WO2008059608A1 - Process for production of honeycomb structures - Google Patents

Process for production of honeycomb structures Download PDF

Info

Publication number
WO2008059608A1
WO2008059608A1 PCT/JP2006/324983 JP2006324983W WO2008059608A1 WO 2008059608 A1 WO2008059608 A1 WO 2008059608A1 JP 2006324983 W JP2006324983 W JP 2006324983W WO 2008059608 A1 WO2008059608 A1 WO 2008059608A1
Authority
WO
WIPO (PCT)
Prior art keywords
inorganic
inorganic binder
binder solution
honeycomb
cam
Prior art date
Application number
PCT/JP2006/324983
Other languages
French (fr)
Japanese (ja)
Inventor
Kazushige Ohno
Takahiko Ido
Chizuru Kasai
Original Assignee
Ibiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co., Ltd. filed Critical Ibiden Co., Ltd.
Priority to DE602007004411T priority Critical patent/DE602007004411D1/en
Priority to EP07018608A priority patent/EP1923373B1/en
Priority to US11/939,467 priority patent/US20080119355A1/en
Publication of WO2008059608A1 publication Critical patent/WO2008059608A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0006Honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9427Processes characterised by a specific catalyst for removing nitrous oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/001Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing unburned clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/24Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing alkyl, ammonium or metal silicates; containing silica sols
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/204Alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/30Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/34Non-shrinking or non-cracking materials
    • C04B2111/343Crack resistant materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/10Capture or disposal of greenhouse gases of nitrous oxide (N2O)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a method for manufacturing a honeycomb structured body.
  • a hard-cam catalyst in which a catalyst component is supported on a hard-cam structure used for exhaust gas purification of a vehicle is an active alumina on the surface of a cordierite-type no-cam structure having an integral structure and low thermal expansion. It is manufactured by supporting a high specific surface area material such as platinum and a catalytic metal such as platinum.
  • a honeycomb catalyst carries an alkaline earth metal such as Ba as a NOx storage agent for NOx treatment in an oxygen-excess atmosphere such as a lean burn engine and a diesel engine.
  • a hard cam structure obtained by extruding inorganic particles and inorganic fibers together with an inorganic binder is known as a hard cam structure having a high specific surface area material force (see, for example, Patent Documents 1 to 3). ).
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-218935
  • Patent Document 2 JP-A-2005-349378
  • Patent Document 3 Japanese Patent Laid-Open No. 5-213681
  • Patent Documents 1 to 3 when a honeycomb structure is manufactured through a process of extruding inorganic particles and inorganic fibers together with an inorganic binder, heat treatment is performed on the extruded molded body. When subjected to (drying treatment, degreasing treatment, firing treatment, etc.), cracks and deformation may occur in the molded product and the fired product.
  • the concentration of the inorganic binder contained in the inorganic binder solution may be adjusted within a predetermined range, and the present invention is completed.
  • the method for producing a her cam structure of the present invention comprises at least inorganic particles, inorganic fibers and
  • the blending amount of the inorganic binder solution is 30 to 60% by weight with respect to the total amount of the inorganic particles and the inorganic fibers and Z or the whistle force and the inorganic binder solution.
  • the concentration is characterized by being 35-50% by weight.
  • the concentration of the inorganic binder refers to the percentage of the weight of the inorganic binder with respect to the total weight of the inorganic binder solution.
  • the inorganic binder solution is a group that also includes alumina sol, silica sol, titasol, water glass, suspension of sepiolite and suspension of attapulgite. It is desirable that the force is also at least one selected.
  • the inorganic binder solution having a predetermined concentration is mixed in the raw material composition in a predetermined blending amount, so that the manufacturing of the her cam structure is performed.
  • the honeycomb molded body is not deformed or cracked in the honeycomb fired body. A two-cam structure can be manufactured.
  • the manufacturing method of the hercome structure of the present invention comprises a raw material composition preparation step of preparing a raw material composition by mixing at least inorganic particles and inorganic fibers and z or whistle force and an inorganic binder solution;
  • the blending amount of the inorganic binder solution is 30 to 60% by weight with respect to the total amount of the inorganic particles and the inorganic fibers and Z or the whistle force and the inorganic binder solution.
  • the concentration is characterized by being 35-50% by weight.
  • the columnar shape includes an arbitrary shape such as a columnar shape, an elliptical columnar shape, or a polygonal columnar shape.
  • a raw material composition preparation step for preparing a raw material composition containing at least inorganic particles, inorganic fibers, and Z or Wis power and an inorganic binder solution is performed.
  • an organic binder and a molding aid appropriately arranged according to the moldability can be used as necessary.
  • an inorganic binder solution having a lower concentration limit of 35 wt% and an upper limit of 50 wt% is used as the inorganic binder solution.
  • the concentration of the inorganic binder solution when the concentration of the inorganic binder solution is less than 35% by weight, the amount of the solvent such as water contained in the raw material composition increases. Although good formability can be ensured, cracks and deformation may occur in the honeycomb fired body during the manufacturing process of the her cam structure.
  • the concentration of the inorganic binder solution exceeds 50% by weight, when the raw material composition is extruded, the moldability may be inferior and a molded article having a desired shape may not be produced.
  • the desirable upper limit of the concentration of the inorganic binder solution is 45% by weight.
  • the inorganic binder solution a suspension of an inorganic sol or clay binder can be used, and specific examples of the inorganic sol include, for example, alumina sol, silica sol, titasol, water glass, and the like. Can be mentioned.
  • the clay-based binder include double-chain structure type clays such as white clay, ryoolin, montmorillonite, sepiolite, and attapulgite. These may be used alone or in combination of two or more.
  • At least one selected from the group force of alumina sol, silica sol, titasol, water glass, sepiolite suspension and attapulgite suspension is desirable.
  • the average particle size of the inorganic binder contained in the inorganic binder solution is desirably a lower limit of lOnm and an upper limit of 50 nm. This is because a two-cam structure having a large specific surface area and excellent strength can be manufactured through a manufacturing process described later.
  • the strength of the produced no-cam structure may be insufficient.
  • the inorganic binder is considered to play a role of mainly bonding the inorganic particles, the inorganic fibers, and the whiskers, and between the inorganic fibers and the inorganic particles. It is considered that the adhesive function is exerted by contacting the inorganic fibers and the inorganic particles at the same time, interposing between the inorganic particles and contacting different inorganic particles at the same time.
  • the average particle diameter is less than lOnm, it is difficult to contact the inorganic fibers and the inorganic particles at the same time, or to contact different inorganic particles at the same time, and a sufficient adhesive force cannot be obtained.
  • the average particle diameter exceeds 50 nm, the number of adhesion points will decrease, and as a result, the strength will be insufficient.
  • the average particle size of the inorganic binder exceeds 50 nm, the specific surface area of the manufactured Hercam structure is not sufficiently large, which is disadvantageous when the honeycomb structure is used as a catalyst carrier. .
  • the more desirable average particle size of the inorganic binder is a lower limit of 20 nm and an upper limit force On m.
  • the average particle size of the inorganic binder can be measured, for example, by the following method.
  • the silica sol is first dried and its BET specific surface area is measured.
  • the average particle size of the inorganic binder can also be directly measured using, for example, a TEM (transmission electron microscope).
  • the blending amount of the inorganic binder solution with respect to the total amount of the inorganic particles, the inorganic fibers, and Z or Wis power and the inorganic binder solution is:
  • the lower limit is 30% by weight and the upper limit is 60% by weight.
  • the blending amount of the inorganic binder solution is less than 30% by weight, the amount of the inorganic binder contained in the manufactured hard cam structure is small, and the strength of the hard cam structure may be lowered. This is because if the amount of the inorganic noinda solution exceeds 60% by weight, the moldability of the raw material composition tends to deteriorate.
  • the blending amount of the inorganic noinda solution with respect to the total amount of the inorganic particles, the inorganic fibers, the Z or Wis power and the inorganic noinda solution is desirably 50% by weight.
  • examples of the inorganic particles include alumina, silica, zirconia, titer, ceria, mullite, and zeolite. These may be used alone or in combination of two or more. Of these, alumina particles and ceria particles are particularly desirable.
  • the amount of the inorganic particles is based on the inorganic particles, the inorganic fibers, and the Z or whistle force.
  • the desired lower limit is 30% by weight, the more desirable lower limit is 40% by weight, and the more desirable lower limit is 50% by weight with respect to the total amount of the inorganic binder solution and the solid content (hereinafter referred to as the total amount of essential raw materials). It is.
  • a desirable upper limit is 85% by weight, a more desirable upper limit is 80% by weight, and a further desirable upper limit is 75% by weight.
  • the blended amount of the inorganic particles is less than 30% by weight, the amount of inorganic particles contributing to the improvement of the specific surface area is relatively small, so that the specific surface area of the produced two-cam structure is small, and the catalyst component When the catalyst is supported, the catalyst component may not be highly dispersed.
  • the amount of inorganic binder, inorganic fiber, and whisker that contributes to strength improvement will be relatively small, so the strength of the manufactured two-cam structure tends to decrease.
  • the inorganic particles to be blended in the raw material composition have an average secondary particle size of 0.5 to 20 ⁇ m! / ⁇ .
  • the produced no-cam structure is densified, and when used as a catalyst carrier, the gas permeability may be inferior, while exceeding And the specific surface area of the manufactured honeycomb structure tends to be small.
  • the average particle size of the primary particles of the inorganic particles is preferably 5 to: LOOnm.
  • primary particles are particles constituting a powder aggregate, and are the smallest unit particles that exist without breaking bonds between molecules.
  • Secondary particles are particles formed by agglomeration of primary particles.
  • the inorganic particles preferably have a specific surface area of 50 to 300 m 2 / g.
  • the specific surface area is less than 50 m 2 Zg, the specific surface area of the manufactured honeycomb structure tends to be small.
  • the specific surface area exceeds 300 m 2 Zg, the specific surface area of the two-cam structure is increased even if the specific surface area is increased. This is because the specific surface area does not improve so much.
  • the average aspect ratio of the inorganic particles (secondary particles) is 1 to 5.
  • Examples of the inorganic fiber twist force include alumina, silica, silicon carbide, silica-alumina, Examples include inorganic fiber whiskering force, which can be lath, potassium titanate or aluminum borate.
  • the inorganic fiber whisking force has an average aspect ratio exceeding 5.
  • the desirable average aspect ratio of the inorganic fiber wis power is 10 to: LOOO.
  • the total blending amount of the inorganic fiber and Z or the whisking force is preferably 3% by weight, more preferably 5% by weight, and more preferably 8% by weight based on the total amount of the essential raw materials. %.
  • the desirable upper limit is 50% by weight, the more desirable upper limit is 40% by weight, and the more desirable upper limit is 30% by weight.
  • the strength of the manufactured honeycomb structure is reduced. On the other hand, if it exceeds 50% by weight, the manufactured honeycomb structure is reduced. Therefore, when the manufactured honeycomb structure is used as a catalyst carrier, when the catalyst component having a small specific surface area is supported, the honeycomb structure is used as a catalyst carrier.
  • the catalyst component may not be highly dispersed.
  • the organic binder is not particularly limited, and examples thereof include methyl cellulose, canoleoxy methylenoresenorelose, hydroxyethinoresenorelose, and polyethylene glycol.
  • the blending amount of the organic binder is desirably 1 to 10 parts by weight with respect to a total of 100 parts by weight of the solid content of the inorganic particles, the inorganic fibers, the whiskers, and the inorganic binder solution.
  • the molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid, fatty acid sarcophagus, and polyalcohol.
  • Preparation of the raw material composition is not particularly limited, but it is preferable to mix and knead the raw materials.
  • a kneader that can be mixed using a mixer, an attritor, etc. Thoroughly knead.
  • the honeycomb formed body is subjected to a drying treatment as necessary.
  • the drying treatment can be performed using, for example, a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer, or the like.
  • the degreasing conditions are not particularly limited, and are appropriately selected depending on the type and amount of the organic substance contained in the molded body, but are preferably about 400 ° C. and about 2 hours.
  • a firing process is performed to produce a honeycomb fired body by subjecting the Hercam molded body, which has been subjected to a drying process and a degreasing process, as necessary to a firing process.
  • the firing temperature in the firing treatment is not particularly limited, but 500-1200 ° C is desirable, and 600-1000 ° C is more desirable.
  • the firing temperature is less than 500 ° C, the adhesive function due to the inorganic binder is difficult to develop, and the sintering of the inorganic particles or the like hardly progresses, so the strength of the manufactured honeycomb structure may be lowered.
  • the temperature exceeds 1200 ° C, the sintering of inorganic particles proceeds too much, and the specific surface area per unit volume of the manufactured Hercam structure becomes small.
  • the Hercam structure is used as a catalyst support, In some cases, the catalyst component to be supported cannot be sufficiently dispersed.
  • the no-cam fired body manufactured through such steps is itself a her cam structure, and in the method for manufacturing the her cam structure of the present invention, all the steps may be completed so far.
  • a seal material layer (coat layer) may be formed around the no-cam fired body manufactured by the method described so far to obtain a finished product of the her cam structure.
  • Such a her cam structure having a single hard cam firing strength is also referred to as an integrated her cam structure hereinafter.
  • the method for forming the sealing material layer (coat layer) is a method of firing a plurality of Hercoms described later. This is the same as the method of forming a sealing material layer (coat layer) around the honeycomb block when the bodies are bound to produce a honeycomb structure.
  • a her cam fired body after manufacturing a her cam fired body by the above-described method, a plurality of the honeycomb fired bodies are bundled to manufacture a honeycomb structure. Also good.
  • a her cam structure formed by binding a plurality of her cam fired bodies is hereinafter also referred to as a collective her cam structure.
  • a sealing material paste to be a sealing material layer is applied to the obtained her cam fired body to sequentially bind the her cam fired body, and then dried and fixed. Then, an aggregate of honeycomb fired bodies having a predetermined size that is bound through a sealing material layer (adhesive layer) is produced.
  • a sealing material paste is injected into the gap between the her-cam fired bodies, and then dried, fixed, and sealed.
  • An aggregate of honeycomb fired bodies of a predetermined size that are bound through layers (adhesive layers) may be produced.
  • the sealing material paste for forming the adhesive layer is not particularly limited, but for example, a mixture of an inorganic binder and ceramic particles, or a mixture of an inorganic binder and inorganic fibers. Or a mixture of an inorganic binder, ceramic particles and inorganic fibers can be used.
  • an organic binder may be added to these sealing material pastes.
  • the organic binder is not particularly limited, and examples thereof include polyvinyl alcohol, methenoresenorelose, ethinoresenorelose, and canoleboxymethinoresenorelose.
  • the thickness of the sealing material layer is preferably 0.5 to 5 mm.
  • the sealing material layer (adhesive layer) is less than 0.5 mm, sufficient bonding strength may not be obtained. If the thickness exceeds 5 mm, the sealing material layer (adhesive layer) serves as a catalyst carrier. Function Since this is not a portion, the specific surface area per unit volume of the her cam structure is lowered, and when the catalyst component is supported, it may not be possible to sufficiently disperse the catalyst component.
  • the pressure loss may increase.
  • the number of honeycomb fired bodies to be bundled may be appropriately determined according to the size of the honeycomb structure.
  • the aggregate of the honeycomb fired bodies in which the honeycomb fired bodies are bound through the sealing material layer (adhesive layer) is appropriately cut and polished as necessary to form a hard cam block.
  • a sealant paste for forming a coat layer is applied to the outer peripheral surface of the her cam block, dried, and fixed to form a sealant layer (coat Layer).
  • the sealing material layer (coat layer)
  • the outer peripheral surface of the her cam block can be protected, and as a result, the strength of the her cam structure can be increased.
  • the sealing material paste for forming the coating layer is not particularly limited, and may be made of the same material as the sealing material paste for forming the adhesive layer, or may be made of a different material. It may be.
  • the sealing material paste for forming the coating layer has the same material strength as that of the sealing material paste for forming the adhesive layer, the blending ratios of the components are the same. It may be different.
  • the thickness of the sealing material layer is not particularly limited, but is preferably 0.1-2 mm. If the thickness is less than 1 mm, the outer peripheral surface may not be protected and the strength may not be increased. If the thickness exceeds 2 mm, the specific surface area per unit volume of the her-cam structure decreases, and the catalyst component is supported. When this occurs, it may not be possible to achieve sufficiently high dispersion.
  • an organic binder is contained in the sealing material layer (adhesive layer) and the sealing material layer (coat layer). This is because this organic noinda can be degreased and removed.
  • the conditions for calcining are appropriately determined depending on the type and amount of organic substances contained, but it is desirable that the conditions are approximately 700 ° C and 2 hours.
  • FIG. 1 (a) is a perspective view schematically showing an example of a hard cam fired body manufactured by the method for manufacturing a hard cam structure of the present invention
  • FIG. 1 (b) is a schematic view of the hard cam shown in FIG. -A perspective view schematically showing an example of a hard structure using a cam fired body.
  • the honeycomb fired body 20 has a quadrangular prism shape, and a large number of cells 21 are separated from each other by cell walls 22 in the longitudinal direction (in Fig. 1 (a), the arrow a Direction).
  • the her cam structure 10 includes a plurality of two-cam fired bodies 20 shown in FIG. 1 (a) that are bound together through a sealing material layer (adhesive layer) 14.
  • a sealing material layer adheresive layer
  • the ceramic block 15 is formed, and a sealing material layer (coat layer) 13 is formed on the outer periphery thereof.
  • the thickness of the cell wall is not particularly limited. Force The desirable lower limit is 0.05 mm, the more desirable lower limit is 0.10 mm, and the particularly desirable lower limit. Is 0.15mm. On the other hand, the desirable upper limit of the cell wall thickness is 0.35 mm, the more desirable upper limit is 0.30 mm, and the particularly desirable upper limit is 0.25 mm.
  • the cell wall thickness is less than 0.05 mm, the strength of the Hercam fired body may be reduced. On the other hand, if the cell wall thickness exceeds 0.35 mm, the Hercam When the structure is used as a catalyst carrier for purifying exhaust gas, the contact area with the exhaust gas is reduced and the gas does not penetrate deep enough, so the catalyst supported inside the cell wall and the gas come into contact with ⁇ As a result, the gas purification performance may deteriorate.
  • the cell density of the above-mentioned Hercam fired body has a desirable lower limit of 15.5 pieces / cm 2 (100 cpsi), and a more desirable lower limit force of 6.5 pieces Zcm 2 (300 cpsi), and is further desirable.
  • the lower limit is 62 pieces Zcm 2 (400cpsi).
  • the desirable upper limit of the cell density is 186 Zcm 2 (1200 cpsi), the more desirable upper limit is 170.5 Zcm 2 (1100 cpsi), and the more desirable upper limit is 155 Zcm 2 (1000 cpsi).
  • the above-mentioned Hercom structure will be exhausted.
  • the catalyst carrier is used, the area of the cell wall that comes into contact with the exhaust gas inside the honeycomb fired body is reduced.
  • the cell wall exceeds 186 cells / cm 2 , the pressure loss increases and the production of the Hercam fired body becomes possible. This is because it becomes difficult.
  • the cross-sectional area in the direction perpendicular to the longitudinal direction of the Hercam fired body preferably has a lower limit of 5 cm 2 and an upper limit of 50 cm 2. Is a range formed by binding a plurality of honeycomb fired bodies, it is desirable to be within the above range. If the cross-sectional area is less than 5 cm 2 , the area occupied by a sealing material layer (adhesive layer) that joins a plurality of her-cam fired bodies in the cross-section perpendicular to the longitudinal direction of the her-cam structure However, when the honeycomb structure is used as a catalyst carrier, the area on which the catalyst can be supported becomes relatively small. On the other hand, if the cross-sectional area exceeds 50 cm 2 , the honeycomb fired body is large, and thus there is a fear that the thermal stress generated in the honeycomb fired body cannot be sufficiently suppressed.
  • a more desirable lower limit of the cross-sectional area is 6 cm 2
  • a particularly desirable lower limit is 8 cm 2
  • a more desirable upper limit is 40 cm 2 , especially desirable! /
  • an upper limit is 30 cm 2 .
  • the shape of the cross section perpendicular to the longitudinal direction of the cells formed in the honeycomb fired body is not particularly limited, and other than the square shape such as the two-cam fired body shown in Fig. 1 (a), It may be a substantially triangular shape or a substantially hexagonal shape.
  • the ratio of the total cross-sectional area of the honeycomb fired body to the cross-sectional area of the honeycomb structure is preferably 90% or more. If it is less than 90%, the specific surface area of the her cam structure will be small.
  • the specific surface area per unit area of the above-mentioned hard cam structure is preferably 25000 m 2 ZL or more.
  • the desirable upper limit of the specific surface area is 70000 m 2 ZL in consideration of the dispersion limit of the catalyst (for example, platinum).
  • the higher the bending strength of the honeycomb structure the more desirable it is, for example, when the honeycomb fired body has a prismatic shape of 37 mm X 37 mm X 75 mm, it is 3. OMpa or more. It is desirable.
  • FIG. 1 the hard cam structure manufactured by the method of manufacturing a hard cam structure of the present invention is shown in FIG.
  • FIG. 2 is a perspective view schematically showing another example of the honeycomb structure manufactured by the method for manufacturing a honeycomb structure of the present invention.
  • a hard cam structure 30 shown in FIG. 2 has a columnar shape, and a large number of cells 31 are arranged side by side in the longitudinal direction (in the direction of arrow b in FIG. 2) with the cell walls 32 therebetween. It consists of one piece.
  • a seal material layer may be formed around the her cam fired body.
  • a catalyst is supported on the hard cam structure having such a configuration.
  • the above-mentioned Hercam structure also has a force that can be suitably used as a catalyst carrier.
  • the catalyst is not particularly limited, and examples thereof include noble metals, alkali metals, alkaline earth metals, and oxides. These may be used alone or in combination of two or more.
  • Examples of the noble metal include platinum, noradium, and rhodium.
  • Examples of the alkali metal include potassium and sodium.
  • Examples of the alkaline earth metal include, for example, For example, perovskite (La
  • the Hercam structure on which the catalyst as described above is supported is not particularly limited.
  • it may be used as a so-called three-way catalyst or NOx storage catalyst for automobile exhaust gas purification. Togashi.
  • the catalyst loading time is not particularly limited. You may carry
  • honeycomb structure of the present invention and Z or the hard structure manufactured by this manufacturing method have been described mainly using the case as a catalyst carrier as an example.
  • the honeycomb structure can be used other than the catalyst carrier, for example, as an adsorbent for adsorbing a gas component or a liquid component.
  • ⁇ -alumina particles secondary particles with an average particle size of 2 ⁇ m
  • aluminum borate whisker as inorganic fibers (fiber diameter 0.5-1 m, fiber length 10-30 ⁇ m) 680 g
  • silica sol average particle size 15 nm, concentration 35 weight 0 / O ) 2600 g as an inorganic noda solution
  • 320 g of methyl cellulose as an organic binder and uniloop as a lubricant manufactured by NOF Corporation
  • 290 g and 225 g of glycerin manufactured by NOF Corporation
  • the honeycomb formed body was sufficiently dried using a microwave dryer and a hot air dryer, and further degreased by being held at 400 ° C for 2 hours.
  • a Hercham sintered body was produced in the same manner as in Example 1 except that the silica sol (average particle size 15 nm) having the concentration shown in Table 1 was used as the inorganic binder solution used in preparing the raw material composition. .
  • Example 4 In the same manner as in Example 1 except that alumina sol (average particle size 15 nm, concentration 35% by weight) was used in place of silica sol when preparing the raw material composition, a hard cam fired body was produced.
  • alumina sol average particle size 15 nm, concentration 35% by weight
  • ⁇ -alumina particles instead of ⁇ -alumina particles, ⁇ -alumina particles (secondary particles with an average particle size of 2 ⁇ m) 50 wt% and 13 zeolite particles (secondary particles with an average particle size of 2 ⁇ m) 50 wt%
  • ⁇ -alumina particles secondary particles with an average particle size of 2 ⁇ m
  • 13 zeolite particles secondary particles with an average particle size of 2 ⁇ m
  • a Hercam sintered body was produced in the same manner as in Example 5 except that the silica sol (average particle diameter 15 nm) having the concentration shown in Table 1 was used as the inorganic binder solution used in preparing the raw material composition. .
  • a hard cam fired body was produced in the same manner as in Example 5 except that alumina sol (average particle size 15 nm, concentration 35% by weight) was used instead of silica sol when preparing the raw material composition.
  • alumina sol average particle size 15 nm, concentration 35% by weight
  • inorganic particles instead of secondary particles of ⁇ -alumina particles, 50% by weight of ⁇ -alumina particles (secondary particles with an average particle size of 2 ⁇ m) and 50% by weight of CeO particles (secondary particles with an average particle size of 2 ⁇ m) %
  • a hard-cam fired body was produced in the same manner as in Example 1 except that the mixed particles were used.
  • a Hercam sintered body was produced in the same manner as in Example 9 except that the silica sol (average particle size 15 nm) having the concentration shown in Table 1 was used as the inorganic binder solution used when preparing the raw material composition. .
  • a hard cam fired body was produced in the same manner as in Example 9 except that alumina sol (average particle size 15 nm, concentration 35 wt%) was used instead of silica sol when preparing the raw material composition.
  • Example 13 A Hercam sintered body was produced in the same manner as in Example 1 except that the raw material composition was prepared by the following method.
  • a Hercam fired body was produced in the same manner as in Example 13 except that the silica sol (average particle size 15 nm) having the concentration shown in Table 1 was used as the inorganic binder solution used in preparing the raw material composition. .
  • a Hercam sintered body was produced in the same manner as in Example 1 except that the raw material composition was prepared by the following method.
  • a Hercam fired body was produced in the same manner as in Example 16 except that the silica sol (average particle diameter 15 nm) having the concentration shown in Table 1 was used as the inorganic binder solution used in preparing the raw material composition. .
  • silica sol (average particle size 15 nm) having the concentration shown in Table 1 was used, and the Herkham calcination was performed in the same manner as in Example 1. An adult was produced.
  • a hard-cam fired body was produced in the same manner as in Example 4 except that an alumina sol (average particle size of 15 nm) having the concentration shown in Table 1 was used as the inorganic binder solution used in preparing the raw material composition. .
  • a Hercam sintered body was produced in the same manner as in Example 5 except that the silica sol (average particle diameter 15 nm) having the concentration shown in Table 1 was used as the inorganic binder solution used in preparing the raw material composition. .
  • a hard-cam fired body was produced in the same manner as in Example 8, except that the alumina sol (average particle size 15 nm) having the concentrations shown in Table 1 was used as the inorganic binder solution used in preparing the raw material composition. .
  • a Hercam sintered body was produced in the same manner as in Example 9 except that the silica sol (average particle size 15 nm) having the concentration shown in Table 1 was used as the inorganic binder solution used when preparing the raw material composition. .
  • a hard-fired fired body was produced in the same manner as in Example 12 except that the alumina sol (average particle size 15 nm) having the concentration shown in Table 1 was used as the inorganic binder solution used when preparing the raw material composition. did.
  • a hard cam fired body was produced in the same manner as in Comparative Example 1 except that the amount of the inorganic binder solution (silica sol) used in preparing the raw material composition was 2000 g.
  • Examples 1 to 18 and Comparative Examples 1 to 10 as a silica sol having a concentration of 30% by weight, Snowtech 30 manufactured by Nissan Chemical Co., Ltd. was used, and the concentration was 35% by weight, 40% by weight, 50% by weight.
  • a silica sol of 60% by weight and 60% by weight a Snow Tech 30 concentrated to a predetermined concentration was used.
  • Alumina sol 520 alumina concentration 20% by weight concentrated to a predetermined concentration was used as an alumina sol with a concentration of 30% by weight and 35% by weight.
  • the flatness of the side surface was measured by the following method, and the hard cam fired body having a flatness of all side faces of 0.5 mm or less was “O”.
  • Her-cam fired bodies with a flatness exceeding 0.5 mm were evaluated as “XJ”.
  • the flatness of the Hercam fired body was evaluated by plotting the position coordinates of the side face of the Hercam fired body using a three-dimensional measuring machine (BH-V507, manufactured by Mitutoyo Corporation).
  • Example 1 35 47 None ⁇ Example 2 40 47 ⁇ ⁇ ⁇ Example 3 50 47 ⁇ ⁇ Example 4 35 47 ⁇ Example 5 35 47 ⁇ ⁇ Example 6 40 47 ⁇ Example 7 50 47 ⁇ Example 8 35 47 None ⁇ Example 9 35 47 ⁇ Example 1 0 40 47 ⁇ Example 1 1 50 47 ⁇ Example 1 2 35 47 ⁇ Example 1 3 35 30 None ⁇ Example 1 4 40 30 ⁇ Example 1 5 50 30 ⁇ Example 1 6 35 60 iffi ⁇ Example 1 7 40 60 m ⁇ Example 1 8 50 60 ⁇ Comparative Example 1 30 47 Yes Yes Comparative Example 2 60 47 to X Comparative Example 3 30 47 Yes Yes Comparative Example 4 30 47 Yes Yes Comparative Example 5 60 47 No X Comparative Example 6 30 47 Yes Yes Comparative Example 7 30 47 Yes Yes Comparative Example 8 60 47 No X Comparative Example 9 30 47 Yes Yes Comparative Example 1 0 30 41 No X
  • FIG. 1] (a) is a perspective view schematically showing an example of a hard cam fired body manufactured by the method of manufacturing a hard cam structure of the present invention.
  • FIG. 2 is a perspective view schematically showing an example of a no-cam structure using the her cam fired body shown in a).
  • FIG. 2 is a perspective view schematically showing another example of the honeycomb structure manufactured by the method for manufacturing a honeycomb structure of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Catalysts (AREA)

Abstract

The invention provides a process for the production of honeycomb structures free from deformation or cracking, that is, a process for the production of honeycomb structures which comprises the starting composition preparation step of mixing inorganic particles essentially with an inorganic fiber and/or whisker and an inorganic binder solution to prepare a starting composition, the molding step of extruding the starting composition into a columnar honeycomb wherein many cells are arranged in the lengthwise direction with each cell surrounded by a cell wall, and the burning step of burning the honeycomb to form a burned honeycomb, characterized in that the inorganic binder solution is used in an amount of 30 to 60% by weight based on the total amount of the inorganic particles, the inorganic fiber and/or whisker, and the inorganic binder solution and the concentration of the inorganic binder solution is 35 to 50% by weight.

Description

明 細 書  Specification
ハニカム構造体の製造方法  Manufacturing method of honeycomb structure
技術分野  Technical field
[0001] 本発明は、ハニカム構造体の製造方法に関する。  [0001] The present invention relates to a method for manufacturing a honeycomb structured body.
背景技術  Background art
[0002] 従来、車両の排ガス浄化用に用いられるハ-カム構造体に触媒成分を担持したハ- カム触媒は、一体構造で低熱膨張性のコージエライト質ノヽ-カム構造体の表面に活 性アルミナ等の高比表面積材料と白金等の触媒金属とを担持することにより製造さ れている。また、このようなハニカム触媒は、リーンバーンエンジンおよびディーゼル エンジンのような酸素過剰雰囲気下における NOx処理のために、 NOx吸蔵剤として Ba等のアルカリ土類金属を担持している。ところで、浄ィ匕性能をより向上させるため には、排ガスと触媒貴金属および NOx吸蔵剤との接触確率を高くする必要がある。 そのためには、担体をより高比表面積にして、貴金属の粒子サイズを小さぐかつ高 分散させる必要がある。そこで、例えば、高比表面積材料力もなるハ-カム構造体と して、無機粒子及び無機繊維を無機バインダとともに押出成形したハ-カム構造体 が知られている(例えば、特許文献 1〜3参照)。  [0002] Conventionally, a hard-cam catalyst in which a catalyst component is supported on a hard-cam structure used for exhaust gas purification of a vehicle is an active alumina on the surface of a cordierite-type no-cam structure having an integral structure and low thermal expansion. It is manufactured by supporting a high specific surface area material such as platinum and a catalytic metal such as platinum. In addition, such a honeycomb catalyst carries an alkaline earth metal such as Ba as a NOx storage agent for NOx treatment in an oxygen-excess atmosphere such as a lean burn engine and a diesel engine. By the way, in order to further improve the purification performance, it is necessary to increase the contact probability between the exhaust gas, the catalyst noble metal and the NOx storage agent. For this purpose, it is necessary to make the support have a higher specific surface area, to reduce the particle size of the noble metal and to disperse it with high dispersion. For this reason, for example, a hard cam structure obtained by extruding inorganic particles and inorganic fibers together with an inorganic binder is known as a hard cam structure having a high specific surface area material force (see, for example, Patent Documents 1 to 3). ).
特許文献 1 :特開 2005— 218935号公報  Patent Document 1: Japanese Patent Laid-Open No. 2005-218935
特許文献 2:特開 2005 - 349378号公報  Patent Document 2: JP-A-2005-349378
特許文献 3:特開平 5— 213681号公報  Patent Document 3: Japanese Patent Laid-Open No. 5-213681
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0003] しかしながら、特許文献 1〜3に開示されたように、無機粒子及び無機繊維を無機バ インダとともに押出成形する工程を経てハニカム構造体を製造する場合、押出成形さ れた成形体に熱処理 (乾燥処理、脱脂処理、焼成処理等)を施した際に、成形体や 焼成体にクラックや変形が発生する場合があった。 [0003] However, as disclosed in Patent Documents 1 to 3, when a honeycomb structure is manufactured through a process of extruding inorganic particles and inorganic fibers together with an inorganic binder, heat treatment is performed on the extruded molded body. When subjected to (drying treatment, degreasing treatment, firing treatment, etc.), cracks and deformation may occur in the molded product and the fired product.
課題を解決するための手段  Means for solving the problem
[0004] 本発明者らは、上述した課題を解決すべく鋭意検討を行った結果、上述したようなク ラックや変形の発生は、押出成形を行う原料組成物の組成に起因すること、即ち、原 料組成物を調製する際に使用する無機バインダ溶液にぉ 、て、固形分の量が少な い場合には、相対的に水等の溶媒の量が多ぐその結果、原料組成物中に含まれる 水等の溶媒の量も多くなり、このような原料組成物を用いて、押出成形工程、及び、 その後の乾燥処理等の熱処理を行うと、成形体の収縮が大きぐそのため、上述した ようなクラックや変形が発生することを知見した。 [0004] As a result of intensive studies to solve the above-described problems, the present inventors have found that The occurrence of racks and deformation is caused by the composition of the raw material composition to be extruded, that is, when the amount of solid content is small in the inorganic binder solution used when preparing the raw material composition. The amount of the solvent such as water is relatively large, and as a result, the amount of the solvent such as water contained in the raw material composition is increased. Using such a raw material composition, It has been found that if heat treatment such as subsequent drying treatment is performed, the molded body shrinks greatly, and thus cracks and deformation as described above occur.
さらに、上述したようなクラックや変形の発生を防止するには、無機バインダ溶液に含 まれる無機バインダの濃度を所定の範囲に調製すれば良いことを見出し、本発明を 兀成し 7こ。  Furthermore, in order to prevent the occurrence of cracks and deformation as described above, it has been found that the concentration of the inorganic binder contained in the inorganic binder solution may be adjusted within a predetermined range, and the present invention is completed.
[0005] 即ち、本発明のハ-カム構造体の製造方法は、少なくとも無機粒子と無機繊維及び [0005] That is, the method for producing a her cam structure of the present invention comprises at least inorganic particles, inorganic fibers and
Z又はウイス力と無機バインダ溶液とを混合して、原料組成物を作製する原料組成物 作製工程と、 A raw material composition production process for producing a raw material composition by mixing Z or Wis power and an inorganic binder solution;
上記原料組成物を用いた押出成形により、多数のセルがセル壁を隔てて長手方向 に並設された柱状のハニカム成形体を作製する成形工程と、  A forming step of producing a columnar honeycomb formed body in which a large number of cells are arranged in parallel in the longitudinal direction across the cell wall by extrusion molding using the raw material composition;
上記ハニカム成形体に焼成処理を施して、ハニカム焼成体を作製する焼成工程とを 含むハ-カム構造体の製造方法であって、  A firing process for producing a honeycomb fired body by subjecting the honeycomb formed body to a firing treatment,
上記無機バインダ溶液の配合量は、上記無機粒子と上記無機繊維及び Z又は上記 ゥイス力と上記無機バインダ溶液との合計量に対して、 30〜60重量%であり、かつ、 上記無機バインダ溶液の濃度は、 35〜50重量%であることを特徴とする。  The blending amount of the inorganic binder solution is 30 to 60% by weight with respect to the total amount of the inorganic particles and the inorganic fibers and Z or the whistle force and the inorganic binder solution. The concentration is characterized by being 35-50% by weight.
なお、本発明において、無機バインダの濃度とは、無機バインダ溶液の全重量に対 する無機バインダ分の重量の百分率を 、う。  In the present invention, the concentration of the inorganic binder refers to the percentage of the weight of the inorganic binder with respect to the total weight of the inorganic binder solution.
[0006] 本発明のハ-カム構造体の製造方法において、上記無機バインダ溶液は、アルミナ ゾル、シリカゾル、チタ-ァゾル、水ガラス、セピオライトの懸濁液及びァタパルジャィ トの懸濁液力もなる群力も選択された少なくとも 1種であることが望ましい。 [0006] In the manufacturing method of the her cam structure of the present invention, the inorganic binder solution is a group that also includes alumina sol, silica sol, titasol, water glass, suspension of sepiolite and suspension of attapulgite. It is desirable that the force is also at least one selected.
発明の効果  The invention's effect
[0007] 本発明のハ-カム構造体の製造方法では、所定の濃度を有する無機バインダ溶液 を所定の配合量で原料組成物中に配合して V、るため、ハ-カム構造体の製造過程 においてハニカム成形体ゃハニカム焼成体に変形やクラックが発生することなぐハ 二カム構造体を製造することができる。 [0007] In the manufacturing method of the her cam structure of the present invention, the inorganic binder solution having a predetermined concentration is mixed in the raw material composition in a predetermined blending amount, so that the manufacturing of the her cam structure is performed. In the process, the honeycomb molded body is not deformed or cracked in the honeycomb fired body. A two-cam structure can be manufactured.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0008] 以下、本発明のハニカム構造体の製造方法について詳述する。  [0008] Hereinafter, a method for manufacturing a honeycomb structured body of the present invention will be described in detail.
本発明のハ-カム構造体の製造方法は、少なくとも無機粒子と無機繊維及び z又は ゥイス力と無機バインダ溶液とを混合して、原料組成物を作製する原料組成物作製ェ 程と、  The manufacturing method of the hercome structure of the present invention comprises a raw material composition preparation step of preparing a raw material composition by mixing at least inorganic particles and inorganic fibers and z or whistle force and an inorganic binder solution;
上記原料組成物を用いた押出成形により、多数のセルがセル壁を隔てて長手方向 に並設された柱状のハニカム成形体を作製する成形工程と、  A forming step of producing a columnar honeycomb formed body in which a large number of cells are arranged in parallel in the longitudinal direction across the cell wall by extrusion molding using the raw material composition;
上記ハニカム成形体に焼成処理を施して、ハニカム焼成体を作製する焼成工程とを 含むハ-カム構造体の製造方法であって、  A firing process for producing a honeycomb fired body by subjecting the honeycomb formed body to a firing treatment,
上記無機バインダ溶液の配合量は、上記無機粒子と上記無機繊維及び Z又は上記 ゥイス力と上記無機バインダ溶液との合計量に対して、 30〜60重量%であり、かつ、 上記無機バインダ溶液の濃度は、 35〜50重量%であることを特徴とする。  The blending amount of the inorganic binder solution is 30 to 60% by weight with respect to the total amount of the inorganic particles and the inorganic fibers and Z or the whistle force and the inorganic binder solution. The concentration is characterized by being 35-50% by weight.
なお、本明細書において、柱状には、円柱状や楕円柱状、多角柱状等の任意の形 状を含むこととする。  Note that in this specification, the columnar shape includes an arbitrary shape such as a columnar shape, an elliptical columnar shape, or a polygonal columnar shape.
[0009] 以下、本発明のハ-カム構造体の製造方法について、工程順に説明する。  [0009] Hereinafter, a method for manufacturing a her cam structure of the present invention will be described in the order of steps.
( 1)本発明のハ-カム構造体の製造方法では、最初に、少なくとも無機粒子と無機 繊維及び Z又はウイス力と無機バインダ溶液とを含む原料組成物を作製する原料組 成物作製工程を行う。  (1) In the method of manufacturing a her cam structure of the present invention, first, a raw material composition preparation step for preparing a raw material composition containing at least inorganic particles, inorganic fibers, and Z or Wis power and an inorganic binder solution is performed. Do.
[0010] 上記原料組成物としては、さらに、必要に応じて、有機バインダゃ成形助剤を成形性 にあわせて適宜カ卩えたものを用いることができる。  [0010] As the above-mentioned raw material composition, an organic binder and a molding aid appropriately arranged according to the moldability can be used as necessary.
[0011] 本発明のハ-カム構造体の製造方法では、無機ノ インダ溶液として、その濃度の下 限が 35重量%で、上限が 50重量%の無機バインダ溶液を使用する。  [0011] In the method of manufacturing a her cam structure of the present invention, an inorganic binder solution having a lower concentration limit of 35 wt% and an upper limit of 50 wt% is used as the inorganic binder solution.
このような無機バインダ溶液を含む原料組成物を用いて、ハ-カム構造体を製造す ることにより、製造工程途中において、ハ-カム成形体ゃハ-カム焼成体に、クラック や変形が発生することがな 、。  By manufacturing a her cam structure using such a raw material composition containing an inorganic binder solution, cracks and deformations occurred in the her cam fired body during the manufacturing process. Don't do it.
これに対し、無機バインダ溶液の濃度が 35重量%未満では、原料組成物中に含ま れる水等の溶媒の量が多くなるため、上記原料組成物の押出成形を行う際に、良好 な成形性は確保することができるものの、ハ-カム構造体の製造過程において、ハ- カム成形体ゃハニカム焼成体に、クラックや変形が発生することがある。一方、上記 無機バインダ溶液の濃度が 50重量%を超えると、上記原料組成物の押出成形を行 う際に、成形性に劣り、所望の形状の成形体を作製することができないことがある。 なお、上記無機バインダ溶液の濃度の望ましい上限は、 45重量%である。 On the other hand, when the concentration of the inorganic binder solution is less than 35% by weight, the amount of the solvent such as water contained in the raw material composition increases. Although good formability can be ensured, cracks and deformation may occur in the honeycomb fired body during the manufacturing process of the her cam structure. On the other hand, if the concentration of the inorganic binder solution exceeds 50% by weight, when the raw material composition is extruded, the moldability may be inferior and a molded article having a desired shape may not be produced. The desirable upper limit of the concentration of the inorganic binder solution is 45% by weight.
[0012] 上記無機バインダ溶液としては、無機ゾルゃ粘土系バインダの懸濁液等を用いること ができ、上記無機ゾルの具体例としては、例えば、アルミナゾル、シリカゾル、チタ- ァゾル、水ガラス等が挙げられる。また、粘土系バインダとしては、例えば、白土、力 ォリン、モンモリロナイト、セピオライト、ァタパルジャイト等の複鎖構造型粘土等が挙 げられる。これらは単独で用いても良いし、 2種以上併用してもよい。 [0012] As the inorganic binder solution, a suspension of an inorganic sol or clay binder can be used, and specific examples of the inorganic sol include, for example, alumina sol, silica sol, titasol, water glass, and the like. Can be mentioned. Examples of the clay-based binder include double-chain structure type clays such as white clay, ryoolin, montmorillonite, sepiolite, and attapulgite. These may be used alone or in combination of two or more.
これらのなかでは、アルミナゾル、シリカゾル、チタ-ァゾル、水ガラス、セピオライトの 懸濁液及びァタパルジャイトの懸濁液力 なる群力 選択された少なくとも 1種が望ま しい。  Of these, at least one selected from the group force of alumina sol, silica sol, titasol, water glass, sepiolite suspension and attapulgite suspension is desirable.
[0013] 上記無機バインダ溶液に含まれる無機バインダの平均粒子径は、その下限が lOnm で、上限が 50nmであることが望ましい。後述する製造工程を経て、比表面積が大き ぐ強度に優れたノ、二カム構造体を製造することができるからである。  [0013] The average particle size of the inorganic binder contained in the inorganic binder solution is desirably a lower limit of lOnm and an upper limit of 50 nm. This is because a two-cam structure having a large specific surface area and excellent strength can be manufactured through a manufacturing process described later.
上記無機バインダの平均粒子径が lOnm未満である場合や、 50nmを超える場合に は、製造したノヽ-カム構造体の強度が不充分となることがある。  When the average particle size of the inorganic binder is less than lOnm or more than 50 nm, the strength of the produced no-cam structure may be insufficient.
この理由は、以下のように考えられる。  The reason is considered as follows.
即ち、本発明のハ-カム構造体の製造方法において、上記無機バインダは、主に、 上記無機粒子や無機繊維、ウイスカを接着させる役割を果たすと考えられ、無機繊 維と無機粒子との間に介在し無機繊維と無機粒子とに同時に接触する、無機粒子同 士の間に介在し異なる無機粒子に同時に接触する等により接着機能を発揮すると考 えられる。  That is, in the method for producing a hard structure of the present invention, the inorganic binder is considered to play a role of mainly bonding the inorganic particles, the inorganic fibers, and the whiskers, and between the inorganic fibers and the inorganic particles. It is considered that the adhesive function is exerted by contacting the inorganic fibers and the inorganic particles at the same time, interposing between the inorganic particles and contacting different inorganic particles at the same time.
ここで、上記平均粒子径が lOnm未満では、無機繊維と無機粒子とに同時に接触し たり、異なる無機粒子同士に同時に接触したりすることが困難で、充分な接着力を得 ることができない場合があり、一方、上記平均粒子径が 50nmを超えると、接着点の 数が減ることとなり、その結果、強度が不充分になると考えられる。 さら〖こ、上記無機バインダの平均粒子径が 50nmを超えると、製造したハ-カム構造 体の比表面積が充分に大きくならず、上記ハニカム構造体を触媒担体として使用す る場合に不利である。 Here, when the average particle diameter is less than lOnm, it is difficult to contact the inorganic fibers and the inorganic particles at the same time, or to contact different inorganic particles at the same time, and a sufficient adhesive force cannot be obtained. On the other hand, if the average particle diameter exceeds 50 nm, the number of adhesion points will decrease, and as a result, the strength will be insufficient. Furthermore, when the average particle size of the inorganic binder exceeds 50 nm, the specific surface area of the manufactured Hercam structure is not sufficiently large, which is disadvantageous when the honeycomb structure is used as a catalyst carrier. .
また、上記無機バインダのより望ましい平均粒子径は、下限が 20nmで、上限力 On mである。  The more desirable average particle size of the inorganic binder is a lower limit of 20 nm and an upper limit force On m.
[0014] なお、上記無機バインダの平均粒子径は、例えば、下記のような方法で測定すること ができる。  [0014] The average particle size of the inorganic binder can be measured, for example, by the following method.
具体的には、上記無機ノインダがシリカゾルである場合には、まず、シリカゾルを乾 燥させて、その BET比表面積を測定する。  Specifically, when the inorganic noinda is a silica sol, the silica sol is first dried and its BET specific surface area is measured.
そして、シリカゾル中のシリカ粒子が緻密体の球形粒子であると仮定して、下記計算 式(1)より算出する。  Then, assuming that the silica particles in the silica sol are dense spherical particles, the following calculation formula (1) is used.
BET比表面積 = (6000/ P )Z粒子径' · ·(1) BET specific surface area = (6000 / P ) Z particle size '· · · (1)
(式中、 pは、シリカの真密度(2. 2gZcm3)である) (Wherein p is the true density of silica (2.2 gZcm 3 ))
また、上記無機バインダの平均粒子径は、例えば、 TEM (透過型電子顕微鏡)等を 用いて直接測定することも可能である。  The average particle size of the inorganic binder can also be directly measured using, for example, a TEM (transmission electron microscope).
[0015] また、上記ハ-カム構造体の製造方法において、上記無機粒子と上記無機繊維及 び Z又はウイス力と上記無機バインダ溶液との合計量に対する上記無機ノ インダ溶 液の配合量は、その下限が 30重量%であり、上限が 60重量%である。 [0015] In addition, in the method of manufacturing the above-mentioned hard cam structure, the blending amount of the inorganic binder solution with respect to the total amount of the inorganic particles, the inorganic fibers, and Z or Wis power and the inorganic binder solution is: The lower limit is 30% by weight and the upper limit is 60% by weight.
上記無機バインダ溶液の配合量が 30重量%未満では、製造したハ-カム構造体中 に含まれる無機バインダの量が少なくなるため、ハ-カム構造体の強度が低くなるこ とがあり、一方、上記無機ノインダ溶液の配合量が 60重量%を超えると、原料組成 物の成形性が悪くなる傾向にあるからである。  When the blending amount of the inorganic binder solution is less than 30% by weight, the amount of the inorganic binder contained in the manufactured hard cam structure is small, and the strength of the hard cam structure may be lowered. This is because if the amount of the inorganic noinda solution exceeds 60% by weight, the moldability of the raw material composition tends to deteriorate.
上記無機粒子と上記無機繊維及び Z又はウイス力と上記無機ノインダ溶液との合計 量に対する上記無機ノインダ溶液の配合量は、望まし 、上限が 50重量%である。  The blending amount of the inorganic noinda solution with respect to the total amount of the inorganic particles, the inorganic fibers, the Z or Wis power and the inorganic noinda solution is desirably 50% by weight.
[0016] 上記無機粒子としては、アルミナ、シリカ、ジルコユア、チタ-ァ、セリア、ムライト、ゼ オライト等が挙げられる。これらは、単独で用いてもよぐ 2種以上併用してもよい。 また、これらの中では、アルミナ粒子や、セリア粒子が特に望ましい。  [0016] Examples of the inorganic particles include alumina, silica, zirconia, titer, ceria, mullite, and zeolite. These may be used alone or in combination of two or more. Of these, alumina particles and ceria particles are particularly desirable.
[0017] 上記無機粒子の配合量は、上記無機粒子と上記無機繊維及び Z又はゥイス力と上 記無機バインダ溶液の固形分との総量 (以下、必須原料総量という)に対して、望まし い下限は 30重量%であり、より望ましい下限は 40重量%であり、さらに望ましい下限 は 50重量%である。 [0017] The amount of the inorganic particles is based on the inorganic particles, the inorganic fibers, and the Z or whistle force. The desired lower limit is 30% by weight, the more desirable lower limit is 40% by weight, and the more desirable lower limit is 50% by weight with respect to the total amount of the inorganic binder solution and the solid content (hereinafter referred to as the total amount of essential raw materials). It is.
一方、望ましい上限は 85重量%であり、より望ましい上限は 80重量%であり、さらに 望まし 、上限は 75重量%である。  On the other hand, a desirable upper limit is 85% by weight, a more desirable upper limit is 80% by weight, and a further desirable upper limit is 75% by weight.
上記無機粒子の配合量が 30重量%未満では、比表面積の向上に寄与する無機粒 子の量が相対的に少なくなるため、製造したノ、二カム構造体の比表面積が小さくなり 、触媒成分を担持する際に触媒成分を高分散させることができなくなる場合がある。 一方、 85重量%を超えると強度向上に寄与する無機バインダゃ、無機繊維、ウイスカ の量が相対的に少なくなるため、製造したノ、二カム構造体の強度が低下する傾向に ある。  When the blended amount of the inorganic particles is less than 30% by weight, the amount of inorganic particles contributing to the improvement of the specific surface area is relatively small, so that the specific surface area of the produced two-cam structure is small, and the catalyst component When the catalyst is supported, the catalyst component may not be highly dispersed. On the other hand, if it exceeds 85% by weight, the amount of inorganic binder, inorganic fiber, and whisker that contributes to strength improvement will be relatively small, so the strength of the manufactured two-cam structure tends to decrease.
[0018] また、上記原料組成物に配合する無機粒子は、 2次粒子の平均粒子径が、 0. 5〜2 0 μ mであることが望まし!/ヽ。  [0018] In addition, it is desirable that the inorganic particles to be blended in the raw material composition have an average secondary particle size of 0.5 to 20 µm! / ヽ.
上記平均粒子径が、 0. 5 m未満では、製造したノヽ-カム構造体が緻密化してしま い、触媒担体として使用した際に、ガスの浸透性に劣ることがあり、一方、 を超 えると、製造したハニカム構造体の比表面積が小さくなる傾向にある。  When the average particle diameter is less than 0.5 m, the produced no-cam structure is densified, and when used as a catalyst carrier, the gas permeability may be inferior, while exceeding And the specific surface area of the manufactured honeycomb structure tends to be small.
なお、上記無機粒子の 1次粒子の平均粒子径は、 5〜: LOOnmであることが望ましい。 本明細書において、 1次粒子とは、粉体凝集体を構成する粒子であって、分子間の 結合を破壊することなく存在する最小単位の粒子をいう。また、 2次粒子とは、 1次粒 子が凝集してなる粒子を 、う。  The average particle size of the primary particles of the inorganic particles is preferably 5 to: LOOnm. In the present specification, primary particles are particles constituting a powder aggregate, and are the smallest unit particles that exist without breaking bonds between molecules. Secondary particles are particles formed by agglomeration of primary particles.
[0019] また、上記無機粒子(2次粒子)は、その比表面積が 50〜300m2/gであることが望 ましい。 [0019] The inorganic particles (secondary particles) preferably have a specific surface area of 50 to 300 m 2 / g.
上記比表面積が 50m2Zg未満では、製造したハニカム構造体の比表面積が小さく なる傾向にあり、一方、 300m2Zgを超えると、比表面積を大きくしても、ノ、二カム構 造体の比表面積はさほど向上しないからである。 When the specific surface area is less than 50 m 2 Zg, the specific surface area of the manufactured honeycomb structure tends to be small. On the other hand, when the specific surface area exceeds 300 m 2 Zg, the specific surface area of the two-cam structure is increased even if the specific surface area is increased. This is because the specific surface area does not improve so much.
また、本発明のハ-カム構造体の製造方法において、上記無機粒子(2次粒子)の平 均アスペクト比は、 1〜5である。  Moreover, in the method for producing a her cam structure of the present invention, the average aspect ratio of the inorganic particles (secondary particles) is 1 to 5.
[0020] 上記無機繊維ゃゥイス力としては、アルミナ、シリカ、炭化珪素、シリカ—アルミナ、ガ ラス、チタン酸カリウム又はホウ酸アルミニウム等力もなる無機繊維ゃゥイス力が挙げ られる。 [0020] Examples of the inorganic fiber twist force include alumina, silica, silicon carbide, silica-alumina, Examples include inorganic fiber whiskering force, which can be lath, potassium titanate or aluminum borate.
これらの無機繊維ゃゥイス力は、単独で用いてもよぐ 2種以上併用してもよい。 なお、本発明のハ-カム構造体の製造方法において、無機繊維ゃゥイス力とは、平 均アスペクト比が 5を超えるものを!、う。  These inorganic fibers can be used alone or in combination of two or more. In the method of manufacturing a her cam structure of the present invention, the inorganic fiber whisking force has an average aspect ratio exceeding 5.
また、上記無機繊維ゃゥイス力の望ましい平均アスペクト比は、 10〜: LOOOである。  The desirable average aspect ratio of the inorganic fiber wis power is 10 to: LOOO.
[0021] 上記無機繊維及び Z又はゥイス力の合計配合量は、上記必須原料総量に対して、 望ましい下限は 3重量%であり、より望ましい下限は 5重量%であり、さらに望ましい 下限は 8重量%である。一方、望ましい上限は 50重量%であり、より望ましい上限は 40重量%であり、さらに望ましい上限は 30重量%である。 [0021] The total blending amount of the inorganic fiber and Z or the whisking force is preferably 3% by weight, more preferably 5% by weight, and more preferably 8% by weight based on the total amount of the essential raw materials. %. On the other hand, the desirable upper limit is 50% by weight, the more desirable upper limit is 40% by weight, and the more desirable upper limit is 30% by weight.
上記無機繊維及び Z又はゥイス力の合計配合量が 3重量%未満では、製造したハ- カム構造体の強度が低下することとなり、一方、 50重量%を超えると、製造したハ- カム構造体において、比表面積向上に寄与する無機粒子の量が相対的に少なくな るため、製造したハニカム構造体を触媒担体として使用する場合、ハニカム構造体の 比表面積が小さぐ触媒成分を担持する際に触媒成分を高分散させることができなく なる場合がある。  If the total amount of the inorganic fiber and Z or the whisking force is less than 3% by weight, the strength of the manufactured honeycomb structure is reduced. On the other hand, if it exceeds 50% by weight, the manufactured honeycomb structure is reduced. Therefore, when the manufactured honeycomb structure is used as a catalyst carrier, when the catalyst component having a small specific surface area is supported, the honeycomb structure is used as a catalyst carrier. The catalyst component may not be highly dispersed.
[0022] 上記有機バインダとしては、特に限定されるものではないが、例えば、メチルセル口 ース、カノレボキシメチノレセノレロース、ヒドロキシェチノレセノレロース、ポリエチレングリコ ール等が挙げられる。  [0022] The organic binder is not particularly limited, and examples thereof include methyl cellulose, canoleoxy methylenoresenorelose, hydroxyethinoresenorelose, and polyethylene glycol.
これらは、単独で用いてもよいし、 2種以上併用してもよい。  These may be used alone or in combination of two or more.
上記有機バインダの配合量は、上記無機粒子、上記無機繊維、上記ウイスカ及び上 記無機バインダ溶液の固形分の合計 100重量部に対して、 1〜10重量部が望ましい  The blending amount of the organic binder is desirably 1 to 10 parts by weight with respect to a total of 100 parts by weight of the solid content of the inorganic particles, the inorganic fibers, the whiskers, and the inorganic binder solution.
[0023] 上記成形助剤としては、特に限定されるものではないが、例えば、エチレングリコー ル、デキストリン、脂肪酸、脂肪酸石鹼、ポリアルコール等が挙げられる。 [0023] The molding aid is not particularly limited, and examples thereof include ethylene glycol, dextrin, fatty acid, fatty acid sarcophagus, and polyalcohol.
このなかでは、成形性をより向上させるため、ォレイン酸をさらに配合するのがよい。  In this, in order to improve a moldability more, it is good to mix | blend oleic acid further.
[0024] 上記原料組成物の調製は、特に限定されるものではないが、原料を混合'混練する ことが好ましぐ例えば、ミキサーやアトライタなどを用いて混合してもよぐニーダ一な どで十分に混練してもょ 、。 [0024] Preparation of the raw material composition is not particularly limited, but it is preferable to mix and knead the raw materials. For example, a kneader that can be mixed using a mixer, an attritor, etc. Thoroughly knead.
[0025] (2)次に、上記原料組成物を用いた押出成形により、多数のセルがセル壁を隔てて 長手方向に並設された柱状のハニカム成形体を作製する成形工程を行う。  [0025] (2) Next, a forming step is performed in which a columnar honeycomb formed body in which a large number of cells are arranged side by side in the longitudinal direction with cell walls being separated is formed by extrusion using the raw material composition.
[0026] (3)次に、必要に応じて、上記ハニカム成形体に乾燥処理を施す。 [0026] (3) Next, the honeycomb formed body is subjected to a drying treatment as necessary.
上記乾燥処理は、例えば、マイクロ波乾燥機、熱風乾燥機、誘電乾燥機、減圧乾燥 機、真空乾燥機及び凍結乾燥機等を用いて行うことができる。  The drying treatment can be performed using, for example, a microwave dryer, a hot air dryer, a dielectric dryer, a vacuum dryer, a vacuum dryer, a freeze dryer, or the like.
[0027] (4)次に、必要に応じて乾燥処理を施したハニカム成形体に、必要に応じて、脱脂処 理を施す。 (4) Next, the honeycomb formed body that has been subjected to a drying treatment as necessary is subjected to a degreasing treatment as necessary.
この場合、脱脂条件は特に限定されず、成形体に含まれる有機物の種類や量によつ て適宜選択するが、おおよそ 400°C、 2hr程度が望ましい。  In this case, the degreasing conditions are not particularly limited, and are appropriately selected depending on the type and amount of the organic substance contained in the molded body, but are preferably about 400 ° C. and about 2 hours.
[0028] (5)次に、必要に応じて乾燥処理や脱脂処理を施したハ-カム成形体に焼成処理を 施して、ハニカム焼成体を作製する焼成工程を行う。 [0028] (5) Next, a firing process is performed to produce a honeycomb fired body by subjecting the Hercam molded body, which has been subjected to a drying process and a degreasing process, as necessary to a firing process.
上記焼成処理における焼成温度は、特に限定されるものではないが、 500-1200 °Cが望ましぐ 600〜1000°Cがより望ましい。  The firing temperature in the firing treatment is not particularly limited, but 500-1200 ° C is desirable, and 600-1000 ° C is more desirable.
上記焼成温度が 500°C未満では、無機バインダによる接着機能が発現しにくぐまた 、無機粒子等の焼結も進行しにくいため、製造したハニカム構造体としての強度が低 くなることがあり、 1200°Cを超えると、無機粒子等の焼結が進行しすぎて、製造した ハ-カム構造体の単位体積あたりの比表面積が小さくなり、ハ-カム構造体を触媒 担体として使用する際に、担持させる触媒成分を十分に高分散させることができなく なることがある。  If the firing temperature is less than 500 ° C, the adhesive function due to the inorganic binder is difficult to develop, and the sintering of the inorganic particles or the like hardly progresses, so the strength of the manufactured honeycomb structure may be lowered. When the temperature exceeds 1200 ° C, the sintering of inorganic particles proceeds too much, and the specific surface area per unit volume of the manufactured Hercam structure becomes small. When the Hercam structure is used as a catalyst support, In some cases, the catalyst component to be supported cannot be sufficiently dispersed.
[0029] このような工程を経ることにより、多数のセルがセル壁を隔てて長手方向に並設され た柱状のハ-カム焼成体を製造することができる。  [0029] By passing through such a process, it is possible to manufacture a columnar hard cam fired body in which a large number of cells are arranged in parallel in the longitudinal direction with a cell wall therebetween.
このような工程を経て製造したノヽ-カム焼成体は、これ自身がハ-カム構造体であり 、本発明のハ-カム構造体の製造方法では、ここまでで全工程を終了してもよい。 また、ここまで説明した方法で製造したノヽ-カム焼成体の周囲にシール材層(コート 層)を形成し、ハ-カム構造体の完成品としてもよい。このような 1個のハ-カム焼成 体力もなるハ-カム構造体を、以下、一体型ハ-カム構造体ともいう。  The no-cam fired body manufactured through such steps is itself a her cam structure, and in the method for manufacturing the her cam structure of the present invention, all the steps may be completed so far. . In addition, a seal material layer (coat layer) may be formed around the no-cam fired body manufactured by the method described so far to obtain a finished product of the her cam structure. Such a her cam structure having a single hard cam firing strength is also referred to as an integrated her cam structure hereinafter.
なお、上記シール材層(コート層)を形成する方法は、後述する複数のハ-カム焼成 体を結束してハニカム構造体を製造する際に、ハニカムブロックの周囲にシール材 層(コート層)を形成する方法と同様である。 In addition, the method for forming the sealing material layer (coat layer) is a method of firing a plurality of Hercoms described later. This is the same as the method of forming a sealing material layer (coat layer) around the honeycomb block when the bodies are bound to produce a honeycomb structure.
[0030] また、本発明のハ-カム構造体の製造方法では、上述した方法でハ-カム焼成体を 製造した後、このハニカム焼成体を複数個結束させて、ハニカム構造体を製造しても よい。  [0030] Further, in the method of manufacturing a her cam structure of the present invention, after manufacturing a her cam fired body by the above-described method, a plurality of the honeycomb fired bodies are bundled to manufacture a honeycomb structure. Also good.
この場合、具体的には、以下のような方法を用いればよい。  In this case, specifically, the following method may be used.
なお、複数個のハ-カム焼成体を結束してなるハ-カム構造体を、以下、集合型ハ 二カム構造体ともいう。  A her cam structure formed by binding a plurality of her cam fired bodies is hereinafter also referred to as a collective her cam structure.
[0031] 即ち、得られたハ-カム焼成体にシール材層(接着剤層)となるシール材ペーストを 塗布してハ-カム焼成体を順次結束させ、その後乾燥し、固定ィ匕させて、シール材 層 (接着剤層)を介して結束された所定の大きさのハニカム焼成体の集合体を作製 する。  [0031] That is, a sealing material paste to be a sealing material layer (adhesive layer) is applied to the obtained her cam fired body to sequentially bind the her cam fired body, and then dried and fixed. Then, an aggregate of honeycomb fired bodies having a predetermined size that is bound through a sealing material layer (adhesive layer) is produced.
また、ハ-カム焼成体をスぺーサを介して、所定個数を組み上げた後、ハ-カム焼成 体同士の間隙にシール材ペーストを注入し、その後乾燥し、固定ィ匕させて、シール 材層 (接着剤層)を介して結束された所定の大きさのハニカム焼成体の集合体を作 製してよい。  Further, after assembling a predetermined number of her-cam fired bodies through a spacer, a sealing material paste is injected into the gap between the her-cam fired bodies, and then dried, fixed, and sealed. An aggregate of honeycomb fired bodies of a predetermined size that are bound through layers (adhesive layers) may be produced.
[0032] 上記接着剤層を形成するためのシール材ペーストとしては、特に限定されるものでは ないが、例えば、無機バインダとセラミック粒子とを混ぜたものや、無機バインダと無 機繊維とを混ぜたものや、無機バインダとセラミック粒子と無機繊維とを混ぜたもの等 を用いることができる。  [0032] The sealing material paste for forming the adhesive layer is not particularly limited, but for example, a mixture of an inorganic binder and ceramic particles, or a mixture of an inorganic binder and inorganic fibers. Or a mixture of an inorganic binder, ceramic particles and inorganic fibers can be used.
また、これらのシール材ペーストには、有機バインダをカ卩えてもよい。  Further, an organic binder may be added to these sealing material pastes.
[0033] 上記有機バインダとしては、特に限定されるものではなぐ例えば、ポリビニルアルコ 一ノレ、メチノレセノレロース、ェチノレセノレロース、カノレボキシメチノレセノレロース等が挙げら れる。 [0033] The organic binder is not particularly limited, and examples thereof include polyvinyl alcohol, methenoresenorelose, ethinoresenorelose, and canoleboxymethinoresenorelose.
これらは単独で用いてもょ 、し、 2種以上併用してもよ 、。  These can be used alone or in combination of two or more.
[0034] 上記シール材層(接着剤層)の厚さは、 0. 5〜5mmが望まし 、。 [0034] The thickness of the sealing material layer (adhesive layer) is preferably 0.5 to 5 mm.
シール材層(接着剤層)の厚さが 0. 5mm未満では充分な接合強度が得られな 、お それがあり、また、 5mmを超えると、シール材層 (接着剤層)は触媒担体として機能し ない部分であるため、ハ-カム構造体の単位体積あたりの比表面積が低下し、触媒 成分を担持した際に十分に高分散させることができなくなることがある。 If the thickness of the sealing material layer (adhesive layer) is less than 0.5 mm, sufficient bonding strength may not be obtained. If the thickness exceeds 5 mm, the sealing material layer (adhesive layer) serves as a catalyst carrier. Function Since this is not a portion, the specific surface area per unit volume of the her cam structure is lowered, and when the catalyst component is supported, it may not be possible to sufficiently disperse the catalyst component.
また、シール材層 (接着剤層)の厚さが 5mmを超えると、圧力損失が大きくなることが ある。  If the thickness of the sealing material layer (adhesive layer) exceeds 5 mm, the pressure loss may increase.
[0035] ここで、結束させるハニカム焼成体の数は、ハニカム構造体の大きさに合わせて適宜 決定すればよい。  [0035] Here, the number of honeycomb fired bodies to be bundled may be appropriately determined according to the size of the honeycomb structure.
ハニカム焼成体をシール材層(接着剤層)を介して結束したハニカム焼成体の集合 体は、必要に応じて、適宜切断、研磨等を施し、ハ-カムブロックとする。  The aggregate of the honeycomb fired bodies in which the honeycomb fired bodies are bound through the sealing material layer (adhesive layer) is appropriately cut and polished as necessary to form a hard cam block.
[0036] 次に、必要に応じて、ハ-カムブロックの外周面に、コート層を形成するためのシー ル材ペーストを塗布して乾燥し、固定ィ匕させることにより、シール材層(コート層)を形 成する。 [0036] Next, if necessary, a sealant paste for forming a coat layer is applied to the outer peripheral surface of the her cam block, dried, and fixed to form a sealant layer (coat Layer).
上記シール材層(コート層)を形成することにより、ハ-カムブロックの外周面を保護 することができ、その結果、ハ-カム構造体の強度を高めることができる。  By forming the sealing material layer (coat layer), the outer peripheral surface of the her cam block can be protected, and as a result, the strength of the her cam structure can be increased.
[0037] 上記コート層を形成するためのシール材ペーストは、特に限定されず、上記接着剤 層を形成するためのシール材ペーストと同じ材料からなるものであってもよいし、異な る材料からなるものであってもよ 、。 [0037] The sealing material paste for forming the coating layer is not particularly limited, and may be made of the same material as the sealing material paste for forming the adhesive layer, or may be made of a different material. It may be.
また、上記コート層を形成するためのシール材ペーストが、上記接着剤層を形成する ためのシール材ペーストと同じ材料力もなるものである場合、両者の構成成分の配合 比は、同一であってもよぐ異なっていてもよい。  Further, when the sealing material paste for forming the coating layer has the same material strength as that of the sealing material paste for forming the adhesive layer, the blending ratios of the components are the same. It may be different.
[0038] 上記シール材層(コート層)の厚さは、特に限定されるものではないが、 0. l〜2mm であることが望ましい。 0. 1mm未満では、外周面を保護しきれず強度を高めることが できないおそれがあり、 2mmを超えると、ハ-カム構造体としての単位体積あたりの 比表面積が低下してしまい、触媒成分を担持した際に充分に高分散させることがで きなくなることがある。 [0038] The thickness of the sealing material layer (coat layer) is not particularly limited, but is preferably 0.1-2 mm. If the thickness is less than 1 mm, the outer peripheral surface may not be protected and the strength may not be increased. If the thickness exceeds 2 mm, the specific surface area per unit volume of the her-cam structure decreases, and the catalyst component is supported. When this occurs, it may not be possible to achieve sufficiently high dispersion.
[0039] また、この製造方法では、複数のハ-カム焼成体をシール材層 (接着剤層)を介して 結束させた後(但し、シール材層(コート層)を設けた場合は、上記コート層を形成さ せた後)に、仮焼することが望ましい。  [0039] Further, in this manufacturing method, after binding a plurality of hard cam fired bodies through a sealing material layer (adhesive layer) (provided that the sealing material layer (coating layer) is provided) It is desirable to calcine after forming the coat layer.
これにより、シール材層 (接着剤層)やシール材層(コート層)に有機バインダが含ま れている場合などには、この有機ノインダを脱脂除去することができるからである。 仮焼する条件は、含まれる有機物の種類や量によって適宜決定されることとなるが、 おおよそ 700°Cで 2hr程度が望まし 、。 As a result, an organic binder is contained in the sealing material layer (adhesive layer) and the sealing material layer (coat layer). This is because this organic noinda can be degreased and removed. The conditions for calcining are appropriately determined depending on the type and amount of organic substances contained, but it is desirable that the conditions are approximately 700 ° C and 2 hours.
[0040] 次に、本発明のハ-カム構造体の製造方法により製造されるハ-カム構造体の構成 について、図面を参照しながら説明する。 [0040] Next, the configuration of the her cam structure manufactured by the method of manufacturing the her cam structure of the present invention will be described with reference to the drawings.
図 1 (a)は、本発明のハ-カム構造体の製造方法で作製したハ-カム焼成体の一例 を模式的に示す斜視図であり、(b)は、(a)に示したハ-カム焼成体を用いたハ-カ ム構造体の一例を模式的に示す斜視図である。  FIG. 1 (a) is a perspective view schematically showing an example of a hard cam fired body manufactured by the method for manufacturing a hard cam structure of the present invention, and FIG. 1 (b) is a schematic view of the hard cam shown in FIG. -A perspective view schematically showing an example of a hard structure using a cam fired body.
[0041] 図 1 (a)〖こ示すように、ハニカム焼成体 20は、四角柱状を有し、多数のセル 21がセル 壁 22を隔てて長手方向(図 1 (a)中、矢印 aの方向)に並設されている。  [0041] As shown in Fig. 1 (a), the honeycomb fired body 20 has a quadrangular prism shape, and a large number of cells 21 are separated from each other by cell walls 22 in the longitudinal direction (in Fig. 1 (a), the arrow a Direction).
図 1 (b)に示すように、ハ-カム構造体 10は、図 1 (a)に示すノ、二カム焼成体 20が、 シール材層(接着剤層) 14を介して複数個結束されて、セラミックブロック 15を構成し 、その外周にシール材層(コート層) 13が形成されている。  As shown in FIG. 1 (b), the her cam structure 10 includes a plurality of two-cam fired bodies 20 shown in FIG. 1 (a) that are bound together through a sealing material layer (adhesive layer) 14. Thus, the ceramic block 15 is formed, and a sealing material layer (coat layer) 13 is formed on the outer periphery thereof.
[0042] 上記ハ-カム焼成体において、上記セル壁の厚さは、特に限定されるものではない 力 望ましい下限は 0. 05mmであり、より望ましい下限は 0. 10mmであり、特に望ま しい下限は 0. 15mmである。一方、上記セル壁の厚さの望ましい上限は 0. 35mm であり、より望ましい上限は 0. 30mmであり、特に望ましい上限は 0. 25mmである。  [0042] In the above hard cam fired body, the thickness of the cell wall is not particularly limited. Force The desirable lower limit is 0.05 mm, the more desirable lower limit is 0.10 mm, and the particularly desirable lower limit. Is 0.15mm. On the other hand, the desirable upper limit of the cell wall thickness is 0.35 mm, the more desirable upper limit is 0.30 mm, and the particularly desirable upper limit is 0.25 mm.
[0043] 上記セル壁の厚さが 0. 05mm未満ではハ-カム焼成体の強度が低下する場合があ り、一方、上記セル壁の厚さが 0. 35mmを超えると、上記ハ-カム構造体を排ガスを 浄化する触媒担体として用いた際に、排ガスとの接触面積が小さくなることと、ガスが 充分深くまで浸透しないため、セル壁内部に担持された触媒とガスが接触しに《な ることとにより、ガス浄ィ匕性能が低下してしまうことがある。  [0043] If the cell wall thickness is less than 0.05 mm, the strength of the Hercam fired body may be reduced. On the other hand, if the cell wall thickness exceeds 0.35 mm, the Hercam When the structure is used as a catalyst carrier for purifying exhaust gas, the contact area with the exhaust gas is reduced and the gas does not penetrate deep enough, so the catalyst supported inside the cell wall and the gas come into contact with << As a result, the gas purification performance may deteriorate.
[0044] また、上記ハ-カム焼成体のセル密度は、望ましい下限が 15. 5個/ cm2 (100cpsi )であり、より望ましい下限力 6. 5個 Zcm2 (300cpsi)であり、さらに望ましい下限が 62個 Zcm2 (400cpsi)である。一方、上記セル密度の望ましい上限は 186個 Zcm2 (1200cpsi)であり、より望ましい上限は 170. 5個 Zcm2 (1100cpsi)であり、さらに 望ましい上限は 155個 Zcm2 (1000cpsi)である。 [0044] Further, the cell density of the above-mentioned Hercam fired body has a desirable lower limit of 15.5 pieces / cm 2 (100 cpsi), and a more desirable lower limit force of 6.5 pieces Zcm 2 (300 cpsi), and is further desirable. The lower limit is 62 pieces Zcm 2 (400cpsi). On the other hand, the desirable upper limit of the cell density is 186 Zcm 2 (1200 cpsi), the more desirable upper limit is 170.5 Zcm 2 (1100 cpsi), and the more desirable upper limit is 155 Zcm 2 (1000 cpsi).
上記セル密度力 15. 5個 Zcm2未満では、上記ハ-カム構造体を排ガスを浄ィ匕す る触媒担体に用いた際に、ハニカム焼成体内部の排ガスと接触するセル壁の面積が 小さくなり、 186個 /cm2を超えると、圧力損失が高くなるとともに、ハ-カム焼成体の 作製が困難になるためである。 If the cell density force is less than 15.5 Zcm 2 , the above-mentioned Hercom structure will be exhausted. When the catalyst carrier is used, the area of the cell wall that comes into contact with the exhaust gas inside the honeycomb fired body is reduced. When the cell wall exceeds 186 cells / cm 2 , the pressure loss increases and the production of the Hercam fired body becomes possible. This is because it becomes difficult.
[0045] また、上記ハ-カム焼成体の長手方向に垂直な方向の断面積は、その下限が 5cm2 で、その上限が 50cm2であることが望ましぐ特に、上記ハ-カム構造体が複数のハ 二カム焼成体を結束してなるものである場合は、上記範囲にあることが望ましい。 上記断面積が、 5cm2未満では、上記ハ-カム構造体の長手方向に垂直な断面にお V、て、複数のハ-カム焼成体を接合するシール材層(接着剤層)の占める面積が相 対的に大きくなるため、ハニカム構造体を触媒担体として使用する際に、触媒を担持 させることができる面積が相対的に小さくなつてしまう。一方、上記断面積が 50cm2を 超えると、ハニカム焼成体が大きいため、ハニカム焼成体に発生する熱応力を充分 に抑えることができな 、おそれがある。 [0045] The cross-sectional area in the direction perpendicular to the longitudinal direction of the Hercam fired body preferably has a lower limit of 5 cm 2 and an upper limit of 50 cm 2. Is a range formed by binding a plurality of honeycomb fired bodies, it is desirable to be within the above range. If the cross-sectional area is less than 5 cm 2 , the area occupied by a sealing material layer (adhesive layer) that joins a plurality of her-cam fired bodies in the cross-section perpendicular to the longitudinal direction of the her-cam structure However, when the honeycomb structure is used as a catalyst carrier, the area on which the catalyst can be supported becomes relatively small. On the other hand, if the cross-sectional area exceeds 50 cm 2 , the honeycomb fired body is large, and thus there is a fear that the thermal stress generated in the honeycomb fired body cannot be sufficiently suppressed.
上記断面積のより望ましい下限は 6cm2、特に望ましい下限は 8cm2であり、より望ま し 、上限は 40cm2、特に望まし!/、上限は 30cm2である。 A more desirable lower limit of the cross-sectional area is 6 cm 2 , a particularly desirable lower limit is 8 cm 2 , and a more desirable upper limit is 40 cm 2 , especially desirable! /, And an upper limit is 30 cm 2 .
[0046] 上記ハニカム焼成体に形成されるセルの長手方向に垂直な断面の形状は、特に限 定されず、図 1 (a)に示したノ、二カム焼成体のような四角形以外に、略三角形や略六 角形としてもよい。 [0046] The shape of the cross section perpendicular to the longitudinal direction of the cells formed in the honeycomb fired body is not particularly limited, and other than the square shape such as the two-cam fired body shown in Fig. 1 (a), It may be a substantially triangular shape or a substantially hexagonal shape.
[0047] また、上記ハ-カム構造体にぉ 、て、シール材層(接着剤層)やシール材層(コート 層)を形成する場合、上記ハニカム構造体の長手方向に垂直な断面において、ハニ カム構造体の断面積に対して、ハニカム焼成体の総断面積が占める割合は、 90% 以上であることが望ましい。 90%未満では、ハ-カム構造体の比表面積が小さくなつ てしまうからである。  [0047] Further, when a sealing material layer (adhesive layer) or a sealing material layer (coat layer) is formed on the her cam structure, in a cross section perpendicular to the longitudinal direction of the honeycomb structure, The ratio of the total cross-sectional area of the honeycomb fired body to the cross-sectional area of the honeycomb structure is preferably 90% or more. If it is less than 90%, the specific surface area of the her cam structure will be small.
[0048] また、上記ハ-カム構造体の単位面積あたりの比表面積は、 25000m2ZL以上であ ることが望ましい。 [0048] In addition, the specific surface area per unit area of the above-mentioned hard cam structure is preferably 25000 m 2 ZL or more.
上記比表面積が上記範囲にあると、ハニカム構造体全体に触媒を充分に広く分散さ せて担持させることが容易となるからである。  This is because when the specific surface area is in the above range, it becomes easy to disperse and carry the catalyst sufficiently widely over the entire honeycomb structure.
なお、上記比表面積の望ましい上限は、触媒 (例えば、白金)の分散の限界を考慮 すると 70000m2ZLである。 [0049] 上記ハニカム構造体の曲げ強度は、大きいほど望ましぐ具体的には、例えば、ハニ カム焼成体が、 37mm X 37mm X 75mmの角柱状である場合には、 3. OMpa以上 であることが望ましい。 The desirable upper limit of the specific surface area is 70000 m 2 ZL in consideration of the dispersion limit of the catalyst (for example, platinum). [0049] More specifically, the higher the bending strength of the honeycomb structure, the more desirable it is, for example, when the honeycomb fired body has a prismatic shape of 37 mm X 37 mm X 75 mm, it is 3. OMpa or more. It is desirable.
使用時に発生する熱応力等により破壊されるおそれがより少なくなる力 である。  This is a force that reduces the possibility of destruction due to thermal stress generated during use.
[0050] また、本発明のハ-カム構造体の製造方法により製造されるハ-カム構造体は、図 1 [0050] Further, the hard cam structure manufactured by the method of manufacturing a hard cam structure of the present invention is shown in FIG.
(b)に示したような集合型ハ-カム構造体に限られず、図 2に示したような一体型ハ- カム構造体であってもよ 、。  It is not limited to the collective type hard cam structure as shown in (b), but may be an integral type hard cam structure as shown in FIG.
図 2は、本発明のハニカム構造体の製造方法で製造したハニカム構造体の別の一例 を模式的に示す斜視図である。  FIG. 2 is a perspective view schematically showing another example of the honeycomb structure manufactured by the method for manufacturing a honeycomb structure of the present invention.
図 2に示すハ-カム構造体 30は、柱状を有し、多数のセル 31がセル壁 32を隔てて 長手方向(図 2中、矢印 bの方向)に並設されたハ-カム焼成体 1個から構成されてい る。  A hard cam structure 30 shown in FIG. 2 has a columnar shape, and a large number of cells 31 are arranged side by side in the longitudinal direction (in the direction of arrow b in FIG. 2) with the cell walls 32 therebetween. It consists of one piece.
なお、このような一体型ハ-カム構造体において、ハ-カム焼成体の周囲には、シー ル材層(コート層)が形成されていてもよい。  In such an integrated her cam structure, a seal material layer (coat layer) may be formed around the her cam fired body.
[0051] また、このような構成を有するハ-カム構造体には、触媒が担持されていることが望ま しい。上記ハ-カム構造体は、触媒担体として好適に使用することができる力もであ る。 [0051] In addition, it is desirable that a catalyst is supported on the hard cam structure having such a configuration. The above-mentioned Hercam structure also has a force that can be suitably used as a catalyst carrier.
上記触媒としては、特に限定されるものではないが、例えば、貴金属、アルカリ金属、 アルカリ土類金属、酸ィ匕物等が挙げられる。これらは、単独で用いてもよいし、 2種以 上併用してもよい。  The catalyst is not particularly limited, and examples thereof include noble metals, alkali metals, alkaline earth metals, and oxides. These may be used alone or in combination of two or more.
[0052] 上記貴金属としては、例えば、白金、ノラジウム、ロジウム等が挙げられ、上記アル力 リ金属としては、例えば、カリウム、ナトリウム等が挙げられ、上記アルカリ土類金属と しては、例えば、ノ リウム等が挙げられ、上記酸ィ匕物としては、ぺロブスカイト (La  [0052] Examples of the noble metal include platinum, noradium, and rhodium. Examples of the alkali metal include potassium and sodium. Examples of the alkaline earth metal include, for example, For example, perovskite (La
0. 75 0. 75
K MnO等)、 CeO等が挙げられる。 K MnO) and CeO.
0. 25 3 2  0. 25 3 2
[0053] 上述したような触媒が担持されたハ-カム構造体は、特に限定されるものではないが 、例えば自動車の排ガス浄ィ匕用の 、わゆる三元触媒や NOx吸蔵触媒として用いるこ とがでさる。  [0053] The Hercam structure on which the catalyst as described above is supported is not particularly limited. For example, it may be used as a so-called three-way catalyst or NOx storage catalyst for automobile exhaust gas purification. Togashi.
なお、触媒を担持させる時期は、特に限定されるものではなぐハ-カム構造体を作 製した後に担持させてもよいし、原料組成物中の無機粒子に担持させてもよい。 また、触媒の担持方法は、特に限定されるものではなぐ例えば、含浸法等によって 行うことができる。 The catalyst loading time is not particularly limited. You may carry | support after manufacturing, You may carry | support to the inorganic particle in a raw material composition. Further, the catalyst loading method is not particularly limited, and for example, it can be carried out by an impregnation method or the like.
[0054] なお、ここまで、本発明のハニカム構造体の製造方法、及び Z又は、この製造方法 により製造されるハ-カム構造体について、主に触媒担体として使用する場合を例に 説明してきたが、上記ハニカム構造体は、触媒担体以外にも使用することができ、例 えば、気体成分や液体成分を吸着させる吸着材等としても使用することができる。 実施例  [0054] Heretofore, the method for manufacturing a honeycomb structure of the present invention, and Z or the hard structure manufactured by this manufacturing method have been described mainly using the case as a catalyst carrier as an example. However, the honeycomb structure can be used other than the catalyst carrier, for example, as an adsorbent for adsorbing a gas component or a liquid component. Example
[0055] 以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみ に限定されるものではない。  [0055] Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
(実施例 1)  (Example 1)
(1)無機粒子として γアルミナ粒子(平均粒子径 2 μ mの 2次粒子) 2250g、無機繊 維としてホウ酸アルミニウムウイスカ(繊維径 0. 5〜1 m、繊維長 10〜30 μ m) 680 g、無機ノインダ溶液としてシリカゾル(平均粒子径 15nm、濃度 35重量0 /O) 2600gを 混合し、さらに得られた混合物に対して、有機バインダとしてメチルセルロース 320g 、潤滑剤としてュニループ(日本油脂社製) 290g、可塑剤としてグリセリン(日本油脂 社製) 225gを加えて更に混合'混練して原料組成物を調製した。次に、この混合組 成物を押出成形機により押出成形を行い、ハニカム成形体を作製した。 (1) γ-alumina particles (secondary particles with an average particle size of 2 μm) 2250 g as inorganic particles, aluminum borate whisker as inorganic fibers (fiber diameter 0.5-1 m, fiber length 10-30 μm) 680 g, silica sol (average particle size 15 nm, concentration 35 weight 0 / O ) 2600 g as an inorganic noda solution, and 320 g of methyl cellulose as an organic binder and uniloop as a lubricant (manufactured by NOF Corporation) 290 g and 225 g of glycerin (manufactured by NOF Corporation) as a plasticizer were added and further mixed and kneaded to prepare a raw material composition. Next, this mixed composition was subjected to extrusion molding with an extruder to produce a honeycomb formed body.
[0056] (2)次に、マイクロ波乾燥機及び熱風乾燥機を用いて、上記ハニカム成形体を十分 乾燥させ、さらに、 400°Cで 2hr保持して脱脂した。 [0056] (2) Next, the honeycomb formed body was sufficiently dried using a microwave dryer and a hot air dryer, and further degreased by being held at 400 ° C for 2 hours.
その後、 900°Cで 2hr保持して焼成処理を行い、角柱状(37mm X 37mm X 75mm )、セル密度が 93個 Zcm2 (600cpsi)、セル壁の厚さが 0. 2mm、セルの断面形状 が四角形 (正方形)のハニカム焼成体を製造した。 After that, it was held at 900 ° C for 2 hours and fired, prismatic (37mm x 37mm x 75mm), cell density 93 pieces Zcm 2 (600cpsi), cell wall thickness 0.2mm, cell cross-sectional shape A square (square) honeycomb fired body was manufactured.
[0057] (実施例 2、 3)  [0057] (Examples 2 and 3)
原料組成物を調製する際に使用する無機バインダ溶液として、表 1に示した濃度の シリカゾル (平均粒子径 15nm)を使用した以外は、実施例 1と同様にしてハ-カム焼 成体を製造した。  A Hercham sintered body was produced in the same manner as in Example 1 except that the silica sol (average particle size 15 nm) having the concentration shown in Table 1 was used as the inorganic binder solution used in preparing the raw material composition. .
[0058] (実施例 4) 原料組成物を調製する際に、シリカゾルに代えて、アルミナゾル (平均粒子径 15nm 、濃度 35重量%)を使用した以外は、実施例 1と同様にしてハ-カム焼成体を製造し た。 [Example 4] In the same manner as in Example 1 except that alumina sol (average particle size 15 nm, concentration 35% by weight) was used in place of silica sol when preparing the raw material composition, a hard cam fired body was produced.
[0059] (実施例 5)  [Example 5]
無機粒子として、 γアルミナ粒子に代えて、 γアルミナ粒子(平均粒子径 2 μ mの 2次 粒子) 50重量%と 13ゼォライト粒子(平均粒子径 2 μ mの 2次粒子) 50重量%との混 合粒子を使用した以外は、実施例 1と同様にしてハ-カム焼成体を製造した。  As inorganic particles, instead of γ-alumina particles, γ-alumina particles (secondary particles with an average particle size of 2 μm) 50 wt% and 13 zeolite particles (secondary particles with an average particle size of 2 μm) 50 wt% A hard cam fired body was produced in the same manner as in Example 1 except that the mixed particles were used.
[0060] (実施例 6、 7)  [0060] (Examples 6 and 7)
原料組成物を調製する際に使用する無機バインダ溶液として、表 1に示した濃度の シリカゾル (平均粒子径 15nm)を使用した以外は、実施例 5と同様にしてハ-カム焼 成体を製造した。  A Hercam sintered body was produced in the same manner as in Example 5 except that the silica sol (average particle diameter 15 nm) having the concentration shown in Table 1 was used as the inorganic binder solution used in preparing the raw material composition. .
[0061] (実施例 8)  [Example 8]
原料組成物を調製する際に、シリカゾルに代えて、アルミナゾル (平均粒子径 15nm 、濃度 35重量%)を使用した以外は、実施例 5と同様にしてハ-カム焼成体を製造し た。  A hard cam fired body was produced in the same manner as in Example 5 except that alumina sol (average particle size 15 nm, concentration 35% by weight) was used instead of silica sol when preparing the raw material composition.
[0062] (実施例 9)  [0062] (Example 9)
無機粒子として、 γアルミナ粒子の 2次粒子に代えて、 γアルミナ粒子(平均粒子径 2 μ mの 2次粒子) 50重量%と CeO粒子(平均粒子径 2 μ mの 2次粒子) 50重量%  As inorganic particles, instead of secondary particles of γ-alumina particles, 50% by weight of γ-alumina particles (secondary particles with an average particle size of 2 μm) and 50% by weight of CeO particles (secondary particles with an average particle size of 2 μm) %
2  2
との混合粒子を使用した以外は、実施例 1と同様にしてハ-カム焼成体を製造した。  A hard-cam fired body was produced in the same manner as in Example 1 except that the mixed particles were used.
[0063] (実施例 10、 11) [0063] (Examples 10 and 11)
原料組成物を調製する際に使用する無機バインダ溶液として、表 1に示した濃度の シリカゾル (平均粒子径 15nm)を使用した以外は、実施例 9と同様にしてハ-カム焼 成体を製造した。  A Hercam sintered body was produced in the same manner as in Example 9 except that the silica sol (average particle size 15 nm) having the concentration shown in Table 1 was used as the inorganic binder solution used when preparing the raw material composition. .
[0064] (実施例 12) [0064] (Example 12)
原料組成物を調製する際に、シリカゾルに代えて、アルミナゾル (平均粒子径 15nm 、濃度 35重量%)を使用した以外は、実施例 9と同様にしてハ-カム焼成体を製造し た。  A hard cam fired body was produced in the same manner as in Example 9 except that alumina sol (average particle size 15 nm, concentration 35 wt%) was used instead of silica sol when preparing the raw material composition.
[0065] (実施例 13) 下記の方法により、原料組成物を調製した以外は、実施例 1と同様にしてハ-カム焼 成体を製造した。 [Example 13] A Hercam sintered body was produced in the same manner as in Example 1 except that the raw material composition was prepared by the following method.
即ち、無機粒子として γアルミナ粒子(平均粒子径 2 μ mの 2次粒子) 2970g、無機 繊維としてホウ酸アルミニウムウイスカ(繊維径 0. 5〜: L m、繊維長 10〜30 /ζ m) 90 Og、無機ノインダ溶液としてシリカゾル(平均粒子径 15nm、濃度 35重量0 /0) 1660g を混合し、さらに得られた混合物に対して、有機バインダとしてメチルセルロース 320 g、潤滑剤としてュニループ(日本油脂社製) 290g、可塑剤としてグリセリン(日本油 脂社製) 225gを加えて更に混合 '混練して原料組成物を調製した。 That is, 2970 g of γ-alumina particles (secondary particles with an average particle diameter of 2 μm) as inorganic particles, aluminum borate whisker as inorganic fibers (fiber diameter 0.5 to: L m, fiber length 10 to 30 / ζ m) 90 og, inorganic Noinda solution as silica sol (average particle size 15 nm, concentration 35 weight 0/0) 1660 g were mixed for further resulting mixture methylcellulose 320 g as an organic binder, Yunirupu (manufactured by NOF Corporation as a lubricant ) 290 g, 225 g of glycerin (manufactured by Nippon Oil & Fats Co., Ltd.) as a plasticizer was added and further mixed and kneaded to prepare a raw material composition.
[0066] (実施例 14、 15)  [0066] (Examples 14 and 15)
原料組成物を調製する際に使用する無機バインダ溶液として、表 1に示した濃度の シリカゾル (平均粒子径 15nm)を使用した以外は、実施例 13と同様にしてハ-カム 焼成体を製造した。  A Hercam fired body was produced in the same manner as in Example 13 except that the silica sol (average particle size 15 nm) having the concentration shown in Table 1 was used as the inorganic binder solution used in preparing the raw material composition. .
[0067] (実施例 16)  [0067] Example 16
下記の方法により、原料組成物を調製した以外は、実施例 1と同様にしてハ-カム焼 成体を製造した。  A Hercam sintered body was produced in the same manner as in Example 1 except that the raw material composition was prepared by the following method.
即ち、無機粒子として γアルミナ粒子(平均粒子径 2 μ mの 2次粒子) 1780g、無機 繊維としてホウ酸アルミニウムウイスカ(繊維径 0. 5〜1 m、繊維長 10〜30 /z m) 40 Og、無機ノインダ溶液としてシリカゾル(平均粒子径 15nm、濃度 35重量0 /0) 3300g を混合し、さらに得られた混合物に対して、有機バインダとしてメチルセルロース 320 g、潤滑剤としてュニループ(日本油脂社製) 290g、可塑剤としてグリセリン(日本油 脂社製) 225gを加えて更に混合 '混練して原料組成物を調製した。 That is, 1780 g of γ-alumina particles (secondary particles with an average particle diameter of 2 μm) as inorganic particles, aluminum borate whisker (fiber diameter 0.5-1 m, fiber length 10-30 / zm) 40 Og as inorganic fibers, silica sol as an inorganic Noinda solution (average particle diameter 15 nm, concentration 35 weight 0/0) were mixed 3300 g, further to the obtained mixture, methyl cellulose 320 g as an organic binder, Yunirupu (manufactured by NOF Corporation) as a lubricant 290g Then, 225 g of glycerin (manufactured by Nippon Oil & Fats Co., Ltd.) was added as a plasticizer and further mixed and kneaded to prepare a raw material composition.
[0068] (実施例 17、 18)  [Examples 17 and 18]
原料組成物を調製する際に使用する無機バインダ溶液として、表 1に示した濃度の シリカゾル (平均粒子径 15nm)を使用した以外は、実施例 16と同様にしてハ-カム 焼成体を製造した。  A Hercam fired body was produced in the same manner as in Example 16 except that the silica sol (average particle diameter 15 nm) having the concentration shown in Table 1 was used as the inorganic binder solution used in preparing the raw material composition. .
[0069] (比較例 1、 2)  [0069] (Comparative Examples 1 and 2)
原料組成物を調製する際に使用する無機バインダ溶液として、表 1に示した濃度の シリカゾル (平均粒子径 15nm)を使用した以外は、実施例 1と同様にしてハ-カム焼 成体を製造した。 As the inorganic binder solution used for preparing the raw material composition, silica sol (average particle size 15 nm) having the concentration shown in Table 1 was used, and the Herkham calcination was performed in the same manner as in Example 1. An adult was produced.
[0070] (比較例 3)  [0070] (Comparative Example 3)
原料組成物を調製する際に使用する無機バインダ溶液として、表 1に示した濃度の アルミナゾル (平均粒子径 15nm)を使用した以外は、実施例 4と同様にしてハ-カム 焼成体を製造した。  A hard-cam fired body was produced in the same manner as in Example 4 except that an alumina sol (average particle size of 15 nm) having the concentration shown in Table 1 was used as the inorganic binder solution used in preparing the raw material composition. .
[0071] (比較例 4、 5)  [0071] (Comparative Examples 4 and 5)
原料組成物を調製する際に使用する無機バインダ溶液として、表 1に示した濃度の シリカゾル (平均粒子径 15nm)を使用した以外は、実施例 5と同様にしてハ-カム焼 成体を製造した。  A Hercam sintered body was produced in the same manner as in Example 5 except that the silica sol (average particle diameter 15 nm) having the concentration shown in Table 1 was used as the inorganic binder solution used in preparing the raw material composition. .
[0072] (比較例 6)  [0072] (Comparative Example 6)
原料組成物を調製する際に使用する無機バインダ溶液として、表 1に示した濃度の アルミナゾル (平均粒子径 15nm)を使用した以外は、実施例 8と同様にしてハ-カム 焼成体を製造した。  A hard-cam fired body was produced in the same manner as in Example 8, except that the alumina sol (average particle size 15 nm) having the concentrations shown in Table 1 was used as the inorganic binder solution used in preparing the raw material composition. .
[0073] (比較例 7、 8)  [0073] (Comparative Examples 7 and 8)
原料組成物を調製する際に使用する無機バインダ溶液として、表 1に示した濃度の シリカゾル (平均粒子径 15nm)を使用した以外は、実施例 9と同様にしてハ-カム焼 成体を製造した。  A Hercam sintered body was produced in the same manner as in Example 9 except that the silica sol (average particle size 15 nm) having the concentration shown in Table 1 was used as the inorganic binder solution used when preparing the raw material composition. .
[0074] (比較例 9)  [0074] (Comparative Example 9)
原料組成物を調製する際に使用する無機バインダ溶液として、表 1に示した濃度の アルミナゾル (平均粒子径 15nm)を使用した以外は、実施例 12と同様にしてハ-カ ム焼成体を製造した。  A hard-fired fired body was produced in the same manner as in Example 12 except that the alumina sol (average particle size 15 nm) having the concentration shown in Table 1 was used as the inorganic binder solution used when preparing the raw material composition. did.
[0075] (比較例 10) [0075] (Comparative Example 10)
原料組成物を調製する際に使用する無機バインダ溶液 (シリカゾル)の量を 2000gと した以外は、比較例 1と同様にしてハ-カム焼成体を製造した。  A hard cam fired body was produced in the same manner as in Comparative Example 1 except that the amount of the inorganic binder solution (silica sol) used in preparing the raw material composition was 2000 g.
[0076] なお、実施例 1〜18及び比較例 1〜10において、濃度 30重量%のシリカゾルとして は、 日産化学社製、スノーテック 30を使用し、濃度 35重量%、 40重量%、 50重量% 、 60重量%のシリカゾルとしては、スノーテック 30を所定の濃度まで濃縮したものを 使用した。また、濃度 30重量%、 35重量%のアルミナゾルとしては、 日産化学社製、 アルミナゾル 520 (アルミナ濃度 20重量%)を所定の濃度まで濃縮したものを使用し た。 [0076] In Examples 1 to 18 and Comparative Examples 1 to 10, as a silica sol having a concentration of 30% by weight, Snowtech 30 manufactured by Nissan Chemical Co., Ltd. was used, and the concentration was 35% by weight, 40% by weight, 50% by weight. As the silica sol of 60% by weight and 60% by weight, a Snow Tech 30 concentrated to a predetermined concentration was used. In addition, as an alumina sol with a concentration of 30% by weight and 35% by weight, Alumina sol 520 (alumina concentration 20% by weight) concentrated to a predetermined concentration was used.
[0077] ハニカム焼成体の評価  [0077] Evaluation of honeycomb fired body
実施例及び比較例に係るハニカム焼成体の製造にぉ 、て、押出成形したノヽニカム 成形体を乾燥させた後、乾燥させたノ、二カム成形体について、クラックの発生の有無 を評価した。さらに、製造したノ、二カム焼成体について、その形状 (変形の有無)を評 価し 7こ。  In the manufacture of the honeycomb fired bodies according to the examples and the comparative examples, after the extruded non-nickel molded bodies were dried, the presence of cracks was evaluated on the dried two-cam molded bodies. In addition, we evaluated the shape (presence / absence of deformation) of the manufactured two-cam sintered body.
結果を表 1に示した。  The results are shown in Table 1.
[0078] (クラックの発生の有無の評価) [0078] (Evaluation of occurrence of cracks)
乾燥させたハニカム成形体を目?見観察し、クラックの発生の有無を観察した。  Looking at the dried honeycomb molded body? Observations were made to observe the presence or absence of cracks.
[0079] (ハニカム焼成体の形状評価) [0079] (Shape evaluation of honeycomb fired body)
製造したハ-カム焼成体について、その側面の平坦度を下記の方法で測定し、全側 面の平坦度が 0. 5mm以下のハ-カム焼成体を「〇」、いずれか一つの側面でも平 坦度が 0. 5mmを超えるハ-カム焼成体を「 X Jと評価した。  For the manufactured hard cam fired body, the flatness of the side surface was measured by the following method, and the hard cam fired body having a flatness of all side faces of 0.5 mm or less was “O”. Her-cam fired bodies with a flatness exceeding 0.5 mm were evaluated as “XJ”.
即ち、 3次元測定機 (ミツトヨ社製、 BH— V507)を用いて、ハ-カム焼成体の側面の 位置座標をプロットすることにより、ハ-カム焼成体の平坦度を評価した。  That is, the flatness of the Hercam fired body was evaluated by plotting the position coordinates of the side face of the Hercam fired body using a three-dimensional measuring machine (BH-V507, manufactured by Mitutoyo Corporation).
[0080] [表 1] [0080] [Table 1]
無機バインダの Of inorganic binder
無機バインダ濃度  Inorganic binder concentration
配合量(注) クラックの有無 形状評価 Compounding amount (Note) Crack presence or absence Shape evaluation
(重量%) (重量%) (Wt%) (wt%)
実施例 1 35 47 無 〇 実施例 2 40 47 挺 〇 実施例 3 50 47 躯 〇 実施例 4 35 47 〇 実施例 5 35 47 ■ 〇 実施例 6 40 47 〇 実施例 7 50 47 〇 実施例 8 35 47 無 〇 実施例 9 35 47 〇 実施例 1 0 40 47 〇 実施例 1 1 50 47 〇 実施例 1 2 35 47 〇 実施例 1 3 35 30 無 〇 実施例 1 4 40 30 〇 実施例 1 5 50 30 〇 実施例 1 6 35 60 iffi 〇 実施例 1 7 40 60 m 〇 実施例 1 8 50 60 〇 比較例 1 30 47 有 〇 比較例 2 60 47 to X 比較例 3 30 47 有 〇 比較例 4 30 47 有 〇 比較例 5 60 47 無 X 比較例 6 30 47 有 〇 比較例 7 30 47 有 〇 比較例 8 60 47 無 X 比較例 9 30 47 有 〇 比較例 1 0 30 41 無 X Example 1 35 47 None 〇 Example 2 40 47 実 施 〇 Example 3 50 47 〇 〇 Example 4 35 47 〇 Example 5 35 47 ∎ 〇 Example 6 40 47 〇 Example 7 50 47 〇 Example 8 35 47 None ○ Example 9 35 47 ○ Example 1 0 40 47 ○ Example 1 1 50 47 ○ Example 1 2 35 47 ○ Example 1 3 35 30 None ○ Example 1 4 40 30 ○ Example 1 5 50 30 ○ Example 1 6 35 60 iffi ○ Example 1 7 40 60 m ○ Example 1 8 50 60 ○ Comparative Example 1 30 47 Yes Yes Comparative Example 2 60 47 to X Comparative Example 3 30 47 Yes Yes Comparative Example 4 30 47 Yes Yes Comparative Example 5 60 47 No X Comparative Example 6 30 47 Yes Yes Comparative Example 7 30 47 Yes Yes Comparative Example 8 60 47 No X Comparative Example 9 30 47 Yes Yes Comparative Example 1 0 30 41 No X
(注)無機バインダの配合量: (Note) Amount of inorganic binder:
無機粒子とゥイス力と無機バインダとの合計量に対する無機バインダ溶液の配合量 表 1に示した結果から明らかなように、濃度が 35〜50重量%の無機バインダ溶液を 、 30〜60重量%の配合量で使用することにより、ハ-カム成形体を乾燥させる際に クラックが発生することがなぐまた、変形のない、所望の形状のハ-カム焼成体を製 造することができる。  Compounding amount of the inorganic binder solution with respect to the total amount of the inorganic particles, the weiss force and the inorganic binder As is apparent from the results shown in Table 1, an inorganic binder solution having a concentration of 35 to 50% by weight, 30 to 60% by weight By using the blended amount, no cracks are generated when the her cam formed body is dried, and a her cam fired body having a desired shape without deformation can be produced.
一方、無機バインダ溶液の濃度が 35重量%未満では、ハニカム焼成体の形状に変 形は認められな力 たが、ハ-カム成形体を乾燥させた時点で、クラックが観察され た。また、無機バインダ溶液の濃度が 50重量%を超えると、乾燥させたハ-カム成形 体にクラックは観察されな力つた力 製造したノヽ-カム焼成体が変形して 、た。 On the other hand, when the concentration of the inorganic binder solution was less than 35% by weight, no deformation was observed in the shape of the honeycomb fired body, but cracks were observed when the hard cam formed body was dried. It was. In addition, when the concentration of the inorganic binder solution exceeded 50% by weight, the dried hard-cam molded body had a strong force with no cracks observed, and the produced no-cam fired body was deformed.
[0082] また、上述した実施例及び比較例では、 1個のハ-カム焼成体を作製し、これについ て、ハ-カム構造体として評価したが、このハ-カム焼成体を複数個用いて、図 1 (a) (b)に示したような集合型ハ-カム構造体を製造した場合も、同様の結果となる。 図面の簡単な説明 [0082] Further, in the above-described examples and comparative examples, a single hard cam fired body was manufactured and evaluated as a hard cam structure, but a plurality of the hard cam fired bodies were used. Thus, the same result is obtained when a collective hard cam structure as shown in FIGS. 1 (a) and 1 (b) is manufactured. Brief Description of Drawings
[0083] [図 1] (a)は、本発明のハ-カム構造体の製造方法で作製したハ-カム焼成体の一 例を模式的に示す斜視図であり、(b)は、(a)に示したハ-カム焼成体を用いたノヽ- カム構造体の一例を模式的に示す斜視図である。  [0083] [FIG. 1] (a) is a perspective view schematically showing an example of a hard cam fired body manufactured by the method of manufacturing a hard cam structure of the present invention. FIG. 2 is a perspective view schematically showing an example of a no-cam structure using the her cam fired body shown in a).
[図 2]本発明のハニカム構造体の製造方法で製造したハニカム構造体の別の一例を 模式的に示す斜視図である。  FIG. 2 is a perspective view schematically showing another example of the honeycomb structure manufactured by the method for manufacturing a honeycomb structure of the present invention.
符号の説明  Explanation of symbols
[0084] 10、 30 ハ-カム構造体 [0084] 10, 30 Hercam structure
13 シール材層(コート層)  13 Sealing material layer (coat layer)
14 シール材層(接着剤層)  14 Sealing material layer (adhesive layer)
20 ハ-カム焼成体  20 Hercam fired body
21、 31 セノレ  21, 31 Senore
22、 32 セノレ壁  22, 32 Senor wall

Claims

請求の範囲 The scope of the claims
[1] 少なくとも無機粒子と無機繊維及び Z又はウイス力と無機バインダ溶液とを混合して 、原料組成物を作製する原料組成物作製工程と、  [1] A raw material composition preparation step for preparing a raw material composition by mixing at least inorganic particles, inorganic fibers, and Z or Wis power and an inorganic binder solution;
前記原料組成物を用いた押出成形により、多数のセルがセル壁を隔てて長手方向 に並設された柱状のハニカム成形体を作製する成形工程と、  A molding step of producing a columnar honeycomb molded body in which a large number of cells are arranged in parallel in the longitudinal direction with cell walls being separated by extrusion molding using the raw material composition;
前記ハニカム成形体に焼成処理を施して、ハニカム焼成体を作製する焼成工程とを 含むハ-カム構造体の製造方法であって、  A firing process for producing a honeycomb fired body by subjecting the honeycomb formed body to a firing treatment,
前記無機バインダ溶液の配合量は、前記無機粒子と前記無機繊維及び Z又は前記 ゥイス力と前記無機バインダ溶液との合計量に対して、 30〜60重量%であり、かつ、 前記無機バインダ溶液の濃度は、 35〜50重量%であることを特徴とするハ-カム構 造体の製造方法。  The blending amount of the inorganic binder solution is 30 to 60% by weight with respect to the total amount of the inorganic particles and the inorganic fibers and Z or the whistle force and the inorganic binder solution, and the inorganic binder solution A process for producing a Hercam structure, wherein the concentration is 35 to 50% by weight.
[2] 前記無機バインダ溶液は、アルミナゾル、シリカゾル、チタ-ァゾル、水ガラス、セピオ ライトの懸濁液及びァタパルジャイトの懸濁液力 なる群力 選択された少なくとも 1 種である請求項 1に記載のハニカム構造体の製造方法。  [2] The inorganic binder solution according to claim 1, wherein the inorganic binder solution is at least one selected from a group force consisting of alumina sol, silica sol, titasol, water glass, sepiolite suspension, and attapulgite suspension. A method for manufacturing a honeycomb structure.
PCT/JP2006/324983 2006-11-16 2006-12-14 Process for production of honeycomb structures WO2008059608A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE602007004411T DE602007004411D1 (en) 2006-11-16 2007-09-21 Process for producing a honeycomb body
EP07018608A EP1923373B1 (en) 2006-11-16 2007-09-21 Method for manufacturing honeycomb structured body
US11/939,467 US20080119355A1 (en) 2006-11-16 2007-11-13 Method for manufacturing honeycomb structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2006/322878 2006-11-16
JP2006322878 2006-11-16

Publications (1)

Publication Number Publication Date
WO2008059608A1 true WO2008059608A1 (en) 2008-05-22

Family

ID=39401422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/324983 WO2008059608A1 (en) 2006-11-16 2006-12-14 Process for production of honeycomb structures

Country Status (2)

Country Link
DE (1) DE602007004411D1 (en)
WO (1) WO2008059608A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05213681A (en) * 1992-01-31 1993-08-24 Kawata Mfg Co Ltd Fiber reinforced honeycomb ceramic body and its production
JP2003181816A (en) * 2001-10-10 2003-07-02 Denso Corp Method for manufacturing ceramic structure and method for manufacturing ceramic honeycomb structure
JP2003306375A (en) * 2002-04-15 2003-10-28 Hitachi Metals Ltd Manufacturing method of cordierite honeycomb structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05213681A (en) * 1992-01-31 1993-08-24 Kawata Mfg Co Ltd Fiber reinforced honeycomb ceramic body and its production
JP2003181816A (en) * 2001-10-10 2003-07-02 Denso Corp Method for manufacturing ceramic structure and method for manufacturing ceramic honeycomb structure
JP2003306375A (en) * 2002-04-15 2003-10-28 Hitachi Metals Ltd Manufacturing method of cordierite honeycomb structure

Also Published As

Publication number Publication date
DE602007004411D1 (en) 2010-03-11

Similar Documents

Publication Publication Date Title
EP1923373B1 (en) Method for manufacturing honeycomb structured body
WO2008059607A1 (en) Process for producing honeycomb structure and honeycomb structure
US20080118701A1 (en) Method for manufacturing honeycomb structure, and honeycomb structure
US8232227B2 (en) Honeycomb structured body
US7981496B2 (en) Honeycomb structured body
JP5031562B2 (en) Honeycomb structure
JP5161460B2 (en) Honeycomb structure and manufacturing method thereof
US7901755B2 (en) Honeycomb structure and method for manufacturing the same
JP4815108B2 (en) Honeycomb structure
JP4863995B2 (en) Honeycomb structure
JPWO2006137158A1 (en) Honeycomb structure
EP1927392B1 (en) Method for manufacturing honeycomb structured body
JPWO2007000826A1 (en) Honeycomb structure
WO2006137157A1 (en) Honeycomb structure body
WO2006137150A1 (en) Honeycomb structure body
JPWO2008126309A1 (en) Mixed particles and honeycomb structure
EP2105590B1 (en) Honeycomb structural body
JP2008169104A (en) Method for manufacturing honeycomb structure, and honeycomb structure
JP4753781B2 (en) Honeycomb structure
EP1927391A1 (en) Method for manufacturing honeycomb structured body, and honeycomb structured body
WO2012050123A1 (en) Aluminum titanate honeycomb structure
JP2007229698A (en) Honeycomb structure
JP2008169105A (en) Method for manufacturing honeycomb structure
JP2008173626A (en) Manufacturing method of honeycomb structural body, and honeycomb structural body
WO2008059608A1 (en) Process for production of honeycomb structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06834737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06834737

Country of ref document: EP

Kind code of ref document: A1