WO2008056811A1 - Bend portion of heat insulation multiple pipe for superconducting transmission - Google Patents

Bend portion of heat insulation multiple pipe for superconducting transmission Download PDF

Info

Publication number
WO2008056811A1
WO2008056811A1 PCT/JP2007/072039 JP2007072039W WO2008056811A1 WO 2008056811 A1 WO2008056811 A1 WO 2008056811A1 JP 2007072039 W JP2007072039 W JP 2007072039W WO 2008056811 A1 WO2008056811 A1 WO 2008056811A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
tube
curved
bent
section
Prior art date
Application number
PCT/JP2007/072039
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhide Ishiguro
Yoshikazu Kawabata
Shuichi Kusaka
Susumu Itadani
Sataro Yamaguchi
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Publication of WO2008056811A1 publication Critical patent/WO2008056811A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/14Arrangements for the insulation of pipes or pipe systems
    • F16L59/16Arrangements specially adapted to local requirements at flanges, junctions, valves or the like
    • F16L59/22Arrangements specially adapted to local requirements at flanges, junctions, valves or the like adapted for bends

Definitions

  • the present invention relates to a curved pipe portion of a heat insulating multiple tube for superconducting power transmission, and more specifically, has an inner tube that accommodates a superconducting cable, and one or a plurality of multiple arranged outer tubes that surround the inner tube, and are adjacent to each other.
  • the present invention relates to a curved pipe part that is connected to a straight pipe part of a heat insulation multiple pipe for superconducting power transmission in which at least one of the inner and outer pipe gaps is a vacuum heat insulation layer, and changes the piping direction.
  • Insulated multi-pipe for superconducting power transmission has not been put to practical use because superconducting power transmission has not yet been put to practical use.
  • Non-Patent Document 1 in the field test of AC superconducting transmission on the scale of 500 m, the corner part and U-shaped part as a curved pipe part that changes the wiring direction of the superconducting cable with heat insulation double tube structure The double pipe itself was bent to a large radius of curvature.
  • the heat-insulated multiple tube for superconducting power transmission realizes superconducting power transmission by flowing a cryogenic refrigerant such as liquid nitrogen through the gap between the outer surface of the superconducting conductor housed in the inner tube and the inner surface of the inner tube. It is important to suppress heat input from the environment.
  • a cryogenic refrigerant such as liquid nitrogen
  • the inner pipe is cooled to a very low temperature, unlike the outer pipe group on the side close to the outer environment, it contracts greatly. At this time, since the inner pipe contracts in the longitudinal direction in the straight pipe portion, if the inner pipe is connected with a bellows, the contraction can be eased and no particular problem occurs.
  • the inner tube 2 and the outer tube 1 are concentrically arranged in a room temperature environment. 4) If the cryogenic refrigerant 30 flows into the inner pipe 2 (FIG. 4B), the inner pipe 2 is cooled and contracts, and comes into contact with the outer pipe 1. Probability is high.
  • the inner tube moves so that it sticks to the inner surface of the outer tube as the inner tube cools and contracts, and the spacer itself breaks and breaks. There is also a risk. In that case, the contact area between the inner tube and the outer tube is increased, the heat insulation efficiency is lowered, and the superconducting conductor cannot be used in the superconducting state.
  • Non-Patent Document 1 One of the means for avoiding this is to increase the radius of curvature of the curved pipe part and secure a sufficient space between the inner pipe and the outer pipe, as described in Non-Patent Document 1.
  • this method can be established when the system has a scale size of about 50 Om and there is room in the installation location, but it can be established in actual transmission where the transmission pipe is often bent rapidly. Is difficult.
  • the outer tube of the multi-ply tube is a bellows joint and the inner tube is a normal tube.
  • a bellows tube is inserted into a part of the outer tube to absorb the shrinkage.
  • Non-Patent Document 1 Published by Central Research Institute of Electric Power Company “Denki Chuo Research News No. 4 1 2 (issued 0 5/6/9) J
  • Patent Document 1 Japanese Patent Laid-Open No. 8-6 4 8 80
  • Patent Document 2 Japanese Patent Application Laid-Open No. 5-104.80
  • Patent Document 3 Japanese Patent Laid-Open No. 2 0 0 2-7 10 5 5 Disclosure of Invention
  • Non-Patent Document 1 the means for bending the heat insulating multi-pipe itself by bending with a large radius of curvature cannot cope with the steep bend assumed for an actual transmission pipe.
  • Patent Document 1 when a spacer (low thermal conductivity spacer) is interposed between the inner tube and the outer tube, the curvature of the bent tube portion is large and the cooling shrinkage of the inner tube is large. , Su Excessive force may act on the spacer and the spacer may break.
  • the method of using a bellows joint as part of the outer pipe as shown in 2 is not intended for use at cryogenic temperatures, so it may not be possible to avoid contact between the inner pipe and the outer pipe. Furthermore, since the outer diameter of the crest of the bellows joint in the bent pipe is the same as the outer diameter of the connection partner pipe in the straight pipe, the inner pipe comes into contact with the outer pipe due to cooling contraction when the cryogenic refrigerant flows. The possibility does not go down.
  • Patent Document 3 a part of the bellows pipe is used for the outer pipe, and the fitting is inserted into the bellows so that the inner pipe and the outer pipe are concentrically arranged during cooling.
  • an actual power transmission system that is assumed to have a wide variety of pipe types and curved pipe curvatures for each pipe installation location, it is necessary to make these adjustments one by one, making piping construction more complicated and costly. Is not realistic.
  • the present invention can prevent the contact of the inner tube to the outer tube at the time of cooling shrinkage, and can ensure the heat insulation efficiency, and the piping work can be performed easily and inexpensively. It is an object of the present invention to provide a curved pipe part of a heat insulating multiple pipe for superconducting power transmission.
  • the present invention includes an inner tube that accommodates a superconducting cable, and one or a plurality of outer tubes that surround the inner tube, and at least one of the adjacent inner and outer tube gaps is a vacuum heat insulating layer.
  • the superconducting power-insulated multi-tube for superconducting power transmission is connected to the straight pipe section to change the piping direction.
  • the bent pipe section includes an inner pipe and an outer pipe respectively connected to the straight pipe section. Connected to the outer pipe on a one-to-one basis, the outer diameter of the inner pipe in the bent pipe section is the same as that in the straight pipe section, and the outer diameter of the outer pipe in the bent pipe section is the outer diameter of the connecting outer pipe in the straight pipe section.
  • the bending angle of the bent tube portion is 30 degrees or more.
  • the bending angle here means the angle of the part bent with respect to the straight pipe (that is, the inner angle is 1550 degrees or less).
  • the pipe gap between the adjacent inner and outer pipes in the bent pipe part is 5 mm or more larger than the pipe gap between the connection partners in the straight pipe part.
  • the inner pipe is eccentrically arranged in a direction opposite to the direction displaced when the coolant flows with respect to the outer pipe adjacent thereto. Is preferred.
  • FIG. 1 is a schematic cross-sectional view in the tube axis direction showing Embodiment 1 of the present invention.
  • FIG. 2 is a schematic cross-sectional view in the pipe circumferential direction of the spacer arrangement portion of FIG.
  • FIG. 3 is a schematic cross-sectional view in the tube axis direction showing Embodiment 2 of the present invention.
  • 4A and 4B are schematic cross-sectional views in the tube axis direction showing the conventional problems.
  • 5A and 5B are schematic sectional views in the tube axis direction showing the conventional problems.
  • FIG. 6 is an explanatory view of the displacement of the inner pipe due to cooling contraction during refrigerant flow. The meanings of the symbols in each figure are as follows.
  • Inner pipe outer diameter in the curved pipe section Inner pipe outer diameter of the connection partner in the straight pipe section
  • the wall thickness of the pipe in the bent pipe section and the pipe to be connected in the straight pipe section is not particularly limited. However, from the viewpoint of securing the inner pipe accommodation space and the ease of piping construction, the same thickness is used. It is preferable to make the difference between the thicknesses as small as possible if the force is different or different.
  • the method of connecting the outer pipe between the straight pipe section and the curved pipe section is preferably a method of fastening flanges provided at the connection ends of the pipes to be connected to each other with bolts or the like from the viewpoint of ease of piping construction.
  • the straight pipe part is constructed by connecting pipes with a unit length of usually 4 to 15 m by welding, flanges, etc., and at least two of the inner pipes in the straight pipe part are relayed together by bellows
  • the displacement during cooling shrinkage can be reduced, there are limits to the number of bellows that can be incorporated, and the displacement due to cooling shrinkage cannot be completely absorbed when incorporated. In addition, the number is limited due to the high cost.
  • the tube gap between the inner tube and the outer tube in the bent tube portion can be expanded more than before, and the use of bellows or concentricity of multiple tubes can be achieved. Regardless of the arrangement, it is possible to avoid contact between the inner and outer tubes.
  • the outer diameter of the outer pipe in the bent pipe should be increased according to the degree of bending of the bent pipe (the degree of curvature) from the viewpoint of avoiding contact with the inner pipe and saving piping space.
  • the degree of curvature the degree of curvature
  • the outer diameter of the outer pipe in the bent pipe is slightly larger than the outer diameter of the connecting pipe in the straight pipe, and the bend is sharp (high curvature) Therefore, it is preferable that the outer diameter of the outer pipe in the bent pipe part is considerably larger than the outer diameter of the outer pipe of the connection partner in the straight pipe part.
  • the appropriate value of the outer diameter of the outer pipe in the bent pipe section will change, but the conditions (1) and (2) will only be satisfied.
  • the gap between the inner pipe and the outer pipe in the bent pipe section is made larger than the gap between the inner pipe and the outer pipe of the counterpart in the straight pipe section, and the contact between the inner pipe and the outer pipe during cooling contraction is increased. Can be prevented.
  • the bending angle of the bent tube portion is It is preferably 30 ° or more.
  • the adiabatic multiple pipes in the bent pipe section cannot actually have an ideal concentric arrangement structure. This is because it is difficult to bend a straight pipe with a heat insulation multi-pipe structure by directly bending the heat insulation multi-pipe structure, and even if it can be made, if the bend of the bend becomes sharp, It is almost impossible to keep the tube and the outer tube out of contact.
  • a method of inserting the bent tube 2c into the bent tube 1c is assumed.
  • the tip end of the tube 2 hits the inner surface of the curved outer tube 1 and the insertion cannot be continued easily.
  • the curvature of the inner tube is smaller than that of the outer tube, it will be easier to insert, but it will not be concentric, and the inner tube will be closer to the inner surface of the outer tube. With such an arrangement, contact between the bent tube and the bent tube during cooling contraction is more likely to occur.
  • the bent pipe has straight pipe portions at both ends, and is often difficult to insert.
  • the condition that the pipe gap between the adjacent inner and outer pipes in the bent pipe part is 5 mm or more larger than the pipe gap between the connection partners in the straight pipe part (this is a condition).
  • Condition (3) is that when the multiple pipes in the straight pipe part and the curved pipe part are concentrically arranged, the difference between the inner diameter of the outer pipe adjacent to the curved pipe part and the outer diameter of the inner pipe is This means that it is 1 O mm or more larger than the difference between the inner diameter of the adjacent outer pipe and the outer diameter of the inner pipe in the straight pipe section.
  • the insulated double pipe shown in Fig. 6 is taken as an example.
  • the bellows is not installed on the inner pipe 2 in the straight pipe section 100, so that it can cope with the most severe conditions, one end in the longitudinal direction of the pipe is a fixed end, and the other end is a free end.
  • the inner pipe 2 on the fixed end side contracts in the direction indicated by arrow 20 and the curved inner pipe 2 c displaces in the direction indicated by arrow 2 1.
  • the inner pipe 2 on the free end side contracts in the arrow direction 22 and displaces in the arrow direction 23.
  • Liquid nitrogen (boiling point 7 7 K) is used as the cryogenic refrigerant, the flow direction is constant, and the shrinkage rate of the austenitic stainless steel used as the pipe material is estimated to be 1 5 X 1 0 16 K
  • the displacement of the inner tube 2 on the free end side in the direction indicated by the arrow 23 is about 7 mm. This is considered to be almost the same as the displacement of the bent tube toward the inner bend when both ends are fixed ends in Fig. 6.
  • the pipe gap in the curved pipe section is made 5 mm or more larger than the pipe gap of the connection partner in the straight pipe section.
  • the inner pipe inside the curved pipe part is displaced in the direction toward the center of curvature of the pipe during cooling contraction, and the inner pipe of the outer pipe is bent. It tends to come into contact with the inner surface.
  • the condition (3) is established not only for the gap between the inner pipe and the outer pipe immediately outside the inner pipe but also for the gap between adjacent outer pipes. Is preferred.
  • the inner pipe in the bent pipe section in the atmospheric environment If it is arranged eccentrically in the direction opposite to the approaching displacement direction (i.e., the direction opposite to the direction in which the inner tube is displaced when the refrigerant flows) against the outer tube, the adjacent inner and outer It is preferable because the contact between the tubes can be prevented more reliably.
  • FIG. 1 is a schematic cross-sectional view in the tube axis direction showing a curved pipe portion having a heat insulating double pipe structure and a straight pipe portion connected thereto as Embodiment 1 of the present invention
  • FIG. 2 is a spacer arrangement portion of FIG. It is a schematic sectional drawing of the pipe circumference direction.
  • the straight pipe section on both sides of the curved pipe section 200, the inner pipe 2 and the outer pipe 1 in the 100 section are connected to the inner pipe 7 and the outer pipe 6 in the curved pipe section 200, one-to-one.
  • the superconducting cable 9 is inserted into the tube 7. 1 and 2 show the state before the cryogenic refrigerant flows through the inner pipes 2 and 7.
  • the material and diameter size of the inner pipe 2 and outer pipe 1 in the straight pipe section 100 have already been optimized for use as a thermal insulation double pipe for superconducting power transmission.
  • Spacers (low thermal conductivity) 3 are discretely arranged in the pipe extension direction in the pipe gap between the inner pipe 2 and the outer pipe 1 to prevent mutual contact between the two pipes (curved pipe section 2 0 0 As well as within).
  • a spacer having a thickness of 2 mm made of GFRP may be used as a spacer having a square shape as shown in FIG. 2 and having a diagonal length shorter than the inner diameter of the outer tube 1.
  • Figure 1 shows a spacer with a spacer in the curved pipe, but it is not necessary to insert a spacer in the curved pipe.
  • the bend angle of the bent tube part 200 is 90 degrees.
  • the inner pipe 7 has the same material, outer diameter and wall thickness as the inner pipe 2.
  • the outer tube 6 has an outer diameter larger than that of the outer tube 1 and is the same material and thickness as the outer tube 1.
  • the inner pipe 7 is connected to the inner pipe 1 by welding. In addition, you can connect with a flange instead of welding.
  • the outer pipe 6 is connected to the outer pipe 1 and the flange 5.
  • the inner pipes 2 and 7 are configured by winding super-insulation 8 for blocking and suppressing far-infrared energy around the outer surface of the inner pipe body 25.
  • Super ⁇ Tension 8 is made by sputtering aluminum on organic resin film. In order to reduce the emissivity and suppress the heat input from the outside, a metal coating may be used instead of super-infiltration.
  • the outer pipe 6 In the state where the inside pipes 2 and 7 are cooled to the temperature of liquid nitrogen (liquid nitrogen flows from the lower right side to the upper left side in the figure), the outer pipe 6 is hardly displaced, and the inner pipe 7 is bent due to cooling contraction. It is displaced in the direction toward the center of the index and approaches the inner curved inner surface of the outer tube 6, but the outer diameter of the outer tube 6 is made larger than the outer diameter of the outer tube 1 unlike the conventional one.
  • the inner surface of the outer tube 6 on the inner curve side has shifted to the center of the tube axis curvature than before, and does not reach the inner tube 7.
  • the central axis of the inner pipe 7 in the curved pipe section 200 is outside. Although it is arranged at an eccentric position that is closer to the tube axis curvature center side than the center axis position of the tube 6, contact with the outer tube 6 can still be avoided during cooling contraction.
  • the gap between the inner pipe 7 and the outer pipe 6 (however, in the case of mutual eccentric arrangement, so as to satisfy the above condition (3)). (Represented by the local minimum in the pipe circumferential direction) should be at least 5 mm larger than the gap between the inner pipe 2 and the outer pipe 1.
  • FIG. 3 shows a second embodiment of the present invention.
  • the displacement between the inner tube 7 and the outer tube 6 is changed in the direction of displacement of the inner tube 7 during cooling contraction (here, This is an example of a form expanded in a direction opposite to the direction in which the displacement direction is a direction toward the center of curvature of the pipe axis. According to this embodiment, contact between the inner tube 7 and the outer tube 6 can be avoided more reliably.
  • a method of increasing the curvature of the inner tube 7 and / or a method of decreasing the curvature of the inner tube 7 of the outer tube 6 compared to before the expansion As the outer tube 6, a tube whose diameter varies depending on the position in the tube axis direction, more specifically, a tube whose center portion in the tube axis direction is larger in diameter than both ends is used. Can be mentioned. In the example of Figure 3, these methods are used together.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Insulation (AREA)
  • Branch Pipes, Bends, And The Like (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

Bend portion of a heat insulation multiple pipe for superconducting transmission by which heat insulation efficiency can be ensured by preventing contact of an inner pipe with an outer pipe during cooling contraction, and piping work can be carried out easily and inexpensively. In the bend portion (200) being connected with the straight pipe section (100) of a heat insulation multiple pipe for superconducting transmission in order to alter the piping direction, the inner pipe (7) and the outer pipe (6) in the bend portion are connected, respectively, with the inner pipe (2) and the outer pipe (1) in the straight pipe section on a one-to-one basis, the outside diameter of the inner pipe in the bend portion is identical to that in the straight pipe section, and the outside diameter of the outer pipe in the bend portion is larger than the outside diameter of the outer pipe to be connected in the straight pipe section.

Description

明細書 超電導送電用断熱多重管の曲管部 技術分野  Specification Curved pipe section of heat insulation multiple pipe for superconducting power transmission
本発明は、 超電導送電用断熱多重管の曲管部に関し、 詳しくは、 超電導ケープ ルを収容する内管と、 該内管を囲む一又は複数多重配置の外管とを有し、 隣接す る内側と外側の管間隙の少なくとも一つが真空断熱層とされた超電導送電用断熱 多重管の、 直管部に接続して配管方向を変更する、 曲管部に関する。 背景技術  The present invention relates to a curved pipe portion of a heat insulating multiple tube for superconducting power transmission, and more specifically, has an inner tube that accommodates a superconducting cable, and one or a plurality of multiple arranged outer tubes that surround the inner tube, and are adjacent to each other. The present invention relates to a curved pipe part that is connected to a straight pipe part of a heat insulation multiple pipe for superconducting power transmission in which at least one of the inner and outer pipe gaps is a vacuum heat insulation layer, and changes the piping direction. Background art
超電導送電向けの断熱多重管 (超電導送電用断熱多重管) は、 超電導送電が未 だ実用化されていないため、 実際の送電への適用例が無い。 非特許文献 1による と、 5 0 0 m規模の交流超電導送電のフィールド試験では、 断熱 2重管構造の超 電導ケーブルの配線方向を変える曲管部としてのコーナ部や U字部等は、 断熱 2 重管自体を大きな曲率半径に曲げ加工して作られていた。  Insulated multi-pipe for superconducting power transmission (heat-insulated multi-pipe for superconducting power transmission) has not been put to practical use because superconducting power transmission has not yet been put to practical use. According to Non-Patent Document 1, in the field test of AC superconducting transmission on the scale of 500 m, the corner part and U-shaped part as a curved pipe part that changes the wiring direction of the superconducting cable with heat insulation double tube structure The double pipe itself was bent to a large radius of curvature.
超電導送電用断熱多重管は、 内管に収容した超電導導体の外面と内管の内面と の間隙に液体窒素等の極低温冷媒を通流することで超電導送電を実現するもので あるから、 外環境からの入熱を抑制することが重要である。 ところが、 内管は極 低温に冷却されるので、 外環境に近い側の外管群とは異なり、 大きく収縮する。 このとき、 直管部では内管は長手方向に収縮するので、 ベローズで内管を継いで いけば収縮を緩和できて特に問題は生じない。 しかしながら、 例えば図 4 A、 図 4 Bに示すように、 曲管部 2 0 0では、 室温環境で内管 2と外管 1 (断熱 2重管 の場合を図示している) が同心配置 (図 4 A) とされていても、 内管 2内に極低 温冷媒 3 0を逋流した場合 (図 4 B ) 、 内管 2が冷却されて収縮し、 外管 1と接 触 4する可能性が高い。 接触 4が生じるとこの接触 4した箇所から内管 2内へ伝 熱し、 状況によっては、 内管 2内の超伝導導体の温度が臨界温度 (T c ) を超え、 超電導状態が崩れて電気抵抗が高くなり、 超電導送電が実現しなくなるか、 超電 導送電用断熱多重管を支える冷蔵ュニットに多大な負担がかかるといった問題が ある。 尚、 図 4 A、 図 4 Bには、 内管 2と外管 1との接触防止手段としてスぺーサ (低熱伝導性スぺーサ) 3を配置したもの (特許文献 1参照) を示したが、 内管 と外管の径の組み合せによっては、 内管の冷却収縮に伴い、 内管が外管の内曲が り側の内面に貼り付くように動き、 スぺーサ自体が割れて破損するおそれもある。 その場合には、 内管と外管との接触面積が増え、 断熱効率が落ちて、 ひいては超 電導導体を超電導状態で利用できなくなる。 The heat-insulated multiple tube for superconducting power transmission realizes superconducting power transmission by flowing a cryogenic refrigerant such as liquid nitrogen through the gap between the outer surface of the superconducting conductor housed in the inner tube and the inner surface of the inner tube. It is important to suppress heat input from the environment. However, since the inner pipe is cooled to a very low temperature, unlike the outer pipe group on the side close to the outer environment, it contracts greatly. At this time, since the inner pipe contracts in the longitudinal direction in the straight pipe portion, if the inner pipe is connected with a bellows, the contraction can be eased and no particular problem occurs. However, for example, as shown in FIG. 4A and FIG. 4B, in the bent tube portion 200, the inner tube 2 and the outer tube 1 (shown in the case of a heat insulating double tube) are concentrically arranged in a room temperature environment. 4) If the cryogenic refrigerant 30 flows into the inner pipe 2 (FIG. 4B), the inner pipe 2 is cooled and contracts, and comes into contact with the outer pipe 1. Probability is high. When contact 4 occurs, heat is transferred from the location of contact 4 into the inner tube 2, and depending on the situation, the temperature of the superconducting conductor in the inner tube 2 exceeds the critical temperature (T c), the superconducting state collapses, and the electrical resistance However, there is a problem that superconducting power transmission cannot be realized, or that the refrigeration unit that supports the insulated multi-pipe for superconducting power transmission is heavily burdened. 4A and 4B show a spacer (low thermal conductivity spacer) 3 arranged as a means for preventing contact between the inner tube 2 and the outer tube 1 (see Patent Document 1). However, depending on the combination of the inner tube and outer tube diameters, the inner tube moves so that it sticks to the inner surface of the outer tube as the inner tube cools and contracts, and the spacer itself breaks and breaks. There is also a risk. In that case, the contact area between the inner tube and the outer tube is increased, the heat insulation efficiency is lowered, and the superconducting conductor cannot be used in the superconducting state.
これを避ける手段の一つは、 非特許文献 1にあるように、 曲管部の曲率半径を 大きくし、 内管と外管との間のスペースを十分に確保することである。 しかし、 この手段は、 5 0 O m程度のスケールサイズのシステムであって設置場所に余裕 のある場合には成立しうるものの、 送電管が急激に曲げられる場合が多い実際の 送電において成立させるのは難しい。  One of the means for avoiding this is to increase the radius of curvature of the curved pipe part and secure a sufficient space between the inner pipe and the outer pipe, as described in Non-Patent Document 1. However, this method can be established when the system has a scale size of about 50 Om and there is room in the installation location, but it can be established in actual transmission where the transmission pipe is often bent rapidly. Is difficult.
又、 超電導以外の分野では、 例えば、 半導体産業の原料ガス配管において、 多 重管の外管をべローズ継手、 内管を通常管とし、 接続する方法 (特許文献 2参 照) や、 液化ヘリウム等の極低温液体を運搬する断熱多重管において、 内管、 外 管が接触しないように、 外管の一部にベローズ管を装入して収縮を吸収する方法 In fields other than superconductivity, for example, in the raw material gas piping of the semiconductor industry, the outer tube of the multi-ply tube is a bellows joint and the inner tube is a normal tube. In a heat-insulated multiple tube that transports cryogenic liquid such as the inner tube and outer tube, a bellows tube is inserted into a part of the outer tube to absorb the shrinkage.
(特許文献 3参照) が知られている。 非特許文献 1 : (財) 電力中央研究所発行 「電中研ニュース N o . 4 1 2 ( 0 5 / 6 / 9発行) J (See Patent Document 3). Non-Patent Document 1: Published by Central Research Institute of Electric Power Company “Denki Chuo Research News No. 4 1 2 (issued 0 5/6/9) J
特許文献 1 : 特開平 8— 6 4 8 8 0号公報  Patent Document 1: Japanese Patent Laid-Open No. 8-6 4 8 80
特許文献 2 : 特開平 5— 1 0 4 8 0号公報  Patent Document 2: Japanese Patent Application Laid-Open No. 5-104.80
特許文献 3 : 特開 2 0 0 2— 7 1 0 5 5号公報 発明の開示  Patent Document 3: Japanese Patent Laid-Open No. 2 0 0 2-7 10 5 5 Disclosure of Invention
上記従来の技術は、 超電導送電用断熱多重管の曲管部において、 冷媒通流時に、 内管と外管が接触するのを防止するには不十分である。 すなわち、 非特許文献 1 のように曲率半径の大きい曲げ加工によって断熱多重管自体を曲げる手段は、 実 際の送電管に想定される急峻な曲げに対応できない。  The above prior art is insufficient to prevent the inner tube and the outer tube from contacting each other at the time of refrigerant flow in the bent tube portion of the heat insulating multiple tube for superconducting power transmission. In other words, as in Non-Patent Document 1, the means for bending the heat insulating multi-pipe itself by bending with a large radius of curvature cannot cope with the steep bend assumed for an actual transmission pipe.
又、 特許文献 1のようにスぺーサ (低熱伝導性スぺーサ) を内管と外管の間に 介装する手段では、 曲管部の曲率が大きくかつ内管の冷却収縮が大きい場合、 ス ぺーサに過大な力が作用して、 スぺーサが割れるおそれがある。 又、 特許文献In addition, as disclosed in Patent Document 1, when a spacer (low thermal conductivity spacer) is interposed between the inner tube and the outer tube, the curvature of the bent tube portion is large and the cooling shrinkage of the inner tube is large. , Su Excessive force may act on the spacer and the spacer may break. Patent literature
2のように外管の一部にベローズ継手を用いる手段は、 極低温での使用を想定し たものではないから、 内管と外管の接触を回避できない場合がある。 更に、 曲管 部内のベローズ継手の山部の外径は、 直管部内の接続相手管の外径と同じである ため、 極低温冷媒通流時の冷却収縮により内管が外管と接触する可能性は低くな らない。 The method of using a bellows joint as part of the outer pipe as shown in 2 is not intended for use at cryogenic temperatures, so it may not be possible to avoid contact between the inner pipe and the outer pipe. Furthermore, since the outer diameter of the crest of the bellows joint in the bent pipe is the same as the outer diameter of the connection partner pipe in the straight pipe, the inner pipe comes into contact with the outer pipe due to cooling contraction when the cryogenic refrigerant flows. The possibility does not go down.
又、 特許文献 3では、 ベローズ管を一部外管に用いて、 冷却時にも内管と外管 が同心配置となるよう、 ベローズに嵌め込み材を入れて調整するようにしている が、 配管材料の種類や曲管部の曲率が、 配管設置箇所毎に多種多様に設定される と想定される実際の送電システムでは、 こういった調整をいちいち実施すること は配管施工の複雑化及ぴコスト高を招き、 現実的ではない。  In Patent Document 3, a part of the bellows pipe is used for the outer pipe, and the fitting is inserted into the bellows so that the inner pipe and the outer pipe are concentrically arranged during cooling. In an actual power transmission system that is assumed to have a wide variety of pipe types and curved pipe curvatures for each pipe installation location, it is necessary to make these adjustments one by one, making piping construction more complicated and costly. Is not realistic.
上記のような従来技術の問題に鑑み、 本発明は、 冷却収縮時の内管の外管への 接触を防止して断熱効率を確保でき、 しかも配管施工も簡単かつ安価に実施しう る、 超電導送電用断熱多重管の曲管部を提供することを目的とする。  In view of the problems of the prior art as described above, the present invention can prevent the contact of the inner tube to the outer tube at the time of cooling shrinkage, and can ensure the heat insulation efficiency, and the piping work can be performed easily and inexpensively. It is an object of the present invention to provide a curved pipe part of a heat insulating multiple pipe for superconducting power transmission.
発明者らは、 上記目的を達成するために鋭意検討し、 以下の通りの本発明をな した。  The inventors diligently studied to achieve the above object, and made the present invention as follows.
すなわち、 本発明は、 超電導ケーブルを収容する内管と、 該内管を囲む一又は 複数の多重配置の外管とを有し、 隣接する内側と外側の管間隙の少なくとも一つ が真空断熱層とされた超電導送電用断熱多重管の、 直管部に接続して配管方向を 変更する、 曲管部であって、 該曲管部の内管及び外管が夫々直管部の内管及び外 管と一対一に接続し、 曲管部内の内管の外径は直管部内のそれと同一で、 曲管部 内の外管の外径は直管部内の接続相手の外管の外径よりも大であることを特徴と する超電導送電用断熱多重管の曲管部である。 本発明では、 曲管部の曲がり角 度が 3 0度以上であることが好ましい。 ここでいう曲がり角度とは、 直管に对し て曲がった部分の角度を意味する (つまり、 内角では 1 5 0度以下である) 。 又、 本発明では、 曲管部内の隣り合う内側と外側の管同士の管間隙が、 直管部内の接 続相手同士の管間隙よりも 5 mm以上大であることが好ましい。 又、 本発明では、 大気環境時の曲管部内において、 内側の管はこれと隣り合う外側の管に対し、 冷 媒通流時に変位する方向とは逆の方向に、 偏心配置されていることが好ましい。 本発明によれば、 超電導送電用断熱多重管の曲管部において、 冷却収縮時の内 管が外管と接触するのを有効に防止でき、 又、 同断熱多重管の配管施工を簡単か つ安価に実施できるようになる。 図面の簡単な説明 That is, the present invention includes an inner tube that accommodates a superconducting cable, and one or a plurality of outer tubes that surround the inner tube, and at least one of the adjacent inner and outer tube gaps is a vacuum heat insulating layer. The superconducting power-insulated multi-tube for superconducting power transmission is connected to the straight pipe section to change the piping direction. The bent pipe section includes an inner pipe and an outer pipe respectively connected to the straight pipe section. Connected to the outer pipe on a one-to-one basis, the outer diameter of the inner pipe in the bent pipe section is the same as that in the straight pipe section, and the outer diameter of the outer pipe in the bent pipe section is the outer diameter of the connecting outer pipe in the straight pipe section. It is a curved pipe part of a heat insulating multi-pipe for superconducting power transmission characterized by being larger than the above. In the present invention, it is preferable that the bending angle of the bent tube portion is 30 degrees or more. The bending angle here means the angle of the part bent with respect to the straight pipe (that is, the inner angle is 1550 degrees or less). In the present invention, it is preferable that the pipe gap between the adjacent inner and outer pipes in the bent pipe part is 5 mm or more larger than the pipe gap between the connection partners in the straight pipe part. Further, in the present invention, in the bent pipe portion in the atmospheric environment, the inner pipe is eccentrically arranged in a direction opposite to the direction displaced when the coolant flows with respect to the outer pipe adjacent thereto. Is preferred. According to the present invention, in the curved pipe portion of the heat insulating multiple tube for superconducting power transmission, It is possible to effectively prevent the pipe from coming into contact with the outer pipe, and the piping construction of the heat insulating multi-pipe can be performed easily and inexpensively. Brief Description of Drawings
図 1は、 本発明の実施例 1を示す管軸方向の概略断面図である。 FIG. 1 is a schematic cross-sectional view in the tube axis direction showing Embodiment 1 of the present invention.
図 2は、 図 1のスぺーサ配置部位の管周方向の概略断面図である。 FIG. 2 is a schematic cross-sectional view in the pipe circumferential direction of the spacer arrangement portion of FIG.
図 3は、 本発明の実施例 2を示す管軸方向の概略断面図である。 FIG. 3 is a schematic cross-sectional view in the tube axis direction showing Embodiment 2 of the present invention.
図 4 A、 図 4 Bは、 従来の問題点を示す管軸方向の概略断面図である。 4A and 4B are schematic cross-sectional views in the tube axis direction showing the conventional problems.
図 5 A、 図 5 Bは、 従来の問題点を示す管軸方向の概略断面図である。 5A and 5B are schematic sectional views in the tube axis direction showing the conventional problems.
図 6は、 冷媒通流時の冷却収縮による内管の変位についての説明図である。 各図中の符号の意味は以下の通りである。 FIG. 6 is an explanatory view of the displacement of the inner pipe due to cooling contraction during refrigerant flow. The meanings of the symbols in each figure are as follows.
1 外管  1 Outer pipe
1 c 曲外管  1 c curved outer tube
2 内管  2 Inner pipe
2 c 曲内管  2 c inner pipe
3 スぺーサ (低熱伝導性スぺーサ)  3 Spacer (Low thermal conductivity spacer)
4 接触  4 contact
5 フランジ  5 Flange
6 外管 (曲管部内)  6 Outer pipe (inside the curved pipe)
7 内管 (曲管部内)  7 Inner pipe (in the curved pipe section)
8 スー /、°一インシュレーション  8 Sue /, 1 Insulation
9 超電導ケーブル  9 Superconducting cable
1 0 孔  1 0 hole
2 0, 2 1, 2 2, 2 3 矢示方向  2 0, 2 1, 2 2, 2 3 Arrow direction
2 5 内管本体  2 5 Inner pipe body
1 0 0 直管部  1 0 0 Straight pipe
2 0 0 曲管部 発明を実施するための最良の形態 本発明では、 曲管部と直管部とが以下の条件 (1 ) 及び (2 ) を満たすものと した。 2 0 0 Curved Pipe BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, the curved pipe portion and the straight pipe portion satisfy the following conditions (1) and (2).
( 1 ) 曲管部内の内管外径 =直管部内の接続相手の内管外径  (1) Inner pipe outer diameter in the curved pipe section = Inner pipe outer diameter of the connection partner in the straight pipe section
( 2 ) 曲管部内の外管外径〉直管部内の接続相手の外管外径  (2) Outer pipe outer diameter in the curved pipe section> Outer pipe outer diameter of the connection partner in the straight pipe section
但し、 条件 (1 ) の等号 「=」 は、 ± 1 0 %以内の誤差を許容するものとする。 尚、 曲管部内の管と直管部内の接続相手の管との肉厚は、 特に限定されないが、 内側の管の収容スペース確保の観点及び配管施工の容易性の観点から、 互いに同 じ肉厚とする力 或いは違える場合はできるだけ互いの肉厚差が小さくなるよう にするのが好ましい。  However, the equal sign “=” in condition (1) allows an error within ± 10%. The wall thickness of the pipe in the bent pipe section and the pipe to be connected in the straight pipe section is not particularly limited. However, from the viewpoint of securing the inner pipe accommodation space and the ease of piping construction, the same thickness is used. It is preferable to make the difference between the thicknesses as small as possible if the force is different or different.
直管部と曲管部との外管の接続方法は、 配管施工の容易さの観点から、 双方 の互いに接続させる管の接続端に設けたフランジ同士をボルト等で締結する方法 が好ましい。  The method of connecting the outer pipe between the straight pipe section and the curved pipe section is preferably a method of fastening flanges provided at the connection ends of the pipes to be connected to each other with bolts or the like from the viewpoint of ease of piping construction.
直管部は、 単位長さが通常 4〜1 5 mである管を溶接やフランジ等で接続して 構成され、 直管部内の内管の少なくとも 2本同士をべローズで中継'接続すること で、 冷却収縮時の変位を緩和できるものの、 ベローズを何個も組込むのには限界 があり、 組込んだところで冷却収縮による変位を完全には吸収しきれない。 又、 コス ト高となるため個数は制限される。 この点、 本発明では、 条件 (1 ) 及び ( 2 ) の成立により、 曲管部内の内管と外管の管間隙を従来よりも拡大させるこ とができ、 ベローズの使用や多重管の同心配置にこだわらずとも、 内管と外管の 接触を回避することが可能である。  The straight pipe part is constructed by connecting pipes with a unit length of usually 4 to 15 m by welding, flanges, etc., and at least two of the inner pipes in the straight pipe part are relayed together by bellows Although the displacement during cooling shrinkage can be reduced, there are limits to the number of bellows that can be incorporated, and the displacement due to cooling shrinkage cannot be completely absorbed when incorporated. In addition, the number is limited due to the high cost. In this respect, in the present invention, by satisfying the conditions (1) and (2), the tube gap between the inner tube and the outer tube in the bent tube portion can be expanded more than before, and the use of bellows or concentricity of multiple tubes can be achieved. Regardless of the arrangement, it is possible to avoid contact between the inner and outer tubes.
曲管部内の外管外径は、 内管との接触回避及び配管スペース節約の観点から、 曲管部の曲がりの程度 (曲率の大きさ) に応じて大きくしていくのがよい。 即ち、 曲がりが鈍い (曲率が小さい) 場合は、 曲管部内の外管外径を直管部内の接続相 手の外管外径よりも僅かに大きくし、 曲がりが鋭い (曲率が大きい) 場合は、 曲 管部内の外管外径を直管部内の接続相手の外管外径よりもかなり大きくするのが よい。 .  The outer diameter of the outer pipe in the bent pipe should be increased according to the degree of bending of the bent pipe (the degree of curvature) from the viewpoint of avoiding contact with the inner pipe and saving piping space. In other words, when the bend is dull (the curvature is small), the outer diameter of the outer pipe in the bent pipe is slightly larger than the outer diameter of the connecting pipe in the straight pipe, and the bend is sharp (high curvature) Therefore, it is preferable that the outer diameter of the outer pipe in the bent pipe part is considerably larger than the outer diameter of the outer pipe of the connection partner in the straight pipe part. .
直管部の長さ、 及び直管部内の内管中継に用いたベローズ等によって、 曲管 部内の外管外径の適正値は変わるが、 条件 (1 ) 及び (2 ) が満たされさえすれ ば、 曲管部内の内管と外管の管間隙を、 直管部内の接続相手の内管と外管の管間 隙よりも大きくして、 冷却収縮時の内管と外管の接触を防止することができる。 尤も、 曲管部の曲がり角度 (即ち配管方向の変更角度) が 3 0度未満である場 合、 前記条件 (2 ) において不等号 「〉」 を等号 「=」 に代えた場合 (従来技術 の範囲内) でも、 曲管部内の内管の冷却収縮時の変位量が小さくて、 外管との接 触は起こりにくいので、 本発明の効果顕現性の観点から、 曲管部の曲がり角度は 3 0度以上であることが好ましい。 Depending on the length of the straight pipe section and the bellows used for relaying the inner pipe in the straight pipe section, the appropriate value of the outer diameter of the outer pipe in the bent pipe section will change, but the conditions (1) and (2) will only be satisfied. For example, the gap between the inner pipe and the outer pipe in the bent pipe section is made larger than the gap between the inner pipe and the outer pipe of the counterpart in the straight pipe section, and the contact between the inner pipe and the outer pipe during cooling contraction is increased. Can be prevented. However, when the bending angle of the curved pipe (that is, the change angle of the piping direction) is less than 30 degrees, the inequality sign “>” is replaced with the equal sign “=” in the condition (2) (prior art However, since the amount of displacement of the inner tube in the bent tube portion during cooling contraction is small and contact with the outer tube does not occur easily, the bending angle of the bent tube portion is It is preferably 30 ° or more.
ところで、 曲管部の断熱多重管は、 実際には、 理想的な同心配置構造をとり えない場合が殆どである。 というのは、 断熱多重管の曲管部は、 断熱多重管構造 の直管を直接曲げ加工して製作するのが困難であり、 たとえ製作できたとしても 曲管部の曲がりが鋭くなると、 内管と外管の非接触状態を維持するのは殆ど不可 能である。  By the way, in most cases, the adiabatic multiple pipes in the bent pipe section cannot actually have an ideal concentric arrangement structure. This is because it is difficult to bend a straight pipe with a heat insulation multi-pipe structure by directly bending the heat insulation multi-pipe structure, and even if it can be made, if the bend of the bend becomes sharp, It is almost impossible to keep the tube and the outer tube out of contact.
そこで、 別法として、 内管用、 外管用の直管をそれぞれ個別に、 管中心軸の曲 率が互いに同じとなるように、 曲げ加工した曲内管、 曲外管を用意し、 例えば図 Therefore, as an alternative, prepare straight inner pipes and outer pipes, and bend inner pipes and outer pipes that are bent so that the curvature of the pipe center axis is the same.
5 Aに示すように曲内管 2 cを曲外管 1 cの管内に挿入する方法が想定される。 し力 し、 実際には、 曲内管 2 cと曲外管 1 cとを同軸 (同心) 状態に保ちながら 前記挿入を行うのは極めて困難であり、 例えば図 5 Bに示すように曲内管 2の先 端部が曲外管 1の内面に当たって挿入続行不能となり易い。 曲内管の曲率を曲外 管のそれよりも小さくすれば、 揷入はし易くなるものの、 同心配置とはなりえず、 しかも、 曲内管が曲外管の内曲がり側の内面により近づくような配置形態となつ て、 冷却収縮時の曲內管と曲外管との接触が更に起りやすくなる。 又、 曲内管は その両端側に直管部分を伴い、 より挿入し難いことが多く、 その点からも多重管 の同心配置は実現困難である。 かかる実際の状況においてこそ、 本発明によれば、 先述のように多重管の同心配置にこだわらずとも、 冷却収縮時の内管が外管に接 触するのを有効に防止でき、 断熱効果を確保できるのである。 As shown in 5A, a method of inserting the bent tube 2c into the bent tube 1c is assumed. In practice, it is extremely difficult to perform the insertion while keeping the inner tube 2 c and the outer tube 1 c coaxial (concentric). For example, as shown in FIG. The tip end of the tube 2 hits the inner surface of the curved outer tube 1 and the insertion cannot be continued easily. If the curvature of the inner tube is smaller than that of the outer tube, it will be easier to insert, but it will not be concentric, and the inner tube will be closer to the inner surface of the outer tube. With such an arrangement, contact between the bent tube and the bent tube during cooling contraction is more likely to occur. In addition, the bent pipe has straight pipe portions at both ends, and is often difficult to insert. From this point, concentric arrangement of multiple pipes is difficult to achieve. In such an actual situation, according to the present invention, it is possible to effectively prevent the inner tube from coming into contact with the outer tube at the time of cooling contraction, even if the concentric arrangement of the multiple tubes is not taken into consideration, as described above. It can be secured.
更に、 本発明では、 曲管部内の隣り合う内側と外側の管同士の管間隙が、 直 管部内の接続相手同士の管間隙よりも 5 mm以上大きいという条件 (これを条仵 Furthermore, in the present invention, the condition that the pipe gap between the adjacent inner and outer pipes in the bent pipe part is 5 mm or more larger than the pipe gap between the connection partners in the straight pipe part (this is a condition).
( 3 ) と称する) を満たすようにすると、 内管と外管との接触をより一層効果的 に防止できて好ましい。 尚、 条件 (3 ) は、 直管部内及び曲管部内の多重管が同 心配置とされている場合、 曲管部内で隣り合う外側の管の内径と内側の管の外径 の差が、 直管部内の接続相手の隣り合う外側の管の内径と内側の管の外径の差よ りも 1 O mm以上大きいことを意味する。 以下、 条件 (3 ) の成立が好ましいとした理由を述べる。 説明の便宜上、 図 6に示す断熱 2重管を例にとる。 この例では、 最も厳しい条件に対応させるベく、 直管部 1 0 0内の内管 2にべローズを設置せず、 配管長手方向の一端を固定端、 他端を自由端とし、 直管部 1 0 0の長さ L = 6 m (通常の電縫鋼管定常長さの最 大値に近い) とし、 管材料はオーステナイト系ステンレス鋼 (冷却収縮がフェラ イ ト系ステンレス鋼よりも大きい) とし、 内管 2及び曲内管 2 cのみが冷却収縮 するものとする。 (Referred to as (3)) is preferable because the contact between the inner tube and the outer tube can be more effectively prevented. Condition (3) is that when the multiple pipes in the straight pipe part and the curved pipe part are concentrically arranged, the difference between the inner diameter of the outer pipe adjacent to the curved pipe part and the outer diameter of the inner pipe is This means that it is 1 O mm or more larger than the difference between the inner diameter of the adjacent outer pipe and the outer diameter of the inner pipe in the straight pipe section. Hereinafter, the reason why it is preferable to satisfy the condition (3) will be described. For convenience of explanation, the insulated double pipe shown in Fig. 6 is taken as an example. In this example, the bellows is not installed on the inner pipe 2 in the straight pipe section 100, so that it can cope with the most severe conditions, one end in the longitudinal direction of the pipe is a fixed end, and the other end is a free end. The length of the part 100 is L = 6 m (close to the maximum normal length of ERW steel pipe), and the pipe material is austenitic stainless steel (cooling shrinkage is larger than ferrite stainless steel). Only the inner pipe 2 and the curved inner pipe 2c are cooled and shrunk.
極低温冷媒の通流に伴い冷却が進むと、 固定端側の内管 2が矢示方向 2 0へ '収縮し、 曲内管 2 cが矢示方向 2 1 へ変位し、 これらの収縮乃至変位に伴い、 自 由端側の内管 2が矢示方向 2 2へ収縮し且つ矢示方向 2 3へ変位する。  When cooling proceeds with the flow of the cryogenic refrigerant, the inner pipe 2 on the fixed end side contracts in the direction indicated by arrow 20 and the curved inner pipe 2 c displaces in the direction indicated by arrow 2 1. With the displacement, the inner pipe 2 on the free end side contracts in the arrow direction 22 and displaces in the arrow direction 23.
極低温冷媒に液体窒素 (沸点 7 7 K) を用い、 通流方向を一定とし、 管材料と したオーステナイト系ステンレス鋼の収縮率を、 大きめに見積もって 1 5 X 1 0 一6ノ Kとし、 定常極低温状態を仮定して内管 2及び曲内管 2 cの収縮乃至変位 を計算すると、 自由端側の内管 2の矢示方向 2 3への変位が約 7 mmになる。 こ れは図 6において両端を固定端とした場合の曲内管の内曲がり側への変位とほぼ 同じになると考えられる。 隣り合う管同士の管間隙は狭くとも 2 mm程度は確保 されるのが従来の通例であることから、 曲管部内の管間隙を直管部内の接続相手 の管間隙よりも 5 mm以上大きくしておくことにより、 曲管部内で隣り合う内側 と外側の管同士の接触をより確実に回避できる。 Liquid nitrogen (boiling point 7 7 K) is used as the cryogenic refrigerant, the flow direction is constant, and the shrinkage rate of the austenitic stainless steel used as the pipe material is estimated to be 1 5 X 1 0 16 K When the contraction or displacement of the inner tube 2 and the curved inner tube 2c is calculated assuming a steady cryogenic state, the displacement of the inner tube 2 on the free end side in the direction indicated by the arrow 23 is about 7 mm. This is considered to be almost the same as the displacement of the bent tube toward the inner bend when both ends are fixed ends in Fig. 6. Since it is customary in the past that the pipe gap between adjacent pipes is kept at least 2 mm, the pipe gap in the curved pipe section is made 5 mm or more larger than the pipe gap of the connection partner in the straight pipe section. By this, it is possible to more reliably avoid contact between the inner and outer pipes adjacent in the curved pipe section.
曲管部の管間隙の大きさは、 大きければ大きいほど、 内管と外管の接触を防 止する効果が高まり、 断熱効果の確保による超電導送電の実現には好ましいが、 その上限は、 直管部内の管外径に依存するから決定し難い。 尤も、 例えば直管部 内の外径 1 5 O mmの管に曲管部内の外径 1 0 0 0 mmの管を接続するなどとい う極端なことはまずありえない等々の、 フランジ接続可能性の観点から、 曲管部 内の管の外径については、 直管部内の接続相手の管の外径の凡そ 3倍程度以下と するのが望ましい。  The larger the gap between the bent pipe sections, the higher the effect of preventing the contact between the inner and outer pipes, which is preferable for realizing superconducting power transmission by ensuring the heat insulation effect. It is difficult to determine because it depends on the outer diameter of the pipe in the pipe. However, it is unlikely that extreme cases such as connecting a pipe with an outer diameter of 100 mm in the bent pipe section to a pipe with an outer diameter of 15 O mm in the straight pipe section will be possible. From the viewpoint, it is desirable that the outer diameter of the pipe in the curved pipe section is about three times or less than the outer diameter of the connecting pipe in the straight pipe section.
又、 曲管部が図 4 A、 図 4 Bに示すような単純 L字構造の場合、 曲管部内の 内管は冷却収縮時に管軸曲率中心に向かう方向に変位し、 外管の内曲がり側の内 面に接触する傾向にある。 し力、しながら、 超電導送電システム全体を考えると、 図 4 A、 図 4 Bのような単純な状況とはならず、 むしろ、 断熱多重管が、 曲管部 ごとに,、 接続相手の多重直管の影響を受ける状況によってあらゆる方向に曲げら れている場合があると想定される。 このような場合に対応すべく、 本発明では、 内管とそのすぐ外側の外管の管間隙のみならず、 隣り合う外管同士の管間隙につ いても、 条件 (3 ) を成立させることが好ましい。 In addition, when the curved pipe part has a simple L-shaped structure as shown in Fig. 4A and Figure 4B, the inner pipe inside the curved pipe part is displaced in the direction toward the center of curvature of the pipe during cooling contraction, and the inner pipe of the outer pipe is bent. It tends to come into contact with the inner surface. However, considering the superconducting power transmission system as a whole, the situation is not as simple as in Fig. 4A and Fig. 4B. Every time, it is assumed that it may be bent in any direction depending on the situation affected by the multiple straight pipe of the connection partner. In order to cope with such a case, in the present invention, the condition (3) is established not only for the gap between the inner pipe and the outer pipe immediately outside the inner pipe but also for the gap between adjacent outer pipes. Is preferred.
更に、 冷媒通流時の曲管部内の内側の管がこれと隣り合う外側の管に対し近 づく変位方向が、 予め判っている場合は、 大気環境時の曲管部内において、 内側 の管を外側の管に对し、 前記近づく変位方向とは反対の方向 (即ち、 内管が冷媒 通流時に変位する方向とは逆の方向) に、 偏心配置しておくと、 隣り合う内側と 外側の管同士の接触をより一層確実に防止できて好ましい。 実施例  Furthermore, when the displacement direction in which the inner pipe in the bent pipe section at the time of refrigerant flow approaches the outer pipe adjacent to this is known in advance, the inner pipe in the bent pipe section in the atmospheric environment If it is arranged eccentrically in the direction opposite to the approaching displacement direction (i.e., the direction opposite to the direction in which the inner tube is displaced when the refrigerant flows) against the outer tube, the adjacent inner and outer It is preferable because the contact between the tubes can be prevented more reliably. Example
実施例 1  Example 1
図 1は、 本発明の実施例 1として断熱二重管構造の曲管部とこれに接続する直 管部を示す管軸方向の概略断面図、 図 2は、 図 1のスぺーサ配置部位の管周方向 の概略断面図である。 曲管部 2 0 0の両側の直管部 1 0 0内の内管 2、 外管 1が 曲管部 2 0 0内の内管 7、 外管 6と一対一に接続され、 内管 2、 7の管内に超電 導ケーブル 9が挿入されている。 尚、 図 1、 図 2は内管 2、 7に極低温冷媒を通 流する前の状態を示している。  FIG. 1 is a schematic cross-sectional view in the tube axis direction showing a curved pipe portion having a heat insulating double pipe structure and a straight pipe portion connected thereto as Embodiment 1 of the present invention, and FIG. 2 is a spacer arrangement portion of FIG. It is a schematic sectional drawing of the pipe circumference direction. The straight pipe section on both sides of the curved pipe section 200, the inner pipe 2 and the outer pipe 1 in the 100 section are connected to the inner pipe 7 and the outer pipe 6 in the curved pipe section 200, one-to-one. The superconducting cable 9 is inserted into the tube 7. 1 and 2 show the state before the cryogenic refrigerant flows through the inner pipes 2 and 7.
直管部 1 0 0内の内管 2、 外管 1の材質、 径サイズは、 既に、 超電導送電用断 熱二重管として用いる目的で最適化してある。  The material and diameter size of the inner pipe 2 and outer pipe 1 in the straight pipe section 100 have already been optimized for use as a thermal insulation double pipe for superconducting power transmission.
内管 2と外管 1との管間隙にはスぺーサ (低熱伝導性のもの) 3が配管延長方 向に離散配置され、 両管の相互接触を防いでいる (曲管部 2 0 0内でも同様) 。 スぺーサは、 例えば、 G F R P製の厚み 2 mmのものを、 図 2に示すように正方 形状とし、 外管 1の内径よりも短い対角長をもたせて用いるとよい。 これにより、 二重管の冷却収縮や変位等があっても、 スぺーサ 3と外管 1の内面との接触点 Spacers (low thermal conductivity) 3 are discretely arranged in the pipe extension direction in the pipe gap between the inner pipe 2 and the outer pipe 1 to prevent mutual contact between the two pipes (curved pipe section 2 0 0 As well as within). For example, a spacer having a thickness of 2 mm made of GFRP may be used as a spacer having a square shape as shown in FIG. 2 and having a diagonal length shorter than the inner diameter of the outer tube 1. As a result, the contact point between the spacer 3 and the inner surface of the outer tube 1 can be maintained even if there is cooling shrinkage or displacement of the double tube.
(外環境から内管 2への熱伝導中継点に相当する) が高々 2〜3点に限られ、 断 熱性能が確保される。 なお、 熱伝導をより防ぐ観点から、 図 2に示すようにスぺ ーサ 3の適当な箇所に孔 1 0を設けるのが好ましい。 (Corresponding to the heat conduction relay point from the external environment to the inner pipe 2) is limited to 2 to 3 points at most, and heat insulation performance is ensured. From the viewpoint of further preventing heat conduction, it is preferable to provide holes 10 at appropriate locations in the spacer 3 as shown in FIG.
図 1には、 曲管部にもスぺーサを入れたものを示したが、 曲管部にスぺーサを必 ずしも入れる必要はない。 . 曲管部 2 0 0の曲がり角度は 9 0度である。 内管 7は材質、 外径及び肉厚が内 管 2と同じである。 外管 6は、 外径が外管 1よりも大きく、 材質及び肉厚は外管 1と同じである。 内管 7は内管 1と溶接で接続されている。 尚、 溶接で接続する 代わりにフランジで接続してもよレ、。 外管 6は外管 1とフランジ 5で接続されて いる。 Figure 1 shows a spacer with a spacer in the curved pipe, but it is not necessary to insert a spacer in the curved pipe. The bend angle of the bent tube part 200 is 90 degrees. The inner pipe 7 has the same material, outer diameter and wall thickness as the inner pipe 2. The outer tube 6 has an outer diameter larger than that of the outer tube 1 and is the same material and thickness as the outer tube 1. The inner pipe 7 is connected to the inner pipe 1 by welding. In addition, you can connect with a flange instead of welding. The outer pipe 6 is connected to the outer pipe 1 and the flange 5.
内管 2、 7と外管 1、 6との管間隙を真空状態にしつつ、 内管 2、 7内に液体 窒素をはじめとした極低温冷媒を徐々に流していき、 更なる真空化を図り、 断熱 効果を発揮させることができる。 尚、 内管 2、 7は、 内管本体 2 5の外面に、 遠 赤外エネルギーの遮断、 抑制用のスーパーインシュレーション 8を巻き付けて構 成されている。 スーパ一^ Tンシユレーシヨン 8は有機樹脂フィルムにアルミユウ ムをスパッタしてなる。 輻射率を下げて外からの入熱を抑えるため、 スーパーィ ンシユレーション卷き付けに代えて、 金属コーティングを用いてもよい。  While the tube gap between the inner pipes 2 and 7 and the outer pipes 1 and 6 is in a vacuum state, a cryogenic refrigerant such as liquid nitrogen is gradually allowed to flow into the inner pipes 2 and 7 for further vacuuming. The thermal insulation effect can be exhibited. The inner pipes 2 and 7 are configured by winding super-insulation 8 for blocking and suppressing far-infrared energy around the outer surface of the inner pipe body 25. Super ^ Tension 8 is made by sputtering aluminum on organic resin film. In order to reduce the emissivity and suppress the heat input from the outside, a metal coating may be used instead of super-infiltration.
内管 2、 7内を液体窒素温度まで冷却した状態 (液体窒素は図の右下側から左 上側へ流す) において、 外管 6は殆ど変位せず、 内管 7が冷却収縮により管軸曲 率中心に向かう方向に変位して、 外管 6の内曲がり側の内面に接近するが、 外管 6の外径が、 従来と違って外管 1の外径よりも大きくされているかち、 外管 6の 内曲がり側の内面は従来よりも管軸曲率中心側に移行しており、 内管 7と接触す るまでには至らない。  In the state where the inside pipes 2 and 7 are cooled to the temperature of liquid nitrogen (liquid nitrogen flows from the lower right side to the upper left side in the figure), the outer pipe 6 is hardly displaced, and the inner pipe 7 is bent due to cooling contraction. It is displaced in the direction toward the center of the index and approaches the inner curved inner surface of the outer tube 6, but the outer diameter of the outer tube 6 is made larger than the outer diameter of the outer tube 1 unlike the conventional one. The inner surface of the outer tube 6 on the inner curve side has shifted to the center of the tube axis curvature than before, and does not reach the inner tube 7.
又、 先述の理由で、 多重管を曲管部内で同心配置とするのは実際上困難なこと から、 図 1の例では、 曲管部 2 0 0内の内管 7はその中心軸が外管 6の中心軸位 置から管軸曲率中心.側に寄った偏心位置に配置されているが、 それでも、 冷却収 縮時に外管 6との接触は回避できる。 より確実に内管 7と外管 6との接触を回避 するためには、 先述の条件 (3 ) を満たすよう、 内管 7と外管 6との管間隙 (但 し、 相互偏心配置の場合は、 管周方向での極小値で代表する) を、 内管 2と外管 1との管間隙よりも 5 mm以上大きくとればよい。  Also, for the reasons described above, it is practically difficult to arrange the multiple pipes concentrically in the curved pipe section. Therefore, in the example of FIG. 1, the central axis of the inner pipe 7 in the curved pipe section 200 is outside. Although it is arranged at an eccentric position that is closer to the tube axis curvature center side than the center axis position of the tube 6, contact with the outer tube 6 can still be avoided during cooling contraction. In order to avoid the contact between the inner pipe 7 and the outer pipe 6 more reliably, the gap between the inner pipe 7 and the outer pipe 6 (however, in the case of mutual eccentric arrangement, so as to satisfy the above condition (3)). (Represented by the local minimum in the pipe circumferential direction) should be at least 5 mm larger than the gap between the inner pipe 2 and the outer pipe 1.
尚、 管の重数が 3以上の断熱多重管の場合は、 図示を省略するが、 先述のよう に、 曲管部内の隣り合う内側と外側の管間隙を直管部内の接続相手のそれよりも 5 mm以上大きくとればよい。 実施例 2 図 3は、 本発明の実施例 2を示すものであり、 これは、 実施例 1において、 内 管 7と外管 6との管間隙を、 冷却収縮時の内管 7の変位方向 (ここでは、 当該変 位方向が、 管軸曲率中心に向かう方向であることは既知である) とは反対の方向 に拡大した形態の例である。 この形態によれば、 より一層確実に内管 7と外管 6 との接触を回避することができる。 In the case of an adiabatic multi-pipe with 3 or more pipes, the illustration is omitted, but as described above, the adjacent inner and outer pipe gaps in the curved pipe part are connected to those of the connection partner in the straight pipe part. Should be larger than 5 mm. Example 2 FIG. 3 shows a second embodiment of the present invention. In the first embodiment, the displacement between the inner tube 7 and the outer tube 6 is changed in the direction of displacement of the inner tube 7 during cooling contraction (here, This is an example of a form expanded in a direction opposite to the direction in which the displacement direction is a direction toward the center of curvature of the pipe axis. According to this embodiment, contact between the inner tube 7 and the outer tube 6 can be avoided more reliably.
尚、 上記のような管間隙の拡大を行う方法として、 該拡大前に比べて、 内管 7 の曲率を大きくする方法、 及び/又は、 外管 6の内曲がり側の曲率を小さくする 方法 (この方法の場合、 外管 6としては、 径が管軸方向位置により異なるもの、 より具体的には管軸方向の中央部が両端部よりも大径のもの、 を用いることにな る) が挙げられる。 図 3の例では、 これらの方法が併用されている。  In addition, as a method of enlarging the pipe gap as described above, a method of increasing the curvature of the inner tube 7 and / or a method of decreasing the curvature of the inner tube 7 of the outer tube 6 compared to before the expansion ( In this method, as the outer tube 6, a tube whose diameter varies depending on the position in the tube axis direction, more specifically, a tube whose center portion in the tube axis direction is larger in diameter than both ends is used. Can be mentioned. In the example of Figure 3, these methods are used together.

Claims

請求の範囲 The scope of the claims
1 . 超電導ケ ブルを収容する内管と、 該內管を囲む一又は複数の多重配置の 外管とを有し、 隣接する内側と外側の管間隙の少なくとも一つが真空断熱層とさ れた超電導送電用断熱多重管の、 直管部に接続して配管方向を変更する、 曲管部 であって、 該曲管部の内管及び外管が夫々直管部の内管及び外管と一対一に接続 し、 曲管部内の内管の外径は直管部内のそれと同一で、 曲管部内の外管の外径は 直管部内の接続相手の外管の外径よりも大であることを特徴とする超電導送電用 断熱多重管の曲管部。 1. It has an inner pipe that accommodates a superconducting cable and one or more outer pipes surrounding the soot pipe, and at least one of the adjacent inner and outer pipe gaps is a vacuum heat insulating layer. A curved pipe section that is connected to the straight pipe section of the heat insulating multiple pipe for superconducting power transmission and changes the piping direction. The inner pipe and the outer pipe of the curved pipe section are respectively connected to the inner pipe and the outer pipe of the straight pipe section. The outer diameter of the inner pipe in the curved pipe section is the same as that in the straight pipe section, and the outer diameter of the outer pipe in the curved pipe section is larger than the outer diameter of the other pipe in the straight pipe section. A curved pipe part of a heat insulating multi-pipe for superconducting power transmission characterized by being.
2 . 曲管部の曲がり角度が 3 0度以上であることを特徴とする請求項 1記載の 曲管部。 2. The bent pipe part according to claim 1, wherein the bent angle of the bent pipe part is 30 degrees or more.
3 . 曲管部内の隣り合う内側と外側の管同士の管間隙が、 直管部内の接続相手 同士の管間隙よりも 5 mm以上大であることを特徴とする請求項 1又は 2記載の 曲管部。 3. The pipe according to claim 1 or 2, wherein a pipe gap between adjacent inner and outer pipes in the bent pipe part is 5 mm or more larger than a pipe gap between connection partners in the straight pipe part. Pipe part.
4 . 大気環境時の曲管部内において、 内側の管はこれと隣り合う外側の管に対 し、 冷媒通流時に変位する方向とは逆の方向に、 偏心配置されていることを特徵 とする請求項 1〜 3の何れかに記載の曲管部。 4. In the curved pipe part in the atmospheric environment, the inner pipe is eccentrically arranged with respect to the outer pipe adjacent to it in the direction opposite to the direction of displacement when the refrigerant flows. The curved pipe part according to any one of claims 1 to 3.
PCT/JP2007/072039 2006-11-09 2007-11-07 Bend portion of heat insulation multiple pipe for superconducting transmission WO2008056811A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006304385A JP4899808B2 (en) 2006-11-09 2006-11-09 Curved pipe section of heat insulating multi-pipe for superconducting power transmission
JP2006-304385 2006-11-09

Publications (1)

Publication Number Publication Date
WO2008056811A1 true WO2008056811A1 (en) 2008-05-15

Family

ID=39364615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/072039 WO2008056811A1 (en) 2006-11-09 2007-11-07 Bend portion of heat insulation multiple pipe for superconducting transmission

Country Status (2)

Country Link
JP (1) JP4899808B2 (en)
WO (1) WO2008056811A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102182897A (en) * 2011-04-20 2011-09-14 王新华 Heat preserving shell for special-shaped pipeline elbow
JP2011208667A (en) * 2010-03-29 2011-10-20 Ckd Corp Joint of vacuum double pipe, and connected structure of the vacuum double pipe

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101298656B1 (en) * 2011-03-30 2013-08-21 한국지역난방공사 Shape tube for district heating heat pipe having shear control ring
JP6295007B2 (en) * 2015-04-24 2018-03-14 古河電気工業株式会社 Double pipe
JP7246692B2 (en) * 2018-12-19 2023-03-28 日本ヴィクトリック株式会社 Double pipe joint structure
JP7153925B2 (en) * 2019-01-16 2022-10-17 日本ヴィクトリック株式会社 Double pipe joint structure
JP7203384B2 (en) * 2019-07-02 2023-01-13 日立Geニュークリア・エナジー株式会社 Double pipe joint structure
JP2023085049A (en) * 2021-12-08 2023-06-20 Tbグローバルテクノロジーズ株式会社 Cryogenic fluid transfer vacuum heat insulation double-piping

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512283Y1 (en) * 1970-11-30 1976-01-23
JPS5445207Y2 (en) * 1975-06-21 1979-12-25
JPS5794780U (en) * 1980-12-03 1982-06-10
JPS6062698U (en) * 1983-10-07 1985-05-01 株式会社大阪パツキング製造所 Heat insulation cover for bent pipe section
JPH053200U (en) * 1991-06-29 1993-01-19 日立電線株式会社 Transfer Arch Yuve

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794780A (en) * 1980-12-05 1982-06-12 Ricoh Kk Picture display
JP3694405B2 (en) * 1997-11-07 2005-09-14 株式会社ベネックス Heat insulation pipe for fluid transportation piping
JP3375586B2 (en) * 2000-01-19 2003-02-10 修 村松 Elbow structure of double piping
DE10221534A1 (en) * 2002-05-15 2003-11-27 Nexans Conduit for the transport of frozen media
JP2004108568A (en) * 2003-03-18 2004-04-08 Osamu Muramatsu Structure of carrier pipe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512283Y1 (en) * 1970-11-30 1976-01-23
JPS5445207Y2 (en) * 1975-06-21 1979-12-25
JPS5794780U (en) * 1980-12-03 1982-06-10
JPS6062698U (en) * 1983-10-07 1985-05-01 株式会社大阪パツキング製造所 Heat insulation cover for bent pipe section
JPH053200U (en) * 1991-06-29 1993-01-19 日立電線株式会社 Transfer Arch Yuve

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011208667A (en) * 2010-03-29 2011-10-20 Ckd Corp Joint of vacuum double pipe, and connected structure of the vacuum double pipe
CN102182897A (en) * 2011-04-20 2011-09-14 王新华 Heat preserving shell for special-shaped pipeline elbow

Also Published As

Publication number Publication date
JP2008121746A (en) 2008-05-29
JP4899808B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
WO2008056811A1 (en) Bend portion of heat insulation multiple pipe for superconducting transmission
JP5795406B2 (en) Pipe for transportation of liquefied natural gas
KR100568899B1 (en) Vacuum-insulated pipe
US20070084623A1 (en) Direct current superconducting power transmission cable and system
CN109563960B (en) Delivery pipe
JP5598718B2 (en) Multi-layer insulation joint and double pipe connection structure
US20130186504A1 (en) Pre-insulated piping system
JP2019526218A (en) How to set up a transmission link for electrical energy
JP6295007B2 (en) Double pipe
JPH09152089A (en) Very low temperature heat insulating pipe and superconductive cable
CN103470918B (en) A kind of uncompensated device vacuum tube for cryogen conveying
JP2002056729A (en) Superconducting cable line
CN210292939U (en) Low-temperature heat transfer device and low-temperature heat transfer system
CN113077935B (en) Superconducting cable refrigeration medium spiral transmission structure and superconducting cable
CN107725972B (en) Vacuum interlayer low-temperature fluid transmission pipeline
KR102351544B1 (en) Superconducting cable and superconducting power system having the same
CN104848003A (en) Vacuum tube structure and low temperature pipeline adopting same
JP2003194267A (en) Flexible coolant transporting pipe and superconducting power cable
CN220582015U (en) Vacuum sleeve
CN219755706U (en) Double-curvature bent pipe compensator
JP5547465B2 (en) Vacuum insulation piping
CN103322357A (en) Compound liquid nitrogen liquid helium delivery pipe joint with potential isolating function
CN113217719A (en) Low-temperature transmission pipeline device
JP5400512B2 (en) Insulation pipe
WO2021189673A1 (en) Connecting pipe assembly and air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07831769

Country of ref document: EP

Kind code of ref document: A1