WO2008059620A1 - Film cooling structure - Google Patents

Film cooling structure Download PDF

Info

Publication number
WO2008059620A1
WO2008059620A1 PCT/JP2007/054910 JP2007054910W WO2008059620A1 WO 2008059620 A1 WO2008059620 A1 WO 2008059620A1 JP 2007054910 W JP2007054910 W JP 2007054910W WO 2008059620 A1 WO2008059620 A1 WO 2008059620A1
Authority
WO
WIPO (PCT)
Prior art keywords
film cooling
combustion gas
hole
cooling structure
film
Prior art date
Application number
PCT/JP2007/054910
Other languages
French (fr)
Japanese (ja)
Inventor
Yoji Ohkita
Original Assignee
Ihi Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ihi Corporation filed Critical Ihi Corporation
Priority to US12/514,511 priority Critical patent/US20100040459A1/en
Priority to CA2668750A priority patent/CA2668750C/en
Priority to EP07738382.6A priority patent/EP2083147B1/en
Publication of WO2008059620A1 publication Critical patent/WO2008059620A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/186Film cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/202Heat transfer, e.g. cooling by film cooling

Definitions

  • the present invention relates to a film cooling structure suitable for film cooling a surface of a component (turbine blade or the like) of a gas turbine engine.
  • a gas turbine engine increases with increasing combustion gas temperature.
  • This combustion gas heats the structural walls of components (combustor liners, turbine blades, turbine shrouds, etc.) placed in the combustion gas flow path. Heat to. Therefore, in order to efficiently cool the structural walls of such components, a cooling passage is provided in the interior, and cooling air is flowed to perform convection cooling, and cooling air is exposed to high-temperature combustion gas from the film cooling holes.
  • a film cooling structure is employed in which film cooling is performed by ejecting a film on the surface (see, for example, Patent Documents:! To 5 below).
  • FIG. 1A to FIG. 1C show an example of a conventional film cooling structure 30.
  • Figure 1B is 1B of Figure 1A
  • FIG. 1B is a sectional view taken along line B
  • FIG. 1C is a sectional view taken along line 1C-1C in FIG. 1B.
  • the structural wall 31 has a surface 32 that is exposed to the combustion gas 1 and an inner surface 33 that is located on the opposite side of the surface 32.
  • film cooling holes 34 for guiding the cooling air 5 on the inner surface 33 side to the surface 32 side and cooling the film on the surface 32 are formed at a predetermined angle with respect to the surface 32.
  • the film cooling hole 34 has an introduction portion 34a extending from the inner surface 33 toward the surface 32 to a middle position in the structural wall 31, and a cross-sectional area gradually increasing from the surface 32 side end portion of the introduction portion 34a toward the surface 32. It has an enlarged portion 34b (diffuser) that opens at the surface 32. As shown in FIG.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2006-9785
  • Patent Document 2 JP 2005-90511
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-41902
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-173405
  • Patent Document 5 Japanese Patent Laid-Open No. 10-89005
  • the present invention has been made in view of such problems, and provides a film cooling structure that can increase the expansion angle at the expansion portion and can improve the average film cooling efficiency. For the purpose.
  • the film cooling structure of the present invention employs the following means.
  • the present invention comprises a structural wall having a surface exposed to combustion gas and an inner surface located on the opposite side of the surface, and the cooling air on the inner surface side is guided to the structural wall to the surface side for film cooling of the surface.
  • the film cooling holes include an introduction part extending from the inner surface toward the surface to a middle position in the structure wall, and a surface side of the introduction part.
  • An enlarged portion whose cross-sectional area gradually increases from the end toward the surface and opens at the surface, and a partition portion that divides the inside of the enlarged portion in a hole width direction perpendicular to the flow direction of the combustion gas. It is characterized by having.
  • the film cooling hole has the partition portion configured as described above, the effective area enlargement rate can be suppressed. Therefore, even if the lateral enlargement angle of the enlargement portion is increased, the cooling air can be reduced. Qi peeling is suppressed. Therefore, the cooling air can be effectively diffused compared to the conventional technology, and the enlargement angle in the lateral direction of the enlargement portion can be increased. Cooling air can be spread thinly and widely on the surface of the structural wall to improve average film cooling efficiency. The definition of the average film cooling efficiency will be described later.
  • the cooling air can be spread more thinly and widely on the surface of the structural wall as compared with the prior art, the number of film cooling holes formed in the structural wall can be reduced. For this reason, the manufacturing process of the film cooling structure can be reduced. Further, since the amount of cooling air extracted from the compressor of the gas turbine engine can be reduced as the number of film cooling holes is reduced, the engine efficiency can be improved.
  • the partition portion is formed at an intermediate position in the hole width direction perpendicular to the flow direction of the combustion gas inside the film cooling hole, and the flow direction of the combustion gas One of the wall surface facing the upstream side and the wall surface facing the downstream side.
  • the force protrudes toward the other side and extends from the inner surface of the structural wall toward the surface over the entire area inside the hole.
  • the partition portion does not completely partition the film cooling hole in the lateral direction and extends over the entire region in the thickness direction of the structural wall, so that the film cooling hole can be easily processed.
  • FIG. 1A is a plan view showing a conventional film cooling structure.
  • FIG. 1B is a cross-sectional view taken along line 1B-1B in FIG. 1A.
  • 1C is a cross-sectional view taken along line 1C-1C in FIG. 1B.
  • FIG. 2 is a perspective view of a turbine rotor blade to which the film cooling structure of the present invention is applied.
  • FIG. 3A is a plan view showing a film cooling structure that applies force to an embodiment of the present invention.
  • 3B is a cross-sectional view taken along line 3B-3B in FIG. 3A.
  • FIG. 3C is a cross-sectional view taken along line 3C-3C in FIG. 3B.
  • FIG. 4 is a perspective view showing the shape of a film cooling hole in a film cooling structure that works according to an embodiment of the present invention.
  • FIG. 5 is a diagram for explaining the physical action of the partition part.
  • the film cooling structure of the present invention is applied to components arranged in a combustion gas flow path in a gas turbine engine. These components include a combustor liner, a turbine nose vane, a turbine nose nore band, a turbine blade, a turbine stationary blade, a turbine shroud, and a turbine exhaust liner.
  • FIG. 2 shows a perspective view of a turbine rotor blade 2 to which the film cooling structure 10 of the present invention is applied.
  • the turbine rotor blade 2 includes a blade portion 3 as a structural wall having a surface 12 exposed to the combustion gas 1 and a base portion 4 for mounting the blade portion 3 on an engine rotor.
  • a cooling circuit (not shown) for flowing cooling air is formed inside the wing part 3. This cooling air is extracted from the compressor of the gas turbine engine and flows into the cooling circuit via a flow path (not shown) formed in the base portion 4. Cooling air that has flowed into the cooling circuit is ejected from a large number of film cooling holes 14 provided on the surface 12 of the wing 3 to cool the surface 12 of the wing 3.
  • FIGS. 3A-3C illustrate a film cooling structure 10 that works with embodiments of the present invention.
  • FIG. 3A is a plan view showing the film cooling structure 10.
  • 3B is a cross-sectional view taken along line 3B-3B of FIG. 3A.
  • 3C is a cross-sectional view taken along line 3C-3C of FIG. 3B.
  • FIG. 4 is a perspective view showing the shape of the film cooling hole 14 in the film cooling structure 10 according to the embodiment of the present invention.
  • the film cooling structure 10 is applied to components such as turbine rotor blades arranged in the flow path of the combustion gas 1 in a gas turbine engine.
  • the film cooling structure 10 includes a structural wall 11 having a surface 12 exposed to the combustion gas 1 and an inner surface 13 located on the opposite side of the surface 12.
  • the wall constituting the blade portion of the turbine rotor blade is the structural wall 11. Cooling air 5 flows on the inner surface 13 side of the structural wall 11.
  • film cooling holes 14 for guiding the cooling air 5 on the inner surface 13 side to the surface 12 side and cooling the film on the surface 12 are formed.
  • the axis of the film cooling hole 14 is inclined at a predetermined angle with respect to the surface 12 of the structural wall 11 so that the cooling air 5 is blown out in the direction along the flow of the combustion gas 1. is doing.
  • the film cooling hole 14 has an introduction portion 14a extending from the inner surface 13 toward the surface 12 to an intermediate position in the structural wall 11, and a cross-sectional area from the end of the introduction portion 14a on the surface 12 side toward the surface 12. Has an enlarged portion 14b that gradually increases and opens at the surface 12.
  • the film cooling hole 14 further includes a partitioning portion 16 that partitions the inside of the enlarged portion 14b into a plurality of holes in a hole width direction orthogonal to the flow direction of the combustion gas 1.
  • the “hole width direction perpendicular to the flow direction of the combustion gas 1” is a direction perpendicular to the paper surface in FIG. 3B, and a horizontal direction in FIG. 3C.
  • the partition 16 is formed at an intermediate position in the hole width direction perpendicular to the flow direction of the combustion gas 1 inside the film cooling hole 14. Projecting from the wall surface facing the upstream side in the flow direction toward the upstream side in the flow direction of the combustion gas 1 and extending from the inner surface 13 to the surface 12 of the structural wall 11 over the entire interior of the hole. A gap is formed between the partition portion 16 and the wall surface facing the downstream side in the flow direction of the combustion gas 1.
  • a single partitioning portion 16 may be provided at intervals in the hole width direction.
  • the partition 16 is provided so as to protrude from the wall surface facing the upstream side in the flow direction of the combustion gas 1 toward the upstream side in the flow direction of the combustion gas 1.
  • it may be provided so as to protrude from the wall surface facing the downstream side in the flow direction of the combustion gas 1 toward the downstream side in the flow direction of the combustion gas 1.
  • a gap is formed between the partition portion 16 and the wall surface facing the upstream side in the flow direction of the combustion gas 1.
  • Fig. 5 shows a graph of the diffuser with the length ratio on the logarithmic scale on the horizontal axis, the inlet / outlet area ratio minus 1 on the logarithmic scale on the vertical axis, and the pressure recovery rate (deceleration rate) Cp as a parameter. Show. At this time, in the case of the same inlet / outlet area ratio, the larger the length ratio, the smaller the enlargement angle. Further, peeling is less likely to occur when the pressure recovery rate is higher.
  • the straight line indicated by the pressure recovery rate Cp * * in the figure is a line connecting the points where the maximum pressure recovery rate is obtained when the diffuser inlet / outlet area ratio is constant.
  • the Cp * straight line is the line that provides the maximum pressure recovery rate when the length ratio is constant. Therefore, if the inlet / outlet area ratio is constant, It can be seen that the smaller the angle of enlargement, the higher the pressure recovery rate and the less likely the peeling occurs. Dividing the diffuser's passage into two or three equal parts, the expansion angle of each small passage becomes 1/2 or 1/3 of the overall expansion angle, and is smaller than the expansion angle determined by Cp *. As a result, a high pressure recovery rate can be obtained.
  • the film cooling hole 14 includes the cutting portion 16 configured as described above, the effective area enlargement ratio can be suppressed, and thus the enlargement of the enlargement portion 14b in the lateral direction. Even if the angle is increased, the separation of the cooling air 5 is suppressed. For this reason, since the cooling air 5 can be effectively diffused as compared with the prior art, the lateral expansion angle of the enlarged portion 14b can be increased. It can be spread thinly and widely to improve the average film cooling efficiency.
  • the average film cooling efficiency is given by (fuel gas temperature / structure wall surface temperature) / (combustion gas temperature / cooling air temperature).
  • the cooling air 5 can be spread more thinly and widely on the surface 12 of the structural wall 11 as compared with the prior art, the number of film cooling holes 14 formed in the structural wall 11 can be reduced. For this reason, the manufacturing process of the film cooling structure 10 can be reduced. Further, as the number of film cooling holes 14 decreases, the amount of cooling air extracted from the compressor of the gas turbine engine can be reduced, so that the engine efficiency can be improved.
  • the partition 16 When the film cooling holes 14 are processed by a method such as a discharge casing, if the partition 16 completely partitions the film cooling holes 14 in the lateral direction, the discharge casing is divided for each of the divided holes. It is necessary to insert the electrode and clean the hole. Further, if the partition 16 has a shape that is interrupted at a position in the thickness direction of the structural wall 11, a plurality of steps are required to cover one film cooling hole 14 (for example, the surface 12 side and the inner surface It is necessary to insert and process the discharge casing electrode from the 13th side). Further, the processing steps are similarly complicated in other processing means.
  • the partition 16 does not completely partition the film cooling hole 14 in the lateral direction, and extends over the entire region in the thickness direction of the structural wall 11, so that it is shown in FIGS. 3A to 3C and FIG.
  • a discharge carriage electrode configured to cover the film cooling hole 14 from the surface 12 side
  • the film cooling hole 14 can be covered in a single step. Therefore, the film cooling hole 14 can be easily processed.
  • the present invention is applied to the turbine rotor blade 2, but the combustor liner, the turbine nozle vane, the turbine nozle band, the turbine stationary blade arranged in the flow path of the combustion gas in the gas turbine engine. Also applicable to turbine shrouds, turbine exhaust liners and other components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Gas Burners (AREA)

Abstract

Film cooling structure (10) including structure wall (11) having outer surface (12) exposed to combustion gas and inner surface (13) positioned opposite to the outer surface (12), the film cooling structure (10) provided with film cooling hole (14) for, in the structure wall (11), leading of cooling air on the side of inner surface (13) to the side of outer surface (12) to thereby carry out film cooling of the outer surface (12), wherein the film cooling hole (14) has introduction portion (14a) extending from the inner surface (13) toward the outer surface (12) up to a mid position within the structure wall (11); enlarging portion (14b) having its cross section area gradually increasing from the end of the introduction portion (14a) on the side of outer surface (12) toward the outer surface (12) and opening on the outer surface (12); and partition portion (16) for partitioning of the interior of the enlarging portion (14b) into multiple units in the direction of hole width orthogonal to the direction of flow of combustion gas.

Description

明 細 書  Specification
フィルム冷却構造  Film cooling structure
発明の背景  Background of the Invention
[0001] 発明の技術分野  [0001] Technical Field of the Invention
本発明は、ガスタービンエンジンの構成部品(タービン翼等)の表面をフィルム冷却 するのに好適なフィルム冷却構造に関する。  The present invention relates to a film cooling structure suitable for film cooling a surface of a component (turbine blade or the like) of a gas turbine engine.
[0002] 関連技術の説明  [0002] Explanation of related technology
ガスタービンエンジンの効率は燃焼ガス温度の上昇に伴って増大する力 この燃焼 ガスは、燃焼ガスの流路に配置された構成部品(燃焼器ライナ、タービン翼、タービ ンシユラウド等)の構造壁を高温に加熱する。したがって、そのような構成部品の構造 壁を効率的に冷却するために、内部に冷却通路を設け、冷却空気を流して対流冷 却するとともに、フィルム冷却孔から冷却空気を高温の燃焼ガスに曝される表面にフ イルム状に噴出させてフィルム冷却を行うフィルム冷却構造が採用される(例えば下 記特許文献:!〜 5を参照)。  The efficiency of a gas turbine engine increases with increasing combustion gas temperature. This combustion gas heats the structural walls of components (combustor liners, turbine blades, turbine shrouds, etc.) placed in the combustion gas flow path. Heat to. Therefore, in order to efficiently cool the structural walls of such components, a cooling passage is provided in the interior, and cooling air is flowed to perform convection cooling, and cooling air is exposed to high-temperature combustion gas from the film cooling holes. A film cooling structure is employed in which film cooling is performed by ejecting a film on the surface (see, for example, Patent Documents:! To 5 below).
[0003] 図 1A〜図 1Cに、従来のフィルム冷却構造 30の一例を示す。図 1Bは図 1Aの 1B  FIG. 1A to FIG. 1C show an example of a conventional film cooling structure 30. Figure 1B is 1B of Figure 1A
1 B線断面図であり、図 1Cは図 1Bの 1C— 1 C線断面図である。  1B is a sectional view taken along line B, and FIG. 1C is a sectional view taken along line 1C-1C in FIG. 1B.
図 1B及び図 1Cにおいて、構造壁 31は燃焼ガス 1に曝される表面 32とこの表面 32 の反対側に位置する内面 33と有する。構造壁 31には、内面 33側の冷却空気 5を表 面 32側へと導き表面 32のフィルム冷却を行なうためのフィルム冷却孔 34が表面 32 に対して所定角度傾斜して形成されている。フィルム冷却孔 34は、内面 33から表面 32に向って構造壁 31内の途中位置まで延びる導入部 34aと、この導入部 34aの表 面 32側端部から表面 32に向って断面積が漸増し表面 32で開口する拡大部 34b (デ ィフューザ)とを有する。図 1Bに示すように、拡大部 34bにおいて、燃焼ガス 1の流れ 方向上流側を向く壁面 35は直線的に形成されている。また、図 1Cに示すように、拡 大部 34bにおいて、燃焼ガス 1の流れ方向に対して直交方向の両側壁面 36, 36は 直線的に形成されている。  1B and 1C, the structural wall 31 has a surface 32 that is exposed to the combustion gas 1 and an inner surface 33 that is located on the opposite side of the surface 32. In the structural wall 31, film cooling holes 34 for guiding the cooling air 5 on the inner surface 33 side to the surface 32 side and cooling the film on the surface 32 are formed at a predetermined angle with respect to the surface 32. The film cooling hole 34 has an introduction portion 34a extending from the inner surface 33 toward the surface 32 to a middle position in the structural wall 31, and a cross-sectional area gradually increasing from the surface 32 side end portion of the introduction portion 34a toward the surface 32. It has an enlarged portion 34b (diffuser) that opens at the surface 32. As shown in FIG. 1B, in the enlarged portion 34b, the wall surface 35 facing the upstream side in the flow direction of the combustion gas 1 is formed linearly. Further, as shown in FIG. 1C, both side wall surfaces 36, 36 perpendicular to the flow direction of the combustion gas 1 are linearly formed in the enlarged portion 34b.
[0004] 特許文献 1 :特開 2006— 9785号公報  [0004] Patent Document 1: Japanese Unexamined Patent Application Publication No. 2006-9785
特許文献 2 :特開 2005— 90511号公報 特許文献 3:特開 2003— 41902号公報 Patent Document 2: JP 2005-90511 A Patent Document 3: Japanese Patent Laid-Open No. 2003-41902
特許文献 4:特開 2001— 173405号公報  Patent Document 4: Japanese Patent Laid-Open No. 2001-173405
特許文献 5:特開平 10— 89005号公報  Patent Document 5: Japanese Patent Laid-Open No. 10-89005
[0005] フィルム冷却では、冷却空気 5を冷却すべき表面 32になるべく薄く広く展開し、且 つなるべくその表面 32上に付着させることが望ましい。したがって、表面 32において 冷却空気 5を薄く広く展開するためには、拡大部 34bでの拡大角をできるだけ大きく することが効果的である。 In film cooling, it is desirable to spread the cooling air 5 as thin and wide as possible on the surface 32 to be cooled, and to adhere to the surface 32 as much as possible. Therefore, in order to spread the cooling air 5 thinly and widely on the surface 32, it is effective to increase the enlargement angle at the enlarged portion 34b as much as possible.
しかし、上述した従来のフィルム冷却構造 30の拡大部 34bでは孔断面積が直線的 に拡大するため、拡大部 34bでの拡大角を大きくし過ぎると、孔内部で冷却空気 5の 剥離が生じ、このため、冷却空気 5を効果的に拡散することがでず、平均フィルム冷 却効率を向上させることが困難であるという問題があった。  However, since the hole cross-sectional area increases linearly in the enlarged portion 34b of the conventional film cooling structure 30 described above, if the enlargement angle in the enlarged portion 34b is too large, the cooling air 5 is peeled inside the hole, For this reason, there is a problem that the cooling air 5 cannot be effectively diffused and it is difficult to improve the average film cooling efficiency.
発明の要約  Summary of invention
[0006] 本発明は、このような問題に鑑みてなされものであり、拡大部での拡大角を大きくす ること力 Sでき、平均フィルム冷却効率を向上させることができるフィルム冷却構造を提 供することを目的とする。  [0006] The present invention has been made in view of such problems, and provides a film cooling structure that can increase the expansion angle at the expansion portion and can improve the average film cooling efficiency. For the purpose.
[0007] 上記の課題を解決するため、本発明のフィルム冷却構造は、以下の手段を採用す る。  [0007] In order to solve the above problems, the film cooling structure of the present invention employs the following means.
本発明は、燃焼ガスに曝される表面と該表面の反対側に位置する内面と有する構 造壁を備え、該構造壁に前記内面側の冷却空気を表面側へと導き表面のフィルム 冷却を行なうためのフィルム冷却孔が形成されたフィルム冷却構造において、前記フ イルム冷却孔は、前記内面から前記表面に向って前記構造壁内の途中位置まで延 びる導入部と、該導入部の表面側端部から前記表面に向って断面積が漸増し前記 表面で開口する拡大部と、該拡大部の内部を燃焼ガスの流れ方向に対して直交す る孔幅方向に複数に仕切る仕切り部とを有する、ことを特徴とする。  The present invention comprises a structural wall having a surface exposed to combustion gas and an inner surface located on the opposite side of the surface, and the cooling air on the inner surface side is guided to the structural wall to the surface side for film cooling of the surface. In the film cooling structure in which film cooling holes are formed, the film cooling holes include an introduction part extending from the inner surface toward the surface to a middle position in the structure wall, and a surface side of the introduction part. An enlarged portion whose cross-sectional area gradually increases from the end toward the surface and opens at the surface, and a partition portion that divides the inside of the enlarged portion in a hole width direction perpendicular to the flow direction of the combustion gas. It is characterized by having.
[0008] このように、フィルム冷却孔が上記のように構成された仕切り部を有するので、実効 の面積拡大率が抑えられるので、拡大部の横方向の拡大角を大きくしても、冷却空 気の剥離が抑制される。したがって、従来技術と比較して冷却空気を効果的に拡散 することができるので、拡大部の横方向の拡大角を大きくすることができ、これにより 冷却空気を構造壁の表面に薄く広く展開し、平均フィルム冷却効率を向上させること ができる。なお、平均フィルム冷却効率の定義については後述する。 [0008] Thus, since the film cooling hole has the partition portion configured as described above, the effective area enlargement rate can be suppressed. Therefore, even if the lateral enlargement angle of the enlargement portion is increased, the cooling air can be reduced. Qi peeling is suppressed. Therefore, the cooling air can be effectively diffused compared to the conventional technology, and the enlargement angle in the lateral direction of the enlargement portion can be increased. Cooling air can be spread thinly and widely on the surface of the structural wall to improve average film cooling efficiency. The definition of the average film cooling efficiency will be described later.
また、従来技術と比較して構造壁の表面に冷却空気をより薄く広く展開できるので 、構造壁に形成するフィルム冷却孔の数を減らすことができる。このため、フィルム冷 却構造の製作工程を少なくすることができる。また、フィルム冷却孔の数の減少に伴 いガスタービンエンジンの圧縮機から抽気する冷却空気量を減らすことができるので 、エンジン効率を向上させることができる。  In addition, since the cooling air can be spread more thinly and widely on the surface of the structural wall as compared with the prior art, the number of film cooling holes formed in the structural wall can be reduced. For this reason, the manufacturing process of the film cooling structure can be reduced. Further, since the amount of cooling air extracted from the compressor of the gas turbine engine can be reduced as the number of film cooling holes is reduced, the engine efficiency can be improved.
[0009] また、上記のフィルム冷却構造において、前記仕切り部は、フィルム冷却孔の内部 において前記燃焼ガスの流れ方向に対して直交する孔幅方向の中間位置に形成さ れ前記燃焼ガスの流れ方向上流側を向く壁面と下流側を向く壁面のいずれか一方 力 他方に向って突出し前記構造壁の前記内面から前記表面に向って孔内部の全 域にわたって延びる。  [0009] In the above film cooling structure, the partition portion is formed at an intermediate position in the hole width direction perpendicular to the flow direction of the combustion gas inside the film cooling hole, and the flow direction of the combustion gas One of the wall surface facing the upstream side and the wall surface facing the downstream side. The force protrudes toward the other side and extends from the inner surface of the structural wall toward the surface over the entire area inside the hole.
[0010] このように、仕切り部がフィルム冷却孔を横方向に完全に仕切らず、構造壁の厚さ 方向の全域にわたって延びるので、フィルム冷却孔の加工が容易である。  As described above, the partition portion does not completely partition the film cooling hole in the lateral direction and extends over the entire region in the thickness direction of the structural wall, so that the film cooling hole can be easily processed.
[0011] 以上より、本発明によれば、拡大部での拡大角を大きくすることができ、平均フィル ム冷却効率を向上させることができるという優れた効果が得られる。  As described above, according to the present invention, it is possible to obtain an excellent effect that the enlargement angle at the enlargement portion can be increased and the average film cooling efficiency can be improved.
図面の簡単な説明  Brief Description of Drawings
[0012] [図 1A]従来技術のフィルム冷却構造を示す平面図である。  FIG. 1A is a plan view showing a conventional film cooling structure.
[図 1B]図 1Aの 1B— 1B線断面図である。  1B is a cross-sectional view taken along line 1B-1B in FIG. 1A.
[図 1C]図 1Bの 1C— 1C線断面図である。  1C is a cross-sectional view taken along line 1C-1C in FIG. 1B.
[図 2]本発明のフィルム冷却構造を適用したタービン動翼の斜視図である。  FIG. 2 is a perspective view of a turbine rotor blade to which the film cooling structure of the present invention is applied.
[図 3A]本発明の実施形態に力、かるフィルム冷却構造を示す平面図である。  FIG. 3A is a plan view showing a film cooling structure that applies force to an embodiment of the present invention.
[図 3B]図 3Aの 3B— 3B線断面図である。  3B is a cross-sectional view taken along line 3B-3B in FIG. 3A.
[図 3C]図 3Bの 3C— 3C線断面図である。  FIG. 3C is a cross-sectional view taken along line 3C-3C in FIG. 3B.
[図 4]本発明の実施形態に力かるフィルム冷却構造におけるフィルム冷却孔の形状を 示す斜視図である。  FIG. 4 is a perspective view showing the shape of a film cooling hole in a film cooling structure that works according to an embodiment of the present invention.
[図 5]仕切り部の物理的作用を説明するための図である。  FIG. 5 is a diagram for explaining the physical action of the partition part.
好ましい実施例の説明 [0013] 以下、本発明の好ましい実施形態を添付図面に基づいて詳細に説明する。なお、 各図において共通する部分には同一の符号を付し、重複した説明を省略する。 DESCRIPTION OF PREFERRED EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.
[0014] 本発明のフィルム冷却構造は、ガスタービンエンジンにおける燃焼ガスの流路に配 置された構成部品に適用される。この構成部品としては、燃焼器ライナ、タービンノズ ノレべーン、タービンノズノレバンド、タービン動翼、タービン静翼、タービンシュラウド、 タービン排気口ライナ等がある。  [0014] The film cooling structure of the present invention is applied to components arranged in a combustion gas flow path in a gas turbine engine. These components include a combustor liner, a turbine nose vane, a turbine nose nore band, a turbine blade, a turbine stationary blade, a turbine shroud, and a turbine exhaust liner.
[0015] 図 2に、本発明のフィルム冷却構造 10を適用したタービン動翼 2の斜視図を示す。  FIG. 2 shows a perspective view of a turbine rotor blade 2 to which the film cooling structure 10 of the present invention is applied.
このタービン動翼 2は、燃焼ガス 1に曝される表面 12を有する構造壁としての翼部 3と 、翼部 3をエンジンのロータに装着するベース部 4とを備えている。翼部 3の内部には 、冷却空気を流す冷却回路(図示せず)が形成されている。この冷却空気は、ガスタ 一ビンエンジンの圧縮機から抽気され、ベース部 4に形成された流路(図示せず)を 経由して、冷却回路内に流入する。冷却回路内に流入した冷却空気は、翼部 3の表 面 12に多数設けられたフィルム冷却孔 14から噴出し、翼部 3の表面 12をフィルム冷 却する。以下、本発明のフィルム冷却構造 10の実施形態を説明する。  The turbine rotor blade 2 includes a blade portion 3 as a structural wall having a surface 12 exposed to the combustion gas 1 and a base portion 4 for mounting the blade portion 3 on an engine rotor. A cooling circuit (not shown) for flowing cooling air is formed inside the wing part 3. This cooling air is extracted from the compressor of the gas turbine engine and flows into the cooling circuit via a flow path (not shown) formed in the base portion 4. Cooling air that has flowed into the cooling circuit is ejected from a large number of film cooling holes 14 provided on the surface 12 of the wing 3 to cool the surface 12 of the wing 3. Hereinafter, an embodiment of the film cooling structure 10 of the present invention will be described.
[0016] 図 3A〜図 3Cに、本発明の実施形態に力かるフィルム冷却構造 10を示す。図 3A はフィルム冷却構造 10を示す平面図である。図 3Bは図 3Aの 3B— 3B線断面図であ る。図 3Cは図 3Bの 3C— 3C線断面図である。また、図 4は、本発明の実施形態にか 力るフィルム冷却構造 10におけるフィルム冷却孔 14の形状を示す斜視図である。  [0016] FIGS. 3A-3C illustrate a film cooling structure 10 that works with embodiments of the present invention. FIG. 3A is a plan view showing the film cooling structure 10. 3B is a cross-sectional view taken along line 3B-3B of FIG. 3A. 3C is a cross-sectional view taken along line 3C-3C of FIG. 3B. FIG. 4 is a perspective view showing the shape of the film cooling hole 14 in the film cooling structure 10 according to the embodiment of the present invention.
[0017] 上述したように、このフィルム冷却構造 10は、ガスタービンエンジンにおける燃焼ガ ス 1の流路に配置されたタービン動翼などの構成部品に適用される。図 3B及び図 3 Cに示すように、フィルム冷却構造 10は、燃焼ガス 1に曝される表面 12とこの表面 12 の反対側に位置する内面 13と有する構造壁 11を備える。ガスタービンにおける上記 の構成部品が例えばタービン動翼である場合、タービン動翼の翼部を構成する壁が 、構造壁 11となる。構造壁 11の内面 13側には、冷却空気 5が流れている。  [0017] As described above, the film cooling structure 10 is applied to components such as turbine rotor blades arranged in the flow path of the combustion gas 1 in a gas turbine engine. As shown in FIGS. 3B and 3C, the film cooling structure 10 includes a structural wall 11 having a surface 12 exposed to the combustion gas 1 and an inner surface 13 located on the opposite side of the surface 12. When the above-described component in the gas turbine is, for example, a turbine rotor blade, the wall constituting the blade portion of the turbine rotor blade is the structural wall 11. Cooling air 5 flows on the inner surface 13 side of the structural wall 11.
[0018] 構造壁 11には、内面 13側の冷却空気 5を表面 12側へと導き表面 12のフィルム冷 却を行なうためのフィルム冷却孔 14が形成されている。図 3Bに示すように、フィルム 冷却孔 14の軸線は、燃焼ガス 1の流れに沿う方向に冷却空気 5がフィルム冷却孔 14 力 吹き出されるように構造壁 11の表面 12に対して所定角度傾斜している。 [0019] フィルム冷却孔 14は、内面 13から表面 12に向って構造壁 11内の途中位置まで延 びる導入部 14aと、この導入部 14aの表面 12側端部から表面 12に向って断面積が 漸増し表面 12で開口する拡大部 14bとを有する。 In the structural wall 11, film cooling holes 14 for guiding the cooling air 5 on the inner surface 13 side to the surface 12 side and cooling the film on the surface 12 are formed. As shown in FIG. 3B, the axis of the film cooling hole 14 is inclined at a predetermined angle with respect to the surface 12 of the structural wall 11 so that the cooling air 5 is blown out in the direction along the flow of the combustion gas 1. is doing. [0019] The film cooling hole 14 has an introduction portion 14a extending from the inner surface 13 toward the surface 12 to an intermediate position in the structural wall 11, and a cross-sectional area from the end of the introduction portion 14a on the surface 12 side toward the surface 12. Has an enlarged portion 14b that gradually increases and opens at the surface 12.
[0020] フィルム冷却孔 14は、さらに、拡大部 14bの内部を燃焼ガス 1の流れ方向に対して 直交する孔幅方向に複数に仕切る仕切り部 16を有する。ここで、「燃焼ガス 1の流れ 方向に対して直交する孔幅方向」は、図 3Bでは紙面に垂直な方向であり、図 3Cで は左右方向である。  [0020] The film cooling hole 14 further includes a partitioning portion 16 that partitions the inside of the enlarged portion 14b into a plurality of holes in a hole width direction orthogonal to the flow direction of the combustion gas 1. Here, the “hole width direction perpendicular to the flow direction of the combustion gas 1” is a direction perpendicular to the paper surface in FIG. 3B, and a horizontal direction in FIG. 3C.
図 3A〜図 3C及び図 4に示した構成例では、仕切り部 16は、フィルム冷却孔 14の 内部において燃焼ガス 1の流れ方向に対して直交する孔幅方向の中間位置に形成 され燃焼ガス 1の流れ方向上流側を向く壁面から燃焼ガス 1の流れ方向上流側に向 つて突出し構造壁 11の内面 13から表面 12に向って孔内部の全域にわたって延び ている。仕切り部 16と燃焼ガス 1の流れ方向下流側を向く壁面との間には隙間が形 成されている。  In the configuration examples shown in FIGS. 3A to 3C and FIG. 4, the partition 16 is formed at an intermediate position in the hole width direction perpendicular to the flow direction of the combustion gas 1 inside the film cooling hole 14. Projecting from the wall surface facing the upstream side in the flow direction toward the upstream side in the flow direction of the combustion gas 1 and extending from the inner surface 13 to the surface 12 of the structural wall 11 over the entire interior of the hole. A gap is formed between the partition portion 16 and the wall surface facing the downstream side in the flow direction of the combustion gas 1.
[0021] 仕切り部 16は、図 3A〜図 3C及び図 4の構成例では 1つ設けられている力 上記の 孔幅方向に間隔をおいて複数設けられてもよい。  [0021] In the configuration example of Figs. 3A to 3C and Fig. 4, a single partitioning portion 16 may be provided at intervals in the hole width direction.
また、仕切り部 16は、図 3A〜図 3C及び図 4の構成例では、燃焼ガス 1の流れ方向 上流側を向く壁面から燃焼ガス 1の流れ方向上流側に向って突出して設けられてい る力 これとは逆に、燃焼ガス 1の流れ方向下流側を向く壁面から燃焼ガス 1の流れ 方向下流側に向って突出して設けられてもよい。この場合、仕切り部 16と燃焼ガス 1 の流れ方向上流側を向く壁面との間には隙間が形成される。  Further, in the configuration examples of FIGS. 3A to 3C and FIG. 4, the partition 16 is provided so as to protrude from the wall surface facing the upstream side in the flow direction of the combustion gas 1 toward the upstream side in the flow direction of the combustion gas 1. On the contrary, it may be provided so as to protrude from the wall surface facing the downstream side in the flow direction of the combustion gas 1 toward the downstream side in the flow direction of the combustion gas 1. In this case, a gap is formed between the partition portion 16 and the wall surface facing the upstream side in the flow direction of the combustion gas 1.
[0022] 本実施形態によれば、以下のような作用効果を奏する。  [0022] According to the present embodiment, the following operational effects are obtained.
図 5に、ディフューザについて、長さ比を対数目盛で横軸に、入口出口面積比から 1を引いたものを対数目盛で縦軸にとり、圧力回復率 (減速率) Cpをパラメータとした グラフを示す。このとき、同じ入口出口面積比の場合、長さ比が大きい方が拡大角が 小さレ、。また、圧力回復率が高い方が剥離が起こりにくい。図中の圧力回復率 Cp* * で示される直線は、ディフューザ入口出口面積比が一定の場合に最大の圧力回復 率が得られる点を結んだ線である。一方、 Cp*の直線は、長さ比が一定の場合に最 大の圧力回復率が得られる線である。したがって、入口出口面積比が一定ならば、 拡大角が小さいほうが圧力回復率が高ぐ剥離が起こりにくいことがわかる。ディフユ 一ザの通路を 2等分あるいは 3等分すれば、各小通路の拡大角は全体の拡がり角の 1/2あるいは 1/3となり、 Cp*で定まる拡大角よりも小さくなつて通路全体として高 い圧力回復率が得られる。 Fig. 5 shows a graph of the diffuser with the length ratio on the logarithmic scale on the horizontal axis, the inlet / outlet area ratio minus 1 on the logarithmic scale on the vertical axis, and the pressure recovery rate (deceleration rate) Cp as a parameter. Show. At this time, in the case of the same inlet / outlet area ratio, the larger the length ratio, the smaller the enlargement angle. Further, peeling is less likely to occur when the pressure recovery rate is higher. The straight line indicated by the pressure recovery rate Cp * * in the figure is a line connecting the points where the maximum pressure recovery rate is obtained when the diffuser inlet / outlet area ratio is constant. On the other hand, the Cp * straight line is the line that provides the maximum pressure recovery rate when the length ratio is constant. Therefore, if the inlet / outlet area ratio is constant, It can be seen that the smaller the angle of enlargement, the higher the pressure recovery rate and the less likely the peeling occurs. Dividing the diffuser's passage into two or three equal parts, the expansion angle of each small passage becomes 1/2 or 1/3 of the overall expansion angle, and is smaller than the expansion angle determined by Cp *. As a result, a high pressure recovery rate can be obtained.
[0023] したがって、本実施形態によれば、フィルム冷却孔 14が上記のように構成された仕 切り部 16を有することにより実効の面積拡大率が抑えられるため、拡大部 14bの横 方向の拡大角を大きくしても、冷却空気 5の剥離が抑制される。このため、従来技術 と比較して冷却空気 5を効果的に拡散することができるので、拡大部 14bの横方向の 拡大角を大きくすることができ、これにより冷却空気 5を構造壁 11の表面 12に薄く広 く展開し、平均フィルム冷却効率を向上させることができる。ここで、平均フィルム冷却 効率は、(燃料ガス温度一構造壁の表面温度) / (燃焼ガス温度一冷却空気温度) で与えられる。 [0023] Therefore, according to the present embodiment, since the film cooling hole 14 includes the cutting portion 16 configured as described above, the effective area enlargement ratio can be suppressed, and thus the enlargement of the enlargement portion 14b in the lateral direction. Even if the angle is increased, the separation of the cooling air 5 is suppressed. For this reason, since the cooling air 5 can be effectively diffused as compared with the prior art, the lateral expansion angle of the enlarged portion 14b can be increased. It can be spread thinly and widely to improve the average film cooling efficiency. Here, the average film cooling efficiency is given by (fuel gas temperature / structure wall surface temperature) / (combustion gas temperature / cooling air temperature).
[0024] また、従来技術と比較して構造壁 11の表面 12に冷却空気 5をより薄く広く展開でき るので、構造壁 11に形成するフィルム冷却孔 14の数を減らすことができる。このため 、フィルム冷却構造 10の製作工程を少なくすることができる。また、フィルム冷却孔 1 4の数の減少に伴いガスタービンエンジンの圧縮機から抽気する冷却空気量を減ら すことができるので、エンジン効率を向上させることができる。  In addition, since the cooling air 5 can be spread more thinly and widely on the surface 12 of the structural wall 11 as compared with the prior art, the number of film cooling holes 14 formed in the structural wall 11 can be reduced. For this reason, the manufacturing process of the film cooling structure 10 can be reduced. Further, as the number of film cooling holes 14 decreases, the amount of cooling air extracted from the compressor of the gas turbine engine can be reduced, so that the engine efficiency can be improved.
[0025] フィルム冷却孔 14を放電カ卩ェなどの方法で加工する場合、仕切り部 16がフィルム 冷却孔 14を横方向に完全に仕切るものであると、分割された孔ごとに放電カ卩ェ電極 を挿入し、孔をカ卩ェする必要がある。また、仕切り部 16が、構造壁 11の厚さ方向のあ る位置で途切れる形状であると、 1つのフィルム冷却孔 14をカ卩ェするのに複数工程 を要する(例えば、表面 12側と内面 13側から放電カ卩ェ電極を揷入して加工する必要 がある)。また、他の加工手段においても同様に加工工程が複雑となる。  [0025] When the film cooling holes 14 are processed by a method such as a discharge casing, if the partition 16 completely partitions the film cooling holes 14 in the lateral direction, the discharge casing is divided for each of the divided holes. It is necessary to insert the electrode and clean the hole. Further, if the partition 16 has a shape that is interrupted at a position in the thickness direction of the structural wall 11, a plurality of steps are required to cover one film cooling hole 14 (for example, the surface 12 side and the inner surface It is necessary to insert and process the discharge casing electrode from the 13th side). Further, the processing steps are similarly complicated in other processing means.
これに対し、本実施形態では、仕切り部 16がフィルム冷却孔 14を横方向に完全に 仕切らず、構造壁 11の厚さ方向の全域にわたって延びるので、図 3A〜図 3C及び 図 4に示したフィルム冷却孔 14をカ卩ェするように構成された放電カ卩ェ電極を表面 12 側から揷入することにより、単一の工程でフィルム冷却孔 14をカ卩ェすることができる。 したがって、フィルム冷却孔 14の加工が容易である。 なお、上記において、本発明の実施形態について説明を行ったが、上記に開示さ れた本発明の実施の形態は、あくまで例示であって、本発明の範囲はこれら発明の 実施の形態に限定されない。例えば、上記の実施形態ではタービン動翼 2に本発明 を適用したが、ガスタービンエンジンにおける燃焼ガスの流路に配置された燃焼器ラ イナ、タービンノズノレべーン、タービンノズノレバンド、タービン静翼、タービンシュラウド 、タービン排気口ライナその他の構成部品にも適用できる。 On the other hand, in the present embodiment, the partition 16 does not completely partition the film cooling hole 14 in the lateral direction, and extends over the entire region in the thickness direction of the structural wall 11, so that it is shown in FIGS. 3A to 3C and FIG. By inserting a discharge carriage electrode configured to cover the film cooling hole 14 from the surface 12 side, the film cooling hole 14 can be covered in a single step. Therefore, the film cooling hole 14 can be easily processed. Although the embodiments of the present invention have been described above, the embodiments of the present invention disclosed above are only examples, and the scope of the present invention is limited to these embodiments. Not. For example, in the above embodiment, the present invention is applied to the turbine rotor blade 2, but the combustor liner, the turbine nozle vane, the turbine nozle band, the turbine stationary blade arranged in the flow path of the combustion gas in the gas turbine engine. Also applicable to turbine shrouds, turbine exhaust liners and other components.
本発明の範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲 の記載と均等の意味および範囲内でのすべての変更を含むものである。  The scope of the present invention is indicated by the description of the scope of claims, and further includes meanings equivalent to the description of the scope of claims and all modifications within the scope.

Claims

請求の範囲 The scope of the claims
[1] 燃焼ガスに曝される表面と該表面の反対側に位置する内面と有する構造壁を備え [1] comprising a structural wall having a surface exposed to combustion gas and an inner surface located on the opposite side of the surface
、該構造壁に前記内面側の冷却空気を表面側へと導き表面のフィルム冷却を行なう ためのフィルム冷却孔が形成されたフィルム冷却構造において、 In the film cooling structure, film cooling holes for guiding the cooling air on the inner surface side to the surface side and cooling the film on the surface are formed in the structural wall.
前記フィルム冷却孔は、前記内面から前記表面に向って前記構造壁内の途中位 置まで延びる導入部と、該導入部の表面側端部から前記表面に向って断面積が漸 増し前記表面で開口する拡大部と、該拡大部の内部を燃焼ガスの流れ方向に対し て直交する孔幅方向に複数に仕切る仕切り部とを有する、ことを特徴とするフィルム 冷却構造。  The film cooling hole includes an introduction portion extending from the inner surface toward the surface to an intermediate position in the structural wall, and a cross-sectional area gradually increasing from the surface side end portion of the introduction portion toward the surface. A film cooling structure comprising: an enlarged portion that opens; and a partition portion that divides the inside of the enlarged portion into a plurality of holes in a hole width direction orthogonal to the flow direction of the combustion gas.
[2] 前記仕切り部は、フィルム冷却孔の内部において前記燃焼ガスの流れ方向に対し て直交する孔幅方向の中間位置に形成され前記燃焼ガスの流れ方向上流側を向く 壁面と下流側を向く壁面のいずれか一方から他方に向って突出し前記構造壁の前 記内面から前記表面に向って孔内部の全域にわたって延びる請求項 1記載のフィル ム冷却構造。  [2] The partition portion is formed at an intermediate position in the hole width direction orthogonal to the flow direction of the combustion gas inside the film cooling hole, and faces a wall surface facing the upstream side and the downstream side of the flow direction of the combustion gas. 2. The film cooling structure according to claim 1, wherein the film cooling structure projects from one of the wall surfaces toward the other and extends from the inner surface of the structural wall toward the surface over the entire region inside the hole.
PCT/JP2007/054910 2006-11-13 2007-03-13 Film cooling structure WO2008059620A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/514,511 US20100040459A1 (en) 2006-11-13 2007-03-13 Film cooling structure
CA2668750A CA2668750C (en) 2006-11-13 2007-03-13 Film cooling structure
EP07738382.6A EP2083147B1 (en) 2006-11-13 2007-03-13 Film cooling structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-306538 2006-11-13
JP2006306538A JP4941891B2 (en) 2006-11-13 2006-11-13 Film cooling structure

Publications (1)

Publication Number Publication Date
WO2008059620A1 true WO2008059620A1 (en) 2008-05-22

Family

ID=39401434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/054910 WO2008059620A1 (en) 2006-11-13 2007-03-13 Film cooling structure

Country Status (5)

Country Link
US (1) US20100040459A1 (en)
EP (1) EP2083147B1 (en)
JP (1) JP4941891B2 (en)
CA (1) CA2668750C (en)
WO (1) WO2008059620A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052535A (en) * 2010-08-31 2012-03-15 General Electric Co <Ge> Component with conformal curved film hole and method of manufacturing the same
WO2013089255A1 (en) * 2011-12-15 2013-06-20 株式会社Ihi Turbine blade
US11414999B2 (en) * 2016-07-11 2022-08-16 Raytheon Technologies Corporation Cooling hole with shaped meter

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8371814B2 (en) * 2009-06-24 2013-02-12 Honeywell International Inc. Turbine engine components
US8529193B2 (en) * 2009-11-25 2013-09-10 Honeywell International Inc. Gas turbine engine components with improved film cooling
US8628293B2 (en) 2010-06-17 2014-01-14 Honeywell International Inc. Gas turbine engine components with cooling hole trenches
US8858175B2 (en) * 2011-11-09 2014-10-14 General Electric Company Film hole trench
US8683814B2 (en) * 2012-02-15 2014-04-01 United Technologies Corporation Gas turbine engine component with impingement and lobed cooling hole
US9024226B2 (en) * 2012-02-15 2015-05-05 United Technologies Corporation EDM method for multi-lobed cooling hole
US8584470B2 (en) * 2012-02-15 2013-11-19 United Technologies Corporation Tri-lobed cooling hole and method of manufacture
US8850828B2 (en) 2012-02-15 2014-10-07 United Technologies Corporation Cooling hole with curved metering section
US9422815B2 (en) 2012-02-15 2016-08-23 United Technologies Corporation Gas turbine engine component with compound cusp cooling configuration
US8763402B2 (en) * 2012-02-15 2014-07-01 United Technologies Corporation Multi-lobed cooling hole and method of manufacture
US9284844B2 (en) * 2012-02-15 2016-03-15 United Technologies Corporation Gas turbine engine component with cusped cooling hole
US20130209235A1 (en) * 2012-02-15 2013-08-15 United Technologies Corporation Gas turbine engine component with cusped, lobed cooling hole
US10422230B2 (en) 2012-02-15 2019-09-24 United Technologies Corporation Cooling hole with curved metering section
US8683813B2 (en) * 2012-02-15 2014-04-01 United Technologies Corporation Multi-lobed cooling hole and method of manufacture
US8689568B2 (en) 2012-02-15 2014-04-08 United Technologies Corporation Cooling hole with thermo-mechanical fatigue resistance
US9273560B2 (en) * 2012-02-15 2016-03-01 United Technologies Corporation Gas turbine engine component with multi-lobed cooling hole
US9650900B2 (en) 2012-05-07 2017-05-16 Honeywell International Inc. Gas turbine engine components with film cooling holes having cylindrical to multi-lobe configurations
JP2015520322A (en) * 2012-06-13 2015-07-16 ゼネラル・エレクトリック・カンパニイ Gas turbine engine wall
US10113433B2 (en) * 2012-10-04 2018-10-30 Honeywell International Inc. Gas turbine engine components with lateral and forward sweep film cooling holes
US10464135B2 (en) 2013-03-15 2019-11-05 United Technologies Corporation Additive manufacturing method for the addition of features within cooling holes
US10030524B2 (en) 2013-12-20 2018-07-24 Rolls-Royce Corporation Machined film holes
US10370987B2 (en) 2014-04-03 2019-08-06 Mitsubishi Hitachi Power Systems, Ltd. Blade or vane row and gas turbine
US11313235B2 (en) * 2015-03-17 2022-04-26 General Electric Company Engine component with film hole
US10208602B2 (en) * 2015-04-27 2019-02-19 United Technologies Corporation Asymmetric diffuser opening for film cooling holes
US11021965B2 (en) 2016-05-19 2021-06-01 Honeywell International Inc. Engine components with cooling holes having tailored metering and diffuser portions
KR101853550B1 (en) * 2016-08-22 2018-04-30 두산중공업 주식회사 Gas Turbine Blade
AU2017321896A1 (en) * 2016-09-01 2019-04-18 Additive Rocket Corporation Structural heat exchanger
EP3354849A1 (en) * 2017-01-31 2018-08-01 Siemens Aktiengesellschaft Wall of a hot gas part and corresponding hot gas part for a gas turbine
JP7250762B2 (en) 2017-08-11 2023-04-03 アルフローマ アイピー ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for producing leucoindigo salt solutions with very low aniline content
US10933481B2 (en) * 2018-01-05 2021-03-02 General Electric Company Method of forming cooling passage for turbine component with cap element
US11286792B2 (en) * 2019-07-30 2022-03-29 Rolls-Royce Plc Ceramic matrix composite vane with cooling holes and methods of making the same

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693802A (en) * 1992-09-14 1994-04-05 Hitachi Ltd Gas turbine stator vane
JPH1089005A (en) 1996-09-18 1998-04-07 Toshiba Corp High temperature member cooling device
JP2001012204A (en) * 1999-06-30 2001-01-16 Toshiba Corp Gas turbine blade
JP2001173405A (en) 1999-10-04 2001-06-26 General Electric Co <Ge> Method for improving cooling effect of gaseous cooling medium flow and relevant product
JP2003041902A (en) 2001-07-05 2003-02-13 General Electric Co <Ge> Device and method for cooling film of vane type part
JP2005090511A (en) 2003-09-17 2005-04-07 General Electric Co <Ge> Teardrop film cooling blade
JP2006009785A (en) 2004-06-23 2006-01-12 General Electric Co <Ge> Chevron film cooling type wall
JP2006307842A (en) * 2005-03-30 2006-11-09 Mitsubishi Heavy Ind Ltd High temperature member for gas turbine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3936223A (en) * 1974-09-23 1976-02-03 General Motors Corporation Compressor diffuser
US4529358A (en) * 1984-02-15 1985-07-16 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Vortex generating flow passage design for increased film cooling effectiveness
JP2002221005A (en) * 2001-01-26 2002-08-09 Ishikawajima Harima Heavy Ind Co Ltd Cooling turbine blade
JP3997986B2 (en) * 2003-12-19 2007-10-24 株式会社Ihi Cooling turbine component and cooling turbine blade

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693802A (en) * 1992-09-14 1994-04-05 Hitachi Ltd Gas turbine stator vane
JPH1089005A (en) 1996-09-18 1998-04-07 Toshiba Corp High temperature member cooling device
JP2001012204A (en) * 1999-06-30 2001-01-16 Toshiba Corp Gas turbine blade
JP2001173405A (en) 1999-10-04 2001-06-26 General Electric Co <Ge> Method for improving cooling effect of gaseous cooling medium flow and relevant product
JP2003041902A (en) 2001-07-05 2003-02-13 General Electric Co <Ge> Device and method for cooling film of vane type part
JP2005090511A (en) 2003-09-17 2005-04-07 General Electric Co <Ge> Teardrop film cooling blade
JP2006009785A (en) 2004-06-23 2006-01-12 General Electric Co <Ge> Chevron film cooling type wall
JP2006307842A (en) * 2005-03-30 2006-11-09 Mitsubishi Heavy Ind Ltd High temperature member for gas turbine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2083147A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052535A (en) * 2010-08-31 2012-03-15 General Electric Co <Ge> Component with conformal curved film hole and method of manufacturing the same
WO2013089255A1 (en) * 2011-12-15 2013-06-20 株式会社Ihi Turbine blade
US10060265B2 (en) 2011-12-15 2018-08-28 Ihi Corporation Turbine blade
US11414999B2 (en) * 2016-07-11 2022-08-16 Raytheon Technologies Corporation Cooling hole with shaped meter

Also Published As

Publication number Publication date
JP4941891B2 (en) 2012-05-30
EP2083147A1 (en) 2009-07-29
CA2668750C (en) 2012-06-19
EP2083147B1 (en) 2015-10-07
CA2668750A1 (en) 2008-05-22
US20100040459A1 (en) 2010-02-18
EP2083147A4 (en) 2014-05-14
JP2008121561A (en) 2008-05-29

Similar Documents

Publication Publication Date Title
WO2008059620A1 (en) Film cooling structure
US20240159151A1 (en) Airfoil for a turbine engine
EP2604800B1 (en) Nozzle vane for a gas turbine engine
EP1640563B1 (en) Heat transfer augmentation in a compact heat exchanger pedestral array
JP4785507B2 (en) Turbine nozzle with bull nose step
EP1921272B1 (en) Air-cooled aerofoil for a gas turbine engine
US9004866B2 (en) Turbine blade incorporating trailing edge cooling design
US7985050B1 (en) Turbine blade with trailing edge cooling
US20090060715A1 (en) Cooled component
JP2007514888A (en) Cooling turbine vane platform
US20120257954A1 (en) Method for cooling turbine stators and cooling system for implementing said method
US7090461B2 (en) Gas turbine vane with integral cooling flow control system
JP2006105152A (en) Stepped outlet turbine airfoil part
EP2221453B1 (en) Airfoil insert and corresponding airfoil and assembly
JP3213107U (en) Collision system for airfoils
EP3382151B1 (en) Turbine component with shaped cooling pins
US20200378262A1 (en) Gas turbine engines with improved airfoil dust removal
EP1013881B1 (en) Coolable airfoils
EP3453831B1 (en) Airfoil having contoured pedestals
US8162594B2 (en) Cooled blade for a turbomachine
CN110735664B (en) Component for a turbine engine having cooling holes
EP3546701A1 (en) Airfoils for gas turbine engines
US11732591B2 (en) Film cooling structure and turbine blade for gas turbine engine
US11708762B2 (en) Film cooling structure and turbine blade for gas turbine engine
EP1746254B1 (en) Apparatus and method for cooling a turbine shroud segment and vane outer shroud

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07738382

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007738382

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2668750

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 12514511

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE