WO2008057681A2 - Thiophene compounds - Google Patents

Thiophene compounds Download PDF

Info

Publication number
WO2008057681A2
WO2008057681A2 PCT/US2007/080203 US2007080203W WO2008057681A2 WO 2008057681 A2 WO2008057681 A2 WO 2008057681A2 US 2007080203 W US2007080203 W US 2007080203W WO 2008057681 A2 WO2008057681 A2 WO 2008057681A2
Authority
WO
WIPO (PCT)
Prior art keywords
compound
aryl
heteroaryl
alkyl
heterocycloalkenyl
Prior art date
Application number
PCT/US2007/080203
Other languages
French (fr)
Other versions
WO2008057681A3 (en
Inventor
Kak-Shan Shia
Chia-Liang Tai
Jyh-Hsiung Liao
Ming-Shiu Hung
Yu-Sheng Chao
Original Assignee
National Health Research Institutes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Health Research Institutes filed Critical National Health Research Institutes
Priority to EP07868354A priority Critical patent/EP2068870B1/en
Priority to AU2007317712A priority patent/AU2007317712A1/en
Priority to CN2007800368971A priority patent/CN101535260B/en
Publication of WO2008057681A2 publication Critical patent/WO2008057681A2/en
Publication of WO2008057681A3 publication Critical patent/WO2008057681A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings

Definitions

  • Cannabinoids isolated from Cannabis sativa have been recognized for centuries as therapeutic agents. For example, they have been utilized in treating analgesia, muscle relaxation, appetite stimulation, and anti-convulsion. Recent studies also indicate their potential therapeutic effects in treating cancer and alleviating the symptoms of chronic inflammatory diseases, such as rheumatism and multiple sclerosis.
  • cannabinoids are mediated by at least two types of the cannabinoid receptors, CBl and CB2 receptors, both of which belong to the G- protein-coupled receptor (GPCR) superfamily.
  • CBl receptor is predominantly expressed in brain to mediate inhibition of transmitter release and CB2 receptor is primarily expressed in immune cells to modulate immune response. See Matsuda et al., Nature (1990) 346:561 and Munro et al., Nature (1993) 365:61.
  • CBl receptor is typically expressed at higher levels. In the central nervous system, it is highly expressed in cerebral cortex, hippocampus, basal ganglia, and cerebellum, but has relatively low levels in hypothalamus and spinal cord. See, e.g., Howlett et al., Pharmacol Rev (2002) 54:161. Its functions affect many neurological and psychological phenomena, such as mood, appetite, emesis control, memory, spatial coordination muscle tone, and analgesia. See, e.g., Goutopoulos et al., Pharmacol Ther (2002) 95: 103.
  • CB2 receptor is 44% identical to CBl receptor with a 68% identity in the trans-membrane regions. See Munro et al., Nature (1993) 365:61. Compared to CBl receptor, CB2 receptor has a more limited distribution with high expression in spleen and tonsils, and low expression in lung, uterus, pancreas, bone marrow, and thymus.
  • B cells express CB2 receptor at the highest level, followed in order by natural killer cells, monocytes, polymorphonuclear neutrophils, and T lymphocytes. See Galiegue et al., Eur J Biochem (1995) 232:54. Activation of CB2 receptor has been shown to have analgesic effects in inflammatory models involved in neurodegeneration diseases (such as Alzheimer's disease), and play a role in the maintenance of bone density and progression of atherosclerotic lesions.
  • neurodegeneration diseases such as Alzheimer's disease
  • This invention is based on the discovery that certain thiophene compounds are effective in treating cannabinoid-receptor mediated disorders.
  • this invention features thiophene compounds of formula (I):
  • R 1 is H, C 1 -C 10 alkyl, C 2 -C 10 alkenyl, C 2 -C 10 alkynyl, C 3 -C 20 cycloalkyl, C 3 -C 20 cycloalkenyl, C 1 -C 20 heterocycloalkyl, C 1 -C 20 heterocycloalkenyl, aryl, or heteroaryl;
  • R 2 is H, C 1 -C 10 alkyl, C 2 -C 10 alkenyl, C 2 -C 10 alkynyl, C 3 -C 20 cycloalkyl, C 3 -C 20 cycloalkenyl, C 1 -C 20 heterocycloalkyl, C 1 -C 20 heterocycloalkenyl, aryl, heteroaryl, halo, OR a , COOR a , OC(O)R a , C(O)R a , C(O)NR a Rb, OrNR a Rb
  • R 1 is aryl substituted with halo (e.g., 2,4- dichlorophenyl);
  • R 6 is alkenyl unsubstituted or substituted with cyclaoalkyl (e.g., penten-1-yl and 2-cyclohexylethen-l-yl), or alkynyl unsubstituted or substituted with alkoxy, amino, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl (e.g., 2- cyclopentylethyn-1-yl, 2-cyclohexylethyn-l-yl, 2-cyclopropylethyn-l-yl, pent-1-ynyl, hex-1-ynyl, 3-isopropoxy-prop-l-ynyl, 3-dimethylamino-prop-l-ynyl, pyr
  • alkyl refers to a saturated, linear or branched hydrocarbon moiety, such as -CH 3 or -CH(CH 3 ) 2 .
  • alkynyl refers to a linear or branched hydrocarbon moiety that contains at least one triple bond, such as -C ⁇ C-CH3.
  • cycloalkyl refers to a saturated, cyclic hydrocarbon moiety, such as cyclohexyl.
  • cycloalkenyl refers to a non-aromatic, cyclic hydrocarbon moiety that contains at least one double bond, such as cyclohexenyl.
  • heterocycloalkyl refers to a saturated, cyclic moiety having at least one ring heteroatom (e.g., N, O, or S), such as 4-tetrahydropyranyl.
  • heterocycloalkenyl refers to a non-aromatic, cyclic moiety having at least one ring heteroatom (e.g., N, O, or S) and at least one ring double bond, such as pyranyl.
  • aryl refers to a hydrocarbon moiety having one or more aromatic rings.
  • aryl moieties include phenyl (Ph), phenylene, naphthyl, naphthylene, pyrenyl, anthryl, and phenanthryl.
  • heteroaryl refers to a moiety having one or more aromatic rings that contain at least one heteroatom (e.g., N, O, or S).
  • heteroaryl moieties include furyl, furylene, fluorenyl, pyrrolyl, thienyl, oxazolyl, imidazolyl, thiazolyl, pyridyl, pyrimidinyl, quinazolinyl, quinolyl, isoquinolyl and indolyl.
  • Alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, and heteroaryl mentioned herein include both substituted and unsubstituted moieties, unless specified otherwise.
  • Possible substituents on cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, and heteroaryl include, but are not limited to, C 1 -C 10 alkyl, C 2 -C 10 alkenyl, C 2 -C 1 0 alkynyl, C3-C 2 0 cycloalkyl, C3-C 2 0 cycloalkenyl, C 1 -C 2 0 heterocycloalkyl, C 1 -C 2 0 heterocycloalkenyl, C 1 -C 10 alkoxy, aryl, aryloxy, heteroaryl, heteroaryloxy, amino, C 1 -C 1 0 alkylamino, C 1 - C 2 0 dialkylamino, arylamino, diarylamino, C 1 -C 1 0 alkylsulfonamino, arylsulfonamino, C 1 -C 10 alkylim
  • alkyl, alkenyl, or alkynyl include all of the above- recited substituents except C 1 -C 1 0 alkyl.
  • Cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, and heteroaryl can also be fused with each other.
  • this invention features thiophene compounds of formula (I) in which R 1 is H, C 1 -C 10 alkyl, C 2 -C 10 alkenyl, C 2 -C 10 alkynyl, C 3 -C 20 cycloalkyl, C 3 - C 20 cycloalkenyl, C 1 -C 20 heterocycloalkyl, C 1 -C 20 heterocycloalkenyl, aryl, or heteroaryl; R 2 is C 2 -C 10 alkenyl, C 2 - C 10 alkynyl, C 3 -C 20 cycloalkyl, C 3 -C 20 cycloalkenyl, C 1 -C 20 heterocycloalkyl, C 1 -C 20 heterocycloalkenyl, aryl, heteroaryl, halo, OR 9 , OC(O)R a , NR 8 R b , or C 1 -C 10 alkyl substituted with NR a -C
  • R 1 is aryl substituted with halo (e.g., 2,4-dichlorophenyl); R 6 is chloro or penten-1-yl; and R 2 is methyl substituted with NR a -C(O)-R b , NR a -C(O)- NR b R c , or NR a -C(S)-NR b R c , in which R a is H, R c is H, and R 1 , is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, pyridyl, phenyl optionally substituted with halo or C 1 -C 10 alkyl, or C 1 -C 10 alkyl optionally substituted with aryl or heteroaryl.
  • halo e.g., 2,4-dichlorophenyl
  • R 6 is chloro or penten-1-yl
  • this invention features a method for treating a cannabinoid-receptor mediated disorder.
  • the method includes administering to a subject in need thereof an effective amount of one or more thiophene compounds of formula (I) shown above.
  • cannabinoid-receptor mediated disorders include liver fibrosis, hair loss, obesity, metabolic syndrome (e.g., syndrome X), hyperlipidemia, type II diabetes, atherosclerosis, substance addiction (e.g., alcohol addiction or nicotine addiction), depression, motivational deficiency syndrome, learning or memory dysfunction, analgesia, haemorrhagic shock, ischemia, liver cirrhosis, neuropathic pain, antiemesis, high intraocular pressure, bronchodilation, osteoporosis, cancer (e.g., prostate cancer, lung cancer, breast cancer, or head and neck cancer), a neurodegenerative disease (e.g., Alzheimer's disease or Parkinson's disease), or an inflammatory disease.
  • cancer e.g., prostate
  • treating refers to administering one or more thiophene compounds to a subject, who has an above-described disorder, a symptom of such a disorder, or a predisposition toward such a disorder, with the purpose to confer a therapeutic effect, e.g., to cure, relieve, alter, affect, ameliorate, or prevent the above-described disorder, the symptom of it, or the predisposition toward it.
  • this invention encompasses a pharmaceutical composition that contains an effective amount of at least one of the above-mentioned thiophene compounds and a pharmaceutically acceptable carrier.
  • thiophene compounds described above include the compounds themselves, as well as their salts, prodrugs, and solvates, if applicable.
  • a salt for example, can be formed between an anion and a positively charged group (e.g., amino) on a thiophene compound.
  • Suitable anions include chloride, bromide, iodide, sulfate, nitrate, phosphate, citrate, methanesulfonate, trifluoroacetate, acetate, malate, tosylate, tartrate, fumurate, glutamate, glucuronate, lactate, glutarate, and maleate.
  • a salt can also be formed between a cation and a negatively charged group (e.g., carboxylate) on a thiophene compound.
  • Suitable cations include sodium ion, potassium ion, magnesium ion, calcium ion, and an ammonium cation such as tetramethylammonium ion.
  • the thiophene compounds also include those salts containing quaternary nitrogen atoms.
  • prodrugs include esters and other pharmaceutically acceptable derivatives, which, upon administration to a subject, are capable of providing active thiophene compounds.
  • a solvate refers to a complex formed between an active thiophene compound and a pharmaceutically acceptable solvent.
  • pharmaceutically acceptable solvents include water, ethanol, isopropanol, ethyl acetate, acetic acid, and ethanolamine.
  • a composition containing one or more of the thiophene compounds described above for use in treating an above- described disorder and the use of such a composition for the manufacture of a medicament for the just-mentioned treatment.
  • thiophene compounds described above can be prepared by methods well known in the art. Examples 1-38 below provide detailed descriptions of how compounds 1-38 were actually prepared. Scheme I shown below illustrates a typical synthetic route for synthesizing certain exemplary compounds.
  • a thiophene compound containing a ketone group (e.g., compound A) can first undergo a Claisen condensation reaction with an oxalate compound (e.g., diethyl oxalate) in the presence of a lithium salt to form a 1,3-dione compound containing an ester group (e.g., compound B).
  • the 1,3- dione compound can then react with a hydrazine to afford a corresponding hydrazone, which, without purification, is allowed to undergo intramolecular cyclization under refluxing acetic acid to form a pyrazole compound (e.g., compound C) containing an ester group.
  • the pyrazole compound can be treated with N-bromosuccinimide in acetonitrile to form a compound containing a bromide group at the S- position on the thiophene ring (e.g. compound D).
  • the bromide group can then be replaced with an alkenyl or alkynyl group by reacting with a substituted boronic acid or an alkyne.
  • the ester group on the compound thus formed (e.g., compound E) can subsequently be hydrolyzed in the presence of a base to form a carboxyl group, which in turn can be converted to an acyl chloride group by reacting with thionyl chloride to form an acyl chloride compound (e.g., compound F).
  • the acyl chloride compound can then react with various amines to form compounds of the invention (e.g., Compounds 1-11 and 30-38).
  • the ester group on compound C or E can be reduced to a hydroxyl group.
  • the compound thus formed e.g., compound G
  • methanesulfonyl chloride to form a compound with a methanesulfonyl acid ester group (e.g., compound H).
  • the resultant compound can react with sodium azide to form a compound having an azido group (e.g., compound I), which can then be converted to a compound having an amino group (e.g., compound J).
  • the compound thus formed can reacting with acyl chlorides, isocyanates, or isothiocyanates to form other compounds of invention (e.g., compounds 12-29).
  • a thiophene compound synthesized above can be purified by a suitable method such as column chromatography, high-pressure liquid chromatography, or recrystallization.
  • thiophene compounds can be prepared using other suitable starting materials through the above synthetic routes and others known in the art.
  • the methods described above may also additionally include steps, either before or after the steps described specifically herein, to add or remove suitable protecting groups in order to ultimately allow synthesis of the thiophene compounds.
  • various synthetic steps may be performed in an alternate sequence or order to give the desired compounds. Synthetic chemistry transformations and protecting group methodologies (protection and deprotection) useful in synthesizing applicable thiophene compounds are known in the art and include, for example, those described in R. Larock, Comprehensive Organic Transformations, VCH Publishers (1989); T. W. Greene and P.G.M.
  • thiophene compounds mentioned herein may contain a non-aromatic double bond and one or more asymmetric centers. Thus, they can occur as racemates and racemic mixtures, single enantiomers, individual diastereomers, diastereomeric mixtures, and cis- or trans- isomeric forms.
  • a pharmaceutical composition containing an effective amount of at least one thiophene compound described above and a pharmaceutical acceptable carrier.
  • this invention covers a method of administering an effective amount of one or more of the thiophene compounds to a patient having a disease described in the summary section above.
  • “An effective amount” refers to the amount of an active thiophene compound that is required to confer a therapeutic effect on the treated subject Effective doses will vary, as recognized by those skilled in the art, depending on the types of diseases treated, route of administration, excipient usage, and the possibility of co-usage with other therapeutic treatment.
  • a composition having one or more thiophene compounds can be administered parenterally, orally, nasally, rectally, topically, or buccally.
  • parenteral refers to subcutaneous, intracutaneous, intravenous, intrmuscular, intraarticular, intraarterial, intrasynovial, intrasternal, intrathecal, intralesional, or intracranial injection, as well as any suitable infusion technique.
  • a sterile injectable composition can be a solution or suspension in a non-toxic parenterally acceptable diluent or solvent, such as a solution in 1,3-butanediol.
  • acceptable vehicles and solvents that can be employed are mannitol, water, Ringer's solution, and isotonic sodium chloride solution.
  • fixed oils are conventionally employed as a solvent or suspending medium (e.g., synthetic mono- or diglycerides).
  • Fatty acid, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions.
  • These oil solutions or suspensions can also contain a long chain alcohol diluent or dispersant, carboxymethyl cellulose, or similar dispersing agents.
  • Other commonly used surfactants such as Tweens or Spans or other similar emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms can also be used for the purpose of formulation.
  • a composition for oral administration can be any orally acceptable dosage form including capsules, tablets, emulsions and aqueous suspensions, dispersions, and solutions.
  • commonly used carriers include lactose and corn starch.
  • Lubricating agents such as magnesium stearate, are also typically added.
  • useful diluents include lactose and dried corn starch.
  • a nasal aerosol or inhalation composition can be prepared according to techniques well known in the art of pharmaceutical formulation.
  • such a composition can be prepared as a solution in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents known in the art.
  • a composition having one or more active thiophene compounds can also be administered in the form of suppositories for rectal administration.
  • the carrier in the pharmaceutical composition must be "acceptable” in the sense that it is compatible with the active ingredient of the composition (and preferably, capable of stabilizing the active ingredient) and not deleterious to the subject to be treated.
  • One or more solubilizing agents can be utilized as pharmaceutical excipients for delivery of an active thiophene compound.
  • examples of other carriers include colloidal silicon oxide, magnesium stearate, cellulose, sodium lauryl sulfate, and D&C Yellow # 10.
  • thiophene compounds described above can be preliminarily screened for their efficacy in treating above-described diseases by an in vitro assay (Example 39 below) and then confirmed by animal experiments and clinic trials. Other methods will also be apparent to those of ordinary skill in the art.
  • NBS (3.2 g, 16.6 mmol) in small portions was added to a magnetically stirred solution of Intermediate II(a) (5.27 g, 13.8 mmol) in acetonitrile at 0°C. After stirring the mixture for 1 hour at 0°C, a saturated aqueous sodium sulfite solution was added. The organic solvent was then evaporated and the residual mixture was extracted with ethyl acetate. The extracts were combined, washed with water, saturated aqueous sodium bicarbonate, and brine, dried over anhydrous sodium sulfate, filtered, and concentrated.
  • Example 2 Preparation of Compound 2: (E)- l-(2,4-dichloropheny I)-N- (hexahydrocyclopenta[c]pyrrol-2( 1H)-yl)-4-methyl-5-(5-(pent- 1 -enyl)thiophen-2-yl)- 1H-pyrazole-3-carboxamide
  • Compound 2 was prepared in a manner similar to that described in Example 1 except that, in the last step, the crude carboxylic chloride (75 mg, 0.17 mmol) was treated with hexahydrocyclopenta-[c]pyrrol-2(1H)-amine hydrochloride (44.0 mg, 0.27 mmol), and triethylamine (62.9 ⁇ L, 0.44 mmol) in dichloromethane at 0°C.
  • Compound 2 was obtained as a white solid (68 mg, 75%).
  • Compound 3 was prepared in a manner similar to that described in Example 1 except that, in the last step, the crude carboxylic chloride (88.5 mg, 0.20 mmol) was treated with cyclohexyl amine (49.4 ⁇ L, 0.44 mmol) and triethylamine (70.4 ⁇ L, 0.49 mmol) in dichloromethane at 0°C. Compound 3 was obtained as a white solid (78.4 mg, 77%).
  • Example 5 Preparation of Compound 5: (£>(l-(2,4-dichlorophenyl)-4-methyl-5-(5- (pent-l-enyl)thiophen-2-yl)- 1H-pyrazol-3-yl)(pyrrolidin-l-yl)methanone
  • Compound 5 was prepared in a manner similar to that described in Example 1 except that, in the last step, the crude carboxylic chloride (101.4 mg, 0.23 mmol) was treated with pyrrolidine (43.8 ⁇ L, 0.39 mmol) and triethylamine (63.6 ⁇ L, 0.44 mmol) in dichloromethane at 0°C.
  • Compound 5 was obtained as a white solid (84.2 mg, 77%).
  • 1H-NMR (CDCl 3 , ppm): 7.49 (m, 1 H), 7.30 (m, 2H), 6.72 (d, 1 H), 6.64 (d,
  • Intermediate V(b) i.e., 5-[5-((E)-2-cyclohexyl-vinyl)-thiophen-2-yl]-l-(2,4- dichloro-phenyl)-4-methyl-1H-pyrazole-3-carboxylic acid, was prepared in a manner similar to Intermediate V(a) described in Example 1 except that Intermediate IV(a) was replaced with Intermediate IV(b) (269.4 mg, 0.55 mmol). Intermediate V(b) was obtained as a white solid in 90% yield.
  • Example 7 Preparation of Compound 7: 5-(5-(cyclopropy lethynyl)thiophen-2-y I)-I- (2,4-dichlorophenyl)-4-methyl-N-(piperidin- 1 -yl)- 1H-pyrazole-3-carboxamide To a suspension of Intermediate III (230 mg, 0.5 mmol) prepared in Example
  • Intermediate V(c) i.e., 5-(5-cyclopropylethynyl-thiophen-2-yl)-l-(2,4- dichloro-phenyl)-4-methyl-1H-pyrazole-3-carboxylic acid, was prepared in a manner similar to Intermediate V(a) described in Example 1 except that Intermediate I V(a) was replaced with Intermediate IV(c) (366.2 mg, 0.88 mmol). Intermediate V(c) was obtained as a white solid in 88% yield.
  • Compound 7 was prepared in a manner similar to that described in Example 1 except that, in the last step, a crude carboxylic chloride (110.3 mg, 0.25 mmol) prepared from Intermediate V(c) was treated with 1-amino-piperidine (50.2 mg, 0.50 mmol), and triethylamine (84.1 ⁇ L, 0.60 mmol) in dichloromethane at 0°C. Compound 7 was obtained as a white solid (94.3 mg, 75%).
  • Example 8 Preparation of Compound 8: 5-(5-(cyclopentylethynyl)thiophen-2-yl)-l- (2,4-dichlorophenyl)-N-(hexahydrocyclopenta[c]pyrrol-2(1H)-yl)-4-methyl-1H- pyrazole-3-carboxamide
  • Intermediate V(d) i.e., 5-(5-cyclopentylethynyl-thiophen-2-yl)-l-(2,4- dichloro-phenyl)-4-methyl-1H-pyrazole-3-carboxylic acid, was prepared in a manner similar to Intermediate V(a) described in Example 1 except that Intermediate IV(a) was replaced with Intermediate IV(d) (387.2 mg, 0.87 mmol). Intermediate V(d) was obtained as a white solid in 87% yield.
  • Compound 8 was prepared in a manner similar to that described in Example 7 except that, in the last step, a crude carboxylic chloride (116.3 mg, 0.25 mmol) prepared from Intermediate V(d) was treated with hexahydrocyclopenta-[c]pyrrol- 2(1H)-amine hydrochloride (82.4 mg, 0.51 mmol) and triethylamine (84.1 ⁇ L, 0.60 mmol) in dichloromethane at 0°C. Compound 8 was obtained as a white solid (102.1 mg, 74%).
  • Example 9 Preparation of Compound 9: 5-(5-(cyclohexylethynyl)thiophen-2-yl)-I- (2,4-dichlorophenyl)-N-(hexahydrocyclopenta[c]pyrrol-2(1H)-yl)-4-methyl-1H- pyrazole-3-carboxamide
  • Intermediate I V(e) i.e., 5-(5-cyclohexylethyny l-thiophen-2-yl)- 1 -(2,4- dichloro-phenyl)-4-methyl-1H-pyrazole-3-carboxylic acid ethyl ester, was prepared in a manner similar to Intermediate IV(c) described in Example 7 except that ethynyl- cyclopropane was replaced with ethynyl-cyclohexane.
  • Intermediate IV(e) was obtained as a white solid in 80% yield.
  • Intermediate V(e) i.e., 5-(5-cyclohexylethynyl-thiophen-2-yl)-l -(2,4-dichloro- phenyl)-4-methyl-1H-pyrazole-3-carboxyIic acid, was prepared in a manner similar to Intermediate V(a) described in Example 1 except that Intermediate IV(a) was replaced with Intermediate IV(e) (384.3 mg, 0.84 mmol).
  • Intermediate V(e) was obtained as a white solid in 87% yield.
  • Compound 10 was prepared in a manner similar to that described in Example 8 except that, in the last step, the crude carboxylic chloride (1 16.2 mg, 0.25 mmol) was treated with cyclohexylamine (50.3 mg, 0.51 mmol) and triethylamine (84.1 ⁇ L, 0.60 mmol) in dichloromethane at 0°C. Compound 10 was obtained as a white solid (97.3 mg, 74%).
  • Example 1 1 Preparation of Compound 1 1 : 5-(5-(cyclopentylethynyl)thiophen-2-yl)- 1 -(2,4-dichloropheny l)-4-methyl-N-(piperidin- 1 -yl)- 1 H-pyrazole-3-carboxamide Compound 11 was prepared in a manner similar to that described in Example
  • Intermediate I(b) i.e., a lithium salt of ethyl 3-methyl-2,4-dioxo-4-(5-Chloro- thiophen-2-yl)-butanonate, was prepared in 42% yield in a manner similar to Intermediate I(a) described in Example 1 except that l-(2-thienyl)-l-ethanone was replaced with l-(5-chloro-2-thienyl)-l-propanone.
  • Intermediate II(b) i.e., 5-(5-chloro-thiophen-2-yl)-l-(2,4-dichloro-phenyl)-4- methyl-1H-pyrazole-3-carboxylic acid ethyl ester, was prepared from Intermediate I(b) in a manner similar to Intermediate II(a) as a white solid in 50% yield.
  • Lithium aluminum hydride 291.9 mg, 3.10 mmol
  • Triethylamine (300 ⁇ L, 2.1 mmol) was added to a magnetically stirred solution of Intermediate VI(a) (419.2 mg, 1.02 mmol) in T ⁇ F (10 mL) at 0°C. After the mixture was stirred at the same temperature for 30 minutes, methanesulfonyl chloride (200 ⁇ L, 1.74 mmol) was added. The mixture was then stirred at room temperature for 8 hours. The reaction was quenched with water and the aqueous layer was separated and extracted with ethyl acetate (2 x 50 mL). The extracts were combined, washed with brine, dried over anhydrous sodium sulfate, filtered, and evaporated.
  • Triphenylphosphine (166.9 mg, 0.62 mmol) and water (2 mL) were sequentially added to a magnetically stirred solution of Intermediate V ⁇ II(a) (230.2 mg, 0.57 mmol) in T ⁇ F (10 mL). After the mixture was stirred at room temperature for 48 hours, the reaction was extracted with ethyl acetate (2 ⁇ 10 mL). The extracts were combined, washed with brine dried over anhydrous sodium sulfate, filtered, and concentrated.
  • Example 14 Preparation of Compound 14: (E)-N-((l -(2,4-dichloropheny l)-4-methyl- 5-(5-(pent- 1 -enyl)thiophen-2-yl)- 1 H-pyrazol-3-yl)methyl)cyclohexanecarboxamide
  • Intermediate VI(b) i.e., ⁇ l-(2,4-dichlorophenyl)-4-methyl-5-[((E)-5-pent-l- enyl)-thiophen-2-yl]-1H-pyrazol-3-yl ⁇ -methanol, was prepared in a manner similar to Intermediate VI(a) described in Example 12 except that Intermediated II(b) used therein was replaced with Intermediate IV(a) (886.2 mg, 1.97 mmol) prepared in Example 1.
  • Intermediate VI(b) was obtained as a colorless liquid in 50% yield.
  • Example 15 Preparation of Compound 15: (E)-4-bromo-N-((l-(2,4-dichlorophenyl)- 4-methyl-5-(5-(pent- 1 -enyl)thiophen-2-yl)- 1H-pyrazol-3-yl)methyl)benzamide
  • Compound 15 was prepared in a manner similar to that described in Example
  • Example 16 Preparation of Compound 16: (E)-N-((l-(2,4-dichlorophenyl)-4-methyl- 5-(5-(pent- 1 -enyl)thiophen-2-yl)- 1 H-pyrazol-3-yl)methyl)picolinamide Compound 16 was prepared in a manner similar to that described in Example
  • Example 17 Preparation of Compound 17: 1 -((5-(5-chlorothiophen-2-y I)-I -(2,4- dichlorophenyl) -methyl-1H-pyrazol-3-yl)methyl)-3-cyclohexylurea
  • Example 19 Preparation of Compound 19: l-((5-(5-chlorothiophen-2-y I)-I -(2,4- dichlorophenyl) ⁇ -methyl-1H-pyrazol-3-yl)methyl)-3-cyclohexylthiourea
  • Example 20 Preparation of Compound 20: (E)-N-((l-(2,4-dichlorophenyl)-4-methyl- 5-(5-(pent- 1 -enyl)thiophen-2-yl)- 1H-pyrazol-3-yl)methyl)cyclopropanecarboxamide
  • Compound 20 was prepared in a manner similar to that described in Example 14 except that, in the last step, Intermediate IX(b) (33 mg, 0.08 mmol) was treated with triethylamine (20 ⁇ L, 0.14 mmol) and cyclopropanecarbonyl chloride (15 ⁇ L, 0.1 1 mmol). Compound 20 was obtained as a white solid (18 mg, 47%).
  • Example 22 Preparation of Compound 22: (E)-N-((l-(2,4-dichlorophenyl)-4-methyl- 5-(5-(pent- 1 -enyl)thiophen-2-yl)- 1H-pyrazol-3-yl)methyl)cyclopentanecarboxamide Compound 22 was prepared in a manner similar to that described in Example
  • Example 23 Preparation of Compound 23: (E)-N-((l-(2,4-dichlorophenyl)-4-methyl- 5-(5-(pent- 1 -enyl)thiophen-2-yl)- 1H-pyrazol-3-yl)methyl)cycloheptanecarboxamide
  • Compound 23 was prepared in a manner similar to that described in Example 14 except that, in the last step, Intermediate IX(b) (52 mg, 0.13 mmol) was treated with triethylamine (20 ⁇ L, 0.14 mmol) and cycloheptanecarbonyl chloride (29 ⁇ L, 0.20 mmol).
  • Compound 23 was obtained as a white solid (43 mg, 62%).
  • Compound 24 was prepared in a manner similar to that described in Example 14 except that, in the last step, Intermediate IX(b) (60 mg, 0.15 tnmol) was treated with triethylamine (50 ⁇ L, 0.36 mmol) and phenylacetyl chloride (30 ⁇ L, 0.23 mmol). Compound 24 was obtained as a white solid (42 mg, 54%).
  • Example 27 Preparation of Compound 27: (E)-l-cyclohexyl-3-((l-(2,4- dichlorophenyl)-4-methyl-5-(5-(pent- 1 -enyl)thiophen-2-yl)- 1 H-pyrazol-3- yl)methyl)urea
  • Example 28 Preparation of Compound 28: (E)-l-cyclohexyl-3-((l-(2,4- dichlorophenyl)-4-methyl-5-(5-(pent- 1 -enyl)thiophen-2-yl)- 1 H-pyrazol-3- yl)methyl)thiourea
  • Compound 28 was prepared in a manner similar that described in Example 14 except that Intermediate IX(b) (33 mg 0 08 mmol) was treated with cyclohexyl isothiocyanate (15 ⁇ L, 0.11 tnmol). Compound 28 was obtained as a white solid (29 mg, 65%).
  • Example 29 Preparation of Compound 29: (E)-l-butyl-3-((l-(2,4-dichlorophenyl)-4- methyl-5-(5-(pent- 1 -enyl)thiophen-2-yl)- 1H-pyrazol-3-yl)methyl)thiourea
  • Compound 29 was prepared in a manner similar that described in Example 14 except that Intermediate IX(b) (60 mg, 0.15 mmol) was treated with butyl isothiocyanate (20 ⁇ L, 0.19 mmol). Compound 29 was obtained as a white solid (44 mg, 57%).
  • Example 30 Preparation of Compound 30: l-(2,4-Dichloro-phenyl)-4-methyl-5-(5- pent- 1 -ynyl-thiophen-2-yl)- 1H-pyrazole-3-carboxylic acid piperidin- 1 -yl amide
  • Intermediate V(f) i.e., l-(2,4-Dichloro-phenyl)-4-methyl-5-(5-pent-l-ynyl- thiophen-2-yI)-1H-pyrazole-3-carboxylic acid, was prepared in a manner similar to Intermediate V(a) described in Example 1 except that Intermediate IV(a) was replaced with Intermediate IV(f) (900 mg, 2.0 mmol). Intermediate V(f) was obtained as a white solid in 95% yield.
  • Compound 30 was prepared in a manner similar to that described in Example 7 except that, in the last step, crude carboxylic chloride (118.2 mg, 0.27 mmol) prepared from Intermediate V(f) was treated with 1-aminopiperidine (58 ⁇ L, 0.54 mmol) and triethylamine (95.3 ⁇ L, 0.68 mmol) in dichloromethane at 0°C .
  • Compound 30 was obtained as a white solid ( 100.6 mg, 73%).
  • Intermediate V(g) i.e., l-(2,4-dichlorophenyl)-5-(5-(hex-l-ynyl)thiophen-2- yl)-4-methyl-1H-pyrazole-3-carboxylic acid, was prepared in a manner similar to Intermediate V(a) described in Example 1 except that Intermediate IV(a) was replaced with Intermediate IV(g) (860 mg, 1.92 mmol). Intermediate V(g) was obtained as a white solid in 95% yield.
  • Compound 31 was prepared in a manner similar to that described in Example 7 except that, in the last step, a crude carboxylic chloride (108 mg, 0.24 mmol) prepared from Intermediate V(g) was treated with 1-aminopiperidine (52 ⁇ L, 0.48 mmol) and triethylamine (84 ⁇ L, 0.6 mmol) in dichloromethane at 0°C. Compound 31 was obtained as a white solid (90.4 mg, 73%).
  • Example 32 Preparation of Compound 32: l-(2,4-Dichloro-phenyl)-5-[5-(3- isopropoxy-prop- 1 -ynyl)-thiophen-2-y l]-4-methyl- 1 H-pyrazole-3-carboxylic acid piperidin- 1 -y lamide
  • Intermediate V(h) i.e., l-(2,4-Dichloro-phenyl)-5-[5-(3-isopropoxy-prop-l- ynyl)-thiophen-2-yl]-4-methyl-1H-pyrazole-3-carboxylic acid
  • Intermediate IV(a) was replaced with Intermediate IV(h) (600 mg, 1.26 mmol).
  • Intermediate V(f) was obtained as a white solid in 96% yield.
  • Compound 32 was prepared in a manner similar to that described in Example 7 except that, in the last step, a crude carboxylic chloride (300 mg, 0.64 mmol) prepared from Intermediate V(h) was treated with 1-aminopiperidine (128 ⁇ L, 1.2 mmol) and triethylamine (210 ⁇ L, 1.5 mmol) in dichloromethane at 0°C. Compound 32 was obtained as a white solid (238 mg, 70%).
  • Example 33 Preparation of Compound 33: l-(2,4-Dichloro-phenyl)-5-[5-(3- dimethylamino-prop-l-ynyl)-thiophen-2-yl]-4-methyl-1H-pyrazole-3-carboxylic acid piperidin- 1 -y lamide
  • Intermediate IV(i) was obtained as a white solid in 97% yield
  • Intermediate V(i) i.e., l-(2,4-Dichloro-phenyl)-5-[5-(3-dimethylamino-prop- l-ynyl)-thiophen-2-yl]-4-methyl-1H-pyrazole-3-carboxylic acid
  • Intermediate V(i) was prepared in a manner similar to Intermediate V(a) described in Example 1 except that Intermediate IV(a) was replaced with Intermediate IV(i) (500 mg, 1.15 ⁇ unol).
  • Intermediate V(i) was obtained as a white solid in 92% yield.
  • Compound 33 was prepared in a manner similar to that described in Example 7 except that, in the last step, a crude carboxylic chloride (230 mg, 0.50 mmol) prepared from Intermediate V(i) was treated with 1-aminopiperidine (65 ⁇ L, 0.6 mmol) and triethylamine (100 ⁇ L, 0.72 mmol) in dichloromethane at O 0 C. Compound 33 was obtained as a white solid ( 199 mg, 77%).
  • Examples 34-36 Preparation of Compound 34: l-(2,4-Dichloro-phenyl)-4-ethyl-5-(5- pent- 1 -ynyl-thiophen-2-yl)- 1H-pyrazole-3-carboxylic acid piperidin- 1 -ylamide; Compound 35: 1 -(2,4-Dichloro-phenyl)-4-ethyl-5-(5-pent- 1 -ynyl-thiophen-2-yl)- 1 H- pyrazole-3 -carboxylic acid azepan-1 -ylamide; and Compound 36: l-(2,4-Dichloro- phenyl)-4-ethyl-5-[5-(4-methy 1-pent- 1 -ynyl)-thiophen-2-yl]- 1 H-pyrazole-3- carboxylic acid piperidin- 1 -ylamide
  • Intermediate V(j) i.e., l-(2,4-Dichloro-phenyl)-4-methyl-5-[5-(3-pyrrolidin-l- yl-prop-l-ynyl)-thiophen-2-yl]-1H-pyrazole-3-carboxylic acid, was prepared in a manner similar to Intermediate V(a) described in Example 1 except that Intermediate IV(a) was replaced with Intermediate IV(J) (300 mg, 0.65 mmol). Intermediate V(j) was obtained as a white solid in 96% yield.
  • Compound 37 was prepared in a manner similar to that described in Example 7 except that, in the last step, crude carboxylic chloride (180 mg, 0.38 mmol) prepared from Intermediate V(j) was treated with 1-aminopiperidine (49 ⁇ L, 0.46 mmol) and triethylamine (76 ⁇ L, 0.55 mmol) in dichloromethane at 0°C. Compound 37 was obtained as a white solid (167 mg, 81%).
  • Example 38 Preparation of Compound 38: l-(2,4-Dichloro-phenyl)-4-methyl-5-(5- phenylethynyl-thiophen-2-yl)- 1H-pyrazole-3-carboxylic acid piperidin- 1 -ylamide
  • Intermediate V(k) i.e., 1 -(2,4-Dichloro-phenyl)-4-methyl-5-(5-phenylethynyl- thiophen-2-yl)-1H-pyrazole-3-carboxylic acid, was prepared in a manner similar to Intermediate V(a) described in Example 1 except that Intermediate IV(a) was replaced with Intermediate IV(k) (300 mg, 0.63 mmol). Intermediate V(k) was obtained as a white solid in 93% yield.
  • Compound 38 was prepared in a manner similar to that described in Example 7 except that, in the last step, a crude carboxylic chloride (200 mg, 0.42 mmol) prepared from Intermediate V(k) was treated with 1-aminopiperidine (55 ⁇ L, 0.5 mmol) and triethylamine (84 ⁇ L, 0.6 mmol) in dichloromethane at 0°C. Compound 38 was obtained as a white solid (169 mg, 75%).
  • the affinity of 38 test compounds of this invention toward CBl and CB2 receptors was determined by competitive radioligand binding in vitro assays. This method differentiates the binding strength between compounds by their abilities in displacing a receptor-specific radioactive ligand. Compounds with higher affinity than the radioactive ligand displace the ligand and bind to the receptors, while compounds with no affinity or lower affinity than the radioactive ligand do not. The readings of the radioactivity retained allow further analysis of receptor binding, and assist in predictions of the pharmacological activities of the test compounds. In the assays, brain and spleen extracts from male Sprag ⁇ e-Dawley rats were respectively utilized as the source of CBl and CB2 receptors.
  • mice Male Sprague-Dawley rats weighing 175-200 g were used and housed under standard stalling conditions with food and water available ad libitum. The animals were sacrificed by cervical dislocation. Brain with cerebellum were excluded and spleen were dissected from the animals. The separated brain and spleen tissues were respectively homogenized by Polytron Homogenizers in 10 volumes of ice-cold buffer A (50 mM Tris, 5mM MgCl 2 , 2.5 mM EDTA, pH 7.4, 10% sucrose) with protease inhibitors. The homogenate was centrifuged for 15 minutes at 2,000xg at 4°C.
  • ice-cold buffer A 50 mM Tris, 5mM MgCl 2 , 2.5 mM EDTA, pH 7.4, 10% sucrose
  • the resultant supernatant was centrifuged again for 30 minutes at 43,000xg at 4°C.
  • the final pellet was re-suspended in buffer A and stored at -80°C.
  • the protein concentration of the purified membrane was determined by the Bradford method as described by the manual provided by Bio-Rad Laboratories, Inc., Hercules, CA.
  • a membrane was incubated with 0.75 nM [ 3 H]CP55,940 and a test compound in an incubation buffer (50 mM Tris-HCl, 5 mM MgCl 2 , 1 mM EDTA, 0.3% BSA, pH 7.4).
  • the non-specific binding was determined by using 1 ⁇ M of CP55,940.
  • the mixture was incubated for 1.5 hours at 30°C in Multiscreen microplates (Millipore, Billerica, MA).
  • the reaction was terminated by Manifold filtration and washed with ice-cold wash buffer (50 mM Tris, pH 7.4, 0.25% BSA) four times.
  • the radioactivity bound to the filters was measured by Topcount (Perkin Elmer Inc.). IC 50 values were calculated based on the concentration of the test compound required to inhibit 50% of the binding of [ 3 H]CP55,940.
  • the efficacy of each test compound was determined by DELFIA GTP-binding kit (Perkin Elmer Inc., Boston, MA).
  • the DELFIA GTP-binding assay is a time- resolved fluorometric assay based on GDP-GTP exchange on G-protein subunits followed by activation of a G protein-coupled receptor by its agonists.
  • Eu-GTP was used in this assay to allow monitoring of agonist-dependent activation of G-protein. Note that stimulation of CBl receptor by CP55.940 leads to the replacement of GDP by GTP on the ⁇ -subunit of G-protein.
  • the resultant GTP-G ⁇ complex represents the activated form of G-protein.
  • Eu-GTP a non-hydrolyysable analogue of GTP, can be used to quantify the amount of activated G-protein (Peltonen et al., Eur. J. Pharmacol. (1998) 355:275).
  • Plasma membrane of human CBl -expressing HEK293 cells was re-suspended in an assay buffer (50 mM HEPES, pH 7.4, 100 mM NaCl, 100 ⁇ g/mL saponin, 5 mM MgCl 2 , 2 ⁇ M GDP, 0.5% BSA). An aliquot (4 ⁇ g protein/well) was added to each well of an AcroPlate (Pall Life Sciences, Ann Arbor, MI). After the addition of a test compound (various concentrations in 0.1% DMSO) and CP55,940 (20 nM in the assay buffer), the assay plate was incubated in the dark at 30°C with slow shaking for 60 minutes.
  • an assay buffer 50 mM HEPES, pH 7.4, 100 mM NaCl, 100 ⁇ g/mL saponin, 5 mM MgCl 2 , 2 ⁇ M GDP, 0.5% BSA.
  • An aliquot (4 ⁇ g protein/well) was added to each well of an
  • Eu-GTP was added to each well and the plate was incubated for another 35 minutes at 30°C in the dark. The assay was terminated by washing the plate four times with a wash solution provided in the assay kit. Binding of the Eu- GTP was determined based on the fluorescence signal from a Victor 2 multi-label reader. The IC 50 value (i.e., 50% inhibition of CP55,940-stimulated Eu-GTP binding ) for each test compound was determined by a concentration-response curve using nonlinear regression (Prism; GraphPad, San Diego, CA).
  • test compounds showed ICso values between 0.1 nM and 20 ⁇ M in the CBl receptor binding assays and/or CB2 receptor binding assays.
  • the Eu-GTP binding assays were also conducted, and the results were comparable to those obtained from the above-mentioned radioligand binding assays.

Abstract

This invention relates to a group of thiophene compounds as shown in the specification. These compounds can be used to treat cannabinoid-receptor mediated disorders.

Description

THIOPHENE COMPOUNDS
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims the benefit of U.S. Provisional Application No. 60/848,761, filed October 2, 2006. The contents of the foregoing application are hereby incorporated by reference in its entirety.
BACKGROUND
Cannabinoids isolated from Cannabis sativa have been recognized for centuries as therapeutic agents. For example, they have been utilized in treating analgesia, muscle relaxation, appetite stimulation, and anti-convulsion. Recent studies also indicate their potential therapeutic effects in treating cancer and alleviating the symptoms of chronic inflammatory diseases, such as rheumatism and multiple sclerosis.
The actions of cannabinoids are mediated by at least two types of the cannabinoid receptors, CBl and CB2 receptors, both of which belong to the G- protein-coupled receptor (GPCR) superfamily. CBl receptor is predominantly expressed in brain to mediate inhibition of transmitter release and CB2 receptor is primarily expressed in immune cells to modulate immune response. See Matsuda et al., Nature (1990) 346:561 and Munro et al., Nature (1993) 365:61.
Compared to other GPCRs, CBl receptor is typically expressed at higher levels. In the central nervous system, it is highly expressed in cerebral cortex, hippocampus, basal ganglia, and cerebellum, but has relatively low levels in hypothalamus and spinal cord. See, e.g., Howlett et al., Pharmacol Rev (2002) 54:161. Its functions affect many neurological and psychological phenomena, such as mood, appetite, emesis control, memory, spatial coordination muscle tone, and analgesia. See, e.g., Goutopoulos et al., Pharmacol Ther (2002) 95: 103. Other than the central nervous system, it is also present in several peripheral organs, such as gut, heart, lung, uterus, ovary, testis, and tonsils. See, e.g., Galiegue et al., Eur J Biochem (1995) 232:54. CB2 receptor is 44% identical to CBl receptor with a 68% identity in the trans-membrane regions. See Munro et al., Nature (1993) 365:61. Compared to CBl receptor, CB2 receptor has a more limited distribution with high expression in spleen and tonsils, and low expression in lung, uterus, pancreas, bone marrow, and thymus. Among immune cells, B cells express CB2 receptor at the highest level, followed in order by natural killer cells, monocytes, polymorphonuclear neutrophils, and T lymphocytes. See Galiegue et al., Eur J Biochem (1995) 232:54. Activation of CB2 receptor has been shown to have analgesic effects in inflammatory models involved in neurodegeneration diseases (such as Alzheimer's disease), and play a role in the maintenance of bone density and progression of atherosclerotic lesions. See, e.g., Malan et al., Pain (2001) 93:239; Benito et al., J Neurosci (2003) 23: 11136; Ibrahim et al., Proc Natl Acad Sci USA (2003) 100:10529; Idris et al., Nat Med (2005) 11 :774; and Steffens et al., Nature (2005) 434:782.
SUMMARY This invention is based on the discovery that certain thiophene compounds are effective in treating cannabinoid-receptor mediated disorders.
In one aspect, this invention features thiophene compounds of formula (I):
Figure imgf000003_0001
In this formula, R1 is H, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C20 cycloalkyl, C3-C20 cycloalkenyl, C1-C20 heterocycloalkyl, C1-C20 heterocycloalkenyl, aryl, or heteroaryl; R2 is H, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C20 cycloalkyl, C3-C20 cycloalkenyl, C1-C20 heterocycloalkyl, C1-C20 heterocycloalkenyl, aryl, heteroaryl, halo, ORa, COORa, OC(O)Ra, C(O)Ra, C(O)NRaRb, OrNRaRb, in which each of Ra and Rb, independently, is H, C1-C10 alkyl, C3-C20 cycloalkyl, C1-C20 heterocycloalkyl, aryl, or heteroaryl; each of R3, R4, and R5, independently, is H, halo, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C20 cycloalkyl, C3-C20 cycloalkenyl, C1-C20 heterocycloalkyl, C1-C20 heterocycloalkenyl, aryl, or heteroaryl; or R5, together with R6 and the carbon atoms to which they are attached, is C3-C20 cycloalkenyl or C3-C20 heterocycloalkenyl; and R6 is C2-C10 alkenyl or C2-C10 alkynyl; or R6, together with R5 and the carbon atoms to which they are attached, is C3-C20 cycloalkenyl or C3-C20 heterocycloalkenyl.
Referring to formula (I), some of the thiophene compounds described above have one or more of the following features: R1 is aryl substituted with halo (e.g., 2,4- dichlorophenyl); R6 is alkenyl unsubstituted or substituted with cyclaoalkyl (e.g., penten-1-yl and 2-cyclohexylethen-l-yl), or alkynyl unsubstituted or substituted with alkoxy, amino, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl (e.g., 2- cyclopentylethyn-1-yl, 2-cyclohexylethyn-l-yl, 2-cyclopropylethyn-l-yl, pent-1-ynyl, hex-1-ynyl, 3-isopropoxy-prop-l-ynyl, 3-dimethylamino-prop-l-ynyl, pyrolidin-lyl- propyn-lyl, and phenylethyn-1-yl); and R2 isC(O)Ra (in which Ra can be piperidinyl or pyrrolidinyl) or C(O)NRaRb (in which each Of R3 and Rb, independently, can be H, cyclohexyl, piperidinyl, or octahydrocyclopentapyrrolyl).
The term "alkyl" refers to a saturated, linear or branched hydrocarbon moiety, such as -CH3 or -CH(CH3)2. The term "alkenyl" refers to a linear or branched hydrocarbon moiety that contains at least one double bond, such as -CH=CH-CH3. The term "alkynyl" refers to a linear or branched hydrocarbon moiety that contains at least one triple bond, such as -C≡C-CH3. The term "cycloalkyl" refers to a saturated, cyclic hydrocarbon moiety, such as cyclohexyl. The term "cycloalkenyl" refers to a non-aromatic, cyclic hydrocarbon moiety that contains at least one double bond, such as cyclohexenyl. The term "heterocycloalkyl" refers to a saturated, cyclic moiety having at least one ring heteroatom (e.g., N, O, or S), such as 4-tetrahydropyranyl. The term "heterocycloalkenyl" refers to a non-aromatic, cyclic moiety having at least one ring heteroatom (e.g., N, O, or S) and at least one ring double bond, such as pyranyl. The term "aryl" refers to a hydrocarbon moiety having one or more aromatic rings. Examples of aryl moieties include phenyl (Ph), phenylene, naphthyl, naphthylene, pyrenyl, anthryl, and phenanthryl. The term "heteroaryl" refers to a moiety having one or more aromatic rings that contain at least one heteroatom (e.g., N, O, or S). Examples of heteroaryl moieties include furyl, furylene, fluorenyl, pyrrolyl, thienyl, oxazolyl, imidazolyl, thiazolyl, pyridyl, pyrimidinyl, quinazolinyl, quinolyl, isoquinolyl and indolyl. Alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, and heteroaryl mentioned herein include both substituted and unsubstituted moieties, unless specified otherwise. Possible substituents on cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, and heteroaryl include, but are not limited to, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C20 cycloalkyl, C3-C20 cycloalkenyl, C1-C20 heterocycloalkyl, C1-C20 heterocycloalkenyl, C1-C10 alkoxy, aryl, aryloxy, heteroaryl, heteroaryloxy, amino, C1-C10 alkylamino, C1- C20 dialkylamino, arylamino, diarylamino, C1-C10 alkylsulfonamino, arylsulfonamino, C1-C10 alkylimino, arylimino, C1-C10 alkylsulfonimino, arylsulfonimino, hydroxy!, halo, thio, C1-C10 alkylthio, arylthio, C1-C10 alkylsulfonyl, arylsulfonyl, acylamino, aminoacyl, aminothioacyl, amido, amidino, guanidine, ureido, thioureido, cyano, nitro, nitroso, azido, acyl, thioacyl, acyloxy, carboxyl, and carboxylic ester. On the other hand, possible substituents on alkyl, alkenyl, or alkynyl include all of the above- recited substituents except C1 -C 10 alkyl. Cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl, aryl, and heteroaryl can also be fused with each other.
In another aspect, this invention features thiophene compounds of formula (I) in which R1 is H, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C20 cycloalkyl, C3- C20 cycloalkenyl, C1-C20 heterocycloalkyl, C1-C20 heterocycloalkenyl, aryl, or heteroaryl; R2 is C2-C10 alkenyl, C2- C10 alkynyl, C3-C20 cycloalkyl, C3-C20 cycloalkenyl, C1-C20 heterocycloalkyl, C1-C20 heterocycloalkenyl, aryl, heteroaryl, halo, OR9, OC(O)Ra, NR8Rb, or C1-C10 alkyl substituted with NRa-C(O)-Rb, NRa- C(S)-Rb, NRa-C(O)-NRbRc, NRa-C(S)-NRbRc, or NRa-C(=N-CN)-NRbRc, in which each of R8, Rb, and R0 independently, is H, CpC10 alkyl, C3-C20 cycloalkyl, C1-C20 heterocycloalkyl, aryl, or heteroaryl; and each of R3, R4, R5, and R6, independently, is H, halo, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C20 cycloalkyl, C3-C20 cycloalkenyl, C1-C20 heterocycloalkyl, C1-C20 heterocycloalkenyl, aryl, or heteroaryl; or R5 and R6, together with the carbon atoms to which they are attached, is C3-C20 cycloalkenyl or C3-C20 heterocycloalkenyl.
Some of the just-described thiophene compounds have one or more of the following features: R1 is aryl substituted with halo (e.g., 2,4-dichlorophenyl); R6 is chloro or penten-1-yl; and R2 is methyl substituted with NRa-C(O)-Rb, NRa-C(O)- NRbRc, or NRa-C(S)-NRbRc, in which Ra is H, Rc is H, and R1, is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, pyridyl, phenyl optionally substituted with halo or C1-C10 alkyl, or C1-C10 alkyl optionally substituted with aryl or heteroaryl. In still another aspect, this invention features a method for treating a cannabinoid-receptor mediated disorder. The method includes administering to a subject in need thereof an effective amount of one or more thiophene compounds of formula (I) shown above. Examples of cannabinoid-receptor mediated disorders include liver fibrosis, hair loss, obesity, metabolic syndrome (e.g., syndrome X), hyperlipidemia, type II diabetes, atherosclerosis, substance addiction (e.g., alcohol addiction or nicotine addiction), depression, motivational deficiency syndrome, learning or memory dysfunction, analgesia, haemorrhagic shock, ischemia, liver cirrhosis, neuropathic pain, antiemesis, high intraocular pressure, bronchodilation, osteoporosis, cancer (e.g., prostate cancer, lung cancer, breast cancer, or head and neck cancer), a neurodegenerative disease (e.g., Alzheimer's disease or Parkinson's disease), or an inflammatory disease.
The term "treating" or "treatment" refers to administering one or more thiophene compounds to a subject, who has an above-described disorder, a symptom of such a disorder, or a predisposition toward such a disorder, with the purpose to confer a therapeutic effect, e.g., to cure, relieve, alter, affect, ameliorate, or prevent the above-described disorder, the symptom of it, or the predisposition toward it.
In addition, this invention encompasses a pharmaceutical composition that contains an effective amount of at least one of the above-mentioned thiophene compounds and a pharmaceutically acceptable carrier. The thiophene compounds described above include the compounds themselves, as well as their salts, prodrugs, and solvates, if applicable. A salt, for example, can be formed between an anion and a positively charged group (e.g., amino) on a thiophene compound. Suitable anions include chloride, bromide, iodide, sulfate, nitrate, phosphate, citrate, methanesulfonate, trifluoroacetate, acetate, malate, tosylate, tartrate, fumurate, glutamate, glucuronate, lactate, glutarate, and maleate. Likewise, a salt can also be formed between a cation and a negatively charged group (e.g., carboxylate) on a thiophene compound. Suitable cations include sodium ion, potassium ion, magnesium ion, calcium ion, and an ammonium cation such as tetramethylammonium ion. The thiophene compounds also include those salts containing quaternary nitrogen atoms. Examples of prodrugs include esters and other pharmaceutically acceptable derivatives, which, upon administration to a subject, are capable of providing active thiophene compounds. A solvate refers to a complex formed between an active thiophene compound and a pharmaceutically acceptable solvent. Examples of pharmaceutically acceptable solvents include water, ethanol, isopropanol, ethyl acetate, acetic acid, and ethanolamine. Also within the scope of this invention is a composition containing one or more of the thiophene compounds described above for use in treating an above- described disorder, and the use of such a composition for the manufacture of a medicament for the just-mentioned treatment.
The details of one or more embodiments of the invention are set forth in the description below. Other features, objects, and advantages of the invention will be apparent from the description and from the claims.
DETAILED DESCRIPTION Shown below are 38 exemplary compounds of this invention:
Figure imgf000008_0001
Figure imgf000009_0001
The thiophene compounds described above can be prepared by methods well known in the art. Examples 1-38 below provide detailed descriptions of how compounds 1-38 were actually prepared. Scheme I shown below illustrates a typical synthetic route for synthesizing certain exemplary compounds.
Figure imgf000010_0001
Specifically, as shown in Scheme 1 above, a thiophene compound containing a ketone group (e.g., compound A) can first undergo a Claisen condensation reaction with an oxalate compound (e.g., diethyl oxalate) in the presence of a lithium salt to form a 1,3-dione compound containing an ester group (e.g., compound B). The 1,3- dione compound can then react with a hydrazine to afford a corresponding hydrazone, which, without purification, is allowed to undergo intramolecular cyclization under refluxing acetic acid to form a pyrazole compound (e.g., compound C) containing an ester group. The pyrazole compound can be treated with N-bromosuccinimide in acetonitrile to form a compound containing a bromide group at the S- position on the thiophene ring (e.g. compound D). The bromide group can then be replaced with an alkenyl or alkynyl group by reacting with a substituted boronic acid or an alkyne. The ester group on the compound thus formed (e.g., compound E) can subsequently be hydrolyzed in the presence of a base to form a carboxyl group, which in turn can be converted to an acyl chloride group by reacting with thionyl chloride to form an acyl chloride compound (e.g., compound F). The acyl chloride compound can then react with various amines to form compounds of the invention (e.g., Compounds 1-11 and 30-38).
The intermediates mentioned in Scheme I above can be modified in various manners to afford other compounds of this invention. An example is illustrated in Scheme II below:
Figure imgf000011_0001
As shown in Scheme II below, the ester group on compound C or E can be reduced to a hydroxyl group. The compound thus formed (e.g., compound G) can then react with methanesulfonyl chloride to form a compound with a methanesulfonyl acid ester group (e.g., compound H). The resultant compound can react with sodium azide to form a compound having an azido group (e.g., compound I), which can then be converted to a compound having an amino group (e.g., compound J). The compound thus formed can reacting with acyl chlorides, isocyanates, or isothiocyanates to form other compounds of invention (e.g., compounds 12-29). A thiophene compound synthesized above can be purified by a suitable method such as column chromatography, high-pressure liquid chromatography, or recrystallization.
Other thiophene compounds can be prepared using other suitable starting materials through the above synthetic routes and others known in the art. The methods described above may also additionally include steps, either before or after the steps described specifically herein, to add or remove suitable protecting groups in order to ultimately allow synthesis of the thiophene compounds. In addition, various synthetic steps may be performed in an alternate sequence or order to give the desired compounds. Synthetic chemistry transformations and protecting group methodologies (protection and deprotection) useful in synthesizing applicable thiophene compounds are known in the art and include, for example, those described in R. Larock, Comprehensive Organic Transformations, VCH Publishers (1989); T. W. Greene and P.G.M. Wuts, Protective Groups in Organic Synthesis, 2nd Ed., John Wiley and Sons (1991); L. Fieser and M. Fieser, Fieser and Fieser's Reagents for Organic Synthesis, John Wiley and Sons (1994); and L. Paquette, ed., Encyclopedia of Reagents for Organic Synthesis, John Wiley and Sons (1995) and subsequent editions thereof. The thiophene compounds mentioned herein may contain a non-aromatic double bond and one or more asymmetric centers. Thus, they can occur as racemates and racemic mixtures, single enantiomers, individual diastereomers, diastereomeric mixtures, and cis- or trans- isomeric forms. All such isomeric forms are contemplated. Also within the scope of this invention is a pharmaceutical composition containing an effective amount of at least one thiophene compound described above and a pharmaceutical acceptable carrier. Further, this invention covers a method of administering an effective amount of one or more of the thiophene compounds to a patient having a disease described in the summary section above. "An effective amount" refers to the amount of an active thiophene compound that is required to confer a therapeutic effect on the treated subject Effective doses will vary, as recognized by those skilled in the art, depending on the types of diseases treated, route of administration, excipient usage, and the possibility of co-usage with other therapeutic treatment.
To practice the method of the present invention, a composition having one or more thiophene compounds can be administered parenterally, orally, nasally, rectally, topically, or buccally. The term "parenteral" as used herein refers to subcutaneous, intracutaneous, intravenous, intrmuscular, intraarticular, intraarterial, intrasynovial, intrasternal, intrathecal, intralesional, or intracranial injection, as well as any suitable infusion technique. A sterile injectable composition can be a solution or suspension in a non-toxic parenterally acceptable diluent or solvent, such as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that can be employed are mannitol, water, Ringer's solution, and isotonic sodium chloride solution. In addition, fixed oils are conventionally employed as a solvent or suspending medium (e.g., synthetic mono- or diglycerides). Fatty acid, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions can also contain a long chain alcohol diluent or dispersant, carboxymethyl cellulose, or similar dispersing agents. Other commonly used surfactants such as Tweens or Spans or other similar emulsifying agents or bioavailability enhancers which are commonly used in the manufacture of pharmaceutically acceptable solid, liquid, or other dosage forms can also be used for the purpose of formulation.
A composition for oral administration can be any orally acceptable dosage form including capsules, tablets, emulsions and aqueous suspensions, dispersions, and solutions. In the case of tablets, commonly used carriers include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in a capsule form, useful diluents include lactose and dried corn starch. When aqueous suspensions or emulsions are administered orally, the active ingredient can be suspended or dissolved in an oily phase combined with emulsifying or suspending agents. If desired, certain sweetening, flavoring, or coloring agents can be added.
A nasal aerosol or inhalation composition can be prepared according to techniques well known in the art of pharmaceutical formulation. For example, such a composition can be prepared as a solution in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents known in the art.
A composition having one or more active thiophene compounds can also be administered in the form of suppositories for rectal administration. The carrier in the pharmaceutical composition must be "acceptable" in the sense that it is compatible with the active ingredient of the composition (and preferably, capable of stabilizing the active ingredient) and not deleterious to the subject to be treated. One or more solubilizing agents can be utilized as pharmaceutical excipients for delivery of an active thiophene compound. Examples of other carriers include colloidal silicon oxide, magnesium stearate, cellulose, sodium lauryl sulfate, and D&C Yellow # 10.
The thiophene compounds described above can be preliminarily screened for their efficacy in treating above-described diseases by an in vitro assay (Example 39 below) and then confirmed by animal experiments and clinic trials. Other methods will also be apparent to those of ordinary skill in the art.
The specific examples below are to be construed as merely illustrative, and not limitative of the remainder of the disclosure in any way whatsoever. Without further elaboration, it is believed that one skilled in the art can, based on the description herein, utilize the present invention to its fullest extent. All publications cited herein are hereby incorporated by reference in their entirety.
Example 1 : Preparation of Compound 1 : (E)-l-(2,4-dichlorophenyl)-4-methyl-5-(5- (pent- 1 -enyl)thiophen-2-yl)-N-(piperidin- 1 -y I)- 1 H-pyrazole-3-carboxamide
To a magnetically stirred solution of lithium bis(trimethylsilyl)amide (46.7 mL, 46.7 mmol) in diethyl ether (55 mL) was added a solution of 1 -(2-thieny I)-I- propanone (6.0 g, 42.53 mmol ) in diethyl ether (30 mL) at -78°C. After the mixture was stirred at the same temperature for an additional 45 minutes, diethyl oxalate (6.9 mL, Sl .03 mmol) was added to the mixture. The reaction mixture was allowed to warm to room temperature and stirred for another 16 hours. The precipitate was filtered, washed with diethyl ether, and dried under vacuum to afford Intermediate I(a), i.e., a lithium salt of ethyl 3-methyl-2,4-dioxo-4-thiophen-2-yl-butanonate (6.14 g, 62%).
To a magnetically stirred solution of Intermediate I(a) (4.65 g, 18.84 mmol) in (56 mL) of ethanol was added 2,4-dichlorophenylhydrazine hydrochloride (4.35 g, 20.73 mmol) in one portion at room temperature. The resulting mixture was stirred at room temperature for 24 hours. The precipitate thus obtained was filtered, washed with ethanol and diethyl ether, and then dried under vacuum to give a light yellow solid (5.18 g, 71%). This solid was redissolved in acetic acid (30 mL) and heated under reflux for 24 hours. The mixture was poured into ice water and extracted with ethyl acetate. The extracts were combined, washed with water, saturated aqueous sodium bicarbonate, and brine, dried over anhydrous sodium sulfate, filtered, and concentrated by evaporation. The crude product thus obtained was purified by flash column chromatography on silica gel with n-hexane/ethyl acetate (9: 1) to give Intermediate II(a), i.e., l-(2,4-Dichloro-phenyl)-4-methyl-5-thiophen-2-yl-1H- pyrazole-3-carboxylic acid ethyl ester, as a white solid (3.87 g, 73%). NBS (3.2 g, 16.6 mmol) in small portions was added to a magnetically stirred solution of Intermediate II(a) (5.27 g, 13.8 mmol) in acetonitrile at 0°C. After stirring the mixture for 1 hour at 0°C, a saturated aqueous sodium sulfite solution was added. The organic solvent was then evaporated and the residual mixture was extracted with ethyl acetate. The extracts were combined, washed with water, saturated aqueous sodium bicarbonate, and brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The crude product was purified by flash chromatography on silica gel with n-hexane/ethyl acetate (9: 1) to give Intermediate III, i.e., 5-(5-Bromo-thiophen- 2-yl)-l-(2,4-dichloro-phenyl)-4-methyl-1H-pyrazole-3-carboxylic acid ethyl ester, as a white solid (4.91 g, 77%). A solution of Intermediate III (2.28 g, 4.96 mmol), pent- 1 -enylboronic acid
(677.8 mg, 5.95 mmol), tetrakis-triphenylphosphinopallidum (572.8 mg, 0.57 mmol), and cesium carbonate (3.23 g, 9.91 mmol) in DME (10 mL) was refluxed for 3 hours. After the solvent was evaporated under reduced pressure, the resultant residue was purified by flash column chromatography with n-hexane/ethyl acetate (5: 1 ) to give Intermediate IV(a), i.e., l-(2,4-Dichloro-phenyl)-4-methyl-5-[((E)-5-pent-l-enyl)- thiophen-2-yl]-1H- pyrazole-3-carboxylic acid ethyl ester, as a white solid (1.16 g, 73%).
To a magnetically stirred solution of Intermediate IV(a) (230.2 mg, 0.48 mmol) in methanol (3.0 mL) was added a solution of potassium hydroxide (160.1 mg, 3.0 mmol) in methanol (7 mL). After the mixture was refluxed for 3 hours, it was cooled, poured into water, and acidified with a 10% hydrochloric acid aqueous solution. The precipitate thus obtained was filtered, washed with water, and dried under vacuum to give Intermediate V(a), i.e., l-(2,4-Dichloro-phenyl)-4-methyl-5- [((E)-5-pent-l-enyl)-thiophen-2-yl]-1H-pyrazole-3-carboxylic acid, as a white solid (191.1 mg, 92%). A solution of Intermediate V(a) (171.7 mg, 0.41 mmol) and thionyl chloride
(1 14.1 μL, 1.56 mmol) in toluene (7.0 mL) was refluxed for 3 hours. After the solvent was evaporated under reduced pressure, the resultant residue was redissolved in toluene (7.0 mL) and evaporated again to yield the crude corresponding carboxylic chloride as a white solid. The carboxylic chloride was dissolved in dichloromethane (10 mL) and added dropwise to a mixture of 1-aminopiperidine (53.9 μL, 0.54 mmol) and triethylamine (75.8μL, 0.54 mmol) in 5 mL of dichloromethane at OoC. After the mixture was stirred at room temperature for 8 hours, the reaction was quenched with water. The aqueous layer was separated and extracted with dichloromethane (2χ20 mL). The extracts were combined, washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The crude product thus obtained was purified by flash column chromatography on silica gel with n- hexane/ethyl acetate (2: 1) to give Compound 1 as a white solid (172.8 mg, 84%).
1H-NMR (CDCl3, ppm): 7.61 (d, IH), 7.49 (d, IH), 7.35-7.33 (m, 2H), 6.71 (d, IH), 6.64 (d, IH), 6.39 (d, 1 H), 6.02 (dt, IH), 2.87-2.84 (m, 4H), 2.50-2.45 (m, 3H), 1.79- 1.71 (m, 6H), 1.50- 1.40 (m, 4H), 0.93 (t, 3H). ES-MS (M+l): 503.1. Example 2: Preparation of Compound 2: (E)- l-(2,4-dichloropheny I)-N- (hexahydrocyclopenta[c]pyrrol-2( 1H)-yl)-4-methyl-5-(5-(pent- 1 -enyl)thiophen-2-yl)- 1H-pyrazole-3-carboxamide Compound 2 was prepared in a manner similar to that described in Example 1 except that, in the last step, the crude carboxylic chloride (75 mg, 0.17 mmol) was treated with hexahydrocyclopenta-[c]pyrrol-2(1H)-amine hydrochloride (44.0 mg, 0.27 mmol), and triethylamine (62.9 μL, 0.44 mmol) in dichloromethane at 0°C. Compound 2 was obtained as a white solid (68 mg, 75%). 1H-NMR (CDCl3, ppm): 7.48 (s, IH), 7.32 (m, 2H), 6.71 (d, IH), 6.64 (dd,
IH), 6.38 (dd, IH), 6.01 (dt, IH), 3.28 (t, 2H), 2.67 (m, 2H), 2.54-2.47 (m, 5H), 2.16- 2.07 (m, 2H), 1.67-1.42 (m, 9H), 0.93 (t, 3H). ES-MS (M+ 1): 529.1.
Example 3: Preparation of Compound 3 : (E)-N-cyclohexyl- 1 -(2,4-dichloropheny l)-4- methyl-5-(5-(pent- 1 -enyl)thiophen-2-yl)- 1H-pyrazole-3-carboxamide
Compound 3 was prepared in a manner similar to that described in Example 1 except that, in the last step, the crude carboxylic chloride (88.5 mg, 0.20 mmol) was treated with cyclohexyl amine (49.4 μL, 0.44 mmol) and triethylamine (70.4 μL, 0.49 mmol) in dichloromethane at 0°C. Compound 3 was obtained as a white solid (78.4 mg, 77%).
1H-NMR (CDCl3, ppm): 7.49 (s, IH), 7.34 (m, 2H), 6.79 (d, IH), 6.72 (d, IH), 6.64 (d, IH), 6.39 (dt, IH), 2.49 (t, 3H), 2.10 (m, 2H), 2.12-1.72 (m, 2H), 1.66-1.14 (m, 12H), 0.95 (t, 3H). ES-MS (M+l): 502.1.
Example 4: Preparation of Compound 4: (is)-(l-(2,4-dichlorophenyl)-4-methyl-5-(5- (pent- 1 -enyl)thiophen-2-yl)- 1 H-pyrazol-3-yl)(piperidin- 1 -y l)methanone
Compound 4 was prepared in a manner similar to that described in Example 1 except that, in the last step, the crude carboxylic chloride (93.2 mg, 0.21 mmol) was treated with piperidine (45.3 μL, 0.40 mmol) and triethylamine (63.2 μL, 0.44 mmol) in dichloromethane at 0°C. Compound 4 was obtained as a white solid (80.3 mg, 78%).
1H-NMR (CDCl3, ppm): 7.49 (s, IH), 7.30 (m, 2H), 6.72 (d, IH), 6.64 (d, IH), 6.41 (d, IH), 6.03 (dt, IH), 3.75 (m, 2H), 3.64 (m, 2H), 2.29 (t, 3H), 2.14 (m, 2H), 1.74- 1.60 (m, 6H), 1.54- 1.42 (m, 2H), 0.94 (t, 3H). ES-MS (M+ 1): 488.1.
Example 5: Preparation of Compound 5: (£>(l-(2,4-dichlorophenyl)-4-methyl-5-(5- (pent-l-enyl)thiophen-2-yl)- 1H-pyrazol-3-yl)(pyrrolidin-l-yl)methanone Compound 5 was prepared in a manner similar to that described in Example 1 except that, in the last step, the crude carboxylic chloride (101.4 mg, 0.23 mmol) was treated with pyrrolidine (43.8 μL, 0.39 mmol) and triethylamine (63.6 μL, 0.44 mmol) in dichloromethane at 0°C. Compound 5 was obtained as a white solid (84.2 mg, 77%). 1H-NMR (CDCl3, ppm): 7.49 (m, 1 H), 7.30 (m, 2H), 6.72 (d, 1 H), 6.64 (d,
IH), 6.39 (d, I H), 6.02 (dt, IH), 3.80 (m, 2H), 3.66 (m, 2H), 2.38 (t, 3H), 2.12 (m, 2H), 1.92 (m, 4H), 1.46 (m, 2H), 0.93 (t, 3H). ES-MS (M+l): 474.1.
Example 6: Preparation of Compound 6: (E)-5-(5-(2-cyclohexylvinyl)thiophen-2-yl)-
1 -(2,4-dichlorophenyl)-N-(hexahydrocyclopenta[c]pyrrol-2( 1H)-yl)-4-methyl- IH- pyrazole-3-carboxamide
Intermediate IV(b), i.e., 5-[5-((E)-2-cyclohexyl-vinyl)-thiophen-2-yI]-l-(2,4- dichloro-phenyl)-4-methyl-1H-pyrazole-3-carboxylic acid ethyl ester, was prepared in a manner similar to Intermediate IV(a) was prepared in Example 1 except that pent- 1 - enylboronic acid was replaced with (E)-2-cyclohexyl-vinylboronic acid. Intermediate
IV(b) was obtained as a white solid in 80% yield.
Intermediate V(b), i.e., 5-[5-((E)-2-cyclohexyl-vinyl)-thiophen-2-yl]-l-(2,4- dichloro-phenyl)-4-methyl-1H-pyrazole-3-carboxylic acid, was prepared in a manner similar to Intermediate V(a) described in Example 1 except that Intermediate IV(a) was replaced with Intermediate IV(b) (269.4 mg, 0.55 mmol). Intermediate V(b) was obtained as a white solid in 90% yield.
Compound 6 was prepared in a manner similar to that described in Example 1 except that, in the last step, a crude carboxylic chloride (96 mg, 0.20 mmol) obtained from Intermediate V(b) was treated with hexahydrocyclopenta-[c]pyrrol-2(1H)-amine hydrochloride (62.8 mg, 0.39 mmol) and triethylamine (63.6 μL, 0.44 mmol) in dichloromethane at 0°C. Compound 6 was obtained as a white solid (79 mg, 72%).
1H-NMR (CDCl3, ppm): 7.47 (m, 1 H), 7.32 (m, 2H), 6.72 (d, IH), 6.63 (d, IH), 6.39 (d, I H), 6.00 (dt, IH), 3.25 (m, 2H), 2.63 (brs, 2H), 2.47 (m, 2H), 2.48 (s, 3H) 1.81-1.12 (m, 18H).
ES-MS (M+l): 569.2.
Example 7: Preparation of Compound 7: 5-(5-(cyclopropy lethynyl)thiophen-2-y I)-I- (2,4-dichlorophenyl)-4-methyl-N-(piperidin- 1 -yl)- 1H-pyrazole-3-carboxamide To a suspension of Intermediate III (230 mg, 0.5 mmol) prepared in Example
1, PdCl2(PPh3)2 (1 1 mg, 0.015 mmol), and CuI (2 mg, 0.02 mmol) in TΗF (3 mL) were added ethynyl-cyclopropane (40 mg, 0.6 mmol) and a 0.5 M aqueous solution of 2-ethanolamine (3 mL). The resultant mixture was heated at 60°C for 6 hours. After the mixture was cooled to room temperature, it was poured into a mixed solvent of water (20 mL) and diethyl ether (20 mL). The aqueous layer was extracted and the combined organic layer was concentrated to give the crude residue, which was purified by flash column chromatography with n-hexane/ethyl acetate (5:1) to afford Intermediate IV(c), i.e., 5-(5-Cyclopropylethynyl-thiophen-2-yl)-l-(2,4-dichloro- phenyl)-4-methy 1- 1 H- pyrazole-3-carboxylic acid ethyl ester, as a colorless oil (202.4 mg, 91%).
Intermediate V(c), i.e., 5-(5-cyclopropylethynyl-thiophen-2-yl)-l-(2,4- dichloro-phenyl)-4-methyl-1H-pyrazole-3-carboxylic acid, was prepared in a manner similar to Intermediate V(a) described in Example 1 except that Intermediate I V(a) was replaced with Intermediate IV(c) (366.2 mg, 0.88 mmol). Intermediate V(c) was obtained as a white solid in 88% yield. Compound 7 was prepared in a manner similar to that described in Example 1 except that, in the last step, a crude carboxylic chloride (110.3 mg, 0.25 mmol) prepared from Intermediate V(c) was treated with 1-amino-piperidine (50.2 mg, 0.50 mmol), and triethylamine (84.1 μL, 0.60 mmol) in dichloromethane at 0°C. Compound 7 was obtained as a white solid (94.3 mg, 75%).
1H-NMR (CDCl3, ppm): 7.48 (d, IH), 7.33 (d, 2H), 6.95 (d, IH), 6.68 (d, IH), 3.26 (t, 4H), 2.46 (s, 3H), 1.80-1.65 (m, 4H), 1.50- 1.38 (m, 2H).
ES-MS (M-Hl): 499.2.
Example 8: Preparation of Compound 8: 5-(5-(cyclopentylethynyl)thiophen-2-yl)-l- (2,4-dichlorophenyl)-N-(hexahydrocyclopenta[c]pyrrol-2(1H)-yl)-4-methyl-1H- pyrazole-3-carboxamide
Intermediate IV(d), i.e., 5-(5-cyclopentylethynyl-thiophen-2-yl)-l-(2,4- dichloro-phenyl)-4-methyl-1H-pyrazole-3-carboxylic acid ethyl ester, was prepared in a manner similar to Intermediate IV(c) described in Example 7 except that ethynyl- cyclopropane was replaced with ethynyl-cyclopentane. Intermediate IV(d) was obtained as a white solid in 88% yield.
Intermediate V(d), i.e., 5-(5-cyclopentylethynyl-thiophen-2-yl)-l-(2,4- dichloro-phenyl)-4-methyl-1H-pyrazole-3-carboxylic acid, was prepared in a manner similar to Intermediate V(a) described in Example 1 except that Intermediate IV(a) was replaced with Intermediate IV(d) (387.2 mg, 0.87 mmol). Intermediate V(d) was obtained as a white solid in 87% yield.
Compound 8 was prepared in a manner similar to that described in Example 7 except that, in the last step, a crude carboxylic chloride (116.3 mg, 0.25 mmol) prepared from Intermediate V(d) was treated with hexahydrocyclopenta-[c]pyrrol- 2(1H)-amine hydrochloride (82.4 mg, 0.51 mmol) and triethylamine (84.1 μL, 0.60 mmol) in dichloromethane at 0°C. Compound 8 was obtained as a white solid (102.1 mg, 74%).
1H-NMR (CDCl3, ppm): 7.48 (d, IH), 7.35 (d, 2H), 6.95(d, IH), 6.67 (d, IH), 3.26 (t, 2H), 2.80 (q, IH), 2.66 (br, IH), 2.50 (t, 2H), 2.46 (s, 3H), 2.02-1.84 (m, 2H), 1.81-1.40 (m, 12H), 1.26 (t, 2H). ES-MS (M+l): 553.2. Example 9: Preparation of Compound 9: 5-(5-(cyclohexylethynyl)thiophen-2-yl)-I- (2,4-dichlorophenyl)-N-(hexahydrocyclopenta[c]pyrrol-2(1H)-yl)-4-methyl-1H- pyrazole-3-carboxamide Intermediate I V(e), i.e., 5-(5-cyclohexylethyny l-thiophen-2-yl)- 1 -(2,4- dichloro-phenyl)-4-methyl-1H-pyrazole-3-carboxylic acid ethyl ester, was prepared in a manner similar to Intermediate IV(c) described in Example 7 except that ethynyl- cyclopropane was replaced with ethynyl-cyclohexane. Intermediate IV(e) was obtained as a white solid in 80% yield. Intermediate V(e), i.e., 5-(5-cyclohexylethynyl-thiophen-2-yl)-l -(2,4-dichloro- phenyl)-4-methyl-1H-pyrazole-3-carboxyIic acid, was prepared in a manner similar to Intermediate V(a) described in Example 1 except that Intermediate IV(a) was replaced with Intermediate IV(e) (384.3 mg, 0.84 mmol). Intermediate V(e) was obtained as a white solid in 87% yield. Compound 9 was prepared in a manner similar to that described in Example 7 except that, in the last step, a crude carboxylic chloride (1 18.2 mg, 0.25 mmol) prepared from Intermediate V(e) was treated with hexahydrocyclopenta-[c]pyrrol- 2(1H)-amine hydrochloride (82.3 mg, 0.51 mmol) and triethylamine (84.1 μL, 0.60 mmol) in dichloromethane at 0°C. Compound 9 was obtained as a white solid (106.2 mg, 77%).
1H-NMR (CDCl3, ppm): 7.48 (m, IH), 7.39 (m, 2H), 7.32 (m, 2H) , 6.96 (d, IH), 6.67 (d, I H), 3.24 (t, 2H), 2.63 (brs, 2H), 2.48 (s, 3H), 2.47 (m, 2H) 1.81-1.12 (m, 18H).
ES-MS (M+ 1): 567.2.
Example 10: Preparation of Compound 10: N-cyclohexyl-5-(5-(cyclopentylethynyl)- thiophen-2-yI)- 1 -(2,4-dichlorophenyl)-4-methyl- 1H-pyrazole-3-carboxamide
Compound 10 was prepared in a manner similar to that described in Example 8 except that, in the last step, the crude carboxylic chloride (1 16.2 mg, 0.25 mmol) was treated with cyclohexylamine (50.3 mg, 0.51 mmol) and triethylamine (84.1 μL, 0.60 mmol) in dichloromethane at 0°C. Compound 10 was obtained as a white solid (97.3 mg, 74%).
1H-NMR (CDCl3, ppm): 7.48 (brs, IH), 7.33 (brs, 2H), 6.95 (d, I H), 6.79 (d, IH), 6.67 (d, IH), 3.93 (q, IH), 2.80 (q, IH), 2.47 (s, 3H), 2.10-1.81 (m, 4H), 1.80- 1.50 (m, 1 OH), 1.50- 1.20 (m, 4H). ES-MS (M+ 1): 526.2.
Example 1 1 : Preparation of Compound 1 1 : 5-(5-(cyclopentylethynyl)thiophen-2-yl)- 1 -(2,4-dichloropheny l)-4-methyl-N-(piperidin- 1 -yl)- 1 H-pyrazole-3-carboxamide Compound 11 was prepared in a manner similar to that described in Example
8 except that, in the last step, the crude carboxylic chloride (90 mg, 0.21 mmol) with 1-amino-piperidine (42 mg, 0.42 mmol) and triethylamine (63.8 μL, 0.44 mmol) in dichloromethane at 0°C. Compound 1 1 was obtained as a white solid (75.3 mg, 70%). 1H-NMR (CDCl3, ppm): 7.60 (br, IH), 7.49 (brs, IH), 7.34 (brs, 2H), 6.96 (d, IH), 6.68 (d, I H), 2.92-3.76 (m, 5H), 2.46 (s, 3H), 2.02-1.82 (m, 2H), 1.81-1.50 (m, 10H), 1.45-1.25 (m, 2H).
ES-MS (M+ 1): 527.2.
Example 12: Preparation of Compound 12: N-((5-(5-chlorothiophen-2-yl)-l-(2,4- dichlorophenyl)-4-methyl-1H-pyrazol-3-yl)methyl)cyclobutanecarboxamide
Intermediate I(b), i.e., a lithium salt of ethyl 3-methyl-2,4-dioxo-4-(5-Chloro- thiophen-2-yl)-butanonate, was prepared in 42% yield in a manner similar to Intermediate I(a) described in Example 1 except that l-(2-thienyl)-l-ethanone was replaced with l-(5-chloro-2-thienyl)-l-propanone. Intermediate II(b), i.e., 5-(5-chloro-thiophen-2-yl)-l-(2,4-dichloro-phenyl)-4- methyl-1H-pyrazole-3-carboxylic acid ethyl ester, was prepared from Intermediate I(b) in a manner similar to Intermediate II(a) as a white solid in 50% yield. Lithium aluminum hydride (291.9 mg, 3.10 mmol) was added to a magnetically stirred solution of Intermediate II(b) (644.4 mg, 1.55 mmol) in TΗF (20 mL) at 0°C. After the mixture was stirred at the same temperature for 30 minutes, the reaction was quenched with water. The aqueous layer was separated and extracted with ethyl acetate (2 * 20 mL). The extracts were combined, washed with brine, dried over anhydrous sodium sulfate, filtered, concentrated, and then purified by chromatography on silica gel to give compound VI(a), i.e., [5-(5-chloro-thiophen-2- yl)-l-(2,4-dichloro-phenyl)-4-methyl-1H-pyrazol-3-yl]-methanol, as a colorless liquid (509.5 mg, 88%).
Triethylamine (300 μL, 2.1 mmol) was added to a magnetically stirred solution of Intermediate VI(a) (419.2 mg, 1.02 mmol) in TΗF (10 mL) at 0°C. After the mixture was stirred at the same temperature for 30 minutes, methanesulfonyl chloride (200 μL, 1.74 mmol) was added. The mixture was then stirred at room temperature for 8 hours. The reaction was quenched with water and the aqueous layer was separated and extracted with ethyl acetate (2 x 50 mL). The extracts were combined, washed with brine, dried over anhydrous sodium sulfate, filtered, and evaporated. The crude product thus obtained was purified by flash column chromatography on silica gel with n-hexane/ethyl acetate (4:1) to give Intermediate VI I(a), i.e., methanesulfonic acid 5-(5-chloro-thiophen-2-yl)- 1 -(2,4-dichloro-phenyl)- 4-methyl-1H-pyrazol-3-ylmethyl ester, as a colorless liquid (495 mg, 74%).
Sodium azide (135.1 mg, 2.22 mmol) in one portion was added to a magnetically stirred solution of Intermediate VΙI(a) (272.2 mg, 0.61 mmol) in DMF (20 mL). The reaction mixture was heated at 80°C for 3 hours. After the mixture was cooled, the reaction was quenched with water and the aqueous layer was separated and extracted with ethyl acetate (2 x 30 mL). The extracts were combined, washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The crude product thus obtained was purified by flash column chromatography on silica gel with n-hexane/ethyl acetate (3: 1) to give Intermediate VΙII(a), i.e., 3-azidomethyl- 5-(5-chloro-thiophen-2-yl)-l-(2,4-dichloro-phenyl)-4-methyl-1H-pyrazole, as a colorless liquid (230.3 mg, 83%).
Triphenylphosphine (166.9 mg, 0.62 mmol) and water (2 mL) were sequentially added to a magnetically stirred solution of Intermediate VΙII(a) (230.2 mg, 0.57 mmol) in TΗF (10 mL). After the mixture was stirred at room temperature for 48 hours, the reaction was extracted with ethyl acetate (2χ 10 mL). The extracts were combined, washed with brine dried over anhydrous sodium sulfate, filtered, and concentrated. The crude product thus obtained was purified by flash column chromatography on silica gel with ethyl acetate/methanol (4:1) to give Intermediate IX(a), i.e., (5-(5-chlorothiophen-2-yl)- 1 -(2,4-dichloropheny l)-4-methy 1- 1 H-pyrazol-3- yl)methanamine, as a white solid (209.8 mg, 97%). To a magnetically stirred solution of Intermediate IX(a) (40.1 mg, 0.10 mmol) in dichloromethane were added triethylamine (20 μL, 0.13 mmol) and cyclobutanecarbonyl chloride (15 μL, 0.09 mmol) sequentially. After the mixture was stirred at room temperature for 8 hours, the reaction was quenched with water and the aqueous layer was separated and extracted with dichloromethane (2 x 10 mL). The extracts were combined, washed with brine, dried over anhydrous sodium sulfate, filtered, and concentrated. The crude product thus obtained was purified by flash column chromatography on silica gel with n-hexane/ethyl acetate (3:1) to give Compound 12 as a white solid (24.9 mg, 51%).
1H-NMR (CDCl3, ppm): 7.49 (d, IH), 7.33 (d, IH), 7.32 (s, IH), 6.80 (d, IH), 6.61 (d, IH), 6.01 (brs, IH), 4.51 (d, 2H), 3.05 (m, IH), 2.38-2.25 (m, 2H), 2.21-2.1 1 (m, 2H), 2.14 (s, 3H), 1.82-2.05 (m, 2H). ES-MS (M+ 1): 454.0.
Example 13: Preparation of Compound 13: N-((5-(5-chlorothiophen-2-yl)-l-(2,4- dichlorophenyl)-4-methyl-1H-pyrazol-3-yl)methyl)cyclopentanecarboxamide
Compound 13 was prepared in a manner similar to that described in Example 12 except that, in the last step, Intermediate IX(a) (51.6 mg, 0.1 1 mmol) was treated with triethylamine (20 μL, 0.13 mmol) and cyclopentanecarbonyl chloride (15 μL, 0.1 1 mmol). Compound 13 was obtained as a white solid (32.1 mg, 64%). 1H-NMR (CDCl3, ppm): 7.49 (d, IH), 7.33 (d, IH), 7.32 (s, IH), 6.80 (d, IH),
6.61 (d, IH), 6.1 1 (brs, IH), 4.52 (d, 2H), 2.60-2.52 (m, IH), 2.15 (s, 3H), 1.90-1.70 (m, 8H).
ES-MS (M+1): 468.
Example 14: Preparation of Compound 14: (E)-N-((l -(2,4-dichloropheny l)-4-methyl- 5-(5-(pent- 1 -enyl)thiophen-2-yl)- 1 H-pyrazol-3-yl)methyl)cyclohexanecarboxamide Intermediate VI(b), i.e., { l-(2,4-dichlorophenyl)-4-methyl-5-[((E)-5-pent-l- enyl)-thiophen-2-yl]-1H-pyrazol-3-yl}-methanol, was prepared in a manner similar to Intermediate VI(a) described in Example 12 except that Intermediated II(b) used therein was replaced with Intermediate IV(a) (886.2 mg, 1.97 mmol) prepared in Example 1. Intermediate VI(b) was obtained as a colorless liquid in 50% yield.
Intermediate VΙI(b), i.e., methanesulfonic acid l-(2,4-dichloro-phenyl)-4- methyl-5-[((E)-5-pent-l-enyl)-thiophen-2-yl]-IH-pyrazoI-3-ylmethyl ester, was prepared from Intermediate VI(b) (842 mg, 3.27 mmol) in a manner similar to Intermediate VΙI(a) described in Example 12 as a colorless liquid in 73% yield. Intermediate VΙII(b), i.e., 3-azidomethyl- 1 -(2,4-dichlorophenyl)-4-methyl-5-
[((E)-5-pent-l-enyl)-thio-phen-2-yl]-IH-pyrazole, was prepared from Intermediate VII(b) (741.1 mg, 1.52 mmol) in a manner similar to Intermediate VΙII(a) described in Example 12 as a colorless liquid in 60% yield.
Intermediate IX(b), i.e., (E)-(I -(2,4-dichlorophenyl)-4-methyl-5-(5-(pent-l- enyl)thiophen-2-yl)- 1 H-pyrazol-3-yl)methanamine, was prepared from Intermediate VIII(b) (400.2 mg, 0.92 mmol) in a manner similar to Intermediate IX(a) described in Example 12 as a colorless liquid in 73% yield.
Compound 14 was prepared in a manner similar to that described in Example 12 except that, in the last step, Intermediate IX(b) (40.3 mg, 0.10 mmol) was treated with triethylamine (20 μL, 0.13 mmol) and cyclohexanecarbonyl chloride (20 μL, 0.14 mmol). Compound 14 was obtained as a white solid (41.0 mg, 78%).
1H-NMR (CDCl3, ppm): 7.45 (d, IH), 7.27 (d, IH), 7.25 (s, IH), 7.12 (d, I H), 6.70 (d, IH), 6.65 (t, IH), 6.60 (d, IH), 6.39 (d, IH), 6.01(dt, IH), 4.52 (d, 2H), 2.16 (s, 3H), 2.16-2.02 (m, 2H), 1.80-1.65 (m, 4H), 1.53-1.40 (m, 4H) , 1.27-1.15 (m, 4H), 0.92 (t, 3 H).
ES-MS (M+ 1): 516.2.
Example 15: Preparation of Compound 15: (E)-4-bromo-N-((l-(2,4-dichlorophenyl)- 4-methyl-5-(5-(pent- 1 -enyl)thiophen-2-yl)- 1H-pyrazol-3-yl)methyl)benzamide Compound 15 was prepared in a manner similar to that described in Example
14 except that, in the last step, Intermediate IX(b) (60 5 mg, 0.15 mmol) was treated with triethylamine (50 μL, 0.33 mmol) and 4-bromobenzoyl chloride (39.2 mg, 0.18 mmol). Compound 15 was obtained as a white solid (45.2 mg, 51%).
1H-NMR (CDCl3, ppm): 7.70 (m, 2H), 7.57 (m, 2H), 7.48 (d, IH), 7.32 (d, 2H), 6.93 (m, IH), 6.72 (d, IH), 6.62 (d, IH), 6.40 (d, IH), 6.01 (dt, IH), 4.70 (d, 2H), 2.22 (s, 3H), 2.17-2.10 (m, 2H), 1.51-1.41 (m, 2H), 0.92 (t, 3H). ES-MS (M+23): 610.1.
Example 16: Preparation of Compound 16: (E)-N-((l-(2,4-dichlorophenyl)-4-methyl- 5-(5-(pent- 1 -enyl)thiophen-2-yl)- 1 H-pyrazol-3-yl)methyl)picolinamide Compound 16 was prepared in a manner similar to that described in Example
14 except that, in the last step, Intermediate IX(b) (59.8 mg, 0.14 mmol) was treated with triethylamine (50 μL, 0.33 mmol) and pyridine 2-carbonyl chloride (32.2 mg, 0.17 mmol). Compound 16 was obtained as a white solid (52.1 mg, 74%).
1H-NMR (CDCl3, ppm): 8.54 (m, IH), 8.23 (m, IH), 7.83 (m, IH), 7.46 (m, 1 H), 7.46-7.27 (m, 3H), 6.71 (d, 1 H), 6.61 (d, 1 H), 6.39 (d, 1 H), 6.01 (dt, 1 H), 4.76 (d, 2H), 2.22 (s, 3H), 2.16-2.09 (m, 2H), 1.49-1.39 (m, 2H), 0.93 (t, 3H). ES-MS (M+ 1): 511.2.
Example 17: Preparation of Compound 17: 1 -((5-(5-chlorothiophen-2-y I)-I -(2,4- dichlorophenyl) -methyl-1H-pyrazol-3-yl)methyl)-3-cyclohexylurea
Isocyanatocyclohexane (20 μL, 0.14 mmol) was added to a magnetically stirred solution of Intermediate IX(a) (40.3 mg, 0.1 1 mmol) prepared in Example 12 in TΗF. After the mixture was stirred at room temperature for 8 hours, the solvent was evaporated. The crude product thus obtained was purified by flash column chromatography on silica gel with n-hexane/ethyl acetate ( 1 : 1 ) to give Compound 17 as a white solid (33.2 mg, 62%).
1H-NMR (CDCl3, ppm): 7.48 (d, IH), 7.35 (d, 2H), 7.30 (s, IH), 6.80 (d, I H),
6.60 (d, IH), 4.85 (m, IH), 4.46 (m, IH), 4.41 (d, 2H), 3.55 (m, IH), 2.17 (s, 3H),
1.91 (m, 2H), 1.67 (m, 2H), 1.40-1.07 (m, 5H). ES-MS (M+!): 497.1. Example 18: Preparation of Compound 18: (E)-l-((l-(2,4-dichlorophenyl)-4-methyl- 5-(5-(pent- 1 -enyl)thiophen-2-yl)- 1 H-pyrazol-3-yl)methyl)-3-propylurea
Compound 18 was prepared in a manner similar to that described in Example 14 except that Intermediate IX(b) (60.2 mg, 0.14 mmol) was treated with n- propylisocyanate (50.2 μL, 0.33 mmol). Compound 18 was obtained as a white solid (55.3 mg, 70%).
1H-NMR (CDCl3, ppm): 7.45 (d, IH), 7.29 (m, 2H), 6.70 (d, IH), 6.59 (d, IH), 6.39 (d, I H), 6.01 (dt, IH), 5.63 (t, IH), 5.18 (t, I H), 4.38 (d, 2H), 3.05 (m, 2H), 2.19-2.09 (m, 2H), 2.17 (s, 3H), 1.52-1.26 (m, 4H), 0.89 (t, 3H), 0.87 (t, 3H). ES-MS (M+ 1): 491.2.
Example 19: Preparation of Compound 19: l-((5-(5-chlorothiophen-2-y I)-I -(2,4- dichlorophenyl)^-methyl-1H-pyrazol-3-yl)methyl)-3-cyclohexylthiourea
Compound 19 was prepared in a manner similar to that described in Example 17 except that Intermediate IX(a) (40.3 mg, 0.11 mmol) was treated with isothiocyanatocyclohexane (20 μL, 0.14 mmol). Compound 19 was obtained as a white solid (39.8 mg, 76%).
1H-NMR (CDCl3, ppm): 7.53 (m, IH), 7.35 (m, IH), 7.33 (m, IH), 6.82 (m, IH), 6.63 (m, IH), 6.49 (brs, IH), ), 4.60 (brs, IH), 2.18 (s, 3H), 1.98 (m, 2H), 1.62 (m, 5H), 1.39-1.07 (m, 6H). ES-MS (M+ 1): 513.0.
Example 20: Preparation of Compound 20: (E)-N-((l-(2,4-dichlorophenyl)-4-methyl- 5-(5-(pent- 1 -enyl)thiophen-2-yl)- 1H-pyrazol-3-yl)methyl)cyclopropanecarboxamide Compound 20 was prepared in a manner similar to that described in Example 14 except that, in the last step, Intermediate IX(b) (33 mg, 0.08 mmol) was treated with triethylamine (20 μL, 0.14 mmol) and cyclopropanecarbonyl chloride (15 μL, 0.1 1 mmol). Compound 20 was obtained as a white solid (18 mg, 47%).
1H-NMR (CDCl3, ppm): 7.48 (m, I H), 7.32 (d, 2H), 6.71 (d, IH), 6.60 (d, IH), 6.46 (brs, IH), 6.41 (d, IH), 6.01 (dt, IH), 4.54 (d, 2H), 2.18 (s, 3H), 2.15 (m, 2H), 1.41 (m, 3H), 0.98 (m, 2H), 0.94 (t, 3H), 0.74(m, 2H). ES-MS (M+l): 474.1. Example 21 : Preparation of Compound 21 : (E)-N-((l-(2,4-dichlorophenyl)-4-methyl- 5-(5-(pent- 1 -enyl)thiophen-2-y I)- 1 H-pyrazol-3-yl)methy l)cyclobutanecarboxamide
Compound 21 was prepared in a manner similar to that described in Example 14 except that, in the last step, Intermediate IX(b) (48 mg, 0.12 mmol) was treated with triethylamine (20 μL, 0.14 mmol) and cyclobutanecarbonyl chloride (20 μL, 0.19 mmol). Compound 21 was obtained as a white solid (33 mg, 57%).
1H-NMR (CDCl3, ppm): 7.47 (m, I H), 7.31 (d, 2H), 6.71 (d, I H), 6.60 (d, IH), 6.39 (d, I H), 6.15 (brs, IH), 6.01 (dt, I H), 4.51 (d, 2H), 3.05 (m, I H), 2.29 (m, 2H), 2.18 (s, 3H), 2.15 (m, 4H), 1.96 (m, 2H), 1.46 (m, 2 H), 0.93 (t, 3H).
ES-MS (M+l): 488.1.
Example 22: Preparation of Compound 22: (E)-N-((l-(2,4-dichlorophenyl)-4-methyl- 5-(5-(pent- 1 -enyl)thiophen-2-yl)- 1H-pyrazol-3-yl)methyl)cyclopentanecarboxamide Compound 22 was prepared in a manner similar to that described in Example
14 except that, in the last step, Intermediate IX(b) (48 mg, 0.12 mmol) was treated with triethylamine (20 μL, 0.14 mmol) and cyclopentanecarbonyl chloride (20 μL, 0.17 mmol). Compound 22 was obtained as a white solid (41 mg, 69%).
1H-NMR (CDCl3, ppm): 7.47 (m, I H), 7.31 (brs, 2H), 6.71 (d, IH), 6.60 (d, IH), 6.39 (d, IH), 6.26 (brs, IH), 6.01 (dt, IH), 4.52 (d, 2H), 2.56 (m, IH), 2.17 (s, 3H), 2.14 (m, 2H), 1.91-1.64 (m, 7H), 1.54 (m, IH), 1.45 (m, 2H), 0.91 (t, 3H). ES-MS (M+l): 502.1.
Example 23: Preparation of Compound 23: (E)-N-((l-(2,4-dichlorophenyl)-4-methyl- 5-(5-(pent- 1 -enyl)thiophen-2-yl)- 1H-pyrazol-3-yl)methyl)cycloheptanecarboxamide Compound 23 was prepared in a manner similar to that described in Example 14 except that, in the last step, Intermediate IX(b) (52 mg, 0.13 mmol) was treated with triethylamine (20 μL, 0.14 mmol) and cycloheptanecarbonyl chloride (29 μL, 0.20 mmol). Compound 23 was obtained as a white solid (43 mg, 62%). 1H-NMR (CDCl3, ppm): 7.18 (m, I H), 7.01 (brs, 2H), 6.41 (d, IH), 6.30 (d, IH), 6.09 (d, IH), 5.98 (m, IH), 5.72 (dt, IH), 4.20 (d, 2H), 1.95 (m, IH), 1.87 (s, 3H), 1.85 (m, 2H), 1.60 (m, 2H), 1.52-1.29 (m, 4H), 1.32-1.07 (m, 8H), 0.63 (t, 3H).
ES-MS (M+ 1): 530.3.
Example 24: Preparation of Compound 24: (E)-N-((l-(2,4-dichlorophenyl)-4-methyl- 5-(5-(pent- 1 -enyl)thiophen-2-yl)- 1 H-pyrazol-3-yl)methyl)-2-phenylacetamide
Compound 24 was prepared in a manner similar to that described in Example 14 except that, in the last step, Intermediate IX(b) (60 mg, 0.15 tnmol) was treated with triethylamine (50 μL, 0.36 mmol) and phenylacetyl chloride (30 μL, 0.23 mmol). Compound 24 was obtained as a white solid (42 mg, 54%).
1H-NMR (CDCl3, ppm): 7.45 (d, IH), 7.34-7.21 (m, 7H), 6.70 (d, IH), 6.57 (d, IH), 6.38 (d, IH), 6.19 (brs, IH), 6.01 (dt, IH), 4.49 (d, 2H), 3.59 (s, 2H), 2.12 (s, 3H), 2.10 (m, 2H), 1.46 (m, 2H), 0.93 (s, 3H).
ES-MS (M+1): 524.2.
Example 25: Preparation of Compound 25: (E)-4-tert-butyl-N-((l-(2,4- dichlorophenyl)-4-methyl-5-(5-(pent- 1 -enyl)thiophen-2-yl)- 1 H-pyrazol-3- yl)methyl)benzamide
Compound 25 was prepared in a manner similar to that described in Example 14 except that, in the last step, Intermediate IX(b) (60 mg, 0.15 mmol) was treated with triethylamine (50 μL, 0.36 mmol) and 4-tert-butylbenzoyl chloride (35 μL, 0.18 mmol). Compound 25 was obtained as a white solid (43 mg, 51%). 1H-NMR (CDCl3, ppm): 7.74 (d, 2H), 7.40 (s, IH), 7.39 (d, 2H), 7.25 (m, 2H),
6.70 (d, IH), 6.60 (d, IH), 6.38 (d, IH), 6.01 (dt, IH), 4.74 (d, 2H), 2.24 (s, 3H), 2.12 (m, 2H), 1.44 (m, 2H), 1.31 (s, 9H), 0.93 (s, 3H). ES-MS (M+1): 566.2. Example 26: Preparation of Compound 26: (E)-N-((l-(2,4-dichlorophenyl)-4-methyl- 5-(5-(pent- 1 -enyl)thiophen-2-yl)- 1 H-pyrazol-3-yl)methyl)-2-(thiophen-2- yl)acetamide
Compound 26 was prepared in a manner similar to that described in Example 14 except that, in the last step, Intermediate IX(b) (60 mg, 0.15 mmol) was treated with triethylamine (50 μL, 0.36 mmol) and 2-thiopheneacetyl chloride (20 μL, 0.16 mmol). Compound 26 was obtained as a white solid (45 mg, 57%).
1H-NMR (CDCl3, ppm): 7.45 (d, IH), 7.26 (m, IH), 7.27 (d, 2H), 7.19 (m, IH), 6.93 (m, IH), 6.70 (d, IH), 6.59 (d, IH), 6.54 (brs, IH), 6.38 (d, IH), 6.01 (dt, IH), 4.51 (d, 2H), 3.79 (s, 2H), 2.20-2.01 (m, 2H), 2.12 (s, 3H), 1.45 (m, 2H), 0.93 (s, 3H).
ES-MS (M+ 1): 530.2.
Example 27: Preparation of Compound 27: (E)-l-cyclohexyl-3-((l-(2,4- dichlorophenyl)-4-methyl-5-(5-(pent- 1 -enyl)thiophen-2-yl)- 1 H-pyrazol-3- yl)methyl)urea
Compound 27 was prepared in a manner similar that described in Example 14 except that Intermediate IX(b) (33 mg, 0.08 mmol) was treated with cyclohexyl isocyanate ( 15 μL, 0.12 mmol). Compound 27 was obtained as a white solid (21 mg, 49%).
1H-NMR (CDCl3, ppm): 7.46 (m, IH), 7.29 (m, 2H), 6.71 (d, IH), 6.59 (d,
IH), 6.39 (d, I H), 6.01 (dt, IH), 5.25 (m, IH), 4.74 (d, IH), 4.39 (d, 2H), 3.54 (m,
IH), 2.18 (s, 3H), 2.14 (m, 2H), 1.98-1.80 (m, 3H), 1.69-1.22 (m, 7H), 1.07 (m, 2H),
0.93 (t, 3H). ES-MS (M+l): 531.1.
Example 28: Preparation of Compound 28: (E)-l-cyclohexyl-3-((l-(2,4- dichlorophenyl)-4-methyl-5-(5-(pent- 1 -enyl)thiophen-2-yl)- 1 H-pyrazol-3- yl)methyl)thiourea Compound 28 was prepared in a manner similar that described in Example 14 except that Intermediate IX(b) (33 mg 0 08 mmol) was treated with cyclohexyl isothiocyanate (15 μL, 0.11 tnmol). Compound 28 was obtained as a white solid (29 mg, 65%).
1H-NMR (CDCl3, ppm): 7.48 (d, IH), 7.31 (d, 2H), 6.98 (brs, IH), 6.73 (d, IH), 6.61 (d, IH), 6.39 (d, IH), 6.02 (dt, IH), 4.57 (brs, 2H), 3.98 (brs, IH), 2.19 (s, 3H), 2.15 (m, 2H), 1.95 (m, 2H), 1.71 - 1.24 (m, 9H), 1.16 (m, 2H), 0.93 (t, 3H). ES-MS (M+ 1): 547.1.
Example 29: Preparation of Compound 29: (E)-l-butyl-3-((l-(2,4-dichlorophenyl)-4- methyl-5-(5-(pent- 1 -enyl)thiophen-2-yl)- 1H-pyrazol-3-yl)methyl)thiourea Compound 29 was prepared in a manner similar that described in Example 14 except that Intermediate IX(b) (60 mg, 0.15 mmol) was treated with butyl isothiocyanate (20 μL, 0.19 mmol). Compound 29 was obtained as a white solid (44 mg, 57%).
1H-NMR (CDCl3, ppm): 7.48 (d, IH), 7.30 (d, 2H), 6.81 (brs, IH), 6.72 (d, 1 H), 6.62 (d, 1 H), 6.39 (d, 1 H), 6.02 (dt, 1 H), 4.58 (brs, 1 H), 3.42 (brs, 2H), 2.19 (s, 3H), 2.14 (m, 2H), 1.61-1.24 (m, 8H), 0.93 (t, 3H), 0.85(t, 3H). ES-MS (M+ 1): 521.3.
Example 30: Preparation of Compound 30: l-(2,4-Dichloro-phenyl)-4-methyl-5-(5- pent- 1 -ynyl-thiophen-2-yl)- 1H-pyrazole-3-carboxylic acid piperidin- 1 -yl amide
Intermediate IV(f), i.e., l-(2,4-Dichloro-phenyl)-4-methyl-5-(5-pent-l-ynyl- thiophen-2-yI)-1H-pyrazole-3-carboxylic acid ethyl ester, was prepared in a manner similar to Intermediate IV(c) described in Example 7 except that ethynyl- cyclopropane was replaced with pent-1-yne. Intermediate IV(f) was obtained as a white solid in 94% yield.
Intermediate V(f), i.e., l-(2,4-Dichloro-phenyl)-4-methyl-5-(5-pent-l-ynyl- thiophen-2-yI)-1H-pyrazole-3-carboxylic acid, was prepared in a manner similar to Intermediate V(a) described in Example 1 except that Intermediate IV(a) was replaced with Intermediate IV(f) (900 mg, 2.0 mmol). Intermediate V(f) was obtained as a white solid in 95% yield. Compound 30 was prepared in a manner similar to that described in Example 7 except that, in the last step, crude carboxylic chloride (118.2 mg, 0.27 mmol) prepared from Intermediate V(f) was treated with 1-aminopiperidine (58 μL, 0.54 mmol) and triethylamine (95.3 μL, 0.68 mmol) in dichloromethane at 0°C . Compound 30 was obtained as a white solid ( 100.6 mg, 73%).
1H NMR (CDCl3, ppm): 7.62 (s, IH), 7.41 (s, IH), 7.36-7.26 (m, 2H), 6.90 (d, IH), 6.63 (d, IH), 2.90-2.70 (m, 4H), 2.40 (s, 3H), 2.30 (t, 2H), 1.78-1.60 (m, 4H), 1.62-1.48 (m, 2H), 1.41-1.28 (m, 2H), 0.94 (t, 3H).
ES-MS (M+ 1): 501.1. Example 31 : Preparation of Compound 31 : 1 -(2,4-dichloropheny l)-5-(5-(hex- 1 - ynyl)thiophen-2-yl)-4-methyl-N-(piperidin- 1 -yl)- 1 H-pyrazole-3-carboxamide
Intermediate IV(g), i.e., l-(2,4-dichlorophenyl)-5-(5-(hex-l-ynyl)thiophen-2- yl)-4-methyl-1H-pyrazole-3- carboxylic acid ethyl ester, was prepared in a manner similar to Intermediate IV(c) described in Example 7 except that ethynyl- cyclopropane was replaced with hex- 1 -yne. Intermediate IV(g) was obtained as a white solid in 96% yield.
Intermediate V(g), i.e., l-(2,4-dichlorophenyl)-5-(5-(hex-l-ynyl)thiophen-2- yl)-4-methyl-1H-pyrazole-3-carboxylic acid, was prepared in a manner similar to Intermediate V(a) described in Example 1 except that Intermediate IV(a) was replaced with Intermediate IV(g) (860 mg, 1.92 mmol). Intermediate V(g) was obtained as a white solid in 95% yield.
Compound 31 was prepared in a manner similar to that described in Example 7 except that, in the last step, a crude carboxylic chloride (108 mg, 0.24 mmol) prepared from Intermediate V(g) was treated with 1-aminopiperidine (52 μL, 0.48 mmol) and triethylamine (84 μL, 0.6 mmol) in dichloromethane at 0°C. Compound 31 was obtained as a white solid (90.4 mg, 73%).
1H NMR (CDCl3, ppm): 7.62 (s, 1Η), 7.48 (s, 1Η), 7.36-7.26 (m, 2Η), 6.97 (d, IH), 6.69 (d, IH), 2.90-2.77 (m, 4H), 2.47 (s, 3H), 2.40 (t, 2H), 1.80-1.70 (m, 4H), 1.60-1.38 (m, 6H), 0.93 (t, 3H). ES-MS (M+1): 515.1. Example 32: Preparation of Compound 32: l-(2,4-Dichloro-phenyl)-5-[5-(3- isopropoxy-prop- 1 -ynyl)-thiophen-2-y l]-4-methyl- 1 H-pyrazole-3-carboxylic acid piperidin- 1 -y lamide
Intermediate IV(h), i.e., l-(2,4-Dichloro-phenyl)-5-[5-(3-isopropoxy-prop-l- ynyl)-thiophen-2-yl]-4-methyl-1H-pyrazole-3-carboxylic acid ethyl ester, was prepared in a manner similar to Intermediate IV(c) described in Example 7 except that ethynyl-cyclopropane was replaced with 3-isopropoxy-prop-l-ynyl. Intermediate IV(h) was obtained as a white solid in 92% yield.
Intermediate V(h), i.e., l-(2,4-Dichloro-phenyl)-5-[5-(3-isopropoxy-prop-l- ynyl)-thiophen-2-yl]-4-methyl-1H-pyrazole-3-carboxylic acid, was prepared in a manner similar to Intermediate V(a) described in Example 1 except that Intermediate IV(a) was replaced with Intermediate IV(h) (600 mg, 1.26 mmol). Intermediate V(f) was obtained as a white solid in 96% yield.
Compound 32 was prepared in a manner similar to that described in Example 7 except that, in the last step, a crude carboxylic chloride (300 mg, 0.64 mmol) prepared from Intermediate V(h) was treated with 1-aminopiperidine (128 μL, 1.2 mmol) and triethylamine (210 μL, 1.5 mmol) in dichloromethane at 0°C. Compound 32 was obtained as a white solid (238 mg, 70%).
1H NMR (CDCl3, ppm): 7.60 (s, IH), 7.49 (d, IH), 7.38-7.31 (m, 2H), 7.07 (d, IH), 6.73 (d, IH), 4.34 (s, 2H), 3.80 (q, IH), 2.84 (t, 4H), 2.47 (s, 3H), 1.78-1.71 (m, 4H), 1.42-1.25 (m, 2H), 1.20 (d, 6H).
ES-MS(M+!): 531.1
Example 33: Preparation of Compound 33: l-(2,4-Dichloro-phenyl)-5-[5-(3- dimethylamino-prop-l-ynyl)-thiophen-2-yl]-4-methyl-1H-pyrazole-3-carboxylic acid piperidin- 1 -y lamide
Intermediate IV(i), i.e., l-(2,4-Dichloro-phenyl)-5-[5-(3-dimethylamino-prop- l-ynyl)-thiophen-2-yl]-4-methyl-1H-pyrazole-3-carboxylic acid ethyl ester, was prepared in a manner similar to Intermediate IV(c) described in Example 7 except that ethynyl-cyclopropane was replaced with 3-dimethylamino-prop-l-ynyl. Intermediate IV(i) was obtained as a white solid in 97% yield Intermediate V(i), i.e., l-(2,4-Dichloro-phenyl)-5-[5-(3-dimethylamino-prop- l-ynyl)-thiophen-2-yl]-4-methyl-1H-pyrazole-3-carboxylic acid, was prepared in a manner similar to Intermediate V(a) described in Example 1 except that Intermediate IV(a) was replaced with Intermediate IV(i) (500 mg, 1.15 πunol). Intermediate V(i) was obtained as a white solid in 92% yield.
Compound 33 was prepared in a manner similar to that described in Example 7 except that, in the last step, a crude carboxylic chloride (230 mg, 0.50 mmol) prepared from Intermediate V(i) was treated with 1-aminopiperidine (65 μL, 0.6 mmol) and triethylamine (100 μL, 0.72 mmol) in dichloromethane at O0C. Compound 33 was obtained as a white solid ( 199 mg, 77%).
1Η NMR (CDCl3, ppm): 7.60 (s, 1Η), 7.50 (d, 1Η), 7.36-7.30 (m, 2Η), 7.04 (d, IH), 6.71 (d, IH), 3.45 (s, 2H), 2.90-2.80 (m, 4H), 2.48 (s, 3H), 2.33 (s, 6H), 1.80- 1.68 (m, 4H), 1.50-1.40 (m, 2H).
ES-MS(M+1): 516.1.
Examples 34-36: Preparation of Compound 34: l-(2,4-Dichloro-phenyl)-4-ethyl-5-(5- pent- 1 -ynyl-thiophen-2-yl)- 1H-pyrazole-3-carboxylic acid piperidin- 1 -ylamide; Compound 35: 1 -(2,4-Dichloro-phenyl)-4-ethyl-5-(5-pent- 1 -ynyl-thiophen-2-yl)- 1 H- pyrazole-3 -carboxylic acid azepan-1 -ylamide; and Compound 36: l-(2,4-Dichloro- phenyl)-4-ethyl-5-[5-(4-methy 1-pent- 1 -ynyl)-thiophen-2-yl]- 1 H-pyrazole-3- carboxylic acid piperidin- 1 -ylamide
Compounds 34, 35, and 36 were prepared by procedures similar to that described in Example 7, using l-(thiophen-2-yl)butan-l-one in place of l-(thiophen- 2-yl)propan-l-one. Compound 34:
1H-NMR (CDCl3, ppm): 7.63 (s, IH), 7.47 (dd, IH), 7.34-7.32 (m, 2H), 6.96 (d, I H), 6.67 (d, IH), 2.91 (q, 2H), 2.90-2.78 (m, 4H), 2.38 (t, 2H), 1.80-1.70 (m, 4H), 1.60 (sextet, 2H), 1.48-1.36 (m, 2H), 1.25 (t, 3H), 1.02 (t, 3H).
ES-MS (M+!): 515.1. Compound 35: 1H-NMR (CDCl3, ppm): 8.05 (s, IH), 7.47 (s, IH), 7.37-7.27 (m, 2H), 6.96 (d, IH), 6.67 (d, IH), 3.13 (t, 4H), 2.88 (q, 2H), 2.38 (t, 2H), 2.72 (t, 2H), 1.79-1.68 (m, 4H), 1.68-1.54 (m, 6H), 1.25 (t, 3H), 1.02 (t, 3H).
ES-MS (M+ 1): 529.1. Compound 36:
1H-NMR (CDCl3, ppm): 7.64 (s, IH), 7.47 (s, IH), 7.33 (m, 2H), 6.96 (d, IH), 6.66 (d, IH), 2.92-2.83 (m, 6H), 2.29 (d, 2H), 1.94-1.86 (m, IH), 1.78-1.72 (m, 4H), 1.46-1.38 (m, 2H), 1.25 (t, 3H), 1.01 (d, 6H).
ES-MS (M+ 1): 529.1. Example 37: Preparation of Compound 37: l-(2,4-Dichloro-phenyl)-4-methyl-5-[5- (3-pyrrolidin- 1 -yl-prop- 1 -ynyl)-thiophen-2-yl]- 1 H-pyrazole-3-carboxylic acid piperidin-1 -ylamide
Intermediate IV(j), i.e., l-(2,4-Dichloro-phenyl)-4-methyl-5-[5-(3-pyrrolidin- 1 -yl-prop- l-ynyl)-thiophen-2-yl]-1H-pyrazole-3-carboxy lie acid ethyl ester, was prepared in a manner similar to Intermediate IV(c) described in Example 7 except that ethynyl-cyclopropane was replaced with l-Prop-2-ynyl-pyrrolidine. Intermediate IV(j) was obtained as a white solid in 94% yield.
Intermediate V(j), i.e., l-(2,4-Dichloro-phenyl)-4-methyl-5-[5-(3-pyrrolidin-l- yl-prop-l-ynyl)-thiophen-2-yl]-1H-pyrazole-3-carboxylic acid, was prepared in a manner similar to Intermediate V(a) described in Example 1 except that Intermediate IV(a) was replaced with Intermediate IV(J) (300 mg, 0.65 mmol). Intermediate V(j) was obtained as a white solid in 96% yield.
Compound 37 was prepared in a manner similar to that described in Example 7 except that, in the last step, crude carboxylic chloride (180 mg, 0.38 mmol) prepared from Intermediate V(j) was treated with 1-aminopiperidine (49 μL, 0.46 mmol) and triethylamine (76 μL, 0.55 mmol) in dichloromethane at 0°C. Compound 37 was obtained as a white solid (167 mg, 81%).
1Η NMR (CDCl3, ppm): 7.59 (s, 1Η), 7.47 (s, 1Η), 7.38-7.30 (m, 2Η), 7.01 (d, IH), 6.69 (d, I H), 3.59 (s, 2H), 2.90-2.76 (m, 4H), 2.72-2.56 (m, 4H), 2.46 (s, 3H), 1.84- 1.62 (m, 8H), 1.44- 1.34 (m, 2H). ES-MS(M+1): 542.1. Example 38: Preparation of Compound 38: l-(2,4-Dichloro-phenyl)-4-methyl-5-(5- phenylethynyl-thiophen-2-yl)- 1H-pyrazole-3-carboxylic acid piperidin- 1 -ylamide
Intermediate I V(k), i.e., l-(2,4-Dichloro-phenyl)-4-methyl-5-(5- phenylethynyl-thiophen-2-yl)- 1H-pyrazole-3-carboxylic acid ethyl ester, was prepared in a manner similar to Intermediate IV(c) described in Example 7 except that ethynyl-cyclopropane was replaced with Ethynyl-benzene. Intermediate IV(k) was obtained as a white solid in 94% yield.
Intermediate V(k), i.e., 1 -(2,4-Dichloro-phenyl)-4-methyl-5-(5-phenylethynyl- thiophen-2-yl)-1H-pyrazole-3-carboxylic acid, was prepared in a manner similar to Intermediate V(a) described in Example 1 except that Intermediate IV(a) was replaced with Intermediate IV(k) (300 mg, 0.63 mmol). Intermediate V(k) was obtained as a white solid in 93% yield.
Compound 38 was prepared in a manner similar to that described in Example 7 except that, in the last step, a crude carboxylic chloride (200 mg, 0.42 mmol) prepared from Intermediate V(k) was treated with 1-aminopiperidine (55 μL, 0.5 mmol) and triethylamine (84 μL, 0.6 mmol) in dichloromethane at 0°C. Compound 38 was obtained as a white solid (169 mg, 75%).
1Η NMR (CDCl3, ppm): 7.61 (s, 1Η), 7.52-7.46 (m, 3Η), 7.38-7.32 (m, 5H), 7.14 (d, IH), 6.78 (d, IH), 2.90-2.70 (m, 4H), 2.50 (s, 3H), 1.80-1.60 (m, 4H), 1.44- 1.36 (m, 2H). ES-MS(M+ 1): 535.1. Example 39: In vitro assays
The affinity of 38 test compounds of this invention toward CBl and CB2 receptors was determined by competitive radioligand binding in vitro assays. This method differentiates the binding strength between compounds by their abilities in displacing a receptor-specific radioactive ligand. Compounds with higher affinity than the radioactive ligand displace the ligand and bind to the receptors, while compounds with no affinity or lower affinity than the radioactive ligand do not. The readings of the radioactivity retained allow further analysis of receptor binding, and assist in predictions of the pharmacological activities of the test compounds. In the assays, brain and spleen extracts from male Spragυe-Dawley rats were respectively utilized as the source of CBl and CB2 receptors. Male Sprague-Dawley rats weighing 175-200 g were used and housed under standard stalling conditions with food and water available ad libitum. The animals were sacrificed by cervical dislocation. Brain with cerebellum were excluded and spleen were dissected from the animals. The separated brain and spleen tissues were respectively homogenized by Polytron Homogenizers in 10 volumes of ice-cold buffer A (50 mM Tris, 5mM MgCl2, 2.5 mM EDTA, pH 7.4, 10% sucrose) with protease inhibitors. The homogenate was centrifuged for 15 minutes at 2,000xg at 4°C. The resultant supernatant was centrifuged again for 30 minutes at 43,000xg at 4°C. The final pellet was re-suspended in buffer A and stored at -80°C. The protein concentration of the purified membrane was determined by the Bradford method as described by the manual provided by Bio-Rad Laboratories, Inc., Hercules, CA.
During the receptor binding experiments, 0.2-8 μg of a membrane was incubated with 0.75 nM [3H]CP55,940 and a test compound in an incubation buffer (50 mM Tris-HCl, 5 mM MgCl2, 1 mM EDTA, 0.3% BSA, pH 7.4). The non-specific binding was determined by using 1 μM of CP55,940. The mixture was incubated for 1.5 hours at 30°C in Multiscreen microplates (Millipore, Billerica, MA). At the completion of the incubation, the reaction was terminated by Manifold filtration and washed with ice-cold wash buffer (50 mM Tris, pH 7.4, 0.25% BSA) four times. The radioactivity bound to the filters was measured by Topcount (Perkin Elmer Inc.). IC50 values were calculated based on the concentration of the test compound required to inhibit 50% of the binding of [3H]CP55,940.
The efficacy of each test compound was determined by DELFIA GTP-binding kit (Perkin Elmer Inc., Boston, MA). The DELFIA GTP-binding assay is a time- resolved fluorometric assay based on GDP-GTP exchange on G-protein subunits followed by activation of a G protein-coupled receptor by its agonists. Eu-GTP was used in this assay to allow monitoring of agonist-dependent activation of G-protein. Note that stimulation of CBl receptor by CP55.940 leads to the replacement of GDP by GTP on the α-subunit of G-protein. The resultant GTP-Gα complex represents the activated form of G-protein. Eu-GTP, a non-hydrolyysable analogue of GTP, can be used to quantify the amount of activated G-protein (Peltonen et al., Eur. J. Pharmacol. (1998) 355:275).
Plasma membrane of human CBl -expressing HEK293 cells was re-suspended in an assay buffer (50 mM HEPES, pH 7.4, 100 mM NaCl, 100 μg/mL saponin, 5 mM MgCl2, 2 μM GDP, 0.5% BSA). An aliquot (4 μg protein/well) was added to each well of an AcroPlate (Pall Life Sciences, Ann Arbor, MI). After the addition of a test compound (various concentrations in 0.1% DMSO) and CP55,940 (20 nM in the assay buffer), the assay plate was incubated in the dark at 30°C with slow shaking for 60 minutes. Eu-GTP was added to each well and the plate was incubated for another 35 minutes at 30°C in the dark. The assay was terminated by washing the plate four times with a wash solution provided in the assay kit. Binding of the Eu- GTP was determined based on the fluorescence signal from a Victor 2 multi-label reader. The IC50 value (i.e., 50% inhibition of CP55,940-stimulated Eu-GTP binding ) for each test compound was determined by a concentration-response curve using nonlinear regression (Prism; GraphPad, San Diego, CA).
All of the test compounds showed ICso values between 0.1 nM and 20 μM in the CBl receptor binding assays and/or CB2 receptor binding assays. The Eu-GTP binding assays were also conducted, and the results were comparable to those obtained from the above-mentioned radioligand binding assays.
OTHER EMBODIMENTS
All of the features disclosed in this specification may be combined in any combination. Each feature disclosed in this specification may be replaced by an alternative feature serving the same, equivalent, or similar purpose. Thus, unless expressly stated otherwise, each feature disclosed is only an example of a generic series of equivalent or similar features.
From the above description, one skilled in the art can easily ascertain the essential characteristics of the present invention, and without departing from the spirit and scope thereof, can make various changes and modifications of the invention to adapt it to various usages and conditions. Thus, other embodiments are also within the scope of the following claims.

Claims

WHAT IS CLAIMED IS:
1. A compound of formula (I):
Figure imgf000039_0001
wherein R1 is H, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C20 cycloalkyl, C3- C20 cycloalkenyl, C1-C20 heterocycloalkyl, C1-C20 heterocycloalkenyl, aryl, or heteroaryl;
R2 is H, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C20 cycloalkyl, C3- C20 cycloalkenyl, C1-C20 heterocycloalkyl, C1-C20 heterocycloalkenyl, aryl, heteroaryl, halo, OR3, COOR3, OC(O)R3, C(O)R3, C(O)NR3Rb, or NR3Rb, in which each Of R3 and Rb, independently, is H, C1-C10 alkyl, C3-C20 cycloalkyl, C1-C20 heterocycloalkyl, aryl, or heteroaryl; each Of R3, R4, and R5, independently, is H, halo, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C20 cycloalkyl, C3-C20 cycloalkenyl, C1-C20 heterocycloalkyl, C1- C20 heterocycloalkenyl, aryl, or heteroaryl; or R5, together with R6 and the carbon atoms to which they are attached, is C3-C20 cycloalkenyl or C3-C20 heterocycloalkenyl; and
R6 is C2-C10 alkenyl or C2-C10 alkynyl; or R6, together with R5 and the carbon atoms to which they are attached, is C3-C20 cycloalkenyl or C3-C20 heterocycloalkenyl.
2. The compound of claim 1, wherein R1 is aryl substituted with halo.
3. The compound of claim 2, wherein R1 is 2,4-dichlorophenyL
4. The compound of claim 1 , wherein R6 is penten- 1 -yl or 2- cyclohexy lethen- 1 -y 1.
5. The compound of claim 1 , wherein R6 is alkynyl substituted with alkoxy, amino, cycloalkyl, heterocycloalkyl, aryl, or heteroaryl.
6. The compound of claim 1 , wherein R2 is C(O)R3, in which R8 is piperidinyl or pyrrolidinyl, or C(O)NR3Rb, in which each of R3 and Rb, independently, is H, cyclohexyl, piperidinyl, or octahydrocyclopentapyrrolyl.
7. The compound of claim 4, wherein R2 is C(O)Ra, in which R8 is piperidinyl or pyrrolidinyl, or C(O)NR3Rb, in which each of R8 and Rb, independently, is H, cyclohexyl, piperidinyl, or octahydrocyclopentapyrrolyl.
8. The compound of claim 7, wherein the compound is one of compounds 1-11 and 30-38.
9. A compound of formula (I):
Figure imgf000040_0001
wherein R1 is H, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C20 cycloalkyl, C3- C20 cycloalkenyl, C1-C20 heterocycloalkyl, C1-C20 heterocycloalkenyl, aryl, or heteroaryl;
R2 is C2-C10 alkenyl, C2-C10 alkynyl, C3-C20 cycloalkyl, C3-C20 cycloalkenyl, C1-C20 heterocycloalkyl, C1-C20 heterocycloalkenyl, aryl, heteroaryl, halo, OR3,
OC(O)R3, NR3Rb, or C1-C10 alkyl substituted with NRa-C(O)-Rb, NRa-C(S)-Rb, NR8- C(O)-NRbR0, NRa-C(S)-NRbRc, or NRa-C(=N-CN)-NRbRc, in which each of R8, Rb, and Rc, independently, is H, C1-C10 alkyl, C3-C20 cycloalkyl, C1-C20 heterocycloalkyl, aryl, or heteroaryl; and each of R3, R4, R5, and R^, independently, is H, halo, C|-Cio alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C20 cycloalkyl, C3-C20 cycloalkenyl C, 1 -C20 heterocycloalkyl, C1-C20 heterocycloalkenyl, aryl, or heteroaryl; or R5 and R6, together with the carbon atoms to which they are attached, are C3-C20 cycloalkenyl or C3-C20 heterocycloalkenyl.
10. The compound of claim 9, wherein R1 is aryl substituted with halo.
1 1. The compound of claim 10, wherein R1 is 2,4-dichlorophenyl.
12. The compound of claim 9, wherein R6 is chloro or penten- 1 -yl.
13. The compound of claim 9, wherein R2 is C1-C10 alkyl substituted with NR8-C(O)-Rb, NRa-C(O)-NRbRc, or NRa-C(S)-NRbRc, in which each of R8, Rb, and Rc, independently, is H, C1 C- 1 0 alkyl, C3-C20 cycloalkyl, aryl, or heteroaryl.
14. The compound of claim 13, wherein R2 is methyl substituted with NR8-C(O)-Rb, NR8-C(O)-NRbRc, or NR8-C(S)-NRbRc, in which R8 is H, Rc is H, and Rb is cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, pyridyl, phenyl optionally substituted with halo or C1-C10 alkyl, or C1 -C10 alkyl optionally substituted with aryl or heteroaryl.
15. The compound of claim 14, wherein the compound is one of compounds 12-29.
16. A method for treating a cannabinoid-receptor mediated disorder, comprising administering to a subject in need thereof an effective amount of a compound of formula (I):
Figure imgf000042_0001
wherein R1 is H, Ci-Cio alkyl, C2-C10 alkenyl, C2-C10 alkynyl, Cj-C20 cycloalkyl, C3- C20 cycloalkenyl, C1-C20 heterocycloalkyl, C1-C20 heterocycloalkenyl, aryl, or heteroaryl;
R2 is H, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C20 cycloalkyl, C3- C20 cycloalkenyl, C1-C20 heterocycloalkyl, C1-C20 heterocycloalkenyl, aryl, heteroaryl, halo, OR8, COORa, OC(O)Ra, C(O)Ra, C(O)NRaRb, or NR8R6, in which each OfR8 and Rb, independently, is H, C1-C10 alkyl, C3-C20 cycloalkyl, C1-C20 heterocycloalkyl, aryl, or heteroaryl; each Of R3, R4, and R5, independently, is H, halo, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C20 cycloalkyl, C3-C20 cycloalkenyl, C1-C20 heterocycloalkyl, C1- C20 heterocycloalkenyl, aryl, or heteroaryl; or R6, together with R6 and the carbon atoms to which they are attached, is C3-C20 cycloalkenyl or C3-C20 heterocycloalkenyl; and R6 is C2-C1O alkenyl or C2-C10 alkynyl; or R6, together with R5 and the carbon atoms to which they are attached, is C3-C20 cycloalkenyl or C3-C20 heterocycloalkenyl.
17. The method of claim 16, wherein the cannabinoid-receptor mediated disorder is liver fibrosis, obesity, metabolic syndrome, hyperlipidemia, type II diabetes, atherosclerosis, substance addiction, depression, motivational deficiency syndrome, learning or memory dysfunction, analgesia, haemorrhagic shock, ischemia, liver cirrhosis, neuropathic pain, antiemesis, high intraocular pressure, bronchodilation, osteoporosis, cancer, a neurodegenerative disease, or an inflammatory disease.
18. The method of claim 17, wherein the cannabinoid-receptor mediated disorder is obesity, metabolic syndrome, substance addiction, neuropathic pain, or an inflammatory disease.
19. The method of claim 17, wherein the cannabinoid-receptor mediated disorder is prostate cancer, lung cancer, breast cancer, or head and neck cancer.
20. The method of claim 16, wherein the compound is selected from compounds 1-11 and 30-38.
21. A method for treating a cannabinoid-receptor mediated disorder, comprising administering to a subject in need thereof an effective amount of a compound of formula (I):
Figure imgf000043_0001
wherein R1 is H, C1-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, Cj-C20 cycloalkyl, C3-
C20 cycloalkenyl, C1-C20 heterocycloalkyl, C1-C20 heterocycloalkenyl, aryl, or heteroaryl;
R2 is C2-C10 alkenyl, C2-C10 alkynyl, C3-C20 cycloalkyl, C3-C20 cycloalkenyl, C1-C20 heterocycloalkyl, C1-C20 heterocycloalkenyl, aryl, heteroaryl, halo, ORa, OC(O)Ra, NR3Rb, or C1-C]0 alkyl substituted with NRa-C(O)-R6, NRa-C(S)-R5, NRa-
C(0)-NRbRc NRa-C(S)-NRbRc, or NRa-C(=N-CN)-NRbRc, in which each Of Ra, Rb, and Rc, independently, is H, C1-C10 alkyl, C3-C20 cycloalkyl, C1-C20 heterocycloalkyl, aryl, or heteroaryl; and each of R3, R4, R5, and R6, independently, is H, halo, C|-C10 alkyl, C2-C10 alkenyl, C2-C10 alkynyl, C3-C20 cycloalkyl, C3-C20 cycloalkenyl, C1-C20 heterocycloalkyl, C1-C20 heterocycloalkenyl, aryl, or heteroaryl; or R5 and R6, together with the carbon atoms to which they are attached, are C3-C20 cycloalkenyl or C3-C20 heterocycloalkenyl.
22. The method of claim 21 , wherein the cannabinoid-receptor mediated disorder is liver fibrosis, hair loss, obesity, metabolic syndrome, hyperlipidemia, type II diabetes, atherosclerosis, substance addiction, depression, motivational deficiency syndrome, learning or memory dysfunction, analgesia, haemorrhagic shock, ischemia, liver cirrhosis, neuropathic pain, antiemesis, high intraocular pressure, bronchodilation, osteoporosis, cancer, a neurodegenerative disease, or an inflammatory disease.
23. The method of claim 22, wherein the cannabinoid-receptor mediated disorder is obesity, metabolic syndrome, substance addiction, neuropathic pain, or an inflammatory disease.
24. The method of claim 22, wherein the cannabinoid-receptor mediated disorder is prostate cancer, lung cancer, breast cancer, or head and neck cancer.
25. The method of claim 21 , wherein the compound is selected from compounds 12-29.
PCT/US2007/080203 2006-10-02 2007-10-02 Thiophene compounds WO2008057681A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07868354A EP2068870B1 (en) 2006-10-02 2007-10-02 Thiophene compounds
AU2007317712A AU2007317712A1 (en) 2006-10-02 2007-10-02 Thiophene compounds
CN2007800368971A CN101535260B (en) 2006-10-02 2007-10-02 Thiophene compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US84876106P 2006-10-02 2006-10-02
US60/848,761 2006-10-02

Publications (2)

Publication Number Publication Date
WO2008057681A2 true WO2008057681A2 (en) 2008-05-15
WO2008057681A3 WO2008057681A3 (en) 2008-08-07

Family

ID=39365173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/080203 WO2008057681A2 (en) 2006-10-02 2007-10-02 Thiophene compounds

Country Status (6)

Country Link
US (1) US7834046B2 (en)
EP (1) EP2068870B1 (en)
CN (1) CN101535260B (en)
AU (1) AU2007317712A1 (en)
TW (1) TWI408136B (en)
WO (1) WO2008057681A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2632919A2 (en) * 2011-09-30 2013-09-04 National Health Research Institutes Pyrazole compounds
US11091447B2 (en) 2020-01-03 2021-08-17 Berg Llc UBE2K modulators and methods for their use

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008154015A1 (en) * 2007-06-11 2008-12-18 Alexandros Makriyannis Cb1 receptor antagonists and uses thereof
EP2242745A1 (en) * 2008-02-07 2010-10-27 Sanofi-Aventis Novel phenyl-substituted imidazolidines, method for the production thereof, medicaments containing said compounds and use thereof
CN108477173B (en) 2012-10-02 2021-07-02 拜耳农作物科学股份公司 Heterocyclic compounds as pesticides

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1602656A1 (en) 2004-05-24 2005-12-07 NEUROSCIENZE PHARMANESS S.C. a R.L. Pyrazole derivatives having affinity for cb1 and/or cb2 receptors

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0253787A (en) 1988-08-18 1990-02-22 Mitsubishi Kasei Corp Pyrazolylimidazolones
FR2692575B1 (en) 1992-06-23 1995-06-30 Sanofi Elf NOVEL PYRAZOLE DERIVATIVES, PROCESS FOR THEIR PREPARATION AND PHARMACEUTICAL COMPOSITIONS CONTAINING THEM.
US6620804B2 (en) 1996-06-03 2003-09-16 Purdue Research Foundation Selenophene anti-tumor agents
AU751139B2 (en) * 1997-10-13 2002-08-08 Astellas Pharma Inc. Amide derivative
US7393842B2 (en) * 2001-08-31 2008-07-01 University Of Connecticut Pyrazole analogs acting on cannabinoid receptors
EP1532128A1 (en) * 2002-07-01 2005-05-25 Pharmacia & Upjohn Company LLC Inhibitors of hcv ns5b polymerase
US20060025448A1 (en) 2004-07-22 2006-02-02 Cadila Healthcare Limited Hair growth stimulators
CA2595224A1 (en) * 2005-01-18 2006-07-27 Immusol Incorporated Novel quinolinium salts and derivatives
CA2613522A1 (en) * 2005-06-27 2007-01-04 Exelixis, Inc. Imidazole based lxr modulators
CN1317273C (en) * 2005-07-08 2007-05-23 华南农业大学 Compound having thio furan and acetylene ethylene bond, its preparation and use
US7803799B2 (en) 2006-07-07 2010-09-28 National Health Research Institutes Selenophene compounds

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1602656A1 (en) 2004-05-24 2005-12-07 NEUROSCIENZE PHARMANESS S.C. a R.L. Pyrazole derivatives having affinity for cb1 and/or cb2 receptors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2068870A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2632919A2 (en) * 2011-09-30 2013-09-04 National Health Research Institutes Pyrazole compounds
JP2014507425A (en) * 2011-09-30 2014-03-27 ナショナル ヘルス リサーチ インスティテュートス Pyrazole compounds
EP2632919A4 (en) * 2011-09-30 2014-04-16 Nat Health Research Institutes Pyrazole compounds
US8962845B2 (en) 2011-09-30 2015-02-24 National Health Research Institutes Pyrazole compounds
AU2012316331B2 (en) * 2011-09-30 2016-02-25 National Health Research Institutes Pyrazole compounds
US11091447B2 (en) 2020-01-03 2021-08-17 Berg Llc UBE2K modulators and methods for their use

Also Published As

Publication number Publication date
TW200817389A (en) 2008-04-16
US20090029969A2 (en) 2009-01-29
EP2068870B1 (en) 2013-03-27
CN101535260B (en) 2012-07-04
AU2007317712A1 (en) 2008-05-15
US7834046B2 (en) 2010-11-16
EP2068870A4 (en) 2010-08-25
US20080090810A1 (en) 2008-04-17
TWI408136B (en) 2013-09-11
WO2008057681A3 (en) 2008-08-07
EP2068870A2 (en) 2009-06-17
CN101535260A (en) 2009-09-16

Similar Documents

Publication Publication Date Title
US7803799B2 (en) Selenophene compounds
US20080090809A1 (en) Pyrazole compounds
WO2008121861A2 (en) Pyrazole and pyrrole compounds useful in treating iron disorders
KR20100032886A (en) 5-heteroaryl substituted indazoles as kinase inhibitors
US7834046B2 (en) Thiophene compounds
TW553933B (en) 3a,4,5,9b-Tetrahydro-1H-benz[e]indol-2-yl amine-derived neuropeptide Y receptors ligands useful in the treatment of obesity and other disorders
EP2632919B1 (en) Pyrazole compounds
US7705024B2 (en) Oxadiazole compounds
US8354442B2 (en) Imidazol-4-one and imidazole-4-thione compounds
TW200804365A (en) Selenophene compounds

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780036897.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07868354

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2007868354

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007317712

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2007317712

Country of ref document: AU

Date of ref document: 20071002

Kind code of ref document: A