WO2008061668A1 - Method for obtaining high-tenacity aramid yarn - Google Patents
Method for obtaining high-tenacity aramid yarn Download PDFInfo
- Publication number
- WO2008061668A1 WO2008061668A1 PCT/EP2007/009901 EP2007009901W WO2008061668A1 WO 2008061668 A1 WO2008061668 A1 WO 2008061668A1 EP 2007009901 W EP2007009901 W EP 2007009901W WO 2008061668 A1 WO2008061668 A1 WO 2008061668A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- yarn
- dtex
- tension
- ppd
- tenacity
- Prior art date
Links
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/78—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
- D01F6/80—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyamides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
- C08G69/32—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from aromatic diamines and aromatic dicarboxylic acids with both amino and carboxylic groups aromatically bound
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/78—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products
- D01F6/80—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyamides
- D01F6/805—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from copolycondensation products from copolyamides from aromatic copolyamides
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/02—Yarns or threads characterised by the material or by the materials from which they are made
- D02G3/04—Blended or other yarns or threads containing components made from different materials
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02G—CRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
- D02G3/00—Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
- D02G3/02—Yarns or threads characterised by the material or by the materials from which they are made
- D02G3/04—Blended or other yarns or threads containing components made from different materials
- D02G3/047—Blended or other yarns or threads containing components made from different materials including aramid fibres
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06M—TREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
- D06M15/00—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
- D06M15/19—Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
- D06M15/21—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
- D06M15/285—Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acid amides or imides
Definitions
- the invention relates to a method for obtaining high-tenacity aramid yarn, wherein the yarn is a copolymer obtained from a mixture of monomers comprising DAPBI, an aromatic para-diamine, and an aromatic para-diacid, and wherein the yarn is heated in at least two process steps.
- Methods of heat treating yarn of spun copolymer obtained from a mixture of monomers comprising DAPBI (5-(6 )-amino-2-(p-aminophenyl)benzimidazole) and PPD (para-phenylene diamine) in a heating oven are known in the art.
- DAPBI 5-(6 )-amino-2-(p-aminophenyl)benzimidazole) and PPD (para-phenylene diamine) in a heating oven.
- the residence time of the yarn in the oven is controlled by the yarn speed and is usually set between 20 seconds and 5 minutes at controlled tensions between 0.2 and 1 cN/tex.
- Such method using a single heating step is for example known from CN 1473969.
- Methods of heat treating spun DAPBI-PPD copolymer yarn in two separate process steps are also known in the art.
- a two step heat treatment is disclosed. These polymers are subjected to a draw-out step up to 120 wt%, followed by wash and drying steps, followed by a heat treatment at 320 to 350 0 C, and a further drawing at 360 to 420 0 C to 1-3 wt%.
- the first heat treatment step is carried out with the yarn on the bobbin by placing the bobbin in an oven for 30 minutes. In this method the yarn tension cannot be controlled and heat treatment times of the different layers of yarn on the bobbin will differ due to heat transport time through layers of yarn.
- Yarns with high tenacity could be prepared, however, only with optimum amounts of DAPBI and CI-PPD (2-chloro-p-phenylenediamine).
- example 20 provides high tenacity yarn using 7.5 mole% DAPBI and 25 mole% Cl- PPD.
- RU 2045586 further teaches that any increase of DABPI content and/or any decrease of CI-PPD content leads to decrease of tenacity. It was further found that tenacities of at least 2500 mN/tex could only be obtained in the presence of CI-PPD (at least 20 mole%).
- the invention pertains to a method for obtaining high-tenacity aramid yarn, wherein the yarn is a copolymer obtained from a mixture of monomers comprising DAPBI, an aromatic para-diamine, and an aromatic para-diacid, wherein the running yarn is heated in at least two process steps, characterized in that in a first step the yarn is heated at a temperature of 200 to 360 0 C at a tension of at least 0.2 cN/dtex, followed by a second step wherein the yarn is heated at a temperature of 370 to 500 0 C at a tension of less than 1 cN/dtex.
- the new method consists of two different heating steps in two heating zones, such as two sets of heating devices, such as ovens, or in one oven having a temperature gradient.
- the yarn is pre-drawn to a tension that is as high as possible without disturbing the process.
- the temperature in this step is preferably kept at 240 0 C to 330 °C.
- the first step is preferably directly followed by a second drawing step at preferably 400 0 C to 470 0 C under low tension. Between the two steps there is preferably no winding and unwinding of the yarns.
- oxygen levels are kept below 0.5 wt%, preferably at about 0.25 wt%.
- the yarn is led through the heating zones usually at a rate leading to a heat residence time of at least 5 seconds, preferably at least 10 seconds, most preferably at least 20 seconds in both heating zones.
- the yarn tension in the heating devices (such as ovens) is controlled by the draw ratio in the ovens.
- the tension is kept as low as possible without disturbing the transport of the yarn. In practice this is usually about 15 cN for a bundle of approximately 130 dtex.
- the process steps are performed under conditions wherein the tension is kept as constant as possible. This can, for instance, be obtained by keeping the yarn speed fluctuations as small as possible.
- copolymers having a ⁇ re ⁇ (relative viscosity) of at least 3.5 can be used.
- the relative viscosity can be measured by known methods, for instance as disclosed in EP1689805.
- the monomers used for making the yarn of the invention comprise DAPBI, which stands for 5-(6 )-amino-2-(p-aminophenyl)benzimidazole.
- DAPBI 5-(6 )-amino-2-(p-aminophenyl)benzimidazole.
- aromatic para- diacid as used throughout this invention has the meaning aromatic para-diacid or derivative thereof.
- acid as such is not used as monomer for the polymerization reaction but an ester or halide thereof, more particularly the acid chloride is used.
- aromatic para-diamine as used throughout this invention has the meaning aromatic para-diamine or derivative thereof. Examples are PPD, CI-PPD, Me-PPD, MeO-PPD, and the like. Most preferably PPD and/or CI-PPD are used.
- DAPBI is also an aromatic diamine, this compound is not included in the definition of "aromatic para-diamine".
- the DAPBI-PPD copolymer is obtained by co-polymerizing the aromatic diamine monomer 5-(6)-amino-2-(p-aminophenyl)benzimidazole and the aromatic para- diamine monomer p-phenylene diamine (PPD), and the aromatic para-diacid derivative terephthaloyl dichloride (TDC).
- part or all of the above para-aromatic monomers can be replaced by other para-aromatic monomers, for instance part or all of PPD can be replaced by PPD analogues, such as 2-chloro- p-phenylenediamine (CI-PPD), and TDC can be partly or fully replaced by CI-TDC (2- chloroterephthaloyl dichloride).
- PPD polyphenylenediamine
- TDC can be partly or fully replaced by CI-TDC (2- chloroterephthaloyl dichloride).
- Particularly useful yarns for use in this method are as-spun yarns.
- As-spun yarns are yarns that are spun but did not undergo a heating treatment at 200 0 C or more. Particularly good results are also obtained for yarn (or as-spun yarn) obtained from a sulfuric acid spin dope.
- Yarns obtained from a sulfuric acid spin dope have a sulfur content of at least 0.1 wt%. It is advantageous to use sulfuric acid spin dopes, since by using such spin dopes much higher spinning speeds can be obtained than when NMP- or DMAc-containing spin dopes are used. It is further preferred to have as low as possible hydrogen chloride contents in the yarn to prevent release of hydrogen chloride from the yarn. Hydrogen chloride contents lower than 0.5 wt% are preferred. Most preferred are yarns that are totally or virtually free from hydrogen chloride.
- the first process step is performed at 240 to 330 0 C at a tension of at least 1 cN/dtex, preferably at least 3 cN/dtex.
- the tension is kept high during the first heat treatment.
- the highest possible tension is about 95 wt% of the breaking tension at the temperature applied.
- the yarn will break.
- the residence time used is mostly at least 20 seconds.
- the second process step is performed at 400 to 470 0 C at a tension less than 0.2 cN/dtex.
- This tension is usually kept as low as possible.
- tensions of as low as 0 cN/tex i.e. no tension at all
- the residence time is most preferably at least 20 seconds.
- the highest increase of the tenacity in comparison with the conventional one-step method is obtained when the copolymer is made from a mixture of monomers wherein at least 12.5 mole%, preferably at least 17 mole% of the monomers is DAPBI.
- the copolymers can be prepared according to known methods, such as disclosed in US 4,018,735 or WO 2005/054337.
- the method according to this invention leads to aramid yarns having further improved tenacity. It was found that this method can lead to yarns having tenacity of approximately 200 mN/tex higher than conventionally produced yarns. It is therefore also an objective of the invention to provide a multifilament aramid yarn having a tenacity of at least 2500 mN/tex wherein the yarn is a copolymer obtained from a mixture of monomers comprising DAPBI, an aromatic para-diamine, and an aromatic para-diacid wherein at least 12.5 mole% of the monomers is DAPBI, less than 20 mole% is CI-PPD, and wherein the yarn has a sulfur content of at least 0.1 wt%.
- the mixture comprises monomers wherein at least 17 mole% of the monomers is DAPBI.
- Such high-tenacity multifilament yarns spun from a sulfuric acid spin dope are not yet known.
- the mixture only contains PPD as the aromatic para-diamine.
- the multifilament aramid yarn has a tenacity of at least 2500 mN/tex wherein the yarn is made of a copolymer obtained from a mixture of monomers comprising DAPBI, an aromatic para-diacid, and an aromatic para-diamine which is exclusively PPD, wherein at least 12.5 mole% of the monomers is DAPBI, and wherein the yarn has a sulfur content of at least 0.1 wt%.
- such multifilament aramid yarn has a tenacity of at least 2750, more preferably 2850 mN/tex.
- the multifilament yarn has at least 2 filaments.
- Most preferred multifilament yarns have at least 25 filaments.
- Monofilament yarns have been previously disclosed in US 4,018,735 having tenacity 30 gpd (about 2650 mN/tex) for 10 mole% DAPBI (example 14) and 30.5 gpd (about 2690 mN/tex) for 25 mole% DAPBI (example 7). It should however, be born in mind that the tenacity in US 4,018,735 was measured on the filaments, not on the yarn.
- the Na, S, Cl and Ca contents are determined by XRF as follows.
- Sample pretreatment The sample was ground to a fine powder in a Herzog HMS 100 grinding mill with a tungsten carbide grinding vessel.
- the aramid powder was pressed to a 20 mm diameter tablet by a Fontijne TP 400 plate press at 175 kN pressure for 2 minutes.
- X-ray tube Chromium anode
- Collimator mask 16 mm
- the principle of quantification is based on a linear relationship of Na-, S-, Cl-, and Ca-K ⁇ -fluorescence intensities with known concentrations to give a calibration line, which line is used to determine unknown concentrations.
- a polymer obtained from a mixture of 25 mole% PPD and 25 mole% DABPI (and 50 mole% TDC) having ⁇ re ⁇ 6.0 was dissolved in 99.8 wt% sulfuric acid, as described in
- Zone temperatures in the twin screw extruder were between 90 and 75 0 C.
- the polymer concentration in the solution was 20 wt%, and the solution was spun through 50 spinning holes of 75 micron.
- the spinneret assembly was kept at 125 0 C.
- the flow was drawn in an airgap and coagulated in water of 2 0 C. After washing 0.5 wt% NaOH in water was used as neutralizing fluid, and in a second washing step the neutralizing fluid was washed off.
- the yarn was dried at 160 0 C and reeled up at 147 m/min to obtain as-spun yarns.
- This yarn has a linear density of 148 dtex, a tenacity of 1305 mN/tex and a modulus of 65 GPa. This yarn was submitted to drawing in an oven at temperatures ranging from 400 to
- the highest tenacity is achieved at 450 0 C using the lowest tension applied.
- As-spun yarns were prepared as described in Example 1.
- the yarn was submitted to a two-step heat treatment procedure in which the first step was carried out at lower temperatures (300 to 360 0 C) than the second step (450 0 C), and lower than in
- Example 1 Example 1 , and wherein the tension applied on the yarns were higher in the first step than in the second step. Between the two steps the yarns were not reeled up, but transported by a godet that functions as a tension/speed control. Yarn tensions in the second step were between 0.25 and 0.29cN/dtex. Residence time in both heating zones was 28 seconds.
- As-spun yarns were prepared as described in Example 1.
- the temperature of the spinneret assembly was 91 0 C
- the neutralization fluid had a NaOH concentration of 0.8 wt% and the winding speed was 140 m/min.
- the as spun yarn had a linear density of 147 dtex, a tenacity of 1451 mN/tex, a modulus of 62 GPa and a toughness of 35 J/g.
- the yarn was submitted to a two-step heat treatment procedure in which the first step was carried out at lower temperatures (260 to 300 0 C) than the second step (450 0 C).
- the temperature of the first step was also lower than the temperature of the first step in Example 2.
- the tensions applied on the yarns were higher in the first step than in the second step.
- As-spun yarns were prepared according to Example 3, but the residence time in both heating zones was increased to 56 seconds.
- As-spun yarn was prepared as described in Example 3, except that the winding speed was 160 m/min.
- the as spun properties of this yarn were: linear density 133 dtex, tenacity 1579 mN/tex, modulus 72 Gpa, and toughness 37 J/g.
- This as-spun yarn had an S content of 1.84 wt%, a Cl content of 154 ppm, a Na content of 0.06 wt%, and a Ca content of 22 ppm.
- This as-spun yarn was heat treated according to Example 4. Tension in the first oven was 4.47 cN/dtex and in the second oven 0.13 cN/dtex. This resulted in a yarn with a linear density 114 dtex, tenacity 2998 mN/tex, modulus 127 GPa, and toughness 51.5 J/g.
- This heat treated yarn had an S content of 1.88 wt%, a Cl content of 100 ppm, a Na content of 0.07 wt%, and a Ca content of 37 ppm.
- a polymer obtained from a mixture of 40 mole% PPD and 10 mole% DABPI (and 50 mole% TDC) having ⁇ re ⁇ 6.7 was dissolved in 99.8 wt% sulfuric acid as described in WO 2006/045517. Zone temperatures in the twin screw extruder were 85 °C. The polymer concentration in the solution was 19 wt%, and the solution was spun through 100 spinning holes of 70 micron. The spinneret assembly was kept at 90 0 C. The flow was drawn in an airgap and coagulated in water of 2 0 C. After washing 0.8 wt% NaOH in water was used as neutralizing fluid, and in a second washing step the neutralizing fluid was washed off. The yarn was dried at 160 0 C and reeled up at 160 m/min to obtain as-spun yarns, and heat treated as in Example 3. The most essential machine settings and the yarn properties are given in Table 5.
- Yarns were spun according to Example 6 from polymers obtained from a mixture of 45 mole% PPD and 5 mole% DABPI (and 50 mole% TDC) having ⁇ re ⁇ 5.7, giving a linear density of 213 dtex, a tenacity of 2140 mN/tex and a modulus of 80 GPa.
- the most important machine settings and yarn properties are given in Table 6.
- a polymer obtained from a mixture of 35 mole% PPD and 15 mole% DABPI (and 50 mole% TDC) having ⁇ re ⁇ 6.4 was dissolved in 99.8 wt% sulfuric acid as described in WO 2006/045517. Zone temperatures in the twin screw extruder were 85 0 C. The polymer concentration in the solution was 20 wt% and the solution was spun through 106 spinning holes of 75 micron. The spinneret assembly was kept at 85 °C. The flow was drawn in an airgap and coagulated in water of 2.5 °C. After washing 0.8 wt% NaOH in water was used as neutralizing fluid, and in a second washing step the neutralizing fluid was washed off.
- the yarn was dried at 160 °C and reeled up at 160 m/min to obtain as-spun yarns, and heat treated as in Example 3. Before heat treatment the as-spun yarn was pre-dried during 24 hours at 50 0 C.
- the most essential machine settings and the yarn properties are given in Table 7.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Artificial Filaments (AREA)
- Polyamides (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
- Chemical Or Physical Treatment Of Fibers (AREA)
Abstract
Description
Claims
Priority Applications (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL07856179T PL2094890T3 (en) | 2006-11-21 | 2007-11-19 | Method for obtaining high-tenacity aramid yarn |
JP2009536660A JP5191007B2 (en) | 2006-11-21 | 2007-11-19 | Method for obtaining high-strength aramid yarn |
DE602007004519T DE602007004519D1 (en) | 2006-11-21 | 2007-11-19 | PROCESS FOR PREPARING ARAMID YARN WITH HIGH STRENGTH |
US12/311,654 US8501071B2 (en) | 2006-11-21 | 2007-11-19 | Method for obtaining high-tenacity aramid yarn |
EP07856179A EP2094890B1 (en) | 2006-11-21 | 2007-11-19 | Method for obtaining high-tenacity aramid yarn |
AT07856179T ATE455881T1 (en) | 2006-11-21 | 2007-11-19 | METHOD FOR PRODUCING HIGH STRENGTH ARAMID YARN |
CN2007800431797A CN101542026B (en) | 2006-11-21 | 2007-11-19 | Method for obtaining high-tenacity aramid yarn |
KR1020097010328A KR101403301B1 (en) | 2006-11-21 | 2007-11-19 | Method for obtaining high-tenacity aramid yarn |
US13/929,358 US8826636B2 (en) | 2006-11-21 | 2013-06-27 | Method for obtaining high-tenacity aramid yarn |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP06024104.9 | 2006-11-21 | ||
EP06024104 | 2006-11-21 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/311,654 A-371-Of-International US8501071B2 (en) | 2006-11-21 | 2007-11-19 | Method for obtaining high-tenacity aramid yarn |
US13/929,358 Division US8826636B2 (en) | 2006-11-21 | 2013-06-27 | Method for obtaining high-tenacity aramid yarn |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008061668A1 true WO2008061668A1 (en) | 2008-05-29 |
Family
ID=37944865
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2007/009901 WO2008061668A1 (en) | 2006-11-21 | 2007-11-19 | Method for obtaining high-tenacity aramid yarn |
Country Status (12)
Country | Link |
---|---|
US (2) | US8501071B2 (en) |
EP (1) | EP2094890B1 (en) |
JP (1) | JP5191007B2 (en) |
KR (1) | KR101403301B1 (en) |
CN (1) | CN101542026B (en) |
AT (1) | ATE455881T1 (en) |
DE (1) | DE602007004519D1 (en) |
ES (1) | ES2339902T3 (en) |
PL (1) | PL2094890T3 (en) |
RU (1) | RU2447208C2 (en) |
SI (1) | SI2094890T1 (en) |
WO (1) | WO2008061668A1 (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012097266A1 (en) * | 2011-01-13 | 2012-07-19 | E. I. Du Pont De Nemours And Company | Copolymer fibers and processes for making same |
WO2012097262A1 (en) * | 2011-01-13 | 2012-07-19 | E. I. Du Pont De Nemours And Company | Copolymer fibers and processes for making same |
WO2012097228A1 (en) * | 2011-01-13 | 2012-07-19 | E. I. Du Pont De Nemours And Company | Copolymer fibers and yarns and processes for making same |
WO2013028428A1 (en) | 2011-08-23 | 2013-02-28 | Cardiac Pacemakers, Inc. | Systems and methods to detect vagus capture |
WO2013105940A1 (en) | 2012-01-11 | 2013-07-18 | E. I. Du Pont De Nemours And Company | Sulfur-containing imidazole fiber having ionically bonded halides |
WO2013105938A1 (en) | 2012-01-11 | 2013-07-18 | E. I. Du Pont De Nemours And Company | Method for removing sulfur from fiber using monovalent salt ion exchange |
WO2013105945A1 (en) | 2012-01-11 | 2013-07-18 | E. I. Du Pont De Nemours And Company | Process for preparing aramid copolymer yarn using an acid wash |
WO2013105944A1 (en) | 2012-01-11 | 2013-07-18 | E. I. Du Pont De Nemours And Company | Sulfur and alkali metal containing imidazole fiber having ionically bound halides |
WO2013105937A1 (en) | 2012-01-11 | 2013-07-18 | E. I. Du Pont De Nemours And Company | Method for removing sulfur from fiber using an aqueous acid |
WO2013105948A1 (en) | 2012-01-11 | 2013-07-18 | E. I. Du Pont De Nemours And Company | Aramid copolymer yarn having low residual sulfur |
WO2013105953A1 (en) | 2012-01-11 | 2013-07-18 | E. I. Du Pont De Nemours And Company | Method for removing sulfur from fiber using a weak base |
WO2013105955A1 (en) * | 2012-01-11 | 2013-07-18 | E. I. Du Pont De Nemours And Company | Process for preparing aramid copolymer yarn using a halide acid wash |
WO2013105950A1 (en) * | 2012-01-11 | 2013-07-18 | E. I. Du Pont De Nemours And Company | Method for removing sulfur from fiber using halide acid ion exchange |
WO2013105954A1 (en) | 2012-01-11 | 2013-07-18 | E. I. Du Pont De Nemours And Company | Process for preparing aramid copolymer yarn having low residual sulfur |
WO2013105939A1 (en) | 2012-01-11 | 2013-07-18 | E. I. Du Pont De Nemours And Company | Method for removing sulfur from fiber using halide salt ion exchange |
WO2013105949A1 (en) | 2012-01-11 | 2013-07-18 | E. I. Du Pont De Nemours And Company | Process for preparing yarn derived from aramid copolymer fiber having low residual sulfur |
US8501071B2 (en) | 2006-11-21 | 2013-08-06 | Teijin Aramid B.V. | Method for obtaining high-tenacity aramid yarn |
JP2014503711A (en) * | 2011-01-13 | 2014-02-13 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Formation and drying of copolymer fibers |
WO2015066140A1 (en) * | 2013-10-30 | 2015-05-07 | E. I. Du Pont De Nemours And Company | Fiber comprising a mixture of poly(m-phenylene isophthalamide) and copolymer made from (6)-amino-2-(p-aminophenyl)benzimidazole |
WO2023191902A2 (en) | 2021-11-10 | 2023-10-05 | Dupont Safety & Construction, Inc. | Ballistic resistant material made of mechanically entangled woven fabrics without nonwoven fibers and method of making thereof |
WO2024035478A1 (en) | 2022-08-09 | 2024-02-15 | Dupont Safety & Construction, Inc. | Fire-resistant composite sheet |
WO2024035479A1 (en) | 2022-08-09 | 2024-02-15 | Dupont Safety & Construction, Inc. | Fire-resistant composite sheet |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4934151B2 (en) * | 2006-12-15 | 2012-05-16 | 帝人テクノプロダクツ株式会社 | Heterocycle-containing aromatic polyamide fiber, method for producing the same, fabric composed of the fiber, and fiber-reinforced composite material reinforced by the fiber |
JP2011047088A (en) * | 2009-08-28 | 2011-03-10 | Teijin Techno Products Ltd | Para-oriented wholly aromatic copolyamide fiber and method for producing the same |
CN102560704A (en) * | 2011-01-01 | 2012-07-11 | 苏州兆达特纤科技有限公司 | One-step preparation method of aramid fibers for optical cable |
EP2663677B1 (en) * | 2011-01-13 | 2018-03-21 | E. I. du Pont de Nemours and Company | Production of and drying of copolymer fibers |
WO2012097236A1 (en) * | 2011-01-13 | 2012-07-19 | E. I. Du Pont De Nemours And Company | Neutralized copolymer crumb and processes for making same |
EP2663678B1 (en) * | 2011-01-13 | 2018-03-21 | E. I. du Pont de Nemours and Company | Production of and drying of copolymer fibers |
CN104558594B (en) * | 2013-10-29 | 2017-10-27 | 中国石油化工股份有限公司 | A kind of synthetic method of fully aromatic polyamide |
RU2539599C1 (en) * | 2013-12-12 | 2015-01-20 | Открытое акционерное общество "Каменскволокно" | Method for removing dimethylamine from isobutanol dehydration line in manufacturing high-tension aramid filaments |
CN104695083B (en) * | 2015-03-25 | 2017-10-27 | 四川大学 | A kind of heat stretching process of aramid III fiber raw tow |
WO2024107545A1 (en) | 2022-11-18 | 2024-05-23 | Dupont Safety & Construction, Inc. | Composite composition comprising aramid copolymer particles and a thermoplastic engineering polymer and articles comprising same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4018735A (en) * | 1974-07-10 | 1977-04-19 | Teijin Limited | Anisotropic dopes of aromatic polyamides |
US4172938A (en) * | 1976-06-23 | 1979-10-30 | Teijin Limited | Process for producing polyamides with lactam or urea solvent and CaCl2 |
US5571891A (en) * | 1994-04-06 | 1996-11-05 | Hoechst Aktiengesellschaft | Aromatic copolyamides, production thereof, formed structures and production thereof |
WO2005054337A1 (en) * | 2003-11-21 | 2005-06-16 | Teijin Twaron B.V. | Process for making dapbi-containing aramid crumbs |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3227793A (en) * | 1961-01-23 | 1966-01-04 | Celanese Corp | Spinning of a poly(polymethylene) terephthalamide |
US3414645A (en) * | 1964-06-19 | 1968-12-03 | Monsanto Co | Process for spinning wholly aromatic polyamide fibers |
US3869429A (en) * | 1971-08-17 | 1975-03-04 | Du Pont | High strength polyamide fibers and films |
US3767756A (en) * | 1972-06-30 | 1973-10-23 | Du Pont | Dry jet wet spinning process |
US4883634A (en) * | 1986-05-30 | 1989-11-28 | E. I. Du Pont De Nemours And Company | Process for manufacturing a high modulus poly-p-phenylene terephthalamide fiber |
US4985193A (en) * | 1989-02-21 | 1991-01-15 | E. I. Du Pont De Nemours And Company | Aramid yarn process |
US5175239A (en) * | 1990-12-27 | 1992-12-29 | E. I. Du Pont De Nemours And Company | Process for making para-aramid fibers having high tenacity and modulus by microwave annealing |
US5212258A (en) * | 1991-10-29 | 1993-05-18 | E. I Du Pont De Nemours And Company | Aramid block copolymers |
RU2017866C1 (en) | 1992-08-04 | 1994-08-15 | Черных Татьяна Егоровна | Molded article |
RU2045586C1 (en) * | 1993-07-09 | 1995-10-10 | Владимир Николаевич Сугак | Anisotropic solution for molding thread and thread which is prepared of said solution |
DE4411755A1 (en) * | 1994-04-06 | 1995-10-12 | Hoechst Ag | Prodn. of fibres and film based on aromatic polyamide |
US5667743A (en) * | 1996-05-21 | 1997-09-16 | E. I. Du Pont De Nemours And Company | Wet spinning process for aramid polymer containing salts |
CN1293240C (en) * | 2002-08-06 | 2007-01-03 | 中蓝晨光化工研究院 | Post-treatment new process for aramid fibre III raw tow |
EP1650251A1 (en) | 2004-10-22 | 2006-04-26 | Teijin Twaron B.V. | Method for dissolving PPTA in sulfuric acid using a twin screw extruder |
RU2285761C1 (en) | 2005-07-13 | 2006-10-20 | Ооо "Лирсот" | Method of manufacturing high-strength heat-resistant threads from aromatic copolyamide having heterocycles in the chain |
ATE455881T1 (en) | 2006-11-21 | 2010-02-15 | Teijin Aramid Bv | METHOD FOR PRODUCING HIGH STRENGTH ARAMID YARN |
JP4934151B2 (en) * | 2006-12-15 | 2012-05-16 | 帝人テクノプロダクツ株式会社 | Heterocycle-containing aromatic polyamide fiber, method for producing the same, fabric composed of the fiber, and fiber-reinforced composite material reinforced by the fiber |
US9481946B2 (en) * | 2011-01-13 | 2016-11-01 | E I Du Pont De Nemours And Company | Copolymer fibers and yarns and processes for making same |
-
2007
- 2007-11-19 AT AT07856179T patent/ATE455881T1/en active
- 2007-11-19 PL PL07856179T patent/PL2094890T3/en unknown
- 2007-11-19 DE DE602007004519T patent/DE602007004519D1/en active Active
- 2007-11-19 ES ES07856179T patent/ES2339902T3/en active Active
- 2007-11-19 JP JP2009536660A patent/JP5191007B2/en active Active
- 2007-11-19 KR KR1020097010328A patent/KR101403301B1/en active IP Right Grant
- 2007-11-19 US US12/311,654 patent/US8501071B2/en active Active
- 2007-11-19 SI SI200730194T patent/SI2094890T1/en unknown
- 2007-11-19 CN CN2007800431797A patent/CN101542026B/en active Active
- 2007-11-19 EP EP07856179A patent/EP2094890B1/en not_active Revoked
- 2007-11-19 WO PCT/EP2007/009901 patent/WO2008061668A1/en active Application Filing
- 2007-11-19 RU RU2009123502/05A patent/RU2447208C2/en active
-
2013
- 2013-06-27 US US13/929,358 patent/US8826636B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4018735A (en) * | 1974-07-10 | 1977-04-19 | Teijin Limited | Anisotropic dopes of aromatic polyamides |
US4172938A (en) * | 1976-06-23 | 1979-10-30 | Teijin Limited | Process for producing polyamides with lactam or urea solvent and CaCl2 |
US5571891A (en) * | 1994-04-06 | 1996-11-05 | Hoechst Aktiengesellschaft | Aromatic copolyamides, production thereof, formed structures and production thereof |
WO2005054337A1 (en) * | 2003-11-21 | 2005-06-16 | Teijin Twaron B.V. | Process for making dapbi-containing aramid crumbs |
Cited By (78)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8826636B2 (en) | 2006-11-21 | 2014-09-09 | Teijin Aramid B.V. | Method for obtaining high-tenacity aramid yarn |
US8501071B2 (en) | 2006-11-21 | 2013-08-06 | Teijin Aramid B.V. | Method for obtaining high-tenacity aramid yarn |
KR101923749B1 (en) | 2011-01-13 | 2018-11-29 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Copolymer fibers and yarns and processes for making same |
US8957183B2 (en) | 2011-01-13 | 2015-02-17 | E I Du Pont De Nemours And Company | Copolymer fibers and processes for making same |
JP2014503712A (en) * | 2011-01-13 | 2014-02-13 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Copolymer fibers and methods for making copolymer fibers |
US9790622B2 (en) | 2011-01-13 | 2017-10-17 | E I Du Pont De Nemours And Company | Copolymer fibers and yarns and processes for making same |
US9481946B2 (en) | 2011-01-13 | 2016-11-01 | E I Du Pont De Nemours And Company | Copolymer fibers and yarns and processes for making same |
RU2597591C2 (en) * | 2011-01-13 | 2016-09-10 | Е.И.Дюпон Де Немур Энд Компани | Copolymer and synthesis methods thereof |
RU2596219C2 (en) * | 2011-01-13 | 2016-09-10 | Е.И.Дюпон Де Немур Энд Компани | Copolymer and synthesis methods thereof |
US9365952B2 (en) | 2011-01-13 | 2016-06-14 | E I Du Pont De Nemours And Company | Copolymer fibers and processes for making same |
WO2012097266A1 (en) * | 2011-01-13 | 2012-07-19 | E. I. Du Pont De Nemours And Company | Copolymer fibers and processes for making same |
CN103328699A (en) * | 2011-01-13 | 2013-09-25 | 纳幕尔杜邦公司 | Copolymer fibers and processes for making same |
WO2012097228A1 (en) * | 2011-01-13 | 2012-07-19 | E. I. Du Pont De Nemours And Company | Copolymer fibers and yarns and processes for making same |
JP2014507566A (en) * | 2011-01-13 | 2014-03-27 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Copolymer fiber and yarn and method for producing copolymer fiber and yarn |
JP2014507569A (en) * | 2011-01-13 | 2014-03-27 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Copolymer fiber and method for producing copolymer fiber |
JP2014503711A (en) * | 2011-01-13 | 2014-02-13 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Formation and drying of copolymer fibers |
WO2012097262A1 (en) * | 2011-01-13 | 2012-07-19 | E. I. Du Pont De Nemours And Company | Copolymer fibers and processes for making same |
CN103314141A (en) * | 2011-01-13 | 2013-09-18 | 纳幕尔杜邦公司 | Copolymer fibers and processes for making same |
WO2013028428A1 (en) | 2011-08-23 | 2013-02-28 | Cardiac Pacemakers, Inc. | Systems and methods to detect vagus capture |
US20150047130A1 (en) * | 2012-01-11 | 2015-02-19 | E I Du Pont De Nemours And Company | Method for removing sulfur from fiber using an aqueous acid |
WO2013105948A1 (en) | 2012-01-11 | 2013-07-18 | E. I. Du Pont De Nemours And Company | Aramid copolymer yarn having low residual sulfur |
WO2013105939A1 (en) | 2012-01-11 | 2013-07-18 | E. I. Du Pont De Nemours And Company | Method for removing sulfur from fiber using halide salt ion exchange |
WO2013105954A1 (en) | 2012-01-11 | 2013-07-18 | E. I. Du Pont De Nemours And Company | Process for preparing aramid copolymer yarn having low residual sulfur |
WO2013105950A1 (en) * | 2012-01-11 | 2013-07-18 | E. I. Du Pont De Nemours And Company | Method for removing sulfur from fiber using halide acid ion exchange |
CN104040044A (en) * | 2012-01-11 | 2014-09-10 | 纳幕尔杜邦公司 | Method for removing sulfur from fiber using halide acid ion exchange |
CN104040043A (en) * | 2012-01-11 | 2014-09-10 | 纳幕尔杜邦公司 | Process for preparing aramid copolymer yarn using an acid wash |
CN104040042A (en) * | 2012-01-11 | 2014-09-10 | 纳幕尔杜邦公司 | Method for removing sulfur from fiber using an aqueous acid |
KR20140109487A (en) * | 2012-01-11 | 2014-09-15 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Method for removing surfur from fiber using an aqueous acid |
KR20140109482A (en) * | 2012-01-11 | 2014-09-15 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Method for removing sulfur from fiber using monovalent salt ion exchange |
KR20140109486A (en) * | 2012-01-11 | 2014-09-15 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Method for removing sulfur from fiber using halide acid ion exchange |
KR20140109483A (en) * | 2012-01-11 | 2014-09-15 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Method for removing sulfur from fiber using halide salt ion exchange |
KR20140109485A (en) * | 2012-01-11 | 2014-09-15 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Process for preparing yarn derived from aramid copolymer fiber having low residual sulfur |
US20140325767A1 (en) * | 2012-01-11 | 2014-11-06 | Steven R. Allen | Method for removing sulfur from fiber using halide acid ion exchange |
US20140331415A1 (en) * | 2012-01-11 | 2014-11-13 | E I Du Pont De Nemours And Company | Process for preparing aramid copolymer yarn using a halide acid wash |
US20140336351A1 (en) * | 2012-01-11 | 2014-11-13 | E I Du Pont De Nemours And Company | Method for removing sulfur from fiber using a weak base |
JP2015504985A (en) * | 2012-01-11 | 2015-02-16 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company | Sulfur-containing imidazole fiber with ion-bonded halide |
JP2015504986A (en) * | 2012-01-11 | 2015-02-16 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company | Sulfur and alkali metal containing imidazole fibers with ion-bonded halides |
WO2013105955A1 (en) * | 2012-01-11 | 2013-07-18 | E. I. Du Pont De Nemours And Company | Process for preparing aramid copolymer yarn using a halide acid wash |
WO2013105953A1 (en) | 2012-01-11 | 2013-07-18 | E. I. Du Pont De Nemours And Company | Method for removing sulfur from fiber using a weak base |
JP2015506422A (en) * | 2012-01-11 | 2015-03-02 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company | Method for removing sulfur from fibers using a weak base |
JP2015510047A (en) * | 2012-01-11 | 2015-04-02 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company | Aramid copolymer yarn with low residual sulfur |
JP2015510048A (en) * | 2012-01-11 | 2015-04-02 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company | Process for preparing yarns obtained from aramid copolymer fibers having low residual sulfur |
US11279800B2 (en) | 2012-01-11 | 2022-03-22 | Dupont Safety & Construction, Inc. | Aramid copolymer yarn having low residual sulfur |
US9080261B2 (en) | 2012-01-11 | 2015-07-14 | E I Du Pont De Nemours And Company | Method for removing sulfur from fiber using monovalent salt ion exchange |
US9284665B2 (en) | 2012-01-11 | 2016-03-15 | E I Du Pont De Nemours And Company | Method for removing sulfur from fiber using halide salt ion exchange |
RU2578294C2 (en) * | 2012-01-11 | 2016-03-27 | Е.И.Дюпон Де Немур Энд Компани | Ion-coupled halide containing fibre based on sulphur containing imidazole |
RU2578690C2 (en) * | 2012-01-11 | 2016-03-27 | Е.И.Дюпон Де Немур Энд Компани | Ion-coupled halide containing fibre based on sulphur and alkali metal containing imidazole |
US9315923B2 (en) | 2012-01-11 | 2016-04-19 | E I Du Pont De Nemours And Company | Process for preparing yarn derived from aramid copolymer fiber having low residual sulfur |
WO2013105949A1 (en) | 2012-01-11 | 2013-07-18 | E. I. Du Pont De Nemours And Company | Process for preparing yarn derived from aramid copolymer fiber having low residual sulfur |
US10400357B2 (en) | 2012-01-11 | 2019-09-03 | E I Du Pont De Nemours And Company | Sulfur and alkali metal containing imidazole fiber having ionically bound halides |
WO2013105937A1 (en) | 2012-01-11 | 2013-07-18 | E. I. Du Pont De Nemours And Company | Method for removing sulfur from fiber using an aqueous acid |
WO2013105944A1 (en) | 2012-01-11 | 2013-07-18 | E. I. Du Pont De Nemours And Company | Sulfur and alkali metal containing imidazole fiber having ionically bound halides |
US9464370B2 (en) | 2012-01-11 | 2016-10-11 | E I Du Pont De Nemours And Company | Method for removing sulfur from fiber using an aqueous acid |
US9464380B2 (en) | 2012-01-11 | 2016-10-11 | E I Du Pont De Nemours And Company | Method for removing sulfur from fiber using halide acid ion exchange |
US9469922B2 (en) | 2012-01-11 | 2016-10-18 | E I Du Pont De Nemours And Company | Method for removing sulfur from fiber using a weak base |
WO2013105945A1 (en) | 2012-01-11 | 2013-07-18 | E. I. Du Pont De Nemours And Company | Process for preparing aramid copolymer yarn using an acid wash |
RU2610403C2 (en) * | 2012-01-11 | 2017-02-09 | Е.И.Дюпон Де Немур Энд Компани | Aramid copolymer yarn having low residual sulphur |
WO2013105938A1 (en) | 2012-01-11 | 2013-07-18 | E. I. Du Pont De Nemours And Company | Method for removing sulfur from fiber using monovalent salt ion exchange |
KR101837243B1 (en) | 2012-01-11 | 2018-03-09 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Process for preparing aramid copolymer yarn using an acid wash |
KR101837242B1 (en) | 2012-01-11 | 2018-03-09 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Method for removing sulfur from fiber using a weak base |
KR101837241B1 (en) | 2012-01-11 | 2018-04-19 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Process for preparing aramid copolymer yarn using a halide acid wash |
US9988514B2 (en) | 2012-01-11 | 2018-06-05 | E I Du Pont De Nemours And Company | Sulfur-containing imidazole fiber having ionically bonded halides |
US9994974B2 (en) | 2012-01-11 | 2018-06-12 | E I Du Pont De Nemours And Company | Sulfur and alkali metal containing imidazole fiber having ionically bound halides |
KR101880336B1 (en) * | 2012-01-11 | 2018-07-19 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Method for removing sulfur from fiber using halide acid ion exchange |
KR101880334B1 (en) * | 2012-01-11 | 2018-07-19 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Method for removing sulfur from fiber using halide salt ion exchange |
KR101880335B1 (en) * | 2012-01-11 | 2018-07-19 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Process for preparing yarn derived from aramid copolymer fiber having low residual sulfur |
KR101880337B1 (en) * | 2012-01-11 | 2018-07-19 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Method for removing surfur from fiber using an aqueous acid |
KR101880333B1 (en) * | 2012-01-11 | 2018-07-19 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Method for removing sulfur from fiber using monovalent salt ion exchange |
KR101900537B1 (en) | 2012-01-11 | 2018-09-19 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Process for preparing aramid copolymer yarn having low residual sulfur |
WO2013105940A1 (en) | 2012-01-11 | 2013-07-18 | E. I. Du Pont De Nemours And Company | Sulfur-containing imidazole fiber having ionically bonded halides |
KR101931405B1 (en) | 2012-01-11 | 2018-12-20 | 이 아이 듀폰 디 네모아 앤드 캄파니 | Sulfur-containing imidazole fiber having ionically bonded halides |
US10240282B2 (en) * | 2012-01-11 | 2019-03-26 | E I Du Pont De Nemours And Company | Process for preparing aramid copolymer yarn using a halide acid wash |
US10400082B2 (en) | 2012-01-11 | 2019-09-03 | E I Du Pont De Nemours And Company | Sulfur-containing imidazole fiber having ionically bonded halides |
CN105705688A (en) * | 2013-10-30 | 2016-06-22 | 纳幕尔杜邦公司 | Fiber comprising a mixture of poly(m-phenylene isophthalamide) and copolymer made from (6)-amino-2-(p-aminophenyl)benzimidazole |
WO2015066140A1 (en) * | 2013-10-30 | 2015-05-07 | E. I. Du Pont De Nemours And Company | Fiber comprising a mixture of poly(m-phenylene isophthalamide) and copolymer made from (6)-amino-2-(p-aminophenyl)benzimidazole |
WO2023191902A2 (en) | 2021-11-10 | 2023-10-05 | Dupont Safety & Construction, Inc. | Ballistic resistant material made of mechanically entangled woven fabrics without nonwoven fibers and method of making thereof |
WO2024035478A1 (en) | 2022-08-09 | 2024-02-15 | Dupont Safety & Construction, Inc. | Fire-resistant composite sheet |
WO2024035479A1 (en) | 2022-08-09 | 2024-02-15 | Dupont Safety & Construction, Inc. | Fire-resistant composite sheet |
Also Published As
Publication number | Publication date |
---|---|
DE602007004519D1 (en) | 2010-03-11 |
PL2094890T3 (en) | 2010-04-30 |
JP2010510394A (en) | 2010-04-02 |
RU2447208C2 (en) | 2012-04-10 |
EP2094890A1 (en) | 2009-09-02 |
US8501071B2 (en) | 2013-08-06 |
KR101403301B1 (en) | 2014-06-05 |
US20100001433A1 (en) | 2010-01-07 |
SI2094890T1 (en) | 2010-04-30 |
US20130289234A1 (en) | 2013-10-31 |
EP2094890B1 (en) | 2010-01-20 |
KR20090080995A (en) | 2009-07-27 |
ATE455881T1 (en) | 2010-02-15 |
JP5191007B2 (en) | 2013-04-24 |
RU2009123502A (en) | 2010-12-27 |
CN101542026B (en) | 2012-07-11 |
CN101542026A (en) | 2009-09-23 |
ES2339902T3 (en) | 2010-05-26 |
US8826636B2 (en) | 2014-09-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8826636B2 (en) | Method for obtaining high-tenacity aramid yarn | |
EP0384425B1 (en) | Aramid yarn process | |
KR101923762B1 (en) | Aramid copolymer yarn having low residual sulfur | |
KR101880336B1 (en) | Method for removing sulfur from fiber using halide acid ion exchange | |
EP0351046A2 (en) | Polyvinyl alcohol multifilament yarn and process for producing the same | |
WO1992015733A1 (en) | Method for spinning para-aramid fibers of high tenacity and high elongation at break | |
US5073453A (en) | High tenacity nylon yarn | |
KR101909774B1 (en) | Sulfur and alkali metal containing imidazole fiber having ionically bound halides | |
JP3379142B2 (en) | Nylon 66 rubber reinforcement cord | |
KR101880334B1 (en) | Method for removing sulfur from fiber using halide salt ion exchange | |
KR101837243B1 (en) | Process for preparing aramid copolymer yarn using an acid wash | |
US20220380939A1 (en) | Process for the manufacture of a fiber comprising meta-aramid | |
JPH02452B2 (en) | ||
KR100230899B1 (en) | High elongation(p-phenylene terephthalamide)fiber | |
JPS6350519A (en) | Polyhexamethylene adipamide fiber | |
JPS6335821A (en) | Acrylic fiber for producing carbon fiber | |
JPH0931748A (en) | High-strength polyamide monofilament and its production | |
KR20240048273A (en) | Para based aramid fiber and preparation method thereof | |
EP1520066A1 (en) | A process for making stable polytrimethylene terephthalate packages | |
JPH0440449B2 (en) | ||
JP4266799B2 (en) | Method for producing fine aramid fiber | |
JP2004027432A (en) | Polybenzazole fiber with excellent durability | |
JP2004292958A (en) | Polybenzazole fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200780043179.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07856179 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12311654 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007856179 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2009536660 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2738/CHENP/2009 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020097010328 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2009123502 Country of ref document: RU Kind code of ref document: A |