WO2008060192A2 - Procédé et dispositif destinés à mesurer une composition de courant de puits à plusieurs phases - Google Patents

Procédé et dispositif destinés à mesurer une composition de courant de puits à plusieurs phases Download PDF

Info

Publication number
WO2008060192A2
WO2008060192A2 PCT/RU2007/000668 RU2007000668W WO2008060192A2 WO 2008060192 A2 WO2008060192 A2 WO 2008060192A2 RU 2007000668 W RU2007000668 W RU 2007000668W WO 2008060192 A2 WO2008060192 A2 WO 2008060192A2
Authority
WO
WIPO (PCT)
Prior art keywords
gamma quantum
detector
wellstream
pipe
multiphase
Prior art date
Application number
PCT/RU2007/000668
Other languages
English (en)
Other versions
WO2008060192A3 (fr
Inventor
Mikhail Nikolaevich Iakimov
Roman Vladimirovich Korkin
Original Assignee
Schlumberger Canada Limited
Services Petroliers Schlumberger
Schlumberger Holdings Limited
Schlumberger Technology B.V.
Prad Research And Development N.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Canada Limited, Services Petroliers Schlumberger, Schlumberger Holdings Limited, Schlumberger Technology B.V., Prad Research And Development N.V. filed Critical Schlumberger Canada Limited
Publication of WO2008060192A2 publication Critical patent/WO2008060192A2/fr
Publication of WO2008060192A3 publication Critical patent/WO2008060192A3/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/20Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by using diffraction of the radiation by the materials, e.g. for investigating crystal structure; by using scattering of the radiation by the materials, e.g. for investigating non-crystalline materials; by using reflection of the radiation by the materials

Definitions

  • the invention deals with the measuring multiphase flow parameters, namely, the measuring a multiphase wellstream composition by measuring the absorption intensity of gamma quantum (photons) of various energies, and can be applied in different industry branches using multiphase flows, including gas-liquid flows.
  • the invention proposed deals with measuring a phase wellstream composition and is based on measuring the two various gamma quantum modes by using two different detectors: gamma quantum passed through a medium without interaction and gamma quantum experienced the Compton scattering and being off by certain angle.
  • a method for measuring the water- oil flow rate consisting in the measurement of the temperature difference by thermal resistors using two sections of the measuring area, the given amount of heat being supplied in between. Moreover, overheating the thermal resistors as heat-loss anemometers will be measured for fixed time interval; the time for which an overheat value of each thermal resistor is within tolerance typical for each substance entered the flow and a ratio of this time to whole fixed time interval will be accounted when flow metering.
  • the method has a significant error and is not attractive for measuring the phase flow composition.
  • An ultrasonic flowmeter is known (RU, patent 2126143) of the multiphase pipeline medium components consisting of a measuring chamber with a pulse transmitter and a medium passed-pulse receiver being at its opposite walls and connected with a unit for measuring parameters passed through pulse medium, and a computer system. Placed in the flow the measuring chamber is designed to continuous transmit a part of the flow to the interspace between the transmitter and the receiver positioned at l-20mm, and downstream a computer system-connected flow velocity measuring unit equipped with a second measuring chamber is mounted.
  • the disadvantage of the certain flowmeter can be its low accuracy.
  • the simplest and precision method for measuring the phase wellstream composition should likely be a radioactive method.
  • Nature and scope of the certain method consist in logging gamma quantum of the various energies passed through the fluid and comparison between them and calibration readings (amount of gamma quantum passed through the sequential air-, oil-, and water-filled pipe). Then, absorption coefficients will be calculated and by the absorption coefficients the volume fractions of the three phases, i.e. oil, water, and gas will be calculated.
  • the flowmeters of Schlumberger (Vx-Phasetester, Vx- Phasewatcher), Haimo (Haimo MPFM), and Roxar (MPFM) operate on this principle.
  • the radioactive methods are in logging application to measure rock density and lighology or detect casings (corrosion, fractures, and so on).
  • Rock density and lighology method differs significantly from surface wellstream composition measuring in that the measurement o ⁇ passed gamma quantum amount is not possible and only gamma quantum scattered will be measured. Since the equations in this case are more complicated and the inverse modeling (recover lighology or casing by gamma quantum logged) is ambiguous, a two or more detector-equipped logging tool is usually used.
  • These devices are of Schlumberger (LDL, PEX, TLD), Halliburton (ALD), and others.
  • a two-phase media- flowmeter consisting of the first and the second radioactive radiation sources, the first and the second radioisotope gages with outputs connected with inputs of the first and the second output translators, respectively, and with averaging unit inputs, a clock generator connected with synchro inputs of the first and the second output translators, and a counting-and-logic device.
  • Patent EP 236623 particularly, applies the more-than-two-energy- level gamma quantum absorption to obtain detailed fluid data. Data obtained can be used to measure a volume fraction of the fourth phase (e.g. contamination and sand) or to correct sulfur content of oil.
  • a volume fraction of the fourth phase e.g. contamination and sand
  • An application for patent WO/1994/025859 characterizes a method for measuring a multiphase wellstream composition based on measuring the absorption of two-energy level photons in the produced fluid. After measuring relevant parameters of the photon flux the solution is solved for a linear equation system in three unknowns (oil-, gas-, and water- volume fractions), and by three equations (the equations for coefficients of the two- energy level absorption and the identity of sum of all the volume fractions equal to unit) volume fractions of the three phases are found.
  • a close analog of the claimed engineering solution can be (Ru, patent 2184367) a method to determine a multiphase liquid composition by passing phonon beams through it and measuring liquid absorption of radiation, at least, at three radiant energy levels, and deliver radiation absorption data to a processing unit programmed to conduct calculations by a computational phase-fraction algorithm with regard to the radiation absorption data above, and by calculations mentioned to produce liquid composition data; the liquid containing salt water, and the computational phase-fraction algorithm comprising steps of determining water salinity.
  • the method according to the invention lies in understanding the fact that the salt content, if any, of water produced by, for example, a crude oil well can have a significant effect on the liquid absorption of photon beam.
  • a measuring device is proposed to use containing a radiation source to transmit photon beam through liquid, a radiation detector for measuring liquid absorption of radiation on, at least, three radiant energy levels, and a processing unit programmed to conduct calculations by a computational phase-fraction algorithm with regard to the radiation absorption data above, and by calculations mentioned to produce liquid composition data; the measuring device being adapted to determine a multiphase liquid composition that contains salt water, and the computational phase-fraction algorithm comprising steps of determining water salinity.
  • the disadvantage of the certain engineering solution can be its low accuracy.
  • An engineering problem solved by the engineering solution proposed consists in the fast and accurate data logging on the multiphase fluid flow composition.
  • the technical effect of this invention consists in the development of a device for measuring the composition of the multiphase fluid flow and the application procedure to determine extra components of the multiphase fluid flow of higher accuracy or at short measurement time simultaneously.
  • a developed method for measuring a multiphase flow composition.
  • a two-energy peak-source generates gamma quantum and the first detector logs gamma quantum passed through the wellstream pipe without interacting with wellstream components, and the second detector logs gamma quantum experienced, at least, one Compton scattering followed by a statistical result analysis.
  • a point for gamma quantum passage should be a portion of the high-strength material pipe of a low coefficient of gamma quantum absorption in the range the radioactive source emits gamma quantum.
  • an oversize pipe diameter is mainly used to absorb gamma quantum markedly.
  • the device is proposed to use for measuring a multiphase fluid flow composition containing, at least, a two- energy peak gamma quantum source with an output coupled to an input of the first collimator being connected with a pipe via windows wherein the fluid flow analyzed passes (wellstream), the second collimator mounted along a gamma quantum beam axis downstream the pipe wherein the fluid flow analyzed passes (wellstream); the first detector is mounted at the end of the second collimator along the gamma quantum beam axis for logging dispersionless medium-passed gamma quantum flux; with this, the second detector is mounted to log gamma quantum scattered in the multiphase flow analyzed (wellstream).
  • the second detector can be mounted directly downstream the pipe around the second collimator or directly downstream the first collimator, i.e. upstream a sounding pipe. While applying the method scintillation and/or (semiconductor, gas filled) detectors can be used. With this, both chemical radioactive sources and X-ray tubes can generate gamma quantum (X-ray radiation).
  • a peculiar feature of the developed method for measuring the multiphase mixture composition lies in the fact that the method involves the logging gamma quantum passed through wellstream pipe without interaction (the first detector) and logging gamma quantum experienced one or several Compton scatterings (the second detector).
  • the main advantage of the developed method compared to working procedures of the conventional multiphase flowmeters consists in the fact that it allows for logging extra multiphase mixture parameters, namely, variation in water salinity, sulfur content of oil, sand carry-over and so on.
  • the method proposed allows the higher accuracy in measuring the multiphase flow composition with a high gas volume fraction, or with unchanged accuracy, the decrease in time required to test one well.
  • Fig.l and Fig.2 give a two-detector system for measuring the multiphase flow composition.
  • the device used contains a radioactive source 1 of several energy peaks.
  • Downstream source 1 the first collimator 2 is mounted being coupled to a pipe 3 via windows.
  • the second collimator 4 is mounted along axis of the gamma quantum beam downstream wellstream- pipe 3.
  • the first detector 5 is mounted at the end of the second collimator 4 along axis of the gamma quantum beam for logging the gamma quantum flux passed through wellsttream (without scattering).
  • the second detector 6 is mounted directly downstream pipe 3 around the collimator 4 and used for logging gamma quantum scattered in the media (Compton scattering).
  • the second detector 6 can be mounted directly downstream the first collimator 2 upstream sounding tube 3, but not around the second collimator 4.
  • detector 6 will log Compton scattering gamma quantum reflected at the early passage and with suitable detector parameters chosen, the amount of them can be comparable to the gamma quantum amount of detector 5.
  • a gamma quantum source 1 can be isotopes Ba- 133, Am-241, Gd- 153, or any other radioactive source of, at least, two-energy peaks.
  • the second detector 6 can be of a ring shape (with a hole for the second collimator 4) or any other geometrical shape, but the detector should be out of the way of the gamma quantum beam the source 1 emits.
  • Pipe portion 3 at the point of attaching collimators (2, 4) and the second detector 6 should be out of high-strength material with a low absorption coefficient in the range the radioactive source emits gamma quantum.
  • the proposed engineering solution wherein the two detectors are used can increase the working system range as to the multiphase mixture composition.
  • the pipe diameter can be increased so that the absorption should be rather noticeable even at the high gas volume fracture of the mixture.
  • the diameter increase for gain in sensitivity of the high gas volume-fracture is meant the decrease in sensitivity for the low gas and liquid volume fracture of high gamma quantum absorption (high sulfur content of oil).
  • the detectors can be arranged otherwise.
  • the method of measuring the multiphase flow composition in the implementation option is as follows:
  • the Compton scattering coefficient can be expressed by mass absorption coefficient and a number of gamma quantum scattered determined by the second detector 6 (N[ cw ).
  • K * F( ⁇ c ' J, ⁇ w ' d)N ⁇ ' exp(- ⁇ w ' d), where F( ⁇ C ' w d, ⁇ w ' d) is a function governed by some factors, such as a system geometry, and ⁇ C ' w -is the Compton scattering coefficient. It should be noted, that the absorption coefficient is determined as a sum of the Compton scattering and photoeffect coefficients. In case of high gas volume fraction the latter expression can be expand to series according to ⁇ C ' w d « 1 , which reduces the expression to:
  • coefficient C 1 ' is dependent on a system geometry and an energy level.
  • the coefficients themselves (or functions F[ ⁇ C ' w d, ⁇ w ' d) ) can be easy found by forth integration or Monte-Carlo model-building. It is clear that a number of the gamma quantum scattered can be written down in any other parametric form, however, the method content being unchanged. Based on the equation, the coefficients ⁇ C ' w should be calculated by a number of the scattered photons.
  • the first equation reflects the fact that the sum of volume fractions is equal to unit.
  • N equations determine the relationship between the photon absorption in N channels and the volume fractions of the various phases.
  • N equations (with functions of F( ⁇ C ' m ⁇ x d, ⁇ m ' a d)) determine the relationship between the scattered gamma quantum amount logged with the second detector 6 and the volume fractions of the various phases.
  • this method provides the use of a standard scintillation or semiconductor detector (EP0696354).
  • scintillation detector on the one hand, the device is markedly cheaper and its reliability is increased (free of extra cooling), and, on the other hand, serious systematic errors are introduced. Since energy resolution of the scintillation detector is lower than that of the semiconductor detector, channels should be wider. As a compromise, it can be used also gas filled detector (high pressure xenon) with high energy resolution.
  • An isotope has several energy peaks, namely, characteristic radiation peaks are about 31-36 keV, and gamma quantum of energy: 81, 276.4, 302.9, 356, and 383.9 keV.
  • characteristic radiation peaks are about 31-36 keV
  • gamma quantum of energy 81, 276.4, 302.9, 356, and 383.9 keV.
  • the three channels can be set: 20-45 keV (channel 1), 70-90 keV (channel 2), 220-450 keV (channel 3).
  • a number of the gamma quantum logged in all the channels should be corrected (account mutual channel influence related to the Compton scattering of the logged high-energy gamma quantum in crystals and logged as the low-energy peaks, and random coincidence). Since the scattered gamma quantum energy is lower than initial one, channels chosen can be somewhat other for the second detector 6. Should the second detector 6 is small-sized; an amount of the repeatedly scattered gamma quantum can be considered as negligible. Should the maximum Compton scattering angle of the gamma quantum to be still logged with the second detector is ⁇ /2 , the maximum possible energy drift of the Compton scattering (logged with the second detector 6) will be
  • I + ⁇ - 511 channels can be, for example, chosen 20-45 keV, 60-90 keV, 160-450 keV such that they are not energy overlapped and can be considered as independent.
  • the possibility is available to increase the second detector 6 size, broaden the energy channel width, log gamma quantum double scattered, and subtract the extra gamma quantum contribution of the third channel from the first and second channels using indefinite coefficients to be found by measuring a number of passed and scattered gamma quantum in a sample of the certain phase composition.
  • Fig.1 gives the first invention option chosen for the calculation example.
  • N is the actual gamma quantum of the certain energy corrected by above methods for a scintillation detector or a gas filled, and the semiconductor detector almost do not require such correction
  • N 0 measurin error for calibration statistics N 0 is considered to be small, since the calibration period of time can be rather long.
  • a relative error of the absorption coefficient that governs errors of the physical values such as a gas volume fraction or
  • the Compton scattering coefficient error is due to a statistical error of the scattered number of gamma quantum: N sc ⁇ C ⁇ c dN .
  • the gamma quantum contribution double- or more times-scattered was neglected, their number at the high gas volume fraction being negligible.
  • the relative error ratio governs the error ratio between physical mixture parameters for the two cases chosen:
  • the use of the two-detector system to log passed and scattered gamma quantum can be of particular assistance in improving measurement accuracy or reducing the measurement period of time (at given accuracy).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)

Abstract

L'invention concerne la mesure de paramètres d'un écoulement à plusieurs phases, soit la mesure d'une composition de courant de puits à plusieurs phases par mesure de l'intensité d'absorption de photons de diverses énergies. Cette invention peut être mise en oeuvre dans différentes branches d'activité industrielle faisant intervenir des courants à plusieurs phases, tels que des écoulements gaz-liquide. Lorsque la solution technique de l'invention est mise en oeuvre, au moins une source à deux pics d'énergie génère des photons (quantum gamma) et le second détecteur enregistre les photons (quantum gamma) ayant subi au moins une diffusion Compton, une analyse statistique des résultats étant alors réalisée. Ainsi, le premier détecteur enregistre les photons (quantum gamma) ayant traversé le conduit de courant de puits qui n'interagissent pas avec les constituants du courant de puits.
PCT/RU2007/000668 2006-11-15 2007-11-29 Procédé et dispositif destinés à mesurer une composition de courant de puits à plusieurs phases WO2008060192A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2006140158/28A RU2334972C2 (ru) 2006-11-15 2006-11-15 Способ и устройство для определения состава многофазного потока скважинной продукции
RU2006140158 2006-11-15

Publications (2)

Publication Number Publication Date
WO2008060192A2 true WO2008060192A2 (fr) 2008-05-22
WO2008060192A3 WO2008060192A3 (fr) 2008-08-14

Family

ID=39402122

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2007/000668 WO2008060192A2 (fr) 2006-11-15 2007-11-29 Procédé et dispositif destinés à mesurer une composition de courant de puits à plusieurs phases

Country Status (2)

Country Link
RU (1) RU2334972C2 (fr)
WO (1) WO2008060192A2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8472582B2 (en) 2007-10-30 2013-06-25 Schlumberger Technology Corporation Method and apparatus for determining volume fractions in a multiphase flow
CN113006778A (zh) * 2021-03-22 2021-06-22 国仪石油技术(无锡)有限公司 一种具有超高灵敏度的量子测井方法
CN113945248A (zh) * 2021-10-27 2022-01-18 成都洋湃科技有限公司 一种四相混相质量流量的在线计量方法及装置
CN113984719A (zh) * 2021-10-27 2022-01-28 成都洋湃科技有限公司 一种光量子混相质量相分率测量方法及装置
CN114295646A (zh) * 2021-12-29 2022-04-08 成都洋湃科技有限公司 一种光量子混相含砂测量方法及装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9086306B2 (en) 2009-07-07 2015-07-21 Siemens Aktiengesellschaft Apparatus and method for measuring multi-phase fluid flow
RU2565346C2 (ru) * 2011-06-08 2015-10-20 Сименс Акциенгезелльшафт Устройство и способ для измерения расхода и состава многофазной флюидной смеси
RU2476733C1 (ru) * 2011-12-26 2013-02-27 МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский автомобильно-дорожный государственный технический университет (МАДИ)" Стенд для подготовки многокомпонентной водогазонефтяной смеси к анализу
RU2530459C1 (ru) * 2013-07-05 2014-10-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Монитор многофазной жидкости
RU2530453C1 (ru) * 2013-07-05 2014-10-10 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Монитор многофазной жидкости
RU2594113C9 (ru) * 2015-06-04 2016-10-10 Акционерное общество "Государственный научный центр Российской Федерации - Физико-энергетический институт имени А.И. Лейпунского" Способ определения массы кислорода в кислородосодержащем потоке
RU2594116C9 (ru) * 2015-06-10 2016-10-10 Акционерное общество "Государственный научный центр Российской Федерации - Физико-энергетический институт имени А.И. Лейпунского" Способ определения массы силикатных отложений на единицу длины канала

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU353226A1 (ru) * В. И. Уткин , Ю. Б. Бурдин Устройство для анализа жидкости в скважине
EP0340956A1 (fr) * 1988-04-22 1989-11-08 Halliburton Company Méthode de diagraphie radioactive
SU1693498A1 (ru) * 1989-08-08 1991-11-23 Всесоюзный научно-исследовательский и проектный институт механической обработки полезных ископаемых "Механобр" Способ рентгенорадиометрического опробовани руд
RU2141640C1 (ru) * 1998-07-09 1999-11-20 Кратиров Владимир Алексеевич Способ измерения параметров газожидкостного потока
US6097786A (en) * 1998-05-18 2000-08-01 Schlumberger Technology Corporation Method and apparatus for measuring multiphase flows
RU2184367C2 (ru) * 1996-05-02 2002-06-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ и измерительный прибор для определения состава многофазной жидкости

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU353226A1 (ru) * В. И. Уткин , Ю. Б. Бурдин Устройство для анализа жидкости в скважине
EP0340956A1 (fr) * 1988-04-22 1989-11-08 Halliburton Company Méthode de diagraphie radioactive
SU1693498A1 (ru) * 1989-08-08 1991-11-23 Всесоюзный научно-исследовательский и проектный институт механической обработки полезных ископаемых "Механобр" Способ рентгенорадиометрического опробовани руд
RU2184367C2 (ru) * 1996-05-02 2002-06-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Способ и измерительный прибор для определения состава многофазной жидкости
US6097786A (en) * 1998-05-18 2000-08-01 Schlumberger Technology Corporation Method and apparatus for measuring multiphase flows
RU2141640C1 (ru) * 1998-07-09 1999-11-20 Кратиров Владимир Алексеевич Способ измерения параметров газожидкостного потока

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8472582B2 (en) 2007-10-30 2013-06-25 Schlumberger Technology Corporation Method and apparatus for determining volume fractions in a multiphase flow
US8855263B2 (en) 2007-10-30 2014-10-07 Schlumberger Technology Corporation Method and apparatus for determining volume fractions in a multiphase flow
CN113006778A (zh) * 2021-03-22 2021-06-22 国仪石油技术(无锡)有限公司 一种具有超高灵敏度的量子测井方法
CN113945248A (zh) * 2021-10-27 2022-01-18 成都洋湃科技有限公司 一种四相混相质量流量的在线计量方法及装置
CN113984719A (zh) * 2021-10-27 2022-01-28 成都洋湃科技有限公司 一种光量子混相质量相分率测量方法及装置
CN113984719B (zh) * 2021-10-27 2024-01-12 成都洋湃科技有限公司 一种光量子混相质量相分率测量方法及装置
CN114295646A (zh) * 2021-12-29 2022-04-08 成都洋湃科技有限公司 一种光量子混相含砂测量方法及装置
CN114295646B (zh) * 2021-12-29 2024-01-09 成都洋湃科技有限公司 一种光量子混相含砂测量方法及装置

Also Published As

Publication number Publication date
WO2008060192A3 (fr) 2008-08-14
RU2006140158A (ru) 2008-05-20
RU2334972C2 (ru) 2008-09-27

Similar Documents

Publication Publication Date Title
WO2008060192A2 (fr) Procédé et dispositif destinés à mesurer une composition de courant de puits à plusieurs phases
US7316166B2 (en) Method and system for analyzing multi-phase mixtures
RU2535638C2 (ru) Система, способ и установка для измерения многофазного потока
RU2426978C2 (ru) Устройство и способ определения характеристического отношения и воздействующего на характеристическое отношение параметра для многофазного флюида
CN105890689B (zh) 一种测量湿气中气油水三相质量流量的测量装置及测量方法
Johansen et al. Salinity independent measurement of gas volume fraction in oil/gas/water pipe flows
US20100140496A1 (en) Detection of an element in a flow
US11150203B2 (en) Dual-beam multiphase fluid analysis systems and methods
WO2009135390A1 (fr) Procédé et système pour déterminer la teneur en constituants d'un fluide multiphasique
Bruvik et al. Gamma-ray tomography applied to hydro-carbon multi-phase sampling and slip measurements
US6289283B1 (en) Downhole tool data correction method and apparatus
US9528869B2 (en) Method of compensating for changes in water properties in a multiphase flow meter
WO2017206199A1 (fr) Appareil et procédé de mesure permettant de mesurer des débits massiques à phases multiples de gaz, d'huile et d'eau dans un gaz humide
Chazal et al. Enhancements in Fraction Measurements and Flow Modeling for Multiphase Flowmeters
Fischer Development of a metering system for total mass flow and compositional measurements of multiphase/multicomponent flows such as oil/water/air mixtures
EP2927650A1 (fr) Analyse de fluide utilisant l'annihilation électron-positron
Kornienko et al. Application of neutron activation analysis for heavy oil production control
Holstad Gamma-ray scatter methods applied to industrial measurement systems
Scheers An oil/water/gas composition meter based on multiple energy gamma ray absorption (MEGRA) measurement
Fan et al. A Well Cementation Evaluation Method by the Azimuthal Gamma Combination With the Acoustic Logging in Horizontal Well
Zych et al. Radioisotope measurement of selected parameters of liquid-gas flow using single detector system
Bom et al. Accuracy aspects in multi-phase flow metering using X-ray transmission
Yu et al. An Evaluating Cement Method Using Gamma-Gamma Density Imaging Logging in Double Casing Well
Waid et al. A new low-energy gamma ray tool for fullbore measurement of gas holdup in a cased well
Zhang et al. Improved cement sheath thickness measurement and its application in cement sheath variation monitoring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07861070

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07861070

Country of ref document: EP

Kind code of ref document: A2