WO2008059639A1 - Electrode part, light source, illuminating device, and liquid crystal display - Google Patents

Electrode part, light source, illuminating device, and liquid crystal display Download PDF

Info

Publication number
WO2008059639A1
WO2008059639A1 PCT/JP2007/064337 JP2007064337W WO2008059639A1 WO 2008059639 A1 WO2008059639 A1 WO 2008059639A1 JP 2007064337 W JP2007064337 W JP 2007064337W WO 2008059639 A1 WO2008059639 A1 WO 2008059639A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electron
light source
filament
cathode fluorescent
Prior art date
Application number
PCT/JP2007/064337
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Furusawa
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2008059639A1 publication Critical patent/WO2008059639A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/14Circuit arrangements
    • H05B41/26Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc
    • H05B41/28Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters
    • H05B41/295Circuit arrangements in which the lamp is fed by power derived from dc by means of a converter, e.g. by high-voltage dc using static converters with semiconductor devices and specially adapted for lamps with preheating electrodes, e.g. for fluorescent lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/067Main electrodes for low-pressure discharge lamps
    • H01J61/0672Main electrodes for low-pressure discharge lamps characterised by the construction of the electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133604Direct backlight with lamps

Definitions

  • Electrode unit light source, illumination device and liquid crystal display device
  • the present invention relates to an electrode unit that suppresses disconnection of an electrode, a light source including the electrode unit, an illumination device including the light source, and a liquid crystal display device using the illumination device as a backlight.
  • a knock light is used as a light source for displaying an image on a liquid crystal display panel (hereinafter referred to as an LCD panel) such as a liquid crystal TV, a liquid crystal display, and a liquid crystal monitor, and supplies light to the entire surface of the LCD panel.
  • a liquid crystal display panel hereinafter referred to as an LCD panel
  • the light emitting elements used in such backlights are fluorescent lamps such as hot cathode fluorescent lamps (HCFL elements) and cold cathode fluorescent lamps (CCFL elements), LED elements, and the like.
  • a hot cathode fluorescent lamp is superior to other light emitting elements in terms of luminous efficiency, and is widely used because high luminance light can be obtained at a relatively low voltage.
  • a filament electrode is provided inside both ends of a cylindrical glass tube whose inner wall surface is coated with a phosphor, and the filament electrode has an electron emission material such as BaO'CaO.SrO. Emissive material is retained.
  • FIG. 7 is a diagram showing a schematic configuration of a conventional hot cathode fluorescent lamp 101.
  • the hot cathode fluorescent lamp 101 is composed of a glass tube 102, a filament electrode 103, a metal guide 104, and a force.
  • the openings at both ends of the glass tube 102 are inserted while being held by the coiled filament electrode 103 force S and the metal guide 104 coated with an electron radioactive substance!
  • As the filament electrode 103 an electric wire made of tungsten is preferably used.
  • the metal guide 104 a dumet wire is preferably used.
  • the hot cathode fluorescent lamp 101 emits light. If the current is passed through the filament electrode 103 before the hot cathode fluorescent lamp 101 starts lighting, Thermal electrons are emitted from the active substance into the glass tube 102. When a high voltage is applied between the filament electrodes 103 provided inside both ends of the glass tube 102, thermoelectrons are attracted by the anode and discharge starts, and ultraviolet rays are emitted when colliding with mercury enclosed inside. Is done. The ultraviolet rays excite the phosphor coated on the inner wall surface of the glass tube 102 and emit visible light unique to the phosphor.
  • the electron radioactive material is depleted due to exhaustion or scattering of the filament electrode 103, or the filament electrode 103 is disconnected. The life is shortened compared to.
  • the conventional filament electrode 103 cannot apply a large amount of electron-emitting material.
  • the electron radioactive substance is a source of thermionic electrons, and is evaporated by a phenomenon such as sputtering during the arc discharge. When the electron radioactive substance is exhausted, the hot cathode fluorescent lamp 101 cannot emit light. Therefore, in the configuration of the filament electrode 103, since only a small amount of the electron-emitting material can be applied, the life is shortened.
  • Patent Document 1 describes a technique that increases the surface area of an electrode and makes it possible to apply a large amount of an electron-emitting material.
  • the electrode described in Patent Document 1 is a holo electrode in which a tungsten wire is wound so as to have a holo structure.
  • an ultra-fine wire of about 0.2 mm is spirally wound, and the wire is further spirally wound, or a double-coil or double-coil wire is further spiraled.
  • FIG. 8 is a diagram showing a main configuration of a conventional drive circuit 106.
  • the drive circuit 106 includes a control unit 107, a switching circuit 108, and a direct IJLC oscillation device 109.
  • the drive circuit 106 controls the voltage applied to the direct IJLC oscillation device 109 by switching the ON / OFF of the switching circuit 108 composed of two FETs by the control unit 107, so that the hot cathode fluorescent lamp 101 is controlled.
  • the drive circuit 106 supplies a current to the filament electrode 103 in order to heat the electron-emitting material.
  • a voltage is applied to the filament electrodes 103 at both ends of the hot cathode fluorescent lamp 101, and a glow current is generated.
  • a glow current is generated in the hot cathode fluorescent lamp 101, there is a high possibility that the filament electrode 103 is disconnected due to electrical stress, sputtering, or the like, and the life is shortened. Therefore, it is preferable to suppress the glow current generated in the hot cathode fluorescent lamp 101.
  • FIG. 9 is a diagram showing a main configuration of the illumination device 110. As shown in FIG.
  • the illumination device 110 includes a hot cathode fluorescent lamp 101, a control unit 111, a preheating transformer 112, and a discharge transformer 113.
  • the control unit 111 is connected to the filament electrode 103 of the hot cathode fluorescent lamp 101 via two preheating transformers 112 and one discharge transformer 113.
  • each of the two preheating transformers 112 two wires on the secondary side of the preheating transformer 112 are connected to both ends of the filament electrode 103 at one end of the hot cathode fluorescent lamp 101. . Also, the two electric wires on the secondary side of the discharge transformer 113 are connected to the filament electrodes 103 at both ends of the hot cathode fluorescent lamp 101, respectively.
  • the control unit 111 controls the primary side of the preheating transformer 112, supplies current to the secondary side, and supplies current to the filament electrode 103.
  • the control unit 111 controls the primary side of the discharge transformer 113 to apply a high voltage to the secondary side, and the filaments at both ends of the hot cathode fluorescent lamp 101 A voltage is applied to the electrode 103.
  • the filament electrode 103 can be driven by a sequence in which arc discharge occurs after heating the electron-emitting material, and the glow current generated in the hot cathode fluorescent lamp 101 can be suppressed.
  • Patent Document 1 Japanese Patent Publication “Japanese Patent Laid-Open No. 6-52827 (Publication Date: February 25, 1994)”
  • the hollow electrode, the double coil type electrode, and the triple coil type electrode described in Patent Document 1 described above have a large surface area of the electrode, so that a large amount of electron-emitting material is applied to the electrode. Is possible. As a result, the lifetime of the hot cathode fluorescent lamp can be extended due to the decay of the electron radioactive material.
  • the configuration of the electrode suitable for heating the electron-emitting substance has a heat resistance capable of withstanding a high temperature of about 2000 degrees or more, and has a large electric resistance for increasing the amount of heat generation. . In order to obtain a configuration having a large electric resistance, it is preferable to make the electrode as thin as possible.
  • an electrode configuration suitable for performing arc discharge is resistant to electrical stress sputtering, that is, a configuration having a large volume or surface area.
  • the electrode is configured to be suitable for the role of heating the electron-emitting material, the electrode is not suitable for the role of performing arc discharge, and the configuration is suitable for the role of performing arc discharge. Then, it becomes the structure which is not suitable for the role which heats an electron radioactive substance.
  • Conventional electrodes such as the filament electrode 103 in the hot-cathode fluorescent lamp 101 and the hollow electrode described in Patent Document 1 have an electrode configuration suitable for heating the electron-emitting material, and arc discharge. It is not suitable for the role to perform. As a result, when arc discharge is performed using a conventional electrode, the life of the hot cathode fluorescent lamp is shortened because the electrode is more likely to break due to electrical stress or sputtering.
  • an electrode portion including a cup-shaped electrode for protecting the filament electrode around the filament electrode is known.
  • the force S that can suppress the disconnection of the filament electrode due to sputtering cannot be suppressed, and the disconnection due to electrical stress cannot be suppressed.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an electrode section, a light source, an illumination device, and a liquid crystal display device that suppress the disconnection of the electrodes.
  • the electrode unit of the present invention is an electrode unit provided in a light source that emits light by heating an electron-emitting substance to emit thermoelectrons and performing arc discharge. It is characterized by having a first electrode for heating the radioactive material and a second electrode for arc discharge separately.
  • An electrode for heating the electron-emitting substance needs to be configured to be in a high temperature state in a short time with a large electric resistance.
  • the electrode for performing arc discharge needs to have a structure resistant to electrical stress and sputtering, that is, a structure having a large volume or surface area.
  • the electrode portion is divided into a first electrode for heating the electron-emitting material and a second electrode for performing arc discharge, thereby making the first electrode an electric resistance.
  • the second electrode can have a large volume or surface area. That is, the second electrode does not need to have an increased electrical resistance in order to heat the electron-emitting material, and the degree of freedom in designing the second electrode is increased.
  • the first electrode can be rapidly brought to a high temperature state when the electron-emitting material is heated, and the second electrode can be disconnected due to electrical stress or sputtering even when arc discharge is performed. It is possible to suppress the power to do. Therefore, disconnection of the electrode can be suppressed, and an electrode part with a long life can be obtained.
  • FIG. 1 is a diagram showing a schematic configuration of an embodiment of an electrode unit according to the present invention, (a) is a perspective view showing the electrode unit, and (b) is a diagram showing a heater wire connected to the electrode unit. Is a view from the side where
  • FIG. 2 is a diagram showing a configuration in which the insulating layer of the electrode part is replaced with a highly insulating layer, (a) is a cross-sectional view showing the electrode part, and (b) is a heater wire. It is the figure seen from the side where is provided.
  • FIG. 3 is a diagram showing a schematic configuration of a lighting device including the electrode unit.
  • FIG. 4 is a diagram showing a configuration of a main part of a drive circuit of the illumination device.
  • FIG. 5 is a diagram showing the relationship between the heater current, lamp voltage, and lamp current, and the preheating period, starting period, and steady period in lighting of the hot cathode fluorescent lamp. 6] A diagram showing a schematic configuration of a liquid crystal display device using the illumination device.
  • FIG. 7 A diagram showing a main part configuration of a conventional hot cathode fluorescent lamp.
  • FIG. 8 A diagram showing a configuration of a main part of a drive circuit of a lighting device provided with a conventional hot cathode fluorescent lamp.
  • FIG. 9 A diagram showing a main part configuration of a drive circuit configured to independently drive filament electrodes in a conventional hot cathode fluorescent lamp.
  • Insulating layer Insulating material
  • the electrode section of the present invention is provided with an electrode for heating the electron-emitting substance and an electrode for performing arc discharge separately.
  • the electrode for performing the arc discharge has a high degree of design freedom and can be configured to prevent disconnection.
  • the electrode portion of the present invention can suppress the occurrence of a spring break.
  • FIG. 1 is a diagram showing a schematic configuration of an electrode unit 1 of the present embodiment, (a) is a perspective view of the electrode unit 1, and (b) is a side where the heater wire 6 is provided on the electrode unit 1. It is the figure seen from.
  • the electrode section 1 of the present embodiment includes a plate-like electrode 2 (first
  • the electrode part 1 is preferably used for an electrode part of a hot cathode fluorescent lamp.
  • the plate electrode 2 is an electrode for performing arc discharge when the electrode unit 1 is applied to a hot cathode fluorescent lamp, for example.
  • the plate-like electrode 2 is a circular plate having a predetermined thickness, and is made of Ni.
  • the plate-like electrode 2 is coated with an electron-emitting substance 7 on one surface, and the electrode wire 4 for applying a lamp voltage from an external power source is connected to the plate-like electrode 2 on the other surface.
  • an insulating layer 3 is formed on the other part excluding the electrode line 4.
  • the plate-like electrode 2 is connected to the filament 5 through the insulating layer 3, and the plate-like electrode 2 and the filament 5 are electrically insulated.
  • the surface of the plate-like electrode 2 on which the electron-emitting material 7 is applied may be a smooth surface or an uneven surface.
  • the electron radioactive substance 7 may be mechanically applied or impregnated on the surface of the plate-like electrode 2 or applied by vapor deposition or etching.
  • an alkaline earth metal oxide such as Ba, Ca, Sr, an alkaline earth metal tungstate, or the like is preferably used.
  • the filament 5 is used to heat the electron-emitting material 7 applied to the plate-like electrode 2. It generates heat when current is supplied from an external power source via the heater wire 6. As shown in FIG. 1B, the filament 5 has a configuration in which a tungsten wire is wound in a coil shape, and is connected to the insulating layer 3. Note that the filament 5 is a force using a filament in FIG. 1 (b). The present invention is not limited to this, and the filament 5 has a large electric resistance and excellent heat resistance.
  • the heat radiated from the filament 5 is conducted to the plate electrode 2 through the insulating layer 3.
  • the electron-emitting material 7 applied to the plate-like electrode 2 is also heated, and thermoelectrons are emitted from the electron-emitting material 7. Since the plate-like electrode 2 and the filament 5 are electrically insulated by the insulating layer 3, the lamp voltage is applied to the plate-like electrode 2 by the heater current supplied to the filament 5 via the heater wire 6. MARK That is, no current is supplied to the plate-like electrode 2 except that a lamp voltage is applied from the external power source via the electrode wire 4.
  • the shape of the plate-like electrode 2 is a force that is circular in FIGS. 1A and 1B.
  • the present invention is not limited to this, and may be a polygon. That is, the plate-like electrode 2 only needs to have a configuration that can apply a large amount of the electron-emitting material 7 and can efficiently conduct the heat radiated from the filament 5 to the electron-emitting material 7.
  • the plate-like electrode 2 of the present embodiment is composed of Ni.
  • the plate-like electrode 2 is composed of a material having a high thermal conductivity such as alumina or molybdenum! /.
  • the plate-like electrode 2 is made of a material having a very high thermal conductivity, the plate-like electrode 2 does not have a force even if it is not plate-like.
  • the material constituting the insulating layer 3 it is sufficient if it has insulating properties and thermal conductivity, for example, resin or ceramic is suitably used.
  • FIG. 2 is a view showing a configuration in which the insulating layer 3 of the electrode part 1 of the present embodiment is replaced with a highly insulating layer 8, and (a) is a cross-sectional view showing the electrode part 1, (b) Fig. 4 is a view of the electrode unit 1 as viewed from the side where the heater 6 wire is provided.
  • the highly insulating layer 8 As a material constituting the highly insulating layer 8, for example, aluminum oxide, magnesium oxide, or aluminum nitride is preferably used. By providing the highly insulating layer 8 between the plate electrode 2 and the filament 5, the heat radiated from the filament 5 is efficiently applied to the plate electrode 2 as shown by the arrow in FIG. Conducted.
  • the force in which the plate-like electrode 2 and the filament 5 are connected via the insulating layer 3 is not limited to this. That is, the plate electrode 2 and the filament 5 may be arranged separately without being connected, or may be directly connected without the insulating layer 3 interposed therebetween. In the case where the plate-like electrode 2 and the filament 5 are connected! /, Or! /, A member having a large surface area for applying the electron-emitting material 7 to the filament 5 may be connected. That is, the electrode part of the present invention only needs to have at least the plate-like electrode 2 for performing arc discharge and the filament 5 for heating the electron-emitting material 7.
  • the electrode unit 1 of the present embodiment is an electrode unit provided in a light source that emits light by heating the electron-emitting material 7 to emit thermoelectrons and performing arc discharge.
  • the filament 5 for heating the electron-emitting material 7 and the plate electrode 2 for performing arc discharge are separately provided.
  • the electrode for heating the electron emissive substance 7 needs to have a configuration in which the electrical resistance is large and the temperature is raised in a short time.
  • the electrode for performing the arc discharge needs to have a structure resistant to electrical stress, sputtering, etc., that is, a structure having a large volume or surface area.
  • the filament 5 is electrically separated by dividing it into a filament 5 for heating the electron-emitting substance 7 and a plate-like electrode 2 for performing arc discharge.
  • the plate-like electrode 2 can be configured to have a large volume or surface area. That is, the degree of freedom in designing the plate electrode 2 is very high.
  • the filament 5 can be rapidly brought to a high temperature state when the electron-emitting material 7 is heated, and the plate-like electrode 2 is disconnected due to electrical stress or sputtering even if arc discharge is performed. It is possible to suppress this. Therefore, the disconnection of the electrode can be suppressed, and the electrode part 1 having a long life can be obtained. [0043] [Lighting device]
  • FIG. 3 is a diagram showing a schematic configuration of the illumination device 11 including the thermal cathode fluorescent lamp 12 including the electrode unit 1 of the present embodiment.
  • the illumination device 11 includes a hot cathode fluorescent lamp 12 (light source) and a drive circuit 13 (drive means).
  • the illumination device 11 is preferably used as a backlight for displaying an image on a liquid crystal display panel such as a liquid crystal TV, a liquid crystal display, or a liquid crystal monitor.
  • the hot cathode fluorescent lamp 12 is composed of a cylindrical glass tube and the electrode unit 1 of the present embodiment.
  • the glass tube has an RGB inner wall surface coated with an RGB three-wavelength phosphor, and electrode portions 1 are provided on the inner sides of both ends. Further, the openings at both ends of the glass tube are closed by a base (not shown).
  • the drive circuit 13 is for controlling the drive of the electrode unit 1, and as shown in FIG. 3, a heater circuit 14 (first electrode drive means) for controlling the current supplied to the filament 5 And a main discharge circuit 15 (second electrode driving means) for controlling the voltage applied to the plate-like electrode 2 via the electrode wire 4.
  • first electrode drive means for controlling the current supplied to the filament 5
  • main discharge circuit 15 for controlling the voltage applied to the plate-like electrode 2 via the electrode wire 4.
  • FIG. 4 is a diagram illustrating a main configuration of the drive circuit 13.
  • the heater circuit 14 includes a heater control unit 16 and a power source.
  • the heater circuit 14 is connected to the filament 5 of the electrode unit 1 provided at both ends of the hot cathode fluorescent lamp 12.
  • the heater control unit 16 adjusts the amount of heat radiated from the filament 5 by adjusting the amount of current supplied to the filament 5.
  • the main discharge circuit 15 includes a control unit 17, a switching circuit 18, and a direct l] LC oscillation device 19.
  • the control unit 17 switches the ON / OFF of the switching circuit 18 composed of two FETs, and controls the voltage applied to the direct IJLC oscillation device 19 to thereby control the plate-like electrode 2 of the electrode unit 1.
  • the voltage applied to is controlled, and the drive of the hot cathode fluorescent lamp 12 is controlled.
  • the main discharge circuit 15 is not limited to the above configuration, and the voltage applied to the plate electrode 2 It is possible to control the driving of the hot cathode fluorescent lamp 12 by adjusting the power supply to the control unit 17 as long as the control of the driving of the hot cathode fluorescent lamp 12 can be controlled. Absent.
  • FIG. 5 is a diagram showing the relationship between the heater current, the lamp voltage, and the lamp current, and the preheating period, starting period, and steady period in lighting of the hot cathode fluorescent lamp.
  • the mechanism by which the hot cathode fluorescent lamp 12 emits light will be described below.
  • the heater control unit 16 of the heater circuit 14 is provided at both ends of the hot cathode fluorescent lamp 12.
  • a heater current is supplied from the power source to the filament 5 of the electrode portion 1 of the electrode.
  • the filament 5 radiates heat, which is conducted to the plate electrode 2 through the insulating layer 3, and the plate electrode 2 is heated.
  • the heat radiated from the filament 5 is conducted to the electron-emitting material 7 applied to the plate-like electrode 2, and the thermoelectrons are emitted from the electron-emitting material 7 into the glass tube of the hot cathode fluorescent lamp 12 ( Preheating period).
  • the control unit 17 of the main discharge circuit 15 turns on the switching circuit 18 and both the hot cathode fluorescent lamps 12 are connected via the direct IJLC oscillation device 19.
  • a lamp voltage is applied to the plate-like electrode 2 through the electrode wire 4 provided at the end (starting period).
  • the hot electrons are attracted to the anode and discharge starts, a lamp current flows through the hot cathode fluorescent lamp 12, and ultraviolet rays are emitted when the hot electrons collide with mercury enclosed in the glass tube.
  • Ultraviolet light excites the phosphor coated on the inner wall surface of the glass tube and emits visible light unique to the phosphor (stationary period).
  • the heater current is supplied to the filament 5 at a constant current amount from the time when the preheating period starts until the steady period when the hot cathode fluorescent lamp 12 is turned on. The amount of current decreases. Further, the lamp voltage is applied to the plate electrode 2 via the electrode wire 4 from the start period in which arc discharge is performed to turn on the hot cathode fluorescent lamp 12 until the stationary period ends. The lamp current is generated in the hot cathode fluorescent lamp 12 from the steady period when the hot cathode fluorescent lamp 12 is lit until the end of the steady period. To be born. Note that the heater current is reduced in the supply amount in FIG. 5 after entering the steady period! /, But the supply may be stopped! /.
  • the illumination device 11 includes the heater circuit 14 that controls the current supplied to the filament 5 and the main discharge circuit 15 that controls the voltage applied to the plate electrode 2. After heating the electron-emitting material 7 with the filament 5, a sequence drive is possible in which an arc discharge is generated by the plate electrode 2. Therefore, the heater current value and the heater current supply time can be set freely, and the heater current can be easily varied even in the steady period.
  • the heater circuit 14 is connected to the filament 5 of the electrode portion 1, the main discharge circuit 15 is connected to the electrode wire 4 of the electrode portion 1, and the filament 5 and the plate-like electrode 2 An insulating layer 3 is provided between them to provide electrical insulation. Therefore, when current is supplied to the filament 5 by the heater circuit 14 in order to heat the electron-emitting substance 7, no current is supplied to the plate-like electrode 2, so that the plate-like electrodes at both ends of the hot cathode fluorescent lamp 12 are used. No glow current is generated in the hot cathode fluorescent lamp 12 where no lamp voltage is applied to 2. Therefore, since the time during which electrical stress, sputtering, etc. affect the electrode portion 1 of the present embodiment is shortened, the life of the hot cathode fluorescent lamp 12 can be extended.
  • FIG. 6 is a diagram showing a schematic configuration of a liquid crystal display device 51 using the illumination device 11 of the present embodiment.
  • the liquid crystal display device 51 is composed of a surface light source device 52 composed of a plurality of illumination devices 11, an optical sheet 53, and a liquid crystal display panel 54.
  • the surface light source device 52 is described as including four illumination devices 11, but the number of illumination devices 11 is not limited thereto. With the above configuration, it is possible to obtain the liquid crystal display device 51 having a long-life backlight that is difficult to break.
  • a plurality of illumination devices 11 are provided in parallel to the surface light source device 52, and an optical sheet 53 and a liquid crystal display panel 54 are stacked in this order on the upper surface of the surface light source device 52. . That is, the surface light source device 52 is a backlight in the liquid crystal display device 51.
  • each plate-like electrode 2 and each filament 5 are connected to one drive circuit 13. That is, each plate-like electrode 2 of the plurality of lighting devices 11 is connected to one main discharge circuit 15 via each electrode wire 4, and each filament 5 is connected to one heater circuit 14 via each heater wire 6. Yes. Therefore, the drive circuit 13 controls the drive of the hot cathode fluorescent lamp 12 in all the illumination devices 11 provided in the surface light source device 52.
  • FIG. 6 shows a direct type backlight device, but the illumination device 11 of the present embodiment can also be applied to an edge type backlight device using a light guide plate and an optical sheet. .
  • the hot cathode fluorescent lamp 12 of the illumination device 11 in the liquid crystal display device 51 is held by a lamp holder.
  • a lamp holder for example, a resin housing having a socket into which the electrode wire 4 and the heater wire 6 of the hot cathode fluorescent lamp 12 are inserted, a printed circuit board on which a socket is mounted, and the like are preferably used.
  • the hot cathode fluorescent lamp 12 and the drive circuit 13 are connected via a lamp holder.
  • the electrode unit of the present invention is an electrode unit provided in a light source that emits light by heating an electron-emitting substance to emit thermoelectrons and performing arc discharge. It is characterized by having a first electrode for heating the radioactive material and a second electrode for arc discharge separately.
  • An electrode for heating the electron-emitting substance needs to be configured to be in a high temperature state in a short time with a large electric resistance.
  • the electrode for performing arc discharge needs to have a structure resistant to electrical stress and sputtering, that is, a structure having a large volume or surface area.
  • the electrode portion is a second member for heating the electron-emitting material.
  • the first electrode By dividing the first electrode into a second electrode for arc discharge, the first electrode
  • the second electrode can have a large volume or surface area. That is, the second electrode does not need to have an increased electrical resistance in order to heat the electron-emitting material, and the degree of freedom in designing the second electrode is increased.
  • the first electrode can be rapidly brought to a high temperature state when the electron-emitting material is heated, and the second electrode can be disconnected due to electrical stress or sputtering even when arc discharge is performed. It is possible to suppress the power to do. Therefore, disconnection of the electrode can be suppressed, and an electrode part with a long life can be obtained.
  • an electron radioactive substance is applied to the second electrode, heat radiated from the first electrode is conducted to the second electrode, and the electron radioactive substance is heated. It may be configured.
  • the electron-emitting material applied to the second electrode is heated by conduction of heat released from the first electrode to the second electrode.
  • providing the first electrode for heating the electron-emitting substance and the second electrode for performing arc discharge separately increases the degree of freedom in designing the second electrode. Therefore, it is possible to increase the surface area of the second electrode.
  • a large amount of electron-emitting material can be applied. As a result, it is possible to lengthen the period until the electron radioactive substance is depleted, and it is possible to obtain an electrode part having a long lifetime.
  • the first electrode and the second electrode may be electrically insulated.
  • the electrode unit of the present invention When the electrode unit of the present invention is applied to, for example, a light source, conduction is made between the first electrode and the second electrode when a current is supplied to the first electrode to heat the electron-emitting substance. If there is, a voltage is applied to the second electrode of the light source and a glow current is generated.
  • an insulating member is provided between the first electrode and the second electrode, and the insulating member is made of aluminum oxide, magnesium oxide, or aluminum nitride. Motole.
  • the insulating member formed between the first electrode and the second electrode needs to have a configuration capable of conducting heat released from the first electrode to the second electrode. Therefore, with the above configuration of the present invention, the insulating member is made of aluminum oxide, magnesium oxide, or aluminum nitride, so that the heat radiated from the first electrode can be efficiently conducted to the second electrode, The electron-emitting material applied to the two electrodes can be heated quickly. Even when a current is supplied to the first electrode, it is possible to suppress the current from flowing to the second electrode with a higher probability.
  • a light source of the present invention is characterized by having the above-described electrode portion.
  • the illumination device of the present invention includes the above-described light source, and a driving unit that controls driving of the light source by controlling driving of the first electrode and the second electrode of the electrode unit. It is specially made.
  • the driving unit supplies a current to the first electrode of the electrode part provided in the light source, and heats the electron-emitting material by radiating heat from the first electrode. Further, the driving means drives the light source by applying a voltage to the second electrode of the electrode part provided in the light source to cause arc discharge. As a result, it is possible to obtain a long-life lighting device that is difficult to break.
  • the driving unit includes a first electrode driving unit that controls a current supplied to the first electrode, and a second electrode that controls a voltage applied to the second electrode. It consists of electrode drive means.
  • an electric current is supplied to the first electrode to heat the electron-emitting material, and then a voltage is applied to the second electrode to perform arc discharge. That is, it is necessary to drive the first electrode and the second electrode separately.
  • the first electrode driving means for controlling the current supplied to the first electrode And the second electrode driving means for controlling the voltage applied to the second electrode, and after the electron radioactive material is heated by the first electrode, an arc discharge is caused by the second electrode! /
  • sequence driving becomes possible.
  • the second electrode driving means applies to the second electrode.
  • the voltage is applied to cause arc discharge, and the first electrode driving means stops or reduces the supply of current to the first electrode.
  • the first electrode and the second electrode are driven in turn using the first electrode driving means and the second electrode driving means, whereby the electron-emitting material is heated by the first electrode. After that, it becomes possible to perform sequence driving in which arc discharge is caused by the second electrode.
  • a liquid crystal display device of the present invention is characterized by including the above-described illumination device as a backlight.
  • the present invention is suitably used as an electrode portion of a light source used as a backlight for displaying an image on a liquid crystal display panel such as a liquid crystal TV, a liquid crystal display, or a liquid crystal monitor.
  • a liquid crystal display panel such as a liquid crystal TV, a liquid crystal display, or a liquid crystal monitor.

Landscapes

  • Discharge Lamp (AREA)

Abstract

An electrode part (1), is installed in a light source in which an electron-emissive material (7) is heated to emit thermions for causing arc discharge for light emission. The electrode part is equipped with a filament (5) for heating the electron-emissive material (7) and a plate electrode (2) for performing arc discharge, separetely. By such a constitution, an electrode part for suppressing the breakage of an electrode, a light source, an illuminating device, and a liquid crystal display can be provided.

Description

明 細 書  Specification
電極部、光源、照明装置および液晶表示装置  Electrode unit, light source, illumination device and liquid crystal display device
技術分野  Technical field
[0001] 本発明は、電極の断線を抑制する電極部、該電極部を備えた光源、該光源を備え た照明装置、および該照明装置をバックライトとする液晶表示装置に関するものであ 背景技術  TECHNICAL FIELD [0001] The present invention relates to an electrode unit that suppresses disconnection of an electrode, a light source including the electrode unit, an illumination device including the light source, and a liquid crystal display device using the illumination device as a backlight.
[0002] ノ ックライトは、液晶 TV、液晶ディスプレイ、液晶モニタ等の液晶表示パネル (以下 、 LCDパネルと称する。)に映像を表示するための光源として用いられており、 LCD パネル全面に光を供給する役割を持っている。このようなバックライトに用いられる発 光素子は、熱陰極蛍光ランプ(Hot Cathode Fluorescent Lamp: HCFL素子)や冷陰 極蛍光ランプ(Cold Cathode Fluorescent Lamp: CCFL素子)等の蛍光ランプや、 L ED素子等がある。  [0002] A knock light is used as a light source for displaying an image on a liquid crystal display panel (hereinafter referred to as an LCD panel) such as a liquid crystal TV, a liquid crystal display, and a liquid crystal monitor, and supplies light to the entire surface of the LCD panel. Have a role to play. The light emitting elements used in such backlights are fluorescent lamps such as hot cathode fluorescent lamps (HCFL elements) and cold cathode fluorescent lamps (CCFL elements), LED elements, and the like. Etc.
[0003] 熱陰極蛍光ランプは、発光効率の点において他の発光素子と比較して優れており 、比較的低い電圧で高輝度な光が得られるために広く利用されている。従来の熱陰 極蛍光ランプは、内壁面に蛍光体が塗布された円筒状のガラス管の両端内部にフィ ラメント電極が設けられており、該フィラメント電極には BaO ' CaO . SrO等の電子放 射性物質が保持されている。  [0003] A hot cathode fluorescent lamp is superior to other light emitting elements in terms of luminous efficiency, and is widely used because high luminance light can be obtained at a relatively low voltage. In a conventional thermal cathode fluorescent lamp, a filament electrode is provided inside both ends of a cylindrical glass tube whose inner wall surface is coated with a phosphor, and the filament electrode has an electron emission material such as BaO'CaO.SrO. Emissive material is retained.
[0004] 従来の熱陰極蛍光ランプの具体的な構成について、図 7を参照して説明する。図 7 は、従来の熱陰極蛍光ランプ 101の概略構成を示す図である。熱陰極蛍光ランプ 10 1は、図 7に示すように、ガラス管 102と、フィラメント電極 103と、金属ガイド 104と力、ら 構成されている。ガラス管 102の両端の開口部には、電子放射性物質が塗布された コイル状のフィラメント電極 103力 S、金属ガイド 104に保持されながら揷入されて!/、る 。なお、フィラメント電極 103としては、タングステンからなる電線が好適に用いられる 。また、金属ガイド 104としては、ジュメット線が好適に用いられる。  A specific configuration of a conventional hot cathode fluorescent lamp will be described with reference to FIG. FIG. 7 is a diagram showing a schematic configuration of a conventional hot cathode fluorescent lamp 101. As shown in FIG. 7, the hot cathode fluorescent lamp 101 is composed of a glass tube 102, a filament electrode 103, a metal guide 104, and a force. The openings at both ends of the glass tube 102 are inserted while being held by the coiled filament electrode 103 force S and the metal guide 104 coated with an electron radioactive substance! As the filament electrode 103, an electric wire made of tungsten is preferably used. As the metal guide 104, a dumet wire is preferably used.
[0005] 熱陰極蛍光ランプ 101が発光する仕組みについて以下に説明する。熱陰極蛍光ラ ンプ 101の点灯開始前にフィラメント電極 103に電流を流して予熱すると、電子放射 性物質から熱電子がガラス管 102内に放出される。そして、ガラス管 102の両端内部 に設けられたフィラメント電極 103間に高電圧を印加すると、熱電子が陽極に引かれ て放電が開始し、内部に封入された水銀に衝突した際に紫外線が放射される。紫外 線はガラス管 102の内壁面に塗布された蛍光体を励起し、蛍光体固有の可視光線 を発光する。 [0005] The mechanism by which the hot cathode fluorescent lamp 101 emits light will be described below. If the current is passed through the filament electrode 103 before the hot cathode fluorescent lamp 101 starts lighting, Thermal electrons are emitted from the active substance into the glass tube 102. When a high voltage is applied between the filament electrodes 103 provided inside both ends of the glass tube 102, thermoelectrons are attracted by the anode and discharge starts, and ultraviolet rays are emitted when colliding with mercury enclosed inside. Is done. The ultraviolet rays excite the phosphor coated on the inner wall surface of the glass tube 102 and emit visible light unique to the phosphor.
[0006] しかしながら、従来の熱陰極蛍光ランプ 101では、フィラメント電極 103の電子放射 性物質の消耗や飛散等による電子放射性物質の枯渴、またはフィラメント電極 103 の断線が生じるために、他の発光素子と比較して寿命が短くなつてしまう。  [0006] However, in the conventional hot cathode fluorescent lamp 101, the electron radioactive material is depleted due to exhaustion or scattering of the filament electrode 103, or the filament electrode 103 is disconnected. The life is shortened compared to.
[0007] 従来のフィラメント電極 103は、電子放射性物質を多量に塗布することができない。  [0007] The conventional filament electrode 103 cannot apply a large amount of electron-emitting material.
電子放射性物質は、熱電子の供給源であり、アーク放電中にスパッタリング等の現象 により蒸発してしまい、枯渴すると熱陰極蛍光ランプ 101は発光できなくなる。したが つて、フィラメント電極 103の構成では、少量の電子放射性物質しか塗布することが できないために、寿命が短くなつてしまう。  The electron radioactive substance is a source of thermionic electrons, and is evaporated by a phenomenon such as sputtering during the arc discharge. When the electron radioactive substance is exhausted, the hot cathode fluorescent lamp 101 cannot emit light. Therefore, in the configuration of the filament electrode 103, since only a small amount of the electron-emitting material can be applied, the life is shortened.
[0008] そこで、熱陰極蛍光ランプを長寿命化するために、電極の表面積を大きくし、電子 放射性物質を多量に塗布することを可能にする技術が特許文献 1に記載されている 。特許文献 1に記載された電極は、タングステンワイヤをホロ一構造になるように巻い たホロ一電極である。また、表面積を大きくした電極としては、例えば、約 0. 2mmの 極細の電線を螺旋状に巻き、該電線をさらに螺旋状に巻いたダブルコイル方式、ま たはダブルコイル方式の電線をさらに螺旋状に巻いたトリプルコイル方式がある。  [0008] In order to extend the life of the hot cathode fluorescent lamp, Patent Document 1 describes a technique that increases the surface area of an electrode and makes it possible to apply a large amount of an electron-emitting material. The electrode described in Patent Document 1 is a holo electrode in which a tungsten wire is wound so as to have a holo structure. In addition, as an electrode having a large surface area, for example, an ultra-fine wire of about 0.2 mm is spirally wound, and the wire is further spirally wound, or a double-coil or double-coil wire is further spiraled. There is a triple coil system wound in a shape.
[0009] 次に、熱陰極蛍光ランプ 101を備えた照明装置 105において、熱陰極蛍光ランプ 1 01を駆動させる従来の駆動回路 106について図 8を参照して説明する。図 8は、従 来の駆動回路 106の要部構成を示す図である。駆動回路 106は、図 8に示すように 、制御部 107と、スイッチング回路 108と、直歹 IJLC発振装置 109とから構成されてい  Next, a conventional drive circuit 106 for driving the hot cathode fluorescent lamp 101 in the illumination device 105 including the hot cathode fluorescent lamp 101 will be described with reference to FIG. FIG. 8 is a diagram showing a main configuration of a conventional drive circuit 106. As shown in FIG. 8, the drive circuit 106 includes a control unit 107, a switching circuit 108, and a direct IJLC oscillation device 109.
[0010] 駆動回路 106は、 2つの FETから構成されたスイッチング回路 108の ON、 OFFを 制御部 107が切り替えることにより、直歹 IJLC発振装置 109へ印加される電圧を制御 し、熱陰極蛍光ランプ 101の駆動を制御するものである。駆動回路 106は、電子放射 性物質を加熱するために、フィラメント電極 103に対して電流を供給させる。この際、 熱陰極蛍光ランプ 101の両端のフィラメント電極 103に対して電圧が印加され、グロ 一電流が生じる。熱陰極蛍光ランプ 101にグロ一電流が生じると、電気的ストレスや スパッタリング等によりフィラメント電極 103が断線する可能性が高くなり、寿命が短く なってしまう。そのため、熱陰極蛍光ランプ 101に生じるグロ一電流は抑制することが 好ましい。 [0010] The drive circuit 106 controls the voltage applied to the direct IJLC oscillation device 109 by switching the ON / OFF of the switching circuit 108 composed of two FETs by the control unit 107, so that the hot cathode fluorescent lamp 101 is controlled. The drive circuit 106 supplies a current to the filament electrode 103 in order to heat the electron-emitting material. On this occasion, A voltage is applied to the filament electrodes 103 at both ends of the hot cathode fluorescent lamp 101, and a glow current is generated. When a glow current is generated in the hot cathode fluorescent lamp 101, there is a high possibility that the filament electrode 103 is disconnected due to electrical stress, sputtering, or the like, and the life is shortened. Therefore, it is preferable to suppress the glow current generated in the hot cathode fluorescent lamp 101.
[0011] そこで、従来では、図 9に示す照明装置 110のように、フィラメント電極 103を独立 駆動することにより、熱陰極蛍光ランプ 101にグロ一電流が発生することを抑制して いる。照明装置 110の構成について図 9を参照して説明する。図 9は、照明装置 110 の要部構成を示す図である。  Therefore, conventionally, like the lighting device 110 shown in FIG. 9, the filament electrode 103 is independently driven to suppress the occurrence of a glow current in the hot cathode fluorescent lamp 101. The configuration of the illumination device 110 will be described with reference to FIG. FIG. 9 is a diagram showing a main configuration of the illumination device 110. As shown in FIG.
[0012] 図 9に示すように、照明装置 110は、熱陰極蛍光ランプ 101と、制御部 111と、予熱 用トランス 112と、放電用トランス 113とを備えている。制御部 111は、 2つの予熱用ト ランス 112および 1つの放電用トランス 113を介して熱陰極蛍光ランプ 101のフィラメ ント電極 103と接続されている。  As shown in FIG. 9, the illumination device 110 includes a hot cathode fluorescent lamp 101, a control unit 111, a preheating transformer 112, and a discharge transformer 113. The control unit 111 is connected to the filament electrode 103 of the hot cathode fluorescent lamp 101 via two preheating transformers 112 and one discharge transformer 113.
[0013] 具体的には、 2つの予熱用トランス 112はそれぞれ、予熱用トランス 112の 2次側の 2本の電線が、熱陰極蛍光ランプ 101の一端におけるフィラメント電極 103の両端に 接続されている。また、放電用トランス 113の 2次側の 2本の電線は、熱陰極蛍光ラン プ 101の両端のフィラメント電極 103にそれぞれ接続されて!/、る。  [0013] Specifically, in each of the two preheating transformers 112, two wires on the secondary side of the preheating transformer 112 are connected to both ends of the filament electrode 103 at one end of the hot cathode fluorescent lamp 101. . Also, the two electric wires on the secondary side of the discharge transformer 113 are connected to the filament electrodes 103 at both ends of the hot cathode fluorescent lamp 101, respectively.
[0014] ここで、照明装置 110において、熱陰極蛍光ランプ 101に発生するグロ一電流を抑 制するための駆動方法について説明する。まず、制御部 111は、予熱用トランス 112 の 1次側を制御して、 2次側に電流を流し、フィラメント電極 103に電流を供給する。 そして、フィラメント電極 103が所望の温度に達した後、制御部 111は放電用トランス 113の 1次側を制御して、 2次側へ高電圧を印加し、熱陰極蛍光ランプ 101の両端の フィラメント電極 103に電圧を印加する。その結果、フィラメント電極 103は、電子放射 性物質の加熱を行った後に、アーク放電を起こすというシーケンス駆動が可能となり 、熱陰極蛍光ランプ 101に発生するグロ一電流を抑制することができる。  Here, a driving method for suppressing the glow current generated in the hot cathode fluorescent lamp 101 in the illumination device 110 will be described. First, the control unit 111 controls the primary side of the preheating transformer 112, supplies current to the secondary side, and supplies current to the filament electrode 103. After the filament electrode 103 reaches a desired temperature, the control unit 111 controls the primary side of the discharge transformer 113 to apply a high voltage to the secondary side, and the filaments at both ends of the hot cathode fluorescent lamp 101 A voltage is applied to the electrode 103. As a result, the filament electrode 103 can be driven by a sequence in which arc discharge occurs after heating the electron-emitting material, and the glow current generated in the hot cathode fluorescent lamp 101 can be suppressed.
特許文献 1 :日本国公開特許公報「特開平 6— 52827号 (公開日: 1994年 2月 25日 )」  Patent Document 1: Japanese Patent Publication “Japanese Patent Laid-Open No. 6-52827 (Publication Date: February 25, 1994)”
発明の開示 [0015] 上述した特許文献 1に記載されたホロ一電極、ダブルコイル方式の電極およびトリ プルコイル方式の電極は、電極の表面積が大きくなるために、電極に電子放射性物 質を多量に塗布することが可能となる。その結果、電子放射性物質の枯渴による熱 陰極蛍光ランプの寿命を延ばすことができる。 Disclosure of the invention [0015] The hollow electrode, the double coil type electrode, and the triple coil type electrode described in Patent Document 1 described above have a large surface area of the electrode, so that a large amount of electron-emitting material is applied to the electrode. Is possible. As a result, the lifetime of the hot cathode fluorescent lamp can be extended due to the decay of the electron radioactive material.
[0016] しかしながら、従来の電極の構成では、電子放射性物質の枯渴による熱陰極蛍光 ランプの寿命を延ばすことはできる力 電極の断線による寿命を延ばすことはできな い。これは、従来の電極が、電子放射性物質を加熱させる役割と、アーク放電を行う 役割との 2つの役割を有しているために生じる。  [0016] However, with the conventional electrode configuration, it is possible to extend the life of the hot cathode fluorescent lamp due to the decay of the electron-emitting substance, but it is not possible to extend the life due to the disconnection of the force electrode. This occurs because conventional electrodes have two roles: heating the electron emissive material and performing arc discharge.
[0017] 電子放射性物質を加熱するために適した電極の構成は、約 2000度以上の高温に 耐え得る耐熱性を有し、かつ、発熱量を上げるために大きな電気抵抗を有した構成 である。大きな電気抵抗を有した構成とするためには、電極をできるだけ細くすること が好ましい。これに対し、アーク放電を行うために適した電極の構成は、電気的ストレ スゃスパッタリング等に対して耐性を有する、すなわち、容積または表面積が大きな 構成である。  [0017] The configuration of the electrode suitable for heating the electron-emitting substance has a heat resistance capable of withstanding a high temperature of about 2000 degrees or more, and has a large electric resistance for increasing the amount of heat generation. . In order to obtain a configuration having a large electric resistance, it is preferable to make the electrode as thin as possible. On the other hand, an electrode configuration suitable for performing arc discharge is resistant to electrical stress sputtering, that is, a configuration having a large volume or surface area.
[0018] このため、電極は、電子放射性物質を加熱させる役割に適した構成にすると、ァー ク放電を行う役割には適さない構成となってしまい、アーク放電を行う役割に適した 構成とすると、電子放射性物質を加熱させる役割に適さない構成となってしまう。熱 陰極蛍光ランプ 101におけるフィラメント電極 103や、特許文献 1に記載されたホロ一 電極等のような従来の電極は、電子放射性物質を加熱するために適した電極の構成 となっており、アーク放電を行う役割には適していない。その結果、従来の電極を用 いてアーク放電を行うと、電気的ストレスやスパッタリング等により電極が断線する可 能性が高ぐ熱陰極蛍光ランプの寿命が短くなつてしまう。  [0018] For this reason, if the electrode is configured to be suitable for the role of heating the electron-emitting material, the electrode is not suitable for the role of performing arc discharge, and the configuration is suitable for the role of performing arc discharge. Then, it becomes the structure which is not suitable for the role which heats an electron radioactive substance. Conventional electrodes such as the filament electrode 103 in the hot-cathode fluorescent lamp 101 and the hollow electrode described in Patent Document 1 have an electrode configuration suitable for heating the electron-emitting material, and arc discharge. It is not suitable for the role to perform. As a result, when arc discharge is performed using a conventional electrode, the life of the hot cathode fluorescent lamp is shortened because the electrode is more likely to break due to electrical stress or sputtering.
[0019] そこで、スパッタリングによる電極の断線を抑制するために、フィラメント電極の周囲 に該フィラメント電極を保護するためのカップ状の電極を備えた電極部が知られてい る。し力もながら、上記電極部では、スパッタリングによるフィラメント電極の断線を抑 制することはできる力 S、電気的ストレスによる断線を抑制することはできない。  [0019] Therefore, in order to suppress the disconnection of the electrode due to sputtering, an electrode portion including a cup-shaped electrode for protecting the filament electrode around the filament electrode is known. However, in the above electrode part, the force S that can suppress the disconnection of the filament electrode due to sputtering cannot be suppressed, and the disconnection due to electrical stress cannot be suppressed.
[0020] 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、電極の断線を 抑制する電極部、光源、照明装置および液晶表示装置を提供することにある。 [0021] 本発明の電極部は、上記課題を解決するために、電子放射性物質を加熱して熱電 子を放出させ、アーク放電を行うことにより発光する光源に備えられる電極部であつ て、電子放射性物質を加熱するための第 1電極と、アーク放電を行うための第 2電極 とを別々に備えてレヽることを特徴として!/ヽる。 The present invention has been made in view of the above problems, and an object thereof is to provide an electrode section, a light source, an illumination device, and a liquid crystal display device that suppress the disconnection of the electrodes. [0021] In order to solve the above-mentioned problems, the electrode unit of the present invention is an electrode unit provided in a light source that emits light by heating an electron-emitting substance to emit thermoelectrons and performing arc discharge. It is characterized by having a first electrode for heating the radioactive material and a second electrode for arc discharge separately.
[0022] 電子放射性物質を加熱するための電極は、電気抵抗が大きぐ短時間で高温状態 となる構成にする必要がある。し力もながら、アーク放電を行うための電極は、電気的 ストレスやスパッタリング等に対して耐性を有する構成、すなわち、容積または表面積 の大きな構成にする必要がある。  [0022] An electrode for heating the electron-emitting substance needs to be configured to be in a high temperature state in a short time with a large electric resistance. However, the electrode for performing arc discharge needs to have a structure resistant to electrical stress and sputtering, that is, a structure having a large volume or surface area.
[0023] そこで、本発明の上記構成により、電極部を、電子放射性物質を加熱するための第 1電極と、アーク放電を行うための第 2電極とに分けることにより、第 1電極を電気抵抗 が大きな構成にするとともに、第 2電極を容積または表面積の大きな構成とすることが できる。すなわち、第 2電極は電子放射性物質を加熱するために電気抵抗を大きくす る必要がなくなり、第 2電極の設計自由度が高くなる。  [0023] Thus, according to the above configuration of the present invention, the electrode portion is divided into a first electrode for heating the electron-emitting material and a second electrode for performing arc discharge, thereby making the first electrode an electric resistance. The second electrode can have a large volume or surface area. That is, the second electrode does not need to have an increased electrical resistance in order to heat the electron-emitting material, and the degree of freedom in designing the second electrode is increased.
[0024] その結果、第 1電極は電子放射性物質を加熱する際に迅速に高温状態とすること が可能であり、第 2電極はアーク放電を行っても電気的ストレスやスパッタリング等に より断泉することを抑制すること力可能となる。したがって、電極の断線を抑制でき、 長寿命化した電極部を得ることができる。  [0024] As a result, the first electrode can be rapidly brought to a high temperature state when the electron-emitting material is heated, and the second electrode can be disconnected due to electrical stress or sputtering even when arc discharge is performed. It is possible to suppress the power to do. Therefore, disconnection of the electrode can be suppressed, and an electrode part with a long life can be obtained.
図面の簡単な説明  Brief Description of Drawings
[0025] [図 1]本発明に係る電極部の一実施例の概略構成を示す図であり、(a)は該電極部 を示す斜視図であり、 (b)は該電極部をヒータ線が設けられている側から見た図であ  FIG. 1 is a diagram showing a schematic configuration of an embodiment of an electrode unit according to the present invention, (a) is a perspective view showing the electrode unit, and (b) is a diagram showing a heater wire connected to the electrode unit. Is a view from the side where
[図 2]上記電極部の絶縁性層を高絶縁性層に置き換えた構成を示す図であり、 (a) は該電極部を示す断面図であり、 (b)は該電極部をヒータ線が設けられている側から 見た図である。 FIG. 2 is a diagram showing a configuration in which the insulating layer of the electrode part is replaced with a highly insulating layer, (a) is a cross-sectional view showing the electrode part, and (b) is a heater wire. It is the figure seen from the side where is provided.
[図 3]上記電極部を備えた照明装置の概略構成を示す図である。  FIG. 3 is a diagram showing a schematic configuration of a lighting device including the electrode unit.
[図 4]上記照明装置の駆動回路の要部構成を示す図である。  FIG. 4 is a diagram showing a configuration of a main part of a drive circuit of the illumination device.
[図 5]ヒータ電流、ランプ電圧およびランプ電流と、熱陰極蛍光ランプの点灯における 予熱期間、始動期間および定常期間との関係を示す図である。 園 6]上記照明装置を用いた液晶表示装置の概略構成を示す図である。 FIG. 5 is a diagram showing the relationship between the heater current, lamp voltage, and lamp current, and the preheating period, starting period, and steady period in lighting of the hot cathode fluorescent lamp. 6] A diagram showing a schematic configuration of a liquid crystal display device using the illumination device.
園 7]従来の熱陰極蛍光ランプの要部構成を示す図である。 FIG. 7] A diagram showing a main part configuration of a conventional hot cathode fluorescent lamp.
園 8]従来の熱陰極蛍光ランプを備えた照明装置の駆動回路の要部構成を示す図 である。 FIG. 8] A diagram showing a configuration of a main part of a drive circuit of a lighting device provided with a conventional hot cathode fluorescent lamp.
園 9]従来の熱陰極蛍光ランプにおけるフィラメント電極を独立駆動する構成の駆動 回路の要部構成を示す図である。 FIG. 9] A diagram showing a main part configuration of a drive circuit configured to independently drive filament electrodes in a conventional hot cathode fluorescent lamp.
符号の説明 Explanation of symbols
1 電極部  1 Electrode section
2 プレート状電極(第 2電極)  2 Plate electrode (second electrode)
3 絶縁性層 (絶縁性部材)  3 Insulating layer (insulating material)
4 電極線  4 Electrode wire
5 フィラメント(第 1電極)  5 Filament (first electrode)
6 ヒータ線  6 Heater wire
7 電子放射性物質  7 Electron radioactive material
8 高絶縁性層 (絶縁性部材)  8 High insulating layer (insulating material)
11 照明装置  11 Lighting equipment
12 熱陰極蛍光ランプ (光源)  12 Hot cathode fluorescent lamp (light source)
13 駆動回路 (駆動手段)  13 Drive circuit (drive means)
14 ヒータ回路 (第 1電極駆動手段)  14 Heater circuit (first electrode drive means)
15 主放電回路 (第 2電極駆動手段)  15 Main discharge circuit (second electrode drive means)
16 ヒータ制御部  16 Heater controller
17 制御部  17 Control unit
18 スイッチング回路  18 Switching circuit
19 直列 LC共振回路  19 Series LC resonant circuit
51 液晶表示装置  51 Liquid crystal display
52 面光源装置  52 Surface light source device
53 光学シート  53 Optical sheet
54 液晶表示パネノレ 発明を実施するための最良の形態 54 LCD panel display BEST MODE FOR CARRYING OUT THE INVENTION
[0027] 本発明の一実施形態について図 1〜図 6に基づいて説明すると以下の通りである。 One embodiment of the present invention will be described below with reference to FIGS. 1 to 6.
[0028] 本発明の電極部は、電子放射性物質を加熱するための電極と、アーク放電を行う ための電極とを別々に設けている。これにより、アーク放電を行うための電極は、設計 自由度が高くなり、断線が生じにくい構成にすることが可能となる。その結果、本発明 の電極部は、断泉が生じることを抑制すること力 Sできる。 [0028] The electrode section of the present invention is provided with an electrode for heating the electron-emitting substance and an electrode for performing arc discharge separately. As a result, the electrode for performing the arc discharge has a high degree of design freedom and can be configured to prevent disconnection. As a result, the electrode portion of the present invention can suppress the occurrence of a spring break.
[0029] 〔電極部〕 [Electrode part]
まず、本実施形態の電極部 1について図 1〜図 6を参照して説明する。図 1は、本 実施形態の電極部 1の概略構成を示す図であり、(a)は電極部 1の斜視図であり、 (b )は電極部 1をヒータ線 6が設けられている側から見た図である。  First, the electrode part 1 of this embodiment is demonstrated with reference to FIGS. FIG. 1 is a diagram showing a schematic configuration of an electrode unit 1 of the present embodiment, (a) is a perspective view of the electrode unit 1, and (b) is a side where the heater wire 6 is provided on the electrode unit 1. It is the figure seen from.
[0030] 本実施形態の電極部 1は、図 1の(a)および (b)に示すように、プレート状電極 2 (第 [0030] As shown in FIGS. 1A and 1B, the electrode section 1 of the present embodiment includes a plate-like electrode 2 (first
2電極)と、絶縁性層 3 (絶縁性部材)と、電極線 4と、フィラメント 5 (第 1電極)と、ヒータ 線 6とから構成されている。電極部 1は、熱陰極蛍光ランプの電極部に好適に用いら れる。  2 electrodes), an insulating layer 3 (insulating member), an electrode wire 4, a filament 5 (first electrode), and a heater wire 6. The electrode part 1 is preferably used for an electrode part of a hot cathode fluorescent lamp.
[0031] プレート状電極 2は、例えば、電極部 1を熱陰極蛍光ランプに適用した場合に、ァ ーク放電を行うための電極である。プレート状電極 2は、所定の厚みを有した円状の 板であり、 Niから構成されている。また、プレート状電極 2は、一方の面には電子放射 性物質 7が塗布されており、他方の面にはプレート状電極 2に外部電源からランプ電 圧を印加するための電極線 4が接続されている。プレート状電極 2の電極線 4が接続 された面において、電極線 4を除いた他の部分には絶縁性層 3が形成されている。ま た、プレート状電極 2は絶縁性層 3を介してフィラメント 5と接続されており、プレート状 電極 2とフィラメント 5とは電気的に絶縁している。  [0031] The plate electrode 2 is an electrode for performing arc discharge when the electrode unit 1 is applied to a hot cathode fluorescent lamp, for example. The plate-like electrode 2 is a circular plate having a predetermined thickness, and is made of Ni. In addition, the plate-like electrode 2 is coated with an electron-emitting substance 7 on one surface, and the electrode wire 4 for applying a lamp voltage from an external power source is connected to the plate-like electrode 2 on the other surface. Has been. On the surface of the plate-like electrode 2 to which the electrode line 4 is connected, an insulating layer 3 is formed on the other part excluding the electrode line 4. Further, the plate-like electrode 2 is connected to the filament 5 through the insulating layer 3, and the plate-like electrode 2 and the filament 5 are electrically insulated.
[0032] プレート状電極 2の電子放射性物質 7が塗布されている面は、平滑面であってもよ いし、凹凸面であってもよい。電子放射性物質 7は、プレート状電極 2の面上に、機械 的に塗布若しくは含浸、または蒸着やエッチング等によって塗布してもよい。なお、 電子放射性物質 7としては、 Ba, Ca, Sr等のアルカリ土類金属の酸化物や、アルカリ 土類金属のタングステン酸塩等が好適に用いられる。  [0032] The surface of the plate-like electrode 2 on which the electron-emitting material 7 is applied may be a smooth surface or an uneven surface. The electron radioactive substance 7 may be mechanically applied or impregnated on the surface of the plate-like electrode 2 or applied by vapor deposition or etching. As the electron-emitting substance 7, an alkaline earth metal oxide such as Ba, Ca, Sr, an alkaline earth metal tungstate, or the like is preferably used.
[0033] フィラメント 5は、プレート状電極 2に塗布された電子放射性物質 7を加熱するため のものであり、ヒータ線 6を介して外部電源から電流が供給されることにより発熱する。 フィラメント 5は、図 1の(b)に示すように、タングステンワイヤをコイル状に巻いた構成 であり、絶縁性層 3に接続されている。なお、フィラメント 5としては、図 1の(b)ではフィ ラメントを用いている力 本発明はこれに限られず、電気抵抗が大きぐかつ、耐熱性 に優れた構成であればょレ、。 [0033] The filament 5 is used to heat the electron-emitting material 7 applied to the plate-like electrode 2. It generates heat when current is supplied from an external power source via the heater wire 6. As shown in FIG. 1B, the filament 5 has a configuration in which a tungsten wire is wound in a coil shape, and is connected to the insulating layer 3. Note that the filament 5 is a force using a filament in FIG. 1 (b). The present invention is not limited to this, and the filament 5 has a large electric resistance and excellent heat resistance.
[0034] フィラメント 5から放射された熱は、絶縁性層 3を介してプレート状電極 2に伝導され る。プレート状電極 2が加熱されると、プレート状電極 2に塗布された電子放射性物質 7も加熱され、電子放射性物質 7から熱電子が放出される。なお、プレート状電極 2と フィラメント 5とは絶縁性層 3によって電気的に絶縁しているために、ヒータ線 6を介し てフィラメント 5に供給されたヒータ電流によって、プレート状電極 2にランプ電圧が印 カロされることはない。すなわち、プレート状電極 2に対しては、電極線 4を介して外部 電源からランプ電圧が印加される以外に、電流が供給されることはなレ、。  The heat radiated from the filament 5 is conducted to the plate electrode 2 through the insulating layer 3. When the plate-like electrode 2 is heated, the electron-emitting material 7 applied to the plate-like electrode 2 is also heated, and thermoelectrons are emitted from the electron-emitting material 7. Since the plate-like electrode 2 and the filament 5 are electrically insulated by the insulating layer 3, the lamp voltage is applied to the plate-like electrode 2 by the heater current supplied to the filament 5 via the heater wire 6. MARK That is, no current is supplied to the plate-like electrode 2 except that a lamp voltage is applied from the external power source via the electrode wire 4.
[0035] なお、プレート状電極 2の形状は、図 1の(a)および(b)では円状となっている力 本 発明はこれに限られず、多角形であってもよい。つまり、プレート状電極 2は、電子放 射性物質 7を大量に塗布することができ、かつ、フィラメント 5が放射した熱を効率的 に電子放射性物質 7に伝導できる構成であればよい。また、本実施形態のプレート 状電極 2は Niから構成されている力 本発明はこれに限られず、例えばアルミナゃモ リブデン等の熱伝導率の大きな材料から構成されて!/、ればよ!/、。プレート状電極 2が 非常に熱伝導率の大きな材料から構成されている場合は、プレート状電極 2の形状 は板状でなくても力、まわない。同様に、絶縁性層 3を構成する材料としては、絶縁性 および熱伝導性を有していればよぐ例えば、樹脂やセラミック等が好適に用いられ  The shape of the plate-like electrode 2 is a force that is circular in FIGS. 1A and 1B. The present invention is not limited to this, and may be a polygon. That is, the plate-like electrode 2 only needs to have a configuration that can apply a large amount of the electron-emitting material 7 and can efficiently conduct the heat radiated from the filament 5 to the electron-emitting material 7. In addition, the plate-like electrode 2 of the present embodiment is composed of Ni. The present invention is not limited to this. For example, the plate-like electrode 2 is composed of a material having a high thermal conductivity such as alumina or molybdenum! /. If the plate-like electrode 2 is made of a material having a very high thermal conductivity, the plate-like electrode 2 does not have a force even if it is not plate-like. Similarly, as the material constituting the insulating layer 3, it is sufficient if it has insulating properties and thermal conductivity, for example, resin or ceramic is suitably used.
[0036] また、プレート状電極 2とフィラメント 5との間に形成されるのは絶縁性層 3に限られ ず、図 2の(a)および (b)に示すように、絶縁性および熱伝導性の高い材料から構成 された高絶縁性層 8をプレート状電極 2の電子放射性物質 7が塗布されている面とは 反対側の面に形成してもよい。図 2は、本実施形態の電極部 1の絶縁性層 3を高絶 縁性層 8に置き換えた構成を示す図であり、(a)は電極部 1を示す断面図であり、 (b) は電極部 1をヒータ 6線が設けられている側から見た図である。 [0037] 高絶縁性層 8を構成する材料としては、例えば、酸化アルミニウム、酸化マグネシゥ ムまたは窒化アルミニウムが好適に用いられる。プレート状電極 2とフィラメント 5との 間に高絶縁性層 8が設けられることにより、図 2の(a)の矢印で示すように、フィラメント 5が放射した熱が効率的にプレート状電極 2に伝導される。 [0036] Further, what is formed between the plate-like electrode 2 and the filament 5 is not limited to the insulating layer 3, and as shown in FIGS. A highly insulating layer 8 made of a highly conductive material may be formed on the surface of the plate-like electrode 2 opposite to the surface on which the electron-emitting material 7 is applied. FIG. 2 is a view showing a configuration in which the insulating layer 3 of the electrode part 1 of the present embodiment is replaced with a highly insulating layer 8, and (a) is a cross-sectional view showing the electrode part 1, (b) Fig. 4 is a view of the electrode unit 1 as viewed from the side where the heater 6 wire is provided. [0037] As a material constituting the highly insulating layer 8, for example, aluminum oxide, magnesium oxide, or aluminum nitride is preferably used. By providing the highly insulating layer 8 between the plate electrode 2 and the filament 5, the heat radiated from the filament 5 is efficiently applied to the plate electrode 2 as shown by the arrow in FIG. Conducted.
[0038] なお、本実施形態の電極部 1は、プレート状電極 2とフィラメント 5とは絶縁性層 3を 介して接続されている力 本発明はこれに限られない。つまり、プレート状電極 2とフィ ラメント 5とは接続されずに別々に配置されていてもよいし、絶縁性層 3を介さずに直 接接続されてレ、てもよレ、。プレート状電極 2とフィラメント 5とが接続されて!/、な!/、場合 は、フィラメント 5に電子放射性物質 7を塗布するための表面積の大きな部材を接続し てもよい。すなわち、本発明の電極部は、少なくともアーク放電を行うためのプレート 状電極 2と、電子放射性物質 7を加熱するためのフィラメント 5とを有していればよい。  [0038] In the electrode portion 1 of the present embodiment, the force in which the plate-like electrode 2 and the filament 5 are connected via the insulating layer 3 is not limited to this. That is, the plate electrode 2 and the filament 5 may be arranged separately without being connected, or may be directly connected without the insulating layer 3 interposed therebetween. In the case where the plate-like electrode 2 and the filament 5 are connected! /, Or! /, A member having a large surface area for applying the electron-emitting material 7 to the filament 5 may be connected. That is, the electrode part of the present invention only needs to have at least the plate-like electrode 2 for performing arc discharge and the filament 5 for heating the electron-emitting material 7.
[0039] 以上のように、本実施形態の電極部 1は、電子放射性物質 7を加熱して熱電子を放 出させ、アーク放電を行うことにより発光する光源に備えられた電極部であって、電子 放射性物質 7を加熱するためのフィラメント 5と、アーク放電を行うためのプレート状電 極 2とを別々に備えている。  [0039] As described above, the electrode unit 1 of the present embodiment is an electrode unit provided in a light source that emits light by heating the electron-emitting material 7 to emit thermoelectrons and performing arc discharge. The filament 5 for heating the electron-emitting material 7 and the plate electrode 2 for performing arc discharge are separately provided.
[0040] 上述したように、電子放射性物質 7を加熱するための電極は、電気抵抗が大きぐ 短時間で高温状態となる構成にする必要がある。し力、しながら、アーク放電を行うた めの電極は、電気的ストレスやスパッタリング等に対して耐性を有する構成、すなわち 、容積または表面積の大きな構成にする必要がある。  [0040] As described above, the electrode for heating the electron emissive substance 7 needs to have a configuration in which the electrical resistance is large and the temperature is raised in a short time. However, the electrode for performing the arc discharge needs to have a structure resistant to electrical stress, sputtering, etc., that is, a structure having a large volume or surface area.
[0041] そこで、本実施形態の電極部 1においては、電子放射性物質 7を加熱するためのフ イラメント 5と、アーク放電を行うためのプレート状電極 2とに分けることにより、フィラメ ント 5を電気抵抗の大きい構成にするとともに、プレート状電極 2を容積または表面積 の大きな構成とすることができる。すなわち、プレート状電極 2の設計自由度が非常 に高くなる。  [0041] Therefore, in the electrode part 1 of the present embodiment, the filament 5 is electrically separated by dividing it into a filament 5 for heating the electron-emitting substance 7 and a plate-like electrode 2 for performing arc discharge. In addition to a configuration having a large resistance, the plate-like electrode 2 can be configured to have a large volume or surface area. That is, the degree of freedom in designing the plate electrode 2 is very high.
[0042] その結果、フィラメント 5は電子放射性物質 7を加熱する際に迅速に高温状態とする ことが可能であり、プレート状電極 2はアーク放電を行っても電気的ストレスゃスパッタ リング等により断線することを抑制することが可能となる。したがって、電極の断線を抑 制でき、長寿命化した電極部 1を得ることができる。 [0043] 〔照明装置〕 [0042] As a result, the filament 5 can be rapidly brought to a high temperature state when the electron-emitting material 7 is heated, and the plate-like electrode 2 is disconnected due to electrical stress or sputtering even if arc discharge is performed. It is possible to suppress this. Therefore, the disconnection of the electrode can be suppressed, and the electrode part 1 having a long life can be obtained. [0043] [Lighting device]
次に、本実施形態の電極部 1を備えた熱陰極蛍光ランプを備える照明装置につい て図 3および図 4を参照して説明する。図 3は、本実施形態の電極部 1を備えた熱陰 極蛍光ランプ 12を備える照明装置 11の概略構成を示す図である。  Next, an illuminating device including a hot cathode fluorescent lamp including the electrode unit 1 according to the present embodiment will be described with reference to FIGS. 3 and 4. FIG. FIG. 3 is a diagram showing a schematic configuration of the illumination device 11 including the thermal cathode fluorescent lamp 12 including the electrode unit 1 of the present embodiment.
[0044] 照明装置 11は、図 3に示すように、熱陰極蛍光ランプ 12 (光源)と、駆動回路 13 ( 駆動手段)とから構成されている。照明装置 11は、液晶 TV、液晶ディスプレイ、液晶 モニタ等の液晶表示パネルに映像を表示するためのバックライトとして好適に用いら れる。  As shown in FIG. 3, the illumination device 11 includes a hot cathode fluorescent lamp 12 (light source) and a drive circuit 13 (drive means). The illumination device 11 is preferably used as a backlight for displaying an image on a liquid crystal display panel such as a liquid crystal TV, a liquid crystal display, or a liquid crystal monitor.
[0045] 熱陰極蛍光ランプ 12は、円筒状のガラス管と、本実施形態の電極部 1とから構成さ れている。上記ガラス管は、その内壁面に RGBの 3波長蛍光体が全面に塗布されて おり、その両端部の内側には電極部 1が設けられている。また、図示しない口金等に より上記ガラス管の両端の開口部は塞がれている。  [0045] The hot cathode fluorescent lamp 12 is composed of a cylindrical glass tube and the electrode unit 1 of the present embodiment. The glass tube has an RGB inner wall surface coated with an RGB three-wavelength phosphor, and electrode portions 1 are provided on the inner sides of both ends. Further, the openings at both ends of the glass tube are closed by a base (not shown).
[0046] 駆動回路 13は、電極部 1の駆動を制御するためのものであり、図 3に示すように、フ イラメント 5に供給される電流を制御するヒータ回路 14 (第 1電極駆動手段)と、電極 線 4を介してプレート状電極 2に印加される電圧を制御する主放電回路 15 (第 2電極 駆動手段)とから構成されている。ここで、ヒータ回路 14および主放電回路 15の具体 的な構成について図 4を参照して説明する。図 4は、駆動回路 13の要部構成を示す 図である。  [0046] The drive circuit 13 is for controlling the drive of the electrode unit 1, and as shown in FIG. 3, a heater circuit 14 (first electrode drive means) for controlling the current supplied to the filament 5 And a main discharge circuit 15 (second electrode driving means) for controlling the voltage applied to the plate-like electrode 2 via the electrode wire 4. Here, specific configurations of the heater circuit 14 and the main discharge circuit 15 will be described with reference to FIG. FIG. 4 is a diagram illustrating a main configuration of the drive circuit 13.
[0047] ヒータ回路 14は、図 4に示すように、ヒータ制御部 16と、電源とから構成されている 。ヒータ回路 14は、熱陰極蛍光ランプ 12の両端に備えられた電極部 1のフィラメント 5 に接続されている。ヒータ制御部 16は、フィラメント 5に供給される電流量を調節する ことにより、フィラメント 5が放射する熱量を調節している。  As shown in FIG. 4, the heater circuit 14 includes a heater control unit 16 and a power source. The heater circuit 14 is connected to the filament 5 of the electrode unit 1 provided at both ends of the hot cathode fluorescent lamp 12. The heater control unit 16 adjusts the amount of heat radiated from the filament 5 by adjusting the amount of current supplied to the filament 5.
[0048] 主放電回路 15は、図 4に示すように、制御部 17と、スイッチング回路 18と、直歹 l]LC 発振装置 19とから構成されている。制御部 17は、 2つの FETから構成されたスィッチ ング回路 18の ON、 OFFを切り替えて、直歹 IJLC発振装置 19へ印加される電圧を制 御することにより、電極部 1のプレート状電極 2に印加される電圧を制御し、熱陰極蛍 光ランプ 12の駆動を制御する。  As shown in FIG. 4, the main discharge circuit 15 includes a control unit 17, a switching circuit 18, and a direct l] LC oscillation device 19. The control unit 17 switches the ON / OFF of the switching circuit 18 composed of two FETs, and controls the voltage applied to the direct IJLC oscillation device 19 to thereby control the plate-like electrode 2 of the electrode unit 1. The voltage applied to is controlled, and the drive of the hot cathode fluorescent lamp 12 is controlled.
[0049] なお、主放電回路 15は、上記構成に限られず、プレート状電極 2に印加される電圧 を制御することにより、熱陰極蛍光ランプ 12の駆動を制御可能であればよぐ制御部 17への電源供給を調節することにより、熱陰極蛍光ランプ 12の駆動を制御する構成 であってもかまわない。 [0049] The main discharge circuit 15 is not limited to the above configuration, and the voltage applied to the plate electrode 2 It is possible to control the driving of the hot cathode fluorescent lamp 12 by adjusting the power supply to the control unit 17 as long as the control of the driving of the hot cathode fluorescent lamp 12 can be controlled. Absent.
[0050] ここで、ヒータ回路 14および主放電回路 15による本実施形態の電極部 1の制御に ついて図 5を参照して説明する。図 5は、ヒータ電流、ランプ電圧およびランプ電流と 、熱陰極蛍光ランプの点灯における予熱期間、始動期間および定常期間との関係を 示す図である。まず、熱陰極蛍光ランプ 12が発光する仕組みについて以下に説明 する。  Here, the control of the electrode unit 1 of the present embodiment by the heater circuit 14 and the main discharge circuit 15 will be described with reference to FIG. FIG. 5 is a diagram showing the relationship between the heater current, the lamp voltage, and the lamp current, and the preheating period, starting period, and steady period in lighting of the hot cathode fluorescent lamp. First, the mechanism by which the hot cathode fluorescent lamp 12 emits light will be described below.
[0051] 熱陰極蛍光ランプ 12の点灯開始前に、照明装置 1 1の駆動回路 13において、ヒー タ回路 14のヒータ制御部 16が、熱陰極蛍光ランプ 12の両端に設けられた本実施形 態の電極部 1のフィラメント 5に対して電源からヒータ電流を供給する。フィラメント 5は 熱を放射し、その熱は絶縁性層 3を介してプレート状電極 2に伝導し、プレート状電 極 2は加熱される。そして、フィラメント 5から放射された熱は、プレート状電極 2に塗 布された電子放射性物質 7に伝導し、電子放射性物質 7から熱電子が熱陰極蛍光ラ ンプ 12のガラス管内に放出される(予熱期間)。  [0051] Prior to the lighting of the hot cathode fluorescent lamp 12, in the driving circuit 13 of the lighting device 11, the heater control unit 16 of the heater circuit 14 is provided at both ends of the hot cathode fluorescent lamp 12. A heater current is supplied from the power source to the filament 5 of the electrode portion 1 of the electrode. The filament 5 radiates heat, which is conducted to the plate electrode 2 through the insulating layer 3, and the plate electrode 2 is heated. The heat radiated from the filament 5 is conducted to the electron-emitting material 7 applied to the plate-like electrode 2, and the thermoelectrons are emitted from the electron-emitting material 7 into the glass tube of the hot cathode fluorescent lamp 12 ( Preheating period).
[0052] 次に、照明装置 11の駆動回路 13において、主放電回路 15の制御部 17が、スイツ チング回路 18をオンにして、直歹 IJLC発振装置 19を介して熱陰極蛍光ランプ 12の両 端に設けられた電極線 4を介してプレート状電極 2にランプ電圧が印加される(始動 期間)。そして、熱電子が陽極に引かれて放電が開始し、熱陰極蛍光ランプ 12にラン プ電流が流れ、熱電子がガラス管内部に封入された水銀に衝突した際に紫外線が 放射される。紫外線は上記ガラス管の内壁面に塗布された蛍光体を励起し、蛍光体 固有の可視光線を発光する (定常期間)。  Next, in the drive circuit 13 of the illumination device 11, the control unit 17 of the main discharge circuit 15 turns on the switching circuit 18 and both the hot cathode fluorescent lamps 12 are connected via the direct IJLC oscillation device 19. A lamp voltage is applied to the plate-like electrode 2 through the electrode wire 4 provided at the end (starting period). Then, the hot electrons are attracted to the anode and discharge starts, a lamp current flows through the hot cathode fluorescent lamp 12, and ultraviolet rays are emitted when the hot electrons collide with mercury enclosed in the glass tube. Ultraviolet light excites the phosphor coated on the inner wall surface of the glass tube and emits visible light unique to the phosphor (stationary period).
[0053] 図 5を参照すると、ヒータ電流は、予熱期間が開始した時点から、熱陰極蛍光ランプ 12が点灯する定常期間まで一定の電流量でフィラメント 5に供給されており、定常期 間になると電流量が減少する。また、ランプ電圧は、熱陰極蛍光ランプ 12を点灯させ るためにアーク放電を行う始動期間から定常期間が終了するまでの間、電極線 4を 介してプレート状電極 2に印加される。そして、ランプ電流は、熱陰極蛍光ランプ 12 が点灯する定常期間から定常期間が終了するまでの間、熱陰極蛍光ランプ 12に発 生する。なお、ヒータ電流は、定常期間に入った後、図 5においては供給量を減少さ せて!/、るが、供給を停止させる構成であってもよ!/、。 [0053] Referring to FIG. 5, the heater current is supplied to the filament 5 at a constant current amount from the time when the preheating period starts until the steady period when the hot cathode fluorescent lamp 12 is turned on. The amount of current decreases. Further, the lamp voltage is applied to the plate electrode 2 via the electrode wire 4 from the start period in which arc discharge is performed to turn on the hot cathode fluorescent lamp 12 until the stationary period ends. The lamp current is generated in the hot cathode fluorescent lamp 12 from the steady period when the hot cathode fluorescent lamp 12 is lit until the end of the steady period. To be born. Note that the heater current is reduced in the supply amount in FIG. 5 after entering the steady period! /, But the supply may be stopped! /.
[0054] このように、照明装置 11では、フィラメント 5に供給される電流を制御するヒータ回路 14と、プレート状電極 2に印加される電圧を制御する主放電回路 15とを備えることに より、フィラメント 5により電子放射性物質 7の加熱を行った後に、プレート状電極 2に よりアーク放電を起こすというシーケンス駆動が可能となる。そのため、ヒータ電流値 およびヒータ電流の供給時間を自由に設定することができ、定常期間においてもヒー タ電流を容易に可変することができる。  As described above, the illumination device 11 includes the heater circuit 14 that controls the current supplied to the filament 5 and the main discharge circuit 15 that controls the voltage applied to the plate electrode 2. After heating the electron-emitting material 7 with the filament 5, a sequence drive is possible in which an arc discharge is generated by the plate electrode 2. Therefore, the heater current value and the heater current supply time can be set freely, and the heater current can be easily varied even in the steady period.
[0055] また、ヒータ回路 14は電極部 1のフィラメント 5に接続されており、主放電回路 15は 電極部 1の電極線 4に接続されており、かつ、フィラメント 5とプレート状電極 2との間 には絶縁性層 3が設けられており、電気的に絶縁している。したがって、電子放射性 物質 7を加熱するために、ヒータ回路 14によりフィラメント 5に電流を供給したとき、プ レート状電極 2に電流が供給されないために、熱陰極蛍光ランプ 12の両端のプレー ト状電極 2にランプ電圧が印加されることがなぐ熱陰極蛍光ランプ 12にグロ一電流 が生じない。そのため、本実施形態の電極部 1に電気的ストレスやスパッタリング等が 影響する時間が短くなるために、熱陰極蛍光ランプ 12を長寿命化することができる。  [0055] The heater circuit 14 is connected to the filament 5 of the electrode portion 1, the main discharge circuit 15 is connected to the electrode wire 4 of the electrode portion 1, and the filament 5 and the plate-like electrode 2 An insulating layer 3 is provided between them to provide electrical insulation. Therefore, when current is supplied to the filament 5 by the heater circuit 14 in order to heat the electron-emitting substance 7, no current is supplied to the plate-like electrode 2, so that the plate-like electrodes at both ends of the hot cathode fluorescent lamp 12 are used. No glow current is generated in the hot cathode fluorescent lamp 12 where no lamp voltage is applied to 2. Therefore, since the time during which electrical stress, sputtering, etc. affect the electrode portion 1 of the present embodiment is shortened, the life of the hot cathode fluorescent lamp 12 can be extended.
[0056] 〔液晶表示装置〕  [Liquid crystal display device]
次に、本実施形態の照明装置 11を用いた液晶表示装置について図 6を参照して 説明する。図 6は、本実施形態の照明装置 11を用いた液晶表示装置 51の概略構成 を示す図である。  Next, a liquid crystal display device using the illumination device 11 of the present embodiment will be described with reference to FIG. FIG. 6 is a diagram showing a schematic configuration of a liquid crystal display device 51 using the illumination device 11 of the present embodiment.
[0057] 液晶表示装置 51は、図 6に示すように、複数の照明装置 11から構成された面光源 装置 52と、光学シート 53と、液晶表示パネル 54とから構成されている。なお、図 6に おいては、簡略化のために、面光源装置 52は照明装置 11を 4本備えた構成が記載 されているが、照明装置 11の数はこれに限られない。上記構成により、断線しにくぐ 長寿命なバックライトを備えた液晶表示装置 51を得ることができる。  As shown in FIG. 6, the liquid crystal display device 51 is composed of a surface light source device 52 composed of a plurality of illumination devices 11, an optical sheet 53, and a liquid crystal display panel 54. In FIG. 6, for the sake of simplicity, the surface light source device 52 is described as including four illumination devices 11, but the number of illumination devices 11 is not limited thereto. With the above configuration, it is possible to obtain the liquid crystal display device 51 having a long-life backlight that is difficult to break.
[0058] 液晶表示装置 51では、面光源装置 52に照明装置 11が平行に複数本設けられて おり、面光源装置 52の上面に光学シート 53および液晶表示パネル 54がこの順番に 積層されている。すなわち、面光源装置 52は、液晶表示装置 51におけるバックライト として機能している。面光源装置 52に設けられた複数の照明装置 11は、各プレート 状電極 2および各フィラメント 5が、 1つの駆動回路 13に接続されている。すなわち、 複数の照明装置 11の各プレート状電極 2は各電極線 4を介して 1つの主放電回路 1 5に、各フィラメント 5は各ヒータ線 6を介して 1つのヒータ回路 14に接続されている。し たがって、駆動回路 13は面光源装置 52に設けられた全ての照明装置 11における 熱陰極蛍光ランプ 12の駆動を制御している。 In the liquid crystal display device 51, a plurality of illumination devices 11 are provided in parallel to the surface light source device 52, and an optical sheet 53 and a liquid crystal display panel 54 are stacked in this order on the upper surface of the surface light source device 52. . That is, the surface light source device 52 is a backlight in the liquid crystal display device 51. Is functioning as In the plurality of illumination devices 11 provided in the surface light source device 52, each plate-like electrode 2 and each filament 5 are connected to one drive circuit 13. That is, each plate-like electrode 2 of the plurality of lighting devices 11 is connected to one main discharge circuit 15 via each electrode wire 4, and each filament 5 is connected to one heater circuit 14 via each heater wire 6. Yes. Therefore, the drive circuit 13 controls the drive of the hot cathode fluorescent lamp 12 in all the illumination devices 11 provided in the surface light source device 52.
[0059] なお、液晶表示パネル 54としては、例えば、 TFTを用いたアクティブマトリクス型の カラー液晶パネルが好適に用いられる。また、図 6には、直下型タイプのバックライト 装置が記載されているが、本実施形態の照明装置 11は導光板および光学シートを 用いたエッジ型バックライト装置に適用することも可能である。  As the liquid crystal display panel 54, for example, an active matrix type color liquid crystal panel using TFT is preferably used. FIG. 6 shows a direct type backlight device, but the illumination device 11 of the present embodiment can also be applied to an edge type backlight device using a light guide plate and an optical sheet. .
[0060] また、液晶表示装置 51における照明装置 11の熱陰極蛍光ランプ 12は、図示しな いが、ランプ保持台に保持されている。ランプ保持台としては、例えば、熱陰極蛍光 ランプ 12の電極線 4およびヒータ線 6を揷入するソケットを有する樹脂筐体や、ソケッ トを搭載するプリント基板等が好適に用いられる。なお、熱陰極蛍光ランプ 12と駆動 回路 13とは、ランプ保持台を介して接続されている。  [0060] Although not shown, the hot cathode fluorescent lamp 12 of the illumination device 11 in the liquid crystal display device 51 is held by a lamp holder. As the lamp holder, for example, a resin housing having a socket into which the electrode wire 4 and the heater wire 6 of the hot cathode fluorescent lamp 12 are inserted, a printed circuit board on which a socket is mounted, and the like are preferably used. The hot cathode fluorescent lamp 12 and the drive circuit 13 are connected via a lamp holder.
[0061] 本発明は上述した実施形態に限定されるものではなぐ請求項に示した範囲で種 々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段 を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。  The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope shown in the claims. That is, embodiments obtained by combining technical means appropriately modified within the scope of the claims are also included in the technical scope of the present invention.
[0062] 本発明の電極部は、上記課題を解決するために、電子放射性物質を加熱して熱電 子を放出させ、アーク放電を行うことにより発光する光源に備えられる電極部であつ て、電子放射性物質を加熱するための第 1電極と、アーク放電を行うための第 2電極 とを別々に備えてレヽることを特徴として!/ヽる。  [0062] In order to solve the above-mentioned problem, the electrode unit of the present invention is an electrode unit provided in a light source that emits light by heating an electron-emitting substance to emit thermoelectrons and performing arc discharge. It is characterized by having a first electrode for heating the radioactive material and a second electrode for arc discharge separately.
[0063] 電子放射性物質を加熱するための電極は、電気抵抗が大きぐ短時間で高温状態 となる構成にする必要がある。し力もながら、アーク放電を行うための電極は、電気的 ストレスやスパッタリング等に対して耐性を有する構成、すなわち、容積または表面積 の大きな構成にする必要がある。  [0063] An electrode for heating the electron-emitting substance needs to be configured to be in a high temperature state in a short time with a large electric resistance. However, the electrode for performing arc discharge needs to have a structure resistant to electrical stress and sputtering, that is, a structure having a large volume or surface area.
[0064] そこで、本発明の上記構成により、電極部を、電子放射性物質を加熱するための第  [0064] Therefore, according to the above-described configuration of the present invention, the electrode portion is a second member for heating the electron-emitting material.
1電極と、アーク放電を行うための第 2電極とに分けることにより、第 1電極を電気抵抗 が大きな構成にするとともに、第 2電極を容積または表面積の大きな構成とすることが できる。すなわち、第 2電極は電子放射性物質を加熱するために電気抵抗を大きくす る必要がなくなり、第 2電極の設計自由度が高くなる。 By dividing the first electrode into a second electrode for arc discharge, the first electrode The second electrode can have a large volume or surface area. That is, the second electrode does not need to have an increased electrical resistance in order to heat the electron-emitting material, and the degree of freedom in designing the second electrode is increased.
[0065] その結果、第 1電極は電子放射性物質を加熱する際に迅速に高温状態とすること が可能であり、第 2電極はアーク放電を行っても電気的ストレスやスパッタリング等に より断泉することを抑制すること力可能となる。したがって、電極の断線を抑制でき、 長寿命化した電極部を得ることができる。  [0065] As a result, the first electrode can be rapidly brought to a high temperature state when the electron-emitting material is heated, and the second electrode can be disconnected due to electrical stress or sputtering even when arc discharge is performed. It is possible to suppress the power to do. Therefore, disconnection of the electrode can be suppressed, and an electrode part with a long life can be obtained.
[0066] また、本発明の電極部では、上記第 2電極に電子放射性物質が塗布されており、 上記第 1電極が放射した熱が上記第 2電極に伝導し、上記電子放射性物質が加熱さ れる構成であってもよい。  [0066] Further, in the electrode portion of the present invention, an electron radioactive substance is applied to the second electrode, heat radiated from the first electrode is conducted to the second electrode, and the electron radioactive substance is heated. It may be configured.
[0067] 上記構成により、第 2電極に塗布された電子放射性物質は、第 1電極が放出した熱 が第 2電極に伝導することにより加熱される。上述したように、電子放射性物質を加熱 するための第 1電極と、アーク放電を行うための第 2電極とを別々に設けることにより、 第 2電極の設計自由度が高くなる。そのため、第 2電極の表面積を大きくすることも可 能であり、第 2電極の表面積を大きくすると電子放射性物質を多量に塗布することが できる。その結果、電子放射性物質が枯渴するまでの期間を長くすることができ、長 寿命化した電極部を得ることができる。  [0067] With the above configuration, the electron-emitting material applied to the second electrode is heated by conduction of heat released from the first electrode to the second electrode. As described above, providing the first electrode for heating the electron-emitting substance and the second electrode for performing arc discharge separately increases the degree of freedom in designing the second electrode. Therefore, it is possible to increase the surface area of the second electrode. When the surface area of the second electrode is increased, a large amount of electron-emitting material can be applied. As a result, it is possible to lengthen the period until the electron radioactive substance is depleted, and it is possible to obtain an electrode part having a long lifetime.
[0068] また、本発明の電極部では、上記第 1電極と上記第 2電極との間は、電気的に絶縁 されていてもよい。  [0068] In the electrode portion of the present invention, the first electrode and the second electrode may be electrically insulated.
[0069] 本発明の電極部を、例えば光源に適用した場合は、電子放射性物質を加熱するた めに第 1電極に電流を供給したときに、第 1電極と第 2電極との間において導通があ ると、光源の第 2電極に電圧が印加され、グロ一電流が生じる。  [0069] When the electrode unit of the present invention is applied to, for example, a light source, conduction is made between the first electrode and the second electrode when a current is supplied to the first electrode to heat the electron-emitting substance. If there is, a voltage is applied to the second electrode of the light source and a glow current is generated.
[0070] 光源にグロ一電流が生じると、本発明の電極部の第 2電極は電気的ストレスゃスパ ッタリング等により断線する可能性が高くなり、寿命が短くなつてしまう。そこで、本発 明の上記構成により、第 1電極と第 2電極との間を電気的に絶縁することにより、第 1 電極に電流を供給した場合であっても、第 2電極に電流が流れることを抑制すること ができる。その結果、グロ一電流が生じず、本発明の電極部を長寿命化することがで きる。 [0071] また、本発明の電極部では、上記第 1電極と上記第 2電極との間には絶縁性部材 が設けられており、該絶縁性部材は酸化アルミニウム、酸化マグネシウムまたは窒化 アルミニウムからなってもょレ、。 When a glow current is generated in the light source, there is a high possibility that the second electrode of the electrode portion of the present invention will be disconnected due to electrical stress or sputtering, and the life will be shortened. Therefore, with the above-described configuration of the present invention, even if a current is supplied to the first electrode by electrically insulating the first electrode and the second electrode, the current flows to the second electrode. This can be suppressed. As a result, no gloss current is generated, and the life of the electrode part of the present invention can be extended. [0071] In the electrode portion of the present invention, an insulating member is provided between the first electrode and the second electrode, and the insulating member is made of aluminum oxide, magnesium oxide, or aluminum nitride. Motole.
[0072] 電子放射性物質が第 2電極に塗布されている場合、第 1電極から放射された熱を 第 2電極に伝導させる必要がある。そのため、第 1電極と第 2電極との間に形成され た絶縁性部材は、第 1電極から放出された熱を第 2電極に伝導可能な構成である必 要がある。そこで、本発明の上記構成により、絶縁性部材が酸化アルミニウム、酸化 マグネシウムまたは窒化アルミニウムから構成されることにより、第 1電極が放射した 熱を効率的に第 2電極へ伝導させることができ、第 2電極に塗布された電子放射性 物質を迅速に加熱することができる。また、第 1電極に電流を供給した場合であって も、第 2電極に電流が流れることをより高い確率で抑制することができる。  [0072] When the electron-emitting substance is applied to the second electrode, it is necessary to conduct heat radiated from the first electrode to the second electrode. Therefore, the insulating member formed between the first electrode and the second electrode needs to have a configuration capable of conducting heat released from the first electrode to the second electrode. Therefore, with the above configuration of the present invention, the insulating member is made of aluminum oxide, magnesium oxide, or aluminum nitride, so that the heat radiated from the first electrode can be efficiently conducted to the second electrode, The electron-emitting material applied to the two electrodes can be heated quickly. Even when a current is supplied to the first electrode, it is possible to suppress the current from flowing to the second electrode with a higher probability.
[0073] 本発明の光源は、上述した電極部を有することを特徴としている。 [0073] A light source of the present invention is characterized by having the above-described electrode portion.
[0074] 上記構成により、断線しにくぐ長寿命な光源を得ることができる。 [0074] With the above configuration, it is possible to obtain a light source with a long lifetime that is difficult to break.
[0075] 本発明の照明装置は、上述した光源と、上記電極部の上記第 1電極および上記第 2電極の駆動を制御することにより、上記光源の駆動を制御する駆動手段とを備える ことを特 ί毁としている。 [0075] The illumination device of the present invention includes the above-described light source, and a driving unit that controls driving of the light source by controlling driving of the first electrode and the second electrode of the electrode unit. It is specially made.
[0076] 上記構成により、駆動手段が、光源に備えられた電極部の第 1電極に対して電流を 供給し、該第 1電極から熱を放射させて電子放射性物質を加熱する。さらに、駆動手 段は、光源に備えられた電極部の第 2電極に対して電圧を印加し、アーク放電を行 わせることにより、光源を駆動させる。その結果、断線しにくぐ長寿命な照明装置を 得ること力 Sでさる。  [0076] With the above configuration, the driving unit supplies a current to the first electrode of the electrode part provided in the light source, and heats the electron-emitting material by radiating heat from the first electrode. Further, the driving means drives the light source by applying a voltage to the second electrode of the electrode part provided in the light source to cause arc discharge. As a result, it is possible to obtain a long-life lighting device that is difficult to break.
[0077] また、本発明の照明装置では、上記駆動手段は、上記第 1電極に供給される電流 を制御する第 1電極駆動手段と、上記第 2電極に印加される電圧を制御する第 2電 極駆動手段とからなつてもょレ、。  [0077] In the illumination device of the present invention, the driving unit includes a first electrode driving unit that controls a current supplied to the first electrode, and a second electrode that controls a voltage applied to the second electrode. It consists of electrode drive means.
[0078] 光源を発光させるためには、第 1電極に電流を供給することにより、電子放射性物 質を加熱した後に、第 2電極に電圧を印加することにより、アーク放電を行う。すなわ ち、第 1電極と第 2電極とを別々に駆動する必要がある。 In order to cause the light source to emit light, an electric current is supplied to the first electrode to heat the electron-emitting material, and then a voltage is applied to the second electrode to perform arc discharge. That is, it is necessary to drive the first electrode and the second electrode separately.
[0079] そこで、上記構成により、第 1電極に供給される電流を制御する第 1電極駆動手段 と、第 2電極に印加される電圧を制御する第 2電極駆動手段とを備えることにより、第 1電極により電子放射性物質の加熱を行った後に、第 2電極によりアーク放電を起こ すと!/、うシーケンス駆動が可能となる。 [0079] Thus, with the above configuration, the first electrode driving means for controlling the current supplied to the first electrode And the second electrode driving means for controlling the voltage applied to the second electrode, and after the electron radioactive material is heated by the first electrode, an arc discharge is caused by the second electrode! / Thus, sequence driving becomes possible.
[0080] また、第 1電極と第 2電極との間に導通がない場合は、電子放射性物質を加熱する ために、第 1電極駆動手段により第 1電極に電流を供給したとき、第 2電極に電流が 供給されないために、グロ一電流が生じることがない。そのため、本発明の電極部に 電気的ストレスやスパッタリング等が影響する時間が短くなるために、光源を長寿命 ィ匕すること力 Sでさる。 [0080] In addition, when there is no conduction between the first electrode and the second electrode, when the current is supplied to the first electrode by the first electrode driving means in order to heat the electron-emitting material, the second electrode Since no current is supplied to the base, no glow current is generated. For this reason, since the time during which electrical stress, sputtering, and the like affect the electrode portion of the present invention is shortened, it is possible to use the force S for extending the life of the light source.
[0081] また、本発明の照明装置では、上記第 1電極駆動手段が上記第 1電極に対して任 意の時間電流を供給させた後、上記第 2電極駆動手段が上記第 2電極に対して電圧 を印加させアーク放電を行い、該第 1電極駆動手段が該第 1電極に対する電流の供 給を停止または減少させてもょレ、。  [0081] Further, in the lighting device of the present invention, after the first electrode driving means supplies a current to the first electrode for an arbitrary time, the second electrode driving means applies to the second electrode. The voltage is applied to cause arc discharge, and the first electrode driving means stops or reduces the supply of current to the first electrode.
[0082] 上記構成により、第 1電極駆動手段と第 2電極駆動手段とを用いて、第 1電極と第 2 電極とを順番に駆動させることにより、第 1電極により電子放射性物質の加熱を行つ た後に、第 2電極によりアーク放電を起こすというシーケンス駆動が可能となる。  [0082] With the above configuration, the first electrode and the second electrode are driven in turn using the first electrode driving means and the second electrode driving means, whereby the electron-emitting material is heated by the first electrode. After that, it becomes possible to perform sequence driving in which arc discharge is caused by the second electrode.
[0083] 本発明の液晶表示装置は、上述した照明装置をバックライトとして備えることを特徴 としている。  [0083] A liquid crystal display device of the present invention is characterized by including the above-described illumination device as a backlight.
[0084] 上記構成により、断線しにくぐ長寿命なバックライトを備えた液晶表示装置を得るこ と力 Sできる。  [0084] With the above configuration, it is possible to obtain a liquid crystal display device having a long-life backlight that is difficult to break.
産業上の利用可能性  Industrial applicability
[0085] 本発明は、液晶 TV、液晶ディスプレイ、液晶モニタ等の液晶表示パネルに映像を 表示するためのバックライトとして用いられる光源の電極部として好適に用いられる。 The present invention is suitably used as an electrode portion of a light source used as a backlight for displaying an image on a liquid crystal display panel such as a liquid crystal TV, a liquid crystal display, or a liquid crystal monitor.

Claims

請求の範囲 The scope of the claims
[1] 電子放射性物質を加熱して熱電子を放出させ、アーク放電を行うことにより発光す る光源に備えられる電極部において、  [1] In an electrode part provided in a light source that emits light by heating an electron-emitting substance to emit thermoelectrons and performing arc discharge,
電子放射性物質を加熱するための第 1電極と、アーク放電を行うための第 2電極と を別々に備えていることを特徴とする電極部。  An electrode unit comprising a first electrode for heating the electron-emitting material and a second electrode for performing arc discharge separately.
[2] 前記第 2電極に電子放射性物質が塗布されており、 [2] An electron radioactive substance is applied to the second electrode,
前記第 1電極が放射した熱が前記第 2電極に伝導し、前記電子放射性物質が加熱 されることを特徴とする請求項 1に記載の電極部。  2. The electrode part according to claim 1, wherein heat radiated from the first electrode is conducted to the second electrode, and the electron-emitting substance is heated.
[3] 前記第 1電極と前記第 2電極との間は、電気的に絶縁されていることを特徴とする 請求項 1または 2に記載の電極部。 [3] The electrode part according to claim 1 or 2, wherein the first electrode and the second electrode are electrically insulated.
[4] 前記第 1電極と前記第 2電極との間には絶縁性部材が設けられており、該絶縁性 部材は酸化アルミニウム、酸化マグネシウムまたは窒化アルミニウムからなることを特 徴とする請求項 2に記載の電極部。 [4] The insulating member is provided between the first electrode and the second electrode, and the insulating member is made of aluminum oxide, magnesium oxide, or aluminum nitride. The electrode part as described in.
[5] 請求項 1〜4のいずれ力、 1項に記載の電極部を備えることを特徴とする光源。 [5] A light source comprising the electrode part according to any one of [1] to [4].
[6] 請求項 5に記載の光源と、 [6] The light source according to claim 5,
前記電極部の前記第 1電極および前記第 2電極の駆動を制御することにより、前記 光源の駆動を制御する駆動手段とを備えることを特徴とする照明装置。  An illuminating apparatus comprising: a driving unit that controls driving of the light source by controlling driving of the first electrode and the second electrode of the electrode unit.
[7] 前記駆動手段は、前記第 1電極に供給される電流を制御する第 1電極駆動手段と[7] The driving means includes first electrode driving means for controlling a current supplied to the first electrode;
、前記第 2電極に印加される電圧を制御する第 2電極駆動手段とからなることを特徴 とする請求項 6に記載の照明装置。 The lighting device according to claim 6, further comprising second electrode driving means for controlling a voltage applied to the second electrode.
[8] 前記第 1電極駆動手段が前記第 1電極に対して任意の時間電流を供給させた後、 前記第 2電極駆動手段が前記第 2電極に対して電圧を印加させアーク放電を行い、 該第 1電極駆動手段が該第 1電極に対する電流の供給を停止または減少させること を特徴とする請求項 7に記載の照明装置。 [8] After the first electrode driving means supplies a current to the first electrode for an arbitrary time, the second electrode driving means applies a voltage to the second electrode to perform arc discharge, 8. The lighting device according to claim 7, wherein the first electrode driving means stops or reduces the supply of current to the first electrode.
[9] 請求項 6〜8のいずれ力、 1項に記載の照明装置をバックライトとして備えることを特 徴とする液晶表示装置。 [9] A liquid crystal display device comprising the illumination device according to any one of [6] to [8] as a backlight.
PCT/JP2007/064337 2006-11-14 2007-07-20 Electrode part, light source, illuminating device, and liquid crystal display WO2008059639A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-308120 2006-11-14
JP2006308120 2006-11-14

Publications (1)

Publication Number Publication Date
WO2008059639A1 true WO2008059639A1 (en) 2008-05-22

Family

ID=39401453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064337 WO2008059639A1 (en) 2006-11-14 2007-07-20 Electrode part, light source, illuminating device, and liquid crystal display

Country Status (1)

Country Link
WO (1) WO2008059639A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016197524A (en) * 2015-04-03 2016-11-24 株式会社東通研 Discharge tube lighting device and discharge tube lighting method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02220345A (en) * 1989-02-21 1990-09-03 Hamamatsu Photonics Kk Gas discharge tube and indirectly heated cathode and drive circuit therefor
JPH10233176A (en) * 1997-02-18 1998-09-02 Nec Kansai Ltd Color picture tube
WO2002049070A1 (en) * 2000-12-13 2002-06-20 Hamamatsu Photonics K.K. Indirectly heated electrode for gas discharge tube, gas discharge tube with this, and its operating device
JP2005071816A (en) * 2003-08-25 2005-03-17 Hamamatsu Photonics Kk Light source device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02220345A (en) * 1989-02-21 1990-09-03 Hamamatsu Photonics Kk Gas discharge tube and indirectly heated cathode and drive circuit therefor
JPH10233176A (en) * 1997-02-18 1998-09-02 Nec Kansai Ltd Color picture tube
WO2002049070A1 (en) * 2000-12-13 2002-06-20 Hamamatsu Photonics K.K. Indirectly heated electrode for gas discharge tube, gas discharge tube with this, and its operating device
JP2005071816A (en) * 2003-08-25 2005-03-17 Hamamatsu Photonics Kk Light source device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016197524A (en) * 2015-04-03 2016-11-24 株式会社東通研 Discharge tube lighting device and discharge tube lighting method

Similar Documents

Publication Publication Date Title
US6191539B1 (en) Fluorescent lamp with integral conductive traces for extending low-end luminance and heating the lamp tube
JP3968015B2 (en) Side-heated electrode for gas discharge tube and gas discharge tube
WO2008059639A1 (en) Electrode part, light source, illuminating device, and liquid crystal display
US20060273724A1 (en) CCFL device with a principal amalgam
JP3107190U (en) Improvement of cold cathode tubes
US7218047B2 (en) Indirectly heated electrode for gas discharge tube
EP1962322A2 (en) Hot-cathode fluorescent lamp
JP2007265900A (en) Lighting apparatus
JP4153556B2 (en) Light source device and liquid crystal display device
US20100123408A1 (en) Light-emitting devices having excited sulfur medium by inductively-coupled electrons
KR200422765Y1 (en) Cold cathode type fluorescent lamp
JP3165274U (en) Hot cathode preheating start discharge lamp
JP3154419U (en) Fluorescent discharge lamp device
JPH04357659A (en) Discharge tube
JPWO2007099747A1 (en) Direct backlight unit
JPH10188907A (en) Hot cathode low-pressure discharge lamp and hot cathode low-pressure discharge lamp device
JPH07272674A (en) Hot cathode discharge tube, hot cathode fluorescent lamp, and lighting device for them
US8269407B1 (en) Cold cathode fluorescent lamp for illumination
US8482227B2 (en) Hot cathode preheating start discharge lamp
JP2009231198A (en) Hot-cathode discharge lamp and manufacturing method for electrode
JPH11288687A (en) Discharge lamp
JPH09245978A (en) Fluorescent lamp lighting device, and office automation device using same
JP2006339016A (en) Compact self-ballasted fluorescent lamp
JP2004014467A (en) Gas discharge tube
JP2007012610A (en) Cold cathode lamp and electrode for same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07768454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07768454

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP