fコイルとを用いた測定を行う際の測定箇所の位置あわせを確実 に行うことができる。  In addition, since the film is arranged in parallel to the flow path forming surface of the permanent magnet, it is possible to reliably align the measurement location when performing the measurement using the permanent magnet having a specific shape and the RF coil.
[0015] よって、 本発明によれば、 たとえば、 流路溝を流れるプロ トン性溶媒が膜 内に供給されたり、 逆に、 膜内からプロ トン性溶媒が排出されたりする状態 において、 局所的な膜内のプロ トン性溶媒の量がその場で測定できる。 また、 膜に静磁場を印加するとともに、 流路溝にプロ トン性溶媒を流して 膜にプロ トン性溶媒を供給したり、 逆に膜から溶媒を排出したりして、 膜が 所望のプロ トン性溶媒量になるように調整することができる。 その際、 膜内 のプロ トン性溶媒量が空間的に均一になっているのか、 空間的な分布が形成 されているのかを確認するために、 R Fコイルを用いて膜の一部に励起用振 動磁場を印加して、 エコー信号を取得し、 プロ トン性溶媒量の分布を得るこ とができる。  [0015] Therefore, according to the present invention, for example, in a state where the protonic solvent flowing through the flow channel is supplied into the membrane, or conversely, the protonic solvent is discharged from the membrane, The amount of protonic solvent in the membrane can be measured in situ. In addition to applying a static magnetic field to the membrane, supplying a protonic solvent to the channel by supplying a protonic solvent to the membrane, or conversely draining the solvent from the membrane, the membrane can have a desired It can adjust so that it may become a tonality solvent amount. At that time, in order to confirm whether the amount of the protonic solvent in the membrane is spatially uniform or a spatial distribution is formed, an RF coil is used to excite part of the membrane. By applying an oscillating magnetic field, echo signals can be acquired, and the distribution of the amount of protonic solvent can be obtained.
また、 膜の面内方向のプロ トン性溶媒の拡散挙動を評価することが可能と なるため、 たとえば燃料電池の固体高分子電解質膜中のプロ トン性溶媒の分 布を評価するシミュレーシヨン装置等の膜の評価装置にも好ましく適用する ことができる。 また、 後述するように、 本発明の測定装置をたとえば燃料電 池内に組み込むこともできる。 In addition, it is possible to evaluate the diffusion behavior of the protonic solvent in the in-plane direction of the membrane. For example, a simulation device for evaluating the distribution of the protonic solvent in the solid polymer electrolyte membrane of the fuel cell, etc. It is preferably applied to other film evaluation devices be able to. Further, as will be described later, the measuring apparatus of the present invention can be incorporated into a fuel cell, for example.
[001 6] なお、 本発明によれば、 永久磁石の流路溝にプロ トン性溶媒を含む流体を 流しながら測定を行い、 エコー信号を取得することができるが、 プロ トン性 溶媒を含む流体を流路溝に流すことは本発明において必須ではなく、 流体を 流さない状態で測定を行ってもよい。 プロ トン性溶媒としては、 たとえば、 水や、 メタノール、 エタノール等のアルコール類が挙げられる。  [001 6] According to the present invention, an echo signal can be obtained by performing measurement while flowing a fluid containing a protonic solvent in the flow channel groove of the permanent magnet. It is not essential in the present invention to flow the fluid in the flow channel, and the measurement may be performed in a state in which no fluid flows. Examples of the protonic solvent include water and alcohols such as methanol and ethanol.
[001 7] また、 本明細書において、 「エコー信号」 は、 励起用振動磁場に対応する とともに T 2緩和時定数の算出が可能な N M R信号として機能する信号であれ ばよい。 [001 7] Further, in this specification, the “echo signal” may be a signal that corresponds to the excitation oscillating magnetic field and functions as an NMR signal capable of calculating the T 2 relaxation time constant.
[0018] また、 本明細書において、 「静磁場」 は、 エコー信号および T 2緩和時定数 の取得を安定的に行うことが可能な程度に時間的に安定な磁場であれば、 完 全に安定な磁場でなくてもよく、 その範囲内で多少の変動があってもよい。 [0018] In the present specification, "static magnetic field" is completely a magnetic field that is stable in time to such an extent that the echo signal and the T 2 relaxation time constant can be acquired stably. It does not have to be a stable magnetic field, and there may be some variation within that range.
[001 9] 本発明の測定装置において、 前記溶媒量算出部が、 前記エコー信号の強度 から、 Τ 2緩和時定数を算出し、 算出した前記 Τ 2緩和時定数から、 前記膜の特 定箇所における前記プロ トン性溶媒の量を算出してもよい。 [001 9] In the measuring apparatus of the present invention, the solvent amount calculating section, from the intensity of the echo signal, and calculates the T 2 relaxation time constant, from the calculated said T 2 relaxation time constant, specific portions of the film The amount of the protonic solvent in may be calculated.
また、 本発明の測定方法において、 第 2ステップが、 前記エコー信号の強 度から、 Τ 2緩和時定数を算出するステップと、 前記膜中のプロ トン性溶媒量 と Τ 2緩和時定数との相関関係を示すデータを取得し、 該データと Τ 2緩和時定 数を算出する前記ステップで算出された前記 Τ 2緩和時定数とから、 前記プロ トン性溶媒の量を求めるステップと、 を含んでいてもよい。 Further, in the measurement method of the present invention, the second step is from the strong degree of the echo signals, calculating a T 2 relaxation time constant, the pro tons of solvent content and T 2 relaxation time constant in the film acquires data indicating the correlation, including from the said data and T 2 wherein T 2 relaxation time constant calculated in the step of calculating the relaxation time constant, and determining the amount of the pro ton solvent, the You may go out.
Τ 2緩和時定数からプロ トン性溶媒量を算出することにより、 装置構成に依 存する測定値の校正操作をさらに簡素化することができる。 ( 2 ) By calculating the amount of protonic solvent from the relaxation time constant, it is possible to further simplify the calibration of measured values depending on the device configuration.
[0020] ここで、 永久磁石の表面近傍においては、 静磁場の大きさは、 当該表面の 法線方向に沿って変化する。 また、 永久磁石の表面に流路を設けた場合、 流 路形成面の上部において、 静磁場の大きさに、 流路を有しない場合とは異な る空間的な分布が生じる。 膜の測定における共鳴周波数は、 測定箇所におけ る静磁場の強度に依存して変化するため、 エコー信号を確実に取得するため には、 永久磁石と膜の測定箇所との相対位置を確実に調整するとともに、 膜 中の測定箇所に励起用振動磁場を確実に形成することが重要となる。 [0020] Here, in the vicinity of the surface of the permanent magnet, the magnitude of the static magnetic field changes along the normal direction of the surface. In addition, when the flow path is provided on the surface of the permanent magnet, a spatial distribution different from the case where there is no flow path occurs in the magnitude of the static magnetic field in the upper part of the flow path forming surface. The resonance frequency in the measurement of the membrane changes depending on the strength of the static magnetic field at the measurement location, so that the echo signal can be acquired reliably. For this purpose, it is important to reliably adjust the relative position between the permanent magnet and the measurement location of the membrane, and to reliably form an oscillating magnetic field for excitation at the measurement location in the membrane.
[0021 ] 永久磁石と膜との間隔をさらに精密に調整する観点では、 たとえば、 永久 磁石の前記流路溝が、 互いに平行に配置された複数の溝部を含む構成として もよい。 こうすることにより、 測定対象がたわみやすい膜である場合にも、 複数の溝部の間に形成された凸部 (流路形成面) により、 流路形成面から特 定の間隔で、 膜の一方の面を支持することができる。 よって、 流路形成面の 放線方向についての膜と流路形成面との間隔を特定の大きさに規制した状態 で保ち、 膜を流路形成面の近傍に安定的に保持することができる。 なお、 こ のとき、 膜の一方の面が、 永久磁石の流路形成面に直接接触していてもよい し、 流路形成面と膜との間に、 非磁性材料により構成された間隔調整部材が 介在する構成となっていてもよい。  [0021] From the viewpoint of more precisely adjusting the distance between the permanent magnet and the film, for example, the flow path groove of the permanent magnet may include a plurality of groove portions arranged in parallel to each other. In this way, even when the measurement target is a flexible film, the projections (flow channel forming surface) formed between the plurality of groove portions are separated from the flow channel forming surface at a specific interval. Can be supported. Therefore, the distance between the film and the flow path forming surface in the ray direction of the flow path forming surface can be maintained in a state of being regulated to a specific size, and the film can be stably held in the vicinity of the flow path forming surface. At this time, one surface of the film may be in direct contact with the flow path forming surface of the permanent magnet, or the distance adjustment made of a nonmagnetic material between the flow path forming surface and the film. A member may be interposed.
[0022] また、 本発明において、 前記 R Fコイルが、 前記流路形成面内方向であつ て前記溝部の延在方向に垂直な方向の振幅を有する前記励起用振動磁場を形 成してもよい。 このようにすれば、 流路形成面の上部の領域のうち、 特に以 下の ( i ) および ( i i ) の領域に、 流路形成面に平行な面内における静磁 場強度が一様な領域を形成することができる。  [0022] In the present invention, the RF coil may form the excitation oscillating magnetic field having an amplitude in a direction in the flow path forming plane and perpendicular to the extending direction of the groove. . In this way, the magnetostatic field intensity in the plane parallel to the flow path formation surface is uniform in the following areas (i) and (ii) in the upper area of the flow path formation surface. Regions can be formed.
( i ) 隣接する前記溝部に挟まれた領域であって、 流路形成面の延在方向に 沿った領域、 および  (i) a region sandwiched between adjacent grooves, the region along the direction in which the flow path forming surface extends, and
( i i ) 単一の溝部の上部の領域であって、 溝部の延在方向に沿った領域。  (i i) An upper region of a single groove part, and an area along the extending direction of the groove part.
[0023] 上記 ( i ) では、 溝部の延在方向に垂直な断面内における静磁場が極大と なるため、 上記 ( i ) の領域は、 流路形成面に平行な面内で溝部の延在方向 の静磁場の変化が小さい領域である。 また、 上記 ( i i ) では、 溝部の延在 方向に垂直な断面内における静磁場が極小となるため、 上記 ( i i ) の領域 は、 流路形成面に平行な面内で溝部の延在方向の静磁場の変化が小さい領域 である。  [0023] In the above (i), the static magnetic field in the cross section perpendicular to the extending direction of the groove portion is maximized. Therefore, the region (i) is formed by extending the groove portion in a plane parallel to the flow path forming surface. This is a region where the change in the direction of the static magnetic field is small. In (ii) above, since the static magnetic field in the cross section perpendicular to the extending direction of the groove is minimized, the region (ii) is defined by the extending direction of the groove in the plane parallel to the flow path forming surface. This is the region where the change of the static magnetic field is small.
[0024] よって、 上記 ( i ) または ( i i ) を測定領域とすることにより、 局所的 なプロ トン性溶媒量の測定をさらに精度よく行うことができる。 また、 静磁 場強度が一様な領域を複数形成すれば、 多点測定を正確に行う観点でもさら に好適である。 [0024] Therefore, by using the above (i) or (ii) as the measurement region, the local amount of the protonic solvent can be measured with higher accuracy. Also, magnetostatic Forming multiple regions with uniform field strength is even more suitable from the viewpoint of accurately performing multipoint measurement.
[0025] 上記 ( i ) または ( i i ) を測定領域とする際には、 たとえば前記 R Fコ ィルが、 一対のコイル部を含むとともに、 前記一対のコイル部に挟まれた領 域に前記励起用振動磁場を形成し、 前記永久磁石の前記流路形成面の上部か ら見たときに、 前記一対のコイル部に挟まれた領域が、 単一の前記溝部の形 成領域内または隣接する前記溝部に挟まれた領域内に含まれる構成とするこ とができる。  [0025] When (i) or (ii) is used as a measurement region, for example, the RF coil includes a pair of coil portions, and the excitation is performed in a region sandwiched between the pair of coil portions. Forming an oscillating magnetic field, and when viewed from above the flow path forming surface of the permanent magnet, a region sandwiched between the pair of coil portions is in or adjacent to the formation region of the single groove portion It can be configured to be included in a region sandwiched between the groove portions.
[0026] このうち、 上記 ( i ) を測定領域とする場合、 永久磁石の流路形成面、 R  [0026] Of these, when (i) is the measurement region, the flow path forming surface of the permanent magnet, R
Fコイルおよび膜の位置ずれをさらに確実に抑制する観点では、 前記 R Fコ ィルが、 第一直線領域を含む第一コイル部と、 第二直線領域を含む第二コィ ル部とを連結した平面型コイルであって、 前記第一コイル部と前記第二コィ ル部とは、 導線が逆巻きであって、 前記第一直線領域および前記第二直線領 域が、 前記溝部の延在方向に平行に配置され、 前記永久磁石の前記流路形成 面の上部から見たときに、 前記第一直線領域と前記第二直線領域との間に挟 まれた領域が、 隣接する前記溝部に挟まれた領域内に含まれる構成としても よい。  From the viewpoint of further reliably suppressing the positional deviation of the F coil and the film, the RF coil is a plane in which the first coil portion including the first linear region and the second coil portion including the second linear region are connected. The first coil portion and the second coil portion are conductive coils, and the first linear region and the second linear region are parallel to the extending direction of the groove portion. The region sandwiched between the first straight region and the second straight region when viewed from above the flow path forming surface of the permanent magnet is located within the region sandwiched between the adjacent groove portions. It may be a configuration included in
[0027] 永久磁石の流路形成面の上部に R Fコイルの直線領域を配置することによ り、 流路溝形成面に平行な平面内における静磁場強度が一様な領域を計測領 域とすることができる。 また、 流路形成面の上部に直線領域を配置すること により、 直線領域を流路形成面で直接または間接的に支えることができるた め、 流路形成面と直線領域との間隔のずれをより一層抑制し、 プロ トン性溶 媒量測定をさらに精度よく行うことができる。  [0027] By arranging the linear region of the RF coil on the upper part of the flow path forming surface of the permanent magnet, the region where the static magnetic field strength is uniform in the plane parallel to the flow channel groove forming surface is defined as the measurement region. can do. In addition, since the straight region can be directly or indirectly supported by the flow path forming surface by arranging the straight region above the flow path forming surface, the gap between the flow path forming surface and the straight region can be reduced. This further suppresses the measurement of the amount of protonic solvent with higher accuracy.
[0028] また、 上記 ( i i ) を測定領域とする場合、 前記 R Fコイルが、 第一直線 領域を含む第一コィル部と、 第二直線領域を含む第ニコィル部とを連結した 平面型コイルであって、 前記第一コイル部と前記第二コイル部とは、 導線が 逆巻きであって、 前記第一直線領域および前記第二直線領域が、 前記溝部の 延在方向に平行に配置され、 前記永久磁石の前記流路形成面の上部から見た ときに、 前記第一直線領域と前記第二直線領域との間に挟まれた領域が、 単 —の前記溝部の形成領域内に含まれる構成としてもよい。 [0028] Also, when the above (ii) is used as a measurement region, the RF coil is a planar coil in which a first coil portion including a first linear region and a first nicole portion including a second linear region are connected. The first coil portion and the second coil portion have a conductive wire reversely wound, and the first linear region and the second linear region are arranged in parallel to the extending direction of the groove portion, and the permanent magnet As viewed from the top of the flow path forming surface In some cases, a region sandwiched between the first straight region and the second straight region may be included in a single groove forming region.
[0029] 溝部の上部の領域では、 図 3 ( b ) を参照して後述するように、 流路形成 面の法線方向において、 流路形成面から特定の距離で静磁場強度が極大とな る。 静磁場強度が極大となる領域を測定領域とすることにより、 測定時の静 磁場の変動をより一層抑制することができるため、 プロ トン性溶媒量をより 一層正確に測定することができる。  [0029] In the upper region of the groove, as will be described later with reference to Fig. 3 (b), the static magnetic field strength becomes maximum at a specific distance from the flow path formation surface in the normal direction of the flow path formation surface. The By setting the region where the static magnetic field intensity is maximized as the measurement region, the fluctuation of the static magnetic field during measurement can be further suppressed, and thus the amount of the protonic solvent can be measured more accurately.
[0030] また、 永久磁石の流路形成面、 R Fコイルおよび膜の位置ずれをより一層 確実に抑制する観点では、 前記 R Fコイルが、 前記永久磁石の前記流路形成 面と前記膜との間に配置され、 前記永久磁石の前記流路形成面と前記平面型 コイルとの間、 および前記平面型コイルと前記膜との間に、 非磁性材料によ り構成された特定の厚さの間隔調整部材が配置されていてもよい。  [0030] Further, from the viewpoint of more reliably suppressing the displacement of the flow path forming surface of the permanent magnet, the RF coil, and the film, the RF coil is provided between the flow path forming surface of the permanent magnet and the film. A gap having a specific thickness formed by a nonmagnetic material between the flow path forming surface of the permanent magnet and the planar coil, and between the planar coil and the film. An adjustment member may be arranged.
[0031 ] 本発明によれば、 上述した本発明の測定装置を備える、 燃料電池が提供さ れる。 この燃料電池は、 たとえば固体高分子電解質膜を膜として含んでもよ し、。 このとき、 固体高分子電解質膜の局所的なプロ トン性溶媒量を測定する ことができるため、 固体高分子電解質膜中のプロ トン性溶媒の分布を直接求 めることができる。  [0031] According to the present invention, there is provided a fuel cell comprising the above-described measuring device of the present invention. This fuel cell may include, for example, a solid polymer electrolyte membrane as a membrane. At this time, since the local amount of the protonic solvent in the solid polymer electrolyte membrane can be measured, the distribution of the protonic solvent in the solid polymer electrolyte membrane can be directly obtained.
[0032] 特に、 本発明の測定装置においては、 永久磁石の膜との対向面に流路溝が 設けられているため、 たとえば燃料電池の燃料極または酸化剤極に対向して 設けられたセパレータの少なくとも一部を測定装置の永久磁石で構成するこ とができる。 これにより、 燃料電池全体の装置構成を簡素化しつつ、 燃料電 池の電極に燃料または酸化剤、 さらには水蒸気を供給しつつ、 固体高分子電 解質膜中の局所的なプロ トン性溶媒量を測定することができる。  [0032] In particular, in the measuring apparatus of the present invention, since the flow channel is provided on the surface facing the permanent magnet film, for example, a separator provided facing the fuel electrode or oxidant electrode of the fuel cell. At least a part of this can be constituted by a permanent magnet of the measuring device. This simplifies the overall configuration of the fuel cell, while supplying fuel or an oxidant, and even water vapor to the fuel cell electrode, and the amount of local protonic solvent in the polymer electrolyte membrane. Can be measured.
[0033] この構成において、 前記永久磁石の前記流路形成面が、 当該燃料電池の燃 料極に対向配置されるとともに、 前記流路溝に燃料ガスが供給されてもよい し、 前記永久磁石の前記流路形成面が、 当該燃料電池の酸化剤極に対向配置 されるとともに、 前記流路溝に酸化剤ガスが供給されてもよい。  [0033] In this configuration, the flow path forming surface of the permanent magnet is disposed opposite to the fuel electrode of the fuel cell, and a fuel gas may be supplied to the flow path groove. The flow path forming surface of the fuel cell may be disposed opposite to the oxidant electrode of the fuel cell, and an oxidant gas may be supplied to the flow path groove.
[0034] 以上説明したように本発明によれば、 流路形成面を有する特定形状の永久 磁石により膜に静磁場を印加し、 静磁場に置かれた膜の一部に対して R Fコ ィルが励起用振動磁場を印加して、 これに対応する複数のエコー信号を取得 するため、 膜中のプロ トン性溶媒量に分布を形成するとともに、 その分布状 態を的確に検出することができる。 [0034] As described above, according to the present invention, a specific shape permanent having a flow path forming surface is provided. To apply a static magnetic field to the film with a magnet and apply an oscillating magnetic field for excitation to a part of the film placed in the static magnetic field, and to obtain a plurality of echo signals corresponding to this, A distribution can be formed in the amount of the protonic solvent in the film, and the distribution state can be accurately detected.
また、 流路溝に、 燃料または酸化剤とプロ トン性溶媒とを含む流体を流す ことで、 膜中のプロ トン性溶媒量を調整し、 これに対応する複数のエコー信 号を取得して、 膜中のプロ トン性溶媒量の空間分布状態を的確に検出するこ とができる。  In addition, by flowing a fluid containing fuel or oxidant and a protonic solvent in the flow channel, the amount of protonic solvent in the membrane is adjusted, and multiple echo signals corresponding to this are obtained. It is possible to accurately detect the spatial distribution of the amount of protonic solvent in the membrane.
これにより、 永久磁石の流路溝にプロ トン性溶媒を含む流体を流しつつ、 膜中の局所的なプロ トン性溶媒量をその場で測定することができる。  As a result, it is possible to measure the local amount of the protonic solvent in the film on the spot while flowing a fluid containing the protonic solvent in the channel groove of the permanent magnet.
また、 膜の平面方向へのプロ トン性溶媒量の拡散特性を評価することがで さる。  It is also possible to evaluate the diffusion characteristics of the amount of protonic solvent in the plane direction of the membrane.
図面の簡単な説明 Brief Description of Drawings
[図 1 ]実施形態における永久磁石の構成を示す図である。 FIG. 1 is a diagram showing a configuration of a permanent magnet in an embodiment.
[図 2]実施形態における永久磁石の構成を示す図である。 FIG. 2 is a diagram showing a configuration of a permanent magnet in the embodiment.
[図 3]実施形態における永久磁石により形成される静磁場強度の z位置分布の 測定結果を説明する図である。 FIG. 3 is a diagram for explaining the measurement result of the z position distribution of the static magnetic field strength formed by the permanent magnet in the embodiment.
[図 4]実施形態における永久磁石により形成される静磁場強度の y位置分布の 測定結果を説明する図である。  FIG. 4 is a diagram for explaining the measurement result of the y-position distribution of the static magnetic field strength formed by the permanent magnet in the embodiment.
[図 5]実施形態における永久磁石により形成される静磁場強度の X位置分布の 測定結果を説明する図である。  FIG. 5 is a diagram for explaining the measurement result of the X position distribution of the static magnetic field strength formed by the permanent magnet in the embodiment.
[図 6]実施形態における永久磁石により形成される静磁場を説明する斜視図で  FIG. 6 is a perspective view for explaining a static magnetic field formed by a permanent magnet in the embodiment.
[図 7]実施形態における燃料電池の構成を示す断面図である。 FIG. 7 is a cross-sectional view showing the configuration of the fuel cell in the embodiment.
[図 8]実施形態における平面型コイルの構成を示す図である。  FIG. 8 is a diagram showing a configuration of a planar coil in the embodiment.
[図 9]実施形態における測定装置の構成を示す図である。  FIG. 9 is a diagram showing a configuration of a measuring apparatus in the embodiment.
[図 10]実施形態の測定装置の永久磁石、 平面型コィルぉよび試料の配置を示 す断面図である。 [図 11 ]実施形態における測定装置の構成を示す図である。 FIG. 10 is a cross-sectional view showing the arrangement of permanent magnets, a flat coil, and a sample of the measuring apparatus according to the embodiment. FIG. 11 is a diagram showing a configuration of a measuring apparatus in the embodiment.
[図 12]実施例におけるエコー信号の測定結果を示す図である。  FIG. 12 is a diagram showing a measurement result of an echo signal in an example.
[図 13]実施例におけるコイルと試料との距離とェコ一信号強度との関係を示 す図である。  FIG. 13 is a diagram showing the relationship between the distance between the coil and the sample and the echo signal intensity in the example.
[図 14]実施例におけるエコー信号の測定結果を示す図である。  FIG. 14 is a diagram showing a measurement result of an echo signal in an example.
[図 15]実施例における試料の含水量と T2との関係を示す図である。 FIG. 15 is a graph showing the relationship between the water content of a sample and T 2 in an example.
[図 16]実施例における試料の含水量とエコー信号強度との関係を示す図であ る。  FIG. 16 is a graph showing the relationship between the moisture content of the sample and the echo signal intensity in the example.
[図 17]実施例におけるエコー信号の測定結果を示す図である。  FIG. 17 is a diagram showing a measurement result of an echo signal in an example.
[図 18]実施例における Doub I e-D型コイルの構成を示す図である。  FIG. 18 is a diagram showing a configuration of a Doub I e-D type coil in an example.
[図 19]実施例における Doub I e-D型コイルの構成を示す図である。  FIG. 19 is a diagram showing a configuration of a Doub I e-D type coil in an example.
[図 20]実施例における磁場の解析方法を説明する図である。  FIG. 20 is a diagram for explaining a magnetic field analysis method in an example.
[図 21 ]実施例における磁場の解析条件を示す図である。  FIG. 21 is a diagram showing magnetic field analysis conditions in the example.
[図 22]実施例における Doub I e-D型コイルの χ方向磁場強度の ζ位置分布を示 す図である。  FIG. 22 is a diagram showing the ζ position distribution of the magnetic field strength in the χ direction of the Doub I e-D type coil in the example.
[図 23]実施例における Doub I e-D型コイルにより形成される磁場の等高線を示 す図である。  FIG. 23 is a diagram showing contour lines of a magnetic field formed by a Doub I e-D type coil in an example.
[図 24]実施例における Doub I e-D型コイルの χ方向磁場強度の ζ位置分布を示 す図である。  FIG. 24 is a diagram showing the ζ position distribution of the χ direction magnetic field strength of the Doub I e-D type coil in the example.
[図 25]実施例における磁場の解析条件を示す図である。  FIG. 25 is a diagram showing magnetic field analysis conditions in the example.
[図 26]実施例における Doub I e-D型コイルにより形成される磁場の等高線を示 す図である。  FIG. 26 is a diagram showing contour lines of a magnetic field formed by a Doub I e-D type coil in an example.
[図 27]実施例における Doub I e-D型コイルの χ方向磁場強度の ζ位置分布を示 す図である。  FIG. 27 is a diagram showing a ζ position distribution of χ direction magnetic field strength of a Doub I e-D type coil in an example.
[図 28]実施例における Doub l e-D型コイルの X方向磁場強度分布 Η Xを示す図 である。  FIG. 28 is a diagram showing an X-direction magnetic field strength distribution ΗX of a Double-D type coil in an example.
[図 29]実施例における Doub I e-D型コイルの χ方向磁場強度の ζ位置分布を示 す図である。 [図 30]実施例における Doub I e-D型コイルの χ方向磁場強度の ζ位置分布を示 す図である。 FIG. 29 is a diagram showing a ζ position distribution of χ direction magnetic field strength of a Doub I eD type coil in an example. FIG. 30 is a diagram showing a ζ position distribution of χ direction magnetic field strength of a Doub I eD type coil in an example.
[図 31]実施例における Doubl e-D型コイルのエコー信号受信強度分布を示す図 である。  FIG. 31 is a diagram showing an echo signal reception intensity distribution of a Doublé-D coil in an example.
[図 32]実施例における Doub I e-D型コイルのェコ一信号受信強度の z位置分布 を示す図である。  FIG. 32 is a diagram showing a z-position distribution of echo signal reception intensity of a Doub I e-D type coil in an example.
[図 33]実施例における Doub I e-D型コイルのェコ一信号受信強度分布を示す図 である。  FIG. 33 is a diagram showing an echo signal reception intensity distribution of the Doub I e-D type coil in the example.
[図 34]実施例における Doub I e-D型コイルのェコ一信号受信強度の z位置分布 を示す図である。  FIG. 34 is a diagram showing a z-position distribution of echo signal reception intensity of the Doub I e-D type coil in the example.
[図 35]実施例における Doub I e-D型コイルのェコ一信号受信強度の z位置分布 を示す図である。  FIG. 35 is a diagram showing a z-position distribution of echo signal reception intensity of a Doub I e-D type coil in an example.
[図 36]実施形態における燃料電池の構成を示す図である。  FIG. 36 is a diagram showing a configuration of a fuel cell in an embodiment.
[図 37]実施形態における燃料電池のセルの構成を示す図である。  FIG. 37 is a diagram showing a cell configuration of a fuel cell in an embodiment.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0036] 本発明の実施形態について、 図面を用いて説明する。 なお、 すべての図面 において、 同様な構成要素には同様の符号を付し、 適宜説明を省略する。  Embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same components are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
[0037] 以下の実施形態では、 核磁気共鳴 (NMR) 法を用いて膜中のプロ トン性 溶媒量を算出する。  In the following embodiment, the amount of the protonic solvent in the film is calculated using a nuclear magnetic resonance (NMR) method.
N MR法では、 磁場中に置かれた原子核のスピン共鳴現象により、 核磁化 の運動を N MR信号として検出することで、 原子数密度や緩和時定数を取得 することができる。 原子数密度に対応する物理量として、 たとえば、 高分子 電解質膜内の含水量が挙げられる。 また、 緩和時定数としては、 たとえば、 Τ Τ2緩和時定数があり、 CPMG法を用いれば、 含水量に強く依存した Τ2 (CPMG) 緩和時定数が得られる。 以下、 CPMG法を用い、 励起用振動 磁場を高周波パルスシーケンスとして与える場合を例に説明する。 In the NMR method, the number density and relaxation time constant can be obtained by detecting the motion of nuclear magnetization as an NMR signal due to the spin resonance phenomenon of a nucleus placed in a magnetic field. Examples of the physical quantity corresponding to the atomic number density include the water content in the polymer electrolyte membrane. As the relaxation time constant, for example, there are T T 2 relaxation time constant, the use of the CPMG method, strongly dependent on the T 2 (CPMG) relaxation time constant on the water content is obtained. In the following, the CPMG method is used as an example to explain the case where the excitation vibration magnetic field is applied as a high-frequency pulse sequence.
[0038] また、 本発明の測定装置は、 流路溝を有する特定形状の永久磁石と、 励起 用振動磁場を印加する RF検出コイル (単に 「RFコイル」 とも呼ぶ。 ) を 備える。 そこで、 以下においては、 まず、 第一の実施形態および第二の実施 形態において、 測定装置を構成する永久磁石および R Fコイルの具体例を示 す。 そして、 第三の実施形態において、 上記永久磁石および R Fコイルを組 み合わせた測定装置の具体的構成を説明する。 さらに、 第四の実施形態にお いて、 第三の実施形態に記載の測定装置を備える燃料電池の具体例を示す。 [0038] In addition, the measuring apparatus of the present invention includes a permanent magnet having a specific shape having a flow channel and an RF detection coil (also simply referred to as "RF coil") that applies an excitation oscillating magnetic field. Prepare. Therefore, in the following, first, specific examples of the permanent magnet and the RF coil constituting the measuring apparatus in the first embodiment and the second embodiment will be shown. In the third embodiment, a specific configuration of a measuring apparatus in which the permanent magnet and the RF coil are combined will be described. Furthermore, in the fourth embodiment, a specific example of a fuel cell including the measuring device described in the third embodiment is shown.
[0039] (第一の実施形態) [0039] (First embodiment)
本実施形態では、 第三の実施形態で用いられる永久磁石の構成を説明する 図 1 (a) および図 1 (b) は、 本実施形態の永久磁石の構成を示す図で ある。 図 1 (b) は、 図 1 (a) の Α_Α'部分断面図である。  In the present embodiment, the configuration of the permanent magnet used in the third embodiment will be described. FIG. 1A and FIG. 1B are diagrams showing the configuration of the permanent magnet of the present embodiment. Fig. 1 (b) is a partial cross-sectional view of Α_Α 'in Fig. 1 (a).
なお、 図 1 (a) および図 1 (b) に、 永久磁石 1 1 3の形状および寸法 の一例を示したが、 永久磁石 1 1 3の形状および寸法は、 図示したものには 限られない。 図 1 (b) において両側矢印に付された寸法の単位は mmであ る。 なお、 図 2は、 図 1に示した寸法で作製した永久磁石を示す図である。  1 (a) and 1 (b) show an example of the shape and dimensions of the permanent magnet 1 1 3; however, the shape and dimensions of the permanent magnet 1 1 3 are not limited to those shown in the figure. . The unit of the dimension attached to the double-sided arrow in Fig. 1 (b) is mm. FIG. 2 is a view showing a permanent magnet manufactured with the dimensions shown in FIG.
[0040] 図 1および図 2に示した永久磁石は、 磁性材料からなり、 プロ トン性溶媒 量の測定装置において、 計測対象となる膜に静磁場を印加する部材である。 永久磁石 1 1 3の材料として、 たとえば N EOMAX社製 N EOMAX (登 録商標) 等のネオジゥム、 鉄、 ボロン系材料が挙げられる。  The permanent magnet shown in FIGS. 1 and 2 is a member made of a magnetic material and applying a static magnetic field to a film to be measured in a protonic solvent amount measuring apparatus. Examples of the material of the permanent magnet 1 1 3 include neodymium, iron, and boron materials such as NEOMAX (registered trademark) manufactured by NEOMAX.
[0041] なお、 図 1 (a) および図 1 (b) では、 永久磁石 1 1 3力 複数の磁性 材料からなるブロックが接合されてなる構成を例示したが、 永久磁石 1 1 3 が単一のブロックからなり、 接合部を有しない構成であってもよい。  [0041] In FIGS. 1 (a) and 1 (b), the permanent magnet 1 1 3 force is exemplified by a configuration in which blocks made of a plurality of magnetic materials are joined, but the permanent magnet 1 1 3 is a single unit. The structure which consists of these blocks and does not have a junction part may be sufficient.
[0042] 永久磁石 1 1 3には、 流路形成面が設けられ、 流路形成面に、 プロ トン性 溶媒を含む流体が流れる流路溝 1 0 1が設けられている。 測定対象となる膜 は、 永久磁石 1 1 3の流路形成面に平行に設けられる。 永久磁石 1 1 3は、 膜の法線方向に前記静磁場を印加する。  The permanent magnet 1 13 is provided with a flow path forming surface, and the flow path forming surface is provided with a flow path groove 110 1 through which a fluid containing a protonic solvent flows. The film to be measured is provided in parallel to the flow path forming surface of the permanent magnet 1 1 3. The permanent magnets 1 1 3 apply the static magnetic field in the normal direction of the film.
[0043] 以下の説明において、 永久磁石 1 1 3の流路形成面は、 凸部 1 03の頂面 に対応し、 流路溝 1 0 1に含まれる溝部は、 凹部 1 05に対応する。  In the following description, the flow path forming surface of the permanent magnet 1 13 corresponds to the top surface of the convex part 103, and the groove part included in the flow path groove 101 corresponds to the concave part 105.
永久磁石 1 1 3の流路形成面は、 連続して交互に設けられた複数の凹部 1 0 5および凸部 1 0 3により構成された凹凸面を含む。 複数の凸部 1 0 3お よび複数の凹部 1 0 5は、 いずれも互いに平行に延在している。 凸部 1 0 3 および凹部 1 0 5は、 いずれも、 特定の一方向 (図中 X方向) に直線状に延 在している。 The flow path forming surface of the permanent magnet 1 1 3 has a plurality of recesses 1 provided alternately in succession. Including an uneven surface constituted by 0 5 and convex portions 1 0 3. The plurality of convex portions 10 3 and the plurality of concave portions 10 5 all extend in parallel with each other. Both the convex portion 103 and the concave portion 105 extend linearly in one specific direction (the X direction in the figure).
[0044] また、 複数の凸部 1 0 3の頂面は、 いずれも同一平面内に位置しており、 複数の凹部 1 0 5の底面は、 いずれも凸部 1 0 3の頂面に平行な同一の平面 内に位置している。 図 1 ( a ) では、 凸部 1 0 3の頂面および凹部 1 0 5の 底面が、 いずれも X y平面に水平な面である場合が例示されている。  Further, the top surfaces of the plurality of convex portions 10 3 are all located in the same plane, and the bottom surfaces of the plurality of concave portions 1 0 5 are all parallel to the top surface of the convex portion 10 3. Located in the same plane. In FIG. 1 (a), the case where the top surface of the convex portion 103 and the bottom surface of the concave portion 105 are both horizontal to the xy plane is illustrated.
また、 A— A '断面において、 複数の凸部 1 0 3の幅 (y方向) および複数 の凹部 1 0 5の幅は、 いずれも略等しい。  In the AA ′ cross section, the width of the plurality of convex portions 103 (y direction) and the width of the plurality of concave portions 105 are both substantially equal.
[0045] 本実施形態で用いる永久磁石 1 1 3には、 凸部 1 0 3および凹部 1 0 5の 形成面 (図 1 ( a ) における上面) の反対側 (同図下面側) に、 溝部 1 0 5 aが形成されている。 溝部 1 0 5 aは、 凹部 1 0 5の延在方向と交差する方 向 (図中 y方向) に伸びて掘り込み形成されている。 また溝部 1 0 5 aは、 凹部 1 0 5の延在方向 (図中 X方向) の中央においてもっとも深く、 そして 両端側においてもっとも浅く形成されている。 溝部 1 0 5 aの具体的な横断 面 (図中 y軸に対して垂直に切った断面) 形状は特に限定されるものではな いが、 本実施形態についてはこれを三角形としている。 このほか溝部 1 0 5 aの横断面形状は半円形や放物線形状などでもよい。  The permanent magnet 1 1 3 used in the present embodiment has a groove on the opposite side (lower surface side in FIG. 1 (a)) to the formation surface (the upper surface in FIG. 1 (a)) of the projections 1 0 3 and 1 5 5. 1 0 5 a is formed. The groove portion 10 5 a is formed by digging in a direction intersecting with the extending direction of the recess portion 10 5 (y direction in the figure). Further, the groove portion 10 5 a is formed deepest at the center in the extending direction of the recessed portion 10 (X direction in the figure) and shallowest at both end sides. The specific transverse plane of the groove portion 10 5 a (cross section cut perpendicular to the y-axis in the figure) The shape is not particularly limited, but in the present embodiment, this is a triangle. In addition, the cross-sectional shape of the groove portion 10 5 a may be a semicircular shape or a parabolic shape.
このような構成の永久磁石 1 1 3を空間内に配置すると、 凸部 1 0 3の上 部および凹部 1 0 5の上部に、 流路形成面に平行な面内 (図中 x y平面) 方 向の静磁場強度が一様な領域が形成される。  When the permanent magnet 1 1 3 having such a configuration is arranged in the space, it is in the plane parallel to the flow path forming surface (the xy plane in the figure) on the upper part of the convex part 10 3 and the upper part of the concave part 1 5. A region having a uniform static magnetic field strength is formed.
このうち、 凸部 1 0 3の上部においては、 流路形成面に平行な面内におけ る静磁場強度が一様な領域が、 凸部 1 0 3の延在方向に沿って形成されると ともに、 凸部 1 0 3の幅方向に、 特定の幅にわたって形成される。  Among these, in the upper part of the convex portion 103, a region having a uniform static magnetic field strength in a plane parallel to the flow path forming surface is formed along the extending direction of the convex portion 103. Along with the width of the convex portion 103, it is formed over a specific width.
また、 凹部 1 0 5の上部においても、 流路形成面に平行な面内における静 磁場強度が一様な領域が、 凹部 1 0 5の延在方向に沿って形成されるととも に、 凹部 1 0 5の幅方向に、 特定の幅にわたって形成される。 これらの領域は、 膜の局所的な NMR計測を行う際に、 計測領域として好 ίϋに用しゝ bれる。 In addition, in the upper part of the concave portion 105, a region having a uniform static magnetic field strength in a plane parallel to the flow path forming surface is formed along the extending direction of the concave portion 105, and the concave portion It is formed over a specific width in the width direction of 105. These areas can be used as measurement areas when performing local NMR measurement of the film.
[0046] 以下、 凸部 1 03および凹部 1 05の上部に、 これらの延在方向に沿って 一様な静磁場の平面が形成されることをさらに具体的に説明する。  [0046] Hereinafter, it will be described more specifically that a uniform static magnetic field plane is formed in the upper part of the convex portion 103 and the concave portion 105 along the extending direction.
本発明者は、 図 2に示した永久磁石を用いて、 静磁場強度の空間分布を評 価した。 計測装置として、 ガウスメータ (KAN ET EC製 TM—501 ) を用いた。 静磁場強度は z方向成分のみを計測した。 図 3、 図 4および図 5 に、 計測した静磁場強度 (z方向成分) の z軸方向 (流路形成面の法線方向 ) の位置、 y軸方向 (溝部の断面方向) の位置および X軸方向 (溝部の延在 方向) の位置の分布を示した。 ここでは、 図 2に示した永久磁石の 5つの凸 部の中央列の中心を y = Ommとした。  The inventor evaluated the spatial distribution of the static magnetic field strength using the permanent magnet shown in FIG. A Gauss meter (TM-501 manufactured by KAN ET EC) was used as a measuring device. For the static magnetic field strength, only the z-direction component was measured. Figures 3, 4 and 5 show the measured static magnetic field strength (z-direction component) in the z-axis direction (normal direction of the flow path forming surface), y-axis direction (cross-sectional direction of the groove), and X The distribution of the position in the axial direction (extending direction of the groove) was shown. Here, the center of the central row of the five convex parts of the permanent magnet shown in Fig. 2 is set to y = Omm.
[0047] 図 3 (a) および図 3 (b) は、 静磁場強度 HQ (z方向成分) の z軸方向 の位置分布の測定結果を説明する図である。 また、 図 4 (a) および図 4 ( b) は、 静磁場強度 HQ (z方向成分) の y軸方向の位置分布の測定結果を説 明する図である。 [0047] FIGS. 3 (a) and 3 (b) are diagrams illustrating the measurement results of the position distribution of the static magnetic field strength H Q (z-direction component) in the z-axis direction. 4 (a) and 4 (b) are diagrams illustrating the measurement results of the position distribution in the y-axis direction of the static magnetic field strength H Q (z-direction component).
[0048] 図 3 (b) および図 4 (b) より、 凸部 1 03 (y = Omm) の上部の領 域では、 磁石表面 (Z = Omm) で磁場強度が最も強く、 磁石から離れるほ ど、 つまり zが大きくなるほど磁場強度が減少することがわかる。 一方、 凹 部 1 05 (y = 6. 35 mm) の上部の領域では、 磁場強度は z = 5〜 6 m m程度で極大となり、 それ以降では磁石から離れるほど磁場強度は減少する [0048] From Fig. 3 (b) and Fig. 4 (b), in the upper region of the convex part 103 (y = Omm), the magnetic field strength is strongest on the magnet surface ( Z = Omm), and the magnetic field is far away from the magnet. In other words, it can be seen that the magnetic field strength decreases as z increases. On the other hand, in the upper region of the concave portion 10 05 (y = 6.35 mm), the magnetic field strength becomes maximum at z = 5 to 6 mm, and after that, the magnetic field strength decreases as the distance from the magnet increases.
[0049] また、 永久磁石 1 1 3を用いた測定において、 z方向の磁場強度の急激な 変動を抑制する観点では、 流路形成面の凹部 1 05の上部の領域において、 高さが凹部 1 05の深さの 1 /4以上の位置、 好ましくは 1 /3以上の位置 を測定領域とすることができる。 また、 測定領域の高さの上限に特に制限は ないが、 たとえば図 3 (b) より、 凹部 1 05の深さの 1. 5倍程度の高さ までについては、 z方向の静磁場の急激な変動を抑制することができる。 In addition, in the measurement using the permanent magnet 1 1 3, in terms of suppressing a sudden change in the magnetic field strength in the z direction, the height of the concave portion 1 05 is higher than the height of the concave portion 1 05 on the flow path forming surface. The measurement area can be a position of 1/4 or more of the depth of 05, preferably a position of 1/3 or more. The upper limit of the height of the measurement area is not particularly limited. For example, from Fig. 3 (b), the static magnetic field in the z direction is rapidly increased up to about 1.5 times the depth of the recess 105. Fluctuations can be suppressed.
[0050] また、 図 3 (b) より、 凹部 1 05の上部には、 磁場強度が極大となる領 域が形成される。 磁場強度が極大となる領域は、 流路溝 1 0 1を有しない永 久磁石の平面上には形成されず、 流路溝 1 0 1を有する永久磁石 1 1 3に特 有の現象である。 凹部 1 05の上部の磁場強度が極大となる領域の近傍、 た とえば凹部 1 05の深さの 1 /3以上 3/2以下の領域の高さの領域では、 流路形成面に水平な面内方向における静磁場強度の変化量がさらに小さいた め、 膜の NMR測定を行う際に、 測定位置の位置ずれによる測定値の変化を より一層抑制することができる。 [0050] From FIG. 3 (b), in the upper part of the recess 105, the area where the magnetic field strength becomes maximum is obtained. A zone is formed. The region where the magnetic field intensity is maximum is not formed on the plane of the permanent magnet having no flow channel 10 1, but is a phenomenon unique to the permanent magnet 1 1 3 having the flow channel 1 0 1. . In the vicinity of the region where the magnetic field strength at the top of the recess 105 is maximum, for example, in the region of the height of 1/3 or more and 3/2 or less of the depth of the recess 105, it is horizontal to the flow path formation surface. Since the amount of change in the static magnetic field strength in the in-plane direction is even smaller, changes in the measured value due to the displacement of the measurement position can be further suppressed when performing NMR measurement of the film.
[0051] また、 図 3 (b) より、 磁石から離れた位置、 たとえば z > 1 Ommであ つても、 磁場強度は 0. 2〜0. 3 T e s I a程度である。 後述する実施例 で示すように、 この程度の磁場強度であれば、 N MR計測は充分に可能であ る。 [0051] From FIG. 3 (b), the magnetic field strength is about 0.2 to 0.3 Tes Ia even at a position away from the magnet, for example, z> 1 Omm. As shown in the examples described later, NMR measurement is sufficiently possible with such a magnetic field strength.
[0052] また、 図 4 (b) より、 zの位置によらず、 凸部 1 03の中心軸 (y = 0 mm) と凹部 1 05の中心軸 (y = 6. 35mm) の位置で、 磁場強度はそ れぞれ極大値および極小値となる。 この二つの y位置の近傍では磁場が平坦 になっており、 本実施形態では、 この領域が NMR計測を行う位置となる。  [0052] From Fig. 4 (b), regardless of the position of z, at the position of the central axis (y = 0 mm) of the convex part 103 and the central axis (y = 6.35mm) of the concave part 105, The magnetic field strength has a maximum value and a minimum value, respectively. In the vicinity of these two y positions, the magnetic field is flat, and in this embodiment, this region is a position where NMR measurement is performed.
[0053] 図 5 (a) 〜図 5 (c) は、 静磁場強度 HQ (z方向成分) の x軸方向の位 置分布の測定結果を説明する図である。 図 5 (a) は、 凸部 1 03および凹 部 1 05の延在方向に対する永久磁石 1 1 3の断面を示し、 図 5 (b) は、 凸部 1 03および凹部 1 05の延在方向に垂直な永久磁石 1 1 3の断面を示 している。 [0053] FIGS. 5 (a) to 5 (c) are diagrams for explaining the measurement results of the position distribution in the x-axis direction of the static magnetic field strength HQ (z-direction component). Fig. 5 (a) shows a cross section of the permanent magnet 1 13 with respect to the extending direction of the convex portion 103 and the concave portion 105. Fig. 5 (b) shows the extending direction of the convex portion 103 and the concave portion 105. A cross section of a permanent magnet 1 1 3 perpendicular to is shown.
[0054] また、 図 5 (c) は、 静磁場強度 HQ (z方向成分) の X軸方向の位置分布 を示す図である。 つまり、 図 5 (c) は、 溝方向の磁場強度を示す。 図 5 ( c) より、 凸部 1 03の上部および凹部 1 05の上部のいずれについても、 磁場強度はこれらの延在方向に沿ってほぼ一様であることがわかる。 これは 、 上述のように凸部 1 03および凹部 1 05の形成面と対向する面に溝部 1 05 aを掘り込み形成し、 永久磁石 1 1 3の厚みを X方向 (凹部 1 05の延 在方向) の中央で薄く、 両端で厚くしたことによる。 [0054] Fig. 5 (c) is a diagram showing the position distribution in the X-axis direction of the static magnetic field strength HQ (z-direction component). In other words, Fig. 5 (c) shows the magnetic field strength in the groove direction. From FIG. 5 (c), it can be seen that the magnetic field strength is almost uniform along the extending direction of both the upper part of the convex part 103 and the upper part of the concave part 105. This is because, as described above, the groove 1 05 a is dug and formed on the surface opposite to the formation surface of the convex portion 103 and the concave portion 105, and the thickness of the permanent magnet 1 13 is set in the X direction (extension of the concave portion 105. Direction) due to being thin at the center and thick at both ends.
このように凹部 1 05の延在方向について静磁場強度 H0を均一化したこと により、 N M R測定の際の膜の核磁気共鳴周波数が、 溝部の延在方向、 つま り凸部 1 0 3および凹部 1 0 5の延在方向に一様となる。 In this way, the static magnetic field strength H 0 was made uniform in the extending direction of the recess 105. Thus, the nuclear magnetic resonance frequency of the film at the time of NMR measurement becomes uniform in the extending direction of the groove, that is, in the extending direction of the convex portion 103 and the concave portion 105.
[0055] 以上の結果より、 たとえば図 6に示した第一領域 1 0 7および第二領域 1 0 9を N M R測定領域とするように膜および R Fコイルを配置することによ り、 測定時の静磁場強度を適宜選定でき、 さらに静磁場の空間分布も適宜選 定できることで、 計測したい核磁気共鳴周波数と計測領域を調整でき、 装置 と計測試料に合わせたより一層高い精度での N M R計測が可能となる。  [0055] From the above results, for example, by arranging the film and the RF coil so that the first region 10 07 and the second region 10 09 shown in FIG. The static magnetic field strength can be selected as appropriate, and the spatial distribution of the static magnetic field can also be selected as appropriate, so that the nuclear magnetic resonance frequency and measurement region to be measured can be adjusted, and NMR measurement can be performed with even higher accuracy according to the device and measurement sample. It becomes.
[0056] 図 6は、 本実施形態の永久磁石 1 1 3で N M R計測がしゃすい第一領域 1 0 7および第二領域 1 0 9を示す斜視図である。 図 6において、 第一領域 1 0 7は、 y = 0 m m近傍の凸部 1 0 3上部の領域であり、 第一領域 1 0 7は 、 凸部 1 0 3の延在方向に沿って形成されている。 また、 第二領域 1 0 9は 、 y = 6 . 3 5 m m近傍の凹部 1 0 5の上部の領域であり、 凹部 1 0 5の延 在方向に沿って形成されている。  FIG. 6 is a perspective view showing the first region 1 07 and the second region 1 0 9 which are NMR measurement smooth with the permanent magnet 1 13 of the present embodiment. In FIG. 6, the first region 10 07 is a region above the convex portion 10 3 near y = 0 mm, and the first region 10 07 is formed along the extending direction of the convex portion 103. Has been. The second region 109 is a region above the recess 105 near y = 6.35 mm, and is formed along the extending direction of the recess 105.
[0057] 図 6に示したように、 永久磁石 1 1 3の流路形成面の上部から見たときに 、 流路形成面に平行な面内における静磁場強度が一様な領域 (第一領域 1 0 7および第二領域 1 0 9 ) は、 凸部 1 0 3の上部および凹部 1 0 5の上部に 、 それぞれ、 円筒形の領域として形成される。  As shown in FIG. 6, when viewed from the upper part of the flow path forming surface of the permanent magnet 1 1 3, a region where the static magnetic field strength is uniform in a plane parallel to the flow path forming surface (first The region 10 7 and the second region 10 9) are formed as cylindrical regions on the upper part of the convex part 103 and the upper part of the concave part 105, respectively.
[0058] なお、 凹部 1 0 5の延在方向の断面視において、 第一領域 1 0 7および第 二領域 1 0 9の幅は、 図 4 ( b ) に示したように、 z方向の位置に応じて変 動するものの、 たとえば第一領域 1 0 7については、 凸部 1 0 3の中心 (極 大点) から両側に凸部 1 0 3の幅の 1 / 4程度の領域については、 静磁場の 空間的な不均一度が小さい領域とすることができる。 また、 第二領域 1 0 9 についても、 凹部 1 0 5の中心 (極小点) から両側に凹部 1 0 5の幅の1 / 4程度の領域については、 静磁場の空間的な不均一度が小さい領域とするこ とができる。  [0058] In the cross-sectional view in the extending direction of the recess 1005, the width of the first region 1007 and the second region 1009 is the position in the z direction as shown in Fig. 4 (b). For example, for the first region 1 07, for the region of about 1/4 of the width of the protrusion 1 0 3 on both sides from the center (maximum point) of the protrusion 1 0 3, It can be a region where the spatial non-uniformity of the static magnetic field is small. For the second region 1 0 9, the spatial nonuniformity of the static magnetic field is about 1/4 of the width of the recess 1 0 5 on both sides from the center (minimum point) of the recess 1 0 5. It can be a small area.
[0059] また、 本実施形態の永久磁石 1 1 3は、 凹凸面を備える形状であり、 この 凹凸面を膜に平行に対向配置して N M R測定が行われる。 このため、 たとえ ば永久磁石 1 1 3をセパレータ (ガス流路部) として燃料電池に組み込むこ とが可能となる。 永久磁石 1 1 3を燃料電池のセパレ一タとして用いること により、 固体高分子電解質膜等の燃料電池の電解質層のプロ トン性溶媒量の 測定が可能となる。 なお、 永久磁石 1 1 3を有する測定装置を備えた燃料電 池の構成例については、 第四の実施形態でさらに詳細に説明する。 In addition, the permanent magnet 1 1 3 of this embodiment has a shape with an uneven surface, and the NMR measurement is performed with the uneven surface facing the film in parallel. For this reason, for example, the permanent magnet 1 1 3 can be incorporated into the fuel cell as a separator (gas flow path). Is possible. By using the permanent magnet 113 as a separator for the fuel cell, it is possible to measure the amount of the protonic solvent in the electrolyte layer of the fuel cell such as a solid polymer electrolyte membrane. A configuration example of a fuel cell provided with a measuring device having permanent magnets 11 and 13 will be described in more detail in the fourth embodiment.
[0060] なお、 本実施形態においては、 永久磁石 1 1 3の流路形成面に、 複数の凹 部 1 0 5 (溝部) が独立に設けられた構成を例示したが、 流路溝 1 0 1の形 状は、 断面視において、 複数の凸部 1 0 3と凹部1 0 5とが繰り返し設けら れたものであればよく、 平面視においては、 複数の溝部が連通している構成 であってもよい。 複数の溝部が連通している場合にも、 図 3〜図 6を参照し て前述した断面形状を有する永久磁石であれば、 図 3〜図 6に示した静磁場 分布に準ずる静磁場分布が形成されるため、 膜中のプロ トン性溶媒量の分布 の測定に用いる永久磁石として用いることができる。  In the present embodiment, a configuration in which a plurality of recesses 10 5 (grooves) are independently provided on the flow path forming surface of the permanent magnet 1 13 is illustrated. The shape of 1 is not limited as long as a plurality of protrusions 103 and recesses 105 are repeatedly provided in a cross-sectional view, and in a plan view, a plurality of groove portions communicate with each other. There may be. Even in the case where a plurality of grooves are connected, if the permanent magnet has the cross-sectional shape described above with reference to FIGS. 3 to 6, the static magnetic field distribution according to the static magnetic field distribution shown in FIGS. Since it is formed, it can be used as a permanent magnet used to measure the distribution of the amount of protonic solvent in the film.
また、 本実施形態においては、 流路溝に含まれる複数の流部が互いに平行 に延在している構成を例示したが、 流路の平面形状および平面配置はこれに は限られない。  In the present embodiment, the configuration in which the plurality of flow portions included in the flow channel groove extend in parallel to each other is illustrated, but the planar shape and the planar arrangement of the flow channel are not limited thereto.
[0061 ] (第二の実施形態)  [0061] (Second Embodiment)
本実施形態では、 第三の実施形態の測定装置に用いられる R Fコイルの構 成を説明する。 なお、 以下の説明では、 N M R測定対象の膜が固体高分子電 解質膜である場合を例に説明する。  In the present embodiment, the configuration of the RF coil used in the measurement apparatus of the third embodiment will be described. In the following description, the case where the membrane to be measured is a solid polymer electrolyte membrane will be described as an example.
[0062] 第一の実施形態において図 6を参照して前述したように、 プロ トン性溶媒 量の測定装置に用いられる永久磁石 1 1 3においては、 凸部 1 0 3頂面およ び凹部 1 0 5底面に垂直な方向 (z方向、 図中上向き) に静磁場 H Qが形成さ れる。 また、 凸部 1 0 3および凹部 1 0 5の上部の領域に、 これらの延在方 向に沿って、 N M R計測をさらに容易に行いやすし、領域が形成される。 As described above with reference to FIG. 6 in the first embodiment, in the permanent magnet 11 3 used in the measuring apparatus for the amount of the protic solvent, the top surface of the convex portion 103 and the concave portion 1 0 5 A static magnetic field H Q is formed in a direction perpendicular to the bottom surface (z direction, upward in the figure). In addition, in the regions above the convex portions 103 and the concave portions 105, the NMR measurement is further facilitated along the extending directions, and regions are formed.
[0063] そこで、 本実施形態においては、 R Fコイルとして、 第一領域 1 0 7また は第二領域 1 0 9に励起用振動磁場を形成するように構成された平面コイル を用いる。 以下、 平面型コイルが、 静磁場に垂直な方向に励起用振動磁場を 形成する場合、 具体的には、 流路形成面内方向であって溝部の延在方向に垂 直な方向の振幅を有する励起用振動磁場を形成する場合を例に説明する。 Therefore, in the present embodiment, a planar coil configured to form an oscillating magnetic field for excitation in the first region 10 7 or the second region 1 09 is used as the RF coil. Hereinafter, when the planar coil forms an oscillating magnetic field for excitation in a direction perpendicular to the static magnetic field, specifically, it hangs in the direction in which the flow path is formed and in the direction in which the groove extends. A case where an excitation oscillating magnetic field having an amplitude in a straight direction is formed will be described as an example.
[0064] 図 8は、 平面型コイルの構成を模式的に示す図である。 平面型コイルの巻 数や形状はこれに限られるものではない。 図 8に示した平面型コイル 1 1 4 は、 一対のコイル部 (第一コイル部 1 1 9、 第二コイル部 1 2 1 ) を含むと ともに、 一対のコイル部に挟まれた領域に励起用振動磁場を形成する。 また 、 平面型コイル 1 1 4は、 たとえば、 永久磁石 1 1 3の流路形成面の上部か ら見たときに、 一対のコイル部に挟まれた領域が、 単一の溝部の形成領域内 または隣接する溝部に挟まれた領域内に含まれる配置で用いられる。  FIG. 8 is a diagram schematically showing the configuration of the planar coil. The number and shape of the planar coil are not limited to this. The planar coil 1 1 4 shown in FIG. 8 includes a pair of coil portions (first coil portion 1 1 9, second coil portion 1 2 1) and is excited in a region sandwiched between the pair of coil portions. Form an oscillating magnetic field. In addition, the planar coil 1 1 4 is, for example, a region sandwiched between a pair of coil portions when viewed from the upper part of the flow path forming surface of the permanent magnet 1 1 3, within a single groove portion forming region. Or it is used by arrangement | positioning included in the area | region pinched | interposed into the adjacent groove part.
[0065] なお、 図 8では、 第一コイル部 1 1 9力 第一直線領域 1 23を含み導線 が右巻きに巻かれたコイル部であり、 第二コイル部 1 2 1力 第二直線領域 1 25を含み導線が左巻きに巻かれたコイル部である例を示したが、 各コィ ル部の導線の巻き方はこれには限られない。 第一直線領域 1 23および第二 直線領域 1 25に同じ向きに電流が流れれば、 これらの直線領域の間に、 直 線領域に垂直でコイル面に平行な励起用振動磁場が形成される。  In FIG. 8, the first coil portion 1 1 9 force is a coil portion including the first linear region 1 23 and the conductive wire is wound in the right-handed direction. The second coil portion 1 2 1 force is the second linear region 1 Although an example is shown in which the conductive wire is coiled in a left-handed winding including 25, the winding method of the conductive wire in each coil portion is not limited to this. If current flows in the same direction in the first linear region 123 and the second linear region 125, an excitation oscillating magnetic field perpendicular to the linear region and parallel to the coil surface is formed between these linear regions.
[0066] 平面型コイル 1 1 4は、 さらに具体的には、 D o u b I e _D型 (別名、 8の字コイル、 または、 バタフライコイルとも呼ばれる。 ) である。 D o u b I e _D型コイルは、 導線を半円型に巻き、 二つのコイルを向かい合わせ にした形状であって、 二つの半円の弦が直線部分に対応し、 弦同士が互いに 平行に配置される。  [0066] More specifically, the planar coil 1 1 4 is of the Doub Ie_D type (also called an 8-shaped coil or a butterfly coil). Doub I e _D type coil has a shape in which a conducting wire is wound in a semicircular shape and two coils face each other, and the two semicircular strings correspond to the straight part, and the strings are arranged parallel to each other Is done.
[0067] なお、 図 8には、 具体的な平面型コイル 1 1 4の寸法と L C共振回路が示 されている。 平面型コイル 1 1 4の例示的な寸法として、 0. 2 mm直径の 銅線を直径 1 2 mmの半円形にそれぞれ 5巻きし、 弦同士を 1. 2mm間隔 で平行に配置している。 なお図 8では簡単のため 3巻分の銅線を模式的に示 している。 このコイルの共振周波数は、 たとえば 1 3. 07MH zである。 また、 製作したコイルのクロリティファクタ一 Q値は 25である。 ただし、 図示した平面型コイル 1 1 4の寸法や巻数は、 図 1に示した永久磁石 1 1 3 の寸法に合わせて設計した例であり、 この寸法等には限られない。  FIG. 8 shows specific dimensions of the planar coil 114 and the LC resonance circuit. As an example of the dimensions of the planar coil 1 14, a 0.2 mm diameter copper wire is wound in 5 semi-circles each having a diameter of 12 mm, and the strings are arranged in parallel at intervals of 1.2 mm. In Fig. 8, for simplicity, three copper wires are shown schematically. The resonance frequency of this coil is, for example, 13.07 MHz. The Q value of the chlority factor of the manufactured coil is 25. However, the dimensions and number of turns of the illustrated planar coil 1 14 are examples designed according to the dimensions of the permanent magnet 1 1 3 shown in FIG. 1, and are not limited to these dimensions.
[0068] Do u b I e_D型コイルのように、 互いに平行な二つの直線領域を有す るコイル部を組み合わせた構成の平面型コイル 1 1 4では、 第一直線領域 1 2 3と第二直線領域 1 2 5との間の領域、 つまり二つの半円型のコイルの対 称軸の周辺に振動磁場 が形成される。 後述する実施例の解析結果に示され るように、 この対称軸の周辺が平面型コイル 1 1 4の検出領域 (測定領域) となる。 このため、 平面型コイル 1 1 4の検出領域に、 図 6に示した永久磁 石 1 1 3の二つの第一領域 1 0 7または第二領域 1 0 9を重ね合わせれば、 静磁場 H 0と振動磁場 H ,とが垂直となるため、 一対のコィル部の対称軸付近の 領域は、 N M R計測を行うのにさらに好まししゝ領域である。 [0068] It has two linear regions parallel to each other like a Do ub I e_D type coil In the planar coil 1 1 4 with a combination of coil parts, the area between the first linear area 1 2 3 and the second linear area 1 2 5, that is, around the symmetrical axis of the two semicircular coils An oscillating magnetic field is formed in As shown in the analysis results of the examples described later, the periphery of this symmetry axis is the detection region (measurement region) of the planar coil 1 14. Therefore, if the two first regions 1 0 7 or the second region 1 0 9 of the permanent magnet 1 1 3 shown in FIG. 6 are superimposed on the detection region of the planar coil 1 14, the static magnetic field H 0 And the oscillating magnetic field H are perpendicular to each other, the region near the symmetry axis of the pair of coil parts is a more preferable region for NMR measurement.
なお、 平面型コイル 1 1 4により形成される振動磁場の空間分布について は、 後述する実施例でさらに詳細に説明する。  Note that the spatial distribution of the oscillating magnetic field formed by the planar coils 1 1 and 4 will be described in more detail in the examples described later.
[0069] 本実施形態の平面型コイル 1 1 4を第一の実施形態と組み合わせて用いる ことにより、 静磁場が面内で一様な領域 (第一領域 1 0 7、 第二領域 1 0 9 ) を形成しつつ、 これらの領域に励起用振動磁場を確実に形成することがで きる。 そして、 第一領域 1 0 7または第二領域 1 0 9の上部に膜を配置して 、 第一領域 1 0 7または第二領域 1 0 9の上部の領域を測定領域としてェコ 一信号を取得することにより、 膜の N M R測定の精度を向上させることがで さる。 [0069] By using the planar coil 1 1 4 of this embodiment in combination with the first embodiment, a region where the static magnetic field is uniform in the plane (first region 1 0 7, second region 1 0 9 ), And an oscillating magnetic field for excitation can be reliably formed in these regions. Then, a film is arranged on the upper part of the first area 10 07 or the second area 10 09, and the first signal 10 07 or the upper area of the second area 10 09 is used as a measurement area to output an eco signal. Acquiring can improve the accuracy of NMR measurement of the film.
特に本実施形態に用いる永久磁石 1 1 3では、 上述のように凸部 1 0 3お よび凹部 1 0 5の形成面 (上面) の対向面 (下面) 側に溝部 1 0 5 aを掘り 込み形成して永久磁石 1 1 3の厚みを調整することにより、 凹部 1 0 5の延 在方向 (X方向) の静磁場強度を均一化している (図 1 ( a ) および図 5 ( c ) を参照) 。 これにより、 平面型コイル 1 1 4の検出領域内の全体におい て静磁場強度が均一化され、 試料中のプロ トンの共鳴周波数が検出領域内の 全体でより均一な周波数となる。 したがってそのべク トルの総和である N M R信号が大きくなり、 S N比を向上することができる。  In particular, in the permanent magnet 1 1 3 used in the present embodiment, the groove 1 0 5 a is dug on the opposite surface (lower surface) side of the formation surface (upper surface) of the protrusion 1 0 3 and the recess 1 0 5 as described above. By forming and adjusting the thickness of the permanent magnet 1 1 3, the static magnetic field strength in the extending direction (X direction) of the recess 1 0 5 is made uniform (see Fig. 1 (a) and Fig. 5 (c)). See). As a result, the static magnetic field strength is made uniform throughout the detection region of the planar coil 114, and the resonance frequency of the proton in the sample becomes a more uniform frequency throughout the detection region. Therefore, the NMR signal, which is the sum of the vectors, increases, and the SN ratio can be improved.
[0070] また、 平面型コイル 1 1 4のような平面型コイルは、 複数積層してもかさ ばらないため、 膜の厚さ方向の多点測定にも適した構造である。 永久磁石 1 1 3の流路形成面の上部からみたときに、 複数の平面型コイル 1 1 4を重ね て配置すれば、 膜の面内の特定箇所における厚さ方向のプロ トン性溶媒量の 分布を測定することができる。 また、 一つの平面型コイル 1 1 4を用いて、 膜の厚さ方向について異なる位置の測定を行うこともできる。 N M R計測に おける共鳴周波数は静磁場強度によって変わり、 この磁石では、 膜の厚さ方 向に磁場強度が変化していき、 これに対応して共鳴周波数も変わっていくこ とを利用して、 共鳴周波数の相違によって膜の厚さ方向の計測位置を選定し て N M R計測することができる。 この共鳴周波数の相違によって、 N M R信 号の干渉も抑制できる。 [0070] In addition, since a plurality of planar coils such as the planar coil 1 14 need not be stacked, the structure is suitable for multipoint measurement in the thickness direction of the film. When viewed from the top of the flow path forming surface of the permanent magnet 1 1 3, multiple planar coils 1 1 4 are stacked The distribution of the amount of protonic solvent in the thickness direction at a specific location in the plane of the membrane can be measured. It is also possible to perform measurement at different positions in the thickness direction of the film by using one planar coil 1 14. The resonance frequency in NMR measurement changes depending on the strength of the static magnetic field. With this magnet, the magnetic field strength changes in the direction of the film thickness, and the resonance frequency changes accordingly. NMR measurement can be performed by selecting the measurement position in the thickness direction of the film according to the difference in frequency. This difference in resonance frequency can also suppress the interference of NMR signals.
[0071 ] また、 第一領域 1 0 7または第二領域 1 0 9内に複数の平面型コイル 1 1 4を並べて配置すれば、 同じ静磁場内での多点測定が可能となるため、 膜の 面内方向での分布の測定や、 膜が特定の凹部 1 0 5と対向する領域について 、 プロ トン性溶媒量を複数回計測する場合にも適した構成となっている。 また、 流路形成面に平行な平面内の静磁場の大きさは、 凸部 1 0 3の上部 と凹部 1 0 5の上部とで異なるため、 これらのそれぞれに平面型コイル 1 1 4を配置すれば、 信号の干渉をさらに効果的に抑制することができる。  [0071] Further, if a plurality of planar coils 1 1 4 are arranged in the first region 1 0 7 or the second region 1 0 9, multipoint measurement can be performed in the same static magnetic field. This configuration is also suitable for measuring the distribution in the in-plane direction, and for measuring the amount of the protonic solvent multiple times in the region where the film faces a specific recess 105. In addition, since the magnitude of the static magnetic field in the plane parallel to the flow path forming surface differs between the upper part of the convex part 10 3 and the upper part of the concave part 1 0 5, a planar coil 1 1 4 is arranged in each of these. Then, signal interference can be more effectively suppressed.
[0072] また、 第四の実施形態で後述するように、 永久磁石 1 1 3を燃料電池のセ パレータとして用いる場合、 高分子電解質膜とセパレータ (ガス拡散層はセ パレ一タ側) との間に、 R F検出コイルを挟み込むことが望ましい。  [0072] Also, as will be described later in the fourth embodiment, when the permanent magnet 1 1 3 is used as a separator of a fuel cell, a polymer electrolyte membrane and a separator (the gas diffusion layer is on the separator side) It is desirable to sandwich an RF detection coil between them.
[0073] この点、 ソレノイ ド型コイルのような円筒形では、 立体的な形状であるた めに、 その隙間に挟み込むことはできない。  [0073] In this respect, a cylindrical shape such as a solenoid type coil has a three-dimensional shape and cannot be sandwiched in the gap.
これに対し、 R F検出コイルが平面状 (シート状) であれば、 容易にその 隙間に挟み込むことができる。 本実施形態において、 R Fコイルとして平面 型コイル 1 1 4を用いることにより、 永久磁石 1 1 3を燃料電池のセパレ一 タとして用いて固体高分子電解質膜を測定する場合にも、 燃料電池内に組み 込むことが容易で、 燃料電池全体の大型化を抑制することができる。  On the other hand, if the RF detection coil is planar (sheet-like), it can be easily inserted into the gap. In the present embodiment, by using the planar coil 1 1 4 as the RF coil, even when the solid polymer electrolyte membrane is measured using the permanent magnet 1 1 3 as the separator of the fuel cell, It is easy to incorporate, and the overall size of the fuel cell can be suppressed.
[0074] なお、 以上においては、 平面型コイル 1 1 4が、 二つの半月型のコイル部 を有する D o u b I e _ D型コイルである場合を例示したが、 平面型コイル 1 1 4は、 第一直線領域 1 2 3を備える第一コイル部 1 1 9および第二直線 領域 1 2 5を備える第二コイル部 1 2 1を含み、 これらのコイル部の導線が 逆巻きの構成であればよく、 コイル部の平面形状は半月型に限られない。 た とえば、 二つのコイル部の平面形状が、 正方形、 矩形、 三角形等の多角形で あってもよい。 [0074] In the above, the case where the planar coil 1 1 4 is a Doub I e _ D type coil having two half-moon-shaped coil portions is illustrated, but the planar coil 1 1 4 is First coil part 1 1 9 and second straight line with first straight region 1 2 3 The second coil portion 1 2 1 including the region 1 2 5 is included, and the conductive wire of these coil portions may be configured to be reversely wound, and the planar shape of the coil portion is not limited to the half-moon shape. For example, the planar shape of the two coil portions may be a polygon such as a square, a rectangle, or a triangle.
[0075] また、 平面型コイル 1 1 4は、 膜の一部に励起用振動磁場を印加する構成 であれば、 その寸法に特に制限はないが、 たとえば測定対象の膜より小さく することができる。 また、 平面型コイル 1 1 4は、 たとえば永久磁石 1 1 3 の流路形成面よりも小さくすることができる。 さらに具体的には、 永久磁石 1 1 3の溝部の延在方向に対する断面視において、 平面型コイル 1 1 4の幅 を、 永久磁石 1 1 3の凸部 1 0 3と凹部1 0 5のそれぞれ一本ずつの幅の合 計よりも大きくしてもよい。 また平面型コイル 1 1 4の幅を、 凹部 1 0 5と 凸部 1 0 3の幅の合計よりも小さくしてもよく、 またはこれを一本の凸部 1 0 3の幅よりも小さくしてもよい。 こうすれば、 平面型コイル 1 1 4を永久 磁石 1 1 3の流路形成面と膜との間に配置する際に、 平面型コイル 1 1 4と 永久磁石 1 1 3および膜との z方向の間隔をより一層確実に規制することが できる。  In addition, the planar coil 1 14 is not particularly limited in size as long as it is configured to apply an excitation oscillating magnetic field to a part of the film, but can be made smaller than the film to be measured, for example. . Further, the planar coil 1 1 4 can be made smaller than the flow path forming surface of the permanent magnet 1 1 3, for example. More specifically, in the cross-sectional view of the extending direction of the groove portion of the permanent magnet 1 1 3, the width of the planar coil 1 1 4 is set to the convex portion 10 3 and the concave portion 1 0 5 of the permanent magnet 1 1 3, respectively. It may be larger than the sum of the width of each piece. Further, the width of the planar coil 1 1 4 may be smaller than the sum of the widths of the concave portion 1 0 5 and the convex portion 1 0 3, or may be made smaller than the width of one convex portion 1 0 3. May be. In this way, when the planar coil 1 1 4 is placed between the flow path forming surface of the permanent magnet 1 1 3 and the film, the z direction between the planar coil 1 1 4 and the permanent magnet 1 1 3 and the film It is possible to more reliably regulate the interval.
[0076] (第三の実施形態)  [0076] (Third embodiment)
本実施形態は、 第一の実施形態に記載の永久磁石 1 1 3および第二の実施 形態に記載の R Fコイル (平面型コイル 1 1 4 ) を備える測定装置に関する  The present embodiment relates to a measuring apparatus including the permanent magnet 1 1 3 described in the first embodiment and the RF coil (planar coil 1 1 4) described in the second embodiment.
[0077] 図 9は、 本実施形態の測定装置の構成を示す図である。 図 9に示した測定 装置 1 0 0は、 核磁気共鳴法を用いて膜中の特定箇所のプロ トン性溶媒量を 局所的に測定する装置である。 以下、 プロ トン性溶媒が水の場合を例に説明 する。 FIG. 9 is a diagram showing a configuration of the measurement apparatus of the present embodiment. The measuring device 100 shown in FIG. 9 is a device that locally measures the amount of the protonic solvent at a specific location in the film using the nuclear magnetic resonance method. Hereinafter, the case where the proton solvent is water will be described as an example.
[0078] 測定装置 1 0 0は、  [0078] Measuring device 1 0 0
測定対象の膜 1 1 5に対して、 特定方向に静磁場を印加する永久磁石 1 1 3 膜 1 1 5に対して、 静磁場に垂直な方向に励起用振動磁場を印加するととも に、 励起用振動磁場に対応するエコー信号を取得する、 平面型コイル 1 1 4 、 および Permanent magnet that applies a static magnetic field in a specific direction to the film 1 1 5 to be measured 1 1 3 A vibrating magnetic field for excitation is applied in a direction perpendicular to the static magnetic field to the film 1 1 5 To obtain an echo signal corresponding to the oscillating magnetic field for excitation, a planar coil 1 1 4, and
エコー信号の強度から、 T 2緩和時定数を算出し、 算出した前記 T 2緩和時定 数から、 膜 1 1 5中の特定箇所におけるプロ トン性溶媒量を算出する溶媒量 算出部 (溶媒量算出部 1 2 4 ) From the intensity of the echo signal, calculates a the T 2 relaxation time constant, from the calculated said the T 2 relaxation time constant, the solvent amount calculation unit that calculates a pro ton solvent amount in a particular portion of the film 1 1 5 (solvent weight Calculation unit 1 2 4)
を備える。  Is provided.
[0079] 永久磁石 1 1 3は、 第一の実施形態で上述したように、 磁性材料により構 成される。 膜 1 1 5は、 永久磁石 1 1 3の流路形成面に平行に配置される。 また、 永久磁石 1 1 3は、 膜 1 1 5の厚さ方向に静磁場を印加する。 この静 磁場が印加された状態で励起用高周波パルスが膜 1 1 5に印加され、 T 2緩和 時定数の測定がなされる。 [0079] As described above in the first embodiment, the permanent magnet 1 1 3 is made of a magnetic material. The film 1 1 5 is disposed in parallel to the flow path forming surface of the permanent magnet 1 1 3. The permanent magnet 1 1 3 applies a static magnetic field in the thickness direction of the film 1 1 5. With this static magnetic field applied, a high frequency pulse for excitation is applied to the film 1 15 and the T 2 relaxation time constant is measured.
[0080] 平面型コイル 1 1 4は、 励起用高周波パルスを印加する。 平面型コイル 1  [0080] The planar coil 1 1 4 applies an excitation high-frequency pulse. Planar coil 1
1 4は、 さらに具体的には、 第二の実施形態で前述した D o u b I e _ D型 R F検出コイルである。 なお、 図 9では、 平面型コイル 1 1 4の二つの直線 領域を、 凹部 1 0 5の上部に配置する例を示した力 平面型コイル 1 1 4の 配置はこれには限られず、 たとえば凸部 1 0 3の上部に配置してもよい。  More specifically, 14 is the Doub Ie_D type RF detection coil described in the second embodiment. In addition, in FIG. 9, the arrangement of the force planar coil 1 1 4 in the example in which the two linear regions of the planar coil 1 1 4 are arranged on the upper part of the recess 1 0 5 is not limited to this. You may arrange | position in the upper part of the part 103.
[0081 ] また、 図 1 0は、 図 9に示した測定装置 1 0 0において、 永久磁石 1 1 3 、 平面型コイル 1 1 4および膜 1 1 5の配置をさらに詳細に示す断面図であ る。 図 1 0では、 膜 1 1 5が固体高分子電解質膜 1 1 7である場合が例示さ れている。  FIG. 10 is a cross-sectional view showing the arrangement of the permanent magnet 1 1 3, the planar coil 1 1 4, and the film 1 1 5 in more detail in the measuring apparatus 1 100 shown in FIG. The In FIG. 10, the case where the membrane 1 15 is a solid polymer electrolyte membrane 1 1 7 is illustrated.
[0082] 平面型コイル 1 1 4は、 永久磁石 1 1 3の流路形成面の上部に配置される 、 たとえば永久磁石 1 1 3の流路形成面 (凹凸面) と固体高分子電解質膜 1 1 7との間に配置される。  The planar coil 1 1 4 is disposed above the flow path forming surface of the permanent magnet 1 1 3. For example, the flow path forming surface (uneven surface) of the permanent magnet 1 1 3 and the solid polymer electrolyte membrane 1 Arranged between 1 and 7.
また、 図 1 0に示したように、 測定装置 1 0 0においては、 永久磁石 1 1 3の凸部 1 0 3と平面型コイル 1 1 4との間、 および平面型コイル 1 1 4と 固体高分子電解質膜 1 1 7との間に、 非磁性材料により構成された特定の厚 さの間隔調整部材 (第一のスぺーサ 1 2 7、 第二のスぺーサ 1 2 9 ) が配置 されている。 永久磁石 1 1 3が作る静磁場 H oの方向と、 D o u b I e _ D型 コイル (平面型コイル 1 1 4 ) が作る振動磁場 の方向は垂直の関係にある Further, as shown in FIG. 10, in the measuring device 100, the permanent magnet 1 1 3 has a convex portion 1 0 3 and a planar coil 1 1 4, and the planar coil 1 1 4 and a solid An interval adjusting member (first spacer 1 2 7, second spacer 1 2 9) with a specific thickness made of a non-magnetic material is placed between the polymer electrolyte membrane 1 1 7 Has been. Permanent magnet 1 1 3 static magnetic field H o direction and Doub I e _ D type The direction of the oscillating magnetic field created by the coil (planar coil 1 1 4) is perpendicular
[0083] また、 D o u b I e _ D型 R F検出コイルでは、 固体高分子電解質膜 1 1 7との z方向の距離を変えるとエコー信号強度が変わる。 これは、 振動磁場 H ,の強度分布とコイルの受信感度が距離に依存して変わるためである。 たと えば、 本発明者の検討によれば、 実施例で後述するように、 図 8に示した D o u b I e _ D型コイルにおいて、 最大エコー信号強度が得られる距離は約 1 m mのときである。 振動磁場 の強度分布を予め実験的に取得しておくこ とにより、 図 1 0に示したように、 D o u b I e _ D型検出コイルと固体高 分子電解質膜 1 1 7との位置を決めることができる。 [0083] In the Doub Ie_D type RF detection coil, the echo signal intensity changes when the distance in the z direction from the solid polymer electrolyte membrane 1 17 is changed. This is because the intensity distribution of the oscillating magnetic field H and the reception sensitivity of the coil change depending on the distance. For example, according to the study by the present inventor, as will be described later in the embodiment, in the Doub I e _D type coil shown in FIG. 8, the maximum echo signal intensity is obtained when the distance is about 1 mm. is there. By experimentally acquiring the intensity distribution of the oscillating magnetic field in advance, the positions of the Doub I e _ D type detection coil and the solid polymer electrolyte membrane 1 1 7 are determined as shown in Fig. 10. be able to.
[0084] 図 1 0に示したように、 測定装置 1 0 0では、 永久磁石 1 1 3と平面型コ ィル 1 1 4との間に特定の厚さの第一のスぺ一サ 1 2 7を配置することによ り、 これらを特定の間隔に保持する。 また、 平面型コイル 1 1 4と固体高分 子電解質膜 1 1 7との間に第二のスぺ一サ 1 2 9を配置することにより、 こ れらを特定の間隔に保持する。 これらのスぺーサを用いて永久磁石 1 1 3の 凹凸面、 平面型コイル 1 1 4設置面および固体高分子電解質膜 1 1 7の相対 位置 (z方向) を調整することにより、 固体高分子電解質膜 1 1 7の厚さ方 向の計測位置を精密に調整して、 測定領域において、 エコー信号の受信感度 を向上させることができる。 このため、 固体高分子電解質膜 1 1 7の局所的 な T 2測定を高感度で精度よく行うことができる。 [0084] As shown in FIG. 10, in the measuring apparatus 100, the first spacer 1 having a specific thickness between the permanent magnet 1 1 3 and the planar coil 1 1 4 is used. By placing 27, keep them at specific intervals. Further, by arranging a second spacer 1 29 between the planar coil 1 14 and the solid polymer electrolyte membrane 1 17, these are maintained at a specific interval. By using these spacers to adjust the relative position (z direction) of the uneven surface of the permanent magnet 1 1 3, the planar coil 1 1 4 installation surface and the solid polymer electrolyte membrane 1 1 7, the solid polymer By precisely adjusting the measurement position in the thickness direction of the electrolyte membrane 1 17, the reception sensitivity of the echo signal can be improved in the measurement region. Therefore, local T 2 measurement of the solid polymer electrolyte membrane 117 can be performed with high sensitivity and high accuracy.
[0085] また、 固体高分子電解質膜 1 1 7のたわみをさらに確実に抑制する観点で は、 平面型コイル 1 1 4が配置されていない凸部 1 0 3の上部に、 第三のス ぺ一サ 1 3 5を設けるとともに、 第三のスぺ一サ 1 3 5と固体高分子電解質 膜 1 1 7との間に形成された空隙 1 3 7に、 ビーズ状の間隔調整部材 (不図 示) を充填してもよい。 こうすれば、 永久磁石 1 1 3と固体高分子電解質膜 1 1 7との間隔をさらに精密に調整し、 その状態で固体高分子電解質膜 1 1 7を保持することができる。 このとき、 第三のスぺ一サ 1 3 5の厚さは、 第 —のスぺ一サ 1 2 7、 第二のスぺ一サ 1 2 9および平面型コイル 1 1 4の厚 さの合計よりも小さくしておき、 さらに具体的には、 第一のスぺ一サ 1 27 と第二のスぺーサ 1 29の厚さの合計と同程度の厚さとする。 [0085] Further, from the viewpoint of more reliably suppressing the bending of the solid polymer electrolyte membrane 1 17, the third spacer is formed on the upper portion of the convex portion 103 where the planar coil 11 14 is not disposed. 1 3 5 and a bead-like spacing adjusting member (not shown) in the gap 1 3 7 formed between the third spacer 1 3 5 and the solid polymer electrolyte membrane 1 1 7 May be filled. In this way, the distance between the permanent magnet 1 1 3 and the solid polymer electrolyte membrane 1 1 7 can be adjusted more precisely, and the solid polymer electrolyte membrane 1 1 7 can be held in that state. At this time, the thickness of the third spacer 1 3 5 is the same as the thickness of the first spacer 1 2 7, the second spacer 1 2 9 and the planar coil 1 1 4. More specifically, the thickness is set to be approximately equal to the total thickness of the first spacer 1 27 and the second spacer 1 29.
[0086] また、 図 1 0に示した配置は、 たとえば燃料電池用固体高分子電解質膜 ( P EM) をセパレ一タ (永久磁石 1 1 3) で押さえ、 両者の隙間に Do u b I 6_0型 「検出コィル (平面型コイル 1 1 4) を設置する態様に容易に 適用できるため、 測定装置 1 00は、 燃料電池の固体高分子電解質膜の局所 的な水分測定にも好適に用いられる。 このように、 本実施形態の測定装置 1 00は、 たとえば固体高分子電解質膜等の膜の局所的な水分量の評価装置と して用いることができる。  [0086] In addition, the arrangement shown in FIG. 10 is, for example, a solid polymer electrolyte membrane (PEM) for a fuel cell is held by a separator (permanent magnet 1 1 3), and Doub I 6_0 type in the gap between the two. “Because it can be easily applied to a mode in which a detection coil (planar coil 1 14) is installed, the measuring device 100 is also suitably used for local moisture measurement of a solid polymer electrolyte membrane of a fuel cell. As described above, the measuring apparatus 100 of the present embodiment can be used as an apparatus for evaluating the local water content of a membrane such as a solid polymer electrolyte membrane.
[0087] なお、 図 1 0に示した配置で各種試料の N M R計測を行った結果および算 出された T2 (CPMG) 値については、 実施例で後述する。 Note that the results of NMR measurement of various samples in the arrangement shown in FIG. 10 and the calculated T 2 (CPMG) value will be described later in Examples.
[0088] 図 9にもどり、 測定装置 1 00の構成をさらに説明する。  Returning to FIG. 9, the configuration of the measuring apparatus 100 will be further described.
平面型コイル 1 1 4は、 単数でも複数でもよい。 複数とすれば、 膜 1 1 5 中の水分量分布を測定することが可能となる。 この場合、 膜 1 1 5の表面に 沿つて 2次元的に配置すれば、 膜表面における 2次元水分量分布を求めるこ とができる。 また、 膜 1 1 5中に 3次元的に配置すれば、 膜中における 3次 元水分量分布を求めることができる。  The planar coil 1 1 4 may be singular or plural. If the number is plural, it is possible to measure the moisture content distribution in the membrane 1 1 5. In this case, if it is arranged two-dimensionally along the surface of the membrane 115, the two-dimensional moisture content distribution on the membrane surface can be obtained. In addition, if three-dimensionally arranged in the membrane 1 15, the three-dimensional moisture content distribution in the membrane can be obtained.
[0089] 平面型コイル 1 1 4により印加される振動磁場 (励起用振動磁場) は、 R  [0089] The oscillating magnetic field (exciting oscillating magnetic field) applied by the planar coil 1 1 4 is R
F発振器 1 02、 変調器 1 04、 R F増幅器 1 06、 パルス制御部 1 08、 スィッチ部 1 61および平面型コイル 1 1 4の連携により生成される。 すな わち、 RF発振器 1 02から発信した励起用高周波 R Fは、 パルス制御部 1 08による制御に基づいて変調器 1 04にて変調され、 パルス形状となる。 生成された RFパルスは RF増幅器 1 06により増幅された後、 平面型コィ ル 1 1 4へ送出される。 平面型コイル 1 1 4は、 この RFパルスを膜の一部 の特定箇所に印加する。 そして、 印加された R Fパルスのエコー信号を平面 型コイル 1 1 4が検出する。 このエコー信号は、 プリアンプ 1 1 2により増 幅された後、 位相検波器 1 1 0へ送出される。 位相検波器 1 1 0は、 このェ コ一信号を検波し、 A/D変換器 1 1 8へ送出する。 A/D変換器 1 1 8は エコー信号を A/D変換した後、 演算部 1 30へ送出する。 It is generated by cooperation of F oscillator 102, modulator 104, RF amplifier 106, pulse control unit 108, switch unit 1601, and planar coil 1 14 In other words, the excitation high-frequency RF transmitted from the RF oscillator 102 is modulated by the modulator 104 based on the control by the pulse control unit 108 and becomes a pulse shape. The generated RF pulse is amplified by the RF amplifier 106 and then sent to the planar coil 1 14. The planar coil 1 14 applies this RF pulse to a specific part of the film. The planar coil 1 14 detects the echo signal of the applied RF pulse. This echo signal is amplified by the preamplifier 1 1 2 and then sent to the phase detector 1 10. The phase detector 1 1 0 detects this echo signal and sends it to the A / D converter 1 1 8. A / D converter 1 1 8 After the A / D conversion of the echo signal, it is sent to the calculation unit 130.
[0090] スィッチ部 1 61は、 平面型コイル 1 1 4、 R F信号生成部およびエコー 信号検出部を接続する分岐部に設けられている。 The switch unit 1 61 is provided at a branching unit that connects the planar coil 1 14, RF signal generation unit, and echo signal detection unit.
RF信号生成部は、 RF発振器 1 02、 変調器 1 04および RF増幅器 1 06からなり、 平面型コイル 1 1 4に励起用振動磁場を発生させる R F信号 を生成する。 エコー信号検出部は、 プリアンプ 1 1 2、 位相検波器 1 1 0お よび A/D変換器 1 1 8から構成され、 平面型コイル 1 1 4により取得され たエコー信号を検出するとともに、 エコー信号を演算部 1 30に送出する。  The RF signal generation unit includes an RF oscillator 102, a modulator 104, and an RF amplifier 106, and generates an RF signal that causes the planar coil 1 14 to generate an oscillating magnetic field for excitation. The echo signal detection unit is composed of a preamplifier 1 1 2, a phase detector 1 1 0, and an A / D converter 1 1 8, and detects the echo signal acquired by the planar coil 1 1 4, Is sent to the arithmetic unit 130.
[0091] スィッチ部 1 61は、 平面型コイル 1 1 4と?¾「信号生成部 (RF増幅器 [0091] The switch portion 1 61 is a planar coil 1 1 4? ¾ “Signal generator (RF amplifier)
1 06) とが接続された第 1状態、 および、 平面型コイル 1 1 4とエコー信 号検出部 (位相検波器 1 1 0) とが接続された第 2状態を切り替える機能を 有する。 つまり、 スィッチ部 1 61は、 このような 「送受信切り替えスイツ チ」 の役目を果たす。  1 06) and a second state in which the planar coil 1 14 and the echo signal detector (phase detector 110) are connected. That is, the switch unit 1 61 serves as such a “transmission / reception switching switch”.
[0092] 上記分岐部にスィッチ部 1 61を設けることにより、 平面型コイル 1 1 4 から膜 1 1 5に印加される励起用高周波パルス信号の損失を低減し、 この結 果、 90° パルスおよび 1 80° パルスのパルス角を正確に制御することが 可能となる。 パルス角の正確な制御は、 パルスエコー法における補償効果を 確実に得る上で重要な技術的課題であり、 本実施形態では、 かかる課題をス イッチ部 1 61の配設により解決している。  [0092] By providing the switch portion 1 61 at the branch portion, the loss of the excitation high-frequency pulse signal applied from the planar coil 1 14 to the membrane 1 15 is reduced. As a result, the 90 ° pulse and 1 It becomes possible to control the pulse angle of 80 ° pulse accurately. Accurate control of the pulse angle is an important technical problem for reliably obtaining the compensation effect in the pulse echo method. In this embodiment, such a problem is solved by the arrangement of the switch unit 161.
[0093] また、 局所計測のための平面型コイル 1 1 4は微小化し、 N MR受信時の 低ノイズ化が、 計測の確からしさを確実なものとするためには重要な因子と なる。 NMR信号を受信する際に、 プリアンプ 1 1 2に入り込むノイズには 、 R F波の送信系が主にあり、 励起用パルスを増幅する R F増幅器 1 06か らの 「RF波の漏れ」 や 「大電力増幅器が発するノイズ」 がある。 NMR信 号の受信時には、 送信側から漏れてくる励起波をスィッチ部 1 61で確実に 遮断し、 低ノイズで NMR信号を受信する必要がある。 本実施形態では、 か かる課題についても、 スィッチ部 1 61の配設により解決している。  [0093] In addition, the planar coil 1 14 for local measurement is miniaturized, and the reduction of noise during N MR reception is an important factor for ensuring the accuracy of measurement. When receiving NMR signals, the noise that enters the preamplifier 1 1 2 mainly includes an RF wave transmission system, and “RF wave leakage” or “large” from the RF amplifier 1 06 that amplifies the excitation pulse. There is noise generated by power amplifiers. When receiving an NMR signal, it is necessary to block the excitation wave leaking from the transmitter side with the switch unit 161 and receive the NMR signal with low noise. In the present embodiment, such a problem is solved by the arrangement of the switch portion 161.
[0094] 以上、 励起用高周波パルスの印加およびエコー信号の検出について述べた が、 これらは、 小型コイルを含む LC回路 (図 8) により実現することがで きる。 図 8においては、 共振回路のコイル部 (インダクタンス部) は、 前述 したように小型 R Fコイルとしている。 核磁気共鳴 (NMR) 法は、 磁場中 に置かれた原子核のスピン共鳴現象により核磁化の運動を N M R信号として 検出することで原子数密度とスピン緩和時定数を計測することができる。 1 T e s I aの磁場中でのスピン共鳴周波数は約 43 MH z (この周波数帯を Ra d i o f r e q u e n c yと呼ぶ) であり、 その周波数帯を高感度に 選択的に検出するために、 図 8に示すような LC共振回路が用いられる。 [0094] The application of the excitation high frequency pulse and the detection of the echo signal have been described above. However, these can be realized by an LC circuit including a small coil (Fig. 8). In Fig. 8, the coil part (inductance part) of the resonance circuit is a small RF coil as described above. The nuclear magnetic resonance (NMR) method can measure atomic density and spin relaxation time constant by detecting the motion of nuclear magnetization as an NMR signal by the spin resonance phenomenon of a nucleus placed in a magnetic field. The spin resonance frequency in a magnetic field of 1 Tes Ia is about 43 MHz (this frequency band is called radio frequency), and in order to selectively detect that frequency band with high sensitivity, it is shown in Fig. 8. Such an LC resonant circuit is used.
[0095] 平面型コイル 1 1 4が膜 1 1 5に印加する励起用高周波パルスは、 たとえ ば、 [0095] The high frequency pulse for excitation applied by the planar coil 1 1 4 to the film 1 1 5 is, for example,
(a) 90° パルス、 および、  (a) 90 ° pulse and
(b) (a) のパルスの時間て経過後からはじまり、 時間 2ての間隔で印加 される n個の 1 80° パルス  (b) n 1 80 ° pulses applied at intervals of time 2, starting after the time of pulse (a)
からなるパルスシーケンスとすることができる。 T2緩和時定数と膜中の水分 量との相関関係を明確に把握するためには、 振動磁場の与え方を適切にする ことが重要となる。 上記のようなパターンとすることにより、 Τ2緩和時定数 と膜中の水分量との相関関係を明確に把握することが可能となる。 The pulse sequence can consist of In order to clearly grasp the correlation between the T 2 relaxation time constant and the amount of moisture in the film, it is important to properly apply the oscillating magnetic field. By using the pattern as described above, it is possible to clearly grasp the correlation between the 2 relaxation time constant and the amount of moisture in the film.
[0096] ここで、 90° パルスが第 1位相にあり、 η個の 1 80° パルスが、 第 1 位相と 90° ずれた第 2位相にあるパルスシーケンスとすれば、 Τ2緩和時定 数と膜中の水分量との明確な相関関係を安定的に取得することができる。 [0096] Here, if the 90 ° pulse is in the first phase and the η 1 80 ° pulse is in the second phase 90 ° off the first phase, then Τ 2 relaxation time constant And a clear correlation between the water content in the film can be obtained stably.
[0097] なお、 平面型コイル 1 1 4を用いる場合、 上記 (a) および (b) の励起 パルス強度の調整が困難となる場合がある。 たとえば、 測定対象の領域、 つ まり平面型コイル 1 1 4で囲まれた領域のうち、 中央部と周縁部とで励起の されかたに差異が生じてしまい、 全体を均一の励起角度となるように、 つま り (a) および (b) における励起磁場の強度比が一定となるように励起す ることが困難となる場合がある。 (a) および (b) における励起角度比が ばらつくと、 正確な T2測定が困難となる。 Note that when the planar coil 1 14 is used, it may be difficult to adjust the excitation pulse intensities (a) and (b). For example, in the region to be measured, that is, the region surrounded by the planar coil 1 14, there is a difference in the excitation method between the central portion and the peripheral portion, and the whole becomes a uniform excitation angle. In other words, it may be difficult to excite so that the intensity ratio of the excitation magnetic field in (a) and (b) is constant. If the excitation angle ratio in (a) and (b) varies, accurate T 2 measurement becomes difficult.
[0098] そこで、 このような場合には、 パルス制御部 1 08力 上記パルスシ一ケ ンスにくわえ、 9 0 ° パルス (a ) より時間てだけ前の時刻に、 1 8 0 ° パ ルスを印加するステップを加えた別のシーケンスを実行するようにする。 そ して、 これら 2つのシーケンスに対応する 1 8 0 ° パルス (b ) の減衰曲線 の挙動を比較することにより、 9 0 ° パルス (a ) および 1 8 0 ° パルス ( b ) の励起パルス強度が正確であるか否かを判別できる。 この結果、 装置の 異常等により励起パルス強度がずれた場合でも、 測定を行う前の段階で異常 を検知でき、 測定値をより正確なものとすることができる。 [0098] Therefore, in such a case, the pulse control unit 1 08 force In addition to the 90 ° pulse (a), another sequence is executed at a time just before the 90 ° pulse (a), plus the step of applying the 180 ° pulse. Then, by comparing the behavior of the decay curves of the 180 ° pulse (b) corresponding to these two sequences, the excitation pulse intensities of the 90 ° pulse (a) and the 180 ° pulse (b) Whether or not is accurate. As a result, even if the excitation pulse intensity is deviated due to an abnormality in the device, the abnormality can be detected before the measurement is performed, and the measurement value can be made more accurate.
[0099] 以上、 膜周辺の装置構成について説明した。 つづいて、 エコー信号の処理 プロックについて説明する。  [0099] The apparatus configuration around the film has been described above. Next, the echo signal processing block will be described.
[0100] 演算部 1 3 0は、 エコー信号の強度から、 T 2緩和時定数を算出し、 算出し た前記 Τ 2緩和時定数から、 膜中の特定箇所における前記水分量を算出する。 [0100] The calculation unit 1 30 calculates the T 2 relaxation time constant from the intensity of the echo signal, and calculates the water content at a specific location in the film from the calculated Τ 2 relaxation time constant.
[0101 ] 演算部 1 3 0の内部では、 まず、 データ受付部 1 2 0によりエコー信号が 取得され、 次いで、 緩和時定数算出部 1 2 2による Τ 2緩和時定数が算出され る。 [0101] Inside the arithmetic unit 1 30, first, an echo signal is acquired by the data receiving unit 1 2 0, and then a 2 relaxation time constant is calculated by the relaxation time constant calculation unit 1 2 2.
[0102] Τ 2緩和時定数が算出されると、 そのデータは溶媒量算出部 1 2 4へ送出さ れる。 溶媒量算出部 1 2 4は、 検量線テーブル (記憶部) 1 2 6にアクセス し、 膜に対応する検量線データを取得する。 検量線テーブル 1 2 6には、 膜 の種類毎に、 膜中の水分量と Τ 2緩和時定数との相関関係を示す検量線データ が格納されている。 [0102] T 2 when relaxation time constant is calculated, the data is sent to a solvent amount calculating unit 1 2 4. The solvent amount calculation unit 1 2 4 accesses the calibration curve table (storage unit) 1 2 6 and acquires calibration curve data corresponding to the membrane. The calibration curve table 1 2 6, for each type of film, calibration curve data representing the relation between the water content and the T 2 relaxation time constant in the film is stored.
[0103] 溶媒量算出部 1 2 4は、 取得された検量線データと、 上記のようにして算 出された Τ 2緩和時定数とを用い、 膜中の水分量を算出する。 算出された水分 量は、 出力部 1 3 2によりユーザに提示される。 提示の型式は様々な態様が 可能であり、 ディスプレイ上の表示、 プリンタ出力、 ファイル出力等、 特に 制限はない。 [0103] The solvent amount calculation unit 1 24 uses the obtained calibration curve data and the 2 relaxation time constant calculated as described above to calculate the amount of water in the film. The calculated water content is presented to the user by the output unit 1 3 2. There are no particular restrictions on the type of presentation, including display on the display, printer output, and file output.
[0104] なお、 本実施形態において、 膜内部、 膜表面または膜近傍に平面型コイル  [0104] In this embodiment, a planar coil is formed inside the film, on the film surface, or in the vicinity of the film.
1 1 4を複数個配置することもできる。 これにより、 膜の複数箇所に対して 、 励起用振動磁場の印加およびこれに対応するエコー信号の取得を行うこと ができるように構成されている。 溶媒量分布算定部 1 2 8は、 膜中の複数箇 所における水分量に基づき、 膜中の水分量分布を算出する。 出力部 1 32は 、 この水分量分布を出力する。 Multiple 1 1 4 can also be arranged. Thereby, it is configured to be able to apply the excitation oscillating magnetic field and acquire the echo signal corresponding to the excitation oscillating magnetic field to a plurality of locations on the membrane. Solvent amount distribution calculation section 1 2 8 Based on the water content at the place, the water content distribution in the membrane is calculated. The output unit 1 32 outputs this moisture content distribution.
[0105] 上記装置において、 励起用高周波パルスは、 CPMG法によるものを用い ることが好ましい。 こうすることにより、 T2緩和時定数と膜中の水分量との 明確な相関関係を安定的に取得することができる。 [0105] In the above apparatus, it is preferable to use a high-frequency pulse for excitation by the CPMG method. By doing so, a clear correlation between the T 2 relaxation time constant and the amount of water in the film can be stably obtained.
[0106] そこで次に、 測定装置 1 00において CPMG法により膜 1 1 5のプロ ト ン性溶媒 (たとえば、 水分) 量を測定する方法を説明する。  [0106] Next, a method for measuring the amount of the protonic solvent (for example, moisture) of the membrane 1 15 by the CPMG method in the measuring apparatus 100 will be described.
この測定方法は、 流路溝が形成された永久磁石 1 1 3の流路形成面に平行 に膜 1 1 5を配置して、 核磁気共鳴法を用いて膜 1 1 5中の特定箇所のプロ トン性溶媒の量を局所的に測定する方法であって、 以下のステップを含む。 まず、 永久磁石 1 1 3の流路溝に上記プロ トン性溶媒を含む流体を流しつ つ、 永久磁石 1 1 3により膜 1 1 5の厚さ方向に静磁場を印加する (ステツ プ (S) 1 02) 。 この状態で、 静磁場におかれた膜 1 1 5の一部に対し、 RFコイル (平面型コイル 1 1 4) を用いて励起用振動磁場を複数回順次印 加するとともに、 励起用振動磁場に対応する複数のエコー信号を取得する ( S 1 04、 以上第 1ステップ) 。 そして、 これらのエコー信号の強度から、 T2緩和時定数を算出する (S 1 06) 。 そして、 膜 1 1 5中のプロ トン性溶 媒量と Τ2緩和時定数との相関関係を示すデータを取得し、 該データと S 1 0 6で算出された Τ2緩和時定数とから、 膜 1 1 5中の特定箇所におけるプロ ト ン性溶媒量を求める (S 1 08、 以上第 2ステップ) 。 その後、 結果を出力 する (S 1 1 0) 。 In this measurement method, a film 1 15 is placed in parallel with the flow path forming surface of a permanent magnet 1 1 3 with a flow channel groove, and a specific location in the film 1 1 5 is detected using a nuclear magnetic resonance method. A method for locally measuring the amount of a protic solvent comprising the following steps. First, a static magnetic field is applied in the thickness direction of the film 1 1 5 by the permanent magnet 1 1 3 while flowing the fluid containing the above-mentioned protonic solvent in the flow channel of the permanent magnet 1 1 3 (step (S ) 1 02). In this state, an excitation oscillating magnetic field is sequentially applied several times to a part of the film 1 15 placed in a static magnetic field using an RF coil (planar coil 1 1 4). Acquire multiple echo signals corresponding to (S 104, 1st step above). Then, the T 2 relaxation time constant is calculated from the intensity of these echo signals (S 1 06). Then, acquires data indicating a correlation between pro tons of Solvent volume and T 2 relaxation time constant of the film 1 1 5, and a the data and S 1 0 6 T 2 relaxation time constant calculated in, The amount of protonic solvent at a specific location in the membrane 1 15 is obtained (S 108, second step above). Then, the result is output (S 1 1 0).
[0107] ステップ 1 04では、 膜に対し励起用高周波パルスを印加するが、 この励 起用高周波パルスは、 複数のパルスからなるパルスシーケンスとし、 これに 対応するエコー信号群を取得するようにすることが好ましい。 こうすること により、 Τ2緩和時定数を正確に求めることができる。 パルスシーケンスは、 以下の (a) 、 (b) からなるものとすることが好ましい。 [0107] In Step 104, an excitation high-frequency pulse is applied to the membrane. The excitation high-frequency pulse is a pulse sequence including a plurality of pulses, and an echo signal group corresponding to the pulse sequence is acquired. Is preferred. By doing so, it is possible to accurately determine the T 2 relaxation time constant. The pulse sequence preferably comprises the following (a) and (b).
(a) 90° パルス、 および、  (a) 90 ° pulse and
(b) (a) のパルスの時間て経過後からはじまり、 時間 2ての間隔で印加 される n個の 1 80° パルス (b) Starts after the elapse of the pulse of (a), and is applied at intervals of time 2 N 1 80 ° pulses
[0108] T 2緩和時定数と膜中の水分量 (プロ トン性溶媒量) との相関関係を明確に 把握するためには、 振動磁場の与え方を適切にすることが重要となる。 上記 のようなパターンとすることにより、 Τ2緩和時定数と膜中の水分量との相関 関係を明確に把握することが可能となる。 上記のパルスシーケンスを用いる 方法によれば、 90° 励起パルスのて時間後に、 その 2倍の励起パルス強度 を持つ 1 80° 励起パルスを印加して、 磁化べク トル Μの位相が x y平面 ( 回転座標系) 上で乱れていく途中でその位相の乱れを反転させ、 2て時間後 には位相を収束させて T2減衰曲線上にのるエコー信号を得ることができる。 [0108] In order to clearly grasp the correlation between the T 2 relaxation time constant and the amount of water in the film (the amount of the protonic solvent), it is important to appropriately apply the oscillating magnetic field. By using the pattern as described above, it is possible to clearly grasp the correlation between the 2 relaxation time constant and the amount of moisture in the film. According to the method using the above pulse sequence, after a 90 ° excitation pulse, a 180 ° excitation pulse having twice the excitation pulse intensity is applied and the phase of the magnetization vector が is in the xy plane ( It reverses its phase disturbance on the way going disturbance on the rotating coordinate system), after 2 Te time can be obtained echo signal to get on and converges the phase T 2 decay curves on.
[0109] ここで、 90° パルスが第 1位相にあり、 η個の 1 80° パルスが、 第 1 位相と 90° ずれた第 2位相にあるパルスシーケンスとすれば、 Τ2緩和時定 数と膜中の水分量との明確な相関関係を安定的に取得することができる。 C P M G法は、 このようなパルスシーケンスを与える方法の一例である。 [0109] Here, if the 90 ° pulse is in the first phase and the η 1 80 ° pulse is in the second phase that is 90 ° off the first phase, then Τ 2 relaxation time constant And a clear correlation between the water content in the film can be obtained stably. The CPMG method is an example of a method for providing such a pulse sequence.
[0110] CPMG法では、 まず、 磁化ベク トルを 90° パルスによって Υ軸の正方 向に傾斜させた後、 て時間後に 「Υ軸方向」 に外部から 1 80° 励起パルス を照射して、 磁化べク トルを 「Υ軸を対称軸として」 反転させる。 この結果 、 2て時間後には磁化べク トルが Υ軸の 「正の方向」 上で収束し、 大きな振 幅を持つエコー信号が観測される。 さらに、 3て時間後に磁化ベク トルに 「 Υ軸方向」 に外部から 1 80° 励起パルスを照射して、 再度、 Υ軸の 「正の 方向」 上で収束させて、 4て時間後に大きな振幅を持つエコー信号を観測す る。 さらに、 同様の 2て間隔で、 1 80° パルスを照射し続ける。 この間、 2て, 4て, 6て, ■ ■ ■の偶数番目のエコー信号のピーク強度を抽出し、 指数関数でフィッティングすることで、 CPMG法による Τ2 (横) 緩和時定 数を算出することができる。 [0110] In the CPMG method, the magnetization vector is first tilted in the positive direction of the vertical axis by a 90 ° pulse, and then 1 80 ° excitation pulse is irradiated from the outside in the “axial direction” after a period of time. Invert the vector “with the Υ axis as the symmetry axis”. As a result, after two hours, the magnetization vector converges on the “positive direction” of the heel axis, and an echo signal with a large amplitude is observed. Furthermore, after 3 hours, the magnetization vector was irradiated with an external 1 80 ° excitation pulse in the “axis direction” and converged again on the “positive direction” of the axis, and a large amplitude after 4 hours. Observe an echo signal with Furthermore, continue to irradiate 1 80 ° pulse at the same two intervals. During this time, the peak intensity of the even-numbered echo signals of 2, 4, 6, 6 is extracted, and fitted with an exponential function to calculate Τ 2 (lateral) relaxation time constant by the CPMG method. be able to.
[0111] ステップ 1 06では、 スピンエコー法を利用することにより Τ2緩和時定数 を測定する。 [0111] In step 106, measure the relaxation time constant Τ 2 by using the spin echo method.
スピンエコーを使用した際のエコー信号の強度 SSEは、 T R>>T Eの場 合には以下の式 (A) で表される。 [0112] [数 1] The intensity S SE of the echo signal when using spin echo is expressed by the following formula (A) when TR >> TE. [0112] [Equation 1]
SSE = (x,y,z)'S SE = (x, y, z) '
Figure imgf000032_0001
Figure imgf000032_0001
[0113] ここで、 pは位置 (X , y , z) の関数としての対象核種の密度分布、 T Rは 90° 励起パルスの繰り返し時間 (1 0 Om sから 1 0 s程度) 、 T E はエコー時間 (2 t、 1 m sから 1 0 Om s程度) 、 Aは R Fコイル検出感 度やアンプ等の装置特性を表す定数である。  [0113] where p is the density distribution of the target nuclide as a function of position (X, y, z), TR is the 90 ° excitation pulse repetition time (from about 10 Oms to 10 seconds), and TE is the echo Time (2 t, about 1 ms to 10 Oms), A is a constant that represents RF coil detection sensitivity and device characteristics such as amplifier.
[0114] T2減衰曲線上にのるエコー信号群と、 上記式 (Α) から、 Τ2緩和時定数 を求めることができる。 [0114] From the echo signal group on the T 2 attenuation curve and the above equation (Α), Τ 2 relaxation time constant can be obtained.
詳細に説明すると、 2 て間隔で、 1 80° パルスを照射し続け、 2 て, 4 て, 6 て, ■ ■ ■の偶数番目のエコー信号のピーク強度を取得する。 この複 数のエコー信号のピーク強度は時間とともに、 徐々に小さくなる。 時間とと もに減衰する複数のエコー信号の強度を、 指数関数でフィッティングし、 上 記式 (Α) から、 Τ2緩和時定数を求めることができる。 To explain in detail, at intervals of 1, 80 ° pulses continue to be emitted, and the peak intensities of the even-numbered echo signals (2), (4), (6), and (6) are obtained. The peak intensity of the multiple echo signals gradually decreases with time. By fitting the intensities of multiple echo signals that decay with time with an exponential function, Τ 2 relaxation time constant can be obtained from the above equation (Α).
[0115] ステップ 1 08では、 緩和時定数から水分量を算出する。 膜中の水分量と Τ 2緩和時定数とは、 正の相関を持つ。 水分量の増加につれて Τ 2緩和時定数 が増大する。 この相関関係は、 膜の種類や形態等により異なるので、 あらか じめ、 水分濃度がわかっている測定対象膜と同種の膜について検量線を作成 しておくことが望ましい。 すなわち、 水分量が既知の複数の標準試料膜に対 して水分量と Τ2緩和時定数との関係を測定し、 この関係を表す検量線をあら かじめ求めておくことが望ましい。 このようにして作成した検量線を参照す ることで、 Τ 2緩和時定数測定値から膜中の水分量を算出することができる。 [0115] In Step 1 08, the moisture content is calculated from the relaxation time constant. The water content and the T 2 relaxation time constant in the film, with a positive correlation. With increasing water content T 2 relaxation time constant is increased. Since this correlation varies depending on the type and form of the membrane, it is desirable to prepare a calibration curve for the same type of membrane as the measurement target membrane whose moisture concentration is known in advance. That is, the water content in pairs to a plurality of known standard samples film measurement of the relationship between water content and the T 2 relaxation time constant, it is desirable to seek beforehand roughness a calibration curve showing the relationship. By referring to the calibration curve created in this way, the amount of moisture in the film can be calculated from the measured value of ( 2) relaxation time constant.
[0116] 膜全体の Τ2緩和時定数は、 最も単純な式で表した場合には、 以下の式で表 される。 [0116] The 緩和2 relaxation time constant of the entire film is expressed by the following equation when expressed by the simplest equation.
1 /Τ2 (全体) = (吸着した水の量) Ζ (吸着した水の Τ2' ) + (自由な水 の量) / (自由な水の Τ2' ' ) ■ ■ ■ ( 1 ) 1 / Τ 2 (total) = (Amount of adsorbed water) Ζ (Adsorbed water Τ 2 ') + (Amount of free water) / (Free water Τ 2 '') ■ ■ ■ (1)
[0117] 観測者はこの Τ2 (全体) を計測することになる。 空間を満たす自由な水が 増えると T 2 (全体) が大きくなることから、 τ 2 (全体) の測定結果より高 分子中の水の量を求めることが可能となる。 [0117] The observer measures this Τ 2 (whole). Free water that fills the space As T 2 (overall) increases as it increases, the amount of water in the high molecule can be determined from the measurement result of τ 2 (overall).
[01 18] 次に、 本実施形態の作用効果を説明する。  [0118] Next, functions and effects of the present embodiment will be described.
本実施形態においては、 永久磁石 1 1 3および平面型コイル 1 1 4として 特定の形状のものを用いるとともに、 これらと膜 1 1 5とを特定の位置関係 で配置している。 これにより、 まず、 永久磁石 1 1 3の凹部 1 0 5にプロ ト ン性溶媒を含む流体を流して膜 1 1 5中のプロ トン性溶媒量に分布を形成し 、 形成した分布を平面型コイル 1 1 4で測定することができる。 また、 膜 1 1 5中のプロ トン性溶媒量を調整し、 膜 1 1 5中のプロ トン性溶媒量の空間 分布を平面型コイル 1 1 4で測定することもできる。  In the present embodiment, permanent magnets 1 1 3 and planar coils 1 1 4 are used in specific shapes, and these are arranged in a specific positional relationship with the film 1 15. As a result, first, a fluid containing a protonic solvent is caused to flow into the recesses 10 5 of the permanent magnets 1 1 3 to form a distribution in the amount of the protonic solvent in the film 1 15, and the distribution thus formed is planar. Coil 1 1 4 can be measured. It is also possible to adjust the amount of the protonic solvent in the membrane 1 15 and measure the spatial distribution of the amount of the protonic solvent in the membrane 1 15 with the planar coil 1 14.
[01 19] よって、 測定装置 1 0 0によれば、 たとえば膜 1 1 5中の水分量分布をそ の場で測定することができる。 また、 膜 1 1 5の面内方向への水の分散挙動 を評価することもできる。  [0119] Therefore, according to the measuring apparatus 100, for example, the moisture content distribution in the film 115 can be measured on the spot. It is also possible to evaluate the water dispersion behavior in the in-plane direction of the membrane 1 15.
[0120] また、 膜 1 1 5の測定領域が第一領域 1 0 7および第二領域 1 0 9中に含 まれるようにとることにより、 膜 1 1 5の局所的な水分量測定をより一層高 精度で再現性よく行うことができる。 特に、 凸部 1 0 3の上部の領域である 第一領域 1 0 7については、 図 3 ( b ) を参照して前述したように、 永久磁 石 1 1 3の流路形成面に垂直な方向 (z方向) に、 静磁場が極大となる位置 が存在する。 このような位置で測定を行えば、 測定領域の位置ずれによる測 定値の変動を抑制し、 さらに正確な測定が可能となる。  [0120] In addition, since the measurement region of the membrane 1 15 is included in the first region 1 07 and the second region 1 09, the local moisture content of the membrane 1 15 can be measured more. It can be performed with higher accuracy and good reproducibility. In particular, as described above with reference to FIG. 3 (b), the first region 10 07 that is the upper region of the convex portion 103 is perpendicular to the flow path forming surface of the permanent magnet 11 13. In the direction (z direction), there is a position where the static magnetic field becomes maximum. If measurement is performed at such a position, fluctuations in measurement values due to misalignment of the measurement area can be suppressed, and more accurate measurement can be performed.
[0121 ] たとえば、 本実施形態においては、 高分子電解質のような薄いシート状の 膜 1 1 5に対し、 計測したい位置や場所のみに磁場を印加し、 磁石と膜との 隙間に平面状の R F検出コイルを用いて局所の含水量を計測できる。 また、 局所計測が M R I計測に比べて短時間で行うことができる。  [0121] For example, in the present embodiment, a magnetic field is applied only to a position and place where measurement is desired with respect to a thin sheet-like film 1 15 such as a polymer electrolyte, and a planar shape is formed in the gap between the magnet and the film. The local moisture content can be measured using an RF detection coil. In addition, local measurement can be performed in a shorter time than MRI measurement.
[0122] また、 測定装置 1 0 0では、 N M Rセンサのコンパク ト化が可能となるた め、 装置の設置箇所の制限が緩和される。 また、 機器の低価格化が実現でき る。 また、 平面型コイル 1 1 4と永久磁石 1 1 3を組み合わせた一体型の装 置とすれば、 両者の位置合わせが不要で、 簡便に計測ができる。 [0123] また、 本実施形態においては、 永久磁石 1 1 3を小型化することができる 。 ここで、 図 9および図 1 1においては、 永久磁石 1 1 3の凹凸面が膜 1 1 5よりも大きい構成を例示した力 永久磁石 1 1 3は、 膜 1 1 5の測定箇所 に静磁場を形成することができればよく、 凹凸面が膜 1 1 5よりも大きい場 合には限られない。 永久磁石として小型磁石を用いて、 膜の一部にのみ磁場 を印加し、 その磁場を印加した領域のみから小型 R F検出コイルによって N M R信号を受信することができれば、 たとえば、 以下の利点を生むことが可 能となる。 [0122] In addition, in the measuring apparatus 100, the NMR sensor can be made compact, so that the restriction on the installation location of the apparatus is eased. In addition, the price of equipment can be reduced. In addition, if the unitary device is a combination of the planar coil 1 1 4 and the permanent magnet 1 1 3, there is no need to align the two, and measurement can be performed easily. [0123] In the present embodiment, the permanent magnets 11 and 13 can be downsized. Here, in FIG. 9 and FIG. 11, the force that illustrates the configuration in which the uneven surface of the permanent magnet 1 1 3 is larger than the film 1 1 5, the permanent magnet 1 1 3 has a static magnetic field at the measurement location of the film 1 1 5. This is not limited to the case where the uneven surface is larger than the film 1 15. If a small magnet is used as a permanent magnet and a magnetic field is applied only to a part of the film, and an NMR signal can be received by a small RF detection coil only from the region where the magnetic field is applied, for example, the following advantages can be obtained. Is possible.
第一に、 膜の寸法は任意であり、 磁石寸法に制限されない。  First, the dimensions of the membrane are arbitrary and are not limited to magnet dimensions.
第二に、 磁石形状を任意にできる。 よって、 たとえば燃料電池に適用した ときに、 ガス流路部を磁石に組み込んだ構造とすることができる。  Second, the magnet shape can be arbitrarily set. Therefore, for example, when applied to a fuel cell, a structure in which a gas flow path portion is incorporated in a magnet can be obtained.
第三に、 薄いシ一ト状の高分子電解質膜に適合した磁石と R F検出コイル を用いることで、 計測したい位置での膜の局所含水量が計測できる。  Third, by using a magnet suitable for a thin sheet-shaped polymer electrolyte membrane and an RF detector coil, the local water content of the membrane can be measured at the position to be measured.
第四に、 局所計測が可能で、 かつ、 M R I計測に比べて短時間計測が可能 である。  Fourth, local measurement is possible, and measurement is possible in a shorter time compared to MRI measurement.
第五に、 使用できる装置材質の制限が緩和され、 装置の全て非磁性材料に する必要はないため、 実機に近い燃料電池にも搭載できる可能性がある。 第六に、 N M Rセンサーのコンパク ト化、 設置の容易さ、 機器の低価格化 が実現できる。  Fifth, restrictions on the device materials that can be used are relaxed, and it is not necessary to use non-magnetic materials for all devices, so there is a possibility that they can be installed in fuel cells close to actual equipment. Sixth, the NMR sensor can be made more compact, easier to install, and less expensive.
このような新しい永久磁石 1 1 3を備えた N M R計測装置の開発により、 N M Rセンサーの適用範囲を拡大させることが可能となる。  The development of the N M R measuring device equipped with such a new permanent magnet 1 1 3 makes it possible to expand the application range of the N M R sensor.
[0124] なお、 本実施形態における測定装置の構成は、 たとえば図 1 1のようにし てもよい。 図 1 1は、 永久磁石 1 1 3および平面型コイル 1 1 4を備える測 定装置の別の構成を示す図である。 [0124] The configuration of the measuring apparatus in the present embodiment may be as shown in FIG. 11, for example. FIG. 11 is a diagram showing another configuration of a measuring apparatus including permanent magnets 1 1 3 and planar coils 1 1 4.
[0125] (第四の実施形態) [0125] (Fourth embodiment)
本実施形態では、 第三の実施形態に記載の測定装置 1 0 0 (図 9 ) を備え る固体高分子電解質型燃料電池について説明する。  In the present embodiment, a solid polymer electrolyte fuel cell including the measuring apparatus 100 (FIG. 9) described in the third embodiment will be described.
[0126] 燃料電池の固体高分子電解質膜の水分量を N M R法により測定しょうとし たとき、 被計測対象の膜全体を覆うような磁石を用いる場合には、 燃料電池 のすベての構成部品を非磁性材料で製作する必要があり、 N M R/M R I計 測のための装置を製作する必要がある。 しかし、 その製作は耐熱性■耐久性 の面から困難である。 [0126] An attempt to measure the water content of the solid polymer electrolyte membrane of a fuel cell by NMR When using a magnet that covers the entire film to be measured, all components of the fuel cell must be made of non-magnetic materials, and a device for NMR / MRI measurement is required. Need to make. However, its manufacture is difficult from the viewpoint of heat resistance and durability.
また、 膜全体を覆うような磁石を用いる場合には、 大きな磁石も実機の燃 料電池に組み込んでモニタリング装置として用いることとなる。 しかし、 磁 石が大きすぎて搭載は不可能であり、 実際的なセンサーにはならない。  In addition, when using a magnet that covers the entire membrane, a large magnet is also incorporated into the actual fuel cell and used as a monitoring device. However, the magnet is too large to be mounted and cannot be a practical sensor.
[0127] これに対し、 第三の実施形態で前述した測定装置 1 0 0は、 永久磁石 1 1 3の凹部 1 0 5をガス流路部として用いることができる構造となっている。 そこで、 本実施形態では、 永久磁石 1 1 3を燃料電池のセパレータの一部 として燃料電池装置に組み込んで、 膜 1 1 5つまり固体高分子電解質膜 1 1 7の水分量測定を可能とする。 On the other hand, the measuring apparatus 100 described above in the third embodiment has a structure in which the concave portion 105 of the permanent magnet 11 13 can be used as a gas flow path portion. Therefore, in the present embodiment, the permanent magnet 113 is incorporated into the fuel cell device as a part of the separator of the fuel cell so that the moisture content of the membrane 1 15, that is, the solid polymer electrolyte membrane 1 17 can be measured.
測定装置 1 0 0を燃料電池に組み込むことにより、 燃料電池の高分子電解 質膜の含水量を常時モニタリングし、 高分子電解質膜が高い伝導度を常に保 つことができるように制御することができるようになる。 このため、 燃料電 池の発電効率を高く維持するように、 燃料電池の運転を制御することが可能 となる。  By incorporating the measuring device 100 into the fuel cell, it is possible to constantly monitor the water content of the polymer electrolyte membrane of the fuel cell and control so that the polymer electrolyte membrane can always maintain high conductivity. become able to. For this reason, it is possible to control the operation of the fuel cell so that the power generation efficiency of the fuel cell is maintained high.
[0128] 図 3 6は、 本実施形態の燃料電池の構成を示す図である。  FIG. 36 is a diagram showing the configuration of the fuel cell of the present embodiment.
図 3 6に示した燃料電池 1 3 1は、 測定装置 1 0 0、 セル 1 3 3と、 セル 1 3 3に酸化剤ガス (たとえば酸素や空気) を供給する酸化剤ガス供給部 3 2、 セル 1 3 3に燃料ガス (たとえば水素ガス) を供給する燃料ガス供給部 3 3、 酸化剤ガス供給部 3 2からセル 1 3 3に向かって供給される酸化剤ガ スおよび燃料ガス供給部 3 3からセル 1 3 3に向かって供給される燃料ガス に水蒸気を混合する水蒸気混合部 3 4、 水蒸気混合部 3 5ならびに制御部 3 6を有する。  The fuel cell 1 3 1 shown in FIG. 3 includes a measuring device 1 0 0, a cell 1 3 3, and an oxidant gas supply unit 3 2 for supplying an oxidant gas (for example, oxygen or air) to the cell 1 3 3, Fuel gas supply unit 3 3 for supplying fuel gas (for example, hydrogen gas) to the cell 1 3 3 and oxidant gas and fuel gas supply unit 3 supplied from the oxidant gas supply unit 3 2 to the cell 1 3 3 It has a steam mixing section 3 4, a steam mixing section 3 5, and a control section 3 6 that mix steam with fuel gas supplied from 3 toward the cells 1 3 3.
[0129] 図 3 7は、 図 3 6に示した燃料電池 1 3 1のセル 1 3 3の構成を示す断面 図である。  FIG. 37 is a cross-sectional view showing a configuration of cell 1 33 of fuel cell 1 31 shown in FIG.
セル 1 3 3は、 測定対象の試料である固体高分子電解質膜 1 1 7と、 固体 高分子電解質膜 1 1 7の両側に設けられた触媒層 3 1 1 Aおよび触媒層 3 1 1 Bと、 多孔質の拡散層 3 1 2 Aおよび拡散層 3 1 2 Bと、 セパレ一タ 3 1 3 Aおよびセパレ一タ 3 1 3 Bとを有する。 Cell 1 3 3 is a solid polymer electrolyte membrane 1 1 7 that is a sample to be measured, and a solid Polymer electrolyte membrane 1 1 7 Catalyst layer 3 1 1 A and catalyst layer 3 1 1 B provided on both sides, Porous diffusion layer 3 1 2 A and diffusion layer 3 1 2 B, Separator 3 1 3 A and a separator 3 1 3 B.
[0130] 触媒層 3 1 1 Aと、 拡散層 3 1 2 Aとで、 燃料極 3 1 4が構成され、 触媒 層 3 1 1 Bと拡散層 3 1 2 Bとで、 酸化剤極 3 1 5が構成される。  [0130] The fuel electrode 3 1 4 is composed of the catalyst layer 3 1 1 A and the diffusion layer 3 1 2 A, and the oxidant electrode 3 1 is composed of the catalyst layer 3 1 1 B and the diffusion layer 3 1 2 B. 5 is configured.
[0131 ] セパレ一タ 3 1 3 Aには、 燃料ガスの流路となる溝が形成されている。 セ パレータ 3 1 3 Aの流路溝には、 プロ トン性溶媒を含む流体として、 水蒸気 を含む燃料ガスが供給される。 また、 セパレ一タ 3 1 3 Bには、 酸化剤ガス の流路となる溝が形成されている。 セパレ一タ 3 1 3 Bの流路溝には、 プロ トン性溶媒を含む流体として、 水蒸気を含む酸化剤ガスが供給される。  [0131] In the separator 3 1 3 A, a groove serving as a fuel gas flow path is formed. A fuel gas containing water vapor is supplied to the flow path groove of the separator 3 1 3 A as a fluid containing a protonic solvent. Further, the separator 3 1 3 B is formed with a groove serving as a flow path for the oxidizing gas. An oxidant gas containing water vapor is supplied to the flow path groove of the separator 3 1 3 B as a fluid containing a protonic solvent.
[0132] 燃料電池 1 3 1において、 燃料極 3 1 4または酸化剤極 3 1 5に対向して 設けられたセパレ一タ、 つまりセパレ一タ 3 1 3 Aまたはセパレ一タ 3 1 3 Bのうち、 少なくとも一方は、 第一の実施形態で前述した永久磁石 1 1 3か ら構成される。 永久磁石 1 1 3の流路形成面が、 燃料電池 1 3 1の燃料極 3 1 4に対向配置されて、 凹部 1 0 5に燃料ガスが供給されるか、 または、 燃 料電池 1 3 1の酸化剤極 3 1 5に対向配置されて、 凹部 1 0 5に酸化剤ガス が供給される。 なお、 セパレ一タ 3 1 3 Aまたはセパレ一タ 3 1 3 Bが永久 磁石 1 1 3からなる構成であってもよいし、 永久磁石 1 1 3がセパレ一タ 3 1 3 Aまたはセパレ一タ 3 1 3 Bの一部を構成していてもよい。  [0132] In the fuel cell 1 3 1, the separator provided opposite to the fuel electrode 3 1 4 or the oxidant electrode 3 1 5, that is, the separator 3 1 3 A or the separator 3 1 3 B Of these, at least one is composed of the permanent magnet 1 1 3 described in the first embodiment. The flow path forming surface of the permanent magnet 1 1 3 is disposed opposite to the fuel electrode 3 1 4 of the fuel cell 1 3 1 and fuel gas is supplied to the recess 1 0 5 or the fuel cell 1 3 1 The oxidant gas is supplied to the recesses 10 5 so as to be opposed to the oxidant electrodes 3 15. The separator 3 1 3 A or the separator 3 1 3 B may be composed of a permanent magnet 1 1 3, or the permanent magnet 1 1 3 may be a separator 3 1 3 A or a separator. 3 1 3 May constitute part of B.
[0133] 酸化剤ガス供給部 3 2は、 セル 1 3 3に対して酸化剤ガスを供給する。 ま た、 燃料ガス供給部 3 3は、 セル 1 3 3に対して燃料ガスを供給する。 酸化剤ガス供給部 3 2とセル 1 3 3との間には、 水蒸気混合部 3 4が設け られている。 水蒸気混合部 3 4では、 水蒸気を発生させ、 酸化剤ガス供給部 3 2からセル 1 3 3に向かって供給される酸化剤ガスに水蒸気を混合する。 このようにして水蒸気と混合された酸化剤ガスが、 セル 1 3 3に供給される 同様に、 燃料ガス供給部 3 3と、 セル 1 3 3との間にも、 水蒸気混合部 3 5が設けられている。 この水蒸気混合部 3 5では、 水蒸気を発生させ、 燃料 ガス供給部 3 3からセル 1 3 3に向かって供給される燃料ガスに水蒸気を混 合している。 水蒸気と混合した燃料ガスは、 セル 1 3 3に送られる。 The oxidant gas supply unit 3 2 supplies oxidant gas to the cells 1 3 3. Further, the fuel gas supply unit 3 3 supplies fuel gas to the cells 1 3 3. Between the oxidant gas supply unit 3 2 and the cells 1 3 3, a water vapor mixing unit 3 4 is provided. In the water vapor mixing unit 3 4, water vapor is generated and mixed with the oxidant gas supplied from the oxidant gas supply unit 3 2 toward the cell 1 3 3. The oxidant gas thus mixed with the water vapor is supplied to the cell 1 3 3. Similarly, the water vapor mixing unit 3 5 is provided between the fuel gas supply unit 3 3 and the cell 1 3 3. It has been. In this steam mixing section 35, steam is generated and fuel The fuel gas supplied from the gas supply unit 3 3 toward the cell 1 3 3 is mixed with water vapor. Fuel gas mixed with water vapor is sent to cells 1 3 3.
このように、 水蒸気を酸化剤ガス、 燃料ガスに混合することでセル 1 3 3 の固体高分子電解質膜 1 1 7を湿潤させている。  Thus, the solid polymer electrolyte membrane 1 1 7 of the cell 1 3 3 is wetted by mixing the water vapor with the oxidant gas and the fuel gas.
[0134] セル 1 3 3の固体高分子電解質膜 1 1 7中の水分量の測定を行う場合には 、 測定装置 1 0 0の複数の平面型コイル 1 1 4を固体高分子電解質膜 1 1 7 の表面に接触させる。 これにより、 固体高分子電解質膜 1 1 7中の水分量の 測定を行うことができる。  [0134] In the case of measuring the amount of water in the solid polymer electrolyte membrane 1 1 7 of the cells 1 3 3, a plurality of planar coils 1 1 4 of the measuring device 1 0 4 are attached to the solid polymer electrolyte membrane 1 1 7. Touch the surface. As a result, the water content in the solid polymer electrolyte membrane 1 17 can be measured.
[0135] 制御部 3 6は、 測定装置 1 0 0、 水蒸気混合部 3 4および水蒸気混合部 3 5に接続されている。  The control unit 36 is connected to the measuring device 100, the steam mixing unit 34, and the steam mixing unit 35.
制御部 3 6では、 測定装置 1 0 0からの水分量の測定結果および、 水分量 の分布を取得し、 この測定結果に基づいて、 水蒸気混合部 3 4および水蒸気 混合部 3 5で生成され、 セル 1 3 3に供給される水蒸気量を調整するように 、 水蒸気混合部 3 4および水蒸気混合部 3 5を制御する。  In the control unit 36, the measurement result of the moisture content from the measuring device 100 and the distribution of the moisture content are obtained, and based on this measurement result, the steam mixing unit 34 and the steam mixing unit 35 generate the The water vapor mixing unit 34 and the water vapor mixing unit 35 are controlled so as to adjust the amount of water vapor supplied to the cells 13 3.
[0136] たとえば、 セル 1 3 3が発電を行っている場合には、 燃料極 3 1 4側で発 生した水素イオンの移動に伴い、 固体高分子電解質膜 1 1 7中の水分が燃料 極 3 1 4側から酸化剤極 3 1 5側に移動する。  [0136] For example, when the cell 1 3 3 is generating power, the water in the solid polymer electrolyte membrane 1 1 7 is transferred to the fuel electrode as the hydrogen ions generated on the fuel electrode 3 1 4 side move. 3 1 Move from 4 side to oxidant electrode 3 1 5 side.
また、 酸化剤極 3 1 5側での水素イオンと酸素ガスとの反応により水が生 成する。 そのため、 固体高分子電解質膜 1 1 7中、 特に酸化剤極 3 1 5側の 水分量が過剰となることがある。 水分量が過剰となると、 セパレータ 3 1 3 Bの流路内に水が凝集し、 酸化剤ガスの流れを妨げることとなり、 発電効率 が下がる可能性がある。  In addition, water is generated by the reaction of hydrogen ions and oxygen gas on the oxidizer electrode 3 1 5 side. Therefore, the water content in the solid polymer electrolyte membrane 1 17 may be excessive, particularly on the oxidant electrode 3 15 side. If the amount of water is excessive, water will aggregate in the flow path of the separator 3 1 3 B, impeding the flow of oxidant gas, which may reduce power generation efficiency.
一方で、 固体高分子電解質膜 1 1 7に充分な水蒸気が供給されず、 固体高 分子電解質膜 1 1 7が乾燥している状態になると、 プロ トン伝導性が低下し 、 セル 1 3 3の発電効率が低下する。 従って、 固体高分子電解質膜 1 1 7が 乾燥状態となり、 プロ トン伝導性が低下することは好ましくない。  On the other hand, when sufficient water vapor is not supplied to the solid polymer electrolyte membrane 1 1 7 and the solid polymer electrolyte membrane 1 1 7 is in a dry state, the proton conductivity decreases, and the cell 1 3 3 Power generation efficiency decreases. Therefore, it is not preferable that the solid polymer electrolyte membrane 1 17 is in a dry state and the proton conductivity is lowered.
[0137] そこで、 制御部 3 6では、 測定装置 1 0 0から水分量の分布を取得すると ともに、 取得した分布における水分量の値が所定の範囲内にあるかどうか、 すなわち、 固体高分子電解質膜 1 1 7が適度な湿潤状態となっているかどう か判断する。 所定の範囲を超えると判断した場合には、 制御部 3 6は、 水蒸 気混合部 3 4または水蒸気混合部 3 5に対し、 生成する水蒸気量を減らすよ うに要求する。 [0137] Therefore, the control unit 36 obtains the moisture content distribution from the measuring device 100 and determines whether the moisture content value in the obtained distribution is within a predetermined range. That is, it is determined whether or not the solid polymer electrolyte membrane 1 17 is in an appropriate wet state. When it is determined that the predetermined range is exceeded, the control unit 36 requests the water vapor mixing unit 34 or the water vapor mixing unit 35 to reduce the amount of water vapor generated.
[0138] 一方、 測定装置 1 0 0から取得した水分量の分布における水分量の値が所 定の範囲外であり、 水分量が少ないと判断した場合には、 制御部 3 6は、 水 蒸気混合部 3 4または水蒸気混合部 3 5に対し、 生成する水蒸気量を増やす ように要求し、 固体高分子電解質膜 1 1 7の乾燥を防止する。  [0138] On the other hand, when it is determined that the moisture content in the moisture content distribution obtained from the measuring device 100 is out of the predetermined range and the moisture content is low, the control unit 3 6 The mixing unit 3 4 or the water vapor mixing unit 3 5 is requested to increase the amount of water vapor generated to prevent the solid polymer electrolyte membrane 1 1 7 from drying.
[0139] なお、 本実施形態では、 制御部 3 6により、 水蒸気混合部 3 4および水蒸 気混合部 3 5双方の水蒸気生成量、 およびセル 1 3 3への水蒸気供給量を調 整したが、 これに限らず、 たとえば、 水蒸気混合部 3 5の水蒸気生成量およ びセル 1 3 3への水蒸気供給量のみを調整してもよい。  [0139] In the present embodiment, the control unit 36 adjusts the water vapor generation amount of both the water vapor mixing unit 34 and the water vapor mixing unit 35, and the water vapor supply amount to the cell 13 33. However, the present invention is not limited thereto, and for example, only the amount of steam generated in the steam mixing unit 35 and the amount of steam supplied to the cell 13 3 may be adjusted.
[0140] これを利用すれば、 内部に複数の R F検出コイルを設置することで、 より 内部の複数枚の高分子電解質膜の N M R計測を行うことが可能となる。 たと えば後述の図 7の配置とすることにより、 一つの磁石で複数枚の P E Mの含 水量を計測することができる。  [0140] By using this, it is possible to perform N M R measurement of a plurality of polymer electrolyte membranes inside by installing a plurality of RF detection coils inside. For example, with the arrangement shown in Fig. 7 described later, the water content of multiple PEMs can be measured with a single magnet.
[0141 ] 次に、 本実施形態の作用効果を説明する。  [0141] Next, functions and effects of the present embodiment will be described.
燃料電池 1 3 1では、 永久磁石 1 1 3をセパレ一タとして用いることがで きるため、 永久磁石 1 1 3の流路溝に燃料または酸化剤を流しながら、 固体 高分子電解質膜 1 1 7の局所的な水分量分布を測定することができる。 運転 中の固体高分子電解質膜 1 1 7中の水分量分布をその場で測定できるため、 電池の運転効率を向上させる制御が可能となる。  In the fuel cell 1 3 1, the permanent magnet 1 1 3 can be used as a separator, so that the solid polymer electrolyte membrane 1 1 7 The local moisture content distribution can be measured. Since the water content distribution in the solid polymer electrolyte membrane 1 1 7 can be measured in-situ, it is possible to control to improve the battery operating efficiency.
たとえば、 凹部 1 0 5の上部における固体高分子電解質膜 1 1 7中の水分 量を測定すれば、 燃料または酸化剤が膜中に供給される領域近傍における膜 中の水分量をリアルタイムで測定できる。  For example, if the amount of water in the solid polymer electrolyte membrane 1 1 7 at the top of the recess 10 5 is measured, the amount of water in the membrane in the vicinity of the region where fuel or oxidant is supplied into the membrane can be measured in real time. .
また、 凸部 1 0 3の上部における固体高分子電解質膜 1 1 7中の水分量を 測定すれば、 流路溝から供給されたプロ トン性溶媒の拡散状態を把握するこ ともできる。 [0142] また、 高分子電解質膜のような薄いシート状の試料に対しては、 電池の全 体形状を大きく変更することなく、 計測したい位置や場所のみに磁場を印加 する R F検出コイルを設置できる必要がある。 この点、 本実施形態の燃料電 池では、 永久磁石 1 1 3をセパレ一タとして用いることにより、 固体高分子 電解質膜 1 1 7力 セパレ一タ表面に平行に配置されるとともにセパレ一タ の近傍に配置される。 このため、 セパレ一タの流路形成面の近傍に形成され る磁場中に配置された固体高分子電解質膜 1 1 7の測定に適した構成となつ ている。 また、 R Fコイルとして平面型コイル 1 1 4を用いることにより、 コイルを固体高分子電解質膜 1 1 7の表面近傍の所定の位置に積層すること が容易な構成となっており、 セル 1 3 3の厚さを大幅に変えることなく、 水 分量の測定装置を組み込むことが可能である。 このように、 燃料電池 1 3 1 においては、 永久磁石 1 1 3および平面型コイル 1 1 4の構成が、 薄いシ一 ト状の固体高分子電解質膜 1 1 7に適合した構成となっており、 計測したい 位置での膜の局所含水量が計測可能となる。 Further, by measuring the water content in the solid polymer electrolyte membrane 117 at the top of the convex portion 103, the diffusion state of the protonic solvent supplied from the channel groove can be grasped. [0142] For thin sheet-like samples such as polymer electrolyte membranes, an RF detection coil that applies a magnetic field only to the position and location where measurement is desired is installed without significantly changing the overall shape of the battery. It needs to be possible. In this respect, in the fuel cell of the present embodiment, the permanent magnet 1 1 3 is used as a separator, so that the solid polymer electrolyte membrane 1 1 7 force is arranged in parallel to the separator surface and the separator Located in the vicinity. Therefore, the configuration is suitable for the measurement of the solid polymer electrolyte membrane 1 17 disposed in the magnetic field formed in the vicinity of the flow path forming surface of the separator. In addition, by using a planar coil 1 1 4 as the RF coil, the coil can be easily laminated at a predetermined position near the surface of the solid polymer electrolyte membrane 1 1 7. It is possible to incorporate a device for measuring the water content without significantly changing the thickness. Thus, in the fuel cell 1 3 1, the configuration of the permanent magnet 1 1 3 and the planar coil 1 1 4 is adapted to the thin sheet-shaped solid polymer electrolyte membrane 1 1 7. It becomes possible to measure the local water content of the membrane at the position to be measured.
[0143] また、 本実施形態では、 磁場が装置の一部にのみ印加されるために、 使用 できる装置材質の制限が緩和され、 装置のすべてを非磁性材料にする必要は なく、 実用化に適した構成となっている。  [0143] Further, in this embodiment, since the magnetic field is applied only to a part of the apparatus, restrictions on the apparatus material that can be used are alleviated, and it is not necessary to use all of the apparatus as a non-magnetic material. It has a suitable configuration.
[0144] また、 燃料電池 1 3 1では、 固体高分子電解質膜 1 1 7の燃料極 3 1 4側 の表面、 酸化剤極 3 1 5側の表面それぞれに、 平面型コイル 1 1 4を当接さ せて、 燃料極 3 1 4側の表面近傍、 酸化剤極 3 1 5側の表面近傍の水分量を それぞれ把握し、 各電極の表面近傍の水分量と、 発電効率との関係を把握す ることもできる。 これにより、 燃料極 3 1 4側、 あるいは、 酸化剤極 3 1 5 側のどちらからの側の水蒸気の供給が、 発電効率に有効であるかどうかを把 握することも可能である。  [0144] In addition, in the fuel cell 1 3 1, the planar coil 1 1 4 is applied to the surface of the solid polymer electrolyte membrane 1 1 7 on the fuel electrode 3 1 4 side and the surface of the oxidant electrode 3 1 5 side, respectively. By touching, grasp the water content near the surface on the fuel electrode 3 1 4 side and the surface near the surface on the oxidizer electrode 3 1 5 side, and grasp the relationship between the water content near the surface of each electrode and the power generation efficiency. It can also be done. This makes it possible to determine whether the supply of water vapor from either the fuel electrode 3 1 4 side or the oxidant electrode 3 1 5 side is effective for power generation efficiency.
[0145] さらに、 本実施形態の燃料電池 1 3 1は、 セル 1 3 3が長時間運転された 際に生じる発電効率の低下の原因を探るための有用なデータを 「高分子膜の 含水量」 という視点から提供することができる。  [0145] Further, the fuel cell 1 3 1 of the present embodiment has obtained useful data for searching for the cause of the decrease in power generation efficiency that occurs when the cell 1 3 3 is operated for a long time. Can be provided from the perspective of
[0146] なお、 本実施形態の燃料電池は、 図 7に示すように、 複数のセルが積層さ れたスタック型であってもよい。 スタック型の燃料電池の場合にも、 永久磁 石 1 1 3を 「ガス流路付永久磁石」 つまりセパレ一タとすることができる。 図 7は、 固体高分子電解質膜 1 1 7 aおよび固体高分子電解質膜 1 1 7 b を含む複数のセルを備えたスタック型燃料電池の構成を示す断面図である。 図 7では、 永久磁石 1 1 3力 最も外側のセパレ一タとして設けられてい る。 永久磁石 1 1 3は、 燃料電池スタックの一番端のセル (固体高分子電解 質膜 1 1 7 b ) に対向して設けられており、 永久磁石 1 1 3の凸部 1 0 3で 固体高分子電解質膜 1 1 7 bを保持し、 凹部 1 0 5に燃料ガスまたは酸化剤 ガスが流れる。 なお、 図 7において、 セパレ一タ 1 1 1は、 永久磁石 1 1 3 を有しない通常のセパレータである。 [0146] Note that, in the fuel cell of this embodiment, a plurality of cells are stacked as shown in FIG. It may be a stacked type. In the case of a stack type fuel cell, the permanent magnet 1 1 3 can be a “permanent magnet with a gas flow path”, that is, a separator. FIG. 7 is a cross-sectional view showing a configuration of a stack type fuel cell including a plurality of cells including the solid polymer electrolyte membrane 1 1 7 a and the solid polymer electrolyte membrane 1 1 7 b. In FIG. 7, the permanent magnet 1 1 3 force is provided as the outermost separator. The permanent magnet 1 1 3 is provided opposite to the endmost cell (solid polymer electrolyte membrane 1 1 7 b) of the fuel cell stack, and the permanent magnet 1 1 3 is solid at the convex portion 1 0 3. The polymer electrolyte membrane 1 1 7 b is held, and fuel gas or oxidant gas flows into the recess 1 0 5. In FIG. 7, a separator 1 1 1 is a normal separator that does not have a permanent magnet 1 1 3.
[0147] また、 前述した図 3 ( b ) より、 磁石から離れた位置 (z > 1 O m m) で あっても、 磁場強度は 0 . 2〜0 . 3 T e s I a程度である。 この程度の磁 場強度であれば、 N M R計測は充分に可能である。 したがって、 燃料電池ス タックの一番端に磁石を置いたとしても、 スタック内部にまで磁場は形成さ れる。 しかも、 静磁場強度は距離が離れるに従って徐々に低下するため、 共 鳴周波数も磁石から離れるに従つて低下していく。 共鳴周波数がことなれば 、 複数の R Fコイルでの励起パルスの干渉は生じにくくなる。  [0147] From FIG. 3 (b), the magnetic field strength is about 0.2 to 0.3 TesIa even at a position away from the magnet (z> 1 Om m). With this magnetic field strength, NMRR measurement is sufficiently possible. Therefore, even if a magnet is placed at the extreme end of the fuel cell stack, a magnetic field is formed even inside the stack. Moreover, since the static magnetic field strength gradually decreases as the distance increases, the resonance frequency also decreases as the distance from the magnet increases. If the resonance frequency is different, interference of excitation pulses in a plurality of RF coils is less likely to occur.
[0148] また、 本発明の燃料電池の用途に特に制限はない。 たとえば、 実際に電池 として用いるだけでなく、 固体高分子電解質膜 1 1 7の評価装置として用い てもよい。  [0148] Further, the use of the fuel cell of the present invention is not particularly limited. For example, it may be used not only as a battery but also as an evaluation device for the solid polymer electrolyte membrane 1 17.
[0149] 以上、 図面を参照して本発明の実施形態について述べたが、 これらは本発 明の例示であり、 上記以外の様々な構成を採用することもできる。  As described above, the embodiments of the present invention have been described with reference to the drawings. However, these are exemplifications of the present invention, and various configurations other than the above can be adopted.
[0150] たとえば、 以上の実施形態において、 測定装置 1 0 0が平面型コイル 1 1 4を複数備え、 複数の平面型コイル 1 1 4力 膜 1 1 5の複数箇所に対し、 励起用振動磁場を印加するとともに、 当該励起用振動磁場に対応するエコー 信号を取得し、 溶媒量算出部 1 2 4力 膜 1 1 5の複数箇所におけるプロ ト ン性溶媒量を算出するように構成されていてもよい。 膜 1 1 5の複数箇所に 平面型コイル 1 1 4を配置してプロ トン性溶媒量を測定することにより、 膜 1 1 5のプロ トン性溶媒量の分布をさらに短時間で測定することが可能とな る。 このとき、 図 6を参照して前述した一つの第一領域 1 0 7上または一つ の第二領域 1 0 9上に複数の平面型コイル 1 1 4を配置すれば、 膜厚方向に おける静磁場強度のずれを抑制し、 より一層高精度な多点測定が可能となる [0150] For example, in the above embodiment, the measuring apparatus 100 includes a plurality of planar coils 1 1 4 and a plurality of planar coils 1 1 4 force films 1 1 5 And an echo signal corresponding to the oscillating magnetic field for excitation is acquired, and the amount of protonic solvent at a plurality of locations of the solvent amount calculation unit 1 2 4 force membrane 1 1 5 is calculated. Also good. By arranging planar coils 1 1 4 at multiple locations on the membrane 1 1 5 and measuring the amount of protonic solvent, the membrane It becomes possible to measure the distribution of the amount of 1 5 proton solvent in a shorter time. At this time, if a plurality of planar coils 1 1 4 are arranged on one first region 10 7 described above with reference to FIG. 6 or one second region 1 0 9, the film thickness direction can be increased. Suppresses the deviation of the static magnetic field intensity and enables more accurate multipoint measurement.
[0151 ] また、 以上の実施形態においては、 C P M G法により取得されたエコー信 号から緩和時定数 T 2を算出し、 算出された Τ 2から膜中のプロ トン性溶媒量を 算出する場合を例に説明したが、 実施例で後述するように、 エコー信号の信 号強度からプロ トン性溶媒量を求めることも可能である。 [0151] Further, in the above embodiment, a case where calculating the relaxation time constant T 2 from the echo signal obtained by the CPMG method, calculates a pro tons of solvent amount in the film from the calculated T 2 Although described in the example, it is also possible to obtain the amount of the protonic solvent from the signal intensity of the echo signal, as will be described later in the embodiment.
なお、 Τ 2は、 R Fコイルの感度、 アンプの倍率、 フィルタ一特性等の装置 構成に依存しないため、 Τ 2から膜中のプロ トン性溶媒量を算出することによ り、 プロ トン性溶媒量をさらに簡便に算出することができる。 また、 信号強 度からプロ トン性溶媒量を算出する際には、 測定装置の構成に応じて、 信号 強度とプロ トン性溶媒量とを対応づける校正曲線を予め実験により取得して もよい。 Incidentally, T 2 do not depend sensitivity of the RF coil, the magnification of the amplifier, the apparatus configuration of the filter one characteristics, Ri by the calculating the pro ton solvent amount in the film from the T 2, pro tons solvent The amount can be calculated more easily. Further, when calculating the amount of the protonic solvent from the signal intensity, a calibration curve for associating the signal intensity with the amount of the protonic solvent may be obtained in advance by an experiment in accordance with the configuration of the measuring apparatus.
[0152] また、 以上の実施形態において、 たとえば、 以下のようにすることも可能 となる。  [0152] Further, in the above embodiment, for example, the following may be possible.
すなわち、 磁石にガス流路部を付け、 燃料電池のセパレータの一部として 燃料電池装置に組み込みが可能なガス流路付磁石を用い、 薄いシ一ト状の高 分子電解質膜に適合した D o u b I e _ D型 R F検出コイルによって、 計測 したい位置 (深度) での膜の局所含水量が計測できる。  In other words, a gas flow path is attached to the magnet, a magnet with a gas flow path that can be incorporated into a fuel cell device is used as part of the fuel cell separator, and it is suitable for thin sheet polymer electrolyte membranes. The I e _ D type RF detection coil can measure the local water content of the membrane at the position (depth) to be measured.
また、 ガス流路付磁石と D o u b I e _ D型コイルを燃料電池の計測した い位置や場所に設置して計測すれば、 その場所のみに磁場を印加するだけで よい。 これにより、 磁場印加箇所以外の位置の装置は、 非磁性材料で製作す る必要がなくなるため、 N M Rセンサをより実際的な燃料電池装置に適用で さる。  Also, if a gas flow path magnet and a Doub Ie_D type coil are installed and measured at the position or location where the fuel cell is to be measured, it is only necessary to apply a magnetic field only to that location. This eliminates the need for a device other than the magnetic field application position to be made of a non-magnetic material, so that the NMR sensor can be applied to a more practical fuel cell device.
また、 N M Rセンサのコンパク ト化、 設置の容易さ、 機器の低価格化が実 現できる。 また、 R F検出コイルと磁石を組み合わせた一体型の装置とすれば、 両者 の位置合わせが不要で、 簡便に計測ができる。 In addition, the NMR sensor can be made more compact, easier to install, and less expensive. In addition, if an integrated device combining an RF detection coil and a magnet is used, positioning of the two is unnecessary and measurement can be performed easily.
また、 このセンサを燃料電池に組み込めば、 燃料電池の高分子電解質膜の 含水量を常時モニタリングし、 それが高い伝導度を常に保つことができるよ うに制御することができるようになり、 燃料電池の発電効率を高く維持する ことが可能となる。  In addition, if this sensor is incorporated in a fuel cell, the water content of the polymer electrolyte membrane of the fuel cell can be constantly monitored and controlled so that it can always maintain high conductivity. It is possible to maintain high power generation efficiency.
[0153] また、 以上の実施形態では、 燃料電池の固体高分子電解質膜のプロ トン性 溶媒量を測定する場合を主として例示したが、 測定対象の試料は、 膜状のも のであればよい。  [0153] In the above embodiment, the case where the amount of the protonic solvent in the solid polymer electrolyte membrane of the fuel cell is mainly exemplified, but the sample to be measured may be in the form of a membrane.
また、 試料は膜状であれば固体のものには限られず、 たとえば、 所定の厚 さの空間内に充填されているプロ トン性溶媒を含む液体であってもよい。 ま た、 試料は、 固体高分子電解質等の膜からなるものには限られず、 たとえば 膜の一方の面または両面に、 触媒層等の所定の層が形成されていてもよい。 実施例  Further, the sample is not limited to a solid sample as long as it is in a film form, and may be, for example, a liquid containing a protonic solvent filled in a space having a predetermined thickness. Further, the sample is not limited to a film made of a solid polymer electrolyte or the like, and for example, a predetermined layer such as a catalyst layer may be formed on one side or both sides of the membrane. Example
[0154] (実施例 1 )  [0154] (Example 1)
本実施例では、 以下に示す試料 A〜試料 Cについて、 図 1 1に示した測定 装置 (第三の実施形態) を用いて CP MG法により試料の T2 (CPMG) 値 を計測した。 In this example, T 2 (CPMG) values of samples A to C shown below were measured by the CP MG method using the measurement apparatus (third embodiment) shown in FIG.
(試料 Α) 液体試料 (水)  (Sample Α) Liquid sample (Water)
(試料 Β) 高分子電解質膜 (Ρ ΕΜ)  (Sample Β) Polymer electrolyte membrane (Ρ ΕΜ)
(試料 C) 電極■触媒付高分子電解質膜 (ΜΕΑ)  (Sample C) Electrode ■ Polymer electrolyte membrane with catalyst (ΜΕΑ)
を用いた。 なお、 本実施例において、 図 2に示した永久磁石を用いた。 永久 磁石の材料は、 Ν巳01\1八乂社製 ΕΟΜΑΧ— 44 Ηとした。  Was used. In this example, the permanent magnet shown in FIG. 2 was used. The material of the permanent magnet was Ν 巳 01 \ 1 Yawata Corporation ΕΟΜΑΧ—44Η.
[0155] (試料 Α) 液体試料 (水) [0155] (Sample Α) Liquid sample (Water)
試料の作製は、 以下の手順で行った。 まず、 2枚のカバ一ガラス (寸法 1 8 mm X 1 8 mm、 厚さ 0. 1 2mm) を 0. 5 mmの隙間を空けて接着し 、 容器を製作した。 その容器の中に水を注入して、 容器を密閉した。 水の部 分の寸法は 1 5mmX 1 5 厚さ0. 5 mmである。 以下、 この試料を 「0. 5 mm厚水試料」 とも呼ぶ。 The sample was prepared according to the following procedure. First, two pieces of cover glass (dimensions 18 mm x 18 mm, thickness 0.1 2 mm) were bonded with a gap of 0.5 mm to produce a container. Water was poured into the container and the container was sealed. The dimensions of the water part are 15 mm X 15 thickness 0.5 mm. This sample is Also called “0.5 mm thick water sample”.
[0156] 0. 5mm厚水試料を P EMに見立て、 図 1 0に示した配置の固体高分子 電解質膜 (P EM) 1 1 7の位置に置いた。 具体的には、 ガス流路付永久磁 石の上に D o u b I e _D型コイルが置かれ、 その上に 「0. 5 mm厚水試 料」 を置いた。 [0156] A 0.5 mm thick water sample was regarded as PEM, and placed at the position of the solid polymer electrolyte membrane (PEM) 1 17 having the arrangement shown in FIG. Specifically, a Doub Ie_D type coil was placed on a permanent magnet with a gas flow path, and a “0.5 mm thick water sample” was placed on it.
[0157] また、 NMR計測に際して、 磁石とコイルと試料は、 真鍮製電磁波シール ド箱の中に入れて測定された。 このシールドによって、 外部からのノイズが 遮断される。 この装置を用いて C PMG計測を行い、 エコー信号を取得した  [0157] In the NMR measurement, the magnet, coil, and sample were placed in a brass electromagnetic shield box and measured. This shield blocks external noise. C PMG measurement was performed using this device, and echo signals were acquired.
[0158] N MR計測のパラメータは次の値とした。 90度励起パルスの繰り返し時 間 (T R) は 5秒、 90度励起パルスのダミー回数は 4回、 NMR信号の積 算回数は 64回、 共鳴周波数は 1 3. 07MH zである。 0. 5mm厚水試 料の温度は約 25°Cであった。 [0158] N MR measurement parameters were as follows. The 90-degree excitation pulse repetition time (TR) is 5 seconds, the 90-degree excitation pulse dummy count is 4, the NMR signal integration count is 64, and the resonance frequency is 13.07 MHz. The temperature of the 0.5mm thick water sample was about 25 ° C.
[0159] 取得したエコー信号の中から、 「偶数番目のエコー信号強度」 のみを抽出 し、 それを対数プロットした様子を図 1 2に示す。 このデータを基にして、 最小二乗法によって直線近似を行い、 その直線の勾配から T2 (C PMG) を 算出した。 この結果、 T2 (C PMG) は 24m sであった。 [0159] From the acquired echo signals, only the “even-numbered echo signal intensity” is extracted and shown in logarithmic plot as shown in Fig. 12. Based on this data, a straight line approximation was performed by the least square method, and T 2 (C PMG) was calculated from the slope of the straight line. As a result, T 2 (C PMG) was 24 ms.
[0160] D o u b I e _ D型 R F検出コイルと 0. 5 mm厚水試料の距離を 0. 5 mm刻みで変えて、 C PMG計測を行い、 エコー信号強度との関係を求めた 。 その結果を図 1 3に示す。  [0160] C PMG measurement was performed by changing the distance between the Doub I e _ D type RF detection coil and the 0.5 mm thick water sample in 0.5 mm increments, and the relationship with the echo signal intensity was obtained. The results are shown in Figure 13.
図 1 3より、 コイルと試料との距離 (隙間) が 1 mmの時にエコー信号強 度が最大となることがわかる。 試料厚さが 0. 5 mmであるから、 距離が 1 mmという意味は、 コイルから 1. Ommから 1. 5mmの間に水試料があ るということである。 この距離は、 D o u b I e _D型コイルの二つの半円 状コイルの隙間の距離 (1. 2mm) に相当している。 この結果から、 D o u b I e _D型コイルでは、 半月状コイルの隙間程度だけ離れた位置 (深度 ) を計測でき、 試料の少し内部を計測することができる。  Figure 13 shows that the echo signal intensity is maximum when the distance (gap) between the coil and the sample is 1 mm. Since the sample thickness is 0.5 mm, a distance of 1 mm means that there is a water sample between 1. Omm and 1.5 mm from the coil. This distance corresponds to the distance (1.2 mm) between the two semicircular coils of the Doub I e _D type coil. From this result, the Doub Ie_D type coil can measure the position (depth) separated by about the gap of the half-moon shaped coil, and can measure a little inside of the sample.
[0161] 本実施例より、 D o u b I e _D型コイルでは、 コイルの幾何学寸法に合 わせて計測深度が変わることがわかる。 よって、 所望の計測深度に合わせた コイルを用いることで、 高分子膜内の厚さ方向 (深さ方向) 分布を計測する ことが可能となる。 [0161] According to this example, the Doub I e _D type coil matches the geometric dimensions of the coil. It can be seen that the measurement depth changes. Therefore, it is possible to measure the thickness direction (depth direction) distribution in the polymer film by using a coil that matches the desired measurement depth.
[0162] (試料 B) 高分子電解質膜 (P EM)  [0162] (Sample B) Polymer electrolyte membrane (P EM)
高分子電解質膜 (P EM) として、 旭硝子株式会社製フレミオン (登録商 標) を用いた。 P EMの寸法は 1 5mmX 1 5mmX厚さ 0. 5mmである 。 膜は予め 80°Cの 3%過酸化水素水、 イオン交換水、 1 N塩酸、 イオン交 換水の順に各 1時間浸して標準化処理をした。  As a polymer electrolyte membrane (PEM), Flemion (registered trademark) manufactured by Asahi Glass Co., Ltd. was used. The dimension of PEM is 15mmX 15mmX thickness 0.5mm. The membrane was standardized by soaking in advance for 3 hours each in the order of 80 ° C 3% hydrogen peroxide, ion exchange water, 1 N hydrochloric acid, and ion exchange water.
[0163] 実験直前にイオン交換水の中に浸された P EMを取り出し、 乾いたキムヮ イブ (登録商標) で水を拭き取り、 適度に乾燥させて P EMの含水量を調整 した。 調整後は速やかに 2枚のカバ一ガラス (寸法 1 8mmX 1 8mm、 厚 さ 0. 1 2 mm) で P EMを挟み、 ポリイミ ドフィルムで密封して乾燥させ ないようにした。 P EMの質量を電子天秤で計測し、 含水量が N M R計測の 前と後で変化していないことを確認した。  [0163] Immediately before the experiment, the PEM immersed in ion-exchanged water was taken out, wiped with dry Kim Eve (registered trademark), and dried appropriately to adjust the water content of the PEM. Immediately after adjustment, the PEM was sandwiched between two cover glasses (dimensions 18 mm x 18 mm, thickness 0.12 mm), sealed with polyimide film to prevent drying. The mass of PEM was measured with an electronic balance, and it was confirmed that the water content did not change before and after NMR measurement.
[0164] P EMの含水量は、 充分に乾燥させた P EMの質量を電子天秤で計測し、 含水状態の P EMの質量も計測して、 その質量増加分から算出した。  [0164] The water content of PEM was calculated from the increase in mass by measuring the mass of PEM fully dried using an electronic balance and measuring the mass of PEM in the water-containing state.
本実施例では、 P EMの含水量を 1 4. 9 [H20/S03- H+] と 1 2. 4 [H20/S03-H+] と変えて行った。 P EM試料そのものは同一試料であり 、 含水量のみが異なる状態である。 In this embodiment, the water content of P EM 1 4. 9 - was performed by changing [H 2 0 / S0 3 H +] and 1 2. 4 [H 2 0 / S0 3 -H +] and. The PEM sample itself is the same sample, and only the water content is different.
[0165] 試料 Aの 「0. 5 mm厚水試料」 での計測と同様に、 P EMを図 1 0に示 した位置に置き、 計測を行った。 ガス流路付永久磁石の上に D o u b I e- D型コイルを配置し、 その上に 「高分子電解質膜 (P EM) 」 を置き、 これ を真鍮製のシールド箱に入れて C PMG計測を行い、 エコー信号を取得した  [0165] Similar to the measurement of “0.5 mm thick water sample” for sample A, the PEM was placed at the position shown in Fig. 10 and the measurement was performed. Doub I e-D type coil is placed on the permanent magnet with gas flow path, and “Polymer electrolyte membrane (PEM)” is placed on it, and this is placed in a brass shield box. And obtained an echo signal
[0166] N MR計測のパラメータは次の値とした。 90度励起パルスの繰り返し時 間 (TR) は 5秒、 90度励起パルスのダミー回数は 0回、 NMR信号の積 算回数は 64回、 共鳴周波数は 1 3. 07 MH zである。 高分子電解質膜 ( P EM) の温度は約 25°Cであった。 [0167] 0. 5 mm厚水試料と同様の方法で、 P EMで取得したエコー信号の中か ら、 「偶数番目のエコー信号強度」 のみを抽出し、 それを対数プロットした 様子を図 1 4に示す。 このデータを基にして、 最小二乗法によって直線近似 を行い、 その直線の勾配から T2 (CPMG) を算出した。 この結果、 T2 (C PMG) は 34m sであった。 [0166] N MR measurement parameters were as follows. The 90-degree excitation pulse repetition time (TR) is 5 seconds, the 90-degree excitation pulse dummy count is 0, the NMR signal integration count is 64, and the resonance frequency is 13.07 MHz. The temperature of the polymer electrolyte membrane (PEM) was about 25 ° C. [0167] Using the same method as for the 0.5 mm thick water sample, only the “even-numbered echo signal intensity” was extracted from the echo signals obtained by PEM, and a logarithmic plot of it was shown in Fig. 1. Shown in 4. Based on this data, a straight line approximation was performed by the least square method, and T 2 (CPMG) was calculated from the slope of the straight line. As a result, T 2 (C PMG) was 34 ms.
[0168] また、 含水量が 1 2. 4 [H20/S03-H+] の P EMでも同様の計測を行 つた。 それぞれの含水量の P EMで C PMG計測を 3回行い、 算出した T2 ( CPMG) の値を図 1 5に示した。 直線は 3回の T2 (CPMG) 値の平均値 を基に結んだものである。 [0168] The same measurement was performed for PEM with a water content of 12.4 [H 2 0 / S0 3 -H +]. Figure 15 shows the calculated T 2 (CPMG) value by performing C PMG measurement three times with PEM of each water content. The straight line is based on the average of three T 2 (CPMG) values.
[0169] 図 1 5より、 含水量が低下するほど、 T2 (CPMG) 値が短くなることが わ力、る。 [0169] From Fig. 15, it can be seen that the T 2 (CPMG) value decreases as the water content decreases.
また、 P EMの含水量が低下すると、 エコー信号強度も低下した。 二つの 含水量の P EMから取得されたエコー信号強度と含水量の関係を図 1 6に示 す。 ここで用いたエコー信号強度は C PMG計測で得られた 2、 4、 6番目 の三つのエコー信号強度の平均値である。 信号強度のばらつきを抑えるため にこのような平均化操作を行った。  Also, as the moisture content of PEM decreased, the echo signal intensity also decreased. Figure 16 shows the relationship between echo signal intensity and water content obtained from two water content PEMs. The echo signal strength used here is the average of the third, fourth, and sixth echo signal strengths obtained by CPMG measurement. This averaging operation was performed in order to suppress variations in signal intensity.
[0170] 図 1 5および図 1 6より、 P EMの含水量とエコー信号強度との定量的な 関係が得られることがわかった。 よって、 エコー信号の強度を基にして P E Mの含水量を換算することもできる。  [0170] From Fig. 15 and Fig. 16, it was found that a quantitative relationship between the water content of PEM and the echo signal intensity was obtained. Therefore, the moisture content of P E M can be converted based on the intensity of the echo signal.
[0171] (試料 C) 電極■触媒付高分子電解質膜 (MEA)  [0171] (Sample C) Electrode ■ Polymer electrolyte membrane with catalyst (MEA)
さらに、 高分子電解質膜 (P EM) の表面に電極兼触媒を付与した電極 - 触媒付高分子電解質膜 (MEA) を試料として T2 (CPMG) 値の取得実験 を行った。 Furthermore, T 2 (CPMG) value acquisition experiments were conducted using an electrode-catalyzed polymer electrolyte membrane (MEA) with an electrode and catalyst applied to the surface of the polymer electrolyte membrane (PEM).
ME Aは、 非特許文献 2を参考に行った。 具体的には、 旭硝子社製の高分 子電解質膜に、 アノード側に P tと I rを、 カソ一ド側に P tを無電解めつ きして製作した。 1\1巳八の寸法は1 7mmX 1 5 mm角、 500; Um厚さで  ME A was conducted with reference to Non-Patent Document 2. Specifically, a polymer electrolyte membrane manufactured by Asahi Glass Co., Ltd. was prepared by electrolessly plating Pt and Ir on the anode side and Pt on the cathode side. The dimensions of 1 \ 1 巳 8 are 17 mm x 15 mm square, 500; Um thickness
[0172] 標準化処理された M E Aは実験直前にイオン交換水から引き上げ、 キムヮ ィプに押し付けて水を充分に拭き取った。 実験直前の M E Aの含水量は約 1 5 [H20/S03-H+] である。 水を拭き取った後は速やかに 2枚のカバーガ ラス (寸法 1 8mmX 1 8mm、 厚さ 0. 1 2mm) で MEAを挟み、 ポリ ィミ ドフィルムで密封して乾燥させないようにした。 [0172] The standardized MEA was lifted from the ion-exchanged water just before the experiment. The water was wiped off by pressing against the tip. The water content of MEA just before the experiment is about 15 [H 2 0 / S0 3 -H +]. After wiping off the water, the MEA was quickly sandwiched between two cover glasses (dimensions 18 mm x 18 mm, thickness 0.1 2 mm) and sealed with a polyimide film to prevent drying.
[0173] 試料 Aの 「0. 5 mm厚水試料」 での計測と同様に、 MEAを図1 0に示 した位置に置き、 計測を行った。 ガス流路付永久磁石の上に D o u b I e- D型コイルを配置し、 その上に 「電極■触媒付高分子電解質膜 (MEA) 」 を配置した。 これを真鍮製のシールド箱に入れて CP MG計測を行い、 ェコ 一信号を取得した。 [0173] Similar to the measurement of “0.5 mm thick water sample” for sample A, the MEA was placed at the position shown in FIG. A Doub I e-D type coil was placed on a permanent magnet with a gas flow path, and an “electrode / catalyst polymer electrolyte membrane (MEA)” was placed on it. This was placed in a brass shield box and CP MG measurement was performed to obtain an echo signal.
[0174] N MR計測のパラメータは次の値とした。 90度励起パルスの繰り返し時 間 (TR) は 5秒、 90度励起パルスのダミー回数は 0回、 NMR信号の積 算回数は 64回、 共鳴周波数は 1 3. 07 MH zである。 電極■触媒付高分 子電解質膜 (MEA) の温度は約 25°Cであった。  [0174] N MR measurement parameters were as follows. The 90-degree excitation pulse repetition time (TR) is 5 seconds, the 90-degree excitation pulse dummy count is 0, the NMR signal integration count is 64, and the resonance frequency is 13.07 MHz. Electrode ■ The temperature of the polymer electrolyte membrane with catalyst (MEA) was about 25 ° C.
試料 Aの 0. 5 mm厚水試料と同様の方法で、 ME Aで取得したエコー信 号の中から、 「偶数番目のエコー信号強度」 のみを抽出し、 それを対数プロ ットした様子を図 1 7に示す。 このデータを基にして、 最小二乗法によって 直線近似を行い、 その直線の勾配から T2 (CPMG) を算出した。 この結果 、 T2 (CPMG) は 41 msであった。 In the same way as the 0.5 mm thick sample of sample A, only the “even-numbered echo signal intensity” was extracted from the echo signal acquired by ME A, and a logarithmic plot was shown. Figure 17 shows. Based on this data, a straight line approximation was performed by the least square method, and T 2 (CPMG) was calculated from the slope of the straight line. As a result, T 2 (CPMG) was 41 ms.
[0175] 以上より、 試料を電極■触媒付高分子電解質膜 (MEA) としても、 妥当 な T2 (CPMG) 値が計測できた。 [0175] Based on the above, even when the sample was an electrode-catalyzed polymer electrolyte membrane (MEA), an appropriate T 2 (CPMG) value could be measured.
よって、 燃料電池内に実装できるように製作したガス流路付永久磁石と D o u b I e_D型 RFコイルを用いて、 電極■触媒付高分子電解質膜 (ME A) の CPMG計測ができ、 算出された T2 (CPMG) 値から高分子電解質 膜内の含水量が推算できることがわかる。 Therefore, using a permanent magnet with a gas flow path and a Doub I e_D type RF coil manufactured so that it can be mounted in a fuel cell, CPMG measurement of a polymer electrolyte membrane (ME A) with electrode and catalyst can be performed and calculated. It can also be seen that the water content in the polymer electrolyte membrane can be estimated from the T 2 (CPMG) value.
[0176] 以上のように、 試料 A〜試料 Cのいずれについても、 CPMG計測により 、 有意な T2 (CPMG) 値が算出できることが確認された。 [0176] As described above, it was confirmed that a significant T 2 (CPMG) value can be calculated by CPMG measurement for any of Sample A to Sample C.
[0177] なお、 非特許文献 1には、 燃料電池の固体高分子電解質膜の含水量値は、 4〜6 [H20/S03-H+] 程度であることが記載されていることから、 たと えば 2 [H20/S03- H+] 程度の含水量の変動を検出することができれば、 燃料電池の固体高分子電解質膜の評価に好適に用いることができると考えら れる。 この点、 本実施例の方法は、 以上の測定結果より、 固体高分子膜の含 水量の変動を充分検出できる程度の検出感度を有することがわかる。 [0177] It should be noted that Non-Patent Document 1 describes that the water content value of the solid polymer electrolyte membrane of the fuel cell is about 4 to 6 [H 2 0 / S0 3 -H +]. , And For example, if a change in water content of about 2 [H 2 0 / S0 3 − H +] can be detected, it can be suitably used for evaluation of a solid polymer electrolyte membrane of a fuel cell. In this respect, it can be seen from the above measurement results that the method of this example has a detection sensitivity that can sufficiently detect fluctuations in the water content of the solid polymer membrane.
[0178] また、 燃料電池の運転中にセパレータ流路内を流れる燃料ガスおよび酸化 剤ガス中のプロ トン性溶媒の単位体積あたりの濃度は、 高分子電解質膜内の プロ トン性溶媒の濃度に比べて非常に小さく、 この結果、 ガスからのエコー 信号は無視できるほどに小さい。 このため、 永久磁石の流路溝にプロ トン性 溶媒を含むガスを流したとしても、 流さない状態と同様の測定精度で T2 (C PMG) 計測ができる。 [0178] In addition, the concentration per unit volume of the proton solvent in the fuel gas and the oxidant gas flowing in the separator flow channel during the operation of the fuel cell is equal to the concentration of the proton solvent in the polymer electrolyte membrane. As a result, the echo signal from the gas is negligibly small. For this reason, even if a gas containing a protonic solvent is allowed to flow through the flow channel groove of the permanent magnet, T 2 (C PMG) measurement can be performed with the same measurement accuracy as when the gas is not flowed.
[0179] (実施例 2)  [0179] (Example 2)
本実施例では、 Double-D型コイルが作る励起磁場分布 Ηχを理論解析し、 C P M G法を用いた際のコィルが受信するェコ一信号強度分布 SSE, Detect (計測領 域と同等) を定量的に算出した。 特に、 二つの D型コイルの間隔 Lを変えた ときに、 NMR信号取得領域がコイルから離れていくことを確認した。 また 、 間隔 Lを調整することによって計測深度が変えられることを示した。 In this example, the excitation magnetic field distribution χ χ created by the Double-D type coil is theoretically analyzed, and the echo signal intensity distribution received by the coil when using the CPMG method S SE , Detect (equivalent to the measurement region) Was calculated quantitatively. In particular, when the distance L between the two D-shaped coils was changed, it was confirmed that the NMR signal acquisition region was separated from the coil. It was also shown that the measurement depth can be changed by adjusting the interval L.
[0180] Double-D型コイルの幾何学形状は、 実施例 1で使用した形状とほぼ等しく し、 直径 D= 1 2mm、 3回巻き、 二つの D型コイルの間隔は L = 1. 2 m mとした。 図 1 8 (a) および図 1 8 (b) は、 本実施例で解析した Doub I e- D型コイルの構成を示す図である。 なお、 図 1 8 (a) には、 1回巻きの場合 の Double-D型コイルの形状を示したが、 実際の計算では、 図 1 8 (b) に示 したように、 3回巻きとした。  [0180] The geometry of the Double-D coil is almost the same as the shape used in Example 1, the diameter D = 1 2mm, 3 turns, the distance between the two D coils is L = 1.2 mm It was. FIGS. 18 (a) and 18 (b) are diagrams showing the configuration of the Doub I e-D type coil analyzed in this example. Fig. 18 (a) shows the shape of the Double-D coil in the case of one turn. However, in actual calculations, as shown in Fig. 18 (b), three turns are used. did.
[0181] 形状パラメータとして、 二つの D型コイルの間隔 Lを 0. 6mm、 1. 2 mm、 1. 8mmおよび 2. 4mmと変えて、 コイルで受信される N M R信 号取得領域 (計測領域) の変化を調べた。  [0181] As a shape parameter, the distance L between two D-shaped coils was changed to 0.6 mm, 1.2 mm, 1.8 mm and 2.4 mm, and the NMR signal acquisition area (measurement area) received by the coil I examined the changes.
[0182] (励起用振動磁場の形成領域の解析)  [0182] (Analysis of formation region of oscillating magnetic field for excitation)
はじめに、 図 1 9に示した幾何学形状を有する 3回巻き Double-D型コイル の形成する励起磁場 Hx(xp, yp, zp)を以下の仮定の下で解析した。 ( i ) コイルの線径はゼロとする (無限小の線径) 。 First, the excitation magnetic field H x (x p , y p , z p ) formed by the three-turn Double-D coil having the geometry shown in Fig. 19 was analyzed under the following assumptions. (i) The coil wire diameter is zero (infinitely small wire diameter).
( i i ) 導電時に表皮効果はないとする。 線径をゼロとしたことから、 コィ ルの表面のみで電流が流れる効果も無視したこととなる。  (i i) There is no skin effect when conducting. Since the wire diameter was set to zero, the effect of current flowing only on the coil surface was ignored.
( i i i ) 3回巻きコイルでは、 図 1 8 (b) のように直径の異なる三つの 円を同心円状に配置し、 最大の円弧から順に 1巻き目直線部導線の間隔を L 1、 2巻き目直線部導線の間隔を L 2、 3巻き目直線部導線の間隔を L 3と した (L 1 > L 2> L 3) 。  (iii) In the 3-turn coil, three circles with different diameters are concentrically arranged as shown in Fig. 18 (b), and the interval between the first winding straight line conductors is L 1 and 2 turns in order from the largest arc. The distance between the straight line conductors is L 2 and the distance between the third winding line conductors is L 3 (L 1> L 2> L 3).
( i v) コイルは導線のみでできており、 被覆膜は無視する。 誘電率、 透磁 率は真空の値を使用する。  (i v) The coil is made of only conductive wire, and the coating film is ignored. Use vacuum values for dielectric constant and permeability.
( V ) 試料 (膜) は存在しない。 空間全域で誘電率、 透磁率は真空の値を使 用する。  (V) There is no sample (film). Use vacuum values for permittivity and permeability throughout the space.
( V i ) リード部 (円形コイル以外の配線部) は無視する。  (V i) Lead parts (wiring parts other than circular coils) are ignored.
[0183] 上記仮定の下、 導電体に流れる電流 Iが作る磁場 Hをビォ■サバールの法 則に基づいて算出した。 説明のために、 図 20 (a) および図 20 (b) に 示した円形コイルを例に挙げて説明をする。 なお、 図 20では、 説明の便宜 上、 コイルの平面形状を円形としたが、 解析では図 1 8 (b) に示した形状 とした。 [0183] Under the above assumption, the magnetic field H generated by the current I flowing through the conductor was calculated based on Bio-Savart's law. For the sake of explanation, the circular coil shown in FIGS. 20 (a) and 20 (b) will be described as an example. In FIG. 20, for the convenience of explanation, the planar shape of the coil is circular, but in the analysis, it is the shape shown in FIG. 18 (b).
[0184] 円形コイルが真空中 (透磁率が 4 π X 1 0-7N/A2) に置かれた場合に、 円 形コイルが位置(xp, yp, zp)に作る磁場 H(xp, yp, zp)は式 (2) で表さ れる。 [0184] When the circular coil is placed in a vacuum (magnetic permeability is 4 π X 1 0- 7 N / A 2), the circular-shaped coil is positioned (x p, y p, z p) field make H (x p , y p , z p ) is expressed by equation (2).
[0185] [数 2]
Figure imgf000048_0001
[0185] [Equation 2]
Figure imgf000048_0001
[0186] 上記式 (2) の座標系は図 20に示した通りであり、 式 (2) 中の記号の 意味は以下の通りである。  [0186] The coordinate system of the above equation (2) is as shown in Fig. 20, and the meaning of the symbols in the equation (2) is as follows.
H :位置 rでの磁場の強さ [A/m] (べク トル)  H: Magnetic field strength at position r [A / m] (vector)
r :空間中の点 Pの位置 (xp, yp, zp) [m] (ベク トル) r ' : コイル上の点 Qの位置 (xq, yp, zq) [m] (ベク トル) I :電流 [A] (スカラー) r: Position of point P in space (x p , y p , z p ) [m] (vector) r ': position of point Q on the coil (x q , y p , z q ) [m] (vector) I: current [A] (scalar)
t :電流が流れる方向を表す単位ベク トル (点 Qでのコイルの形状を表す。 図 20において、 点 Qと X軸との角度を 0とするとき、 tは t = (s i n 0 , c ο s θ, 0) である。 ) [―] (ベク トル)  t: Unit vector representing the direction of current flow (represents the shape of the coil at point Q. In Fig. 20, when the angle between point Q and the X axis is 0, t is equal to t = (sin 0, c ο s θ, 0)) [―] (vector)
積分の意味: コイル全周に渡って線積分を行う。 点 Ρに生ずる磁場は、 コィ ル上にある点 Qをコィルに沿つて移動させ、 各点 Qの位置で作られる磁場を コイル全周に渡って積分する (総和を得る) ことで求められる。  Meaning of integration: Line integration is performed over the entire circumference of the coil. The magnetic field generated at point Ρ is obtained by moving point Q on the coil along the coil and integrating the magnetic field created at each point Q over the entire circumference of the coil (obtaining the sum).
[0187] Doub I e-D型コイルの場合には、 円弧部分と直線部分が組み合わされて構成 されている。 そこで、 次のようにコイル形状を近似して、 Double-D型コイル の形状とほぼ等しくした。 [0187] In the case of a Doub I e-D type coil, a circular arc part and a straight line part are combined. Therefore, the coil shape was approximated as follows to make it almost the same as the shape of the Double-D coil.
すなわち、 Double-D型コイルの円弧部はこれを多数の区間に分割し、 区間 内では長さ c L— d s [m] の直線で表されると近似した。 その区間での tは 、 角度 0の増加に伴って滑らかに変化していくものとした。 また、 コイルの 直線部は直線の要素として分割した。 これによつて、 式 (2) を数値的に計 算することが可能となる。 本実施例では一つの片側 D型コイルを 1 6の直線 に分割し、 曲線部も 1 6の直線に分割した。 この分割方法を外側の一巻き目 、 二巻き目、 三巻き目 (最内側) で同様にした。 図 2 1に、 分割時のパラメ ータを示す。 分割した要素の中心を点で記し、 全体の形状を示したのが図 1 8 (b) である。  In other words, the arc of the Double-D coil was divided into a number of sections and approximated as being represented by a straight line of length c L – d s [m] within the section. It is assumed that t in that interval changes smoothly with increasing angle 0. The straight part of the coil was divided as a straight element. This makes it possible to calculate Equation (2) numerically. In this example, one D-type coil on one side was divided into 16 straight lines, and the curved portion was also divided into 16 straight lines. This division method was the same for the first roll, the second roll, and the third roll (innermost). Figure 21 shows the parameters when dividing. Figure 18 (b) shows the overall shape of the divided elements with dots.
[0188] コイルに流れる電流 Iを 1 A、 L= 1. 2mmとして、 図 22に示した空 間中の X方向磁場強度 Hx (xp, yp, zp) を式 (2) により数値解析した。 y p=0mmの X z平面である。 ただし、 この計算ではコイル上は特異点とな り計算できないために、 コイル近傍の半径 0. 05mm以内の領域について は計算対象外とした。 図 23は、 3回巻き Double-D型コイルの全体等高線を 示す図である。 また、 図 24は、 X方向磁場強度の z位置分布 Hx ( z p) を示 す図である。 また、 図 26および図 27は、 それぞれ、 図 23および図 24 の直線導線部 (図 25) のみを拡大して示す図である。 なお、 図 23および 図 26においては、 コイルの断面を白丸 (〇) で示した。 [0188] The current I flowing in the coil is 1 A, L = 1.2 mm, and the X-direction magnetic field strength H x (x p , y p , z p ) in Fig. 22 is Numerical analysis was performed. This is the X z plane with y p = 0 mm. However, since this calculation is a singular point on the coil and cannot be calculated, the region within a radius of 0.05 mm near the coil was excluded from the calculation. FIG. 23 is a diagram showing the overall contour lines of a 3-turn Double-D coil. FIG. 24 shows the z-position distribution H x (z p ) of the magnetic field strength in the X direction. FIG. 26 and FIG. 27 are enlarged views of only the straight conducting wire portion (FIG. 25) of FIG. 23 and FIG. 24, respectively. Figure 23 and In Fig. 26, the cross section of the coil is indicated by a white circle (◯).
[0189] 図 26および図 27より、 磁場強度が最も高くなる頂点の周辺で、 一様と みなせる磁場が形成されることがわかる。 この領域を Double_D型コイルでの 計測領域とするようにコィルを配置することにより、 励起用振動磁場のばら つきを抑制し、 より精度の高い計測が可能となる。 計測領域はコイルから約 0. 6〜0. 7 mm程度離れた領域とすればよいことがわかる。  [0189] From Fig. 26 and Fig. 27, it can be seen that a magnetic field that can be considered uniform is formed around the apex where the magnetic field strength is highest. By disposing the coil so that this region is the measurement region for the Double_D type coil, variations in the excitation oscillating magnetic field can be suppressed, and more accurate measurement can be performed. It can be seen that the measurement area should be about 0.6 to 0.7 mm away from the coil.
[0190] 二つの D型コイルの間隔 Lを 0. 6mm、 1. 2mm、 1. 8mmおよび 2. 4 mmと変えて、 同様の磁場解析を行った。 間隔 Lを 1. 2 mmとした 解析モデル形状が図 1 8 (b) に相当する。 またこれらの解析に際して、 Dou ble_D型コイルの解析モデル形状は、 直径 D= 1巻目直径 (D— 1 ) = 1 2m mで共通とし、 また 2巻目直径 (D— 2) および 3巻目直径 (D— 3) も図 1 8 (b) に示すモデル形状と共通とした。 また各ケースとも直線部と円弧 部の要素分割数は共通とした。 したがって間隔 Lを大きくするほど各コイル の直線部同士を土 Y方向に離間させ、 円弧部の中心角を小さくして分割点を 再プロッ卜することにより解析モデルを作成した。  [0190] The same magnetic field analysis was performed by changing the distance L between the two D-shaped coils to 0.6 mm, 1.2 mm, 1.8 mm, and 2.4 mm. The shape of the analysis model with the interval L of 1.2 mm corresponds to Fig. 18 (b). For these analyses, the analysis model shape of the Dou ble_D type coil is the same as diameter D = 1st volume diameter (D-1) = 12 mm, and 2nd diameter (D-2) and 3rd volume. The diameter (D-3) is also the same as the model shape shown in Fig. 18 (b). In each case, the number of element divisions for the straight line and the arc is the same. Therefore, as the interval L was increased, the straight line portions of each coil were separated from each other in the soil Y direction, the center angle of the arc portion was reduced, and the analysis points were re-probed.
[0191] 磁場解析の一例として、 二つの D型コイルの間隔 Lが 2. 4mmの時の 3 回巻き Double-D型コイルの X方向磁場強度分布 Hx ( x p, y p, 2 を図28 に示す。 また、 図 29は、 Lが 2. 4 mmの時 X方向磁場強度の z位置分布 Hx (zp) を示す図である。 [0191] As an example of the magnetic field analysis, the X-direction magnetic field strength distribution H x (x p , y p , 2 of the 3-turn Double-D coil when the distance L between the two D-type coils is 2.4 mm is shown in Fig. Fig. 29 shows the z-position distribution H x (z p ) of the magnetic field strength in the X direction when L is 2.4 mm.
[0192] 図 28および図 29を L= 1. 2 mmの場合の解析結果と比較すると、 L =2. 4mmとすることで、 磁場強度が最大となり強度が一様となる計測領 域がコイルから離れていることがわかる。  [0192] Comparing Fig. 28 and Fig. 29 with the analysis result when L = 1.2 mm, when L = 2.4 mm, the measurement area where the magnetic field strength is maximum and the strength is uniform is the coil. It turns out that it is away from.
[0193] 図 30は、 Double-D型コイルの二つの D型コイルの直線導線部の間隔 Lを 変えたときの X方向磁場強度の z位置分布 Hx (0, 0, zp) を示す図である 。 図 30より、 コイル直径 (例えば D= 1 2mm) と巻数 (例えば 3巻) を 不変とした場合、 二つの D型コイルの間隔 Lを大きくするほど、 計測領域が コイルから離れていくことがわかる。 [0193] Figure 30 shows the z-position distribution H x (0, 0, z p ) of the magnetic field strength in the X direction when the distance L between the linear conductors of the two D-type coils of the Double-D type coil is changed. FIG. Fig. 30 shows that when the coil diameter (eg, D = 1 2mm) and the number of turns (eg, 3 turns) are unchanged, the measurement area becomes farther from the coil as the distance L between the two D-type coils increases. .
[0194] 以上の解析結果より、 Double-D型コイルでは、 二つの D型コイルの間隔 L を調整することで、 計測領域の深度を変えることができることが明らかにな つた。 [0194] From the above analysis results, in the Double-D type coil, the distance between the two D type coils L It became clear that the depth of the measurement area can be changed by adjusting the.
[0195] (ェコ一信号強度分布の形成領域の解析)  [0195] (Analysis of formation area of echo-signal intensity distribution)
次に、 以上の磁場分布の解析結果を用い、 「Double-D型コイルの信号受信 感度」 と、 実験的な関係式に基づいた 「核磁化の励起角度 αと信号強度の関 係」 の両方を組み合わせて、 以下の手順により表面コイルでの計測領域を算 定した。  Next, using the analysis results of the magnetic field distribution above, both the “signal reception sensitivity of the Double-D coil” and the “relationship between the excitation angle α of nuclear magnetization and the signal intensity” based on an experimental relational expression. The measurement area of the surface coil was calculated according to the following procedure.
( i ) Double_D型コイルの中心軸上で Ηχ (0, 0, ζρ) が最大となる位置で の励起角度ひを 90度とした場合の励起角度分布ひ (χρ, yp, zp) を理論的 に解析した。 (i) Excitation angle distribution (χ ρ , y p , z) when the excitation angle at the position where Η χ (0, 0, ζ ρ ) is maximum on the central axis of the Double_D coil is 90 degrees p ) was analyzed theoretically.
( i i ) スピンエコー法でのエコー信号強度 SSEが励起角度ひと SSE= (s i n ) 3なる実験的な関係式を用いて、 エコー信号強度分布 SSE (xp, yp, zp ) を算出した。 この際、 CPMG法とエコー法は同様であると実験結果から 判断した。 (ii) Echo signal intensity distribution S SE (x p , y p , z p ) using the experimental relational expression that the echo signal intensity S SE in the spin echo method has an excitation angle of S SE = (sin) 3 Was calculated. At this time, it was judged from the experimental results that the CPMG method and the echo method were the same.
( i i i ) Double-D型コイルの信号受信感度は、 上述の磁場 Hx (xp, yp, z(iii) The signal reception sensitivity of the Double-D coil is based on the magnetic field H x (x p , y p , z
P) に比例するとし、 受信感度分布も考慮したエコー信号受信強度分布 SSE,Detect E) Received signal intensity distribution S SE , Detect
(xP, yP, zp) を算出した。 (x P , y P , z p ) was calculated.
[0196] 図 31は、 Double_D型コイルの直径 Dが 1 2mm、 3回巻きで二つの D型 コイルの間隔が L= 1. 2 mmの場合を解析して得られたエコー信号受信強 度分布 SSE,Detect (xp, yp, zp) を示す図である。 図 3 1においては、 Double -D型コイルの中心部領域のみの X z平面を拡大して示した。 図中には、 Doubl e-D型コイルの 3本の直線部導線の断面を模式的に示した。 模式的の意味は、 導線の直径はゼロとして解析しているためである。 [0196] Fig. 31 shows the echo signal reception intensity distribution obtained by analyzing the case where the diameter D of the Double_D coil is 12 mm, the winding is 3 turns, and the distance between the two D coils is L = 1.2 mm. S SE, illustrates Detect (x p, y p, z p) a. In Fig. 31, the X z plane of only the central region of the Double-D coil is shown enlarged. In the figure, the cross section of the three straight line conductors of the Doubl eD type coil is shown schematically. The typical meaning is that the wire diameter is analyzed as zero.
[0197] また、 図 3 1において、 信号強度がおおよそ 0. 8以上となる領域を点線 で囲んで示した。 この点線で囲まれた領域で Double-D型コイルにより主にェ コ一信号が取得され、 この領域がこの場合の Doubl e_D型コイルでの計測領域 とみなせる領域である。  [0197] Further, in Fig. 31, a region where the signal intensity is approximately 0.8 or more is shown surrounded by a dotted line. In the area surrounded by the dotted line, the echo signal is mainly acquired by the Double-D type coil, and this area can be regarded as the measurement area of the Double_D type coil in this case.
[0198] 図 32は、 図 31の z軸上のエコー信号受信強度分布 SSE, Detect (0, 0, zp ) を示す図である。 この分布の場合には、 矢印で示すように信号強度がおお よそ 0. 8以上となる領域を Double-D型コイルでの計測領域とみなせば、 図 31において点線で囲まれた領域と同じとなる。 [0198] Figure 32 shows the echo signal received intensity distribution on the z-axis in Figure 31 S SE , Detect (0, 0, z p FIG. In the case of this distribution, if the region where the signal intensity is approximately 0.8 or more as shown by the arrow is regarded as the measurement region with the Double-D coil, it is the same as the region surrounded by the dotted line in Fig. 31. Become.
[0199] また、 図 33は、 Double_D型コイルの直径 Dが 1 2mm、 3回巻きで二つ の D型コィルの間隔が L = 2. 4mmの場合を解析して得られたェコ一信号 受信強度分布 SSE, Detect ( X p, y p, Z p) を示す図である。 図 33においても、 図 31 と同様に、 Double-D型コイルの中心部領域のみの X z平面を拡大して 示した。 [0199] Figure 33 shows an echo signal obtained by analyzing the case where the diameter D of the Double_D coil is 12 mm, the winding is 3 turns, and the distance between the two D coils is L = 2.4 mm. reception intensity distribution S SE, Detect (X p, y p, Z p) is a diagram showing a. In FIG. 33, as in FIG. 31, the X z plane of only the central region of the Double-D coil is shown enlarged.
[0200] また、 図 33においても、 信号強度がおおよそ 0. 8以上となる領域を点 線で囲んで示した。 図 33では、 図 31 と比べて、 信号強度がおおよそ 0. 8以上となる領域が広がると同時に、 コイルから離れていくことがわかる。  [0200] Also, in Fig. 33, the region where the signal intensity is approximately 0.8 or more is shown surrounded by a dotted line. In Fig. 33, it can be seen that compared to Fig. 31, the region where the signal strength is approximately 0.8 or more is widened, and at the same time, the region moves away from the coil.
[0201] また、 図 34は、 図 33の Z軸上のエコー信号受信強度分布 SSE, Detect (0,[0201] Also, Fig. 34 shows the echo signal reception intensity distribution on the Z-axis in Fig. 33 S SE , Detect (0,
0, zp) を示す図である。 図 34中にも Double-D型コイルでの計測領域と見 なせる範囲を矢印にて示した。 図 34においても、 図 32と比べて、 計測領 域が広がると同時に、 コイルから離れていくことがわかる。 (0, z p ). In Fig. 34, the range that can be regarded as the measurement area of the Double-D coil is indicated by arrows. Also in Fig. 34, compared to Fig. 32, it can be seen that the measurement area expands and at the same time moves away from the coil.
[0202] 図 35は、 二つの D型コイルの間隔 Lを 0. 6mm、 1. 2mm、 1. 8 mmおよび 2. 4 mmと変えた場合の z軸上のエコー信号受信強度分布 SSE,Det eot (0, 0, Z p) を示す図である。 [0202] Figure 35 shows the echo signal reception intensity distribution S SE on the z axis when the distance L between the two D-shaped coils is changed to 0.6 mm, 1.2 mm, 1.8 mm, and 2.4 mm. det eot is a diagram showing a (0, 0, Z p) .
図 35よりコイル直径 (例えば D= 1 2mm) と巻数 (例えば 3巻) を不 変とした場合、 二つの D型コイルの間隔 Lを増加させるほど、 縦軸の規格化 されたエコー信号受信強度分布 SSE,Detectが 0. 8以上となる領域は広がり、 さ らにそれが離れた位置へと移動していくことがわかる。 これより、 二つの D 型コィルの間隔 Lを調整することで、 計測領域をコィルの近い位置から遠い 位置へと変えることが可能であると言える。 From Fig. 35, when the coil diameter (eg, D = 12 mm) and the number of turns (eg, 3 turns) are unchanged, the normalized echo signal reception intensity on the vertical axis increases as the distance L between the two D-type coils increases. It can be seen that the region where the distribution S SE , Detect is greater than or equal to 0.8 spreads and moves further away. From this, it can be said that the measurement area can be changed from a position close to the coil to a position far away by adjusting the distance L between the two D-type coils.
[0203] 以上の結果より、 Double-D型コイルをたとえば燃料電池に設置する際に、 間隔 Lを変えた複数のコイルを設置し、 送受信機から個々のコイルを切り替 えて計測することで、 様々な厚さ位置での含水量計測が実現できる。  [0203] From the above results, when installing Double-D type coils in a fuel cell, for example, by installing multiple coils with different intervals L and switching and measuring individual coils from the transceiver, various Moisture content can be measured at the correct thickness position.
[0204] なお、 本実施例では、 3回巻きコイルについて解析したが、 実施例 1で用 いた 5回巻きコイルについても、 「コイルの束」 としてみれば、 コイルの束 の幅は本実施例で用いたコイルとほぼ同様な形状となっている。 この幅が同 じ程度であれば、 実施例 1で用いた 5回巻きのコイルと同様の磁場が形成さ れると考えてよい。 [0204] In this example, a three-turn coil was analyzed, but it was used in Example 1. For the five-turn coil, the width of the coil bundle is almost the same as that of the coil used in this example. If this width is about the same, it can be considered that a magnetic field similar to that of the 5-turn coil used in Example 1 is formed.

Claims

請求の範囲 The scope of the claims
[1 ] 核磁気共鳴法を用いて膜中の特定箇所のプロ トン性溶媒の量を局所的に測 定する装置であって、  [1] An apparatus for locally measuring the amount of a protic solvent at a specific location in a film using a nuclear magnetic resonance method,
前記膜に対して静磁場を印加する永久磁石と、  A permanent magnet for applying a static magnetic field to the film;
前記膜の一部に対して励起用振動磁場を印加するとともに、 前記励起用振 動磁場に対応するェコ一信号を取得する R Fコイルと、  Applying an oscillating magnetic field for excitation to a part of the film, and obtaining an echo signal corresponding to the oscillating magnetic field for excitation;
前記エコー信号の強度から、 前記膜の特定箇所における前記プロ トン性溶 媒の量を算出する溶媒量算出部と、  From the intensity of the echo signal, a solvent amount calculation unit that calculates the amount of the protonic solvent at a specific location of the membrane;
を備え、  With
前記永久磁石に、 前記プロ トン性溶媒を含む流体が流れる流路溝が設けら れ、  The permanent magnet is provided with a channel groove through which a fluid containing the protonic solvent flows.
前記膜が、 前記永久磁石の流路形成面に平行に設けられる、 測定装置。  The measuring apparatus, wherein the film is provided in parallel to the flow path forming surface of the permanent magnet.
[2] 請求項 1に記載の測定装置において、 [2] In the measuring device according to claim 1,
前記溶媒量算出部が、 前記エコー信号の強度から、 T 2緩和時定数を算出し 、 算出した前記 Τ 2緩和時定数から、 前記膜の特定箇所における前記プロ トン 性溶媒の量を算出する、 測定装置。 The solvent amount calculation unit calculates a T 2 relaxation time constant from the intensity of the echo signal, and calculates the amount of the protic solvent at a specific location of the film from the calculated 2 relaxation time constant. measuring device.
[3] 請求項 1または 2に記載の測定装置において、 [3] In the measuring device according to claim 1 or 2,
前記永久磁石の前記流路溝が、 複数の溝部からなり、 これらの前記溝部が 互いに平行に配置された、 測定装置。  The measuring device, wherein the flow channel groove of the permanent magnet is composed of a plurality of groove portions, and the groove portions are arranged in parallel to each other.
[4] 請求項 3に記載の測定装置において、 [4] In the measuring apparatus according to claim 3,
前記 R Fコイルが、 前記流路形成面内方向であって前記溝部の延在方向に 垂直な方向の振幅を有する前記励起用振動磁場を形成する、 測定装置。  The measurement apparatus, wherein the RF coil forms the excitation oscillating magnetic field having an amplitude in a direction in the flow path forming plane and perpendicular to an extending direction of the groove.
[5] 請求項 4に記載の測定装置において、 [5] The measuring device according to claim 4,
前記 R Fコイルが、 一対のコイル部を含むとともに、 前記一対のコイル部 に挟まれた領域に前記励起用振動磁場を形成し、  The RF coil includes a pair of coil portions, and forms the excitation oscillating magnetic field in a region sandwiched between the pair of coil portions,
前記永久磁石の前記流路形成面の上部から見たときに、 前記一対のコイル 部に挟まれた領域が、 単一の前記溝部の形成領域内または隣接する前記溝部 に挟まれた領域内に含まれる、 測定装置。 When viewed from above the flow path forming surface of the permanent magnet, the region sandwiched between the pair of coil portions is within a single groove portion forming region or a region sandwiched between adjacent groove portions. Included measuring device.
[6] 請求項 3乃至 5いずれかに記載の測定装置において、 [6] In the measuring apparatus according to any one of claims 3 to 5,
前記 R Fコイルが、 第一直線領域を含む第一コイル部と、 第二直線領域を 含む第二コイル部とを連結した平面型コイルであって、  The RF coil is a planar coil in which a first coil part including a first linear region and a second coil part including a second linear region are connected,
前記第一コィル部と前記第ニコィル部とは、 導線が逆巻きであって、 前記第一直線領域および前記第二直線領域が、 前記溝部の延在方向に平行 に配置され、  The first coil part and the first nicole part have a conductive wire reversely wound, and the first linear region and the second linear region are arranged in parallel with the extending direction of the groove portion,
前記永久磁石の前記流路形成面の上部から見たときに、 前記第一直線領域 と前記第二直線領域との間に挟まれた領域が、 隣接する前記溝部に挟まれた 領域内に含まれる、 測定装置。  When viewed from above the flow path forming surface of the permanent magnet, a region sandwiched between the first linear region and the second linear region is included in a region sandwiched between the adjacent groove portions. , measuring device.
[7] 請求項 3乃至 5いずれかに記載の測定装置において、 [7] In the measuring device according to any one of claims 3 to 5,
前記 R Fコイルが、 第一直線領域を含む第一コイル部と、 第二直線領域を 含む第二コイル部とを連結した平面型コイルであって、  The RF coil is a planar coil in which a first coil part including a first linear region and a second coil part including a second linear region are connected,
前記第一コィル部と前記第ニコィル部とは、 導線が逆巻きであって、 前記第一直線領域および前記第二直線領域が、 前記溝部の延在方向に平行 に配置され、  The first coil part and the first nicole part have a conductive wire reversely wound, and the first linear region and the second linear region are arranged in parallel with the extending direction of the groove portion,
前記永久磁石の前記流路形成面の上部から見たときに、 前記第一直線領域 と前記第二直線領域との間に挟まれた領域が、 単一の前記溝部の形成領域内 に含まれる、 測定装置。  When viewed from the upper part of the flow path forming surface of the permanent magnet, a region sandwiched between the first linear region and the second linear region is included in a single groove forming region. measuring device.
[8] 請求項 6または 7に記載の測定装置において、 [8] In the measuring device according to claim 6 or 7,
前記 R Fコイルが、 前記永久磁石の前記流路形成面と前記膜との間に配置 され、  The RF coil is disposed between the flow path forming surface of the permanent magnet and the film;
前記永久磁石の前記流路形成面と前記平面型コィルとの間、 および前記平 面型コイルと前記膜との間に、 非磁性材料により構成された特定の厚さの間 隔調整部材が配置された、 測定装置。  A gap adjusting member having a specific thickness made of a non-magnetic material is disposed between the flow path forming surface of the permanent magnet and the planar coil and between the planar coil and the film. The measuring device.
[9] 請求項 1乃至 8いずれかに記載の測定装置において、 前記プロ トン性溶媒 が水である、 測定装置。  [9] The measuring apparatus according to any one of [1] to [8], wherein the protic solvent is water.
[10] 請求項 1乃至 9いずれかに記載の測定装置を備える、 燃料電池。  [10] A fuel cell comprising the measuring device according to any one of claims 1 to 9.
[1 1 ] 請求項 1 0に記載の燃料電池において、 燃料極または酸化剤極に対向して設けられたセパレータを含み、 前記セパレータが前記永久磁石を含む、 燃料電池。 [1 1] In the fuel cell according to claim 10, A fuel cell, comprising: a separator provided facing a fuel electrode or an oxidant electrode, wherein the separator includes the permanent magnet.
[12] 請求項 1 1に記載の燃料電池において、  [12] The fuel cell according to claim 11, wherein
前記永久磁石の前記流路形成面が、 当該燃料電池の燃料極に対向配置され るとともに、 前記流路溝に燃料ガスが供給される、 燃料電池。  The fuel cell, wherein the flow path forming surface of the permanent magnet is disposed to face the fuel electrode of the fuel cell, and fuel gas is supplied to the flow channel.
[13] 請求項 1 1に記載の燃料電池において、 [13] The fuel cell according to claim 11, wherein
前記永久磁石の前記流路形成面が、 当該燃料電池の酸化剤極に対向配置さ れるとともに、 前記流路溝に酸化剤ガスが供給される、 燃料電池。  The fuel cell, wherein the flow path forming surface of the permanent magnet is disposed opposite to the oxidant electrode of the fuel cell, and an oxidant gas is supplied to the flow channel groove.
[14] 流路溝が形成された永久磁石の流路形成面に平行に膜を配置して、 核磁気 共鳴法を用いて前記膜中の特定箇所のプロ トン性溶媒の量を局所的に測定す る方法であって、 [14] A film is arranged in parallel to the flow path forming surface of the permanent magnet in which the flow path grooves are formed, and the amount of the protonic solvent at a specific location in the film is locally determined using a nuclear magnetic resonance method. A method of measuring,
前記永久磁石の前記流路溝に前記プロ トン性溶媒を含む流体を流しつつ、 前記永久磁石により前記膜に対して静磁場を印加し、 前記静磁場におかれた 前記膜の一部に対し、 R Fコイルを用いて励起用振動磁場を複数回順次印加 するとともに、 前記励起用振動磁場に対応する複数のエコー信号を取得する 第 1ステップと、  While flowing a fluid containing the protonic solvent in the flow channel groove of the permanent magnet, a static magnetic field is applied to the film by the permanent magnet, and a part of the film placed in the static magnetic field is applied. Applying a plurality of excitation oscillating magnetic fields sequentially using an RF coil, and obtaining a plurality of echo signals corresponding to the excitation oscillating magnetic fields;
前記複数のエコー信号の強度から、 前記膜の特定箇所における前記プロ ト ン性溶媒の量を求める第 2ステップと、  A second step of determining the amount of the protonic solvent at a specific location of the film from the intensity of the plurality of echo signals;
を含む、 測定方法。  Including the measuring method.
[15] 請求項 1 4に記載の測定方法において、 [15] In the measurement method according to claim 14,
前記第 2ステップが、  The second step includes
前記エコー信号の強度から、 T 2緩和時定数を算出するステップと、 前記膜中の前記プロ トン性溶媒量と Τ 2緩和時定数との相関関係を示すデ ータを取得し、 該データと Τ 2緩和時定数を算出する前記ステップで算出され た前記 Τ 2緩和時定数とから、 前記プロ トン性溶媒の量を求めるステップと、 を含む、 測定方法。 A step of calculating a T 2 relaxation time constant from the intensity of the echo signal, obtaining data indicating a correlation between the amount of the protonic solvent in the film and the 2 relaxation time constant, and the data ( 2) A step of determining the amount of the protonic solvent from the ( 2) relaxation time constant calculated in the step of calculating a relaxation time constant ( 2) .
PCT/JP2007/001283 2006-11-22 2007-11-21 Measuring device, fuel battery with same, and measuring method WO2008062561A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006315563A JP5046203B6 (en) 2006-11-22 Measuring device, fuel cell including the same, and measuring method
JP2006-315563 2006-11-22

Publications (1)

Publication Number Publication Date
WO2008062561A1 true WO2008062561A1 (en) 2008-05-29

Family

ID=39429504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/001283 WO2008062561A1 (en) 2006-11-22 2007-11-21 Measuring device, fuel battery with same, and measuring method

Country Status (1)

Country Link
WO (1) WO2008062561A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003628A (en) * 2008-06-23 2010-01-07 Keio Gijuku Measuring device for fuel cell, and fuel cell system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004170297A (en) * 2002-11-21 2004-06-17 Rikogaku Shinkokai Method for measuring moisture distribution between conductive member and cell and apparatus for measuring moisture distribution of polymer membrane
WO2006030743A1 (en) * 2004-09-13 2006-03-23 Keio University Method and apparatus for locally measuring amount of proton solvent in specimen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004170297A (en) * 2002-11-21 2004-06-17 Rikogaku Shinkokai Method for measuring moisture distribution between conductive member and cell and apparatus for measuring moisture distribution of polymer membrane
WO2006030743A1 (en) * 2004-09-13 2006-03-23 Keio University Method and apparatus for locally measuring amount of proton solvent in specimen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
OGAWA K. ET AL.: "Multi NMR Sensor ni yoru Kotai Kobunshi Denkaishitsu Makunai Gansuiryo Bunpu no Real Time Keisoku", DAI 10 KAI NMR MICROIMAGING STUDY GROUP KOEN YOSHISHU, July 2006 (2006-07-01), pages 32 - 35, XP003022107 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003628A (en) * 2008-06-23 2010-01-07 Keio Gijuku Measuring device for fuel cell, and fuel cell system

Also Published As

Publication number Publication date
JP5046203B2 (en) 2012-10-10
JP2008128883A (en) 2008-06-05

Similar Documents

Publication Publication Date Title
JP4997380B2 (en) Method for locally measuring the mobility of a protic solvent in a sample, apparatus for locally measuring the mobility of a protic solvent in a sample
KR100695225B1 (en) Probe unit for nuclear magnetic resonance
JP5818267B2 (en) Method and apparatus for producing a uniform magnetic field
US7095230B2 (en) NMR probe for material analysis
US20050196660A1 (en) Method for measuring water distribution between conductive members, cell for measuring water distribution in polymer membrane and apparatus for measuring water distribution in polymer membrane
JP4849623B2 (en) Method and apparatus for locally measuring the amount of protic solvent in a sample
Fleige et al. Rotating disk electrode system for elevated pressures and temperatures
JP5170686B2 (en) Measuring apparatus and measuring method using nuclear magnetic resonance method
Han Nuclear magnetic resonance investigations on electrochemical reactions of low temperature fuel cells operating in acidic conditions
US20050156604A1 (en) Method of non-contact measuring electrical conductivity of electrolytes with using primary measuring transformer
JP5337569B2 (en) Fuel cell system
WO2008062561A1 (en) Measuring device, fuel battery with same, and measuring method
US8310235B1 (en) NMR apparatus for in situ analysis of fuel cells
JP5046203B6 (en) Measuring device, fuel cell including the same, and measuring method
JP4997620B2 (en) MEASURING DEVICE AND MEASURING METHOD FOR MEASURING TRANSMISSION CHARACTERISTICS OF MEMBRANES USING NUCLEAR RESONANCE
Aguilera et al. The parallel-plate resonator: an RF probe for MR and MRI studies over a wide frequency range
JP5257994B2 (en) Measuring apparatus and measuring method
JP5212972B2 (en) Measuring device and measuring method
JP5337413B2 (en) Fuel cell measuring apparatus and fuel cell system
JP5513783B2 (en) Measuring device and fuel cell system
JP2014098716A (en) Measurement instrument and fuel battery system
JP6917251B2 (en) Measurement analysis device, fuel cell system and measurement analysis method
EP3951416A1 (en) Device and method for performing nmr spectroscopy
CN217085237U (en) Instrument for accurately measuring magnetic field by using flowing liquid
Dunbar et al. Magnetic resonance imaging as an in-situ diagnostic method to characterize water flooding

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828060

Country of ref document: EP

Kind code of ref document: A1