WO2008056733A1 - Apparatus for collecting blood component - Google Patents

Apparatus for collecting blood component Download PDF

Info

Publication number
WO2008056733A1
WO2008056733A1 PCT/JP2007/071698 JP2007071698W WO2008056733A1 WO 2008056733 A1 WO2008056733 A1 WO 2008056733A1 JP 2007071698 W JP2007071698 W JP 2007071698W WO 2008056733 A1 WO2008056733 A1 WO 2008056733A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
pressure
donor
return
pump
Prior art date
Application number
PCT/JP2007/071698
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshiki Takagi
Yoshiteru Hoshino
Shinya Sano
Original Assignee
Terumo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Kabushiki Kaisha filed Critical Terumo Kabushiki Kaisha
Priority to JP2008543116A priority Critical patent/JP4979709B2/en
Publication of WO2008056733A1 publication Critical patent/WO2008056733A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/3621Extra-corporeal blood circuits
    • A61M1/3639Blood pressure control, pressure transducers specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M1/00Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
    • A61M1/36Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
    • A61M1/38Removing constituents from donor blood and storing or returning remainder to body, e.g. for transfusion

Definitions

  • the present invention relates to a blood component collection apparatus that collects blood from a donor, separates the collected blood into a plurality of components, collects predetermined components, and returns the remaining components to the donor.
  • Blood collection includes whole blood collection in which blood is collected as it is and component blood collection in which only predetermined components are extracted.
  • component blood collection the blood collected from the donor is centrifuged to extract certain components, and other components are returned to the donor.
  • the necessary components plasma and platelets
  • a blood component collection apparatus for automatically collecting such component blood has been put into practical use.
  • the blood component collection device After a needle is punctured into a donor, blood collection processing is performed through the needle, the collected blood is separated into a plurality of components, and a predetermined component is collected; and The process of returning the remaining components from the needle to the donor is automatically performed by rotating the pump under the action of a predetermined control unit.
  • a tube is attached to the pump.
  • the pump When collecting blood, the pump is rotated forward to suck and draw blood from the tube, and when returning blood, the pump is rotated backward to send the remaining components to the tube.
  • the flow rate of blood and blood components in the tube during blood collection and return can be changed according to the rotational speed of the pump.
  • the blood component may stay in a compressed state when returning blood, The pressure of the part rises and acts to push back the needle. As a result, the needle tip is withdrawn from the vein, blood is pumped out of the blood vessel, and internal bleeding occurs. Even if the needle tip does not lose its venous force, the same condition occurs when blood leaks from the gap between the needle and the blood vessel wall.
  • the donor may feel a little uncomfortable or the donor or operator may be aware that the puncture site is swollen. Also, you may not notice. When such internal bleeding occurs, the skin may be swollen or discolored externally, and it may take some time to recover, and may make the donor feel uncomfortable or anxious.
  • a blood component collection device is a blood component collection device that returns a predetermined blood component to a donor after separating the blood collected from the donor, and returns the remaining blood component to the donor.
  • one of the conditions is that when the blood pump is rotated and blood return is started, the pressure corresponds to the cumulative rotational speed of the blood pump, the cumulative liquid supply amount, or the blood return elapsed time. If the limit threshold for setting is exceeded, the condition may be met.
  • the pressure is the cumulative rotational speed of the blood pump, the cumulative liquid supply amount, or the blood return progress.
  • the blood pump may be decelerated or stopped when a stop threshold value greater than the limit threshold value set in response to time is exceeded, or when the pressure slope exceeds a predetermined slope.
  • one of the conditions may be a condition indicating a change in a mountain shape that decreases after the pressure increases.
  • the control unit includes a speed detection unit that detects a blood return speed of the blood return line, and one of the conditions is that the blood return speed is a predetermined flow rate threshold value or less. Good.
  • the control unit reduces the pressure of the blood return line or the limit value of the blood return speed according to the condition, and then according to the cumulative rotation speed, the cumulative liquid supply amount, or the elapsed time of the blood pump.
  • the pressure falls below a predetermined recovery judgment pressure threshold, or when the blood return speed exceeds a predetermined recovery judgment flow rate threshold, the pressure of the blood return line or the limit value of the blood return speed is increased. You may let them. According to such conditions, even if the pressure or speed is limited before that, it can be confirmed from the subsequent situation that internal bleeding does not occur. The degree limit is relaxed or restored, and blood can be returned quickly.
  • the blood component collection device is a blood component collection device that returns a predetermined blood component to the donor after separating the blood collected from the donor, and returns the remaining blood component to the donor.
  • the pressure obtained from the pressure sensor is set corresponding to the cumulative rotation speed of the blood pump, the cumulative liquid supply amount, or the blood return elapsed time.
  • a pressure determination process for decelerating or stopping the blood pump is performed when a limit threshold or a stop threshold is exceeded, or when the slope of the pressure exceeds a predetermined slope.
  • the control unit may start the pressure determination process after a predetermined time has elapsed from the start of blood return or after the blood pump has rotated by a predetermined number.
  • the control unit uses the pressure at the start of blood return as an initial pressure, and from the pressure sensor until a predetermined time elapses from the start of blood return or until the blood pump rotates a predetermined number of times.
  • the differential pressure between the obtained pressure and the initial pressure exceeds a predetermined threshold, the differential pressure determination process for decelerating or stopping the blood pump may be performed.
  • FIG. 1 is a perspective view showing a blood component collection device according to the present embodiment.
  • FIG. 2 is a block configuration diagram of a control unit.
  • FIG. 3 is a circuit diagram of a blood collection kit.
  • FIG. 4 is a flowchart showing a procedure for collecting blood components performed by the blood component collecting apparatus.
  • FIG. 5 is a flowchart of the first embodiment of the blood return process.
  • FIG. 6 is a flowchart of corresponding processing.
  • FIG. 7 is a graph showing changes in donor pressure and blood return speed in the blood return process.
  • FIG. 8A is a diagram showing the contents of the memory in which the initial pressure is recorded at the first time of the pressure value inclination determination process
  • FIG. 8B is a graph when the accumulated rotation speed is 0.25 in the pressure value inclination determination process.
  • 8C is a diagram showing the contents of the memory when the cumulative rotation speed is 0.5 in the pressure value inclination determination process
  • FIG. 8D is the cumulative value in the pressure value inclination determination process.
  • FIG. 8E is a diagram illustrating the contents of the memory when the rotational speed is 2.25
  • FIG. 8E is a diagram illustrating the contents of the memory when the cumulative rotational speed is 2.5 in the pressure value inclination determination processing.
  • FIG. 9A is a diagram showing the contents of the memory at the first time of the differential pressure threshold judgment process
  • FIG. 9B shows the contents of the memory when the cumulative rotation number is 3.0 in the differential pressure threshold judgment process. It is a figure.
  • FIG. 10 is a flowchart of the second embodiment of the blood return process.
  • FIG. 11 is a flowchart (No. 1) of a third embodiment of the blood return process.
  • FIG. 12 is a flowchart (No. 2) of the third embodiment of the blood return process.
  • FIG. 13 is a flowchart (No. 3) of the third embodiment of the blood return process.
  • FIG. 14 is a graph showing changes in initial donor pressure and blood return speed in the third example of the blood return process.
  • FIG. 15 is a graph showing changes in donor pressure and blood return rate over the entire period of the third example of the blood return process.
  • FIG. 16 is a graph showing differential values and second-order differential values of donor pressure.
  • FIG. 1 illustrates an embodiment of the blood component collection device according to the present invention.
  • a blood component collection device 10 includes a device body 12 and a blood collection kit 14 attached to the device body 12.
  • the apparatus main body 12 is provided on the left side of the upper end of the first support column 16a, the box-shaped mechanism main unit 15, the first support column 16a and the second support column 16b extending upward from the left and right sides of the mechanism control unit 15. Whether there is a weigh scale 18, a monitor 20 provided at the upper end of the second support column, and a multi-chamber bag 126 provided on the right side of the first support column 16a.
  • a bag detection sensor 21 for detection a sensor 23a for detecting the presence / absence of a sterilization filter 114 provided on the right side of the second support 16b, a sensor 23b for detecting the presence / absence of a bubble removal chamber 112 and dripping of an anticoagulant
  • the monitor 20 is an input / output device of the blood component collection device 10, and has a large color touch panel 20a and a speaker 20b, and can be easily operated using images and sounds.
  • the speaker 20b is a stereo type.
  • the mechanism main body 15 includes a control mechanism 22 on the left side and a centrifugal separation mechanism (separation means) 24 on the right side.
  • the control mechanism unit 22 includes a control unit 26 that comprehensively controls the entire blood component collection device 10, a blood pump 28, an anticoagulant pump 30, a turbidity sensor 32, six bubble sensors 34a, 34b, 34c, 34d, 34e, 34f, seven clamps 36a, 36b, 36c, 36d, 36e, 36f, 36g, a donor pressure sensor 38, and a system pressure sensor 40.
  • the turbidity sensor 32 and the bubble sensors 34a to 34f for example, an ultrasonic sensor, an optical sensor, an infrared sensor, or the like can be used.
  • the turbidity sensor 32 and the bubble sensor 34d are integrally configured.
  • the centrifuge mechanism 24 is a mechanism that is equipped with the centrifuge bowl (centrifuge) 120 of the blood collection kit 14 and centrifuges the blood introduced into the centrifuge bowl 120.
  • the set rotational speed of the centrifuge bowl 120 is set to about 4200 to 5800 rpm, for example.
  • the blood in the blood storage space is separated from the inner layer into a plasma layer (PPP layer), a buffy coat layer (BC layer), and a red blood cell layer (CRC layer).
  • PPP layer plasma layer
  • BC layer buffy coat layer
  • CRC layer red blood cell layer
  • an optical sensor that detects the position of the interface from the transmittance that changes in accordance with the position of the interface between the plasma layer and the buffy coat layer (hereinafter simply referred to as the interface). )
  • the control unit 26 is provided inside the mechanism main body unit 15. Devices other than the control unit 26 in the control mechanism unit 22 are provided on the upper surface, the front surface, and the support column so that the tube of the blood collection kit 14 can be attached.
  • the blood pump 28 and the anticoagulant pump 30 are a roller pump type that pushes the blood inside by continuously rolling the roller against the side of the tube, and in a non-contact state with respect to the blood. It can be driven.
  • the blood pump 28 and the anticoagulant pump 30 are variable in speed and fluid discharge direction under the action of the control unit 26.
  • the blood pump 28 is a suction pump that draws blood by rotating in a predetermined positive direction during blood collection. When the blood is returned, it rotates in the opposite direction and functions as a discharge pump that sends blood components to the tube 104.
  • the turbidity sensor 32 is a sensor that detects the turbidity of the liquid that passes through the sandwiched tube.
  • the bubble sensors 34a to 34f are sensors that detect the presence or absence of liquid passing through the sandwiched tube or bubbles.
  • the clamps 36a to 36g press and close the sandwiched tube from both sides, or open and communicate with each other, thereby acting as an open / close valve. These clamps 36a to 36g are concentrated in one section on the upper surface of the control mechanism 22 so that the cassette housing 42 can be fitted.
  • the cassette housing 42 is a resin member for integrally assembling and arranging many parts of the tubes of the blood collection kit 14, and the cassette housing 42 is fitted into the upper surface of the control mechanism 22 so as to obtain a predetermined tube. Are arranged to be openable and closable by the corresponding clamps 36a to 36g.
  • the donor pressure sensor 38 is a sensor for measuring the donor pressure Pd indicating the pressure of the blood collection line by inserting a part of the blood collection path system (blood collection circuit) 14a (see FIG. 3) in the blood collection kit 14. Acts as a blood pressure sensor when collecting blood, and acts as a blood pressure sensor when returning blood.
  • the system pressure sensor 40 is a sensor into which a part of the processing path system 14b (see FIG. 3) is inserted and measures the system pressure (in-circuit pressure) Ps indicating the pressure in the circuit. It should be noted that the arrangement of the tubes in the blood collection kit 14 in the state of being set in the apparatus main body 12 is not the gist of the present invention! /, So FIG. Show me!
  • the control unit 26 includes a blood pump driver 76, an anticoagulant pump driver 78, a motor driver 80, and a clamp driver 82 for output. Controls coagulant pump 30, motor 64 and clamps 36a-36g.
  • the blood pump driver 76 controls the speed and discharge direction of the blood pump 28.
  • Anticoagulant pump driver 78 controls the speed of anticoagulant pump 30.
  • the motor driver 80 controls the rotational speed of the motor 64.
  • the clamp driver 82 individually controls the opening and closing of the clamps 36a to 36g.
  • control unit 26 includes an input interface 84 that performs input control of each sensor, and a monitor interface 86 that performs input and output of the monitor 20. Further, the control unit 26 cooperates with each functional unit to perform a component blood collection processing operation including initial processing, blood collection, separation collection, and blood return processing.
  • a mode control unit 88 for controlling an abnormality an abnormality monitoring unit 90 for monitoring an abnormality based on an input signal of each sensor, a storage unit 92 for storing a predetermined program and data, a timer 94, and an external device
  • a communication unit 96 that performs data communication
  • a speed detection unit 98 that obtains a blood collection speed and a blood return speed V based on the rotation speed of the blood pump 28.
  • the mode control unit 88 includes a suction control unit 88a that performs control in the blood collection process, and a discharge control unit 88b that performs control in the blood return process.
  • the suction control unit 88a and the discharge control unit 8 8b include a function of controlling the rotational speed N of the blood pump 28 based on the donor pressure Pd.
  • control unit 26 Some of the functions in the control unit 26 are not shown in the program recorded in the storage unit 92.
  • the blood collection kit 14 has a blood collection path system 14a for collecting and returning blood from a donor, and a processing path system 14b for centrifuging or circulating the collected blood.
  • the blood collection path system 14a includes a hollow blood collection needle 100 that punctures a donor, and a tube 104 that has one end connected to the blood collection needle 100 and the other end connected to the processing path system 14b via a branch joint 102.
  • a chamber 106 provided in the middle of the tube 104, an anticoagulant container connecting needle 108 connected to an anticoagulant container 107 (see FIG. 1) containing an anticoagulant, and one end of the anticoagulant container 107
  • It has a tube 110 connected to the agent container connecting needle 108, a bubble removal chamber 112 and a sterilization filter (a foreign matter removal filter) 114 provided in the middle of the tube 110.
  • the tube 104 and the tube 110 are connected by a branch joint 116 provided near the blood collection needle 100.
  • the tube 104 (and a tube 140 described later) is commonly used for blood collection and blood return, and functions as a blood collection line and a blood return line.
  • the chamber 106 removes air bubbles and microaggregates in the blood passing through the tube 104.
  • One end of the chamber 106 is provided with a short tube 118 branched from the tube 104.
  • the end of the tube 118 is connected to a breathable and bacteria-impermeable filter (not shown) and inserted into the donor pressure sensor 38, so that the donor pressure Pd can be measured.
  • An anticoagulant container 107 connected to the anticoagulant container connecting needle 108 stores an anticoagulant such as ACD-A liquid.
  • a part of the tube 110 is attached to the anticoagulant pump 30, and the anticoagulant supplied from the anticoagulant container connecting needle 108 under the action of the anticoagulant pump 30 passes the tube 110 and the branch joint 116.
  • a bubble sensor 34a is attached in the middle of the tube 110.
  • a bubble sensor 34b and a clamp 36a are mounted between the chamber 106 and the branch joint 102.
  • the clamp 36a is mounted in the vicinity of the branch joint 102, and the blood collection path system 14a and the processing path system 14b are communicated by opening the clamp 36a.
  • the tube 104 is equipped with two bubble sensors 34e and 34f that are directly IJed and can detect bubbles and air with force S.
  • the treatment path system 14b includes a centrifuge bowl 120, a plasma collection bag 122, a platelet collection bag 124, an intermediate knob 126a, an Ernogug 126b, a knob 128, and a white-removal finalizer. 130.
  • Plasma collection bag 122 and platelet collection bag 124 are bags for storing plasma and platelets obtained by a process such as centrifugation.
  • the plasma collection bag 122 is suspended on a hook 18a of a weighing scale 18 (see FIG. 1), and the weight of the stored plasma can be measured.
  • the blood platelet collection bag 124 is suspended on the front surface of the mechanism main body 15 (see FIG. 1).
  • the intermediate bag 126a is a container for temporarily storing collected platelets (concentrated platelets).
  • the air bag 126b is a container for temporarily storing sterile air in the circuit.
  • the air bag 126b and the intermediate bag 126a are independent containers separated in terms of a circuit, but are physically integrated to form a multi-chamber bag 126.
  • the multi-chamber bag 126 is suspended on the hook 21a of the bag detection sensor 21 (see FIG. 1).
  • the nose 128 is a bag connected to the platelet collection bag 124, and is used when the air in the platelet collection bag 124 is discharged after the component blood collection.
  • a flexible sheet material made of resin (for example, soft polychlorinated bur).
  • the peripheral edge is fused (heat fusion, high-frequency fusion, ultrasonic fusion, etc.) or bonded with an adhesive to form a bag.
  • the sheet material used for the platelet collection bag 124 it is more preferable to use a sheet material having excellent gas permeability in order to improve platelet storage stability.
  • a sheet material for example, polyolefin or DnDP plasticized polychlorinated butyl can be used.
  • the leukocyte removal filter 130 is a filter that separates and removes leukocytes in the blood component when the blood component is transferred from the intermediate bag 126a to the platelet collection bag 124. As can be seen from FIG. 1, the leukocyte removal filter 130 is disposed at a higher position than the platelet collection bag 124, which is lower than the intermediate bag 126a.
  • a tube 140 is connected between the branch joint 102, which is the end of the processing path system 14b, and the inlet of the centrifuge bowl 120.
  • a part of the tube 140 is attached to the blood pump 28. Therefore, by rotating the blood pump 28 in the forward direction, blood can be introduced into the centrifuge bowl 120 from the blood collection path system 14a, or a predetermined circulation operation can be performed in the processing path system 14b. Further, by reversing the blood pump 28, a predetermined blood component can be led out to the blood collection path system 14a and returned to the donor.
  • a tube 142 is connected to the discharge port of the centrifuge bowl 120, and the tube 142 is branched into three forks via a branch joint 144 and connected to the tube 146, the tube 148, and the tube 150.
  • the tube 142 is connected in series with the turbidity sensor 32 and the bubble sensor 34d.
  • the tube 146 is connected to the air bag 126b, and the tube 146 is attached to the clamp 36e along the way!
  • the end of the tube 148 is connected to a breathable and bacteria-impermeable filter (not shown) and inserted into the system pressure sensor 40, so that the system pressure Ps can be measured.
  • the end of the tube 150 is connected to the plasma collection bag 122, and it is branched in the middle.
  • a joint 152 is provided and connected to the intermediate bag 126a via the tube 154.
  • Tube 154 is attached to clamp 36d.
  • a tube 150 between the branch joint 152 and the plasma collection bag 122 is attached to the clamp 36c.
  • the intermediate bag 126a and the platelet collection bag 124 are connected by a tube 156, and a leukocyte removal filter 130 is provided in the middle thereof.
  • a tube 156 between the intermediate bag 126a and the platelet collection bag 124 is attached to the bubble sensor 34c and the clamp 36g.
  • a filter 160 branched from the tube 156 is provided!
  • the filter 160 includes a fungi-impermeable vent filter and a cap.
  • a branch joint 162 is provided on the tube 156 between the bubble sensor 34c and the clamp 36g, and is connected to the plasma collection bag 122 via the tube 164.
  • a branch joint 166 is provided in the middle of the tube 164.
  • the branch joint 166 and the branch joint 102 are connected by a tube 168.
  • the tube 1 64 between the branch joint 162 and the branch joint 166 is attached to the clamp 36f. In the vicinity of the branch joint 102 in the tube 168, a clamp 36b is attached.
  • the platelet collection bag 124 and the bag 128 are connected by a tube 158.
  • the blood collection kit 14 configured as described above is subjected to a predetermined sterilization process in advance.
  • the blood collection kit 14 is provided with a cassette housing 42 in which tubes are arranged in a concentrated manner, and a filter cassette 170 (see FIG. 1) that holds a part of the tubes and a filter 160.
  • predetermined initial processing is performed in step S 1 of FIG.
  • the blood collection needle 100 of the tube 110 and the tube 104 to the chamber 106 is primed with an anticoagulant, and then the blood collection needle 100 is punctured into the donor's blood vessel.
  • the color touch panel 20a of the monitor 20 is operated to start component blood collection processing. Subsequent steps are performed automatically under the action of the control unit 26.
  • step S2 a first plasma collection step is performed.
  • This first plasma collection step involves centrifugation. This is a step of collecting plasma obtained by introducing blood into the blood storage space of the bowl 120 and centrifuging it into the plasma collection bag 122.
  • blood blood added with an anticoagulant
  • the tube 104 blood is transferred through the tube 104 and introduced into the blood storage space of the rotor from the inlet of the centrifugal bowlet 120.
  • the air in the centrifuge bowl 120 is sent into the air bag 126b through the tube 142 and the tube 146.
  • the rotation of the rotor of the centrifuge bowl 120 is started with a predetermined amount of blood being introduced into the blood storage space.
  • the rotational speed of the rotor is kept constant until step S9.
  • the blood introduced into the blood storage space is separated from the inside into three layers: a plasma layer, a buffy coat layer, and a red blood cell layer.
  • the motor 64 is driven simultaneously with the blood pump 28.
  • step S3 the signal of the bubble sensor 34d provided in the tube 142 is monitored, and after detecting that the fluid flowing through the tube; L42 has changed from air to plasma, the clamp 36e is closed and the clamp 36c is opened. .
  • the plasma also flows out from the discharge loca of the centrifuge bowl 120. Therefore, this timing is detected by the bubble sensor 34d, and the clamping operation is performed.
  • Plasma is switched to the plasma collection bag 122 through the tube 150 and collected.
  • the weight of plasma introduced into the plasma collection bag 122 is measured by a weigh scale 18. After confirming that a predetermined amount of plasma has been collected in the plasma collection bag 122 based on the weight signal obtained from the weigh scale 18, the process proceeds to step S4.
  • a constant-speed plasma circulation step is performed.
  • the constant-speed plasma circulation step is a step of circulating the plasma in the plasma collection node 122 at a constant speed in a circulation circuit including a blood storage space. That is, the clamp 36a is closed, the clamp 36b is opened, and the anticoagulant pump 30 is stopped. As a result, the blood collection is temporarily interrupted, and a path for circulating the plasma in the plasma collection bag 122 is formed.
  • This circulation circuit reaches the blood storage space from the plasma collection bag 122 through the tubes 164, 168 and 140, and the plasma that has also flowed out from the centrifuge bowl 120 into the plasma collection bag 122 through the tubes 142 and 150. It is a route to collect.
  • step S5 a second plasma collection step is performed.
  • plasma is collected and centrifuged in the same manner as in the first plasma collecting step.
  • the interface gradually approaches the rotation axis of the centrifuge bowl 120, so that the detection signal from the optical sensor 62 is After confirming that the interface has reached the predetermined level based on the above, go to step S6.
  • step S6 an accelerated plasma circulation step is performed.
  • the accelerated plasma circulation step is a step of circulating the plasma in the plasma collection node 122 in the circulation circuit while accelerating the plasma in the blood storage space. After the plasma circulation rate reaches the predetermined rate, the process proceeds to step S7.
  • step S7 a third plasma collection step is performed.
  • plasma is collected in the same manner as in the first and second plasma collection steps. After confirming that a certain amount of plasma has been collected in the plasma collection bag 122, the process proceeds to step S8.
  • step S8 a platelet collecting step is performed.
  • the plasma in the plasma collection bag 122 is circulated while accelerating in the blood storage space at the first acceleration, and then changed to a second acceleration larger than the first acceleration.
  • platelets are allowed to circulate while being accelerated in order to discharge platelets from the blood storage space, and concentrated platelets are collected (stored) in the intermediate bag 126a.
  • the clamp 36e is opened, the other clamps 36a to 36d, 36f and 36g are closed, and the blood pump 28 is stopped.
  • step S9 the rotational speed of the motor 64 is controlled to decelerate and stop the rotor.
  • step S10 the blood return process is started.
  • the blood return process is a process in which blood components (mainly red blood cells and white blood cells) remaining in the blood storage space of the rotor are returned to the donor. That is, the clamp 36a and the clamp 36e are opened, and the blood pump 28 is reversed. As a result, the blood component remaining in the blood storage space of the rotor is also discharged from the introduction locus of the centrifugal bowl 120 and returned (returned) to the donor via the tube 104 (blood collection needle 100). Details of the blood return process will be described later.
  • the blood return process is terminated based on a predetermined termination condition.
  • step S11 it is confirmed whether or not the predetermined number of cycles has been completed. If it has not been completed, the process returns to step S2 to continue processing such as blood collection and blood return.
  • the filtration process is started in step S5.
  • the concentrated platelets temporarily collected (stored) in the intermediate knob 126a are supplied to the leukocyte removal filter 130, and the concentrated platelets are filtered, that is, the leukocytes in the concentrated platelets are separated and removed. It is a process. Concentrated platelets from which white blood cells have been removed are stored in a platelet collection bag 124.
  • This blood return process includes a differential pressure threshold determination process (differential pressure determination process) performed in a relatively short time after the start, and a pressure value gradient determination process (pressure determination process) performed thereafter.
  • differential pressure threshold determination process differential pressure determination process
  • pressure value gradient determination process pressure determination process
  • graphs 510 and 512 indicated by broken lines are cases in which it is determined that there is a possibility that internal hemorrhage that may cause a sense of incongruity to the donor may occur, and graphs indicated by bold lines 526 This is a case where it is judged that there is a possibility that internal bleeding may occur because the blood collection needle 100 is detached from the donor's blood vessel, etc. And 524 are cases in which there is no possibility of internal bleeding.
  • vertical axes 530, 532, and 534 are springs representatively showing the points at which the blood return speed V of the blood pump 28 reaches 50 mL / min, 60 mL / min, and 90 mL / min. Since the blood collection rate at the time of blood collection is defined as a positive value, the blood return rate V is expressed as a negative value.
  • step S 101 of FIG. 5 measurement of the cumulative rotational speed A of the blood pump 28 and the donor pressure Pd is started.
  • the donor pressure Pd at the start of blood return obtained in step S101 is stored as the initial pressure P0.
  • step S102 the blood return limiting pressure P is set to 10 to 150 mmHg. 1st fruit
  • the blood return limit pressure P is set to lOOmmHg. This return limiting pressure P is
  • the pressure difference between the donor pressure Pd and the initial pressure PO (hereinafter referred to as the donor pressure Pd) is too high.
  • the pressure value becomes a reference pressure for performing a predetermined process such as reducing the rotation speed (the number of rotations per hour) of the blood pump 28 in order to lower the donor pressure Pd.
  • the inclination threshold P is set to 1050 mmHg. In the first embodiment, the inclination threshold P is set to
  • This slope threshold P is a stable blood return condition except immediately after the start of blood return.
  • the inclination threshold P is an allowable fluctuation range during the predetermined rotation of the blood pump 28, and this
  • the predetermined value is preferably set according to the number of rollers of blood pump 28 (roller pump).
  • step S103 the blood pump 28 is rotated to start blood return. Blood pump
  • the blood pump 28 controls the rotation speed so that the blood return speed V becomes a predetermined blood return speed set value.
  • the blood return rate set value is, for example, 20 mL / min in the initial state, and is set to accelerate until reaching the blood return rate set value of 90 mL / min.
  • step S104 whether the cumulative rotational speed A has increased by 0.25 with reference to the start of blood return or the previous time when donor pressure Pd was measured (step S105), that is, blood pump 28 Check if has rotated 0.25. If 0.25 revolutions have been made, the process moves to step S105. If less than 0.25 revolutions, the system waits.
  • step S105 the donor pressure Pd at that time is measured and recorded.
  • the initial pressure P0 and the donor pressure Pd are stored in a so-called ring buffer. The method of using this ring buffer will be described later (see Figures 8A to 9B).
  • step S106 the first differential pressure ⁇ ⁇ ⁇ ⁇ 1 is obtained as ⁇ 1-Pd-PO.
  • the donor pressure Pd used here is the value measured in the immediately preceding step S105.
  • the differential pressure ⁇ PI is the same as the donor pressure Pd, but it is compared with the second differential pressure ⁇ 2 described later.
  • step S107 the first differential pressure ⁇ ⁇ 1 is compared with the blood return restriction pressure P, and ⁇ ⁇ 1 ⁇
  • step S108 If it is Ll L1, go to step S108, if ⁇ ⁇ , go to step S109
  • step S107 is for proactively examining the presence of signs of internal bleeding that may cause the donor to feel uncomfortable.
  • the donor pressure Pd that is, the first differential pressure ⁇ ⁇ 1
  • the donor pressure Pd that is, the first differential pressure ⁇ ⁇ 1
  • the donor may feel uncomfortable in the initial stage (for example, the cumulative rotation speed A is up to 2.5) in the range above the blood return restriction pressure P in FIG. Is the main departure
  • step S108 it is determined that there is a possibility of internal bleeding that may cause a sense of incongruity to the donor, and the corresponding process of step S108 is performed.
  • the graphs 522 524 and 526 are not limited by the blood return limiting pressure P.
  • step S201 the blood pump 28 is stopped (or decelerated) in step S201, and predetermined information is displayed on predetermined acoustic means or the monitor 20 in step S202. To report to. Thereafter, the necessary treatment is performed in step S203, and if it is determined in step S204 that the operator can resume the blood return, the blood return is resumed by pressing a resume button (not shown). To do. If it is determined that it is not possible to return the blood, take necessary measures and then press the stop button (not shown) to interrupt the blood return. [0097] Returning to FIG. 5, in step S109, it is confirmed whether or not the cumulative rotation speed A has reached 2.5 rotations. If it has reached, the process proceeds to step S110, and if it has not, Return to step S10-4.
  • step S110 whether the cumulative rotational speed A has increased by 0.25, based on the previous time when donor pressure Pd was measured (step S105 or S 111), that is, blood pump 28 force 0.25 rotation Ensuring the power, power, and power If 0.25 revolutions have been made, the process proceeds to step S111. If less than 0.25 revolutions, the process waits.
  • step S111 the donor pressure Pd at that time is measured and recorded.
  • This donor pressure Pd is stored in a so-called ring buffer.
  • step S112 the second differential pressure ⁇ ⁇ 2 is obtained as A P2-Pd-Pd.
  • the subscripts N and N-2 indicate the order in which the donor pressure Pd was measured.
  • the subscript N indicates the value measured in the immediately preceding step S105, and the subscript N-2 is twice. Indicates the value measured before. Since this series of processing is performed every time the blood pump 28 rotates 0.25, Pd is the donor when the blood pump 28 is rotated 0.5 times.
  • This second differential pressure ⁇ ⁇ 2 indicates the slope of the donor pressures Pd and Pd
  • step S113 it is checked whether or not the second differential pressure ⁇ 2, which is the slope of the donor pressure Pd, exceeds the slope threshold value P of a predetermined slope (that is, 20 mmHg / 0.5 rev). That is, the second difference
  • step S113 is a proactive test for the presence of signs of internal bleeding that may cause the donor to feel uncomfortable.
  • Fig. 7 if the second differential pressure ⁇ 2 is greater than or equal to the slope threshold P, In other words, branch processing is performed, and return of blood is interrupted by step S114 of the corresponding processing to prevent internal bleeding.
  • step S114 it is determined that there is a possibility of internal bleeding that may give a sense of incongruity, and the corresponding process of step S114 is performed.
  • the graphs 522 and 524 are not limited by the slope threshold P.
  • the graph 526 is improved by performing the processing using the slope threshold value P.
  • step S114 The handling process in step S114 is the same process as in step S108.
  • step S115 the completion of the blood return process is confirmed. That is, when the cumulative rotation speed A reaches a predetermined value and it can be determined that a predetermined amount of blood component has been returned, the blood return process shown in FIG. 5 is terminated, and in other cases, the process returns to step S110. Continue to return blood.
  • the memory 600 is a part of the RAM, and is composed of ten consecutive addresses adO adlO.
  • the memory 600 is used as a so-called ring buffer.
  • the initial pressure P0 obtained in step S101 of the differential pressure threshold determination process is as follows. Is recorded in all of the addresses adO to adlO as shown in FIG. 8A.
  • the first differential pressure ⁇ ⁇ 1 at this time is obtained by subtracting the value of the address adO (P1) and the value of the adjacent address adl (PO) by the force address pointer operation that is ⁇ ⁇ 1—PI—P0.
  • the address pointer operation may be set to be updated by 1 every time data is written to the address indicated by the address pointer, and the address value indicated by the updated address pointer may be read as P0.
  • hatched addresses indicate a portion referred to for obtaining the first differential pressure ⁇ ⁇ 1 or the second differential pressure ⁇ 2.
  • the donor pressure Pd P2 obtained at the second time is recorded at the address adl as shown in FIG. 8C.
  • the first differential pressure ⁇ ⁇ 1 at this time is obtained by subtracting the value of the address adl (P2) and the value of the adjacent address ad2 (P0) by the force address pointer operation that is ⁇ ⁇ 1—P2—P0.
  • the donor pressure Pd is sequentially recorded in ascending addresses, and the first differential pressure ⁇ ⁇ 1 is obtained by subtracting the value of the next address (that is, P0).
  • the donor pressure Pd Pl 1 first obtained in step S111 of the pressure value inclination determination process is recorded at address adlO.
  • the second differential pressure ⁇ ⁇ 2 at this time is obtained by subtracting the value of the address ad8 (P9) next to the address adlO (PI 1) from the value of address adlO (PI 1) by the force address pointer operation of ⁇ ⁇ 2— ⁇ 11—P9 .
  • the address pointer operation is set to be updated by 1 every time data is written to the address indicated by the address pointer I
  • the value of the address indicated by I3 is P11
  • 1 ⁇ 2 The address value indicated by is P9.
  • the address pointer operation is not limited to this.
  • the donor pressure Pd P12 obtained at step S111 for the second time is recorded in the address adO as shown in FIG. 9B.
  • the second differential pressure ⁇ ⁇ 2 at this time is ⁇ ⁇ 2-P12-P10, and is obtained by the address pointer operation described above.
  • the donor pressure Pd is sequentially written in the range of adO to adlO in ascending order in the same manner. After being recorded and recorded in adlO, return to adO and record again.
  • the second differential pressure ⁇ ⁇ 2 is obtained by subtracting the value of the two adjacent addresses.
  • the cumulative rotational speed A (times) in each of the above descriptions may be replaced with, for example, the cumulative liquid feeding amount A '(mL) and the blood return elapsed time T (min).
  • the blood return elapsed time T is the cumulative time during which the blood pump 28 is operating in the blood return process (blood return process).
  • the first differential pressure ⁇ ⁇ 1 is the difference between the donor pressure Pd at the time of the cumulative rotational speed ⁇ and the initial pressure ⁇ 0, and its slope is ⁇ ⁇ 1 / ⁇ .
  • the blood return limiting pressure P to be compared at that time is expressed as P / A as the slope threshold.
  • ⁇ P can be expressed as ⁇ ⁇ 1 / ⁇ / ⁇ .
  • step S 10 a second embodiment of the blood return process performed in step S 10 (see FIG. 4) will be described with reference to FIG.
  • the following processing is performed each time for blood return processing that is performed multiple times.
  • the blood return limit pressure P is initially set, and thereafter, the inclined region P is set.
  • the slope region P is initially set and then the slope is set.
  • the diagonal area P is set.
  • step S30 The second embodiment of the blood return process is performed as the process shown in FIG. Step S30 ;! S315 in FIG. 10 corresponds to step S10 ;! S115 in FIG. 5 in the first implementation column, and steps S302, S306, S307, and S313 are different from the processing in the first implementation column.
  • step S302 the inclined region P and the inclined region P are set.
  • the slope threshold P is
  • the inclination threshold P is set to 20 mmHg.
  • Figure 7 shows the tilt threshold P as 20mmHg / 0.5 rotation.
  • Inclination threshold P varies during 0.5 rotation of blood pump 28 in the period ⁇ 2.5
  • the allowable width is the same parameter as the slope region ⁇ described above.
  • the inclined region ⁇ is, for example,
  • the inclination threshold P is the same as the inclination area P. 20
  • Figure 7 shows the slope threshold P.
  • Step S306 is a process for obtaining the differential pressure ⁇ PI during the period of ⁇ ⁇ 2.5, and the same process as in step S112 is performed.
  • Step S307 is the same processing as step S107 described above, and is a blood return limiting pressure P.
  • Step S313 is the same processing as step S113 described above.
  • it can be set by the allowable movement range. For example, set to 20 to;! OOmmHg.
  • step S 10 a third embodiment of the blood return process performed in step S 10 (see FIG. 4) will be described with reference to FIGS.
  • the following processing is performed each time for blood return processing that is performed multiple times.
  • step S401 of FIG. 11 measurement of the cumulative rotational speed A of the blood pump 28 and the donor pressure Pd is started. Thereafter, the cumulative rotational speed A and the donor pressure Pd are obtained continuously every minute time by a predetermined processing unit.
  • the blood return limit pressure P1 is set to 170 240 mmHg.
  • the blood return limit pressure P1 is set to 200 mmHg.
  • the blood return limiting pressure P1 is a pressure value that serves as a reference for performing a predetermined process such as reducing the rotational speed of the blood pump 28 to lower the donor pressure Pd when the obtained donor pressure Pd exceeds.
  • the blood return limiting pressure P1 is a substantial limiting pressure that limits the upper limit of the donor pressure Pd. Blood return
  • the control procedure by the control unit 26 when the limiting pressure PI is 200 mmHg and when it is set to 150 mmHg will be described later.
  • step S403 the blood pump 28 is rotated to start returning blood.
  • the blood pump 28 is rotated in the opposite direction to the normal direction at the time of blood collection.
  • Blood pump 28 controls the rotation speed so that blood return speed V becomes a predetermined blood return speed set value.
  • the blood return rate set value is, for example, 20 mL / min in the initial state, and is set to accelerate until reaching the blood return rate set value of 90 mL / min.
  • the blood return limit pressure P1 is set to +200 mmHg in the initial state, and when the donor pressure Pd exceeds the blood return limit pressure P1, control is always performed so that the donor pressure Pd is equal to or lower than the blood return limit pressure P1. Is done.
  • the blood return rate V is expressed as a negative value (see Fig. 14).
  • step S404 it is confirmed whether or not the cumulative number of revolutions 2. has reached 2.5. If so, the process proceeds to step S405, and if not, the process waits.
  • step S405 the donor pressure Pd at that time is examined to obtain a differential pressure ⁇ P from the donor pressure Pd at the start of blood return.
  • step S406 the differential pressure ⁇ ⁇ is confirmed. If ⁇ ⁇ lOOmmHg, the process proceeds to step S407, and if A P ⁇ 100 mmHg, the process proceeds to step S411.
  • the determination in step S406 is a proactive test for the presence of signs of internal hemorrhage that can cause the donor to feel uncomfortable.
  • the donor pressure Pd is equal to or higher than the point P11, or the donor pressure
  • branch processing is performed and blood return is interrupted by the following steps S407 to S409 to prevent internal bleeding.
  • the determination process corresponding to step S406 may be performed at the other end point P 12 (a portion of the cumulative rotational speed A force), which is not necessarily performed only at the point P11, or the point P11. It may be performed once or multiple times between ⁇ P12.
  • the threshold line 501 is the following formula (1) Or, it is expressed by equation (2).
  • a ′ is the cumulative amount of liquid delivered by the blood pump 28 (mU).
  • graphs 510 and 512 indicated by broken lines are cases where it is determined that there is a possibility that internal bleeding may occur, which may give the donor a sense of incongruity, and are indicated by bold lines.
  • Graphs 514, 516, and 518 are cases where internal bleeding that does not cause a sense of incongruity to the donor may occur, and graphs 520, 522, and 524 indicated by thin lines indicate the possibility of internal bleeding. This is the case when it is determined that there is no.
  • graphs 514, 516 and 520 exceed the threshold straight line 502 (limitation threshold). 1S Actually, the limit is reduced by reducing the blood return limit pressure P1 to 150 mmHg as described later. Made.
  • the vertical axes 530, 532, and 534 represent lines representatively showing points where the blood return speed V of the blood pump 28 reaches 50 mL / min, 60 mL / min, and 90 mL / min. It is.
  • step S407 pressure determination processing
  • blood pump 28 is stopped, and in step S408, predetermined information is displayed on predetermined acoustic means or monitor 20, and the operator is notified.
  • the operator presses a resume button (not shown), returns to step S401, and blood return cannot be resumed. If it is determined, take necessary measures, and then press the stop button (not shown) to interrupt blood return.
  • step S411 it is confirmed that the cumulative rotation speed A has reached 10 rotations, and the flow proceeds to step S412.
  • step S412 the donor pressure Pd is confirmed.
  • Pd> lOOmmHg the process proceeds to step S413, and when Pd ⁇ 1 OOmmHg, the process proceeds to step S416 (FIG. 14). Point P22).
  • the determination in step S412 is one of the means for proactively examining the presence or absence of signs of internal bleeding that the donor does not feel uncomfortable, and when the donor pressure Pd exceeds the threshold line 502 (limit threshold). Adjust the return pressure limit P1 appropriately to prevent internal bleeding.
  • the determination process corresponding to step S412 may be performed at the other end point P21 (where the cumulative rotational speed A is approximately 2.65) that is not necessarily performed only at the point P22. It may be performed once or multiple times between points P2;!
  • the threshold straight line 502 is expressed by the following equation (3) or (4).
  • a ′ is the cumulative amount of liquid fed by the blood pump 28 (mU).
  • the threshold line 502 is set to a value smaller than the threshold line 501 represented by the above equation (1) or (2). Is done.
  • the threshold lines 501 and 502 are not necessarily fixed and may be changed empirically.
  • the donor pressure Pd exceeding the threshold line 502 is the first case in which the donor does not feel uncomfortable and internal bleeding may occur, as shown in graphs 514, 516, and 518 in Fig. 14.
  • internal bleeding may occur if blood return is continued as it is. This is considered to be a sign that the fluid resistance at the tip of the blood collection needle 100 increases, and that the blood leaks from the gap between the needle and the blood vessel wall, so that it shifts to the internal bleeding state.
  • step S413 the process of differentiating the acquired donor pressure Pd is started.
  • the Processing is performed in a predetermined routine, and a differential result is supplied every minute time.
  • step S414 the transition state of the differential value of the obtained donor pressure Pd is examined, and when it is determined that the change in the mountain shape that decreases after the donor pressure Pd increases, the return of blood is restricted in step S425. After reducing the pressure P1 to 150 mmHg, go to step S426, otherwise go to step S415.
  • step S414 is determined by the fact that the supplied differential value has switched from a positive value to a negative value.
  • the supplied differential value 550 is a positive value force within a predetermined short period of time. It is judged by a sudden change beyond this.
  • the determination may be made by the fact that the second-order differential value 552 of the donor pressure Pd falls below a predetermined threshold value K1.
  • differential value 550 the differential value 550, the second-order differential value 552, and other waveforms may be determined after removing noise components by predetermined filtering.
  • step S414 it is determined in step S414 that the graph 514 shows a chevron at a location where the cumulative rotational speed A is 10 or less, and it is determined that there is a possibility of internal bleeding that may give the donor a sense of incongruity. Then, the process proceeds to the following step S425.
  • the blood return limit pressure PI in step S402 is set to +120 to +17 OmmHg.
  • the blood return restriction pressure P1 is lowered from 200 mmHg to 150 mmHg, and 1 is set to a flag F of 0 in the initial state.
  • step S415 the blood return restriction pressure P1 is lowered to 150 mmHg, so that even if the donor pressure Pd increases thereafter, the blood pressure is restricted to 150 mmHg, and blood is forced into the donor's vein.
  • speed may be limited in addition to pressure. That is, the blood return rate set value that is initially set to 90 mL / min may be reduced to, for example, 60 mL / min. The same applies to steps S422 and S425.
  • step S417 as in step S414 described above, a change in the mountain shape that decreases after the donor pressure Pd increases is determined. If it is determined that the shape is a mountain shape, the process proceeds to step S426; Move on to step S418.
  • step S417 it is determined in step S417 that the graph 520 shows a chevron at a location where the cumulative rotational speed A is greater than 10, and there is a possibility that internal bleeding that may give the donor a sense of discomfort may occur. It will be judged and it will move to the following step S426. However, in the case of the graph 520, as will be described later, it is determined in the subsequent determination that there is no possibility of internal bleeding, and a predetermined return process is performed.
  • step S418 the value of the donor pressure Pd is confirmed. If Pd> 260 mmHg, the process proceeds to step S407, and if Pd ⁇ 260 mmHg, the process proceeds to step S419.
  • step S418 If the condition of step S418 is satisfied, it is determined that the sign of internal bleeding does not disappear after the return-restricting pressure P1 is reduced, and the return is interrupted by the processes of steps S407 to S410. To do.
  • step S419 the current blood return rate setting value is confirmed, and the value is 50 mL / m. If it is less than in, go to Step S424, and if it exceeds 50mL / min, go to Step S420.
  • the value can be set in the range of 5 to 55 mL / min.
  • step S420 the acquisition of the blood return speed is started, and an average value for the past one minute is obtained by a moving average or the like.
  • step S421 the average value of the blood flow rate obtained in the past 1 minute is confirmed, and when the value exceeds 50 mL / min as the flow rate threshold value, the process proceeds to step S423, and 50 mL
  • the determination in step S421 is one of the means for proactively examining the presence of signs of internal hemorrhage that the donor does not feel uncomfortable.
  • step S421 is bypassed by the branch determination in step S419.
  • step S422 the blood return limit pressure P1 is lowered to 150 mmHg, 1 is set in the flag F, and the process proceeds to step S424.
  • step S423 the blood return restriction pressure P1 is returned to 200 mmHg, and flag F is set.
  • the process of returning the blood return restriction pressure P1 may be gradually relaxed by lOmmHg while observing the situation, for example, without returning to 200 mmHg at a time.
  • step S424 the completion of the blood return process is confirmed. That is, if the cumulative rotation speed A reaches a predetermined value and it can be determined that a predetermined amount of blood component has been returned, the blood return process shown in FIGS. 11 to 13 is terminated. Return to S416 and continue to return blood To do.
  • step S426 the cumulative rotational speed A is obtained, and in step S427,
  • step S428 the blood return speed V at that time is compared with the blood return speed setting value, and if blood return speed V ⁇ blood return speed set value, the process proceeds to step S416, and blood return speed ⁇ blood return speed. If it is the set value, the process proceeds to step S429.
  • the judgment in this step S428 is that the blood return restriction pressure P1 has been reduced to 150 mmHg proactively before that, and it has been confirmed that no internal bleeding has occurred from the subsequent situation.
  • the pressure is returned to the limit pressure P1 and the blood return speed V, etc.) for quick blood return.
  • Such a return determination is made in step S428 under the condition that (1) the blood return speed V ⁇ the blood return speed set value when the cumulative rotational speed A reaches 35.
  • the following conditions may also be used.
  • the blood return speed V ⁇ the blood return speed set value, the cumulative rotational speed A is smaller than a predetermined value (20 to 60), for example, A and 35.
  • the relationship between the cumulative rotational speed A or the elapsed time and the donor pressure Pd or the blood return speed V (that is, the donor pressure Pd depends on the cumulative rotational speed A or the elapsed time.
  • Value is less than + 150mmHg, or the blood return speed V exceeds the recovery judgment flow rate threshold value of 50mL / min! /, And the internal bleeding does not occur! / ! /, Can be determined, and the blood return pressure limit P1 or the blood return speed limit value can be increased. It may be a thread-to-thread combination.
  • the recovery judgment flow rate threshold can be set in the range from 20mL / min to 2/3 of the set speed and the smaller one of 60mL / min.
  • step S429 the blood return restriction pressure P1 is returned to 200 mmHg, and the flag F is set.
  • step S416 the blood return speed setting value reduced to 60 mL / min may be returned to the original 90 mL / min.
  • the above condition (5) can be determined based on the point P3 in FIG.
  • the rotational speed N is determined by accelerating / decelerating based on the donor pressure Pd. This acceleration / deceleration is defined based on the flow rate conversion value, and updated and controlled at intervals of about 50 msec. This interval can be set in the range of 25 200 msec.
  • Donor pressure When Pd is over the set value of –100 5 mmHg and less than the set value of –50 + 20 mmHg, the range up to the set speed is the acceleration of the set value of + l + 10 mL / min / sec. Accelerate within.
  • the flow rate is 0 with a deceleration of -100 10111/111 ⁇ / 36 ( set value) Decelerate within the range up to.
  • the rotation speed N of the blood pump 28 is the initial value in terms of discharge volume, and when the set speed is 20 mL / min or more, 20 mL / min force is started. However, if it is less than 20 mL / min, start from the set speed and accelerate each.
  • blood return limiting pressure P1 is set to 200 mmHg in the initial state at the time of blood return.
  • the donor pressure Pd is equal to or higher than the set value of + 220 + 300 mmHg, it is determined that the pressure is abnormal, and the rotation of the blood pump 28 is stopped, and a predetermined abnormality handling process is performed.
  • Donor pressure If 1 is greater than the set value of +155 + 300111111 ⁇ 3 ⁇ 4 and less than the set value of +220 + 300mmHg, it will decelerate at the set speed of ⁇ 100 10111 and / 111 ⁇ / 36 ( set value).
  • the one-arm collection method in which blood is returned after blood collection is taken as an example.
  • the present invention is of course applicable to a bi-arm continuous method in which blood collection and blood return are performed simultaneously. It is.
  • a blood collection pressure sensor and a blood return pressure sensor, and a suction pump and a discharge pump may be provided independently.
  • the donor pressure Pd is more than the set value of +100 + 200mmHg, +200 +30
  • control procedure of the blood pump 28 based on the return limiting pressure P1 is not limited to this.

Landscapes

  • Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Cardiology (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • External Artificial Organs (AREA)

Abstract

An apparatus (10) for collecting a blood component which comprises a blood return line for, after separating the blood collected from a donor, returning a definite blood component to the donor, a speed variable blood pump (28) for feeding the blood component to the blood return line, a donor's pressure sensor (38) for detecting the pressure of the donor Pd, a velocity detection unit (98) for detecting the blood return velocity V in the blood return line, and a controlling unit (26) for driving the blood pump (28) based on the donor's pressure Pd and the blood return velocity V. When the donor's pressure Pd exceeds a threshold line (502) that has been determined corresponding to the cumulative rotational number A of the blood pump (28) or the passage blood return time in the course of starting the blood return and accelerating the blood pump (28), the controlling unit (26) lowers the limited blood return pressure Pl or the limit value of the blood return velocity V.

Description

明 細 書  Specification
血液成分採取装置  Blood component collection device
技術分野  Technical field
[0001] 本発明は、ドナーから採血を行い、採取された血液を複数の成分に分離した後に 所定の成分を採取し、残りの成分をドナーに返血する血液成分採取装置に関する。 背景技術  The present invention relates to a blood component collection apparatus that collects blood from a donor, separates the collected blood into a plurality of components, collects predetermined components, and returns the remaining components to the donor. Background art
[0002] 採血には、血液をそのまま採取する全血採血と、所定の成分のみを取り出す成分 採血がある。成分採血では、ドナーから採取した血液を遠心分離することにより所定 の成分を抽出し、他の成分についてはドナーに返還する。これにより、必要な成分( 血漿や血小板)については全血採血よりも多く採取することができ、しかも他の成分 については返還をすることからドナーの負担を軽減することができる。また、このような 成分採血を自動的に行うための血液成分採取装置が実用化されている。  Blood collection includes whole blood collection in which blood is collected as it is and component blood collection in which only predetermined components are extracted. In component blood collection, the blood collected from the donor is centrifuged to extract certain components, and other components are returned to the donor. As a result, the necessary components (plasma and platelets) can be collected more than the whole blood, and the other components are returned, reducing the burden on the donor. In addition, a blood component collection apparatus for automatically collecting such component blood has been put into practical use.
[0003] 血液成分採取装置では、ドナーに対して針を穿刺した後、該針を介して行う採血処 理、採取された血液を複数の成分に分離し、所定の成分を採取する処理、及び残り の成分を針からドナーに返血する処理等が所定の制御部の作用下にポンプを回転 させることにより自動的に行われる。ポンプにチューブが装着されており、採血時には ポンプを正回転させてチューブから血液を吸レ、込み、返血時にはポンプを逆回転さ せて残りの成分をチューブに送り出す。採血及び返血におけるチューブの血液及び 血液成分の流量はポンプの回転速度に応じて変化させることができる。  [0003] In the blood component collection device, after a needle is punctured into a donor, blood collection processing is performed through the needle, the collected blood is separated into a plurality of components, and a predetermined component is collected; and The process of returning the remaining components from the needle to the donor is automatically performed by rotating the pump under the action of a predetermined control unit. A tube is attached to the pump. When collecting blood, the pump is rotated forward to suck and draw blood from the tube, and when returning blood, the pump is rotated backward to send the remaining components to the tube. The flow rate of blood and blood components in the tube during blood collection and return can be changed according to the rotational speed of the pump.
[0004] 一連の成分採血において、ドナーを拘束する時間を低減するためには、採血及び 返血をできるだけ迅速に行うことが望ましぐそのためにはポンプの回転速度を上げ ればよいが、回転速度を上げるのにも当然に限度がある。  [0004] In order to reduce the time to restrain the donor in a series of component blood collection, it is desirable to perform blood collection and blood return as quickly as possible. Of course, there is a limit to speed.
[0005] このような観点から、特公平 6— 57250号公報(日本)(WO86/00231A1)では、 ドナー毎に 2つの流量域でテストを行って静脈の抵抗と、該抵抗に基づく圧力 '流量 曲線を生成し、この圧力 ·流量曲線によってポンプの回転速度を規定する装置が提 案されている。  [0005] From this point of view, in Japanese Patent Publication No. 6-57250 (Japan) (WO86 / 00231A1), a test is performed in two flow ranges for each donor, and the resistance of the vein and the pressure 'flow rate based on the resistance are measured. A device that generates a curve and defines the rotational speed of the pump by this pressure-flow curve has been proposed.
[0006] しかし、針の穿刺状態によっては、返血時に、血液成分が圧縮気味に滞留し、その 部分の圧力が上昇して針を押し戻すように作用する。その結果、針先が静脈から抜 けた状態となり、血液が血管外に送り出されてしまい、内出血の状態になる。また、針 先が静脈力も抜けなくても、針と血管壁の隙間から血液が漏れてしまうと同様の状態 となる。 [0006] However, depending on the puncture state of the needle, the blood component may stay in a compressed state when returning blood, The pressure of the part rises and acts to push back the needle. As a result, the needle tip is withdrawn from the vein, blood is pumped out of the blood vessel, and internal bleeding occurs. Even if the needle tip does not lose its venous force, the same condition occurs when blood leaks from the gap between the needle and the blood vessel wall.
[0007] このような内出血の状態は、ドナーが痛みを感じて気づく場合の他に、ドナーが多 少の違和感を感じたり、ドナーやオペレータが穿刺部位が腫脹していることで気づく 場合もあり、また、気づかない場合もある。このような内出血が発生すると、皮膚が外 観的に腫れ又は変色し、回復するまでにある程度の時間力 Sかかりドナーに不快感又 は不安感を与えることがある。  [0007] In addition to the pain being noticed by the donor, the donor may feel a little uncomfortable or the donor or operator may be aware that the puncture site is swollen. Also, you may not notice. When such internal bleeding occurs, the skin may be swollen or discolored externally, and it may take some time to recover, and may make the donor feel uncomfortable or anxious.
[0008] 一般に、ドナーが痛みや違和感を感じた場合には返血を中断し、ドナーが了解し た場合は抜針して、針を交換し、再度穿刺して残りの血液成分を返血する。しかしな がら、ドナーが了解しない場合にはその時点で返血を中止し、返血予定であった血 液成分を回路に残した状態で終了することになる。この場合、ドナーは返血できなか つた血液成分をロスしたことになるため、次の献血まで所定期間をあける必要がある 。また、残存した血液成分を返血する場合には、内出血の箇所を避けて再度の穿刺 を行う必要があり、ドナーに不満を与えかねない。  [0008] In general, if the donor feels pain or discomfort, blood return is interrupted, and if the donor accepts, the needle is removed, the needle is replaced, the needle is punctured again, and the remaining blood components are returned. To do. However, if the donor does not agree, the blood return will be stopped at that point and the blood component that was scheduled to be returned will be left in the circuit. In this case, the donor has lost blood components that could not be returned, so it is necessary to allow a predetermined period until the next blood donation. In addition, when returning the remaining blood components, it is necessary to perform puncture again avoiding the site of internal bleeding, which may be dissatisfied with the donor.
[0009] また、返血中にドナーが違和感を感じない場合であっても、次のサイクルの採血中 に十分な採血速度が得られず、必要量の血液成分が得られる前に採血、返血を中 止せざるを得なくなる場合がある。  [0009] Even if the donor does not feel uncomfortable during blood return, a sufficient blood collection speed cannot be obtained during blood collection in the next cycle, and blood is collected and returned before the necessary amount of blood components is obtained. You may have to stop blood.
[0010] ところで、返血を行っている際、内出血が発生してもドナーはすぐには気づかない 場合があって、即時に適切な対応をとることができず、視認可能な程度の内出血とな つてドナーに不快感又は不安感を与える懸念がある。  [0010] By the way, when blood is returned, even if internal bleeding occurs, the donor may not be immediately aware of it, and cannot take an appropriate action immediately. There are concerns about discomfort or anxiety for donors.
[0011] また、ドナーにとって違和感のない内出血については、その発生を予知、予防する 手段がない。  [0011] Furthermore, there is no means for predicting or preventing the occurrence of internal bleeding that does not give a sense of incongruity to the donor.
発明の開示  Disclosure of the invention
[0012] 本発明はこのような課題を考慮してなされたものであり、返血工程において、内出 血の発生を事前に予防し、若しくは適度に抑えることのできる血液成分採取装置を 提供することを目的とする。 [0013] 本発明に係る血液成分採取装置は、ドナーから採取した血液を分離した後、所定 の血液成分をドナーに返血する血液成分採取装置において、ドナーに残余の血液 成分を返血する返血ラインと、前記返血ラインに血液成分を送り出す可変速度の血 液ポンプと、前記返血ラインの圧力を検出する圧力センサと、前記血液ポンプを駆動 する制御部とを有し、前記制御部は、前記圧力センサから得られる前記圧力に基づ く 1以上の条件に応じて前記返血ラインの圧力又は返血速度の制限値を設定するこ とを特徴とする。 [0012] The present invention has been made in consideration of such problems, and provides a blood component collection apparatus that can prevent or moderately suppress the occurrence of internal blood in the blood return step in advance. For the purpose. [0013] A blood component collection device according to the present invention is a blood component collection device that returns a predetermined blood component to a donor after separating the blood collected from the donor, and returns the remaining blood component to the donor. A blood line; a variable-speed blood pump that sends blood components to the blood return line; a pressure sensor that detects the pressure of the blood return line; and a control unit that drives the blood pump. Is characterized by setting a limit value for the pressure or rate of return of the blood in accordance with one or more conditions based on the pressure obtained from the pressure sensor.
[0014] このような条件によれば、ドナーが気づかない内出血の発生を予知することができ、 返血ラインの圧力又は返血速度の制限値を低下させることにより、ドナーに違和感を 与えうる内出血の発生を予知、予防し、若しくは適度に抑えること力 Sできる。  [0014] According to such conditions, it is possible to predict the occurrence of internal bleeding that is not noticed by the donor, and internal bleeding that may give the donor a sense of incongruity by lowering the pressure of the blood return line or the limit value of the blood return rate. The ability to predict, prevent or moderate the occurrence of
[0015] この場合、前記条件の 1つは、前記血液ポンプを回転させて返血を開始した際に、 前記圧力が前記血液ポンプの累積回転数、累積送液量又は返血経過時間に対応 して設定された制限用閾値を超えるとレ、う条件であってもよレ、。  [0015] In this case, one of the conditions is that when the blood pump is rotated and blood return is started, the pressure corresponds to the cumulative rotational speed of the blood pump, the cumulative liquid supply amount, or the blood return elapsed time. If the limit threshold for setting is exceeded, the condition may be met.
[0016] また、前記制御部は、返血の開始時から前記血液ポンプを回転させて!/、る際に、前 記圧力が前記血液ポンプの累積回転数、累積送液量又は返血経過時間に対応して 設定された前記制限用閾値よりも大きい停止用閾値を超えるとき、又は前記圧力の 傾斜が所定傾斜を超えるときに、前記血液ポンプを減速又は停止させてもよい。これ により、ドナーに違和感を与えうる内出血の発生を予知、予防すること力 Sできる。  [0016] In addition, when the control unit rotates the blood pump from the start of blood return! /, The pressure is the cumulative rotational speed of the blood pump, the cumulative liquid supply amount, or the blood return progress. The blood pump may be decelerated or stopped when a stop threshold value greater than the limit threshold value set in response to time is exceeded, or when the pressure slope exceeds a predetermined slope. As a result, it is possible to predict and prevent the occurrence of internal hemorrhage that can cause a sense of incongruity to the donor.
[0017] さらに、前記条件の 1つは、前記圧力が上昇した後に下降する山形の変化を示すと いう条件であってもよい。  [0017] Furthermore, one of the conditions may be a condition indicating a change in a mountain shape that decreases after the pressure increases.
[0018] 前記制御部は、前記返血ラインの返血速度を検出する速度検出部を有し、前記条 件の 1つは、前記返血速度が所定の流速閾値以下という条件であってもよい。  [0018] The control unit includes a speed detection unit that detects a blood return speed of the blood return line, and one of the conditions is that the blood return speed is a predetermined flow rate threshold value or less. Good.
[0019] 前記制御部は、前記条件に応じて前記返血ラインの圧力又は返血速度の制限値 を低下させた後、前記血液ポンプの累積回転数、累積送液量又は経過時間に応じ て、前記圧力が所定の回復判断圧力閾値を下回っており、又は前記返血速度が所 定の回復判断流速閾値を超えているときに、前記返血ラインの圧力又は返血速度の 制限値を上昇させてもよい。このような条件によれば、それ以前に圧力又は速度の制 限をしていても、その後の状況から内出血が発生しないことが確認でき、圧力又は速 度の制限を弛め、又は元に復帰させ、迅速な返血が図られる。 [0019] The control unit reduces the pressure of the blood return line or the limit value of the blood return speed according to the condition, and then according to the cumulative rotation speed, the cumulative liquid supply amount, or the elapsed time of the blood pump. When the pressure falls below a predetermined recovery judgment pressure threshold, or when the blood return speed exceeds a predetermined recovery judgment flow rate threshold, the pressure of the blood return line or the limit value of the blood return speed is increased. You may let them. According to such conditions, even if the pressure or speed is limited before that, it can be confirmed from the subsequent situation that internal bleeding does not occur. The degree limit is relaxed or restored, and blood can be returned quickly.
[0020] 本発明に係る血液成分採取装置は、ドナーから採取した血液を分離した後、所定 の血液成分をドナーに返血する血液成分採取装置において、ドナーに残余の血液 成分を返血する返血ラインと、前記返血ラインに血液成分を送り出す可変速度の血 液ポンプと、前記返血ラインの圧力を検出する圧力センサと、前記血液ポンプを駆動 する制御部とを有し、前記制御部は、前記血液ポンプを回転させて返血を開始した 際に、前記圧力センサから得られる前記圧力が前記血液ポンプの累積回転数、累積 送液量又は返血経過時間に対応して設定された制限用閾値又は停止用閾値を超え るとき、又は前記圧力の傾斜が所定傾斜を超えるときに、前記血液ポンプを減速又 は停止させる圧力判断処理を行うことを特徴とする。  [0020] The blood component collection device according to the present invention is a blood component collection device that returns a predetermined blood component to the donor after separating the blood collected from the donor, and returns the remaining blood component to the donor. A blood line; a variable-speed blood pump that sends blood components to the blood return line; a pressure sensor that detects the pressure of the blood return line; and a control unit that drives the blood pump. When the blood pump is rotated and blood return is started, the pressure obtained from the pressure sensor is set corresponding to the cumulative rotation speed of the blood pump, the cumulative liquid supply amount, or the blood return elapsed time. A pressure determination process for decelerating or stopping the blood pump is performed when a limit threshold or a stop threshold is exceeded, or when the slope of the pressure exceeds a predetermined slope.
[0021] このように、血液ポンプを回転させている際に、前記圧力が制限用閾値又は停止用 閾値を超えるときに血液ポンプを減速又は停止させることにより、ドナーに違和感を 与えうる内出血の発生を予知、予防し、若しくは適度に抑えること力 Sできる。  [0021] Thus, when the blood pump is rotating, the occurrence of internal hemorrhage that can give a sense of incongruity to the donor by decelerating or stopping the blood pump when the pressure exceeds a limiting threshold value or a stopping threshold value. Can predict, prevent, or moderately suppress S.
[0022] また、返血時で血液ポンプを回転させて!/、る際に、圧力の傾斜 (圧力の変化の傾き )が所定傾斜を超えるときに血液ポンプを減速又は停止させることにより、ドナーに違 和感を与えうる内出血の発生を予防し、若しくは適度に抑えることができる。  [0022] Further, when the blood pump is rotated at the time of blood return! /, When the pressure gradient (the gradient of the pressure change) exceeds a predetermined gradient, the blood pump is decelerated or stopped, thereby It is possible to prevent or moderately suppress the occurrence of internal hemorrhage that can cause discomfort.
[0023] 前記制御部は、返血開始時から所定時間が経過した後、又は前記血液ポンプが所 定数だけ回転した後に、前記圧力判断処理を開始するようにしてもよい。  [0023] The control unit may start the pressure determination process after a predetermined time has elapsed from the start of blood return or after the blood pump has rotated by a predetermined number.
[0024] 前記制御部は、返血開始時の前記圧力を初期圧力とし、返血開始時から所定時間 が経過するまで、又は前記血液ポンプが所定数だけ回転するまでに、前記圧力セン サから得られる前記圧力と前記初期圧力との差圧力が所定閾値を超えるときに、前 記血液ポンプを減速又は停止させる差圧判断処理を行うようにしてもよい。  [0024] The control unit uses the pressure at the start of blood return as an initial pressure, and from the pressure sensor until a predetermined time elapses from the start of blood return or until the blood pump rotates a predetermined number of times. When the differential pressure between the obtained pressure and the initial pressure exceeds a predetermined threshold, the differential pressure determination process for decelerating or stopping the blood pump may be performed.
図面の簡単な説明  Brief Description of Drawings
[0025] [図 1]本実施の形態に係る血液成分採取装置を示す斜視図である。  FIG. 1 is a perspective view showing a blood component collection device according to the present embodiment.
[図 2]制御部のブロック構成図である。  FIG. 2 is a block configuration diagram of a control unit.
[図 3]採血キットの回路図である。  FIG. 3 is a circuit diagram of a blood collection kit.
[図 4]血液成分採取装置で行われる成分採血の手順を示すフローチャートである。  FIG. 4 is a flowchart showing a procedure for collecting blood components performed by the blood component collecting apparatus.
[図 5]返血工程の第 1実施例のフローチャートである。 [図 6]対応処理のフローチャートである。 FIG. 5 is a flowchart of the first embodiment of the blood return process. FIG. 6 is a flowchart of corresponding processing.
[図 7]返血工程におけるドナー圧力及び返血速度の変化を示すグラフである。  FIG. 7 is a graph showing changes in donor pressure and blood return speed in the blood return process.
[図 8]図 8Aは、圧力値傾斜判断処理の初回に初期圧力が記録されたメモリの内容を 示す図であり、図 8Bは、圧力値傾斜判断処理で累積回転数が 0. 25のときのメモリ の内容を示す図であり、図 8Cは、圧力値傾斜判断処理で累積回転数が 0. 5のとき のメモリの内容を示す図であり、図 8Dは、圧力値傾斜判断処理で累積回転数が 2. 25のときのメモリの内容を示す図であり、図 8Eは、圧力値傾斜判断処理で累積回転 数が 2. 5のときのメモリの内容を示す図である。  [FIG. 8] FIG. 8A is a diagram showing the contents of the memory in which the initial pressure is recorded at the first time of the pressure value inclination determination process, and FIG. 8B is a graph when the accumulated rotation speed is 0.25 in the pressure value inclination determination process. 8C is a diagram showing the contents of the memory when the cumulative rotation speed is 0.5 in the pressure value inclination determination process, and FIG. 8D is the cumulative value in the pressure value inclination determination process. FIG. 8E is a diagram illustrating the contents of the memory when the rotational speed is 2.25, and FIG. 8E is a diagram illustrating the contents of the memory when the cumulative rotational speed is 2.5 in the pressure value inclination determination processing.
[図 9]図 9Aは、差圧力閾値判断処理の初回におけるメモリの内容を示す図であり、 図 9Bは、差圧力閾値判断処理で累積回転数が 3. 0のときのメモリの内容を示す図 である。  [FIG. 9] FIG. 9A is a diagram showing the contents of the memory at the first time of the differential pressure threshold judgment process, and FIG. 9B shows the contents of the memory when the cumulative rotation number is 3.0 in the differential pressure threshold judgment process. It is a figure.
[図 10]返血工程の第 2実施例のフローチャートである。  FIG. 10 is a flowchart of the second embodiment of the blood return process.
[図 11]返血工程の第 3実施例のフローチャート (その 1)である。  FIG. 11 is a flowchart (No. 1) of a third embodiment of the blood return process.
[図 12]返血工程の第 3実施例のフローチャート (その 2)である。  FIG. 12 is a flowchart (No. 2) of the third embodiment of the blood return process.
[図 13]返血工程の第 3実施例のフローチャート (その 3)である。  FIG. 13 is a flowchart (No. 3) of the third embodiment of the blood return process.
[図 14]返血工程の第 3実施例の当初のドナー圧力及び返血速度の変化を示すダラ フである。  FIG. 14 is a graph showing changes in initial donor pressure and blood return speed in the third example of the blood return process.
[図 15]返血工程の第 3実施例の全期間のドナー圧力及び返血速度の変化を示すグ ラフである。  FIG. 15 is a graph showing changes in donor pressure and blood return rate over the entire period of the third example of the blood return process.
[図 16]ドナー圧力の微分値及び 2階微分値を示すグラフである。  FIG. 16 is a graph showing differential values and second-order differential values of donor pressure.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 以下、本発明に係る血液成分採取装置について実施の形態を挙げ、添付の図;!〜 図 16を参照しながら説明する。  Hereinafter, embodiments of the blood component collection device according to the present invention will be described with reference to the accompanying drawings; FIG.
[0027] 図 1に示すように、本実施の形態に係る血液成分採取装置 10は、装置本体 12と、 該装置本体 12に装着される採血キット 14とを有する。装置本体 12は、箱形の機構 本体部 15と、該機構本体部 15の背面左右から上方に延在する第 1支柱 16a及び第 2支柱 16bと、第 1支柱 16aの上端左側に設けられた重量計 18と、第 2支柱の上端部 に設けられたモニタ 20と、第 1支柱 16aの右側に設けられた複室バッグ 126の有無を 検出するバッグ検出センサ 21と第 2支柱 16bの右側に設けられた除菌フィルター 11 4の有無を検出するセンサ 23a及び気泡除去用チャンバ一 112の有無及び抗凝固 剤の滴下を検出するセンサ 23bとを有する。モニタ 20は血液成分採取装置 10の入 出力装置であり、大型のカラータツチパネル 20aと、スピーカ 20bとを有し、画像及び 音声を用いた簡易な操作が可能である。スピーカ 20bはステレオ式である。 As shown in FIG. 1, a blood component collection device 10 according to the present embodiment includes a device body 12 and a blood collection kit 14 attached to the device body 12. The apparatus main body 12 is provided on the left side of the upper end of the first support column 16a, the box-shaped mechanism main unit 15, the first support column 16a and the second support column 16b extending upward from the left and right sides of the mechanism control unit 15. Whether there is a weigh scale 18, a monitor 20 provided at the upper end of the second support column, and a multi-chamber bag 126 provided on the right side of the first support column 16a. A bag detection sensor 21 for detection, a sensor 23a for detecting the presence / absence of a sterilization filter 114 provided on the right side of the second support 16b, a sensor 23b for detecting the presence / absence of a bubble removal chamber 112 and dripping of an anticoagulant Have The monitor 20 is an input / output device of the blood component collection device 10, and has a large color touch panel 20a and a speaker 20b, and can be easily operated using images and sounds. The speaker 20b is a stereo type.
[0028] 機構本体部 15は左側の制御機構部 22と、右側の遠心分離機構部(分離手段) 24 と力、らなる。制御機構部 22は、血液成分採取装置 10の全体を統括的に制御する制 御部 26と、血液ポンプ 28と、抗凝固剤ポンプ 30と、濁度センサ 32と、 6つの気泡セ ンサ 34a、 34b、 34c、 34d、 34e、 34fと、 7つのクランプ 36a、 36b, 36c, 36d、 36e 、 36f、 36gと、ドナー圧力センサ 38と、システム圧力センサ 40とを有する。濁度セン サ 32及び各気泡センサ 34a〜34fとしては、それぞれ、例えば、超音波センサ、光学 式センサ、赤外線センサ等を用いることがきる。濁度センサ 32と気泡センサ 34dは一 体的に構成されている。  [0028] The mechanism main body 15 includes a control mechanism 22 on the left side and a centrifugal separation mechanism (separation means) 24 on the right side. The control mechanism unit 22 includes a control unit 26 that comprehensively controls the entire blood component collection device 10, a blood pump 28, an anticoagulant pump 30, a turbidity sensor 32, six bubble sensors 34a, 34b, 34c, 34d, 34e, 34f, seven clamps 36a, 36b, 36c, 36d, 36e, 36f, 36g, a donor pressure sensor 38, and a system pressure sensor 40. As the turbidity sensor 32 and the bubble sensors 34a to 34f, for example, an ultrasonic sensor, an optical sensor, an infrared sensor, or the like can be used. The turbidity sensor 32 and the bubble sensor 34d are integrally configured.
[0029] 遠心分離機構部 24は採血キット 14の遠心ボウル (遠心分離器) 120が装着され、 該遠心ボウル 120内に導入された血液を遠心分離する機構部である。  [0029] The centrifuge mechanism 24 is a mechanism that is equipped with the centrifuge bowl (centrifuge) 120 of the blood collection kit 14 and centrifuges the blood introduced into the centrifuge bowl 120.
[0030] 遠心ボウル 120の設定回転速度としては、例えば 4200〜5800rpm程度に設定さ れる。これにより、貯血空間内の血液は内層より血漿層(PPP層)、バフィ一コート層( BC層)及び赤血球層(CRC層)に分離される。遠心ボウルの近傍には、血漿層とバ フィーコート層との界面(以下、単に界面と呼ぶ。)の位置に応じて変化する透過率か ら該界面の位置を検出する光学式センサ(図示せず)が設けられて!/、る。  [0030] The set rotational speed of the centrifuge bowl 120 is set to about 4200 to 5800 rpm, for example. Thereby, the blood in the blood storage space is separated from the inner layer into a plasma layer (PPP layer), a buffy coat layer (BC layer), and a red blood cell layer (CRC layer). In the vicinity of the centrifuge bowl, an optical sensor (not shown) that detects the position of the interface from the transmittance that changes in accordance with the position of the interface between the plasma layer and the buffy coat layer (hereinafter simply referred to as the interface). )) Is provided!
[0031] 制御部 26は、機構本体部 15の内部に設けられている。制御機構部 22における制 御部 26以外の機器は、採血キット 14のチューブが装着可能なように上面、前面及び 支柱に設けられている。  The control unit 26 is provided inside the mechanism main body unit 15. Devices other than the control unit 26 in the control mechanism unit 22 are provided on the upper surface, the front surface, and the support column so that the tube of the blood collection kit 14 can be attached.
[0032] 血液ポンプ 28及び抗凝固剤ポンプ 30は、チューブ側面にローラを押圧させながら 連続的に転動させることにより内部の血液を押し出すローラポンプ式であり、血液に 対して非接触の状態で駆動可能である。また、血液ポンプ 28及び抗凝固剤ポンプ 3 0は、制御部 26の作用下に速度及び流体吐出方向が可変である。血液ポンプ 28は 、採血時には所定の正方向に回転することにより血液を引き込む吸引ポンプとして作 用し、返血時には逆方向に回転することにより血液成分をチューブ 104に送り出す吐 出ポンプとして作用する。 [0032] The blood pump 28 and the anticoagulant pump 30 are a roller pump type that pushes the blood inside by continuously rolling the roller against the side of the tube, and in a non-contact state with respect to the blood. It can be driven. The blood pump 28 and the anticoagulant pump 30 are variable in speed and fluid discharge direction under the action of the control unit 26. The blood pump 28 is a suction pump that draws blood by rotating in a predetermined positive direction during blood collection. When the blood is returned, it rotates in the opposite direction and functions as a discharge pump that sends blood components to the tube 104.
[0033] 濁度センサ 32は、挟み込まれたチューブ内を通過する液体の濁度を検出するセン サである。気泡センサ 34a〜34fは、挟み込まれたチューブ内を通過する液体の有 無又は気泡を検出するセンサである。クランプ 36a〜36gは、挟み込まれたチューブ を両側から押圧して閉じ、又は開放して連通させ、開閉バルブとしての作用を奏する 。これらのクランプ 36a〜36gは、カセットハウジング 42がはめ込み可能なように制御 機構部 22の上面における一区画に集中配置されている。カセットハウジング 42は採 血キット 14のチューブの多くの部分を一体的に集約、配置するための樹脂製部材で あり、該カセットノヽウジング 42を制御機構部 22の上面にはめ込むことにより所定のチ ユーブが対応するクランプ 36a〜36gによって開閉可能に配置される。  The turbidity sensor 32 is a sensor that detects the turbidity of the liquid that passes through the sandwiched tube. The bubble sensors 34a to 34f are sensors that detect the presence or absence of liquid passing through the sandwiched tube or bubbles. The clamps 36a to 36g press and close the sandwiched tube from both sides, or open and communicate with each other, thereby acting as an open / close valve. These clamps 36a to 36g are concentrated in one section on the upper surface of the control mechanism 22 so that the cassette housing 42 can be fitted. The cassette housing 42 is a resin member for integrally assembling and arranging many parts of the tubes of the blood collection kit 14, and the cassette housing 42 is fitted into the upper surface of the control mechanism 22 so as to obtain a predetermined tube. Are arranged to be openable and closable by the corresponding clamps 36a to 36g.
[0034] ドナー圧力センサ 38は、採血キット 14における採血経路系統 (採血回路) 14a (図 3参照)の一部が差し込まれ、採血ラインの圧力を示すドナー圧力 Pdを計測するセン サであり、採血時には採血圧力センサとして作用し、返血時には返血圧力センサとし て作用する。  [0034] The donor pressure sensor 38 is a sensor for measuring the donor pressure Pd indicating the pressure of the blood collection line by inserting a part of the blood collection path system (blood collection circuit) 14a (see FIG. 3) in the blood collection kit 14. Acts as a blood pressure sensor when collecting blood, and acts as a blood pressure sensor when returning blood.
[0035] システム圧力センサ 40は、処理経路系統 14b (図 3参照)の一部が差し込まれ、回 路内の圧力を示すシステム圧力(回路内圧力) Psを計測するセンサである。なお、装 置本体 12にセットされた状態の採血キット 14におけるチューブの配置は本発明の要 旨ではな!/、ので、図 1にお!/、てはチューブの一部を省略して図示して!/、る。  The system pressure sensor 40 is a sensor into which a part of the processing path system 14b (see FIG. 3) is inserted and measures the system pressure (in-circuit pressure) Ps indicating the pressure in the circuit. It should be noted that the arrangement of the tubes in the blood collection kit 14 in the state of being set in the apparatus main body 12 is not the gist of the present invention! /, So FIG. Show me!
[0036] 図 2に示すように、制御部 26は、出力用として血液ポンプドライバ 76と、抗凝固剤 ポンプドライバ 78と、モータドライバ 80と、クランプドライバ 82とを有し、血液ポンプ 28 、抗凝固剤ポンプ 30、モータ 64及びクランプ 36a〜36gを制御する。血液ポンプドラ ィバ 76は、血液ポンプ 28の速度及び吐出方向を制御する。抗凝固剤ポンプドライバ 78は、抗凝固剤ポンプ 30の速度を制御する。モータドライバ 80はモータ 64の回転 速度を制御する。クランプドライバ 82は、クランプ 36a〜36gを個別に開閉制御する。  As shown in FIG. 2, the control unit 26 includes a blood pump driver 76, an anticoagulant pump driver 78, a motor driver 80, and a clamp driver 82 for output. Controls coagulant pump 30, motor 64 and clamps 36a-36g. The blood pump driver 76 controls the speed and discharge direction of the blood pump 28. Anticoagulant pump driver 78 controls the speed of anticoagulant pump 30. The motor driver 80 controls the rotational speed of the motor 64. The clamp driver 82 individually controls the opening and closing of the clamps 36a to 36g.
[0037] また、制御部 26は、各センサの入力制御を行う入力インターフェース 84と、モニタ 2 0の入出力を行うモニタインターフェース 86とを有する。さらに、制御部 26は、各機能 部と協動して初期処理及び採血、分離採取、返血処理からなる成分採血処理動作 を制御するモード制御部 88と、各センサの入力信号等に基づいて異常の監視を行う 異常監視部 90と、所定のプログラムやデータの記憶を行う記憶部 92と、タイマ 94と、 外部機器とのデータ通信を行う通信部 96と、血液ポンプ 28の回転速度に基づいて 採血速度及び返血速度 Vを求める速度検出部 98とを有する。 In addition, the control unit 26 includes an input interface 84 that performs input control of each sensor, and a monitor interface 86 that performs input and output of the monitor 20. Further, the control unit 26 cooperates with each functional unit to perform a component blood collection processing operation including initial processing, blood collection, separation collection, and blood return processing. A mode control unit 88 for controlling an abnormality, an abnormality monitoring unit 90 for monitoring an abnormality based on an input signal of each sensor, a storage unit 92 for storing a predetermined program and data, a timer 94, and an external device A communication unit 96 that performs data communication, and a speed detection unit 98 that obtains a blood collection speed and a blood return speed V based on the rotation speed of the blood pump 28.
[0038] モード制御部 88には、採血工程における制御を行う吸引制御部 88aと、返血工程 における制御を行う吐出制御部 88bとを有する。吸引制御部 88a及び吐出制御部 8 8bは、ドナー圧力 Pdに基づいて血液ポンプ 28の回転速度 Nを制御する機能を含む[0038] The mode control unit 88 includes a suction control unit 88a that performs control in the blood collection process, and a discharge control unit 88b that performs control in the blood return process. The suction control unit 88a and the discharge control unit 8 8b include a function of controlling the rotational speed N of the blood pump 28 based on the donor pressure Pd.
Yes
[0039] 制御部 26内の機能の一部は、記憶部 92に記録されたプログラムを図示しない CP [0039] Some of the functions in the control unit 26 are not shown in the program recorded in the storage unit 92.
Uによって読み込み実行することにより実現される。 Realized by reading and executing by U.
[0040] 図 3に示すように、採血キット 14は、ドナーから血液を採取及び返還するための採 血経路系統 14aと、採取した血液を遠心分離又は循環等させる処理経路系統 14bと を有する。 [0040] As shown in FIG. 3, the blood collection kit 14 has a blood collection path system 14a for collecting and returning blood from a donor, and a processing path system 14b for centrifuging or circulating the collected blood.
[0041] 採血経路系統 14aは、ドナーに穿刺する中空の採血針 100と、一端が採血針 100 に接続されて他端が分岐継手 102を介して処理経路系統 14bに接続されたチュー ブ 104と、該チューブ 104の途中に設けられたチャンバ一 106と、抗凝固剤が入った 抗凝固剤容器 107 (図 1参照)に接続される抗凝固剤容器接続用針 108と、一端が 該抗凝固剤容器接続用針 108に接続されたチューブ 110と、該チューブ 110の途中 に設けられた気泡除去用チャンバ一 112及び除菌フィルター(異物除去用フィルタ 一) 114とを有する。チューブ 104とチューブ 110は、採血針 100の近傍に設けられ た分岐継手 116により接続されている。  [0041] The blood collection path system 14a includes a hollow blood collection needle 100 that punctures a donor, and a tube 104 that has one end connected to the blood collection needle 100 and the other end connected to the processing path system 14b via a branch joint 102. A chamber 106 provided in the middle of the tube 104, an anticoagulant container connecting needle 108 connected to an anticoagulant container 107 (see FIG. 1) containing an anticoagulant, and one end of the anticoagulant container 107 It has a tube 110 connected to the agent container connecting needle 108, a bubble removal chamber 112 and a sterilization filter (a foreign matter removal filter) 114 provided in the middle of the tube 110. The tube 104 and the tube 110 are connected by a branch joint 116 provided near the blood collection needle 100.
[0042] チューブ 104 (及び後述するチューブ 140)は採血、返血に共用であり、採血ライン 及び返血ラインとして作用する。  [0042] The tube 104 (and a tube 140 described later) is commonly used for blood collection and blood return, and functions as a blood collection line and a blood return line.
[0043] チャンバ一 106は、チューブ 104を通過する血液中の気泡及びマイクロアグリゲ一 トを除去する。チャンバ一 106の一端にはチューブ 104から分岐した短いチューブ 1 18が設けられている。該チューブ 118の端部は通気性かつ菌不透過性のフィルター (図示せず)に接続されるとともに、ドナー圧力センサ 38に揷入されており、ドナー圧 力 Pdを計測可能である。 [0044] 抗凝固剤容器接続用針 108に接続された抗凝固剤容器 107には、 ACD— A液の ような抗凝固剤が蓄えられている。チューブ 110の一部は抗凝固剤ポンプ 30に装着 されており、該抗凝固剤ポンプ 30の作用下に抗凝固剤容器接続用針 108から供給 された抗凝固剤はチューブ 110及び分岐継手 116を介してチューブ 104内の血液 中に抗凝固剤が混入される。チューブ 110の途中には気泡センサ 34aが装着される[0043] The chamber 106 removes air bubbles and microaggregates in the blood passing through the tube 104. One end of the chamber 106 is provided with a short tube 118 branched from the tube 104. The end of the tube 118 is connected to a breathable and bacteria-impermeable filter (not shown) and inserted into the donor pressure sensor 38, so that the donor pressure Pd can be measured. An anticoagulant container 107 connected to the anticoagulant container connecting needle 108 stores an anticoagulant such as ACD-A liquid. A part of the tube 110 is attached to the anticoagulant pump 30, and the anticoagulant supplied from the anticoagulant container connecting needle 108 under the action of the anticoagulant pump 30 passes the tube 110 and the branch joint 116. Thus, an anticoagulant is mixed in the blood in the tube 104. A bubble sensor 34a is attached in the middle of the tube 110.
Yes
[0045] チャンバ一 106と分岐継手 102との間には、気泡センサ 34b及びクランプ 36aが装 着される。クランプ 36aは分岐継手 102の近傍に装着されており、クランプ 36aを開く ことにより採血経路系統 14aと処理経路系統 14bは連通する。チューブ 104には直 歹 IJして 2つの気泡センサ 34e及び 34fが装着されており、気泡や空気を確実に検知 すること力 Sでさる。  [0045] Between the chamber 106 and the branch joint 102, a bubble sensor 34b and a clamp 36a are mounted. The clamp 36a is mounted in the vicinity of the branch joint 102, and the blood collection path system 14a and the processing path system 14b are communicated by opening the clamp 36a. The tube 104 is equipped with two bubble sensors 34e and 34f that are directly IJed and can detect bubbles and air with force S.
[0046] 処理経路系統 14bは遠心ボウル 120と、血漿採取バッグ 122と、血小板採取バッグ 124と、中間ノ ッグ 126aと、ェアーノくッグ 126bと、ノ ッグ 128と、白 求除去フイノレタ 一 130とを有する。  [0046] The treatment path system 14b includes a centrifuge bowl 120, a plasma collection bag 122, a platelet collection bag 124, an intermediate knob 126a, an Ernogug 126b, a knob 128, and a white-removal finalizer. 130.
[0047] 血漿採取バッグ 122及び血小板採取バッグ 124は、遠心分離等の処理により得ら れた血漿及び血小板を蓄えるバッグである。血漿採取バッグ 122は重量計 18 (図 1 参照)のフック 18aに懸架され、収納された血漿の重量を計測することができる。血小 板採取バッグ 124は、機構本体部 15の前面に懸架される(図 1参照)。  [0047] Plasma collection bag 122 and platelet collection bag 124 are bags for storing plasma and platelets obtained by a process such as centrifugation. The plasma collection bag 122 is suspended on a hook 18a of a weighing scale 18 (see FIG. 1), and the weight of the stored plasma can be measured. The blood platelet collection bag 124 is suspended on the front surface of the mechanism main body 15 (see FIG. 1).
[0048] 中間バッグ 126aは、採取した血小板 (濃厚血小板)を一時的に貯留するための容 器である。エアーバッグ 126bは、回路内の無菌空気を一時的に収納するための容 器である。エアーバッグ 126bと中間バッグ 126aとは、回路的には分離した独立の容 器であるが、物理的には一体的であって複室バッグ 126を構成している。複室バッグ 126はバッグ検出センサ 21 (図 1参照)のフック 21aに懸架される。  [0048] The intermediate bag 126a is a container for temporarily storing collected platelets (concentrated platelets). The air bag 126b is a container for temporarily storing sterile air in the circuit. The air bag 126b and the intermediate bag 126a are independent containers separated in terms of a circuit, but are physically integrated to form a multi-chamber bag 126. The multi-chamber bag 126 is suspended on the hook 21a of the bag detection sensor 21 (see FIG. 1).
[0049] 採血を行う際には、遠心ボウル 120の貯血空間内等の空気はエアーバッグ 126b 内に移送され、収納される。返血工程の際には、エアーバッグ 126b内に収納されて いる空気は、貯血空間内に戻され、所定の血液成分が、ドナーへ返還される。  [0049] When blood is collected, air in the blood storage space of the centrifuge bowl 120 is transferred to and stored in the air bag 126b. In the blood return process, the air stored in the air bag 126b is returned to the blood storage space, and a predetermined blood component is returned to the donor.
[0050] ノ ッグ 128は血小板採取バッグ 124に接続されたバッグであり、成分採血の終了後 、血小板採取バッグ 124内の空気を排出する際に用いられる。 [0051] 血漿採取バッグ 122、血小板採取バッグ 124、中間バッグ 126a、エアーバッグ 126 b及びバッグ 128は、それぞれ樹脂製 (例えば、軟質ポリ塩化ビュル)の可撓性を有 するシート材を重ね、その周縁部を融着 (熱融着、高周波融着、超音波融着等)また は接着剤により接着等して袋状にしたものが使用される。 The nose 128 is a bag connected to the platelet collection bag 124, and is used when the air in the platelet collection bag 124 is discharged after the component blood collection. [0051] Each of the plasma collection bag 122, the platelet collection bag 124, the intermediate bag 126a, the air bag 126b, and the bag 128 is laminated with a flexible sheet material made of resin (for example, soft polychlorinated bur). The peripheral edge is fused (heat fusion, high-frequency fusion, ultrasonic fusion, etc.) or bonded with an adhesive to form a bag.
[0052] なお、血小板採取バッグ 124に使用されるシート材としては、血小板保存性を向上 するためにガス透過性に優れるものを用いることがより好ましい。このようなシート材と しては、例えば、ポリオレフインや DnDP可塑化ポリ塩化ビュル等を用いることができ  [0052] As the sheet material used for the platelet collection bag 124, it is more preferable to use a sheet material having excellent gas permeability in order to improve platelet storage stability. As such a sheet material, for example, polyolefin or DnDP plasticized polychlorinated butyl can be used.
[0053] 白血球除去フィルター 130は、中間バッグ 126aから血小板採取バッグ 124に血液 成分を移送する際に、血液成分中の白血球を分離除去するフィルターである。図 1 力、ら明らかなように、白血球除去フィルター 130は、中間バッグ 126aより低ぐ血小板 採取バッグ 124より高い位置に配置される。 The leukocyte removal filter 130 is a filter that separates and removes leukocytes in the blood component when the blood component is transferred from the intermediate bag 126a to the platelet collection bag 124. As can be seen from FIG. 1, the leukocyte removal filter 130 is disposed at a higher position than the platelet collection bag 124, which is lower than the intermediate bag 126a.
[0054] 次に、処理経路系統 14bの各構成機器を接続するチューブについて説明する。処 理経路系統 14bの端部である分岐継手 102と遠心ボウル 120の導入口との間はチュ ーブ 140で接続されている。該チューブ 140の一部は血液ポンプ 28に装着される。 したがって、血液ポンプ 28を正転させることにより血液を採血経路系統 14aから遠心 ボウル 120内に導入し、又は処理経路系統 14b内で所定の循環動作を行うことがで きる。また、血液ポンプ 28を逆転させることにより、所定の血液成分を採血経路系統 1 4aに導出し、ドナーに返還することができる。  [0054] Next, tubes that connect the components of the processing path system 14b will be described. A tube 140 is connected between the branch joint 102, which is the end of the processing path system 14b, and the inlet of the centrifuge bowl 120. A part of the tube 140 is attached to the blood pump 28. Therefore, by rotating the blood pump 28 in the forward direction, blood can be introduced into the centrifuge bowl 120 from the blood collection path system 14a, or a predetermined circulation operation can be performed in the processing path system 14b. Further, by reversing the blood pump 28, a predetermined blood component can be led out to the blood collection path system 14a and returned to the donor.
[0055] 遠心ボウル 120の排出口にはチューブ 142が接続されており、該チューブ 142は 分岐継手 144を介して三つ股に分岐してチューブ 146、チューブ 148及びチューブ 150に接続されている。チューブ 142は、濁度センサ 32及び気泡センサ 34dに直列 的に接続されている。  A tube 142 is connected to the discharge port of the centrifuge bowl 120, and the tube 142 is branched into three forks via a branch joint 144 and connected to the tube 146, the tube 148, and the tube 150. The tube 142 is connected in series with the turbidity sensor 32 and the bubble sensor 34d.
[0056] チューブ 146はエアーバッグ 126bに接続されており、その途中はクランプ 36eに装 着されて!/、る。チューブ 148の端部は通気性かつ菌不透過性のフィルター(図示せ ず)に接続されるとともに、システム圧力センサ 40に揷入されており、システム圧力 Ps を計測可能である。  [0056] The tube 146 is connected to the air bag 126b, and the tube 146 is attached to the clamp 36e along the way! The end of the tube 148 is connected to a breathable and bacteria-impermeable filter (not shown) and inserted into the system pressure sensor 40, so that the system pressure Ps can be measured.
[0057] チューブ 150の端部は血漿採取バッグ 122に接続されており、その途中には分岐 継手 152が設けられ、チューブ 154を介して中間バッグ 126aに接続されている。チ ユーブ 154はクランプ 36dに装着されている。分岐継手 152と血漿採取バッグ 122と の間のチューブ 150はクランプ 36cに装着されている。 [0057] The end of the tube 150 is connected to the plasma collection bag 122, and it is branched in the middle. A joint 152 is provided and connected to the intermediate bag 126a via the tube 154. Tube 154 is attached to clamp 36d. A tube 150 between the branch joint 152 and the plasma collection bag 122 is attached to the clamp 36c.
[0058] 中間バッグ 126aと血小板採取バッグ 124との間はチューブ 156により接続されて おり、その途中には白血球除去フィルター 130が設けられている。中間バッグ 126aと 血小板採取バッグ 124との間のチューブ 156は、気泡センサ 34c及びクランプ 36gに 装着されている。 白血球除去フィルター 130の端部には、チューブ 156から短く分岐 したフィルター 160が設けられて!/、る。フィルター 160は菌不透過性のベントフィルタ 一及びキャップからなる。  [0058] The intermediate bag 126a and the platelet collection bag 124 are connected by a tube 156, and a leukocyte removal filter 130 is provided in the middle thereof. A tube 156 between the intermediate bag 126a and the platelet collection bag 124 is attached to the bubble sensor 34c and the clamp 36g. At the end of the leukocyte removal filter 130, a filter 160 branched from the tube 156 is provided! The filter 160 includes a fungi-impermeable vent filter and a cap.
[0059] 気泡センサ 34cとクランプ 36gとの間のチューブ 156には分岐継手 162が設けられ 、チューブ 164を介して、血漿採取バッグ 122に接続されている。チューブ 164の途 中には分岐継手 166が設けられている。該分岐継手 166と分岐継手 102との間はチ ユーブ; 168により接続されている。分岐継手 162と分岐継手 166との間のチューブ 1 64はクランプ 36fに装着されている。チューブ 168における分岐継手 102の近傍部 には、クランプ 36bが装着されている。  A branch joint 162 is provided on the tube 156 between the bubble sensor 34c and the clamp 36g, and is connected to the plasma collection bag 122 via the tube 164. A branch joint 166 is provided in the middle of the tube 164. The branch joint 166 and the branch joint 102 are connected by a tube 168. The tube 1 64 between the branch joint 162 and the branch joint 166 is attached to the clamp 36f. In the vicinity of the branch joint 102 in the tube 168, a clamp 36b is attached.
[0060] 血小板採取バッグ 124とバッグ 128はチューブ 158により接続されている。  [0060] The platelet collection bag 124 and the bag 128 are connected by a tube 158.
[0061] このように構成される採血キット 14は予め所定の滅菌処理がなされている。なお、 採血キット 14には、チューブが集中配置されたカセットハウジング 42、及びチューブ の一部とフィルター 160とを保持するフィルターカセット 170 (図 1参照)が設けられて いる。  [0061] The blood collection kit 14 configured as described above is subjected to a predetermined sterilization process in advance. The blood collection kit 14 is provided with a cassette housing 42 in which tubes are arranged in a concentrated manner, and a filter cassette 170 (see FIG. 1) that holds a part of the tubes and a filter 160.
[0062] 次に、血液成分採取装置 10により成分採血を行う主な手順について図 4を参照し ながら説明する。  [0062] Next, the main procedure for collecting blood components by the blood component collecting apparatus 10 will be described with reference to FIG.
[0063] 先ず、図 4のステップ S 1において所定の初期処理を行う。初期処理としては、チュ ーブ 110とチューブ 104の採血針 100からチャンバ一 106までを、抗凝固剤でプライ ミングし、その後、ドナーの血管に採血針 100を穿刺する。この後、モニタ 20のカラー タツチパネル 20aを操作して成分採血処理を開始する。これ以降の手順は主に制御 部 26の作用下に自動的に行われる。  First, predetermined initial processing is performed in step S 1 of FIG. As an initial process, the blood collection needle 100 of the tube 110 and the tube 104 to the chamber 106 is primed with an anticoagulant, and then the blood collection needle 100 is punctured into the donor's blood vessel. Thereafter, the color touch panel 20a of the monitor 20 is operated to start component blood collection processing. Subsequent steps are performed automatically under the action of the control unit 26.
[0064] ステップ S2において第 1の血漿採取工程を行う。この第 1の血漿採取工程は、遠心 ボウル 120の貯血空間内に血液を導入して遠心分離することにより得られる血漿を 血漿採取バッグ 122内に採取する工程である。 [0064] In step S2, a first plasma collection step is performed. This first plasma collection step involves centrifugation. This is a step of collecting plasma obtained by introducing blood into the blood storage space of the bowl 120 and centrifuging it into the plasma collection bag 122.
[0065] ここで、血液(抗凝固剤添加血液)は、チューブ 104を介して移送され、遠心ボウノレ 120の導入口よりロータの貯血空間内に導入される。このとき、遠心ボウル 120内の 空気は、チューブ 142及びチューブ 146を介してエアーバッグ 126b内に送り込まれ Here, blood (blood added with an anticoagulant) is transferred through the tube 104 and introduced into the blood storage space of the rotor from the inlet of the centrifugal bowlet 120. At this time, the air in the centrifuge bowl 120 is sent into the air bag 126b through the tube 142 and the tube 146.
[0066] 貯血空間内に所定量の血液が導入された状態で遠心ボウル 120のロータの回転 を開始する。ロータの回転数はステップ S9まで一定に維持される。ロータの回転によ り、貯血空間内に導入された血液は、内側から血漿層、バフィ一コート層、赤血球層 の 3層に分離される。なお、第 2サイクル以降は、血液ポンプ 28と同時にモータ 64を 駆動する。 [0066] The rotation of the rotor of the centrifuge bowl 120 is started with a predetermined amount of blood being introduced into the blood storage space. The rotational speed of the rotor is kept constant until step S9. By the rotation of the rotor, the blood introduced into the blood storage space is separated from the inside into three layers: a plasma layer, a buffy coat layer, and a red blood cell layer. In the second cycle and thereafter, the motor 64 is driven simultaneously with the blood pump 28.
[0067] ステップ S3において、チューブ 142に設けられた気泡センサ 34dの信号を監視し、 チューブ; L42を流れる流体が空気から血漿に変わったことを検出した後クランプ 36e を閉じるとともにクランプ 36cを開放する。貯血空間の容量を越える血液が貯血空間 内に導入されると、遠心ボウル 120の排出ロカも血漿が流出することから、このタイミ ングを気泡センサ 34dにより検出してクランプ操作を行い、チューブ 142及びチュー ブ 150を介して血漿を血漿採取バッグ 122内に導入、採取するように切り替える。血 漿採取バッグ 122に導入された血漿の重量は、重量計 18により計測される。重量計 18から得られる重量信号に基づき、血漿採取バッグ 122内に所定量の血漿が採取さ れたことが確認された後ステップ S4へ移る。  [0067] In step S3, the signal of the bubble sensor 34d provided in the tube 142 is monitored, and after detecting that the fluid flowing through the tube; L42 has changed from air to plasma, the clamp 36e is closed and the clamp 36c is opened. . When blood exceeding the capacity of the blood storage space is introduced into the blood storage space, the plasma also flows out from the discharge loca of the centrifuge bowl 120. Therefore, this timing is detected by the bubble sensor 34d, and the clamping operation is performed. Plasma is switched to the plasma collection bag 122 through the tube 150 and collected. The weight of plasma introduced into the plasma collection bag 122 is measured by a weigh scale 18. After confirming that a predetermined amount of plasma has been collected in the plasma collection bag 122 based on the weight signal obtained from the weigh scale 18, the process proceeds to step S4.
[0068] ステップ S4にお!/、て、定速血漿循環工程を行う。定速血漿循環工程は、血漿採取 ノ ッグ 122内の血漿を貯血空間を含む循環回路で定速にて循環させる工程である。 つまり、クランプ 36aを閉じ、クランプ 36bを開放するとともに抗凝固剤ポンプ 30を停 止する。これにより、採血を一時中断するとともに、血漿採取バッグ 122内の血漿を循 環させる経路が形成される。この循環回路は、血漿採取バッグ 122からチューブ 164 、 168及び 140を介して貯血空間内に至り、遠心ボウル 120の排出ロカも流出してき た血漿をチューブ 142及び 150を介して血漿採取バッグ 122内に回収する経路であ る。この定速血漿循環工程を所定時間行った後、ステップ S 5へ移る。 [0069] ステップ S5において、第 2の血漿採取工程を行なう。第 2の血漿採取工程では、第 1の血漿採取工程と同様に血漿の採取及び遠心分離を行なう。これにより、貯血空 間内の赤血球量が増加、すなわち、赤血球層の層厚が増大するのに伴い、界面も徐 々に遠心ボウル 120の回転軸に近づくので、光学式センサ 62からの検出信号に基 づいて界面が所定レベルに到達したことを確認した後、ステップ S6へ移る。 [0068] In step S4, a constant-speed plasma circulation step is performed. The constant-speed plasma circulation step is a step of circulating the plasma in the plasma collection node 122 at a constant speed in a circulation circuit including a blood storage space. That is, the clamp 36a is closed, the clamp 36b is opened, and the anticoagulant pump 30 is stopped. As a result, the blood collection is temporarily interrupted, and a path for circulating the plasma in the plasma collection bag 122 is formed. This circulation circuit reaches the blood storage space from the plasma collection bag 122 through the tubes 164, 168 and 140, and the plasma that has also flowed out from the centrifuge bowl 120 into the plasma collection bag 122 through the tubes 142 and 150. It is a route to collect. After performing this constant-speed plasma circulation process for a predetermined time, the process proceeds to step S5. [0069] In step S5, a second plasma collection step is performed. In the second plasma collecting step, plasma is collected and centrifuged in the same manner as in the first plasma collecting step. As a result, as the amount of red blood cells in the blood storage space increases, that is, as the layer thickness of the red blood cell layer increases, the interface gradually approaches the rotation axis of the centrifuge bowl 120, so that the detection signal from the optical sensor 62 is After confirming that the interface has reached the predetermined level based on the above, go to step S6.
[0070] ステップ S6にお!/、て加速血漿循環工程を行なう。加速血漿循環工程は、血漿採取 ノ ッグ 122内の血漿を貯血空間内に加速させながら循環回路内で循環させる工程 である。血漿の循環速度が所定速度に到達した後、ステップ S 7へ移る。  [0070] In step S6, an accelerated plasma circulation step is performed. The accelerated plasma circulation step is a step of circulating the plasma in the plasma collection node 122 in the circulation circuit while accelerating the plasma in the blood storage space. After the plasma circulation rate reaches the predetermined rate, the process proceeds to step S7.
[0071] ステップ S7において第 3の血漿採取工程を行う。第 3の血漿採取工程では、第 1及 び第 2の血漿採取工程と同様に、血漿の採取を行なう。血漿採取バッグ 122内に所 定量の血漿が採取されたことが確認された後、ステップ S8へ移る。  [0071] In step S7, a third plasma collection step is performed. In the third plasma collection step, plasma is collected in the same manner as in the first and second plasma collection steps. After confirming that a certain amount of plasma has been collected in the plasma collection bag 122, the process proceeds to step S8.
[0072] ステップ S8にお!/、て血小板採取工程を行なう。血小板採取工程は血漿採取バッグ 122内の血漿を、貯血空間内で第 1の加速度にて加速させながら循環させ、次いで 、第 1の加速度より大きい第 2の加速度に変更し、該第 2の加速度にて加速させなが ら循環させて、貯血空間内より血小板を流出させ、濃厚血小板を中間バッグ 126a内 に採取 (貯留)する工程である。血小板採取工程において所定の操作を行った後、ク ランプ 36eを開放し、この他のクランプ 36a〜36d、 36f及び 36gを閉じた状態とし、 血液ポンプ 28を停止する。  [0072] In step S8, a platelet collecting step is performed. In the platelet collection process, the plasma in the plasma collection bag 122 is circulated while accelerating in the blood storage space at the first acceleration, and then changed to a second acceleration larger than the first acceleration. In this process, platelets are allowed to circulate while being accelerated in order to discharge platelets from the blood storage space, and concentrated platelets are collected (stored) in the intermediate bag 126a. After performing a predetermined operation in the platelet collecting process, the clamp 36e is opened, the other clamps 36a to 36d, 36f and 36g are closed, and the blood pump 28 is stopped.
[0073] ステップ S9においてモータ 64の回転数を制御してロータを減速及び停止させる。  [0073] In step S9, the rotational speed of the motor 64 is controlled to decelerate and stop the rotor.
[0074] ステップ S10において返血工程を開始する。返血工程はロータの貯血空間内に残 存する血液成分(主に、赤血球、白血球)をドナーに返血する工程である。つまり、ク ランプ 36a及びクランプ 36eを開放するとともに、血液ポンプ 28を逆転する。これによ り、ロータの貯血空間内に残存する血液成分は遠心ボウル 120の導入ロカも排出さ れ、チューブ 104 (採血針 100)を介してドナーに返血(返還)される。返血工程の詳 細については後述する。  [0074] In step S10, the blood return process is started. The blood return process is a process in which blood components (mainly red blood cells and white blood cells) remaining in the blood storage space of the rotor are returned to the donor. That is, the clamp 36a and the clamp 36e are opened, and the blood pump 28 is reversed. As a result, the blood component remaining in the blood storage space of the rotor is also discharged from the introduction locus of the centrifugal bowl 120 and returned (returned) to the donor via the tube 104 (blood collection needle 100). Details of the blood return process will be described later.
[0075] この後、所定の終了条件に基づいて返血工程を終了する。  [0075] Thereafter, the blood return process is terminated based on a predetermined termination condition.
[0076] ステップ S11において、所定のサイクル数を終了したか否かを確認し、未終了であ るときにはステップ S2へ戻り採血、返血等の処理を続行する。 [0077] なお、最終サイクル時には、ステップ S5で濾過工程を開始する。濾過工程は、中間 ノ ッグ 126a内に一時的に採取 (貯留)した濃厚血小板を、白血球除去フィルター 13 0に供給して、濃厚血小板の濾過、すなわち、濃厚血小板中の白血球の分離除去を 行なう工程である。 白血球が除去された濃厚血小板は血小板採取バッグ 124に貯溜 される。 In step S11, it is confirmed whether or not the predetermined number of cycles has been completed. If it has not been completed, the process returns to step S2 to continue processing such as blood collection and blood return. [0077] In the final cycle, the filtration process is started in step S5. In the filtration step, the concentrated platelets temporarily collected (stored) in the intermediate knob 126a are supplied to the leukocyte removal filter 130, and the concentrated platelets are filtered, that is, the leukocytes in the concentrated platelets are separated and removed. It is a process. Concentrated platelets from which white blood cells have been removed are stored in a platelet collection bag 124.
[0078] 次に、ステップ S 10 (図 4参照)において行われる返血処理の第 1実施例について 図 5〜図 7を参照しながら説明する。以下の処理は、複数回行われる返血処理につ いて毎回行われる。この返血工程は、開始後の比較的短い時間に行われる差圧力 閾値判断処理 (差圧判断処理)と、その後に行われる圧力値傾斜判断処理 (圧力判 断処理)とを含む。  Next, a first example of blood return processing performed in step S 10 (see FIG. 4) will be described with reference to FIGS. The following processing is performed each time for blood return processing that is performed multiple times. This blood return process includes a differential pressure threshold determination process (differential pressure determination process) performed in a relatively short time after the start, and a pressure value gradient determination process (pressure determination process) performed thereafter.
[0079] なお、図 7において、破線で示されるグラフ 510及び 512は、そのままではドナーに 違和感を与えうる内出血が発生する可能性があると判断される場合であり、太線で示 されるグラフ 526は、そのままではドナーに大きな違和感を与えないが、ドナーの血 管から採血針 100が外れる等して、内出血が発生する可能性があると判断される場 合であり、細線で示されるグラフ 522及び 524は、内出血の可能性がないと判断され る場合である。  In FIG. 7, graphs 510 and 512 indicated by broken lines are cases in which it is determined that there is a possibility that internal hemorrhage that may cause a sense of incongruity to the donor may occur, and graphs indicated by bold lines 526 This is a case where it is judged that there is a possibility that internal bleeding may occur because the blood collection needle 100 is detached from the donor's blood vessel, etc. And 524 are cases in which there is no possibility of internal bleeding.
[0080] 図 7において、縦軸 530、 532及び 534は、血液ポンプ 28の返血速度 Vが 50mL /min、 60mL/min及び 90mL/minに達する箇所を代表的に示す泉である。採 血時の採血速度をプラス値に規定している関係上、返血速度 Vはマイナス値として 表される。  [0080] In FIG. 7, vertical axes 530, 532, and 534 are springs representatively showing the points at which the blood return speed V of the blood pump 28 reaches 50 mL / min, 60 mL / min, and 90 mL / min. Since the blood collection rate at the time of blood collection is defined as a positive value, the blood return rate V is expressed as a negative value.
[0081] 先ず、図 5のステップ S 101において、血液ポンプ 28の累積回転数 A及びドナー圧 力 Pdの計測を開始する。このステップ S 101において得られる返血開始時のドナー 圧力 Pdを初期圧力 P0として記憶する。  First, in step S 101 of FIG. 5, measurement of the cumulative rotational speed A of the blood pump 28 and the donor pressure Pd is started. The donor pressure Pd at the start of blood return obtained in step S101 is stored as the initial pressure P0.
[0082] 以下の処理は、累積回転数 Aを基準にして行われ、例えば、 A=0. 25回転毎に 行う。ドナー圧力 Pdについても、 A = 0. 25回転毎に計測をするものとする。制御部 2 6で行うこれらの処理は、累積回転数 A以外にも、例えば返血開始からの積算返血 量(累積送液量 A' )、返血開始からの経過時間(返血経過時間 T)等に基づいて行 つてもよい。 [0083] ステップ S102において、返血制限圧力 P を 10〜; 150mmHgに設定する。第 1実 [0082] The following processing is performed based on the accumulated rotational speed A, for example, every A = 0.25 rotations. The donor pressure Pd is also measured every A = 0.25 revolutions. In addition to the cumulative rotational speed A, these processes performed by the control unit 26 include, for example, an accumulated blood return amount (cumulative liquid delivery amount A ′) from the start of blood return, an elapsed time since the start of blood return (elapsed blood return time). T) etc. may be used. [0083] In step S102, the blood return limiting pressure P is set to 10 to 150 mmHg. 1st fruit
L1  L1
施例では、返血制限圧力 P を lOOmmHgに設定する。この返血制限圧力 P は、得  In the example, the blood return limit pressure P is set to lOOmmHg. This return limiting pressure P is
1 1 られるドナー圧力 Pdと初期圧力 POとの差の圧力(以下、ドナー圧力 Pdという。)が超  1 1 The pressure difference between the donor pressure Pd and the initial pressure PO (hereinafter referred to as the donor pressure Pd) is too high.
0  0
えたときにドナー圧力 Pdを下げるべく血液ポンプ 28の回転速度(時間当たりの回転 数)を低下させるなど所定の処理を行うための基準となる圧力値である。  In this case, the pressure value becomes a reference pressure for performing a predetermined process such as reducing the rotation speed (the number of rotations per hour) of the blood pump 28 in order to lower the donor pressure Pd.
[0084] また、傾斜閾値 P を 10 50mmHgに設定する。第 1実施例では、傾斜閾値 P を [0084] Further, the inclination threshold P is set to 1050 mmHg. In the first embodiment, the inclination threshold P is set to
2 2 twenty two
20mmHgに設定する。この傾斜閾値 P は、返血開始直後を除く安定な返血状態で Set to 20mmHg. This slope threshold P is a stable blood return condition except immediately after the start of blood return.
2  2
は変動し得ないはずの傾斜を示すもので、血液ポンプ 28が 0. 5回転する間の変動 許容幅を示す。この変動幅を超えるときにはドナー圧力 Pdを下げるべく血液ポンプ 2 8の回転数を低下させるなど所定の処理を行う。  Indicates the inclination that should not be changed, and indicates the allowable fluctuation range for 0.5 rotation of the blood pump 28. When this fluctuation range is exceeded, a predetermined process such as reducing the rotation speed of the blood pump 28 to reduce the donor pressure Pd is performed.
[0085] なお、傾斜閾値 P は、血液ポンプ 28が所定回転する間の変動許容幅であり、この [0085] It should be noted that the inclination threshold P is an allowable fluctuation range during the predetermined rotation of the blood pump 28, and this
2  2
所定値は、血液ポンプ 28 (ローラポンプ)のローラの数に合わせて設定することが好 適である。  The predetermined value is preferably set according to the number of rollers of blood pump 28 (roller pump).
[0086] ステップ S 103において、血液ポンプ 28を回転させて返血を開始する。血液ポンプ [0086] In step S103, the blood pump 28 is rotated to start blood return. Blood pump
28は採血時の正方向に対して逆方向に回転させる。 28 is rotated in the opposite direction to the normal direction during blood collection.
[0087] 血液ポンプ 28は、返血速度 Vが所定の返血速度設定値となるように回転速度を制 御する。返血速度設定値は、例えば、初期状態で 20mL/minであり、その後に返 血速度設定値としての 90mL/minに達するまで加速を行うように設定されている。 The blood pump 28 controls the rotation speed so that the blood return speed V becomes a predetermined blood return speed set value. The blood return rate set value is, for example, 20 mL / min in the initial state, and is set to accelerate until reaching the blood return rate set value of 90 mL / min.
[0088] ステップ S104において、返血開始時又は前回にドナー圧力 Pdを計測した時点(ス テツプ S 105)を基準として、累積回転数 Aが 0. 25だけ増加したか、つまり、血液ボン プ 28が 0. 25回転したか否かを確認する。 0. 25回転したときにはステップ S105へ 移り、 0. 25回転未満であるときには待機する。 [0088] In step S104, whether the cumulative rotational speed A has increased by 0.25 with reference to the start of blood return or the previous time when donor pressure Pd was measured (step S105), that is, blood pump 28 Check if has rotated 0.25. If 0.25 revolutions have been made, the process moves to step S105. If less than 0.25 revolutions, the system waits.
[0089] ステップ S105において、その時点のドナー圧力 Pdを計測して記録をする。初期圧 力 P0及びドナー圧力 Pdは、いわゆるリングバッファに蓄えられる。このリングバッファ の利用方法については後述する(図 8A〜図 9B参照)。 [0089] In step S105, the donor pressure Pd at that time is measured and recorded. The initial pressure P0 and the donor pressure Pd are stored in a so-called ring buffer. The method of using this ring buffer will be described later (see Figures 8A to 9B).
[0090] ステップ S106において、第 1差圧 Δ Ρ1を、 Δ Ρ1— Pd— POとして求める。ここで用 いるドナー圧力 Pdは、直前のステップ S 105において計測した値である。第 1差圧 Δ[0090] In step S106, the first differential pressure Δ 求 め る 1 is obtained as ΔΡ1-Pd-PO. The donor pressure Pd used here is the value measured in the immediately preceding step S105. First differential pressure Δ
P1に基づく処理によれば、初期圧力 POによる影響を排除することができる。なお、第 差圧 Δ PIはドナー圧力 Pdと同じィ直であるが、後述する第 2差圧 Δ Ρ2と対比しや According to the process based on P1, the influence of the initial pressure PO can be eliminated. The first The differential pressure ΔPI is the same as the donor pressure Pd, but it is compared with the second differential pressure ΔΡ2 described later.
0  0
すいように表記する。  Indicate it in a clean way.
ステップ S107において、第 1差圧 Δ Ρ1と返血制限圧力 P とを比較し、 Δ Ρ1≥Ρ  In step S107, the first differential pressure Δ Ρ1 is compared with the blood return restriction pressure P, and Δ Ρ1≥Ρ
Ll L1 であるときにはステップ S108 移り、 Δ ΡΚ Ρ であるときにはステップ S109 移る  If it is Ll L1, go to step S108, if ΔΡΚ Ρ, go to step S109
[0092] このステップ S107の判断は、ドナーに違和感を与えうる内出血の兆候の有無を予 知的に調べるものであり、図 7において、ドナー圧力 Pd (つまり、第 1差圧 Δ Ρ1)が返 [0092] The determination in step S107 is for proactively examining the presence of signs of internal bleeding that may cause the donor to feel uncomfortable. In FIG. 7, the donor pressure Pd (that is, the first differential pressure Δ Ρ1) is returned.
0  0
血制限圧力 P 以上である場合に分岐処理をして、対応処理のステップ S108によつ  If the blood pressure limit is P or more, branch processing is performed and the response processing step S108 is performed.
1  1
て返血を中断させ、内出血を予防するものである。  In this way, return of blood is interrupted and internal bleeding is prevented.
[0093] 初期段階 (例えば、累積回転数 Aが 2. 5までの期間)でドナーに違和感を与えうる 可能性があるのは、図 7において返血制限圧力 P よりも上の範囲であることが本発  [0093] It is possible that the donor may feel uncomfortable in the initial stage (for example, the cumulative rotation speed A is up to 2.5) in the range above the blood return restriction pressure P in FIG. Is the main departure
1  1
明者の研究により確認されている。これは、採血針 100の先から吐出される返血成分 が正確に静脈に供給されていないことに基づいて、過度にドナー圧力 Pdが上昇す  It has been confirmed by the research of Akira. This is because the donor pressure Pd is excessively increased based on the fact that the blood return component discharged from the tip of the blood collection needle 100 is not accurately supplied to the vein.
0  0
るためであると考えられる。  This is considered to be because of this.
[0094] また、このような初期段階では、ドナー圧力 Pd及び Pdはある程度急上昇をすること  [0094] Further, in such an initial stage, the donor pressures Pd and Pd increase rapidly to some extent.
0  0
から、上昇の傾斜値に基づく判断よりも固定的な返血制限圧力 P による閾値判断と  Therefore, the threshold judgment based on the fixed blood return restriction pressure P rather than the judgment based on the rising slope value
1  1
してもよい。  May be.
[0095] 図 7においては、グラフ 510及び 512については、返血制限圧力 P よりも上方に至  [0095] In FIG. 7, graphs 510 and 512 reach higher than the blood return limiting pressure P.
L1  L1
つていることから、ドナーに違和感を与えうる内出血を発生する可能性があると判断さ れ、ステップ S108の対応処理が行われることになる。一方、グラフ 522 524及び 52 6については、返血制限圧力 P による制限はない。  Therefore, it is determined that there is a possibility of internal bleeding that may cause a sense of incongruity to the donor, and the corresponding process of step S108 is performed. On the other hand, the graphs 522 524 and 526 are not limited by the blood return limiting pressure P.
L1  L1
[0096] この対応処理は、図 6に示すように、ステップ S201において血液ポンプ 28を停止さ せ(又は減速させ)、ステップ S202において所定の音響手段又はモニタ 20に所定の 情報を表示させ、オペレータに通報する。この後、ステップ S203で必要な処置を行 い、ステップ S204において、オペレータが返血を再開することが可能と判断した場 合には、再開ボタン(図示せず)を押下して返血を再開する。返血を再開するが可能 でないと判断した場合には必要な処置を行った後、中止ボタン(図示せず)を押下し て、返血を中断する。 [0097] 図 5に戻り、ステップ S 109において、累積回転数 Aが 2. 5回転に達したか否かを 確認し、達している場合にはステップ S110へ移り、未達である場合にはステップ S10 4へ戻る。 [0096] As shown in FIG. 6, in this response process, the blood pump 28 is stopped (or decelerated) in step S201, and predetermined information is displayed on predetermined acoustic means or the monitor 20 in step S202. To report to. Thereafter, the necessary treatment is performed in step S203, and if it is determined in step S204 that the operator can resume the blood return, the blood return is resumed by pressing a resume button (not shown). To do. If it is determined that it is not possible to return the blood, take necessary measures and then press the stop button (not shown) to interrupt the blood return. [0097] Returning to FIG. 5, in step S109, it is confirmed whether or not the cumulative rotation speed A has reached 2.5 rotations. If it has reached, the process proceeds to step S110, and if it has not, Return to step S10-4.
[0098] ここまでのステップ S10;!〜 S 109の処理力 便宜上、差圧力閾値判断処理として 区分可能であり、図 7においては、 A= 2. 5よりも左側の領域が相当する。また、以下 の処理は、便宜上、圧力値傾斜判断処理として区分可能であり、図 7においては、 A = 2. 5よりも右側の領域が相当する。  [0098] Processing power up to step S10;! To S109 For convenience, it can be classified as differential pressure threshold determination processing, and in FIG. 7, the region on the left side of A = 2.5 corresponds. In addition, the following processing can be classified as pressure value inclination judgment processing for convenience. In FIG. 7, the area on the right side of A = 2.5 corresponds.
[0099] ステップ S110において、前回にドナー圧力 Pdを計測した時点(ステップ S105又は S 111)を基準として、累積回転数 Aが 0. 25だけ増加したか、つまり、血液ポンプ 28 力 0. 25回転した力、否力、を確言忍する。 0. 25回転したときにはステップ S111へ移り、 0 . 25回転未満であるときには待機する。  [0099] In step S110, whether the cumulative rotational speed A has increased by 0.25, based on the previous time when donor pressure Pd was measured (step S105 or S 111), that is, blood pump 28 force 0.25 rotation Ensuring the power, power, and power If 0.25 revolutions have been made, the process proceeds to step S111. If less than 0.25 revolutions, the process waits.
[0100] ステップ S111において、その時点のドナー圧力 Pdを計測して記録をする。このド ナー圧力 Pdは、いわゆるリングバッファに蓄えられる。  [0100] In step S111, the donor pressure Pd at that time is measured and recorded. This donor pressure Pd is stored in a so-called ring buffer.
[0101] ステップ S112において、第 2差圧 Δ Ρ2を、 A P2—Pd —Pd として求める。ここで  [0101] In step S112, the second differential pressure Δ Ρ2 is obtained as A P2-Pd-Pd. here
N N- 2  N N- 2
、添え字の N及び N— 2は、ドナー圧力 Pdを計測した順序を示すものであり、添え字 Nは直前のステップ S105において計測した値であることを示し、添え字 N— 2は 2回 前において計測した値であることを示す。この一連の処理は、血液ポンプ 28が 0. 25 回転する毎に行われることから、 Pd は、血液ポンプ 28が 0. 5回転前のときのドナ  The subscripts N and N-2 indicate the order in which the donor pressure Pd was measured. The subscript N indicates the value measured in the immediately preceding step S105, and the subscript N-2 is twice. Indicates the value measured before. Since this series of processing is performed every time the blood pump 28 rotates 0.25, Pd is the donor when the blood pump 28 is rotated 0.5 times.
N- 2  N- 2
一圧力 Pdである。  One pressure Pd.
[0102] このように、所定の間隔をおいて第 2差圧 Δ Ρ2を求めることにより、ノイズ等の影響 を低減すること力 Sできる。この第 2差圧 Δ Ρ2は、ドナー圧力 Pd及び Pdの傾斜を示す  [0102] Thus, by obtaining the second differential pressure ΔΡ2 at a predetermined interval, it is possible to reduce the influence of noise and the like. This second differential pressure Δ Ρ2 indicates the slope of the donor pressures Pd and Pd
0  0
ことになる。  It will be.
[0103] ステップ S113において、ドナー圧力 Pdの傾斜である第 2差圧 Δ Ρ2が所定傾斜(つ まり、 20mmHg/0. 5rev)の傾斜閾値 P を超えるか否かを調べる。つまり、第 2差  [0103] In step S113, it is checked whether or not the second differential pressure ΔΡ2, which is the slope of the donor pressure Pd, exceeds the slope threshold value P of a predetermined slope (that is, 20 mmHg / 0.5 rev). That is, the second difference
L2  L2
圧 Δ Ρ2と傾斜閾値 P とを比較し、 Δ Ρ2≥Ρ であるときにはステップ SI 14へ移り、  The pressure Δ Ρ2 is compared with the slope threshold P, and when Δ Ρ2≥Ρ, the process proceeds to step SI 14,
L2 L2  L2 L2
Δ Ρ2< Ρ であるときにはステップ S I 14へ移る。  If Δ Ρ2 <Ρ, proceed to step S I 14.
L2  L2
[0104] このステップ S 113の判断は、ドナーに違和感を与えうる内出血の兆候の有無を予 知的に調べるものであり、図 7において、第 2差圧 Δ Ρ2が傾斜閾値 P 以上である場 合に分岐処理をして、対応処理のステップ S 114によって返血を中断させ、内出血を 予防するものである。 [0104] The determination in step S113 is a proactive test for the presence of signs of internal bleeding that may cause the donor to feel uncomfortable. In Fig. 7, if the second differential pressure ΔΡ2 is greater than or equal to the slope threshold P, In other words, branch processing is performed, and return of blood is interrupted by step S114 of the corresponding processing to prevent internal bleeding.
[0105] 定常状態に移行した返血 (例えば、累積回転数 Aが 2. 5以降)でドナーに違和感を 与えうる可能性があるのは、図 7において傾斜閾値 P よりも所定時間での変動幅が  [0105] Returning to a steady state (for example, the cumulative rotation speed A is 2.5 or later) may give the donor a sense of discomfort. Width
2  2
大きいときであることが本発明者の研究により確認されている。これは、当初は適切に 穿刺されていた採血針 100が何らかの理由によりずれて、返血成分が正確に静脈に 供給されなくなりつつあることに基づいて、ドナー圧力 Pdが上昇し始めるためである  It is confirmed by the inventor's research that this is a large time. This is because the donor pressure Pd begins to rise based on the fact that the blood collection needle 100, which was initially properly punctured, is displaced for some reason and the blood return component is no longer being accurately supplied to the vein.
0  0
と考免られる。  It is exempted.
[0106] 図 7においては、グラフ 526については、累積回転数 Aが 12回程度以上の領域に おいて 0. 5回転当たりの変動幅が傾斜閾値 P よりも大きくなつていることから、ドナ  In FIG. 7, in graph 526, the range of fluctuation per 0.5 rotation is larger than the slope threshold value P in the region where the cumulative rotational speed A is about 12 times or more.
2  2
一に違和感を与えうる内出血を発生する可能性があると判断され、ステップ S 114の 対応処理が行われることになる。一方、グラフ 522及び 524については、傾斜閾値 P による制限はない。  First, it is determined that there is a possibility of internal bleeding that may give a sense of incongruity, and the corresponding process of step S114 is performed. On the other hand, the graphs 522 and 524 are not limited by the slope threshold P.
[0107] 図 7から明らかなように、傾斜閾値 P を用いた処理を行うことによりグラフ 526が上  [0107] As is clear from Fig. 7, the graph 526 is improved by performing the processing using the slope threshold value P.
2  2
昇し始めたときに迅速な判断が可能となり、前記の返血制限圧力 P に基づく判断で  As soon as it begins to rise, it is possible to make a quick decision.
1  1
ドナー圧力 Pd力 OOmmHgに達するよりも短時間で検出が可能である。  Detection is possible in a shorter time than reaching the donor pressure Pd force OOmmHg.
0  0
[0108] ステップ S114の対応処理は、前記のステップ S108と同じ処理である。  [0108] The handling process in step S114 is the same process as in step S108.
[0109] ステップ S115において、返血工程の終了を確認する。すなわち、累積回転数 Aが 所定値に達し、所定量の血液成分が返血されたと判断できる場合には、図 5に示す 返血工程を終了し、それ以外の場合にはステップ S 110に戻つて返血を続行する。 [0109] In step S115, the completion of the blood return process is confirmed. That is, when the cumulative rotation speed A reaches a predetermined value and it can be determined that a predetermined amount of blood component has been returned, the blood return process shown in FIG. 5 is terminated, and in other cases, the process returns to step S110. Continue to return blood.
[0110] 次に、ドナー圧力 Pdを図 8A〜図 9Bのメモリ 600に記録し、第 1差圧 Δ Ρ1及び第 2 差圧 Δ Ρ2を求める方法について説明する。メモリ 600は RAMの一部であり、続き番 号の 10個のアドレス adO adlOにより構成されている。メモリ 600はいわゆるリングバ ッファとして用いられる。  [0110] Next, a method for obtaining the first differential pressure Δ 第 1 and the second differential pressure ΔΡ2 by recording the donor pressure Pd in the memory 600 of FIGS. 8A to 9B will be described. The memory 600 is a part of the RAM, and is composed of ten consecutive addresses adO adlO. The memory 600 is used as a so-called ring buffer.
[0111] 図 8A〜図 9Bにおいて、各アドレス adO adlOに示される記号はドナー圧力 Pdで あり、このうち P0は初期圧力である。 PN (N= 1 , 2, 3· · ·)は、 N回目に得られたドナ 圧力 Pdを示す。  [0111] In FIGS. 8A to 9B, the symbol shown at each address adO adlO is the donor pressure Pd, of which P0 is the initial pressure. PN (N = 1, 2, 3, ···) indicates the donor pressure Pd obtained for the Nth time.
[0112] 先ず、差圧力閾値判断処理の前記のステップ S101において得られた初期圧力 P0 は、図 8Aに示すように、アドレス adO〜adlOの全てに記録される。 [0112] First, the initial pressure P0 obtained in step S101 of the differential pressure threshold determination process is as follows. Is recorded in all of the addresses adO to adlO as shown in FIG. 8A.
[0113] 第 1回目に得られたドナー圧力 Pd = Plは、図 8Bに示すように、アドレス adOに記 録される。このときの第 1差圧 Δ Ρ1は、 Δ Ρ1— PI— P0である力 アドレスポインタ操 作によりアドレス adOの値(P1)力、ら隣のアドレス adl (PO)の値を減算して求められる 。アドレスポインタ操作は、例えば該アドレスポインタが示すアドレスにデータを書き 込む毎に + 1更新されるように設定しておき、更新されたアドレスポインタが示すアド レスの値を P0として読み込めばよい。アドレスポインタ Iは 0〜10の値をとるものとし、 I = 11のときは 1—0にする。 [0113] The donor pressure Pd = Pl obtained at the first time is recorded at the address adO as shown in FIG. 8B. The first differential pressure Δ Ρ1 at this time is obtained by subtracting the value of the address adO (P1) and the value of the adjacent address adl (PO) by the force address pointer operation that is Δ Ρ1—PI—P0. . For example, the address pointer operation may be set to be updated by 1 every time data is written to the address indicated by the address pointer, and the address value indicated by the updated address pointer may be read as P0. The address pointer I takes a value between 0 and 0. When I = 11, it is set to 1-0.
[0114] なお、図 8B以降で、ハッチングが付されているアドレスは第 1差圧 Δ Ρ1又は第 2差 圧 Δ Ρ2を求めるのに参照される部分を示す。 [0114] In FIG. 8B and subsequent figures, hatched addresses indicate a portion referred to for obtaining the first differential pressure Δ 差 1 or the second differential pressure ΔΡ2.
[0115] 第 2回目に得られたドナー圧力 Pd = P2は、図 8Cに示すように、アドレス adlに記 録される。このときの第 1差圧 Δ Ρ1は、 Δ Ρ1— P2— P0である力 アドレスポインタ操 作によりアドレス adlの値(P2)力、ら隣のアドレス ad2 (P0)の値を減算して求められる[0115] The donor pressure Pd = P2 obtained at the second time is recorded at the address adl as shown in FIG. 8C. The first differential pressure Δ Ρ1 at this time is obtained by subtracting the value of the address adl (P2) and the value of the adjacent address ad2 (P0) by the force address pointer operation that is Δ Ρ1—P2—P0.
Yes
[0116] 以後、同様にしてドナー圧力 Pdは昇順のアドレスに順次記録され、第 1差圧 Δ Ρ1 はその 1つ隣のアドレスの値(つまり P0)を減算することにより求められる。  Thereafter, similarly, the donor pressure Pd is sequentially recorded in ascending addresses, and the first differential pressure Δ Ρ1 is obtained by subtracting the value of the next address (that is, P0).
[0117] 次に、圧力値傾斜判断処理のステップ S111で最初に得られるドナー圧力 Pd = Pl 1は、図 9Aに示すように、アドレス adlOに記録される。このときの第 2差圧 Δ Ρ2は、 Δ Ρ2—Ρ11— P9である力 アドレスポインタ操作によりアドレス adlOの値(PI 1)から 2つ隣のアドレス ad8 (P9)の値を減算して求められる。  Next, as shown in FIG. 9A, the donor pressure Pd = Pl 1 first obtained in step S111 of the pressure value inclination determination process is recorded at address adlO. The second differential pressure Δ Ρ2 at this time is obtained by subtracting the value of the address ad8 (P9) next to the address adlO (PI 1) from the value of address adlO (PI 1) by the force address pointer operation of Δ Ρ2—Ρ11—P9 .
[0118] アドレスポインタ操作は、例えば該アドレスポインタ Iが示すアドレスにデータを書き 込む毎に + 1更新されるように設定した場合、 I 3の示すアドレスの値が P 11であり、 1— 2の示すアドレスの値が P9である。アドレスポインタ操作は、これに限られるもので ないことはもちろんである。  [0118] For example, when the address pointer operation is set to be updated by 1 every time data is written to the address indicated by the address pointer I, the value of the address indicated by I3 is P11, and 1−2 The address value indicated by is P9. Of course, the address pointer operation is not limited to this.
[0119] ステップ S111で 2回目に得られるドナー圧力 Pd = P12は、図 9Bに示すように、ァ ドレス adOに記録される。このときの第 2差圧 Δ Ρ2は、 Δ Ρ2— P12— P10であり、前 記のアドレスポインタ操作により求められる。  [0119] The donor pressure Pd = P12 obtained at step S111 for the second time is recorded in the address adO as shown in FIG. 9B. The second differential pressure Δ Ρ2 at this time is Δ Ρ2-P12-P10, and is obtained by the address pointer operation described above.
[0120] 以後、同様にしてドナー圧力 Pdは昇順のアドレスに adO〜adlOの範囲で順次記 録され、 adlOに記録した後には再度 adOに戻って記録する。第 2差圧 Δ Ρ2は 2つ隣 のアドレスの値を減算することにより求められる。 [0120] Thereafter, the donor pressure Pd is sequentially written in the range of adO to adlO in ascending order in the same manner. After being recorded and recorded in adlO, return to adO and record again. The second differential pressure Δ Ρ2 is obtained by subtracting the value of the two adjacent addresses.
[0121] 上述したように、本実施の形態に係る血液成分採取装置 10によれば、返血時で血 液ポンプ 28を回転させて!/、る際に、ドナー圧力 Pdの傾斜である第 2差圧 Δ P2が所 定傾斜の傾斜閾値 P を超えるときに血液ポンプ 28を減速又は停止させることにより [0121] As described above, according to the blood component collection device 10 according to the present embodiment, when the blood pump 28 is rotated at the time of blood return! (2) By slowing or stopping the blood pump 28 when the differential pressure ΔP2 exceeds the predetermined inclination threshold P
2  2
、ドナーに違和感を与えうる内出血の発生を予知、予防すること力 sできる。  It is possible to predict and prevent the occurrence of internal bleeding that may cause discomfort to the donor.
[0122] 上記の各説明における累積回転数 A (回)は、例えば累積送液量 A' (mL)、返血 経過時間 T (min)に置き換えてもよいことはもちろんである。累積送液量 A'と累積回 転数 Aとは血液ポンプ 28の仕様により、例えば、 A/A' = l . 15という関係式により 相互変換が可能である。また、返血経過時間 Tは、返血工程(返血処理)において血 液ポンプ 28が稼動している累積時間である。 [0122] Of course, the cumulative rotational speed A (times) in each of the above descriptions may be replaced with, for example, the cumulative liquid feeding amount A '(mL) and the blood return elapsed time T (min). The accumulative liquid supply A ′ and the accumulative rotational speed A can be converted into each other by the relational expression A / A ′ = l. Further, the blood return elapsed time T is the cumulative time during which the blood pump 28 is operating in the blood return process (blood return process).
[0123] なお、上述の説明では、累積回転数 Aが Α= 2· 5回となるまでの差圧力閾値判断 処理では、第 1差圧 Δ Ρ1と固定的な返血制限圧力 Ρ とを比較判断している力 累 In the above description, the first differential pressure Δ 処理 1 is compared with the fixed blood return restriction pressure Α in the differential pressure threshold judgment process until the cumulative rotational speed A reaches Α = 2.5. Judgment power
1  1
積回転数 Αが Α= 2. 5回以降の圧力値傾斜判断処理の一種であるとも言える。  It can also be said that the product rotation speed Α is Α = 2.5.
[0124] すなわち、第 1差圧 Δ Ρ1は、累積回転数 Αの時点のドナー圧力 Pdと初期圧力 Ρ0 との差であり、その傾斜は Δ Ρ1/Αである。その時点の比較対象の返血制限圧力 P は、傾斜閾値としては P /Aと表される。また、前記のステップ S107における Δ Ρ1That is, the first differential pressure Δ Ρ1 is the difference between the donor pressure Pd at the time of the cumulative rotational speed Α and the initial pressure Ρ0, and its slope is Δ Ρ1 / Α. The blood return limiting pressure P to be compared at that time is expressed as P / A as the slope threshold. In addition, Δ Ρ1 in step S107 described above
1 1 1 1
≥P という比較判断は、 Δ Ρ1/Α≥Ρ /Αと表すこともできるので、前記のステップ 1 1  ≥P can be expressed as Δ Ρ1 / Α≥Ρ / Α.
S 113と同様の傾斜比較判断であり、圧力値傾斜判断処理の一種であるとも言える。  This is a tilt comparison determination similar to S113, and can be said to be a kind of pressure value tilt determination processing.
[0125] 次に、ステップ S 10 (図 4参照)において行われる返血処理の第 2実施例について 図 10を参照しながら説明する。以下の処理は、複数回行われる返血処理について 毎回行われる。この第 2実施例は、基本的には第 1実施例と同様の処理を行うもので あって、第 1実施例では、当初、返血制限圧力 P が設定され、その後は傾斜領域 P Next, a second embodiment of the blood return process performed in step S 10 (see FIG. 4) will be described with reference to FIG. The following processing is performed each time for blood return processing that is performed multiple times. In the second embodiment, basically the same processing as in the first embodiment is performed. In the first embodiment, the blood return limit pressure P is initially set, and thereafter, the inclined region P is set.
1  1
が設定されているが、第 2実施例では、当初、傾斜領域 P が設定され、その後は傾 However, in the second embodiment, the slope region P is initially set and then the slope is set.
2 3 twenty three
斜領域 P が設定される。  The diagonal area P is set.
4  Four
[0126] 返血工程の第 2実施例は、図 10に示す処理として行われる。図 10におけるステツ プ S30;! S315は、第 1実施列における図 5のステップ S10;! S115に相当し、第 1実施列の処理と異なるのは、ステップ S302 S306 S307 S313である。 [0127] ステップ S302では、傾斜領域 P 及び傾斜領域 P が設定される。傾斜閾値 P は、 [0126] The second embodiment of the blood return process is performed as the process shown in FIG. Step S30 ;! S315 in FIG. 10 corresponds to step S10 ;! S115 in FIG. 5 in the first implementation column, and steps S302, S306, S307, and S313 are different from the processing in the first implementation column. [0127] In step S302, the inclined region P and the inclined region P are set. The slope threshold P is
3 4 3 3 4 3
A< 2. 5の期間における血液ポンプ 28が 0. 25回転する間の変動許容幅で、例え ば、 10 50mmHgに設定する。第 2実施例では、傾斜閾値 P を 20mmHgに設定 Set the permissible fluctuation during the 0.25 rotation of the blood pump 28 during the period A <2.5, for example, 10 50 mmHg. In the second example, the inclination threshold P is set to 20 mmHg.
3  Three
する。傾斜閾値 P を 20mmHg/0. 5回転として、図 7に図示する。  To do. Figure 7 shows the tilt threshold P as 20mmHg / 0.5 rotation.
3  Three
[0128] 傾斜閾値 P は、 Α≥2· 5の期間における血液ポンプ 28が 0. 5回転する間の変動  [0128] Inclination threshold P varies during 0.5 rotation of blood pump 28 in the period Α≥2.5
4  Four
許容幅で、前記の傾斜領域 Ρ と同様のパラメータである。傾斜領域 Ρ は、例えば、  The allowable width is the same parameter as the slope region 傾斜 described above. The inclined region Ρ is, for example,
2 2  twenty two
10 50mmHgに設定する。第 2実施例では、傾斜閾値 P を傾斜領域 P と同じ 20  10 Set to 50mmHg. In the second embodiment, the inclination threshold P is the same as the inclination area P. 20
4 2 mmHgに設定する。傾斜閾値 P を図 7に図示する。  4 Set to 2 mmHg. Figure 7 shows the slope threshold P.
L4  L4
[0129] ステップ S306は、 Α< 2· 5の期間における差圧 Δ PIを求める処理であり、前記の ステップ S 112と同様の処理をする。  Step S306 is a process for obtaining the differential pressure ΔPI during the period of Α <2.5, and the same process as in step S112 is performed.
[0130] ステップ S307は、前記のステップ S 107と同様の処理であって、返血制限圧力 P [0130] Step S307 is the same processing as step S107 described above, and is a blood return limiting pressure P.
L1 の代わりに傾斜閾値 P を用いて、差圧 Δ Ρ1との比較処理をする。  Compare with differential pressure Δ Ρ1 using slope threshold P instead of L1.
3  Three
[0131] ステップ S313は、前記のステップ S 113と同様の処理であって、傾斜閾値 P の代  [0131] Step S313 is the same processing as step S113 described above.
2 わりに傾斜閾値 P を用いて、差圧 Δ Ρ2との比較処理をする。  2 Compared with the differential pressure Δ Ρ2 using the inclination threshold P instead.
4  Four
[0132] このような第 2実施例によれば、前記の第 1実施例と同様の効果が得られる。  [0132] According to the second embodiment, the same effects as those of the first embodiment can be obtained.
[0133] なお、傾斜閾値 P は、傾斜閾値 P と同様、血液ポンプ 28が 0. 5回転する間の変 [0133] Note that the inclination threshold P changes during the 0.5 rotation of the blood pump 28, as does the inclination threshold P.
3 4  3 4
動許容幅で設定してもよぐこの場合には、例えば 20〜; !OOmmHgに設定する。  In this case, it can be set by the allowable movement range. For example, set to 20 to;! OOmmHg.
[0134] 次に、ステップ S 10 (図 4参照)において行われる返血処理の第 3実施例について 図 11〜図 16を参照しながら説明する。以下の処理は、複数回行われる返血処理に ついて毎回 fiわれる。 Next, a third embodiment of the blood return process performed in step S 10 (see FIG. 4) will be described with reference to FIGS. The following processing is performed each time for blood return processing that is performed multiple times.
[0135] 先ず、図 11のステップ S401において、血液ポンプ 28の累積回転数 A及びドナー 圧力 Pdの計測を開始する。この後、累積回転数 A及びドナー圧力 Pdは所定の処理 部で微小時間毎に連続的に取得する。  First, in step S401 of FIG. 11, measurement of the cumulative rotational speed A of the blood pump 28 and the donor pressure Pd is started. Thereafter, the cumulative rotational speed A and the donor pressure Pd are obtained continuously every minute time by a predetermined processing unit.
[0136] ステップ S402において、返血制限圧力 P1を 170 240mmHgに設定する。第 3実 施例では、返血制限圧力 P1を 200mmHgに設定する。この返血制限圧力 P1は、得ら れるドナー圧力 Pdが超えたときにドナー圧力 Pdを下げるべく血液ポンプ 28の回転 数を低下させるなど所定の処理を行うための基準となる圧力値である。換言すれば、 返血制限圧力 P1はドナー圧力 Pdの上限を制限する実質的な制限圧力である。返血 制限圧力 PIが 200mmHgの場合及び 150mmHgに設定されている場合の制御部 2 6による制御手順については後述する。 In step S402, the blood return limit pressure P1 is set to 170 240 mmHg. In the third example, the blood return limit pressure P1 is set to 200 mmHg. The blood return limiting pressure P1 is a pressure value that serves as a reference for performing a predetermined process such as reducing the rotational speed of the blood pump 28 to lower the donor pressure Pd when the obtained donor pressure Pd exceeds. In other words, the blood return limiting pressure P1 is a substantial limiting pressure that limits the upper limit of the donor pressure Pd. Blood return The control procedure by the control unit 26 when the limiting pressure PI is 200 mmHg and when it is set to 150 mmHg will be described later.
[0137] ステップ S403において、血液ポンプ 28を回転させて返血を開始する。血液ポンプ 28は採血時の正方向に対して逆方向に回転させる。  In step S403, the blood pump 28 is rotated to start returning blood. The blood pump 28 is rotated in the opposite direction to the normal direction at the time of blood collection.
[0138] 血液ポンプ 28は、返血速度 Vが所定の返血速度設定値となるように回転速度を制 御する。返血速度設定値は、例えば、初期状態で 20mL/minであり、その後に返 血速度設定値としての 90mL/minに達するまで加速を行うように設定されている。 また、返血制限圧力 P1は初期状態で + 200mmHgに設定されており、常時、ドナー 圧力 Pdが返血制限圧力 P1を超えたら、ドナー圧力 Pdが返血制限圧力 P1以下となる ように制卸される。  [0138] Blood pump 28 controls the rotation speed so that blood return speed V becomes a predetermined blood return speed set value. The blood return rate set value is, for example, 20 mL / min in the initial state, and is set to accelerate until reaching the blood return rate set value of 90 mL / min. In addition, the blood return limit pressure P1 is set to +200 mmHg in the initial state, and when the donor pressure Pd exceeds the blood return limit pressure P1, control is always performed so that the donor pressure Pd is equal to or lower than the blood return limit pressure P1. Is done.
[0139] なお、採血時の採血速度をプラス値に規定してる関係上、返血速度 Vはマイナス値 として表される(図 14参照)。  [0139] Since the blood collection rate at the time of blood collection is defined as a positive value, the blood return rate V is expressed as a negative value (see Fig. 14).
[0140] ステップ S404において、累積回転数 Αが 2. 5回転に達したか否かを確認し、達し ている場合にはステップ S405へ移り、未達である場合には待機する。 [0140] In step S404, it is confirmed whether or not the cumulative number of revolutions 2. has reached 2.5. If so, the process proceeds to step S405, and if not, the process waits.
[0141] ステップ S405において、その時点のドナー圧力 Pdを調べ返血開始時のドナー圧 力 Pdとの差圧 Δ Pを求める。 [0141] In step S405, the donor pressure Pd at that time is examined to obtain a differential pressure ΔP from the donor pressure Pd at the start of blood return.
[0142] ステップ S406において、差圧 Δ Ρを確認し、 Δ Ρ≥ lOOmmHgであるときにはステ ップ S407へ移り、 A P< 100mmHgであるときにはステップ S411へ移る。 [0142] In step S406, the differential pressure Δ 確認 is confirmed. If ΔΡ ≥ lOOmmHg, the process proceeds to step S407, and if A P <100 mmHg, the process proceeds to step S411.
[0143] このステップ S406の判断は、ドナーに違和感を与えうる内出血の兆候の有無を予 知的に調べるものであり、図 14において、ドナー圧力 Pdがポイント P11以上である場 合、又はドナー圧力 Pdの傾斜がポイント P11〜P12の傾斜以上である場合に分岐 処理をして以下のステップ S407〜S409によって返血を中断させ、内出血を予防す るものである。 [0143] The determination in step S406 is a proactive test for the presence of signs of internal hemorrhage that can cause the donor to feel uncomfortable. In FIG. 14, when the donor pressure Pd is equal to or higher than the point P11, or the donor pressure When the slope of Pd is greater than or equal to the slope of points P11 to P12, branch processing is performed and blood return is interrupted by the following steps S407 to S409 to prevent internal bleeding.
[0144] ドナーに違和感を与えうる可能性があるのは、図 14において閾値直線 501 (停止 用閾値)よりも上の範囲であることが本発明者の研究により確認されている。したがつ て、ステップ S406に相当する判断処理は、必ずしもポイント P11でのみ行われるもの ではなぐ他端のポイント P 12 (累積回転数 A力 程度の箇所)で行ってもよいし、ボイ ント P11〜P12の間で 1回又は複数回行ってもよい。閾値直線 501は、以下の(1)式 又は(2)式で表される。 [0144] It has been confirmed by the present inventor's study that in FIG. 14, there is a possibility that the donor may feel uncomfortable in a range above the threshold line 501 (the threshold value for stopping). Therefore, the determination process corresponding to step S406 may be performed at the other end point P 12 (a portion of the cumulative rotational speed A force), which is not necessarily performed only at the point P11, or the point P11. It may be performed once or multiple times between ~ P12. The threshold line 501 is the following formula (1) Or, it is expressed by equation (2).
[0145] Pd = 27 XA+ 14 (mmHg) [0145] Pd = 27 XA + 14 (mmHg)
Pd = 31 XA' + 14 (mmHg) - - - (2)  Pd = 31 XA '+ 14 (mmHg)---(2)
ここで、 A'は血液ポンプ 28による累積送液量 (mUである。  Here, A ′ is the cumulative amount of liquid delivered by the blood pump 28 (mU).
[0146] 図 14においては、グラフ 510及び 512については、閾値直線 501よりも上方である こと力、ら、ドナーに違和感を与えうる内出血を発生する可能性があると判断され、以 下のステップ S407の処理が行われることになる。  [0146] In FIG. 14, it is determined that the graphs 510 and 512 are above the threshold line 501 and that there is a possibility that internal bleeding that may cause a sense of incongruity to the donor may occur. The process of S407 is performed.
[0147] なお、図 14及び図 15において、破線で示されるグラフ 510及び 512は、そのままで はドナーに違和感を与えうる内出血が発生する可能性があると判断される場合であり 、太線で示されるグラフ 514、 516及び 518は、そのままではドナーに違和感を与え ない内出血が発生する可能性があると判断される場合であり、細線で示されるグラフ 520、 522及び 524は、内出血の可能性がないと判断される場合である。  In FIGS. 14 and 15, graphs 510 and 512 indicated by broken lines are cases where it is determined that there is a possibility that internal bleeding may occur, which may give the donor a sense of incongruity, and are indicated by bold lines. Graphs 514, 516, and 518 are cases where internal bleeding that does not cause a sense of incongruity to the donor may occur, and graphs 520, 522, and 524 indicated by thin lines indicate the possibility of internal bleeding. This is the case when it is determined that there is no.
[0148] このうち、グラフ 514、 516及び 520は、閾値直線 502 (制限用閾値)を超えている 1S 実際には、後述するように返血制限圧力 P1を 150mmHgに低下させることにより 、制限がなされる。  [0148] Of these, graphs 514, 516 and 520 exceed the threshold straight line 502 (limitation threshold). 1S Actually, the limit is reduced by reducing the blood return limit pressure P1 to 150 mmHg as described later. Made.
[0149] なお、図 14及び図 15において、縦軸 530、 532及び 534は、血液ポンプ 28の返 血速度 Vが 50mL/min、 60mL/min及び 90mL/minに達する箇所を代表的に 示す線である。  In FIG. 14 and FIG. 15, the vertical axes 530, 532, and 534 represent lines representatively showing points where the blood return speed V of the blood pump 28 reaches 50 mL / min, 60 mL / min, and 90 mL / min. It is.
[0150] ステップ S407 (圧力判断処理)において血液ポンプ 28を停止させ、ステップ S408 において所定の音響手段又はモニタ 20に所定の情報を表示させ、オペレータに通 報する。この後、ステップ S410において、オペレータが返血を再開することが可能と 判断した場合には、再開ボタン(図示せず)を押下して、ステップ S401に戻り、返血 を再開するが可能でないと判断した場合には必要な処置を行った後、中止ボタン(図 示せず)を押下して、返血を中断する。  [0150] In step S407 (pressure determination processing), blood pump 28 is stopped, and in step S408, predetermined information is displayed on predetermined acoustic means or monitor 20, and the operator is notified. After this, if it is determined in step S410 that the operator can resume blood return, the operator presses a resume button (not shown), returns to step S401, and blood return cannot be resumed. If it is determined, take necessary measures, and then press the stop button (not shown) to interrupt blood return.
[0151] 一方、ステップ S411において、累積回転数 Aが 10回転に達したことを確認し、ステ ップ S412へ移る。  [0151] On the other hand, in step S411, it is confirmed that the cumulative rotation speed A has reached 10 rotations, and the flow proceeds to step S412.
[0152] ステップ S412において、ドナー圧力 Pdを確認し、 Pd〉 lOOmmHgであるときには ステップ S413へ移り、 Pd≤ 1 OOmmHgであるときにはステップ S416へ移る(図 14 のポイント P22参照)。 [0152] In step S412, the donor pressure Pd is confirmed. When Pd> lOOmmHg, the process proceeds to step S413, and when Pd≤1 OOmmHg, the process proceeds to step S416 (FIG. 14). Point P22).
[0153] このステップ S412の判断は、ドナーが違和感を感じない内出血の兆候の有無を予 知的に調べる手段の 1つであり、ドナー圧力 Pdが閾値直線 502 (制限用閾値)を超え るときには返血制限圧力 P1を適切に調整し、内出血の発生を予防する。  [0153] The determination in step S412 is one of the means for proactively examining the presence or absence of signs of internal bleeding that the donor does not feel uncomfortable, and when the donor pressure Pd exceeds the threshold line 502 (limit threshold). Adjust the return pressure limit P1 appropriately to prevent internal bleeding.
[0154] したがって、ステップ S412に相当する判断処理は、必ずしもポイント P22でのみ行 われるものではなぐ他端のポイント P21 (累積回転数 Aが 2. 65程度の箇所)で行つ てもよいし、ポイント P2;!〜 P22の間で 1回又は複数回行ってもよい。閾値直線 502 は、以下の(3)式又は(4)式で表される。  [0154] Therefore, the determination process corresponding to step S412 may be performed at the other end point P21 (where the cumulative rotational speed A is approximately 2.65) that is not necessarily performed only at the point P22. It may be performed once or multiple times between points P2;! The threshold straight line 502 is expressed by the following equation (3) or (4).
[0155] Pd = 6 XA+ 32 (mmHg) … )  [0155] Pd = 6 XA + 32 (mmHg)…)
Pd= 7 XA' + 32 (mmHg) …(4)  Pd = 7 XA '+ 32 (mmHg) (4)
A'は前記の通り、血液ポンプ 28による累積送液量 (mUである。  As described above, A ′ is the cumulative amount of liquid fed by the blood pump 28 (mU).
[0156] この(3)式及び (4)式から明らカ、なように、閾値直線 502は前記(1)式又は(2)式で 表されるの閾値直線 501よりも小さい値に設定される。 [0156] As is clear from the equations (3) and (4), the threshold line 502 is set to a value smaller than the threshold line 501 represented by the above equation (1) or (2). Is done.
[0157] 閾値直線 501及び 502は必ずしも固定的なものではなぐ経験的に変更してもよく[0157] The threshold lines 501 and 502 are not necessarily fixed and may be changed empirically.
、又は曲線であってもよい。また、ドナーの体重、性別、穿刺部の血管内血流速等に よって変更してもよい。 Or a curve. Further, it may be changed according to the weight, sex, donor blood flow rate in the puncture site, and the like.
[0158] ここで、ドナー圧力 Pdが閾値直線 502を超えることは、ドナーが違和感を感じない 内出血の発生する可能性のある第 1のケースであり、図 14のグラフ 514、 516、 518 のような波形の場合、そのまま返血を続行すると、内出血が発生する場合があること が本発明者の研究によって確認されている。これは、採血針 100の先端部の流体抵 抗が大きくなり、針間と血管壁の隙間から血液が漏れたため内出血の状態に移行す る兆候となってレ、ると考えられる。  [0158] Here, the donor pressure Pd exceeding the threshold line 502 is the first case in which the donor does not feel uncomfortable and internal bleeding may occur, as shown in graphs 514, 516, and 518 in Fig. 14. In the case of a simple waveform, it has been confirmed by the inventor's research that internal bleeding may occur if blood return is continued as it is. This is considered to be a sign that the fluid resistance at the tip of the blood collection needle 100 increases, and that the blood leaks from the gap between the needle and the blood vessel wall, so that it shifts to the internal bleeding state.
[0159] ドナーが違和感を感じない内出血の発生する可能性がある第 2のケースは、図 14 において、ドナー圧力 Pdが山形の変化を示すことが本発明者の研究により確認され ている。これは、第 1のケースと同様の理由で内出血の状態に移行する兆候となって いると考えられる。このような第 2のケースは以下のステップ S413S〜S414の処理に よって半 lj断される。  [0159] In the second case where the internal bleeding that the donor does not feel uncomfortable may occur, the study of the present inventor confirmed that the donor pressure Pd shows a change in the chevron in FIG. This is considered to be a sign of a shift to internal bleeding for the same reason as in the first case. Such a second case is cut halfway by the following steps S413S to S414.
[0160] つまり、ステップ S413では、取得したドナー圧力 Pdの微分の処理を開始する。該 処理は所定のルーチンで行われ、微小時間ごとに微分結果が供給される。 That is, in step S413, the process of differentiating the acquired donor pressure Pd is started. The Processing is performed in a predetermined routine, and a differential result is supplied every minute time.
[0161] ステップ S414において、得られたドナー圧力 Pdの微分値の遷移状態を調べ、ドナ 一圧力 Pdが上昇した後に下降する山形の変化を示したと判断されるときには、ステツ プ S425で返血制限圧力 P1を 150mmHgに下げた後にステップ S426へ移り、それ 以外のときにはステップ S415へ移る。  [0161] In step S414, the transition state of the differential value of the obtained donor pressure Pd is examined, and when it is determined that the change in the mountain shape that decreases after the donor pressure Pd increases, the return of blood is restricted in step S425. After reducing the pressure P1 to 150 mmHg, go to step S426, otherwise go to step S415.
[0162] このステップ S414の判断は、供給された微分値が正の値から負の値に切り換わつ たことによって判断される。また、本願発明者の研究によれば、山形の変化の中でも 特に上方に尖鋭な凸の山形の場合に内出血の兆候があることが確認されている。こ のような尖鋭な凸の山形の判断には、図 16に示すように、供給された微分値 550が、 所定の短期間に正の値力 負の値に 0を中心とした所定幅 Dを超えて急変したことに よって判断される。又は、ドナー圧力 Pdの 2階微分値 552が所定の閾値 K1を下回つ たことによって判断してもよい。  [0162] The determination in step S414 is determined by the fact that the supplied differential value has switched from a positive value to a negative value. In addition, according to the research of the present inventor, it has been confirmed that there is an indication of internal bleeding particularly in the case of a convex convex chevron that is sharp upward. In order to determine such a sharp convex chevron, as shown in FIG. 16, the supplied differential value 550 is a positive value force within a predetermined short period of time. It is judged by a sudden change beyond this. Alternatively, the determination may be made by the fact that the second-order differential value 552 of the donor pressure Pd falls below a predetermined threshold value K1.
[0163] もちろん、これらの微分値 550及び 2階微分値 552やその他の各波形は、所定のフ ィルタリングによりノイズ成分を除去してから判断してもよい。  Of course, the differential value 550, the second-order differential value 552, and other waveforms may be determined after removing noise components by predetermined filtering.
[0164] 図 14においては、グラフ 514が累積回転数 Aが 10以下の箇所で山形を示している ことがステップ S414で判断され、ドナーに違和感を与えうる内出血を発生する可能 性があると判断され、以下のステップ S425に移ることになる。  [0164] In FIG. 14, it is determined in step S414 that the graph 514 shows a chevron at a location where the cumulative rotational speed A is 10 or less, and it is determined that there is a possibility of internal bleeding that may give the donor a sense of incongruity. Then, the process proceeds to the following step S425.
[0165] 図 14ίこおレヽて (ま、グラフ 516、 518及び 520ίこつレヽて (ま、閾ィ直直,線 502よりも上方 であることから、ドナーに違和感を与えない内出血を発生する可能性があると判断さ れ、以下のステップ S415の処理が行われることになる。  [0165] Fig. 14 こ ヽ ((Graphs 516, 518 and 520 こ つ (((Because it is above the straight line, line 502, internal bleeding that does not give the donor a sense of incongruity can occur) Therefore, the process of step S415 below is performed.
[0166] 他方、グラフ 522及び 524については、閾値直線 502よりも下方であることから、内 出血を発生する可能性がないと判断され、制限処理はなされない。  On the other hand, since the graphs 522 and 524 are below the threshold line 502, it is determined that there is no possibility of internal bleeding, and the restriction process is not performed.
[0167] なお、図 14及び図 15において、グラフ 522及び 524とも累積回転数 Α力 S10〜20 付近の範囲で一時的にドナー圧力 Pdが下降する傾向を示している力 これは、返血 回路の途中に存在していた血漿がドナーの方向に流れ、エアートラップチャンバ一 で赤血球と混和されてチャンバ一 106から出てくる血液のへマトクリット値が低下し、 このような低へマトクリット値の血液が採血針 100を通過する際に一過性の通過抵抗 の低下が生じるためである。 [0168] ステップ S415において、ステップ S402における返血制限圧力 PIを + 120〜+ 17 OmmHgに設定する。本実施形態では、返血制限圧力 P1を 200mmHgから 150mm Hgに下げるとともに、初期状態で 0のフラグ Fに 1をセットする。 In FIGS. 14 and 15, in graphs 522 and 524, the force that shows a tendency that donor pressure Pd temporarily decreases in the range of the cumulative rotational speed repulsive force S10-20. The plasma that was present in the middle of the blood flowed in the direction of the donor, mixed with red blood cells in the air trap chamber, and the hematocrit value of the blood coming out of the chamber 106 decreased. This is because a temporary drop in passage resistance occurs when the blood passes through the blood collection needle 100. [0168] In step S415, the blood return limit pressure PI in step S402 is set to +120 to +17 OmmHg. In the present embodiment, the blood return restriction pressure P1 is lowered from 200 mmHg to 150 mmHg, and 1 is set to a flag F of 0 in the initial state.
[0169] このステップ S415の処理では、返血制限圧力 P1を 150mmHgに下げることにより、 この後にドナー圧力 Pdが上昇しても 150mmHgで制限されることになり、ドナーの静 脈内に血液を無理に吐出することがない、結果として内出血が発生することを予防- 才卬制すること力 Sでさる。  [0169] In the process of step S415, the blood return restriction pressure P1 is lowered to 150 mmHg, so that even if the donor pressure Pd increases thereafter, the blood pressure is restricted to 150 mmHg, and blood is forced into the donor's vein. The ability to prevent the occurrence of internal bleeding as a result, and the ability to control talents.
[0170] また、内出血を予防 ·抑制するための手段としては圧力による制限以外にも、速度 の制限を行ってもよい。つまり、初期状態で 90mL/minに設定されている返血速度 設定値を、例えば 60mL/minに低下させるようにしてもよい。ステップ S422及び S4 25についても同様である。  [0170] As a means for preventing / suppressing internal bleeding, speed may be limited in addition to pressure. That is, the blood return rate set value that is initially set to 90 mL / min may be reduced to, for example, 60 mL / min. The same applies to steps S422 and S425.
[0171] ステップ S416においてフラグ Fを確認し、 F= lであればステップ S417へ移り、 F = 0であればステップ S418へ移る。  In step S416, the flag F is confirmed. If F = 1, the process proceeds to step S417, and if F = 0, the process proceeds to step S418.
[0172] ステップ S417において、前記のステップ S414と同様に、ドナー圧力 Pdが上昇した 後に下降する山形の変化の判断を行い、山形であると判断されるときには、ステップ S426へ移り、それ以外のときにはステップ S418へ移る。  [0172] In step S417, as in step S414 described above, a change in the mountain shape that decreases after the donor pressure Pd increases is determined. If it is determined that the shape is a mountain shape, the process proceeds to step S426; Move on to step S418.
[0173] 図 14においては、グラフ 520が累積回転数 Aが 10より大きい箇所で山形を示して いることがステップ S417で判断され、ドナーに違和感を与えうる内出血を発生する可 能性があると判断され、以下のステップ S426に移ることになる。ただしグラフ 520の 場合、後述するように、その後の判断で内出血の可能性がないと判断され、所定の 復帰処理が行われる。  [0173] In FIG. 14, it is determined in step S417 that the graph 520 shows a chevron at a location where the cumulative rotational speed A is greater than 10, and there is a possibility that internal bleeding that may give the donor a sense of discomfort may occur. It will be judged and it will move to the following step S426. However, in the case of the graph 520, as will be described later, it is determined in the subsequent determination that there is no possibility of internal bleeding, and a predetermined return process is performed.
[0174] ステップ S418において、ドナー圧力 Pdの値を確認し、 Pd〉260mmHgであるとき にはステップ S407へ移り、 Pd≤260mmHgであるときにはステップ S419へ移り処 理を続行する。  In step S418, the value of the donor pressure Pd is confirmed. If Pd> 260 mmHg, the process proceeds to step S407, and if Pd ≦ 260 mmHg, the process proceeds to step S419.
[0175] このステップ S418の条件が成立する場合は、返血制限圧力 P1を低下させたにも拘 わらずその後内出血の兆候が消滅しないと判断され、ステップ S407〜S410の処理 により返血を中断する。  [0175] If the condition of step S418 is satisfied, it is determined that the sign of internal bleeding does not disappear after the return-restricting pressure P1 is reduced, and the return is interrupted by the processes of steps S407 to S410. To do.
[0176] ステップ S419において、その時点の返血速度設定値を確認し、該値が 50mL/m in以下であるときにはステップ S424へ移り、 50mL/minを超えているときには、ステ ップ S420に移る。なお、該値は 5〜55mL/minの範囲で設定できる。 [0176] In step S419, the current blood return rate setting value is confirmed, and the value is 50 mL / m. If it is less than in, go to Step S424, and if it exceeds 50mL / min, go to Step S420. The value can be set in the range of 5 to 55 mL / min.
[0177] ステップ S420において、返血速度の取得を開始し、移動平均等により過去 1分間 の平均値が得られるようにする。 [0177] In step S420, the acquisition of the blood return speed is started, and an average value for the past one minute is obtained by a moving average or the like.
[0178] ステップ S421において、得られた過去 1分間の返血速度の平均値を確認し、該値 が流速閾値としての 50mL/minを超えているときにはステップ S423へ移り、 50mL[0178] In step S421, the average value of the blood flow rate obtained in the past 1 minute is confirmed, and when the value exceeds 50 mL / min as the flow rate threshold value, the process proceeds to step S423, and 50 mL
/min以下であるときにはステップ S422に移る。 If it is less than / min, go to step S422.
[0179] このステップ S421の判断は、ドナーが違和感を感じない内出血の兆候の有無を予 知的に調べる手段の 1つであり、以下のステップ S422の処理によって返血制限圧力[0179] The determination in step S421 is one of the means for proactively examining the presence of signs of internal hemorrhage that the donor does not feel uncomfortable.
P1を適切に調整し、内出血の発生を予防する。 Adjust P1 appropriately to prevent internal bleeding.
[0180] つまり、このように平均返血速度が低下している場合には、ドナーが違和感を感じ ない内出血の発生する可能性がある第 3のケースであり、内出血による穿刺部周辺 の腫脹に起因して次のサイクルの採血工程で採血速度が上がらなくなる可能性があ ると判断し、所定の予防措置を行う。 [0180] In other words, if the average rate of blood return is reduced in this way, this is the third case in which the donor may not feel uncomfortable with internal bleeding, which is caused by swelling around the puncture site due to internal bleeding. Because of this, it is judged that there is a possibility that the blood collection speed may not be increased in the blood collection process of the next cycle, and prescribed precautions are taken.
[0181] 一方、平均返血速度が低下していない場合は、ドナーが違和感を感じない内出血 の可能性が低!/、と判断し、そのまま返血を継続する。 [0181] On the other hand, if the average rate of blood return has not decreased, it is determined that there is a low possibility of internal bleeding that the donor does not feel uncomfortable!
[0182] なお、返血速度設定値が 50mL/min以下であるときには、平均返血速度も低下 していることが当然であるから、ステップ S419の分岐判断によりステップ S421をバイ パスしている。 [0182] When the blood return rate setting value is 50 mL / min or less, it is natural that the average blood return rate also decreases, and therefore step S421 is bypassed by the branch determination in step S419.
[0183] ステップ S422において、返血制限圧力 P1を 150mmHgに下げるとともに、フラグ F に 1をセットし、ステップ S424に移る。  [0183] In step S422, the blood return limit pressure P1 is lowered to 150 mmHg, 1 is set in the flag F, and the process proceeds to step S424.
[0184] ステップ S423において、返血制限圧力 P1を 200mmHgに戻すとともに、フラグ Fを[0184] In step S423, the blood return restriction pressure P1 is returned to 200 mmHg, and flag F is set.
0をセットする。 Set to 0.
[0185] なお、返血制限圧力 P1を復帰させる処理は、一度に 200mmHgに戻さずとも、例え ば、状況を観察しながら lOmmHgずつ制限を徐々に弛めるようにしてもよい。  [0185] It should be noted that the process of returning the blood return restriction pressure P1 may be gradually relaxed by lOmmHg while observing the situation, for example, without returning to 200 mmHg at a time.
[0186] ステップ S424において、返血工程の終了を確認する。すなわち、累積回転数 Aが 所定値に達し、所定量の血液成分が返血されたと判断できる場合には、図 11〜図 1 3に示す返血工程を終了し、それ以外の場合にはステップ S416に戻って返血を続 行する。 [0186] In step S424, the completion of the blood return process is confirmed. That is, if the cumulative rotation speed A reaches a predetermined value and it can be determined that a predetermined amount of blood component has been returned, the blood return process shown in FIGS. 11 to 13 is terminated. Return to S416 and continue to return blood To do.
[0187] 一方、ステップ S426においては、累積回転数 Aを取得し、ステップ S427において [0187] On the other hand, in step S426, the cumulative rotational speed A is obtained, and in step S427,
、 A≥ 35であるか否かを確認する。 A≥35であるときにはステップ S428へ移り、 A<Check if A≥35. If A≥35, proceed to step S428 and A <
35であるときにはステップ S426へ戻り待機する。 If 35, return to step S426 and wait.
[0188] ステップ S428において、その時点の返血速度 Vと、返血速度設定値を比較し、返 血速度 V<返血速度設定値であるときにはステップ S416へ移り、返血速度≥返血 速度設定値であるときにはステップ S429に移る。 [0188] In step S428, the blood return speed V at that time is compared with the blood return speed setting value, and if blood return speed V <blood return speed set value, the process proceeds to step S416, and blood return speed ≥ blood return speed. If it is the set value, the process proceeds to step S429.
[0189] このステップ S428の判断は、それ以前に返血制限圧力 P1を予防的に 150mmHg に下げている力 その後の状況から内出血が発生しないことを確認し、元の返血状 況(返血制限圧力 P1及び返血速度 V等)に復帰させて、迅速な返血を図るためのも のである。 [0189] The judgment in this step S428 is that the blood return restriction pressure P1 has been reduced to 150 mmHg proactively before that, and it has been confirmed that no internal bleeding has occurred from the subsequent situation. The pressure is returned to the limit pressure P1 and the blood return speed V, etc.) for quick blood return.
[0190] このような復帰判断は、ステップ S428では、(1)累積回転数 Aが 35となったときに 返血速度 V≥返血速度設定値であることを条件としているが、これ以外にも次の条件 を用いてもよい。  [0190] Such a return determination is made in step S428 under the condition that (1) the blood return speed V≥the blood return speed set value when the cumulative rotational speed A reaches 35. The following conditions may also be used.
[0191] すなわち、(2)返血速度 V≥返血速度設定値となったときの累積回転数 Aが所定 値(20〜60)より小さぐ例えば、 Aく 35であること。 (3)返血開始からドナー圧力 Pd が + 100〜 + 200mmHgの範囲での設定値、例えば、 + 150mmHgに達するまで の時間力 ¾〜20secの範囲での設定値、例えば、 34sec以上であること。 (4)返血開 始からの経過時間力^〜 20secの範囲での設定値、例えば、 34secのとき、ドナー圧 力 Pdが + 100〜 + 200mmHgの範囲での設定値、例えば、 + 150mmHgに達して V、な!/、こと。 (5)返血開始からドナー圧力 Pdが + 100〜 + 200mmHgの範囲での設 定値、例えば、 + 150mmHgに達するまでの累積回転数 Aが所定値(20〜60)より 小さぐ例えば、 A〉 35であること。  [0191] That is, (2) the blood return speed V≥the blood return speed set value, the cumulative rotational speed A is smaller than a predetermined value (20 to 60), for example, A and 35. (3) Set value in the range of donor pressure Pd from +100 to +200 mmHg from the start of return of blood, for example, time force to reach +150 mmHg, set value in the range of ¾ to 20 sec, for example, 34 sec or more . (4) Elapsed time from the start of blood return to a set value in the range of 20 to 20 seconds, for example, 34 seconds, donor pressure Pd is set to a set value in the range of +100 to +200 mmHg, for example, +150 mmHg Reach V, what! / (5) Set value in the range of donor pressure Pd from +100 to +200 mmHg from the start of return of blood, for example, cumulative rotational speed A until reaching +150 mmHg A is smaller than the predetermined value (20 to 60) For example, A> 35.
[0192] 換言すれば、累積回転数 A又は経過時間と、ドナー圧力 Pd又は返血速度 Vとの関 係(つまり、累積回転数 A又は経過時間に応じて、ドナー圧力 Pdが回復判断圧力閾 値である + 150mmHgを下回っており、又は返血速度 Vが回復判断流速閾値である 50mL/minを超えて!/、る関係)に基づ!/、て内出血が発生しな!/、と!/、う判断ができ、 返血制限圧力 P1又は返血速度の制限値を上昇させられるのであって、上記以外の 糸且合わせであってもよい。 In other words, the relationship between the cumulative rotational speed A or the elapsed time and the donor pressure Pd or the blood return speed V (that is, the donor pressure Pd depends on the cumulative rotational speed A or the elapsed time. Value is less than + 150mmHg, or the blood return speed V exceeds the recovery judgment flow rate threshold value of 50mL / min! /, And the internal bleeding does not occur! / ! /, Can be determined, and the blood return pressure limit P1 or the blood return speed limit value can be increased. It may be a thread-to-thread combination.
[0193] なお、回復判断流速閾値は 20mL/minから、設定速度の 2/3と 60mL/minの 小さレ、方までの範囲で設定できる。 [0193] The recovery judgment flow rate threshold can be set in the range from 20mL / min to 2/3 of the set speed and the smaller one of 60mL / min.
[0194] これらの条件が成立するときには、内出血が発生しないと判断でき、以下のステツ プ S429で復帰処理を行えばよ!/、。 [0194] When these conditions are satisfied, it can be determined that internal bleeding does not occur, and recovery processing can be performed in the following step S429! /.
[0195] ステップ S429において、返血制限圧力 P1を 200mmHgに戻すとともに、フラグ Fに[0195] In step S429, the blood return restriction pressure P1 is returned to 200 mmHg, and the flag F is set.
0をセットし、ステップ S416 移る。また、圧力ではなく速度による制限を行っている 場合には 60mL/minに低下させている返血速度設定値を元の 90mL/minに戻 せばよい。 Set 0, then go to step S416. In addition, when the restriction is based on the speed rather than the pressure, the blood return speed setting value reduced to 60 mL / min may be returned to the original 90 mL / min.
[0196] 例えば、上記の(5)条件は、図 15のポイント P3に基づいて判断できる。該(5)条件 に基づいて判断を行う場合、グラフ 520は、当初、山形の波形を示して返血制限圧 力 P1が 150mmHgに制限されている力 A= 35であるとき Pd< + 150mmHgである こと力、ら、内出血が発生しないという判断ができ、ステップ S429で返血制限圧力 P1を 200mmHgに復帰させることができる。一方、グラフ 518は、当初、閾値直線 502を 超えて返血制限圧力 P1が 150mmHgに制限されており、 A= 35であるときに Pd = + 150mmHgであり、ちょうど境界上を通過しており、もとの状況に復帰すると内出血 が発生する可能性は排除できず、返血制限圧力 P1を 150mmHgに制限したままとす  [0196] For example, the above condition (5) can be determined based on the point P3 in FIG. When making a determination based on the condition (5), the graph 520 initially shows a mountain-shaped waveform, and when Pd <+150 mmHg when the blood return limiting pressure P1 is a force A = 35, which is limited to 150 mmHg. For some reason, it can be determined that internal bleeding does not occur, and the blood return limiting pressure P1 can be returned to 200 mmHg in step S429. On the other hand, in graph 518, the blood return limiting pressure P1 is initially limited to 150 mmHg exceeding the threshold line 502, and when A = 35, Pd = +150 mmHg, which is just passing on the boundary, The possibility of internal bleeding cannot be ruled out when returning to the original situation, and the return pressure limit P1 is limited to 150 mmHg.
[0197] 次に、採血時及び返血時における血液ポンプ 28の回転速度 Nの制御手順につい て説明する。回転速度 Nはドナー圧力 Pdの区分に基づいて加減速を行うことにより 行われる。この加減速は流量換算値に基づいて規定され、 50msec程度の間隔で更 新制御される。なお、この間隔は、 25 200msecの範囲で設定できる。 [0197] Next, a procedure for controlling the rotational speed N of the blood pump 28 during blood collection and blood return will be described. The rotational speed N is determined by accelerating / decelerating based on the donor pressure Pd. This acceleration / deceleration is defined based on the flow rate conversion value, and updated and controlled at intervals of about 50 msec. This interval can be set in the range of 25 200 msec.
[0198] 先ず、採血開始時には、 0 + 150mL/minの設定値力、らスタートする。  [0198] First, at the start of blood collection, a set value force of 0 + 150 mL / min is started.
[0199] 採血時で、ドナー圧力 Pdが + 220 + 300mmHgの設定値以上であるとき、又は [0199] At the time of blood collection, when the donor pressure Pd is not less than the set value of + 220 + 300 mmHg, or
300 100111111^¾の設定値未満でぁるときには、圧力異常であるとして、血液 ポンプ 28の回転を停止させ、所定の異常対処処理を行う。  When it is less than the set value of 300 100111111 ^ ¾, it is determined that the pressure is abnormal, and the rotation of the blood pump 28 is stopped, and a predetermined abnormality handling process is performed.
[0200] ドナー圧力 Pdがー 50 + 30mmHgの設定値以上、 + 20 + 300mmHgの設 定値未満の範囲であるときには、 + 2 + 90mL/min/secの設定値の加速度で、 設定速度までの範囲内で加速を行う。 [0200] When the donor pressure Pd is greater than the set value of -50 + 30 mmHg and less than the set value of +20 + 300 mmHg, the acceleration of the set value of +2 + 90 mL / min / sec Accelerates within the range up to the set speed.
[0201] ドナー圧力 Pdがー 100 5mmHgの設定値以上、—50 + 20mmHgの設定 値未満の範囲であるときには、 + l + 10mL/min/secの設定値の加速度で、設 定速度までの範囲内で加速を行う。 [0201] Donor pressure When Pd is over the set value of –100 5 mmHg and less than the set value of –50 + 20 mmHg, the range up to the set speed is the acceleration of the set value of + l + 10 mL / min / sec. Accelerate within.
[0202] ドナー圧力 Pdがー 200 50mmHgの設定値以上、 150 20mmHgの設 定値未満の範囲であるときには、 5 50mL/min/secの設定値の減速度で、 流量 0までの範囲内で減速を行う。 [0202] When the donor pressure Pd is over the set value of -200 50mmHg and less than the set value of 150mmHg, the deceleration will be within the range up to the flow rate of 0 with a deceleration of 5mL / min / sec. Do.
[0203] ドナー圧力 Pdがー 280 80mmHgの設定値以上、ー200 50111111^¾の設 定値未満の範囲であるときには、ー100 10111し/111^ /36(の設定値の減速度 で、流量 0までの範囲内で減速を行う。 [0203] When the donor pressure Pd is greater than the set value of -280 80mmHg and less than the set value of -200 50111111 ^ ¾, the flow rate is 0 with a deceleration of -100 10111/111 ^ / 36 ( set value) Decelerate within the range up to.
[0204] なお、これらの設定値は、互いに重複 (矛盾)しないように設定される。 [0204] These setting values are set so as not to overlap (inconsistent) with each other.
[0205] 次に、返血時には、返血開始時、血液ポンプ 28の回転速度 Nは吐出量換算の初 期値で、所定の設定速度が 20mL/min以上のときには 20mL/min力、らスタートし 20mL/min未満のときには該設定速度からスタートし、それぞれ加速する。 [0205] Next, when returning blood, the rotation speed N of the blood pump 28 is the initial value in terms of discharge volume, and when the set speed is 20 mL / min or more, 20 mL / min force is started. However, if it is less than 20 mL / min, start from the set speed and accelerate each.
[0206] ドナー圧力 Pdがー 300 lOOmmHgの設定値未満であるときには、圧力異常 であるとして、血液ポンプ 28の回転を停止させ、所定の対処処理を行う。 [0206] When the donor pressure Pd is less than the set value of -300 lOOmmHg, it is determined that the pressure is abnormal, and the rotation of the blood pump 28 is stopped to perform a predetermined countermeasure process.
[0207] 次に、返血時で、返血制限圧力 P1が初期状態の 200mmHgに設定されている場 合について説明する。この場合、ドナー圧力 Pdが + 220 + 300mmHgの設定値 以上であるときには、圧力異常であるとして、血液ポンプ 28の回転を停止させ、所定 の異常対処処理を行う。 [0207] Next, the case where blood return limiting pressure P1 is set to 200 mmHg in the initial state at the time of blood return will be described. In this case, when the donor pressure Pd is equal to or higher than the set value of + 220 + 300 mmHg, it is determined that the pressure is abnormal, and the rotation of the blood pump 28 is stopped, and a predetermined abnormality handling process is performed.
[0208] ドナー圧カ?(1が+ 155 + 300111111^¾の設定値以上、 + 220 + 300mmHgの 設定値未満の範囲であるときには、ー100 10111し/111^ /36(の設定値の減速 度で減速を行う。 [0208] Donor pressure? (If 1 is greater than the set value of +155 + 300111111 ^ ¾ and less than the set value of +220 + 300mmHg, it will decelerate at the set speed of −100 10111 and / 111 ^ / 36 ( set value).
[0209] ドナー圧力 Pdが + 120 + 250mmHgの設定値以上、 + 155 + 260mmHgの 設定値未満の範囲であるときには、 2 100mL/min/secの設定値の減速度 で減速を行う。  [0209] When the donor pressure Pd is in the range above the set value of +120 + 250 mmHg and below the set value of +155 + 260 mmHg, 2 Deceleration is performed with a deceleration of the set value of 2 100 mL / min / sec.
[0210] ドナー圧力 Pdが + 20 + 200mmHgの設定値以上、 + 150 + 250mmHgの 設定値未満の範囲であるときには、ヒステリシス処理を行い、先ず減速の最中である 力、、加速の最中である力、を確認する。 [0210] When the donor pressure Pd is in the range above the set value of +20 + 200 mmHg and below the set value of +150 + 250 mmHg, the hysteresis process is performed and the deceleration is first in progress. Check the force, the force in the middle of acceleration.
[0211] 減速の最中であるときには、 2 100mL/min/secの設定値の減速度で減 速を続行する。加速の最中であるときには、 + 2 + 90mL/min/secの設定値の 加速度で設定速度までの範囲内で加速を続行する。 [0211] When deceleration is in progress, continue deceleration at a deceleration of 2 100 mL / min / sec. When acceleration is in progress, continue acceleration within the range up to the set speed with the acceleration of + 2 + 90mL / min / sec.
[0212] ドナー圧力 Pdがー 220 50mmHgの設定値以上、 + 20 + 200mmHgの設 定値未満の範囲であるときには、 + 2 + 90mL/min/secの設定値の加速度で 設定速度までの範囲内で加速をする。 [0212] When the donor pressure Pd is over the set value of -220 50 mmHg and less than the set value of +20 + 200 mmHg, within the range up to the set speed with the acceleration of the set value of +2 + 90 mL / min / sec Accelerate.
[0213] なお、これらの設定値は、互いに重複 (矛盾)しないように設定される。 [0213] These setting values are set so as not to overlap (conflict) with each other.
[0214] このような処理により、採血時及び返血時とも適切な速度制御がなされる。 [0214] By such processing, appropriate speed control is performed both during blood collection and during blood return.
[0215] 上記の説明では、採血の後に返血を行う片腕採取方式を例にしたが、採血と返血 とを同時に行う両腕連続方式に対しても本発明が適用可能であることはもちろんであ る。両腕採取方式の場合、採血圧力センサと返血圧力センサ、及び吸引ポンプと吐 出ポンプとをそれぞれ独立的に設けるとよい。 [0215] In the above description, the one-arm collection method in which blood is returned after blood collection is taken as an example. However, the present invention is of course applicable to a bi-arm continuous method in which blood collection and blood return are performed simultaneously. It is. In the case of the both-arm sampling method, a blood collection pressure sensor and a blood return pressure sensor, and a suction pump and a discharge pump may be provided independently.
[0216] 次に、返血時で、返血制限圧力 P1が 150mmHgに設定されている場合について 説明する。 [0216] Next, the case where blood return restriction pressure P1 is set to 150 mmHg at the time of blood return will be described.
[0217] この場合、ドナー圧力 Pdが + 100 + 200mmHgの設定値以上、 + 200 + 30 [0217] In this case, the donor pressure Pd is more than the set value of +100 + 200mmHg, +200 +30
OmmHgの設定値未満の範囲であるときには、ー100 10111し/111^ /36。の設 定値の減速度で減速を行う。 When the range is less than the set value of OmmHg, -100 10111 and / 111 ^ / 36. Decelerate at the deceleration of the set value.
[0218] ドナー圧力 Pdが + 90 + 220mmHgの設定値以上、 + 100 + 200mmHgの 設定値未満の範囲であるときには、 2 100mL/min/secの設定値の減速度 で減速を行う。 [0218] When the donor pressure Pd is in the range above the set value of +90 + 220 mmHg and below the set value of +100 + 200 mmHg, it is decelerated at a deceleration of 2 100 mL / min / sec.
[0219] ドナー圧力 Pdが + 20 + 150mmHgの設定値以上、 + 90 + 220mmHgの設 定値未満の範囲であるときには、ヒステリシス処理を行い、先ず減速の最中であるか 、加速の最中である力、を確認する。  [0219] When the donor pressure Pd is in the range above the set value of +20 + 150 mmHg and below the set value of +90 + 220 mmHg, hysteresis processing is performed, and at first, deceleration or acceleration is in progress Power.
[0220] 減速の最中であるときには、 2 100mL/min/secの設定値の減速度で減 速を続行する。加速の最中であるときには、 + 2 + 90mL/min/secの設定値の 加速度で設定速度までの範囲内で加速を続行する。これ以外の場合には、返血制 限圧力 P1が 200mmHgに設定されている場合と同様に制御すればよい。 [0221] なお、これらの設定値は、互いに重複 (矛盾)しないように設定される。 [0220] When deceleration is in progress, continue deceleration at the set deceleration of 2 100 mL / min / sec. When acceleration is in progress, continue acceleration within the range up to the set speed with the acceleration of + 2 + 90mL / min / sec. In other cases, the control may be performed in the same manner as when the blood return limiting pressure P1 is set to 200 mmHg. [0221] Note that these setting values are set so as not to overlap (inconsistent) with each other.
[0222] また、採血及び返血時の!/、ずれの場合にお!/、ても、上記のポンプ制御を行った結 果、血液ポンプ 28の回転速度 Nが 0になり、その状態が所定時間(例えば、 3〜60秒 )経過し、又は所定時間(例えば、 3〜180秒)累積されたときにはオペレータに通報 (エラー画面表示、警報音、又はランプ点灯)して所定の処理を促すとよい。この場合 、オペレータが穿刺状態の修正等の処置をして、所定の再開指示操作を行うと、血 液成分採取装置 10は工程を再開、継続する。なお、回転速度 Nが 0の状態のときに は、流量低下を示す所定の通報音を鳴らすようにしてもよい。 [0222] Also, in the case of! / At the time of blood collection and return, or in the case of deviation! /, As a result of performing the above pump control, the rotational speed N of the blood pump 28 becomes 0, and the state is When a predetermined time (for example, 3 to 60 seconds) has elapsed or when a predetermined time (for example, 3 to 180 seconds) has been accumulated, the operator is notified (error screen display, alarm sound, or lamp is lit) to prompt the predetermined processing. Good. In this case, when the operator performs a treatment such as correcting the puncture state and performs a predetermined restart instruction operation, the blood component collection device 10 restarts and continues the process. When the rotation speed N is 0, a predetermined notification sound indicating a decrease in the flow rate may be sounded.
[0223] 返血制限圧力 P1に基づく血液ポンプ 28の制御手順はこれに限られるものでないこ とはもちろんである。 [0223] Of course, the control procedure of the blood pump 28 based on the return limiting pressure P1 is not limited to this.
[0224] 上記の各説明における累積回転数 Aは、例えば累積送液量 A'に置き換えてもよい ことはもちろんである。  [0224] Of course, the cumulative rotational speed A in each of the above descriptions may be replaced with, for example, the cumulative liquid feeding amount A '.

Claims

請求の範囲 The scope of the claims
[1] ドナーから採取した血液を分離した後、所定の血液成分をドナーに返血する血液 成分採取装置(10)において、  [1] In a blood component collection device (10) that separates blood collected from a donor and then returns a predetermined blood component to the donor.
ドナーに残余の血液成分を返血する返血ライン(104)と、  A return line (104) for returning the remaining blood components to the donor;
前記返血ライン(104)に血液成分を送り出す可変速度の血液ポンプ(28)と、 前記返血ライン(104)の圧力(Pd)を検出する圧力センサ(38)と、  A variable speed blood pump (28) for delivering blood components to the blood return line (104), a pressure sensor (38) for detecting the pressure (Pd) of the blood return line (104),
前記血液ポンプ(28)を駆動する制御部(26)と、  A controller (26) for driving the blood pump (28);
を有し、  Have
前記制御部(26)は、前記圧力センサ(38)から得られる前記圧力(Pd)に基づく 1 以上の条件に応じて前記返血ライン(104)の圧力(Pd)又は返血速度 (V)の制限ィ直 を設定することを特徴とする血液成分採取装置(10)。  The control unit (26) determines the pressure (Pd) or blood return speed (V) of the blood return line (104) according to one or more conditions based on the pressure (Pd) obtained from the pressure sensor (38). A blood component collection device (10), characterized by setting a limit of the number of times.
[2] 請求項 1記載の血液成分採取装置(10)において、 [2] In the blood component collection device (10) according to claim 1,
前記条件の 1つは、前記血液ポンプ(28)を回転させて返血を開始した際に、前記 圧力(Pd)が前記血液ポンプ(28)の累積回転数、累積送液量又は返血経過時間に 対応して設定された制限用閾値(502)を超えるという条件であることを特徴とする血 液成分採取装置(10)。  One of the conditions is that when the blood pump (28) is rotated and blood return is started, the pressure (Pd) is equal to the cumulative rotational speed of the blood pump (28), the cumulative liquid supply amount, or the blood return history. A blood component collection device (10), characterized in that the condition is that a restriction threshold (502) set in accordance with time is exceeded.
[3] 請求項 2記載の血液成分採取装置(10)において、 [3] In the blood component collection device (10) according to claim 2,
前記制御部(26)は、返血の開始時から前記血液ポンプ(28)を回転させて!/、る際 に、前記圧力(Pd)が前記血液ポンプ(28)の累積回転数、累積送液量又は返血経 過時間に対応して設定された前記制限用閾値(502)よりも大きい停止用閾値(501) を超えるとき、又は前記圧力(Pd)の傾斜が所定傾斜を超えるときに、前記血液ボン プ(28)を減速又は停止させることを特徴とする血液成分採取装置(10)。  When the control unit (26) rotates the blood pump (28) from the start of blood return! /, The pressure (Pd) is changed to the cumulative rotational speed and cumulative feed of the blood pump (28). When the stop threshold (501) larger than the limit threshold (502) set corresponding to the liquid volume or the return time is exceeded, or when the slope of the pressure (Pd) exceeds a predetermined slope The blood component collection device (10), wherein the blood pump (28) is decelerated or stopped.
[4] 請求項;!〜 3のいずれか 1項に記載の血液成分採取装置(10)において、 [4] The blood component collection device (10) according to any one of claims 1 to 3,
前記条件の 1つは、前記圧力(Pd)が上昇した後に下降する山形の変化を示すとい う条件であることを特徴とする血液成分採取装置(10)。  One of the conditions is a blood component collection device (10) characterized by showing a change in a mountain shape that descends after the pressure (Pd) rises.
[5] 請求項;!〜 4のいずれか 1項に記載の血液成分採取装置(10)において、 [5] The blood component collecting device (10) according to any one of claims 1 to 4,
前記制御部(26)は、前記返血ライン(104)の返血速度 (V)を検出する速度検出 部(98)を有し、 前記条件の 1つは、前記返血速度 (V)が所定の流速閾値以下という条件であること を特徴とする血液成分採取装置(10)。 The control unit (26) has a speed detection unit (98) for detecting the blood return speed (V) of the blood return line (104), One of the conditions is a blood component collection device (10) characterized in that the blood return speed (V) is a predetermined flow rate threshold value or less.
[6] 請求項 1〜5のいずれ力、 1項に記載の血液成分採取装置(10)において、  [6] In the blood component collection device (10) according to any one of claims 1 to 5,
前記制御部(26)は、前記条件に応じて前記返血ライン(104)の圧力(Pd)又は返 血速度 (V)の制限値を低下させた後、前記血液ポンプ(28)の累積回転数、累積送 液量又は経過時間に応じて、前記圧力(Pd)が所定の回復判断圧力閾値を下回つ ており、又は前記返血速度 (V)が所定の回復判断流速閾値を超えているときに、前 記返血ライン(104)の圧力(Pd)又は返血速度 (V)の制限値を上昇させることを特徴 とする血液成分採取装置(10)。  The controller (26) reduces the limit value of the pressure (Pd) or the blood return speed (V) of the blood return line (104) according to the condition, and then the cumulative rotation of the blood pump (28). The pressure (Pd) falls below a predetermined recovery judgment pressure threshold, or the blood return speed (V) exceeds a predetermined recovery judgment flow rate threshold, depending on the number, accumulated liquid delivery amount or elapsed time. The blood component collecting device (10), characterized by increasing a limit value of the pressure (Pd) or the blood return speed (V) of the blood return line (104).
[7] ドナーから採取した血液を分離した後、所定の血液成分をドナーに返血する返血ラ イン(104)と、  [7] After separating blood collected from the donor, a blood return line (104) that returns the blood component to the donor.
前記返血ライン(104)に血液成分を送り出す可変速度の血液ポンプ(28)と、 前記返血ライン(104)の圧力(Pd)を検出する圧力センサ(38)と、  A variable speed blood pump (28) for delivering blood components to the blood return line (104), a pressure sensor (38) for detecting the pressure (Pd) of the blood return line (104),
前記血液ポンプ(28)を駆動する制御部(26)と、  A controller (26) for driving the blood pump (28);
を有し、  Have
前記制御部(26)は、前記血液ポンプ(28)を回転させて返血を開始した際に、前 記圧力センサ(38)から得られる前記圧力(Pd)が前記血液ポンプ(28)の累積回転 数、累積送液量又は返血経過時間に対応して設定された制限用閾値(502)又は停 止用閾値(501)を超えるとき、若しくは前記圧力(Pd)の傾斜が所定傾斜 (P )を超 し 2 えるときに、前記血液ポンプ(28)を減速又は停止させる圧力判断処理を行うことを特 徴とする血液成分採取装置(10)。  When the control unit (26) starts returning blood by rotating the blood pump (28), the pressure (Pd) obtained from the pressure sensor (38) is accumulated in the blood pump (28). When the limit threshold (502) or the stop threshold (501) set corresponding to the rotation speed, accumulated liquid supply amount, or elapsed time of blood return is exceeded, or the slope of the pressure (Pd) is a predetermined slope (P ), The blood component collection device (10) is characterized by performing a pressure judgment process for decelerating or stopping the blood pump (28).
[8] 請求項 7記載の血液成分採取装置(10)において、 [8] The blood component collection device (10) according to claim 7,
前記制御部(26)は、返血開始時から所定時間が経過した後、又は前記血液ボン プ(28)が所定数だけ回転した後に、前記圧力判断処理を開始することを特徴とする 血液成分採取装置(10)。  The control unit (26) starts the pressure determination process after a predetermined time has elapsed from the start of blood return or after the blood pump (28) has rotated by a predetermined number. Collection device (10).
[9] 請求項 7又は 8記載の血液成分採取装置(10)において、 [9] In the blood component collection device (10) according to claim 7 or 8,
前記制御部(26)は、返血開始時の前記圧力(Pd)を初期圧力(P0)とし、返血開 始時から所定時間が経過するまで、又は前記血液ポンプ(28)が所定数だけ回転す るまでに、前記圧力センサ(38)から得られる前記圧力(Pd)と前記初期圧力(PO)と の差圧力が所定閾値を超えるときに、前記血液ポンプ(28)を減速又は停止させる差 圧判断処理を行うことを特徴とする血液成分採取装置(10)。 The control unit (26) sets the pressure (Pd) at the start of blood return to an initial pressure (P0), and until a predetermined time has elapsed from the start of blood return or the blood pump (28) is a predetermined number. Rotate Until the differential pressure between the pressure (Pd) obtained from the pressure sensor (38) and the initial pressure (PO) exceeds a predetermined threshold, the differential pressure for decelerating or stopping the blood pump (28). A blood component collection device (10) characterized by performing a determination process.
ドナーから採取した血液を分離した後、所定の血液成分を採取し、残余の血液成 分をドナーに返血する血液成分採取装置(10)において、  In a blood component collection device (10) that separates blood collected from a donor, collects a predetermined blood component, and returns the remaining blood component to the donor.
ドナーに残余の血液成分を返血する返血ライン(104)と、  A return line (104) for returning the remaining blood components to the donor;
前記返血ライン(104)に血液成分を送り出す可変速度の血液ポンプ(28)と、 前記返血ライン(104)の圧力(Pd)を検出する圧力センサ(38)と、  A variable speed blood pump (28) for delivering blood components to the blood return line (104), a pressure sensor (38) for detecting the pressure (Pd) of the blood return line (104),
前記血液ポンプ(28)を駆動する制御部(26)と、  A controller (26) for driving the blood pump (28);
を有し、  Have
前記制御部(26)は、返血開始時の前記圧力(Pd)を初期圧力(P0)とし、返血開 始時から所定時間が経過するまで、又は前記血液ポンプ(28)が所定数だけ回転す るまでに、前記圧力センサ(38)から得られる前記圧力(Pd)と前記初期圧力(P0)と の差圧力が所定閾値を超えるときに、前記血液ポンプ(28)を減速又は停止させる差 圧判断処理を行うことを特徴とする血液成分採取装置(10)。  The control unit (26) sets the pressure (Pd) at the start of blood return to an initial pressure (P0), and until a predetermined time has elapsed from the start of blood return or the blood pump (28) is a predetermined number. Before the rotation, when the pressure difference between the pressure (Pd) obtained from the pressure sensor (38) and the initial pressure (P0) exceeds a predetermined threshold value, the blood pump (28) is decelerated or stopped. A blood component collection device (10) characterized by performing a differential pressure determination process.
PCT/JP2007/071698 2006-11-10 2007-11-08 Apparatus for collecting blood component WO2008056733A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008543116A JP4979709B2 (en) 2006-11-10 2007-11-08 Blood component collection device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-305157 2006-11-10
JP2006305157 2006-11-10
JP2007087015 2007-03-29
JP2007-087015 2007-03-29

Publications (1)

Publication Number Publication Date
WO2008056733A1 true WO2008056733A1 (en) 2008-05-15

Family

ID=39364544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/071698 WO2008056733A1 (en) 2006-11-10 2007-11-08 Apparatus for collecting blood component

Country Status (2)

Country Link
JP (2) JP4979709B2 (en)
WO (1) WO2008056733A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041599A1 (en) * 2012-09-11 2014-03-20 テルモ株式会社 Blood component separation device
WO2014041600A1 (en) * 2012-09-11 2014-03-20 テルモ株式会社 Blood component separation device
US10112003B2 (en) 2012-03-27 2018-10-30 Terumo Kabushiki Kaisha Blood component separation device
EP3593830A1 (en) * 2018-07-13 2020-01-15 Fenwal, Inc. System and method of dynamically adjusting fluid flow rate in response to pressure
WO2021177423A1 (en) * 2020-03-05 2021-09-10 テルモ株式会社 Extracorporeal circulation device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9907895B2 (en) * 2012-09-26 2018-03-06 Terumo Kabushiki Kaisha Controller for life support device and control method thereof
CN107811645A (en) * 2017-12-10 2018-03-20 苏理锋 Extract the machine of blood in blood vessel

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538364A (en) * 1991-08-06 1993-02-19 Terumo Corp Blood plasma drawing device
JP2006034721A (en) * 2004-07-28 2006-02-09 Terumo Corp Blood component sampling system
JP6057250B2 (en) * 2012-09-10 2017-01-11 国立大学法人名古屋大学 Rare earth metal recovery method and recovery apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4409285A (en) * 1984-06-29 1986-01-24 Hemascience Laboratories Inc. Blood extraction and reinfusion flow control system and method
US6428712B1 (en) * 2000-04-06 2002-08-06 Hemasure, Inc. Gravity driven liquid filtration system and method for filtering biological liquid
JP4059722B2 (en) * 2001-08-10 2008-03-12 株式会社クラレ Blood processing equipment
JP2005110748A (en) * 2003-10-03 2005-04-28 Terumo Corp Blood component collecting apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0538364A (en) * 1991-08-06 1993-02-19 Terumo Corp Blood plasma drawing device
JP2006034721A (en) * 2004-07-28 2006-02-09 Terumo Corp Blood component sampling system
JP6057250B2 (en) * 2012-09-10 2017-01-11 国立大学法人名古屋大学 Rare earth metal recovery method and recovery apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10112003B2 (en) 2012-03-27 2018-10-30 Terumo Kabushiki Kaisha Blood component separation device
WO2014041599A1 (en) * 2012-09-11 2014-03-20 テルモ株式会社 Blood component separation device
WO2014041600A1 (en) * 2012-09-11 2014-03-20 テルモ株式会社 Blood component separation device
CN104602720A (en) * 2012-09-11 2015-05-06 泰尔茂株式会社 Blood component separation device
JP5863978B2 (en) * 2012-09-11 2016-02-17 テルモ株式会社 Blood component separator
US9452254B2 (en) 2012-09-11 2016-09-27 Terumo Kabushiki Kaisha Method for controlling a blood component separation device including temporarily storing a component in a container
US10195319B2 (en) 2012-09-11 2019-02-05 Terumo Kabushiki Kaisha Blood component separation device
US10426886B2 (en) 2012-09-11 2019-10-01 Terumo Kabushiki Kaisha Set of containers for use on a blood component centrifugal separator
EP3593830A1 (en) * 2018-07-13 2020-01-15 Fenwal, Inc. System and method of dynamically adjusting fluid flow rate in response to pressure
US11819805B2 (en) 2018-07-13 2023-11-21 Fenwal, Inc. System and method of dynamically adjusting fluid flow rate in response to pressure
WO2021177423A1 (en) * 2020-03-05 2021-09-10 テルモ株式会社 Extracorporeal circulation device

Also Published As

Publication number Publication date
JP5442796B2 (en) 2014-03-12
JP2012139546A (en) 2012-07-26
JP4979709B2 (en) 2012-07-18
JPWO2008056733A1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
JP5442796B2 (en) Blood component collection device
JP4861649B2 (en) Blood component collection circuit and blood component collection device
JP2007020961A (en) Blood processor
US10195319B2 (en) Blood component separation device
JP3850429B2 (en) Blood component separator
JP4916905B2 (en) Blood component collection device
JP2008067779A (en) Blood component collecting apparatus, disposable unit, and mainframe
JP4956528B2 (en) Blood component collection device
JP2005110748A (en) Blood component collecting apparatus
JP4681395B2 (en) Blood component collection device
JP4558401B2 (en) Blood component collection device
JP4619260B2 (en) Blood component collection device
JP4500618B2 (en) Blood component collection device
JP4594029B2 (en) Blood component collection device
JP5883436B2 (en) Blood component collection device
JP4892290B2 (en) Blood component collection device
JP4459263B2 (en) Extracorporeal blood treatment method and apparatus
JP4607803B2 (en) Blood component collection device
JP4607508B2 (en) Blood component collection device
JP2007260150A (en) Blood component-collecting apparatus
JP4871496B2 (en) Blood component collection device
JP2007050078A (en) Blood component sampling apparatus
JP4758663B2 (en) Blood component collection device
JP2008245942A (en) Blood component collecting apparatus
JP2006034467A (en) Filter monitoring system and platelet sampling device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07831429

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008543116

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07831429

Country of ref document: EP

Kind code of ref document: A1