WO2008053800A1 - Liquid crystal containing liquid-crystal-compatible particles and liquid-crystal display - Google Patents

Liquid crystal containing liquid-crystal-compatible particles and liquid-crystal display Download PDF

Info

Publication number
WO2008053800A1
WO2008053800A1 PCT/JP2007/070897 JP2007070897W WO2008053800A1 WO 2008053800 A1 WO2008053800 A1 WO 2008053800A1 JP 2007070897 W JP2007070897 W JP 2007070897W WO 2008053800 A1 WO2008053800 A1 WO 2008053800A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
display device
compatible
crystal display
particles
Prior art date
Application number
PCT/JP2007/070897
Other languages
French (fr)
Japanese (ja)
Inventor
Naoki Toshima
Shunsuke Kobayashi
Shigeyoshi Nishino
Shuji Yokoyama
Shinya Takigawa
Yasuo Toko
Original Assignee
Tokyo University Of Science, Educational Foundation
Ube Industries, Ltd.
Stanley Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University Of Science, Educational Foundation, Ube Industries, Ltd., Stanley Electric Co., Ltd. filed Critical Tokyo University Of Science, Educational Foundation
Publication of WO2008053800A1 publication Critical patent/WO2008053800A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles

Definitions

  • Liquid crystal compatible particle-containing liquid crystal and liquid crystal display device Liquid crystal compatible particle-containing liquid crystal and liquid crystal display device
  • the present invention relates to a liquid crystal containing liquid crystal compatible particles and a liquid crystal display device using the liquid crystal, for example, a liquid crystal display device used as a display panel for automobiles.
  • liquid crystal-compatible particles are known in which liquid crystal molecules are bonded around a nucleus composed of metal nanoparticles such as palladium nanoparticles having a diameter in the range of 0.5 to; OOnm. Yes.
  • the liquid crystal compatible particles can be produced, for example, by irradiating a solution obtained by dissolving a palladium salt such as palladium nitrate and liquid crystal molecules in a solvent such as ethanol with ultraviolet rays to reduce the palladium salt. (See Japanese Unexamined Patent Publication No. 2003-149683).
  • the liquid crystal compatible particles are dissolved or dispersed in a matrix liquid crystal to form liquid crystal compatible particle-containing liquid crystal, and the liquid crystal cell of the liquid crystal display device is configured by using the liquid crystal compatible particle-containing liquid crystal.
  • the amount of light transmission can be changed depending on the frequency of the voltage applied to the liquid crystal display device.
  • the liquid crystal material exhibiting drive frequency dependency has a problem in that the threshold is! /, The value is frequency dependent, and therefore the duty is driven when the duty is driven! /, And the display unevenness due to the value unevenness occurs!
  • liquid crystal compatible particle-containing liquid crystal containing the liquid crystal compatible particles has a high viscosity in a low temperature region of 0 ° C. or less, for example, when a liquid crystal cell of a liquid crystal display device is configured. There is an inconvenience that it is difficult to perform drive display.
  • the present invention eliminates such inconvenience and configures a liquid crystal cell of a liquid crystal display device. It is an object to provide a liquid crystal-compatible particle-containing liquid crystal capable of high-speed and DUTY drive display even in a low temperature region of 0 ° C. or lower.
  • Another object of the present invention is to provide a liquid crystal display device using the liquid crystal containing the liquid crystal compatible particles.
  • the liquid crystal-compatible particle-containing liquid crystal of the present invention comprises at least one liquid crystal molecule, a secondary alcohol represented by the following general formula (1), and an organic solvent.
  • Liquid crystal compatible particles obtained by adding and reacting at least one metal ion solution while refluxing the mixed solution obtained by mixing, wherein the metal nano particles are obtained by reducing the metal ions.
  • Liquid crystal compatible particles comprising particles and the liquid crystal molecules bonded around the metal nanoparticles with the metal nanoparticles as nuclei are characterized by comprising.
  • the liquid crystal compatible particles in the present invention have a plurality of metal particles produced by reduction of one or more kinds of metal ions as a central core, and liquid crystal molecules are somehow around them. It is presumed to have a structure that is surrounded by interaction.
  • the central core composed of a plurality of metal particles may have a random alloy structure in which a plurality of types of metal particles are randomly distributed, or one type of metal particle as a shell and another type of metal particle as a shell. It may have a core-shell structure as a core.
  • the case of one type of metal particles is called a single particle, and the case of two types of metal particles is called a binary particle.
  • the metal nanoparticles have a particle size of 40 nm or less, and most of them are 5 nm or less, and are sufficiently smaller than the wavelength of light. Therefore, optical properties such as transmittance (refractive index), color tone, and sharpness of a liquid crystal display device are used. Does not affect properties. On the other hand, it is thought that the liquid crystal compatible particles containing the metal nanoparticles in the matrix liquid crystal can affect the physical properties of the liquid crystal display device such as dielectric anisotropy, elastic constant and viscosity coefficient. It is done.
  • the liquid crystal-compatible particle-containing liquid crystal of the present invention when used in a liquid crystal cell of a liquid crystal display device, the frequency dependency of the threshold value in the voltage-transmittance characteristic is reduced, and the DUT Y drive display is enabled At the same time, it is possible to achieve high response speed, high V, and contrast in the low temperature range below 0 ° C.
  • the reason why the response speed becomes high is that, in the rise characteristics, the metal nanoparticles exhibit an increase in the dielectric constant of the entire system (that is, the Maxwell-Wagner effect) in the driving frequency region of several hundred Hz, and in particular, the molecules stand up.
  • the dielectric anisotropy ⁇ increases as the top rises, the rotational torque of the liquid crystal molecules ⁇ 8 ⁇ 2 force S increases, and the elastic constant changes due to the metal nanoparticles entering between the liquid crystals. Conceivable.
  • the viscosity coefficient decreases due to the addition of the metal nanoparticles.
  • Improvement of LC performance by improving liquid crystal materials has reached its limit, and the present invention in which the metal nanoparticles are monodispersed in a liquid crystal that is an organic liquid is one of the new breakthroughs. Be expected.
  • the mixed solution is preferably refluxed at a temperature in the range of 30 to 200 ° C, and is refluxed at a temperature in the range of 40 to 150 ° C. It is particularly preferred that
  • examples of the metal ions include Au + , Au 3+ , Ag + , Cu +, Cu 2+ , Ru 2+ , Ru 3+ , Ru 4+ , Rh 2+ , Rh 3+ , Pd 2+ , P d 4+ , Os 4+ , Ir + , Ir 3+ , Pt 2+ , Pt 4+ , Fe 2+ , Fe 3+ , Co 2+ And at least one metal ion selected from the group consisting of Co 3+ .
  • examples of the liquid crystal compatible particles obtained by the reaction of the metal ions include those having nucleus of silver-silver binary nanoparticles as a nucleus.
  • the palladium-silver binary nanoparticles preferably contain silver in an amount of 0.05% by weight or less based on the total liquid crystal-compatible particle-containing liquid crystal.
  • the liquid crystal compatible particle-containing liquid crystal of the present invention is used in a liquid crystal cell of a liquid crystal display device.
  • the frequency dependency may increase, and the duty drive display may become difficult.
  • the liquid crystal-compatible particle-containing liquid crystal of the present invention is the entire liquid crystal-compatible particle-containing liquid crystal. It is preferable to contain the liquid crystal compatible particles in an amount in the range of 0.001 to 0.5% by weight relative to the liquid crystal compatible particles in an amount in the range of 0.002 to 0.2% by weight. It is particularly preferable to contain it.
  • a liquid crystal display device of the present invention is characterized by comprising a liquid crystal cell in which liquid crystal containing liquid crystal compatible particles containing the liquid crystal compatible particles is enclosed.
  • the liquid crystal display device of the present invention by using the liquid crystal containing liquid crystal compatible particles, the frequency dependency is reduced in a low temperature region of 0 ° C or lower, and DUTY drive display becomes possible. At the same time, high! /, High response speed and high contrast can be demonstrated.
  • the liquid crystal cell preferably contains a chiral agent together with the liquid crystal containing the liquid crystal compatible particles.
  • the liquid crystal cell can adjust the twist angle of the liquid crystal-compatible particle-containing liquid crystal by containing the chiral agent.
  • the twist angle of the liquid crystal containing the liquid crystal compatible particles in the liquid crystal cell is in the range of 180 to 270 °.
  • the twisted angle of less than 180 ° there is a problem with the steepness of the transmittance change (sharpness) is poor with respect to voltage, problems force s with hysteresis on the voltage one transmittance characteristic exceeds 270 ° occurs.
  • liquid crystal compatible particles for example, those having nucleus of silver and silver binary nanoparticles as a core can be used.
  • the liquid crystal display device of the present invention is, for example, a dot matrix panel using DUTY driving.
  • FIG. 1 is an explanatory cross-sectional view showing a structural example of the liquid crystal display device of the present invention.
  • FIG. 2 is a graph showing voltage-transmittance characteristics in the liquid crystal display device of the first embodiment of the present invention
  • FIG. 3 is a photograph of the appearance when an image is displayed on the liquid crystal display device
  • FIG. 5 is a micrograph of a liquid crystal cell of the liquid crystal display device immediately after the image is displayed on the liquid crystal display device and the image is switched at 10 ° C.
  • FIG. 6 is a comparative example with respect to the embodiment. It is a microscope picture of the liquid crystal cell of the liquid crystal display device.
  • FIG. 1 is an explanatory cross-sectional view showing a structural example of the liquid crystal display device of the present invention.
  • FIG. 2 is a graph showing voltage-transmittance characteristics in the liquid crystal display device of the first embodiment of the present invention
  • FIG. 3 is a photograph of the appearance when an image is displayed on the liquid crystal display device
  • FIG. 5 is
  • FIG. 7 is a graph showing the voltage transmittance characteristics in the liquid crystal display device of the second embodiment of the present invention
  • FIG. 8 is a micrograph of the liquid crystal cell of the liquid crystal display device
  • FIG. 6 is a micrograph of a liquid crystal cell of a liquid crystal display device of a comparative example.
  • FIG. 10 is an explanatory sectional view showing another configuration example of the liquid crystal display device of the present invention.
  • FIG. 11 is a graph showing the temperature dependence of responsiveness when DUTY driving is performed in the liquid crystal display device of the third embodiment of the present invention.
  • FIGS. 12 to 15 are graphs showing voltage-transmittance characteristics in the liquid crystal display devices of the fourth to seventh embodiments of the present invention.
  • FIG. 16 is a graph showing voltage-transmittance characteristics in a liquid crystal display device according to a reference example of the present invention, and FIG.
  • the liquid crystal display device of the present invention includes, for example, a super twist nematic (STN) LCD, a twist
  • PN polymer network type
  • TFT active matrix
  • the liquid crystal display device 1 of this embodiment includes a pair of parallel and transparent glass substrates 2a and 2b, and transparent electrode films 3a and 3b provided in a predetermined pattern on the inner surfaces of the glass substrates 2a and 2b facing each other.
  • the insulating films 4a and 4b provided on the inner surface facing each other of the transparent electrode films 3a and 3b and the inner surfaces facing each other of the insulating films 4a and 4b are substantially the same as the transparent electrode films 3a and 3b.
  • Alignment films 5a and 5b provided in the following pattern.
  • the transparent electrode films 3a and 3b are provided in stripes orthogonal to each other.
  • the upper substrate 6a is formed by the glass substrate 2a, the transparent electrode film 3a, the insulating film 4a, and the alignment film 5a.
  • An upper substrate 6b is formed by 5b, and a liquid crystal cell 7 in which liquid crystal L containing liquid crystal compatible particles is sealed is formed between the upper and lower substrates 6a and 6b.
  • the alignment films 5a and 5b align the liquid crystal molecules enclosed in the liquid crystal cell 7 uniaxially and form an upper and lower substrate 6a. , 6b torsional angular force, for example, left-handed twist of 240 °.
  • the liquid crystal cell 7 is sealed with a sealant layer 8, and a conductive material pattern 9 is formed on the outer surface of the sealant layer 8. Further, polarizing plates 10a and 10b are attached to the outer surfaces of the glass substrates 2a and 2b in a predetermined pattern.
  • liquid crystal display device 1 instead of the liquid crystal L containing liquid crystal compatible particles, liquid crystal molecules containing no liquid crystal compatible particles are sealed in the liquid crystal cell 7, and the twist angle between the upper and lower substrates 6 a and 6 b is, for example, 2 It is a two-layer configuration in which compensation cells (not shown) with exactly the same configuration are stacked, except that they are processed so as to have a right twist of 40 °.
  • the liquid crystal display device 1 may include a compensation film instead of the compensation cell.
  • the liquid crystal display device 1 can be manufactured, for example, in the manner of 7 fires.
  • an ITO film is formed as a transparent electrode on the glass substrates 2a and 2b, and the transparent electrode films 3a and 3b are formed by forming a desired pattern in a photolithography process.
  • insulating films 4a and 4b are formed by flexographic printing on the display portions on the glass substrates 2a and 2b on which the transparent electrode films 3a and 3b are formed.
  • the insulating films 4a and 4b are not necessarily formed, but are desirably formed to prevent a short circuit between the upper and lower transparent electrode films 3a and 3b.
  • the insulating films 4a and 4b are not limited to flexographic printing, but may be formed by vapor deposition using a metal mask.
  • alignment films 5a and 5b having substantially the same pattern are formed on the insulating films 4a and 4b.
  • the alignment films 5a and 5b have a high pretilt angle (the tilt angle of the liquid crystal molecules from the substrate plane).
  • rubbing treatment is performed on the alignment films 5a and 5b.
  • the rubbing treatment can be performed by rotating a cylindrical roll wound with cloth at high speed and rubbing the alignment films 5a and 5b.
  • the liquid crystal molecules sealed in the liquid crystal cell 7 can be aligned uniaxially so that the twisting angular force between the upper and lower substrates 6a and 6b is, for example, a left twist of 240 °.
  • a sealant for bonding the upper and lower substrates 6a and 6b is printed in a predetermined pattern on the inner surface of the substrate 6a or the substrate 6b on one side, and the inside of the other substrate 6b or the substrate 6a is printed.
  • Gap control agent is sprayed on the side by dry spraying method.
  • the upper and lower substrates 6a and 6b are overlapped at predetermined positions to form cells, and heat treatment is performed in a pressed state to perform sheeting.
  • the sealing agent layer 8 is formed by curing the adhesive.
  • the sealing agent for example, a thermosetting sealing agent can be used, and the sealing agent may contain several weight percent of glass fiber having a size of 6 m. Further, instead of the thermosetting sealant, a photocurable sealant or a combined light / heat sealant may be used.
  • the sealing agent may be printed using, for example, a force dispenser that can be used by a screen printing method.
  • the printed pattern of the sealant is a pattern having an injection port when using the vacuum injection method, and a note when using the ODF method.
  • a closed pattern with no entrance As the gap control agent, for example, a force S which can use a plastic ball having a diameter of 6 m, and a silica ball may be used.
  • a conductive material is printed at a predetermined position on the outer surface of the sealing agent layer 8 to form a conductive material pattern 9.
  • the conductive material for example, the thermosetting sealant (for example, product name: ES-7500, manufactured by Mitsui Chemicals, Inc.) containing several 11% by weight of 8-11 balls having a diameter of 6.5 111 is used. I can do it.
  • the conductive material is printed by force S, for example, by screen printing.
  • the glass substrates 2a and 2b are scratched by a scriber device, and divided into a predetermined size 'shape by breaking to form cells, and liquid crystal molecules L are injected into the cells.
  • the liquid crystal molecule L can be injected by, for example, a vacuum injection method.
  • the injection port is sealed with an end sealant.
  • the compensation cell stacked on the liquid crystal display device 1 has a twisted angular force between the upper and lower substrates 6a and 6b of the liquid crystal molecules sealed in the liquid crystal cell 7 in the alignment films 5a and 5b, for example, a right twist of 240 °.
  • the liquid crystal cell 7 can be manufactured in the same manner as the liquid crystal display device 1 except that the liquid crystal cell 7 is sealed and liquid crystal molecules containing no liquid crystal compatible particles are encapsulated.
  • liquid crystal compatible particles enclosed in the liquid crystal cell 7 in the liquid crystal display device 1 of the present embodiment contains liquid crystal compatible particles in the matrix liquid crystal.
  • the liquid crystal compatible particles contained in the liquid crystal compatible particle-containing liquid crystal are liquid crystal molecules bonded around a nucleus composed of metal nanoparticles, and include at least one liquid crystal molecule and the following general formula (1) While refluxing the mixed solution obtained by mixing the secondary alcohol represented by
  • liquid crystal molecules used for obtaining the liquid crystal compatible particles include, for example, 4′-n-pentyl-4-cyanobiphenyl, 4′_n-hexyloxy-4-cyanobiphenyl.
  • Cyanobiphenyls such as 4- (trans-4_n-pentylcyclohexyl) benzonitrile and the like; 4-butylbenzoic acid (4-cyanophenyl), 4-heptylbenzoic acid (4 Phenyl esters such as 4-cyanophenyl) carbonates such as 4-carboxyphenyl carbonate and 4-carboxyphenyl-n-butyl carbonate; 4- (4_n-pentylphenylethyl) ) Sianobenzene, 4- (4-n-pentyl) Phenylacetylenes such as nitrobenzene, benzene; phenylpyrimidines such as 2- (4-cyanphenyl) -5-n-pentylpyrimidine, 2- (4-cyanphenyl) -5-n-octylpyrimidine; Azazobenzenes such as 4'-bis (ethoxycarboninole) azobenzene; Azoxybenzenes such as 4,4, -
  • the secondary alcohol used to obtain the liquid crystal-compatible particles is a compound represented by the general formula ( Shown in 1).
  • R 1 and R 2 are hydrocarbon groups which may have a substituent. Examples of the hydrocarbon groups include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • Alkyl group having 1 to 7 carbon atoms such as cyclopentyl group, hexyl group and heptyl group; cycloalkyl group having 3 to 5 carbon atoms such as cyclopropyl group, cyclobutyl group and cyclopentyl group; Forces that can include alkynyl groups having 2 to 5 carbon atoms such as nyl group, cyclopropenyl group, cyclobuturyl group, cyclopentur group, etc .; alkynyl groups having 2 to 5 carbon atoms such as etulyl group, propynyl group, etc. preferably alkyl Group, alkenyl group and alkynyl group, more preferably alkyl group and alkynyl group.
  • the hydrocarbon group includes various isomers.
  • R 1 and R 2 may be bonded to each other to form an unsubstituted or substituted ring! /
  • the ring formed by bonding includes, for example, a cyclopropyl ring Cycloalkyl rings having 3 to 6 carbon atoms such as cyclobutyl ring, cyclopentyl ring and cyclohexyl ring; ether rings having 2 to 5 carbon atoms such as oxylan ring, oxetane ring, tetrahydrofuran ring and tetrahydropyran ring. That power S.
  • Each ring includes various isomers.
  • the hydrocarbon group and the ring formed by bonding may have a substituent! /, And the substituent may be a substituent formed through a carbon atom or an oxygen atom. Can be mentioned substituents, halogen atoms and the like.
  • Examples of the substituent formed through the carbon atom include an alkyl group having 1 to 3 carbon atoms such as a methyl group, an ethyl group, and a propyl group; and 3 to 4 carbon atoms such as a cyclopropyl group and a cyclobutyl group.
  • a cycloalkyl group having 2 to 3 carbon atoms such as a bulu group, a linole group, a propenyl group, or a cyclopropenyl group; an alkynyl group having 2 to 3 carbon atoms such as an ethur group or a propynyl group; And a halogenated alkyl group having 1 to 4 carbon atoms such as a romethyl group; a cyano group.
  • the substituent includes various isomers.
  • Examples of the substituent formed through the oxygen atom include a hydroxyl group; an alkoxy group having 1 to 3 carbon atoms such as a methoxyl group, an ethoxyl group, and a propoxyl group. These groups include various isomers.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the amount of the secondary alcohol used is preferably 0.;! To 200 g, more preferably 1 to OOg, with respect to the liquid crystal molecule lg.
  • the secondary alcohol may be used alone or in combination of two or more of the secondary alcohols.
  • the organic solvent used for obtaining the liquid crystal compatible particles is not particularly limited as long as it does not inhibit the reaction.
  • ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone
  • Esters such as methyl, ethyl acetate, butyl acetate, methyl propionate
  • amides such as N, N, dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone
  • N, N, monodimethylimidazolide Ureas such as non; sulfoxides such as dimethyl sulfoxide; sulfones such as sulfolane; nitriles such as acetonitrile and propionitryl; ethers such as jetyl ether, diisopropyl ether, tetrahydrofuran and dioxane; hexane , Heptane, cyclohexane and other alipha
  • the amount of the organic solvent to be used is preferably in the range of 10 to 500 ml, more preferably in the range of 20 to 200 ml, with respect to the liquid crystal molecule lg.
  • the metal ion solution used for obtaining the liquid crystal compatible particles is obtained by dissolving a metal salt (a salt made of a metal ion and a counter ion) in an organic solvent.
  • a metal salt a salt made of a metal ion and a counter ion
  • the metal ions include transition metal ions, preferably Au + , Au 3+ , Ag + , C
  • the counter ions for the metal ions include, for example, hydride ions, halogen ions, halogen acid ions, perhalogenate ions, optionally substituted carboxylate ions, acetyl acetate toner ions, carbonate ions, sulfate ions. And nitrate ions, tetrafluoroborate ions, hexafluorophosphate ions, and the like.
  • the metal salt is coordinated by a neutral ligand such as carbon monoxide, triphenylphosphine, p-cymene, etc.
  • a neutral ligand such as carbon monoxide, triphenylphosphine, p-cymene, etc.
  • Examples of the organic solvent used for dissolving the metal ions include the organic solvent used for obtaining the liquid crystal compatible particles. The amount of the organic solvent used is not particularly limited as long as it can dissolve the metal salt completely.
  • the reflux temperature (reaction temperature) when refluxing a mixed solution obtained by mixing at least one liquid crystal molecule, the secondary alcohol, and the organic solvent is not particularly limited. However, the temperature is preferably in the range of 40 to; 100 ° C., and the reaction pressure may be pressurized, normal pressure, or reduced pressure.
  • the addition method is not particularly limited. For example, a method of separately adding one type of metal ion solution separately (simultaneous addition or Divided addition), and a method of preparing and adding one kind of metal ion solution containing a plurality of kinds of metal ions in advance.
  • the metal ions can be reduced to obtain metal nanoparticles, and the liquid crystal molecules can be obtained by bonding the liquid crystal molecules with the obtained metal nanoparticles as nuclei.
  • the liquid crystal compatible particles are dispersed in the organic solvent to form a dispersion, it is possible to obtain a uniform liquid crystal compatible particle paste by concentrating the dispersion.
  • the method for concentrating the dispersion is not particularly limited, but it is preferably performed at a temperature in the range of 20 to 100 ° C. under reduced pressure. Further, by adding the liquid crystal molecules to the dispersion again to obtain a dispersion, and concentrating the dispersion by a similar method, a higher performance and uniform liquid crystal compatible particle paste can be obtained. .
  • the liquid crystal-compatible particle-containing liquid crystal can be obtained, for example, by adding the liquid crystal-compatible particle paste obtained as described above to the base liquid crystal while stirring at room temperature and making it uniform. it can.
  • a chiral agent may be added to the liquid crystal-compatible particle-containing liquid crystal in order to adjust the twist angle.
  • liquid crystal-compatible palladium-silver binary nanoparticle-containing liquid crystal (hereinafter sometimes referred to as liquid crystal (I)) was prepared as follows.
  • 146.8 ml of tetrahydrofuran and 40 ml of 2 propanol are added to a glass container with a bucket at room temperature to prepare a mixed solution.
  • the solution was heated with stirring and refluxed at a temperature in the range of 65-75 ° C.
  • Olmol / 1 silver trifluoroacetate is slowly added dropwise to the above mixed solution and reacted at the same temperature for 15 minutes with stirring.
  • 0. 56 ml (containing 0.1566 mmol of palladium atom) of 0. Olmol / 1 palladium acetate in tetrahydrofuran was slowly dropped and reacted at the same temperature for another 15 minutes with stirring.
  • the reaction solution was cooled to room temperature to obtain 200 ml of a blackish brown uniform liquid crystal compatible palladium-silver binary nanoparticle dispersion.
  • the liquid crystal-compatible palladium-silver binary nanoparticles have palladium-silver binary nanoparticles as nuclei, and liquid crystal molecules 4'-n-pentyl-4-cyanobiphenyl are bound around the nuclei.
  • the liquid crystal (I) comprises the liquid crystal molecule mixture as a matrix liquid crystal, and the matrix liquid crystal contains the liquid crystal compatible palladium-silver binary nanoparticles, and 0.02% by weight of silver atoms with respect to the total amount of the liquid crystal (I). , and a palladium atom of 0.08 weight 0/0.
  • a liquid crystal display device (STN—LCD) 1 shown in FIG. 1 was produced using the liquid crystal (I), and the characteristics were evaluated.
  • a liquid crystal display device (STN—LCD) 1 was produced as follows. First, glass substrate
  • An ITO film was formed as a transparent electrode on 2a and 2b, and a transparent electrode film 3a and 3b was formed by forming a desired pattern by a photolithography process.
  • insulating films 4a and 4b were formed by flexographic printing on the display portions on the glass substrates 2a and 2b on which the transparent electrode films 3a and 3b were formed.
  • alignment films 5a and 5b having substantially the same pattern were formed on insulating films 4a and 4b using a liquid crystal alignment material (trade name: SE-610, manufactured by Nissan Chemical Co., Ltd.). Then wrap the cloth By rotating the cylindrical roll at high speed and rubbing on the alignment films 5a and 5b, the rubbing process is performed, and the liquid crystal (I) sealed in the liquid crystal cell 7 is aligned in the negative axis, and between the upper and lower substrates 6a and 6b.
  • the twist angle of was made to be a left twist of 240 °.
  • thermosetting sealant (trade name: ES-7500, manufactured by Mitsui Chemicals, Inc.) is printed on the inner surface of the upper substrate 6a in a pattern having an injection port by a screen printing method.
  • a plastic ball having a diameter of 6 ⁇ m was sprayed on the inner surface of the lower substrate 6b by a dry spraying method.
  • the upper and lower substrates 6a and 6b were overlapped at predetermined positions to form cells, and heat treatment was performed in a pressed state to cure the sealant, thereby forming the sealant layer 8.
  • a conductive material was printed by a screen printing method at a predetermined position on the outer surface of the sealant layer 8 to form a conductive material pattern 9.
  • a material containing 2-3% by weight of Au balls having a diameter of 6.5 m in the thermosetting sealant was used.
  • the glass substrates 2a and 2b are scratched by a scriber device, and a cell is formed by breaking into a predetermined size 'shape, and liquid crystal (I) is vacuum-injected into the cell.
  • the injection port was sealed with an end sealant.
  • the liquid crystal cell 7 does not contain any liquid crystal-compatible palladium-silver binary nanoparticles, and the liquid crystal cell 7 is processed so that the twisted angular force S between the upper and lower substrates 6a, 6b is right-twisted at 240 °! Compensation cell (not shown) exactly the same as the liquid crystal display device 1 of this example, except that a mixture of multiple types of liquid crystal molecules (Dai Nippon Ink Chemical Co., Ltd. STN liquid crystal, product name: LC3) was enclosed. And laminated on the liquid crystal display device 1 of this example. In the liquid crystal display device 1 and the compensation cell, the director directions of the liquid crystal molecules at the center of the cell are orthogonal to each other.
  • a wolf image was displayed using the liquid crystal display device 1 manufactured in this example.
  • the results are shown in Fig. 3 as an external photograph.
  • the liquid crystal display device 1 does not use the compensation cell.
  • liquid crystal (I) instead of liquid crystal (I), a liquid crystal molecule mixture containing no liquid crystal compatible palladium silver binary nanoparticles (Liquid for STN manufactured by Dainippon Ink and Chemicals, Inc., trade name: LC3) was used.
  • a liquid crystal display device (ST N—LCD) 1 shown in FIG. 1 was produced in the same manner as in Example 1 except that it was used.
  • a compensation cell (not shown) is formed in exactly the same manner as in the liquid crystal display device 1 of this comparative example, except that the twisting angular force between the upper and lower substrates 6a and 6b is right-twisted at 240 °. It was fabricated and laminated on the liquid crystal display device 1 of this comparative example. In the liquid crystal display device 1 and the compensation cell, the director directions of the liquid crystal molecules at the center of the cell are orthogonal to each other.
  • the voltage contrast characteristics of the liquid crystal display device 1 manufactured in this comparative example are measured exactly the same as in Example 1, and the optimum voltage (voltage that can obtain the maximum contrast) is obtained from the voltage contrast characteristics.
  • the response characteristics at the optimum voltage (1/64 DUTY drive) were measured at a temperature in the range of 35 to 85 ° C. The results are shown in Table 2.
  • the transmittance increases as the applied voltage increases, and the transmittance (display) of the liquid crystal display device 1 can be controlled by the voltage. It is the power that S is clear.
  • the transmittance curves are shifted by changing the driving frequency and do not completely coincide with each other. However, since the shift amount is AV ⁇ 0.3 V, the liquid crystal using the liquid crystal (I) of Example 1 is used. It is clear that the display device 1 can be driven by the duty.
  • the liquid crystal display device 1 using the liquid crystal (I) of Example 1 can display a display with no unevenness as shown in FIG.
  • the liquid crystal display device 1 using the liquid crystal (I) of Example 1 is more suitable in the region where the temperature is below freezing and the liquid crystal molecules are highly viscous.
  • the response time is shortened to 1/2 to 2/3 and the response is faster.
  • High-speed response in the low-temperature range is extremely useful for wide operating temperature ranges such as LCDs for vehicles and LCDs for aircrafts!
  • the image (numbers / characters) before switching remains dark like the image on the left side of FIG.
  • the image before switching is almost disappeared as in the image on the right side of FIG. 4, and the response in the low temperature region is fast.
  • the liquid crystal display device 1 using the liquid crystal (I) of Example 1 is more driven than the liquid crystal display device 1 of Comparative Example 1 (Table 1). It is clear that power consumption can be reduced.
  • liquid crystal-compatible palladium-silver binary nanoparticle-containing liquid crystal (hereinafter referred to as liquid crystal (I)) was prepared as follows.
  • the liquid crystal-compatible palladium-silver binary nanoparticles are composed of a rare-earth silver binary nanoparticle and a mixture of the above-mentioned various liquid crystal molecules (Dainippon Ink Chemical Co., Ltd. STN liquid crystal, product name: LC 4 ) Are combined.
  • the liquid crystal (I) is composed of the liquid crystal molecule mixture (Dai Nippon Ink Chemical Co., Ltd. STN liquid crystal, product name: LC4) as a matrix liquid crystal, and the matrix liquid crystal is a liquid crystal compatible paradium silver binary nanoparticle. Is included.
  • the liquid crystal display device (STN—LCD) 1 uses liquid crystal (I) and a photocurable sealant manufactured by Kyoritsu Chemical Industry Co., Ltd. as a sealant, and is sealed by a dispenser method. It was produced in the same manner as in Example 1 except that the agent layer 8 was formed.
  • the liquid crystal cell 7 does not contain any liquid crystal-compatible palladium-silver binary nanoparticles, and the twisting angular force S between the upper and lower substrates 6a, 6b is processed to a right twist of 240 °, and the liquid crystal cell 7 does not contain any liquid crystal compatible palladium / silver binary nanoparticles! Compensation cell (not shown) exactly the same as the liquid crystal display device 1 of this example, except that a plurality of types of liquid crystal molecule mixture (Dai Nippon Ink Chemical Co., Ltd. STN liquid crystal, product name: LC4) was enclosed. And laminated on the liquid crystal display device 1 of this example. In the liquid crystal display device 1 and the compensation cell, the director directions of the liquid crystal molecules at the center of the cell are orthogonal to each other.
  • liquid crystal (I) instead of the liquid crystal (I), a liquid crystal molecule mixture containing no liquid crystal compatible palladium silver binary nanoparticles (Liquid for STN manufactured by Dainippon Ink and Chemicals, Inc., trade name: LC4) was used.
  • a liquid crystal display device (ST N—LCD) 1 shown in FIG. 1 was produced in the same manner as in Example 2 except that it was used.
  • a compensation cell (not shown) was made exactly the same as the liquid crystal display device 1 manufactured in this comparative example, except that the twist angle between the upper and lower substrates 6a and 6b was a right twist of 240 °. was laminated on the liquid crystal display device 1 of this comparative example.
  • the director directions of the liquid crystal molecules at the center of the cell are orthogonal to each other.
  • the transmittance increases as the applied voltage increases, and the transmittance (display) of the liquid crystal display device 1 can be controlled by the voltage. It is the power that S is clear.
  • the transmittance curves are shifted by changing the drive frequency and do not completely match.In particular, there is a difference in the curve between 1000 Hz and 300 Hz, but the shift amount is AV ⁇ It is clear that the liquid crystal display device 1 using the liquid crystal (I) of Example 2 that is as small as 0.05 V can be DUTY driven.
  • the liquid crystal display device 1 using the liquid crystal (I) of Example 2 is more suitable in the region where the temperature is below freezing and the liquid crystal molecules become highly viscous. Compared with the liquid crystal display device 1 of Comparative Example 2, it is clear that the response time is shortened to 1/2 to 2/3 and the response is faster. High-speed response in the low-temperature range is extremely useful for wide operating temperature ranges such as LCDs for vehicles and LCDs for aircrafts!
  • a liquid crystal (la) was prepared in the same manner as in Example 1 except that no chiral agent was added.
  • the liquid crystal display device (TN-LCD) 11 uses liquid crystal (la) and uses a liquid crystal alignment material (trade name: SE-410, manufactured by Nissan Chemical Co., Ltd.) having a low pretilt angle as the alignment films 5a and 5b.
  • the liquid crystal display device (STN—LCD) 1 of Example 1 was manufactured exactly the same except that it was processed so that the twist angle between the upper and lower substrates 6a and 6b was 90 °.
  • Fig. 11 shows the temperature dependence of the response when 1/64 DUTY drive is performed.
  • liquid crystal (la) instead of the liquid crystal (la), a liquid crystal molecule mixture containing no liquid crystal compatible palladium silver binary nanoparticles (Dainippon Ink Chemical Co., Ltd. STN liquid crystal, product name: LC3)
  • a liquid crystal display device (TN-LCD) 11 shown in FIG. 10 was produced in the same manner as in Example 3 except that was used.
  • Figure 11 shows the temperature dependence of the response when 1/64 DUTY drive is performed.
  • the liquid crystal display device 11 of Example 3 has a faster response than the liquid crystal display device 11 of Comparative Example 3, and particularly DUTY. It is clear that the difference becomes significant in driving.
  • a liquid crystal (lb) was prepared in exactly the same manner as in Example 1, except that 0.05% by weight of silver atoms and 0.05% by weight of palladium atoms were contained.
  • a liquid crystal display device (STN-LCD) 1 shown in Fig. 1 was produced in the same manner as in Example 1 except that the liquid crystal (lb) was used.
  • a compensation cell was fabricated in exactly the same manner as in Example 1, and laminated on the liquid crystal display device 1 of this example.
  • the voltage-transmittance characteristics (drive frequency dependence) in the normally black mode of the liquid crystal display device 1 produced in this example were measured in exactly the same way as in Example 1. The results are shown in FIG.
  • a liquid crystal (Ic) was prepared in exactly the same manner as in Example 1, except that 0.08% by weight of silver atoms and 0.02% by weight of palladium atoms were contained.
  • a liquid crystal display device (STN—LCD) 1 shown in FIG. 1 was produced in the same manner as in Example 1 except that the liquid crystal (Ic) was used. Also, a compensation cell was made exactly as in Example 1. Then, it was laminated on the liquid crystal display device 1 of this example.
  • the voltage-transmittance characteristics (drive frequency dependence) in the normally black mode of the liquid crystal display device 1 produced in this example were measured in exactly the same way as in Example 1. The results are shown in FIG.
  • liquid crystal-compatible palladium silver binary nanoparticle-containing liquid crystal contains 0.04 wt% of silver atoms and 0.16 wt% of palladium atoms.
  • a liquid crystal (Id) was prepared exactly as in Example 1.
  • a liquid crystal display device (STN—LCD) 1 shown in FIG. 1 was produced in the same manner as in Example 1 except that the liquid crystal (Id) was used.
  • a compensation cell was fabricated in exactly the same manner as in Example 1, and laminated on the liquid crystal display device 1 of this example.
  • the voltage-transmittance characteristics (drive frequency dependence) in the normally black mode of the liquid crystal display device 1 produced in this example were measured in exactly the same way as in Example 1. The results are shown in FIG.
  • the weight ratio of silver atoms to palladium atoms is 1: 4, the same as in Example 1.
  • liquid crystal-compatible palladium silver binary nanoparticle-containing liquid crystal contains 0.08% by weight of silver atoms and 0.32% by weight of palladium atoms with respect to the total amount of liquid crystals.
  • a liquid crystal (Ie) was prepared in exactly the same manner as in Example 1.
  • a liquid crystal display device (STN—LCD) 1 shown in FIG. 1 was produced in the same manner as in Example 1 except that the liquid crystal (Ie) was used.
  • a compensation cell was fabricated in exactly the same manner as in Example 1, and laminated on the liquid crystal display device 1 of this example.
  • the voltage-transmittance characteristics (driving frequency dependence) in the normally black mode of the liquid crystal display device 1 manufactured in this example were The measurement was performed exactly as in Example 1. The results are shown in FIG.
  • the weight ratio of silver atoms to palladium atoms is 1: 4, which is the same as in Example 1.
  • the absolute amount of silver atoms and palladium atoms is further increased compared to Example 6, Liquid crystal compatible palladium
  • the silver content is 0.08% by weight with respect to the total amount of liquid crystal containing silver binary nanoparticles. From FIG. 15, it is clear that the drive frequency dependency is higher in the case of the present embodiment than in the case shown in FIGS.
  • the total amount of liquid crystal-compatible palladium-silver binary nanoparticle-containing liquid crystal is It is apparent that the silver content is preferably 0.05% by weight or less.
  • liquid crystal (III) a liquid crystal containing a liquid crystal-compatible palladium / silver binary nanoparticle (hereinafter referred to as liquid crystal (III)) was prepared as follows.
  • the atmosphere inside the reaction system was set to an argon atmosphere, and the operation of irradiating with ultraviolet light for 2 hours was repeated twice using a 500 W ultra-high pressure mercury lamp (product name: UI 502Q).
  • 100 ml of a uniform liquid crystal-compatible palladium-silver binary nanoparticle dispersion was obtained.
  • 34.53g of liquid crystal molecule mixture liquid crystal for STN manufactured by Dainippon Ink & Chemicals, Inc., trade name: LC3
  • the solution was concentrated and dried under reduced pressure to obtain 4.88 g of gray uniform liquid crystal (III) (total amount of metal contained; 4.88 mg).
  • a liquid crystal display device (STN LCD) 1 shown in FIG. 1 was prepared using liquid crystal (III), and the characteristics were evaluated.
  • the liquid crystal display device (STN LCD) 1 was actually used except that the liquid crystal (III) was used. It was made exactly the same as Example 1.
  • the liquid crystal cell 7 does not contain any liquid crystal-compatible palladium-silver binary nanoparticles in addition to being processed so as to be right-twisted with a twist angle force of 240 ° between the upper and lower substrates 6a and 6b!
  • a compensation cell (not shown) was prepared in exactly the same way as the liquid crystal display device 1 of this example, except that the liquid crystal molecule mixture (Dai Nippon Ink Chemical Co., Ltd. STN liquid crystal, product name: LC3) was sealed. Then, it was laminated on the liquid crystal display device 1 of this example. In the liquid crystal display device 1 and the compensation cell, the director directions of the liquid crystal molecules at the center of the cell are orthogonal to each other.
  • Fig. 17 The results are shown in Fig. 17 as an appearance photograph. At this time, the liquid crystal display device 1 used a compensation film instead of the compensation cell.
  • the transmittance increases as the applied voltage increases), and the transmittance (display) of the liquid crystal display device 1 can be controlled by the voltage. That power S clear power.
  • the transmittance curve is greatly shifted by changing the drive frequency, which is not suitable for DUTY drive display.
  • the liquid crystal display device 1 using the liquid crystal (III) of the reference example is in the region where the liquid crystal molecules are highly viscous at a low temperature below freezing point. Compared with the liquid crystal display device 1 of Comparative Example 1, it is clear that the response time is shortened to 1/2 to 2/3 and the response is faster. Further, from comparison between Table 7 and Table 2, in the low temperature range, the liquid crystal display device 1 using the liquid crystal (III) of the reference example has a driving voltage higher than that of the liquid crystal display device 1 of Comparative Example 1. It is clear that low power consumption (corresponding to the optimum voltage in the table) can be reduced. However, in the high temperature range, the driving voltage of the liquid crystal display device 1 using the liquid crystal (III) of the reference example is higher than that of the liquid crystal display device 1 of the comparative example 1.
  • FIG. 1 is an explanatory cross-sectional view showing a configuration example of a liquid crystal display device of the present invention.
  • FIG. 2 is a graph showing voltage-transmittance characteristics in the liquid crystal display device according to the first embodiment of the present invention.
  • FIG. 3 is an external view photograph when an image is displayed on the liquid crystal display device of the first embodiment of the present invention.
  • FIG. 4 is an appearance photograph immediately after an image is displayed on the liquid crystal display device of the first embodiment of the present invention and the image is switched at 10 ° C.
  • FIG. 5 is a micrograph of a liquid crystal cell of a liquid crystal display device according to a first embodiment of the present invention.
  • FIG. 6 shows a liquid crystal cell microscope of a liquid crystal display device of a comparative example with respect to the first embodiment of the present invention. Photo.
  • FIG. 7 is a graph showing voltage-transmittance characteristics in the liquid crystal display device according to the second embodiment of the present invention.
  • FIG. 8 is a micrograph of a liquid crystal cell of a liquid crystal display device according to a second embodiment of the present invention.
  • FIG. 9 is a micrograph of a liquid crystal cell of a liquid crystal display device of a comparative example with respect to the second embodiment of the present invention.
  • FIG. 10 is an explanatory cross-sectional view showing another configuration example of the liquid crystal display device of the present invention.
  • FIG. 11 is a graph showing the temperature dependence of responsiveness when DUTY driving is performed in the liquid crystal display device according to the third embodiment of the present invention.
  • FIG. 12 is a graph showing voltage-transmittance characteristics in the liquid crystal display device according to the fourth embodiment of the present invention.
  • FIG. 13 is a graph showing voltage-transmittance characteristics in the liquid crystal display device of Example 5 of the present invention.
  • FIG. 14 is a graph showing voltage-transmittance characteristics in a liquid crystal display device according to a sixth embodiment of the present invention.
  • FIG. 15 is a graph showing voltage-transmittance characteristics in the liquid crystal display device according to the seventh embodiment of the present invention.
  • FIG. 16 is a graph showing voltage-transmittance characteristics of a liquid crystal display device of a reference example according to the present invention.
  • FIG. 17 is an external view photograph when an image is displayed on a liquid crystal display device of a reference example according to the present invention. Explanation of symbols

Abstract

A liquid crystal containing liquid-crystal-compatible particles which can be operated in the duty mode even in a low-temperature region; and a liquid-crystal display employing the liquid crystal. The liquid crystal containing liquid-crystal-compatible particles contains liquid-crystal-compatible particles obtained by adding a solution of ions of at least one metal to a mixture solution comprising molecules of at least one liquid crystal, a secondary alcohol represented by the following general formula (1), and an organic solvent with refluxing to react them. The liquid-crystal display is provided with a liquid-crystal cell having, enclosed therein, the liquid crystal containing liquid-crystal-compatible particles. (In the formula, R1 and R2 may be the same or different and each represents an optionally substituted hydrocarbon group, provided that R1 and R2 may be bonded to each other to form a ring.)

Description

明 細 書  Specification
液晶相溶性粒子含有液晶及び液晶表示装置  Liquid crystal compatible particle-containing liquid crystal and liquid crystal display device
技術分野  Technical field
[0001] 本発明は、液晶相溶性粒子を含有する液晶及び該液晶を用いる液晶表示装置、 例えば、 自動車用表示パネルとして用いられる液晶表示装置に関する。  The present invention relates to a liquid crystal containing liquid crystal compatible particles and a liquid crystal display device using the liquid crystal, for example, a liquid crystal display device used as a display panel for automobiles.
背景技術  Background art
[0002] 従来、液晶相溶性粒子として、 0. 5〜; !OOnmの範囲の直径を備えるパラジウムナ ノ粒子等の金属ナノ粒子からなる核の周囲に液晶分子を結合させたものが知られて いる。前記液晶相溶性粒子は、例えば、硝酸パラジウム等のパラジウム塩と液晶分子 とをエタノール等の溶媒に溶解させた溶液に紫外線を照射して、該パラジウム塩を還 元することにより製造することができる(日本国特開 2003— 149683号公報参照)。  [0002] Conventionally, liquid crystal-compatible particles are known in which liquid crystal molecules are bonded around a nucleus composed of metal nanoparticles such as palladium nanoparticles having a diameter in the range of 0.5 to; OOnm. Yes. The liquid crystal compatible particles can be produced, for example, by irradiating a solution obtained by dissolving a palladium salt such as palladium nitrate and liquid crystal molecules in a solvent such as ethanol with ultraviolet rays to reduce the palladium salt. (See Japanese Unexamined Patent Publication No. 2003-149683).
[0003] 前記液晶相溶性粒子は、マトリックス液晶に溶解または分散させて液晶相溶性粒 子含有液晶とし、該液晶相溶性粒子含有液晶を用いて、液晶表示装置の液晶セル を構成することにより、該液晶表示装置に印加される電圧の周波数に依存して光透 過量が変化するようにすることができるとされている。駆動周波数依存性を示す液晶 材料では、しき!/、値に周波数依存性があるため DUTY駆動を行うとしき!/、値ムラに 起因する表示ムラが生じると!/、う不都合があった。  [0003] The liquid crystal compatible particles are dissolved or dispersed in a matrix liquid crystal to form liquid crystal compatible particle-containing liquid crystal, and the liquid crystal cell of the liquid crystal display device is configured by using the liquid crystal compatible particle-containing liquid crystal. The amount of light transmission can be changed depending on the frequency of the voltage applied to the liquid crystal display device. The liquid crystal material exhibiting drive frequency dependency has a problem in that the threshold is! /, The value is frequency dependent, and therefore the duty is driven when the duty is driven! /, And the display unevenness due to the value unevenness occurs!
[0004] また、前記液晶相溶性粒子を含有する液晶相溶性粒子含有液晶は、液晶表示装 置の液晶セルを構成したときに、例えば 0°C以下の低温領域では粘度が高くなり、 D UTY駆動表示を行うことが難しくなるとの不都合がある。  In addition, the liquid crystal compatible particle-containing liquid crystal containing the liquid crystal compatible particles has a high viscosity in a low temperature region of 0 ° C. or less, for example, when a liquid crystal cell of a liquid crystal display device is configured. There is an inconvenience that it is difficult to perform drive display.
[0005] さらに、ナノ粒子添加液晶表示装置に限らず、全ての液晶表示装置は低温では「レ スポンス」が遅くなるという不都合がある。特に DUTY駆動では充分な電圧差を液晶 に印加できないため、全体的にレスポンスが遅い傾向があり、低温のレスポンス低下 の影響は深刻である。  [0005] Furthermore, not only the nanoparticle-added liquid crystal display device, but all liquid crystal display devices have a disadvantage that the "response" becomes slow at low temperatures. In particular, with DUTY drive, a sufficient voltage difference cannot be applied to the liquid crystal, so the overall response tends to be slow, and the effect of low temperature response degradation is serious.
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0006] 本発明は、かかる不都合を解消して、液晶表示装置の液晶セルを構成したときに、 0°C以下の低温領域にお!/、ても、高速でかつ DUTY駆動表示を行うことができる液 晶相溶性粒子含有液晶を提供することを目的とする。 [0006] The present invention eliminates such inconvenience and configures a liquid crystal cell of a liquid crystal display device. It is an object to provide a liquid crystal-compatible particle-containing liquid crystal capable of high-speed and DUTY drive display even in a low temperature region of 0 ° C. or lower.
[0007] また、本発明の目的は、前記液晶相溶性粒子含有液晶を用いる液晶表示装置を 提供することにあある。 [0007] Another object of the present invention is to provide a liquid crystal display device using the liquid crystal containing the liquid crystal compatible particles.
課題を解決するための手段  Means for solving the problem
[0008] かかる目的を達成するために、本発明の液晶相溶性粒子含有液晶は、少なくとも 1 種の液晶分子と、下記一般式(1)で表される第二級アルコールと、有機溶媒とを混 合して得られた混合溶液を還流させながら、少なくとも 1種の金属イオン溶液を添カロ して反応させることによって得られる液晶相溶性粒子であって、該金属イオンが還元 されてなる金属ナノ粒子と、該金属ナノ粒子を核として該金属ナノ粒子の周囲に結合 している該液晶分子とからなる液晶相溶性粒子を含むことを特徴とする。
Figure imgf000004_0001
In order to achieve this object, the liquid crystal-compatible particle-containing liquid crystal of the present invention comprises at least one liquid crystal molecule, a secondary alcohol represented by the following general formula (1), and an organic solvent. Liquid crystal compatible particles obtained by adding and reacting at least one metal ion solution while refluxing the mixed solution obtained by mixing, wherein the metal nano particles are obtained by reducing the metal ions. Liquid crystal compatible particles comprising particles and the liquid crystal molecules bonded around the metal nanoparticles with the metal nanoparticles as nuclei are characterized by comprising.
Figure imgf000004_0001
[0009] (式中、 R1及び R2は、同一または異なっていてもよい炭化水素基を示し、置換基を有 していてもよい。なお、 R1及び R2は、互いに結合して環を形成していてもよい。 ) 本発明における液晶相溶性粒子は、 1種又は複数種の金属イオンの還元により生 じた複数個の金属粒子を中心核とし、その周りを液晶分子が何らかの相互作用によ つて取囲む構造を有すると推定される。複数個の金属粒子からなる中心核は、複数 種の金属の粒子がランダムに分布するランダムァロイ構造を有してもよいし、 1種の金 属の粒子をシェルとし、他種の金属の粒子をコアとするコア—シェル構造を有しても よい。 1種の金属の粒子からなる場合を単元粒子といい、 2種類の金属の粒子からな る場合を二元粒子という。 (Wherein R 1 and R 2 represent a hydrocarbon group which may be the same or different and may have a substituent. Note that R 1 and R 2 are bonded to each other. The liquid crystal compatible particles in the present invention have a plurality of metal particles produced by reduction of one or more kinds of metal ions as a central core, and liquid crystal molecules are somehow around them. It is presumed to have a structure that is surrounded by interaction. The central core composed of a plurality of metal particles may have a random alloy structure in which a plurality of types of metal particles are randomly distributed, or one type of metal particle as a shell and another type of metal particle as a shell. It may have a core-shell structure as a core. The case of one type of metal particles is called a single particle, and the case of two types of metal particles is called a binary particle.
[0010] 前記金属ナノ粒子は、粒子径が 40nm以下、多くは 5nm以下であって、光の波長 より十分小さいので、液晶表示装置の透過率(屈折率)、色調、シャープネス等の光 学的性質には影響を与えない。一方、マトリックス液晶中に前記金属ナノ粒子を含む 液晶相溶性粒子が入ることにより、液晶表示装置の誘電率異方性、弾性定数、粘性 係数等の物理的性質に影響を与えることができると考えられる。 [0011] この結果、本発明の液晶相溶性粒子含有液晶は、液晶表示装置の液晶セルに用 いたときに、電圧一透過率特性におけるしきい値の周波数依存性が小さくなり DUT Y駆動表示が可能になると共に、 0°C以下の低温領域において、高い応答速度と高 V、コントラストを発揮することができる。 [0010] The metal nanoparticles have a particle size of 40 nm or less, and most of them are 5 nm or less, and are sufficiently smaller than the wavelength of light. Therefore, optical properties such as transmittance (refractive index), color tone, and sharpness of a liquid crystal display device are used. Does not affect properties. On the other hand, it is thought that the liquid crystal compatible particles containing the metal nanoparticles in the matrix liquid crystal can affect the physical properties of the liquid crystal display device such as dielectric anisotropy, elastic constant and viscosity coefficient. It is done. As a result, when the liquid crystal-compatible particle-containing liquid crystal of the present invention is used in a liquid crystal cell of a liquid crystal display device, the frequency dependency of the threshold value in the voltage-transmittance characteristic is reduced, and the DUT Y drive display is enabled At the same time, it is possible to achieve high response speed, high V, and contrast in the low temperature range below 0 ° C.
[0012] 前記応答速度が高くなる理由として、立上り特性においては、前記金属ナノ粒子が 数 100Hzの駆動周波数領域では系全体の誘電率の増大(すなわちマクスゥエルー ワグナー効果)を示すこと、特に分子が立ち上がつてきたときの誘電率異方性△ εが 大きくなり、液晶分子の回転トルク△ 8 Ε2力 S大きくなること、金属ナノ粒子が液晶の 間に入る事により弾性定数が変化すること等が考えられる。一方、立下がり特性にお いては、前記金属ナノ粒子の添加により粘性係数が減少すること等が考えられる。  [0012] The reason why the response speed becomes high is that, in the rise characteristics, the metal nanoparticles exhibit an increase in the dielectric constant of the entire system (that is, the Maxwell-Wagner effect) in the driving frequency region of several hundred Hz, and in particular, the molecules stand up. As the dielectric anisotropy Δε increases as the top rises, the rotational torque of the liquid crystal molecules Δ 8 Ε2 force S increases, and the elastic constant changes due to the metal nanoparticles entering between the liquid crystals. Conceivable. On the other hand, with respect to the falling characteristics, it is conceivable that the viscosity coefficient decreases due to the addition of the metal nanoparticles.
[0013] 液晶材料の改良による LCひ性能向上は限界に来ており、有機物の液体である液 晶の中に前記金属ナノ粒子を単一分散させる本発明は、新たなブレイクスルーの一 つとして期待される。  [0013] Improvement of LC performance by improving liquid crystal materials has reached its limit, and the present invention in which the metal nanoparticles are monodispersed in a liquid crystal that is an organic liquid is one of the new breakthroughs. Be expected.
[0014] 本発明の液晶相溶性粒子含有液晶において、前記混合溶液は、 30〜200°Cの範 囲の温度で還流されることが好ましぐ 40〜; 150°Cの範囲の温度で還流されることが 特に好ましい。  [0014] In the liquid crystal compatible particle-containing liquid crystal of the present invention, the mixed solution is preferably refluxed at a temperature in the range of 30 to 200 ° C, and is refluxed at a temperature in the range of 40 to 150 ° C. It is particularly preferred that
[0015] また、本発明の液晶相溶性粒子含有液晶において、前記金属イオンとしては、例 えば、 Au+、 Au3+、 Ag+、 Cu+、 Cu2+、 Ru2+、 Ru3+、 Ru4+、 Rh2+、 Rh3+、 Pd2+、 P d4+、 Os4+、 Ir+、 Ir3+、 Pt2+、 Pt4+、 Fe2+、 Fe3+、 Co2+、 Co3+からなる群から選ばれ る少なくとも 1種の金属イオンを挙げることができる。 In the liquid crystal-compatible particle-containing liquid crystal of the present invention, examples of the metal ions include Au + , Au 3+ , Ag + , Cu +, Cu 2+ , Ru 2+ , Ru 3+ , Ru 4+ , Rh 2+ , Rh 3+ , Pd 2+ , P d 4+ , Os 4+ , Ir + , Ir 3+ , Pt 2+ , Pt 4+ , Fe 2+ , Fe 3+ , Co 2+ And at least one metal ion selected from the group consisting of Co 3+ .
[0016] また、前記金属イオンの反応により得られる前記液晶相溶性粒子としては、例えば 、ノ ラジウム一銀二元ナノ粒子を核とするものを挙げることができる。前記パラジウム 銀二元ナノ粒子は、液晶相溶性粒子含有液晶全体に対して 0. 05重量%以下の 量の銀を含有することが好ましい。前記パラジウム 銀二元ナノ粒子が液晶相溶性 粒子含有液晶全体に対して 0. 05重量%を超える銀を含有するときには、本発明の 液晶相溶性粒子含有液晶を液晶表示装置の液晶セルに用いたときに、周波数依存 性が増大して、 DUTY駆動表示が難しくなることがある。  [0016] Further, examples of the liquid crystal compatible particles obtained by the reaction of the metal ions include those having nucleus of silver-silver binary nanoparticles as a nucleus. The palladium-silver binary nanoparticles preferably contain silver in an amount of 0.05% by weight or less based on the total liquid crystal-compatible particle-containing liquid crystal. When the palladium-silver binary nanoparticles contain more than 0.05% by weight of silver based on the total liquid crystal compatible particle-containing liquid crystal, the liquid crystal compatible particle-containing liquid crystal of the present invention is used in a liquid crystal cell of a liquid crystal display device. In addition, the frequency dependency may increase, and the duty drive display may become difficult.
[0017] さらに、本発明の液晶相溶性粒子含有液晶は、該液晶相溶性粒子含有液晶全体 に対して 0. 001-0. 5重量%の範囲の量の前記液晶相溶性粒子を含有することが 好ましぐ 0. 002-0. 2重量%の範囲の量の前記液晶相溶性粒子を含有することが 特に好ましい。 Furthermore, the liquid crystal-compatible particle-containing liquid crystal of the present invention is the entire liquid crystal-compatible particle-containing liquid crystal. It is preferable to contain the liquid crystal compatible particles in an amount in the range of 0.001 to 0.5% by weight relative to the liquid crystal compatible particles in an amount in the range of 0.002 to 0.2% by weight. It is particularly preferable to contain it.
[0018] 次に、本発明の液晶表示装置は、前記液晶相溶性粒子を含む液晶相溶性粒子含 有液晶が封入された液晶セルを備えることを特徴とする。  Next, a liquid crystal display device of the present invention is characterized by comprising a liquid crystal cell in which liquid crystal containing liquid crystal compatible particles containing the liquid crystal compatible particles is enclosed.
[0019] 本発明の液晶表示装置によれば、前記液晶相溶性粒子含有液晶を用いることによ り、 0°C以下の低温領域において、周波数依存性が小さくなり DUTY駆動表示が可 能になると共に、高!/、応答速度と高レ、コントラストを発揮することができる。  [0019] According to the liquid crystal display device of the present invention, by using the liquid crystal containing liquid crystal compatible particles, the frequency dependency is reduced in a low temperature region of 0 ° C or lower, and DUTY drive display becomes possible. At the same time, high! /, High response speed and high contrast can be demonstrated.
[0020] また、本発明の液晶表示装置にお!/、て、前記液晶セルは、前記液晶相溶性粒子 含有液晶と共にカイラル剤を含むことが好ましい。前記液晶セルは、前記カイラル剤 を含むことにより、前記液晶相溶性粒子含有液晶のツイスト角を調整することができる In the liquid crystal display device of the present invention, the liquid crystal cell preferably contains a chiral agent together with the liquid crystal containing the liquid crystal compatible particles. The liquid crystal cell can adjust the twist angle of the liquid crystal-compatible particle-containing liquid crystal by containing the chiral agent.
Yes
[0021] また、本発明の液晶表示装置におレ、て、前記液晶セルにおける前記液晶相溶性 粒子含有液晶のツイスト角は 180〜270° の範囲の角度であることが好ましい。ツイ スト角が 180° 未満では電圧に対する透過率変化の急峻性(シャープネス)が悪いと の問題があり、 270° を超えると電圧一透過率特性にヒステリシスが生じるとの問題 力 sある。 [0021] In the liquid crystal display device of the present invention, it is preferable that the twist angle of the liquid crystal containing the liquid crystal compatible particles in the liquid crystal cell is in the range of 180 to 270 °. The twisted angle of less than 180 ° there is a problem with the steepness of the transmittance change (sharpness) is poor with respect to voltage, problems force s with hysteresis on the voltage one transmittance characteristic exceeds 270 ° occurs.
[0022] また、本発明の液晶表示装置にお!/、て、前記液晶相溶性粒子としては、例えば、 ノ ラジウム 銀二元ナノ粒子を核とするものを用いることができる。  [0022] In the liquid crystal display device of the present invention, as the liquid crystal compatible particles, for example, those having nucleus of silver and silver binary nanoparticles as a core can be used.
[0023] さらに、本発明の液晶表示装置は、例えば、 DUTY駆動を用いたドットマトリクスパ ネノレとすることカでさる。  [0023] Further, the liquid crystal display device of the present invention is, for example, a dot matrix panel using DUTY driving.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0024] 次に、添付の図面を参照しながら本発明の実施の形態についてさらに詳しく説明 する。図 1は本発明の液晶表示装置の一構成例を示す説明的断面図である。図 2は 本発明の第 1の実施例の液晶表示装置における電圧一透過率特性を示すグラフで あり、図 3は該液晶表示装置に画像を表示したときの外観写真であり、図 4は該液晶 表示装置に画像を表示し 10°Cで画像を切替えた直後の外観写真であり、図 5は 該液晶表示装置の液晶セルの顕微鏡写真であり、図 6は該実施例に対する比較例 の液晶表示装置の液晶セルの顕微鏡写真である。図 7は本発明の第 2の実施例の 液晶表示装置における電圧 透過率特性を示すグラフであり、図 8は該液晶表示装 置の液晶セルの顕微鏡写真であり、図 9は該実施例に対する比較例の液晶表示装 置の液晶セルの顕微鏡写真である。図 10は本発明の液晶表示装置の他の構成例 を示す説明的断面図である。図 11は本発明の第 3の実施例の液晶表示装置におい て DUTY駆動を行ったときの応答性の温度依存性を示すグラフである。図 12〜; 15 は本発明の第 4〜7の実施例の液晶表示装置における電圧一透過率特性を示すグ ラフである。図 16は本発明に対する参考例の液晶表示装置における電圧一透過率 特性を示すグラフであり、図 17は該液晶表示装置に画像を表示したときの外観写真 である。 Next, embodiments of the present invention will be described in more detail with reference to the accompanying drawings. FIG. 1 is an explanatory cross-sectional view showing a structural example of the liquid crystal display device of the present invention. FIG. 2 is a graph showing voltage-transmittance characteristics in the liquid crystal display device of the first embodiment of the present invention, FIG. 3 is a photograph of the appearance when an image is displayed on the liquid crystal display device, and FIG. FIG. 5 is a micrograph of a liquid crystal cell of the liquid crystal display device immediately after the image is displayed on the liquid crystal display device and the image is switched at 10 ° C. FIG. 6 is a comparative example with respect to the embodiment. It is a microscope picture of the liquid crystal cell of the liquid crystal display device. FIG. 7 is a graph showing the voltage transmittance characteristics in the liquid crystal display device of the second embodiment of the present invention, FIG. 8 is a micrograph of the liquid crystal cell of the liquid crystal display device, and FIG. 6 is a micrograph of a liquid crystal cell of a liquid crystal display device of a comparative example. FIG. 10 is an explanatory sectional view showing another configuration example of the liquid crystal display device of the present invention. FIG. 11 is a graph showing the temperature dependence of responsiveness when DUTY driving is performed in the liquid crystal display device of the third embodiment of the present invention. FIGS. 12 to 15 are graphs showing voltage-transmittance characteristics in the liquid crystal display devices of the fourth to seventh embodiments of the present invention. FIG. 16 is a graph showing voltage-transmittance characteristics in a liquid crystal display device according to a reference example of the present invention, and FIG.
[0025] 本発明の液晶表示装置は、例えば、スーパーツイストネマテイク(STN) LCD、ツイ  The liquid crystal display device of the present invention includes, for example, a super twist nematic (STN) LCD, a twist
) LCD、ポリマーネットワーク型 (PN) LCD等の各種液晶表示装置とすることができる 1S 特に車載用の液晶表示装置として用いる場合には STNモードまたは TNモード による単純マトリクス表示装置、 TNモード、 IPSモード等によるアクティブマトリクス (T FT等)表示装置とすることが好まし!/、。 ) Can be used for various liquid crystal display devices such as LCD and polymer network type (PN) LCD 1S Simple matrix display device in STN mode or TN mode, TN mode, IPS mode, especially when used as a liquid crystal display device for vehicles It is preferable to use an active matrix (TFT, etc.) display device by using!
[0026] 本実施形態では、図 1に示すように、スーパーツイストネマテイク液晶表示装置(ST N— LCD) 1の場合について説明する。本実施形態の液晶表示装置 1は、 1対の平 行且つ透明なガラス基板 2a, 2bと、ガラス基板 2a, 2bの相対向する内側面に所定の パターンに設けられた透明電極膜 3a, 3bと、透明電極膜 3a, 3bの相対向する内側 面の表示部に設けられた絶縁膜 4a, 4bと、絶縁膜 4a, 4bの相対向する内側面に透 明電極膜 3a, 3bとほぼ同一のパターンで設けられた配向膜 5a, 5bとを備える。透明 電極膜 3a, 3bは、互いに直交するストライプ状に設けられている。  In the present embodiment, as shown in FIG. 1, a case of a super twist nematic liquid crystal display device (ST N—LCD) 1 will be described. The liquid crystal display device 1 of this embodiment includes a pair of parallel and transparent glass substrates 2a and 2b, and transparent electrode films 3a and 3b provided in a predetermined pattern on the inner surfaces of the glass substrates 2a and 2b facing each other. And the insulating films 4a and 4b provided on the inner surface facing each other of the transparent electrode films 3a and 3b and the inner surfaces facing each other of the insulating films 4a and 4b are substantially the same as the transparent electrode films 3a and 3b. Alignment films 5a and 5b provided in the following pattern. The transparent electrode films 3a and 3b are provided in stripes orthogonal to each other.
[0027] 液晶表示装置 1では、ガラス基板 2a、透明電極膜 3a、絶縁膜 4a、配向膜 5aにより 上基板 6aが形成されており、ガラス基板 2b、透明電極膜 3b、絶縁膜 4b、配向膜 5b により上基板 6bが形成されており、上下基板 6a, 6b間に液晶相溶性粒子含有液晶 Lが封入された液晶セル 7が形成されている。  In the liquid crystal display device 1, the upper substrate 6a is formed by the glass substrate 2a, the transparent electrode film 3a, the insulating film 4a, and the alignment film 5a. The glass substrate 2b, the transparent electrode film 3b, the insulating film 4b, and the alignment film An upper substrate 6b is formed by 5b, and a liquid crystal cell 7 in which liquid crystal L containing liquid crystal compatible particles is sealed is formed between the upper and lower substrates 6a and 6b.
[0028] 配向膜 5a, 5bは、液晶セル 7に封入された液晶分子を一軸に配向し、上下基板 6a , 6b間の捩れ角力 例えば 240° の左捩れになるように処理されている。液晶セル 7 は、シール剤層 8により封止されており、シール剤層 8の外側面には導通材パターン 9が形成されている。また、ガラス基板 2a, 2bの外側面には、偏光板 10a, 10bが所 定のパターンで貼りつけられている。 The alignment films 5a and 5b align the liquid crystal molecules enclosed in the liquid crystal cell 7 uniaxially and form an upper and lower substrate 6a. , 6b torsional angular force, for example, left-handed twist of 240 °. The liquid crystal cell 7 is sealed with a sealant layer 8, and a conductive material pattern 9 is formed on the outer surface of the sealant layer 8. Further, polarizing plates 10a and 10b are attached to the outer surfaces of the glass substrates 2a and 2b in a predetermined pattern.
[0029] 液晶表示装置 1は、液晶相溶性粒子含有液晶 Lに代えて、液晶相溶性粒子を全く 含まない液晶分子が液晶セル 7に封入され、上下基板 6a, 6b間の捩れ角が例えば 2 40° の右捩れになるように処理されている以外は、全く同一構成の補償セル(図示 せず)が積層された 2層構成となっている。尚、液晶表示装置 1は、前記補償セルに 代えて、補償フィルムを備えるものであってもよい。 In the liquid crystal display device 1, instead of the liquid crystal L containing liquid crystal compatible particles, liquid crystal molecules containing no liquid crystal compatible particles are sealed in the liquid crystal cell 7, and the twist angle between the upper and lower substrates 6 a and 6 b is, for example, 2 It is a two-layer configuration in which compensation cells (not shown) with exactly the same configuration are stacked, except that they are processed so as to have a right twist of 40 °. The liquid crystal display device 1 may include a compensation film instead of the compensation cell.
[0030] 液晶表示装置 1は、例えば、 7火のようにして製造すること力 Sできる。 [0030] The liquid crystal display device 1 can be manufactured, for example, in the manner of 7 fires.
[0031] まず、ガラス基板 2a, 2b上に透明電極として ITO膜を形成し、フォトリソ工程にて所 望のパターンとすることにより透明電極膜 3a, 3bを形成する。次に、透明電極膜 3a, 3bが形成されたガラス基板 2a, 2b上の表示部に、フレキソ印刷にて絶縁膜 4a, 4bを 形成する。 First, an ITO film is formed as a transparent electrode on the glass substrates 2a and 2b, and the transparent electrode films 3a and 3b are formed by forming a desired pattern in a photolithography process. Next, insulating films 4a and 4b are formed by flexographic printing on the display portions on the glass substrates 2a and 2b on which the transparent electrode films 3a and 3b are formed.
[0032] 絶縁膜 4a, 4bは必ずしも形成する必要は無いが、上下の透明電極膜 3a, 3b間の ショート防止のために、形成することが望ましい。絶縁膜 4a, 4bは、フレキソ印刷に限 らず、メタルマスクを用いた蒸着法等によって形成してもよレ、。  The insulating films 4a and 4b are not necessarily formed, but are desirably formed to prevent a short circuit between the upper and lower transparent electrode films 3a and 3b. The insulating films 4a and 4b are not limited to flexographic printing, but may be formed by vapor deposition using a metal mask.
[0033] 次に、絶縁膜 4a, 4b上に、互いにほぼ同じパターンの配向膜 5a, 5bを形成する。  Next, alignment films 5a and 5b having substantially the same pattern are formed on the insulating films 4a and 4b.
STN— LCDの場合、配向膜 5a, 5bのプレティルト角(基板平面からの液晶分子の 傾き角)が高いことが望ましい。  In the case of STN—LCD, it is desirable that the alignment films 5a and 5b have a high pretilt angle (the tilt angle of the liquid crystal molecules from the substrate plane).
[0034] 次に、配向膜 5a, 5bにラビング処理を行う。前記ラビング処理は、布を巻いた円筒 状のロールを高速に回転させ、配向膜 5a, 5b上を擦ることにより行うこと力 Sできる。前 記ラビング処理の結果、液晶セル 7に封入された液晶分子を一軸に配向し、上下基 板 6a, 6b間の捩れ角力 例えば 240° の左捩れになるようにすることができる。  Next, rubbing treatment is performed on the alignment films 5a and 5b. The rubbing treatment can be performed by rotating a cylindrical roll wound with cloth at high speed and rubbing the alignment films 5a and 5b. As a result of the rubbing treatment, the liquid crystal molecules sealed in the liquid crystal cell 7 can be aligned uniaxially so that the twisting angular force between the upper and lower substrates 6a and 6b is, for example, a left twist of 240 °.
[0035] 次に、上下基板 6a, 6bを貼り合わせるためのシール剤を、片側の基板 6aまたは基 板 6bの内側面上に所定のパターンに印刷すると共に、他方の基板 6bまたは基板 6a の内側面にはギャップコントロール剤を乾式散布法にて散布する。そして、上下基板 6a, 6bを所定の位置で重ね合せてセル化し、プレスした状態で熱処理を行ってシー ノレ剤を硬化させることにより、シール剤層 8を形成する。 [0035] Next, a sealant for bonding the upper and lower substrates 6a and 6b is printed in a predetermined pattern on the inner surface of the substrate 6a or the substrate 6b on one side, and the inside of the other substrate 6b or the substrate 6a is printed. Gap control agent is sprayed on the side by dry spraying method. Then, the upper and lower substrates 6a and 6b are overlapped at predetermined positions to form cells, and heat treatment is performed in a pressed state to perform sheeting. The sealing agent layer 8 is formed by curing the adhesive.
[0036] 前記シール剤としては、例えば、熱硬化性シール剤を用いることができ、該シール 剤は 6 mの大きさのグラスファイバーを数重量%含んでいてもよい。また、前記熱硬 化性シール剤に代えて、光硬化性シール剤や光 ·熱併用型シール剤等を用いてもよ い。 [0036] As the sealing agent, for example, a thermosetting sealing agent can be used, and the sealing agent may contain several weight percent of glass fiber having a size of 6 m. Further, instead of the thermosetting sealant, a photocurable sealant or a combined light / heat sealant may be used.
[0037] 前記シール剤の印刷は、例えば、スクリーン印刷法により行うことができる力 デイス ペンサ等を用いて行ってもよい。前記シール剤の印刷パターンは、上下基板 6a, 6b 間に形成される液晶セル 7に液晶分子 Lを注入する際に、真空注入法を用いる場合 は注入口を有するパターン、 ODF法の場合は注入口の無い閉じられたパターンとす る。前記ギャップコントロール剤としては、例えば、直径 6 mのプラスチックボールを 用いることができる力 S、シリカのボールを用いてもよい。  [0037] The sealing agent may be printed using, for example, a force dispenser that can be used by a screen printing method. When the liquid crystal molecules L are injected into the liquid crystal cell 7 formed between the upper and lower substrates 6a and 6b, the printed pattern of the sealant is a pattern having an injection port when using the vacuum injection method, and a note when using the ODF method. A closed pattern with no entrance. As the gap control agent, for example, a force S which can use a plastic ball having a diameter of 6 m, and a silica ball may be used.
[0038] 次に、シール剤層 8の外側面の所定の位置に導通材を印刷し、導通材パターン 9 を形成する。前記導通材としては、例えば、前記熱硬化性シール剤(例えば、三井化 学株式会社製、商品名: ES— 7500)に直径 6. 5 111の八11ボール等を数重量%含 むものを用いること力できる。前記導通材の印刷は、例えば、スクリーン印刷により行 うこと力 Sでさる。  Next, a conductive material is printed at a predetermined position on the outer surface of the sealing agent layer 8 to form a conductive material pattern 9. As the conductive material, for example, the thermosetting sealant (for example, product name: ES-7500, manufactured by Mitsui Chemicals, Inc.) containing several 11% by weight of 8-11 balls having a diameter of 6.5 111 is used. I can do it. The conductive material is printed by force S, for example, by screen printing.
[0039] 次に、スクライバー装置によりガラス基板 2a, 2b上に傷をつけ、ブレイキングにより 所定の大きさ'形に分割してセルを形成し、該セルに液晶分子 Lを注入する。液晶分 子 Lの注入は、例えば、真空注入法により行うことができ、この場合には注入口をェン ドシール剤にて封止する。  [0039] Next, the glass substrates 2a and 2b are scratched by a scriber device, and divided into a predetermined size 'shape by breaking to form cells, and liquid crystal molecules L are injected into the cells. The liquid crystal molecule L can be injected by, for example, a vacuum injection method. In this case, the injection port is sealed with an end sealant.
[0040] その後、面取りと洗浄とを行い、ガラス基板 2a, 2bの外側面に、偏光板 10a, 10bを 所定のパターンで貼りつけることにより、図 1に示す構成を備える液晶表示装置(ST N-LCD) 1を得ることができる。  [0040] After that, chamfering and cleaning are performed, and the polarizing plates 10a and 10b are attached in a predetermined pattern on the outer surfaces of the glass substrates 2a and 2b, whereby a liquid crystal display device (ST N -LCD) You can get one.
[0041] 液晶表示装置 1に積層される補償セルは、配向膜 5a, 5bを、液晶セル 7に封入さ れた液晶分子の上下基板 6a, 6b間の捩れ角力 例えば 240° の右捩れになるよう に処理すると共に、液晶セル 7に液晶相溶性粒子を全く含まない液晶分子を封入す る以外は、液晶表示装置 1と全く同一にして製造することができる。  [0041] The compensation cell stacked on the liquid crystal display device 1 has a twisted angular force between the upper and lower substrates 6a and 6b of the liquid crystal molecules sealed in the liquid crystal cell 7 in the alignment films 5a and 5b, for example, a right twist of 240 °. The liquid crystal cell 7 can be manufactured in the same manner as the liquid crystal display device 1 except that the liquid crystal cell 7 is sealed and liquid crystal molecules containing no liquid crystal compatible particles are encapsulated.
[0042] 本実施形態の液晶表示装置 1にお!/、て、液晶セル 7に封入される液晶相溶性粒子 含有液晶は、マトリクス液晶に液晶相溶性粒子を含むものである。前記液晶相溶性 粒子含有液晶に含まれる液晶相溶性粒子は、金属ナノ粒子からなる核の周囲に液 晶分子を結合させたものであり、少なくとも 1種の液晶分子と、下記一般式(1)で表さ れる第二級アルコールと、有機溶媒とを混合して得られた混合溶液を還流させながら[0042] Liquid crystal compatible particles enclosed in the liquid crystal cell 7 in the liquid crystal display device 1 of the present embodiment! The contained liquid crystal contains liquid crystal compatible particles in the matrix liquid crystal. The liquid crystal compatible particles contained in the liquid crystal compatible particle-containing liquid crystal are liquid crystal molecules bonded around a nucleus composed of metal nanoparticles, and include at least one liquid crystal molecule and the following general formula (1) While refluxing the mixed solution obtained by mixing the secondary alcohol represented by
、少なくとも 1種の金属イオン溶液を添加して反応させることによって得られる。 It can be obtained by adding at least one metal ion solution and reacting them.
OH
Figure imgf000010_0001
OH
Figure imgf000010_0001
[0043] (式中、 R1及び R2は、同一または異なっていてもよい炭化水素基を示し、置換基を有 していてもよい。なお、 R1及び R2は、互いに結合して環を形成していてもよい。 ) 前記液晶相溶性粒子を得るために用いられる前記液晶分子としては、例えば、 4'- n-ペンチル- 4-シァノビフエニル、 4'_n-へキシルォキシ -4-シァノビフエニル等のシァ ノビフエニル類; 4-(trans-4_n-ペンチルシクロへキシル)ベンゾニトリル等のシクロへキ シルベンゾニトリル類; 4-ブチル安息香酸 (4-シァノフエ二ル)、 4-ヘプチル安息香酸( 4-シァノフエ二ノレ)等のフエニルエステル類; 4-カルボキシフエニルェチルカーボネー ト、 4-カルボキシフエニル -n-ブチルカーボネート等の炭酸エステル類; 4-(4_n-ペン チルフエニルェチュル)シァノベンゼン、 4-(4-n-ペンチルフエニルェチュル)フルォロ ベンゼン等のフエニルアセチレン類; 2-(4-シァノフエニル) -5-n-ペンチルピリミジン、 2-(4-シァノフエニル) -5-n-ォクチルピリミジン等のフエニルピリミジン類; 4,4'-ビス (ェ トキシカルボ二ノレ)ァゾベンゼン等のァゾベンゼン類; 4,4, -ァゾキシァニソール、 4,4'- ジへキシルァゾキシベンゼン等のァゾキシベンゼン類; N-(4-メトキシベンジリデン) -4 -n-ブチルァニリン、 N-(4-エトキシベンジリデン) -4-n-ブチルァニリン等のシッフ塩基 類; Ν,Ν'-ビスべンジリデンベンジジン等のベンジジン類;コレステリルアセテート、コレ ステリルべンゾエート等のコレステリルエステル類;ポリ (4-フエ二レンテレフタルアミド) 等の液晶高分子類を挙げることができる。なお、これらの液晶分子は、単独又は二種 以上を混合して使用してもよい。前記液晶分子は、複数種の液晶分子混合物として 用いるときは、市販品をそのまま用いることができる。 (Wherein R 1 and R 2 represent a hydrocarbon group which may be the same or different and may have a substituent. Note that R 1 and R 2 are bonded to each other. The liquid crystal molecules used for obtaining the liquid crystal compatible particles include, for example, 4′-n-pentyl-4-cyanobiphenyl, 4′_n-hexyloxy-4-cyanobiphenyl. Cyanobiphenyls such as 4- (trans-4_n-pentylcyclohexyl) benzonitrile and the like; 4-butylbenzoic acid (4-cyanophenyl), 4-heptylbenzoic acid (4 Phenyl esters such as 4-cyanophenyl) carbonates such as 4-carboxyphenyl carbonate and 4-carboxyphenyl-n-butyl carbonate; 4- (4_n-pentylphenylethyl) ) Sianobenzene, 4- (4-n-pentyl) Phenylacetylenes such as nitrobenzene, benzene; phenylpyrimidines such as 2- (4-cyanphenyl) -5-n-pentylpyrimidine, 2- (4-cyanphenyl) -5-n-octylpyrimidine; Azazobenzenes such as 4'-bis (ethoxycarboninole) azobenzene; Azoxybenzenes such as 4,4, -azoxanisole, 4,4'-dihexylazoxybenzene; N- (4- Schiff bases such as methoxybenzylidene) -4-n-butylaniline and N- (4-ethoxybenzylidene) -4-n-butylaniline; benzidines such as Ν, Ν'-bisbenzylidenebenzidine; cholesteryl acetate, cholesteryl Examples thereof include cholesteryl esters such as benzoate; and liquid crystal polymers such as poly (4-phenylene terephthalamide). In addition, you may use these liquid crystal molecules individually or in mixture of 2 or more types. When the liquid crystal molecules are used as a mixture of a plurality of types of liquid crystal molecules, commercially available products can be used as they are.
[0044] 前記液晶相溶性粒子を得るために用いられる第二級アルコールは、前記一般式( 1)で示される。前記一般式(1)において、 R1及び R2は、置換基を有していてもよい 炭化水素基であり、該炭化水素基としては、例えば、メチル基、ェチル基、プロピル 基、ブチル基、ペンチル基、へキシル基、ヘプチル基等の炭素数 1〜 7のアルキル基 ;シクロプロピル基、シクロブチル基、シクロペンチル基等の炭素数 3〜5のシクロアル キル基;ビュル基、ァリル基、プロぺニル基、シクロプロぺニル基、シクロブテュル基、 シクロペンテュル基等の炭素数 2〜 5のアルケニル基;ェチュル基、プロピニル基等 の炭素数 2〜5のアルキニル基を挙げることができる力 好ましくはアルキル基、アル ケニル基、アルキニル基であり、更に好ましくはアルキル基、アルキニル基である。尚 、前記炭化水素基は、各種異性体を含む。 [0044] The secondary alcohol used to obtain the liquid crystal-compatible particles is a compound represented by the general formula ( Shown in 1). In the general formula (1), R 1 and R 2 are hydrocarbon groups which may have a substituent. Examples of the hydrocarbon groups include a methyl group, an ethyl group, a propyl group, and a butyl group. Alkyl group having 1 to 7 carbon atoms such as cyclopentyl group, hexyl group and heptyl group; cycloalkyl group having 3 to 5 carbon atoms such as cyclopropyl group, cyclobutyl group and cyclopentyl group; Forces that can include alkynyl groups having 2 to 5 carbon atoms such as nyl group, cyclopropenyl group, cyclobuturyl group, cyclopentur group, etc .; alkynyl groups having 2 to 5 carbon atoms such as etulyl group, propynyl group, etc. preferably alkyl Group, alkenyl group and alkynyl group, more preferably alkyl group and alkynyl group. The hydrocarbon group includes various isomers.
[0045] また、 R1及び R2は、互いに結合して無置換又は置換基を有する環を形成して!/、て もよく、結合して形成される環としては、例えば、シクロプロピル環、シクロブチル環、 シクロペンチル環、シクロへキシル環等の炭素数 3〜6のシクロアルキル環;ォキシラ ン環、ォキセタン環、テトラヒドロフラン環、テトラヒドロピラン環等の炭素数 2〜5のェ 一テル環を挙げること力 Sできる。尚、前記各環は、各種異性体を含む。 In addition, R 1 and R 2 may be bonded to each other to form an unsubstituted or substituted ring! /, And the ring formed by bonding includes, for example, a cyclopropyl ring Cycloalkyl rings having 3 to 6 carbon atoms such as cyclobutyl ring, cyclopentyl ring and cyclohexyl ring; ether rings having 2 to 5 carbon atoms such as oxylan ring, oxetane ring, tetrahydrofuran ring and tetrahydropyran ring. That power S. Each ring includes various isomers.
[0046] 前記炭化水素基及び結合して形成される環は、置換基を有して!/、てもよく、該置換 基としては、炭素原子を介してできる置換基、酸素原子を介してできる置換基、ハロ ゲン原子等を挙げることができる。  [0046] The hydrocarbon group and the ring formed by bonding may have a substituent! /, And the substituent may be a substituent formed through a carbon atom or an oxygen atom. Can be mentioned substituents, halogen atoms and the like.
[0047] 前記炭素原子を介してできる置換基としては、例えば、メチル基、ェチル基、プロピ ル基等の炭素数 1〜3のアルキル基;シクロプロピル基、シクロブチル基等の炭素数 3 〜4のシクロアルキル基;ビュル基、ァリノレ基、プロぺニル基、シクロプロぺニル基等 の炭素数 2〜3のアルケニル基;ェチュル基、プロピニル基等の炭素原子数 2〜3の アルキニル基;トリフルォロメチル基等の炭素数 1〜4のハロゲン化アルキル基;シァノ 基を挙げることができる。尚、前記置換基は、各種異性体を含む。  [0047] Examples of the substituent formed through the carbon atom include an alkyl group having 1 to 3 carbon atoms such as a methyl group, an ethyl group, and a propyl group; and 3 to 4 carbon atoms such as a cyclopropyl group and a cyclobutyl group. A cycloalkyl group having 2 to 3 carbon atoms such as a bulu group, a linole group, a propenyl group, or a cyclopropenyl group; an alkynyl group having 2 to 3 carbon atoms such as an ethur group or a propynyl group; And a halogenated alkyl group having 1 to 4 carbon atoms such as a romethyl group; a cyano group. The substituent includes various isomers.
[0048] 前記酸素原子を介してできる置換基としては、例えば、ヒドロキシル基;メトキシル基 、エトキシル基、プロボキシル基等の炭素数 1〜3のアルコキシ基を挙げることができ る。尚、これらの基は、各種異性体を含む。  [0048] Examples of the substituent formed through the oxygen atom include a hydroxyl group; an alkoxy group having 1 to 3 carbon atoms such as a methoxyl group, an ethoxyl group, and a propoxyl group. These groups include various isomers.
[0049] 前記ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子 を挙げること力 Sでさる。 [0050] 前記第二級アルコールの使用量は、前記液晶分子 lgに対して、好ましくは 0.;!〜 200g、更に好ましくは 1〜; !OOgである。尚、前記第二級アルコールは、前記第二級 アルコールのレ、ずれ力、 1種を単独で用いてもよく、 2種以上を混合して用いてもよ!/、。 [0049] Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. [0050] The amount of the secondary alcohol used is preferably 0.;! To 200 g, more preferably 1 to OOg, with respect to the liquid crystal molecule lg. In addition, the secondary alcohol may be used alone or in combination of two or more of the secondary alcohols.
[0051] 前記液晶相溶性粒子を得るために用いられる有機溶媒としては、前記反応を阻害 しないものならば特に限定されないが、例えば、アセトン、メチルェチルケトン、メチル イソブチルケトン等のケトン類;酢酸メチル、酢酸ェチル、酢酸ブチル、プロピオン酸 メチル等のエステル類; N, N,ージメチルホルムアミド、 N, N—ジメチルァセトアミド、 N—メチルピロリドン等のアミド類; N, N,一ジメチルイミダゾリジノン等の尿素類;ジメ チルスルホキシド等のスルホキシド類;スルホラン等のスルホン類;ァセトニトリル、プロ ピオ二トリル等の二トリル類;ジェチルエーテル、ジイソプロピルエーテル、テトラヒドロ フラン、ジォキサン等のエーテル類;へキサン、ヘプタン、シクロへキサン等の脂肪族 炭化水素類;ベンゼン、トルエン、キシレン等の芳香族炭化水素類を挙げることがで きる力 好ましくは二トリル類、エーテル類、芳香族炭化水素類を挙げることができ、さ らに好ましくはエーテル類を挙げること力 Sできる。尚、前記有機溶媒は、前記有機溶 媒のレ、ずれか 1種を単独で用いてもよぐ 2種以上を混合して用いてもよ!/、。  [0051] The organic solvent used for obtaining the liquid crystal compatible particles is not particularly limited as long as it does not inhibit the reaction. For example, ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone; Esters such as methyl, ethyl acetate, butyl acetate, methyl propionate; amides such as N, N, dimethylformamide, N, N-dimethylacetamide, N-methylpyrrolidone; N, N, monodimethylimidazolide Ureas such as non; sulfoxides such as dimethyl sulfoxide; sulfones such as sulfolane; nitriles such as acetonitrile and propionitryl; ethers such as jetyl ether, diisopropyl ether, tetrahydrofuran and dioxane; hexane , Heptane, cyclohexane and other aliphatic hydrocarbons; benzene, tolu The ability to mention aromatic hydrocarbons such as styrene and xylene, preferably nitriles, ethers and aromatic hydrocarbons, more preferably the ability to mention ethers S . As the organic solvent, either one of the above organic solvents may be used alone, or two or more may be used in combination.
[0052] 前記有機溶媒の使用量は、前記液晶分子 lgに対して、好ましくは 10〜500mlの 範囲であり、さらに好ましくは 20〜200mlの範囲である。  [0052] The amount of the organic solvent to be used is preferably in the range of 10 to 500 ml, more preferably in the range of 20 to 200 ml, with respect to the liquid crystal molecule lg.
[0053] 前記液晶相溶性粒子を得るために用いられる金属イオン溶液は、金属塩 (金属ィ オンと対イオンからなる塩)を有機溶媒に溶解させたものである。前記金属イオンとし ては、例えば、遷移金属イオンを挙げることができ、好ましくは Au+、 Au3+、 Ag+、 C[0053] The metal ion solution used for obtaining the liquid crystal compatible particles is obtained by dissolving a metal salt (a salt made of a metal ion and a counter ion) in an organic solvent. Examples of the metal ions include transition metal ions, preferably Au + , Au 3+ , Ag + , C
+ 2+ π 2+ π 3+ π 4+ π , 2+ π 1 3+ π , 2 + π , 4+ „ 4+ τ + τ 3+ π , 2 + u 、 Cu 、 Ru 、 Ru 、 Ru 、 Rn 、 Rn 、 Pd 、 Pd 、 Os 、 Ir 、 Ir 、 Pt+ 2+ π 2+ π 3+ π 4+ π , 2+ π 1 3+ π , 2 + π , 4+ „4+ τ + τ 3+ π , 2 + u, Cu, Ru, Ru, Ru, Rn, Rn, Pd, Pd, Os, Ir, Ir, Pt
、 Pt4+、 Fe2+、 Fe3+、 Co2+、 Co3+からなる群から選ばれる少なくとも 1種の金属ィォ ンを挙げること力 Sできる。一方、前記金属イオンに対する対イオンとしては、例えば、ヒ ドリドイオン、ハロゲンイオン、ハロゲン酸イオン、過ハロゲン酸イオン、置換されてい てもよいカルボン酸イオン、ァセチルァセトナートイオン、炭酸イオン、硫酸イオン、硝 酸イオン、テトラフルォロホウ酸イオン、へキサフルォロリン酸イオン等を挙げることが できる。尚、前記金属塩は、例えば、一酸化炭素、トリフエニルホスフィン、 p—シメン 等の中性の配位子が配位して!/、てもよ!/、。 [0054] 前記金属イオンを溶解させるために使用する有機溶媒としては、例えば、前記液晶 相溶性粒子を得るために用いられる前記有機溶媒を挙げることができる。前記有機 溶媒の使用量は、前記金属塩を完全に溶解させることができる量ならば特に制限さ れなレ、。 , Pt 4+ , Fe 2+ , Fe 3+ , Co 2+ , Co 3+ can be cited as at least one metal ion selected from the group. On the other hand, the counter ions for the metal ions include, for example, hydride ions, halogen ions, halogen acid ions, perhalogenate ions, optionally substituted carboxylate ions, acetyl acetate toner ions, carbonate ions, sulfate ions. And nitrate ions, tetrafluoroborate ions, hexafluorophosphate ions, and the like. The metal salt is coordinated by a neutral ligand such as carbon monoxide, triphenylphosphine, p-cymene, etc. [0054] Examples of the organic solvent used for dissolving the metal ions include the organic solvent used for obtaining the liquid crystal compatible particles. The amount of the organic solvent used is not particularly limited as long as it can dissolve the metal salt completely.
[0055] 少なくとも 1種の前記液晶分子と、前記第二級アルコールと、前記有機溶媒とを混 合して得られた混合溶液を還流させるときの還流温度(反応温度)は、特に制限され ないが、好ましくは 40〜; 100°Cの範囲の温度であり、反応圧力は加圧、常圧または 減圧のいずれでもよい。尚、前記混合溶液に、複数種の金属イオン溶液を添加する 場合には、その添加方法は特に限定されず、例えば、 1種の金属イオン溶液を別途 個別に分けて添加する方法(同時添加又は分割添加)、複数種の金属イオンを含む 1種の金属イオン溶液を予め調製して添加する方法等によって行うことができる。  [0055] The reflux temperature (reaction temperature) when refluxing a mixed solution obtained by mixing at least one liquid crystal molecule, the secondary alcohol, and the organic solvent is not particularly limited. However, the temperature is preferably in the range of 40 to; 100 ° C., and the reaction pressure may be pressurized, normal pressure, or reduced pressure. In addition, when a plurality of types of metal ion solutions are added to the mixed solution, the addition method is not particularly limited. For example, a method of separately adding one type of metal ion solution separately (simultaneous addition or Divided addition), and a method of preparing and adding one kind of metal ion solution containing a plurality of kinds of metal ions in advance.
[0056] 前記反応によれば、前記金属イオンが還元されて金属ナノ粒子を得ることができ、 得られた金属ナノ粒子を核として前記液晶分子が結合することにより液晶相溶性粒 子が得られる。前記液晶相溶性粒子は、前記有機溶媒に分散して分散液を形成して いるので、該分散液を濃縮することによって、均一な液晶相溶性粒子ペーストを取得 すること力 Sできる。前記分散液の濃縮方法は特に限定されないが、好ましくは、減圧 下、 20〜100°Cの範囲の温度で行う。また、前記分散液に、再度、前記液晶分子を 加えて分散液とし、該分散液を同様な方法で濃縮することによって、より高性能で均 一な液晶相溶性粒子ペーストを取得することができる。  [0056] According to the reaction, the metal ions can be reduced to obtain metal nanoparticles, and the liquid crystal molecules can be obtained by bonding the liquid crystal molecules with the obtained metal nanoparticles as nuclei. . Since the liquid crystal compatible particles are dispersed in the organic solvent to form a dispersion, it is possible to obtain a uniform liquid crystal compatible particle paste by concentrating the dispersion. The method for concentrating the dispersion is not particularly limited, but it is preferably performed at a temperature in the range of 20 to 100 ° C. under reduced pressure. Further, by adding the liquid crystal molecules to the dispersion again to obtain a dispersion, and concentrating the dispersion by a similar method, a higher performance and uniform liquid crystal compatible particle paste can be obtained. .
[0057] 前記液晶相溶性粒子含有液晶は、例えば、前述のようにして得られた液晶相溶性 粒子ペーストを、室温下、攪拌しながらベース液晶に添加し、均一にすることによって 得ること力 Sできる。また、前記液晶相溶性粒子含有液晶は、ツイスト角を調整するため に、カイラル剤を添加してもよい。  [0057] The liquid crystal-compatible particle-containing liquid crystal can be obtained, for example, by adding the liquid crystal-compatible particle paste obtained as described above to the base liquid crystal while stirring at room temperature and making it uniform. it can. In addition, a chiral agent may be added to the liquid crystal-compatible particle-containing liquid crystal in order to adjust the twist angle.
[0058] 次に、本発明の実施例及び比較例を示す。  Next, examples and comparative examples of the present invention are shown.
実施例 1  Example 1
[0059] 本実施例では、まず、次のようにして、液晶相溶性パラジウム 銀二元ナノ粒子含 有液晶(以下、液晶 (I)と称することがある)を調製した。  In this example, first, liquid crystal-compatible palladium-silver binary nanoparticle-containing liquid crystal (hereinafter sometimes referred to as liquid crystal (I)) was prepared as follows.
[0060] 攪拌装置、温度計、還流冷却器及びシリンジポンプを備えた内容積 500mlのジャ ケット付ガラス製容器に、室温下、 4'—n—ペンチルー 4ーシァノビフエニル 1. 32g ( 5. 29mmol)、テトラヒドロフラン 146. 8ml及び 2 プロパノール 40mlを加えて混合 溶液を調製し、該混合溶液を攪拌下に加熱して、 65〜75°Cの範囲の温度で還流し た。次に、前記混合溶液に、 0. Olmol/1トリフルォロ酢酸銀のテトラヒドロフラン溶液 2. 64ml (銀原子として 0. 0264mmolを含む)をゆるやかに滴下し、攪拌しながら同 温度で 15分間反応させた後、 0. Olmol/1酢酸パラジウムのテトラヒドロフラン溶液 1 0. 56ml (パラジウム原子として 0. 1056mmolを含む)をゆるやかに滴下し、攪拌し ながら同温度でさらに 15分間反応させた。反応終了後、反応液を室温まで冷却し、 黒褐色の均一な液晶相溶性パラジウム—銀二元ナノ粒子分散液 200mlを得た。前 記液晶相溶性パラジウム 銀二元ナノ粒子は、パラジウム 銀二元ナノ粒子を核とし 、核の周囲に液晶分子である 4'—n—ペンチルー 4ーシァノビフエニルが結合してい [0060] A 500 ml internal volume equipped with a stirrer, thermometer, reflux condenser and syringe pump. 4'-n-pentyl-4-cyanobiphenyl 1.32 g (5.29 mmol), 146.8 ml of tetrahydrofuran and 40 ml of 2 propanol are added to a glass container with a bucket at room temperature to prepare a mixed solution. The solution was heated with stirring and refluxed at a temperature in the range of 65-75 ° C. Next, 2.64 ml (containing 0.0264 mmol as silver atoms) of tetrahydrofuran solution of 0. Olmol / 1 silver trifluoroacetate is slowly added dropwise to the above mixed solution and reacted at the same temperature for 15 minutes with stirring. 0. 56 ml (containing 0.1566 mmol of palladium atom) of 0. Olmol / 1 palladium acetate in tetrahydrofuran was slowly dropped and reacted at the same temperature for another 15 minutes with stirring. After completion of the reaction, the reaction solution was cooled to room temperature to obtain 200 ml of a blackish brown uniform liquid crystal compatible palladium-silver binary nanoparticle dispersion. The liquid crystal-compatible palladium-silver binary nanoparticles have palladium-silver binary nanoparticles as nuclei, and liquid crystal molecules 4'-n-pentyl-4-cyanobiphenyl are bound around the nuclei.
[0061] 次に、本実施例で得られた液晶相溶性パラジウム 銀二元ナノ粒子分散液 71ml に、複数種の液晶分子混合物(大日本インキ化学工業株式会社製 STN用液晶、 LC 、 Δη = 0. 150、粘度(20° = 23 [111?£1 ' 3] )に、カィラル剤(メルク社製、商品名: S 811)を 0. 9重量%加えたもの) 4. 53gを添加し、減圧下で濃縮及び乾燥させて、 灰色均一の液晶(1) 4. 88g (含有全金属量; 4. 88mg)を得た。液晶(I)は、前記液 晶分子混合物をマトリクス液晶として、該マトリクス液晶が前記液晶相溶性パラジウム 銀二元ナノ粒子を含むものであり、その全量に対して、 0. 02重量%の銀原子と、 0. 08重量0 /0のパラジウム原子とを含んでいる。 [0061] Next, 71 ml of the liquid crystal compatible palladium silver binary nanoparticle dispersion obtained in this example was added to a mixture of plural kinds of liquid crystal molecules (Liquid for STN manufactured by Dainippon Ink & Chemicals, Inc., LC, Δη = 0 150, Viscosity (20 ° = 23 [111? £ 1 '3]) plus 0.9% by weight of chiral agent (Merck, product name: S811) 4. Add 53g, Concentration and drying under reduced pressure gave 4.88 g of gray uniform liquid crystal (1) (total amount of metal contained; 4.88 mg). The liquid crystal (I) comprises the liquid crystal molecule mixture as a matrix liquid crystal, and the matrix liquid crystal contains the liquid crystal compatible palladium-silver binary nanoparticles, and 0.02% by weight of silver atoms with respect to the total amount of the liquid crystal (I). , and a palladium atom of 0.08 weight 0/0.
[0062] 次に、液晶(I)を用いて、図 1に示す液晶表示装置(STN— LCD) 1を作製し特性 を評価した。  Next, a liquid crystal display device (STN—LCD) 1 shown in FIG. 1 was produced using the liquid crystal (I), and the characteristics were evaluated.
[0063] 液晶表示装置(STN— LCD) 1の作製は、次のようにして行った。まず、ガラス基板  A liquid crystal display device (STN—LCD) 1 was produced as follows. First, glass substrate
2a, 2b上に透明電極として ITO膜を形成し、フォトリソ工程にて所望のパターンとす ることにより透明電極膜 3a, 3bを形成した。次に、透明電極膜 3a, 3bが形成された ガラス基板 2a, 2b上の表示部に、フレキソ印刷にて絶縁膜 4a, 4bを形成した。  An ITO film was formed as a transparent electrode on 2a and 2b, and a transparent electrode film 3a and 3b was formed by forming a desired pattern by a photolithography process. Next, insulating films 4a and 4b were formed by flexographic printing on the display portions on the glass substrates 2a and 2b on which the transparent electrode films 3a and 3b were formed.
[0064] 次に、絶縁膜 4a, 4b上に、液晶配向材(日産化学株式会社製、商品名: SE— 610 )を用いて、互いにほぼ同じパターンの配向膜 5a, 5bを形成した。次に、布を巻いた 円筒状のロールを高速に回転させ、配向膜 5a, 5b上を擦ることにより、ラビング処理 を行い、液晶セル 7に封入された液晶(I)がー軸に配向され、上下基板 6a, 6b間の 捩れ角が 240° の左捩れになるようにした。 Next, alignment films 5a and 5b having substantially the same pattern were formed on insulating films 4a and 4b using a liquid crystal alignment material (trade name: SE-610, manufactured by Nissan Chemical Co., Ltd.). Then wrap the cloth By rotating the cylindrical roll at high speed and rubbing on the alignment films 5a and 5b, the rubbing process is performed, and the liquid crystal (I) sealed in the liquid crystal cell 7 is aligned in the negative axis, and between the upper and lower substrates 6a and 6b. The twist angle of was made to be a left twist of 240 °.
[0065] 次に、熱硬化性シール剤(三井化学株式会社製、商品名: ES— 7500)を上基板 6 aの内側面上に、スクリーン印刷法により注入口を有するパターンに印刷すると共に、 ギャップコントロール剤として、直径 6 μ mのプラスチックボールを下基板 6bの内側面 に乾式散布法にて散布した。そして、上下基板 6a, 6bを所定の位置で重ね合せて セル化し、プレスした状態で熱処理を行ってシール剤を硬化させることにより、シール 剤層 8を形成した。 [0065] Next, a thermosetting sealant (trade name: ES-7500, manufactured by Mitsui Chemicals, Inc.) is printed on the inner surface of the upper substrate 6a in a pattern having an injection port by a screen printing method. As a gap control agent, a plastic ball having a diameter of 6 μm was sprayed on the inner surface of the lower substrate 6b by a dry spraying method. Then, the upper and lower substrates 6a and 6b were overlapped at predetermined positions to form cells, and heat treatment was performed in a pressed state to cure the sealant, thereby forming the sealant layer 8.
[0066] 次に、シール剤層 8の外側面の所定の位置に導通材をスクリーン印刷法により印刷 し、導通材パターン 9を形成した。前記導通材としては、前記熱硬化性シール剤に直 径 6. 5 mの Auボール等を 2〜3重量%含有させたものを用いた。  Next, a conductive material was printed by a screen printing method at a predetermined position on the outer surface of the sealant layer 8 to form a conductive material pattern 9. As the conductive material, a material containing 2-3% by weight of Au balls having a diameter of 6.5 m in the thermosetting sealant was used.
[0067] 次に、スクライバー装置によりガラス基板 2a, 2b上に傷をつけ、ブレイキングにより 所定の大きさ'形に分割してセルを形成して、該セルに液晶(I)を真空注入法により 注入し、注入口をエンドシール剤にて封止した。  [0067] Next, the glass substrates 2a and 2b are scratched by a scriber device, and a cell is formed by breaking into a predetermined size 'shape, and liquid crystal (I) is vacuum-injected into the cell. The injection port was sealed with an end sealant.
[0068] その後、面取りと洗浄とを行い、ガラス基板 2a, 2bの外側面に、偏光板 10a, 10bを 所定のパターンで貼りつけることにより、図 1に示す構成を備える液晶表示装置(ST N— LCD) 1を形成した。  [0068] Thereafter, chamfering and cleaning are performed, and polarizing plates 10a and 10b are attached to the outer surfaces of the glass substrates 2a and 2b in a predetermined pattern, whereby a liquid crystal display device (STN) having the configuration shown in FIG. — LCD) 1 formed.
[0069] 次に、上下基板 6a, 6b間の捩れ角力 S、 240° の右捩れになるように処理すると共 に、液晶セル 7に液晶相溶性パラジウム 銀二元ナノ粒子を全く含まな!/、複数種の 液晶分子混合物(大日本インキ化学工業株式会社製 STN用液晶、商品名: LC3)を 封入した以外は、本実施例の液晶表示装置 1と全く同一にして補償セル(図示せず) を作製し、本実施例の液晶表示装置 1に積層した。液晶表示装置 1と補償セルとで は、セル中央の液晶分子のダイレクタ方向が直交するようにされている。  [0069] Next, the liquid crystal cell 7 does not contain any liquid crystal-compatible palladium-silver binary nanoparticles, and the liquid crystal cell 7 is processed so that the twisted angular force S between the upper and lower substrates 6a, 6b is right-twisted at 240 °! Compensation cell (not shown) exactly the same as the liquid crystal display device 1 of this example, except that a mixture of multiple types of liquid crystal molecules (Dai Nippon Ink Chemical Co., Ltd. STN liquid crystal, product name: LC3) was enclosed. And laminated on the liquid crystal display device 1 of this example. In the liquid crystal display device 1 and the compensation cell, the director directions of the liquid crystal molecules at the center of the cell are orthogonal to each other.
[0070] 次に、 LCD評価装置(大塚電子株式会社製、商品名: LCD— 5000)を用いて、本 実施例で作製した液晶表示装置 1のノーマリーブラックモードにおける電圧一透過率 特性 (駆動周波数依存性)を測定した。結果を図 2に示す。  [0070] Next, using a LCD evaluation device (trade name: LCD-5000, manufactured by Otsuka Electronics Co., Ltd.), the voltage-transmittance characteristics in the normally black mode of the liquid crystal display device 1 manufactured in this example (drive) Frequency dependence) was measured. The result is shown in figure 2.
[0071] また、本実施例で作製した液晶表示装置 1を用いて、ォォカミの画像を表示した。 結果を外観写真として図 3に示す。尚、このとき、補償セル (もしくは補償フィルム)は 用いて!/、な!/、 (V、わゆるブルーモード STN表示である)。 Further, a wolf image was displayed using the liquid crystal display device 1 manufactured in this example. The results are shown in Fig. 3 as an external photograph. At this time, use the compensation cell (or compensation film)! /, NA! /, (V, so-called blue mode STN display).
[0072] 次に、前記 LCD評価装置を用いて、本実施例で作製した液晶表示装置 1の電圧 コントラスト特性を測定し、電圧 コントラスト特性から最適電圧(最大コントラストを 得られる電圧)を求め、最適電圧でのレスポンス特性(1/64DUTY駆動)の測定を[0072] Next, by using the LCD evaluation apparatus, the voltage contrast characteristics of the liquid crystal display device 1 manufactured in this example were measured, and the optimum voltage (voltage capable of obtaining the maximum contrast) was obtained from the voltage contrast characteristics. Measurement of voltage response characteristics (1/64 DUTY drive)
、— 35〜85°Cの範囲の温度において行った。結果を表 1に示す。 ,-Performed at a temperature in the range of 35-85 ° C. The results are shown in Table 1.
[0073] また、本実施例で作製した液晶表示装置 1を用い、 10°Cで表示切替を行い、切 替直後の画像を評価した。結果を切替直後の外観写真として図 4の右側に示す。尚[0073] Further, display switching was performed at 10 ° C using the liquid crystal display device 1 manufactured in this example, and an image immediately after the switching was evaluated. The result is shown on the right side of Fig. 4 as an external photograph immediately after switching. still
、このとき、液晶表示装置 1は前記補償セルは用いていない。 At this time, the liquid crystal display device 1 does not use the compensation cell.
[0074] 次に、本実施例で作製した液晶表示装置 1の液晶セル 7の顕微鏡写真を撮影したNext, a micrograph of the liquid crystal cell 7 of the liquid crystal display device 1 produced in this example was taken.
。結果を図 5に示す。 . The results are shown in FIG.
[0075] [表 1] [0075] [Table 1]
ί¾度 駆勤麵数 立上り 立:ド 時間 m立上り B¾f間 TO立 Fり時問 : ft適電庄 m (\iz) (ms) (ms) (ms) (V) ί¾degree Number of runners Rise Rise: Dom m Rise Between B¾f TO rise F Time: ft Applicable m (\ iz) (ms) (ms) (ms) (V)
1000 1 10· 0.5 6920 1 2735 7290 28. 0: 一:3ひ 300: 9996 1 32- 1丄 648 93 S 8 2ひ. :2'  1000 1 10 · 0.5 6920 1 2735 7290 28. 0: 1 : 3 H 300 : 9996 1 32- 1 丄 648 93 S 8 2 H.:2 '
100 9456 7996 11 1 2 B 8.328 1 7< 2 100 9456 7996 11 1 2 B 8.328 1 7 <2
1 000 3338 2787 43 :28 2855 18. 2:: 一: 2 Q 300 2832 2934 34 T 8: 3 Θ 1. 7 1 6. 1 1 000 3338 2787 43: 28 2855 18.2:: A: 2 Q 300 2832 2934 34 T 8: 3 Θ 1. 7 1 6. 1
100 .32; 07 1 739; 457' 1 1 ;81 1 15. 3 100 .32; 07 1 739; 457 '1 1; 81 1 15. 3
1 00: 0 85 427 1 358 443 ■14, 81 00: 0 85 427 1 358 443 ■ 14, 8
0 300 903 336 1489 34: 9 14. 4 丄 ΰ 0 ■87. 7 34 S- 1 394 3 β 3: 14. 20 300 903 336 1489 34: 9 14.4 丄 ΰ 0 88.7 7 34 S- 1 394 3 β 3: 14. 2
1 000 259 125 407 129 14. 01 000 259 125 407 129 14. 0
2 S 30 0 237 1 1 9 385 I: 2; 2 1 3. 8 2 S 30 0 237 1 1 9 385 I: 2; 2 1 3. 8
10 Q 3 1 .94: 32 5 13. 8 10 Q 3 1.94: 32 5 13. 8
1000 94 66 1 4 1 69 1 3. 41000 94 66 1 4 1 69 1 3. 4
50; 300 85 59 I 33 6 1 1 3. .2 50; 300 85 59 I 33 6 1 1 3. .2
100. 55' 44 82 45 13;. 2 i α o Q 8-2 74 I 1 8 77 :12. 4 100. 55 '44 82 45 13 ;. 2 i α o Q 8-2 74 I 1 8 77: 12.4
70 300 90 59 L 31 60 12. 2 70 300 90 59 L 31 60 12. 2
100: 65 3 S: 92 40 1 2. 4 100: 65 3 S: 92 40 1 2. 4
1 0 o Q: 86 87 1.1 6 89; 1 1. 61 0 o Q: 86 87 1.1 6 89; 1 1. 6
80 300 b 5 82 8 S 84 1 1. 6 i · o 70 3 86 40 12, 0 i a o o 91 90 127 92 11. 0.80 300 b 5 82 8 S 84 1 1.6 i ・ o 70 3 86 40 12, 0 i a o o 91 90 127 92 11. 0.
85 300 92 74 128 75 1 1 , 0: 85 300 92 74 128 75 1 1, 0:
Iひ ϋ 40 49 42 50 12. 0 TO立上り · ··電圧切換えから立上るまでの時間 TO立下り…電圧切換えから立下るまでの時間 I ϋ 40 49 42 50 12. 0 TO rising time ... Time from voltage switching to rising TO falling time from voltage switching to falling
比較例 1  Comparative Example 1
[0077] 本比較例では、液晶(I)に代えて、液晶相溶性パラジウム 銀二元ナノ粒子を全く 含まない液晶分子混合物 (大日本インキ化学工業株式会社製 STN用液晶、商品名 : LC3)を用いた以外は、実施例 1と全く同一にして、図 1に示す液晶表示装置(ST N— LCD) 1を作製した。  [0077] In this comparative example, instead of liquid crystal (I), a liquid crystal molecule mixture containing no liquid crystal compatible palladium silver binary nanoparticles (Liquid for STN manufactured by Dainippon Ink and Chemicals, Inc., trade name: LC3) was used. A liquid crystal display device (ST N—LCD) 1 shown in FIG. 1 was produced in the same manner as in Example 1 except that it was used.
[0078] 次に、上下基板 6a, 6b間の捩れ角力 240° の右捩れになるように処理した以外 は、本比較例の液晶表示装置 1と全く同一にして補償セル(図示せず)を作製し、本 比較例の液晶表示装置 1に積層した。液晶表示装置 1と補償セルとでは、セル中央 の液晶分子のダイレクタ方向が直交するようにされている。  [0078] Next, a compensation cell (not shown) is formed in exactly the same manner as in the liquid crystal display device 1 of this comparative example, except that the twisting angular force between the upper and lower substrates 6a and 6b is right-twisted at 240 °. It was fabricated and laminated on the liquid crystal display device 1 of this comparative example. In the liquid crystal display device 1 and the compensation cell, the director directions of the liquid crystal molecules at the center of the cell are orthogonal to each other.
[0079] 次に、本比較例で作製した液晶表示装置 1の電圧 コントラスト特性を、実施例 1と 全く同一にして測定し、電圧 コントラスト特性から最適電圧(最大コントラストを得ら れる電圧)を求め、最適電圧でのレスポンス特性(1/64DUTY駆動)の測定を、 35〜85°Cの範囲の温度において行った。結果を表 2に示す。  [0079] Next, the voltage contrast characteristics of the liquid crystal display device 1 manufactured in this comparative example are measured exactly the same as in Example 1, and the optimum voltage (voltage that can obtain the maximum contrast) is obtained from the voltage contrast characteristics. The response characteristics at the optimum voltage (1/64 DUTY drive) were measured at a temperature in the range of 35 to 85 ° C. The results are shown in Table 2.
[0080] 次に、本比較例で作製した液晶表示装置 1を用い、 10°Cで表示切替を行った直 後の外観写真を図 4の右側に示す。  Next, an external appearance photograph immediately after the display switching at 10 ° C. using the liquid crystal display device 1 manufactured in this comparative example is shown on the right side of FIG.
[0081] 次に、本比較例で作製した液晶表示装置 1の液晶セル 7の顕微鏡写真を図 6に示 す。  Next, a micrograph of the liquid crystal cell 7 of the liquid crystal display device 1 produced in this comparative example is shown in FIG.
[0082] [表 2] [0082] [Table 2]
温度 駆動周波数 . り時問 立下り時間 TO立上り時間 TO:立 り時'間 ■最適電圧Temperature Drive frequency Time of rise Fall time TO Rise time TO: During rise time ■ Optimal voltage
(cc) (Hz) (ms) Cms) (ms) (ms) (V) ( c c) (Hz) (ms) Cms) (ms) (ms) (V)
1: 000 1 5832. —― 1 721. 6 —― 29. 1: 000 1 5832. —— 1 721. 6 —— 29.
-30 3: 00 14256 8582- 1 5848 02.8 20, 9 -30 3: 00 14 256 8582- 1 5848 02.8 20, 9
1 0 G: 1 2896 665.7 14608 Ί 088 16. 1 0 G: 1 2896 665.7 14608 Ί 088 16.
1 000 636 1 221 3 6954 2354 19. 31 000 636 1 221 3 6954 2354 19. 3
- 20 300 505 1 I 726 5694 1 876 1. 5. 9 -20 300 505 1 I 726 5694 1 876 1. 5. 9
100 4753 149 1 5400 1 620 I 4. 6 100 4753 149 1 5400 1 620 I 4. 6
1 0 D 0 62 106 10, 1. 154 1 5. 41 0 D 0 62 106 10, 1. 154 1 5. 4
0 3 G O 4 ·5: 154, 70 227 :1 5, 40 3 G O 4 5: 154, 70 227: 1 5, 4
100 :3 δ 284 ■52 2 S 8 15. 4100: 3 δ 284 ∎ 52 2 S 8 15. 4
1 000 1 88 73 225 8 Q 14. 01 000 1 88 73 225 8 Q 14. 0
25 300 2: 47 62 29: 1 66 1 3:. 6 l o o I 55 65 1 9 I 70 ] 3. 625 300 2: 47 62 29: 1 66 1 3 :. 6 l o o I 55 65 1 9 I 70] 3.6
1 0: 00 1 1 9 45 I S 4 79 13:, :41 0: 00 1 1 9 45 I S 4 79 13 :,: 4
5 Q 300 1 28 45 1 6 78 1 3. 2 5 Q 300 1 28 45 1 6 78 1 3. 2
100 140 44 209 75 1 3. 0 100 140 44 209 75 1 3. 0
1 00 Q. 62 42 1 1 9 75 1 3. 01 00 Q. 62 42 1 1 9 75 1 3. 0
7 Q: 30ひ 60 42: 1 1 8 75 12. S: 7 Q: 30 H 60 42: 1 1 8 75 12.S:
100 54. 42 1 05 74 1 2. 7 100 54. 42 1 05 74 1 2. 7
1 000 43 4ち 86 81 1 3. 01 000 43 4 86 81 1 3. 0
8 0 300 4 1 5 1 78 89 1 3. 0 8 0 300 4 1 5 1 78 89 1 3. 0
100 43 45 80 79 12. 7 100 43 45 80 79 12.7
1 0.00 40 55 73 95 12. 91 0.00 40 55 73 95 12. 9
85 300 40 56 73 :95 12, 7 85 300 40 56 73: 95 12, 7
10Ό 4 1 47 75 8 1 12 , 5 TO立上り · ··電圧切換えから立上るまでの時間 TO立下り…電圧切換えから立下るまでの時間 10Ό 4 1 47 75 8 1 12, 5 TO rising time ... Time from voltage switching to rising TO falling time from voltage switching to falling
図 2から、実施例 1の液晶(I)を用いる液晶表示装置 1では、印加電圧の増加に伴 い透過率も増加しており、電圧により液晶表示装置 1の透過率 (表示)を制御可能で あること力 S明ら力、である。また、図 2では、駆動周波数を変えることにより透過率曲線 がシフトしており完全に一致していないが、シフト量 AV< 0. 3Vであるので、実施例 1の液晶(I)を用いる液晶表示装置 1は、 DUTY駆動可能であることが明らかである。  From FIG. 2, in the liquid crystal display device 1 using the liquid crystal (I) of Example 1, the transmittance increases as the applied voltage increases, and the transmittance (display) of the liquid crystal display device 1 can be controlled by the voltage. It is the power that S is clear. In FIG. 2, the transmittance curves are shifted by changing the driving frequency and do not completely coincide with each other. However, since the shift amount is AV <0.3 V, the liquid crystal using the liquid crystal (I) of Example 1 is used. It is clear that the display device 1 can be driven by the duty.
[0084] 前記 DUTY駆動について、実施例 1の液晶(I)を用いる液晶表示装置 1では、図 3 に示すように、全体にムラのない表示が可能であることが明らかである。  Regarding the DUTY driving, it is clear that the liquid crystal display device 1 using the liquid crystal (I) of Example 1 can display a display with no unevenness as shown in FIG.
[0085] 次に、表 1と表 2との比較から、氷点下の低温であって、液晶分子が高粘度になる 領域では、実施例 1の液晶(I)を用いる液晶表示装置 1の方が、比較例 1の液晶表示 装置 1に比較して、レスポンス時間が 1/2〜2/3に短縮され、レスポンスがより高速 になることが明らかである。低温領域におけるレスポンスが高速になることは、特に車 載用 LCD、航空機用 LCD等の動作温度範囲の広!/、用途にお!/、て極めて有益であ  [0085] Next, from comparison between Table 1 and Table 2, the liquid crystal display device 1 using the liquid crystal (I) of Example 1 is more suitable in the region where the temperature is below freezing and the liquid crystal molecules are highly viscous. Compared with the liquid crystal display device 1 of Comparative Example 1, it is clear that the response time is shortened to 1/2 to 2/3 and the response is faster. High-speed response in the low-temperature range is extremely useful for wide operating temperature ranges such as LCDs for vehicles and LCDs for aircrafts!
[0086] 前記低温領域におけるレスポンスの高速性について、比較例 1の液晶表示装置 1 では、図 4の左側の画像のように切替前の画像 (数字 ·文字)が濃く残っているのに対 し、実施例 1の液晶表示装置 1では、図 4の右側の画像のように切替前の画像がほと んど消えており、低温領域におけるレスポンスが高速になっていることが明らかであるRegarding the high-speed response in the low-temperature region, in the liquid crystal display device 1 of Comparative Example 1, the image (numbers / characters) before switching remains dark like the image on the left side of FIG. In the liquid crystal display device 1 of Example 1, it is clear that the image before switching is almost disappeared as in the image on the right side of FIG. 4, and the response in the low temperature region is fast.
Yes
[0087] また、表 1と表 2との比較から、実施例 1の液晶(I)を用いる液晶表示装置 1の方が、 比較例 1の液晶表示装置 1に比較して、駆動電圧(表中の最適電圧に相当)が低ぐ 消費電力を低減することができることが明らかである。  Further, from comparison between Table 1 and Table 2, the liquid crystal display device 1 using the liquid crystal (I) of Example 1 is more driven than the liquid crystal display device 1 of Comparative Example 1 (Table 1). It is clear that power consumption can be reduced.
[0088] 次に、図 5から、実施例 1の液晶(I)を用いる液晶表示装置 1の液晶セル 7の顕微鏡 写真によれば、粒子径 6 mのギャップコントロール剤を示す白点の他に、金属ナノ 粒子の凝集を示す黒点が観察されることが明らかである。これに対して、比較例 1の 液晶表示装置 1の液晶セル 7の顕微鏡写真では、図 6に示すように、ギャップコント口 一ル剤を示す白点が観察されるだけであって、金属ナノ粒子の凝集を示す黒点は観 察されない。従って、液晶セル 7の顕微鏡写真における金属ナノ粒子の凝集を示す 黒点の有無により、実施例 1の液晶(I)を用いているか否かを容易に判断することが できる。 Next, from FIG. 5, according to the micrograph of the liquid crystal cell 7 of the liquid crystal display device 1 using the liquid crystal (I) of Example 1, in addition to the white point indicating a gap control agent having a particle diameter of 6 m, It is clear that black spots indicating the aggregation of metal nanoparticles are observed. On the other hand, in the micrograph of the liquid crystal cell 7 of the liquid crystal display device 1 of Comparative Example 1, as shown in FIG. 6, only white spots indicating a gap control agent are observed. Black spots indicating particle aggregation are not observed. Therefore, it shows the aggregation of metal nanoparticles in the micrograph of liquid crystal cell 7 Whether or not the liquid crystal (I) of Example 1 is used can be easily determined based on the presence or absence of black spots.
実施例 2  Example 2
[0089] 本実施例では、まず、次のようにして、液晶相溶性パラジウム 銀二元ナノ粒子含 有液晶(以下、液晶 (I)と称する)を調製した。  In this example, first, liquid crystal-compatible palladium-silver binary nanoparticle-containing liquid crystal (hereinafter referred to as liquid crystal (I)) was prepared as follows.
[0090] 攪拌装置、温度計、還流冷却器及びシリンジポンプを備えた内容積 500mlのジャ ケット付ガラス製容器に、室温下、複数種の液晶分子混合物(大日本インキ化学ェ 業株式会社製 STN用液晶、商品名: LC4、 Δη = 0. 120、粘度(20°C) = 19 [mPa •s] ) 800mg、テトラヒドロフラン 144ml及び 2 プロパノール 40mlを加えて混合溶液 を調製し、該混合溶液を攪拌下に加熱して、 65〜75°Cの範囲の温度で還流した。 次に、前記混合溶液に、 0. Olmol/1トリフルォロ酢酸銀のテトラヒドロフラン溶液 8· Oml (銀原子として 0. 080mmol)をゆるやかに滴下し、攪拌しながら同温度で 15分 間反応させた後、 0. Olmol/1酢酸パラジウムのテトラヒドロフラン溶液 8· Oml(パラ ジゥム原子として 0. 080mmol)をゆるやかに滴下し、攪拌しながら同温度でさらに 1 5分間反応させた。反応終了後、反応液を室温まで冷却し、黒褐色の均一な液晶相 溶性パラジウム—銀二元ナノ粒子分散液 200mlを得た。前記液晶相溶性パラジウム 銀二元ナノ粒子は、ノ ラジウム 銀二元ナノ粒子を核とし、核の周囲に前記複数 種の液晶分子混合物(大日本インキ化学工業株式会社製 STN用液晶、商品名: LC 4)が結合している。  [0090] In a glass container with a jacket having an internal volume of 500 ml equipped with a stirrer, thermometer, reflux condenser and syringe pump, a mixture of a plurality of liquid crystal molecules (STN manufactured by Dainippon Ink & Chemicals, Inc.) at room temperature. LC4, product name: LC4, Δη = 0.120, viscosity (20 ° C) = 19 [mPa • s]) 800 mg, tetrahydrofuran 144 ml and 2-propanol 40 ml were prepared to prepare a mixed solution, and the mixed solution was stirred Heated down and refluxed at a temperature in the range of 65-75 ° C. Next, 0.Omol / 0.1 ml of trifluoroacetic acid silver trifluoroacetate in silver (0.008 mmol as silver atoms) was slowly dropped into the mixed solution, and the mixture was reacted at the same temperature for 15 minutes with stirring. 0. Olmol / 1 solution of palladium acetate in 8 · Oml (0.080 mmol as a palladium atom) was slowly added dropwise and reacted at the same temperature for an additional 15 minutes while stirring. After completion of the reaction, the reaction solution was cooled to room temperature to obtain 200 ml of a blackish brown uniform liquid crystal compatible palladium-silver binary nanoparticle dispersion. The liquid crystal-compatible palladium-silver binary nanoparticles are composed of a rare-earth silver binary nanoparticle and a mixture of the above-mentioned various liquid crystal molecules (Dainippon Ink Chemical Co., Ltd. STN liquid crystal, product name: LC 4 ) Are combined.
[0091] 次に、本実施例で得られた液晶相溶性パラジウム 銀二元ナノ粒子分散液 58. 3 mlに複数種の液晶分子混合物(大日本インキ化学工業株式会社製 STN用液晶、 商品名: LC4、 Δη = 0. 120、粘度(20°C) = 19 [mPa' s] )に、カイラル剤(メルク社 製、商品名: S— 811)を 0. 75重量%加えたもの) 4. 76gを添加し、減圧下で濃縮及 び乾燥させて、灰色均一の液晶(1) 4. 76g (含有全金属量; 4. 76mg)を得た。液晶 (I)は、前記複数種の液晶分子混合物(大日本インキ化学工業株式会社製 STN用 液晶、商品名: LC4)をマトリクス液晶として、該マトリクス液晶が前記液晶相溶性パラ ジゥム 銀二元ナノ粒子を含むものである。  [0091] Next, a liquid crystal compatible palladium silver binary nanoparticle dispersion obtained in this example was mixed with 58.3 ml of a mixture of a plurality of liquid crystal molecules (liquid crystal for STN manufactured by Dainippon Ink and Chemicals, Inc., trade name: LC4, Δη = 0.120, viscosity (20 ° C) = 19 [mPa 's]) plus chiral agent (Merck's product name: S-811) added by 0.75 wt%) 4. 76 g was added, concentrated and dried under reduced pressure to obtain 4.76 g of gray uniform liquid crystal (1) (total amount of metal contained; 4.76 mg). The liquid crystal (I) is composed of the liquid crystal molecule mixture (Dai Nippon Ink Chemical Co., Ltd. STN liquid crystal, product name: LC4) as a matrix liquid crystal, and the matrix liquid crystal is a liquid crystal compatible paradium silver binary nanoparticle. Is included.
[0092] 次に、液晶(II)を用いて、図 1に示す液晶表示装置(STN— LCD) 1を作製し、特 性を評価した。 Next, a liquid crystal display device (STN—LCD) 1 shown in FIG. Sex was evaluated.
[0093] 本実施例では、液晶表示装置(STN— LCD) 1は、液晶(I)を用いると共に、シー ノレ剤として協立化学産業株式会社製光硬化型シール剤を用い、デイスペンサ方式で シール剤層 8を形成した以外は、実施例 1と全く同一にして作製した。  In this embodiment, the liquid crystal display device (STN—LCD) 1 uses liquid crystal (I) and a photocurable sealant manufactured by Kyoritsu Chemical Industry Co., Ltd. as a sealant, and is sealed by a dispenser method. It was produced in the same manner as in Example 1 except that the agent layer 8 was formed.
[0094] 次に、上下基板 6a, 6b間の捩れ角力 S、 240° の右捩れになるように処理すると共 に、液晶セル 7に液晶相溶性パラジウム 銀二元ナノ粒子を全く含まな!/、複数種の 液晶分子混合物(大日本インキ化学工業株式会社製 STN用液晶、商品名: LC4)を 封入した以外は、本実施例の液晶表示装置 1と全く同一にして補償セル(図示せず) を作製し、本実施例の液晶表示装置 1に積層した。液晶表示装置 1と補償セルとで は、セル中央の液晶分子のダイレクタ方向が直交するようにされている。  [0094] Next, the liquid crystal cell 7 does not contain any liquid crystal-compatible palladium-silver binary nanoparticles, and the twisting angular force S between the upper and lower substrates 6a, 6b is processed to a right twist of 240 °, and the liquid crystal cell 7 does not contain any liquid crystal compatible palladium / silver binary nanoparticles! Compensation cell (not shown) exactly the same as the liquid crystal display device 1 of this example, except that a plurality of types of liquid crystal molecule mixture (Dai Nippon Ink Chemical Co., Ltd. STN liquid crystal, product name: LC4) was enclosed. And laminated on the liquid crystal display device 1 of this example. In the liquid crystal display device 1 and the compensation cell, the director directions of the liquid crystal molecules at the center of the cell are orthogonal to each other.
[0095] 次に、本実施例で作製した液晶表示装置 1のノーマリーブラックモードにおける電 圧-透過率特性 (駆動周波数依存性)を、実施例 1と全く同一にして測定した。結果を 図 7に示す。  Next, the voltage-transmittance characteristics (drive frequency dependence) in the normally black mode of the liquid crystal display device 1 manufactured in this example were measured in exactly the same way as in Example 1. The results are shown in Fig. 7.
[0096] 次に、本実施例で作製した液晶表示装置 1の電圧 コントラスト特性を、実施例 1と 全く同一にして測定し、電圧 コントラスト特性から最適電圧(最大コントラストを得ら れる電圧)を求め、最適電圧でのレスポンス特性(1/64DUTY駆動)の測定を、 35〜85°Cの範囲の温度において行った。結果を表 3に示す。  [0096] Next, the voltage contrast characteristics of the liquid crystal display device 1 manufactured in this example were measured exactly the same as in Example 1, and the optimum voltage (the voltage at which maximum contrast was obtained) was obtained from the voltage contrast characteristics. The response characteristics at the optimum voltage (1/64 DUTY drive) were measured at a temperature in the range of 35 to 85 ° C. The results are shown in Table 3.
[0097] 次に、本実施例で作製した液晶表示装置 1の液晶セル 7の顕微鏡写真を撮影した 。結果を図 8に示す。  Next, a photomicrograph of the liquid crystal cell 7 of the liquid crystal display device 1 produced in this example was taken. The results are shown in FIG.
[0098] [表 3] [0098] [Table 3]
温度 駆動周波数 . り時問 立下り時間 TO立上り時間 TO:立 り時'間 ■最適電圧Temperature Drive frequency Time of rise Fall time TO Rise time TO: During rise time ■ Optimal voltage
(cc) (Hz) (ms) Cms) (ms) (ms) (V) ( c c) (Hz) (ms) Cms) (ms) (ms) (V)
1: 000 5255 4445 5590 46 1.0 30. 8 1: 000 5255 4445 5590 46 1.0 30. 8
-30 3: 00 8328 4624 1 0476 4752 21. 6 -30 3: 00 8328 4624 1 0476 4752 21. 6
1 0 G: 3 1 3 43: 6: 0 1 0438 44 :9: 0 1,8, S 1 0 G: 3 1 3 43: 6: 0 1 0438 44: 9: 0 1,8, S
1 000 2372 1 73 29 G 1 829 20. 61 000 2372 1 73 29 G 1 829 20. 6
- 20 300 241 9 I 528 3230 1 600 1.8:. I -20 300 241 9 I 528 3230 1 600 1.8: I
100 1 4■()■ 1478 3560 1 65: 6 I 7. a. 100 1 4 () 1478 3560 1 65: 6 I 7. a.
1 0 D 0 727 233: 1 228 245 16. 61 0 D 0 727 233: 1 228 245 16. 6
0 3 G O 682 302: 1 0 :39 3 1 7 1 6. 40 3 G O 682 302: 1 0: 39 3 1 7 1 6. 4
100 8: 08 225 1380 24.0 16. 0100 8: 08 225 1380 24.0 16. 0
1 000 294 6: 8: ■457 72 1 5. 61 000 294 6: 8: ■ 457 72 1 5. 6
25 300 335 70: 49: 5 76 15. 4 l o o 225 65 386 65 ] 5. 225 300 335 70:49: 5 76 15. 4 l o o 225 65 386 65] 5.2
1 0: 00 220 35 30 G 38 14. 81 0: 00 220 35 30 G 38 14. 8
5 Q 300 220 38: 2 5 4:0' 1 . 6 5 Q 300 220 38: 2 5 4: 0 '1.6
100 1 1 5 29 I 46 30 14. 4 100 1 1 5 29 I 46 30 14. 4
1 00 Q. 5} 5 6 6 1 . 41 00 Q. 5} 5 6 6 1. 4
7 Q: 30ひ 2 4. 3 4 1 . '2 7 Q: 30 2 2 4. 3 4 1 .'2
100 0 :ひ 1 1; 1 3. :8100 0: H 1 1 ; 1 3 .: 8
1 000 4 4 6 5 14 '. Q1 000 4 4 6 5 14 '. Q
8 0 300 2 3 3 4 I 3. 6 8 0 300 2 3 3 4 I 3. 6
100 0 0 1 1 1 3. 4 100 0 0 1 1 1 3. 4
1 0.00 2 1 1 9 2 3 21 9:. 01 0.00 2 1 1 9 2 3 21 9 :. 0
85 300 2 G 1 2: 1 17 8, 8: 85 300 2 G 1 2: 1 17 8, 8:
10Ό 6 8 6 9 8, :8 TO立上り · ··電圧切換えから立上るまでの時間 TO立下り…電圧切換えから立下るまでの時間 10Ό 6 8 6 9 8,: 8 TO rising time ... Time from voltage switching to rising TO falling time from voltage switching to falling
比較例 2  Comparative Example 2
[0100] 本比較例では、液晶(I)に代えて、液晶相溶性パラジウム 銀二元ナノ粒子を全く 含まない液晶分子混合物 (大日本インキ化学工業株式会社製 STN用液晶、商品名 : LC4)を用いた以外は、実施例 2と全く同一にして、図 1に示す液晶表示装置(ST N— LCD) 1を作製した。  [0100] In this comparative example, instead of the liquid crystal (I), a liquid crystal molecule mixture containing no liquid crystal compatible palladium silver binary nanoparticles (Liquid for STN manufactured by Dainippon Ink and Chemicals, Inc., trade name: LC4) was used. A liquid crystal display device (ST N—LCD) 1 shown in FIG. 1 was produced in the same manner as in Example 2 except that it was used.
[0101] 次に、上下基板 6a, 6b間の捩れ角が 240° の右捩れになるようにした以外は、本 比較例で作製した液晶表示装置 1と全く同一にして、補償セル(図示せず)を作製し 、本比較例の液晶表示装置 1に積層した。液晶表示装置 1と該補償セルとでは、セル 中央の液晶分子のダイレクタ方向が直交するようにされている。  [0101] Next, a compensation cell (not shown) was made exactly the same as the liquid crystal display device 1 manufactured in this comparative example, except that the twist angle between the upper and lower substrates 6a and 6b was a right twist of 240 °. Was laminated on the liquid crystal display device 1 of this comparative example. In the liquid crystal display device 1 and the compensation cell, the director directions of the liquid crystal molecules at the center of the cell are orthogonal to each other.
[0102] 次に、本比較例で作製した液晶表示装置 1の電圧—コントラスト特性を、実施例 1と 全く同一にして測定し、電圧 コントラスト特性から最適電圧(最大コントラストを得ら れる電圧)を求め、最適電圧でのレスポンス特性(1/64DUTY駆動)の測定を、 35〜85°Cの範囲の温度において行った。結果を表 4に示す。  [0102] Next, the voltage-contrast characteristics of the liquid crystal display device 1 fabricated in this comparative example were measured exactly the same as in Example 1, and the optimum voltage (voltage that can obtain the maximum contrast) was determined from the voltage contrast characteristics. The response characteristics at the optimum voltage (1/64 DUTY drive) were measured at temperatures in the range of 35 to 85 ° C. The results are shown in Table 4.
[0103] 次に、本比較例で作製した液晶表示装置 Bの液晶セル 7の顕微鏡写真を撮影した 。結果を図 9に示す。  [0103] Next, a micrograph of the liquid crystal cell 7 of the liquid crystal display device B produced in this comparative example was taken. The results are shown in FIG.
[0104] [表 4] [0104] [Table 4]
温度 駆幽周波: ¾ 立上り賴 立下■ 時間 TO立上り時間 T()立 Tり時間 最適電1£ (cc) (Hz): (ms) (.ms) (ms) (■ms) ·( "Temperature Spiral Frequency: ¾ Rise Rise Fall ■ Time TO Rise Time T () Rise T Time Optimum 1 £ ( c c) (Hz): (ms) (.ms) (ms) (■ ms) · ( "
1 Q 00 1 44 ·] 2, 1.578 6 1 740: 6 2 9. 2·' :3 0 a 0 ί) 14044: 5216 1 7.472 5: 632 2 i . ό 1 Q 00 1 44 ·] 2, 1.578 6 1 740: 6 2 9. 2 · ': 3 0 a 0 ί) 14044: 5216 1 7.472 5: 632 2 i.
1 :00 I 3 76 0 34 7 8 1 7 I 7 0 3 750 1 7. 4 1: 00 I 3 76 0 34 7 8 1 7 I 7 0 3 750 1 7. 4
1 000 855 6 16 7 2 1 0 Q Ύ 8 i 909 1 9. 81 000 855 6 16 7 2 1 0 Q Ύ 8 i 909 1 9. 8
― 20 300 601 6 1 302 7384 Ί 62.1 T 6. 7 ― 20 300 601 6 1 302 7384 Ί 62.1 T 6.7
1 G O 46 84 1 20 T S 8 98 i 5 79 1 5. 6 l o o ύ 82ひ . Q2· 29 108: 3 263 15, 6 1 G O 46 84 1 20 T S 8 98 i 5 79 1 5. 6 l o o ύ 82 Q Q2 · 29 108: 3 263 15, 6
0: 3: 0:· 0 8 6 5 2 1 9 1 I 6 2 259 1 5. 00: 3: 0: · 0 8 6 5 2 1 9 1 I 6 2 259 1 5. 0
1 00 5 1 7 24 3: 7 6 0 :33, 5 1 5, .01 00 5 1 7 24 3: 7 6 0: 33, 5 1 5, .0
1 000 5 84 3 1 9 6 T 9 849 1 4. :81 000 5 84 3 1 9 6 T 9 849 1 4.:8
2 5: 3ひ .0 649 298 7 5 7 326 1 4. :2 2 5 : 3 .0 649 298 7 5 7 326 1 4.: 2
i 00 6: 8 ]■■■ 279 7 '9': 9 306 14, D i ·οひ ·ο 40 7· 7 84 1. 5 15 - 0 i 00 6: 8] ■■■ 279 7 '9': 9 306 14, D i · ο ひ · 40 7 · 7 84 1. 5 15-0
5 Q 300 3 :9 7 9 8- 4 1 50 1 . 8 5 Q 300 3: 9 7 9 8- 4 1 50 1 .8
1 00 4 1 1 06: 7 8 1 6 8 1: 4. 8 i ο ο α 3 a 88 72 154 .1 . 1 00 4 1 1 06: 7 8 1 6 8 1: 4. 8 i ο ο α 3 a 88 72 154.1.
70 300 3 :8 9 0 72 1 5 5 1 4, 0 70 300 3: 8 9 0 72 1 5 5 1 4, 0
1 00 4 1 6 1 T 5 1 Ό 5 1 ;3, 8 1 00 4 1 6 1 T 5 1 Ό 5 1; 3, 8
1 000 3 8 6 3 7 3 1 1 9 1 3. 41 000 3 8 6 3 7 3 1 1 9 1 3. 4
8 0 300 3 S 6 2 7 3 1 1 6: 1 :3:. 2: 8 0 300 3 S 6 2 7 3 1 1 6: 1: 3 :. 2:
i ο 0: 40 1 05 68 :1 S ϋ 1 3. 2 i ο 0: 40 1 05 68: 1 S ϋ 1 3. 2
1 000 3 8 6 9 7 1 27 1 2■, 91 000 3 8 6 9 7 1 27 1 2 ■, 9
8 5 300 3 8 6.6: "T 1 120 1 2, 7 8 5 300 3 8 6.6: "T 1 120 1 2, 7
100 40 50 1: 3 s g 12:. 5: O立上り…電圧切換えから立上るまでの時間 TO立下り · · ·電圧切換えから立下るまでの時間 100 40 50 1: 3 sg 12 :. 5: O rising… Time from voltage switching to rising TO falling time · · · Time from voltage switching to falling
図 7から、実施例 2の液晶(I)を用いる液晶表示装置 1では、印加電圧の増加に伴 い透過率も増加しており、電圧により液晶表示装置 1の透過率 (表示)を制御可能で あること力 S明ら力、である。また、図 7では、駆動周波数を変えることにより透過率曲線 がシフトしており完全に一致しておらず、特に 1000Hzと 300Hzとの間に曲線の違い が見られたが、シフト量は AV< 0. 05Vと小さく、実施例 2の液晶(I)を用いる液晶表 示装置 1は、 DUTY駆動可能であることが明らかである。  From FIG. 7, in the liquid crystal display device 1 using the liquid crystal (I) of Example 2, the transmittance increases as the applied voltage increases, and the transmittance (display) of the liquid crystal display device 1 can be controlled by the voltage. It is the power that S is clear. In addition, in Fig. 7, the transmittance curves are shifted by changing the drive frequency and do not completely match.In particular, there is a difference in the curve between 1000 Hz and 300 Hz, but the shift amount is AV < It is clear that the liquid crystal display device 1 using the liquid crystal (I) of Example 2 that is as small as 0.05 V can be DUTY driven.
[0106] 次に、表 3と表 4との比較から、氷点下の低温であって、液晶分子が高粘度になる 領域では、実施例 2の液晶(I)を用いる液晶表示装置 1の方が、比較例 2の液晶表示 装置 1に比較して、レスポンス時間が 1/2〜2/3に短縮され、レスポンスがより高速 になることが明らかである。低温領域におけるレスポンスが高速になることは、特に車 載用 LCD、航空機用 LCD等の動作温度範囲の広!/、用途にお!/、て極めて有益であ [0106] Next, from comparison between Table 3 and Table 4, the liquid crystal display device 1 using the liquid crystal (I) of Example 2 is more suitable in the region where the temperature is below freezing and the liquid crystal molecules become highly viscous. Compared with the liquid crystal display device 1 of Comparative Example 2, it is clear that the response time is shortened to 1/2 to 2/3 and the response is faster. High-speed response in the low-temperature range is extremely useful for wide operating temperature ranges such as LCDs for vehicles and LCDs for aircrafts!
[0107] また、表 3と表 4との比較から、実施例 2の液晶(I)を用いる液晶表示装置 1の方が、 比較例 2の液晶表示装置 1に比較して、駆動電圧 (表中の最適電圧に相当)が低ぐ 消費電力を低減することができることが明らかである。 [0107] Further, from comparison between Table 3 and Table 4, the liquid crystal display device 1 using the liquid crystal (I) of Example 2 is more driven than the liquid crystal display device 1 of Comparative Example 2 (Table 1). It is clear that the power consumption can be reduced.
[0108] 次に、図 8から、実施例 2の液晶(I)を用いる液晶表示装置 1の液晶セル 7の顕微鏡 写真によれば、粒子径 6 mのギャップコントロール剤を示す白点の他に、金属ナノ 粒子の凝集を示す黒点が観察されることが明らかである。これに対して、比較例 2の 液晶表示装置 1の液晶セル 7の顕微鏡写真では、図 9に示すように、ギャップコント口 一ル剤を示す白点が観察されるだけであって、金属ナノ粒子の凝集を示す黒点は観 察されない。従って、液晶セル 7の顕微鏡写真における金属ナノ粒子の凝集を示す 黒点の有無により、実施例 2の液晶(I)を用いているか否かを容易に判断することが できる。  Next, from FIG. 8, according to the micrograph of the liquid crystal cell 7 of the liquid crystal display device 1 using the liquid crystal (I) of Example 2, in addition to the white point indicating a gap control agent having a particle diameter of 6 m, It is clear that black spots indicating the aggregation of metal nanoparticles are observed. On the other hand, in the micrograph of the liquid crystal cell 7 of the liquid crystal display device 1 of Comparative Example 2, as shown in FIG. 9, only white spots indicating the gap control agent are observed, Black spots indicating particle aggregation are not observed. Therefore, whether or not the liquid crystal (I) of Example 2 is used can be easily determined based on the presence or absence of black spots indicating aggregation of metal nanoparticles in the micrograph of the liquid crystal cell 7.
実施例 3  Example 3
[0109] 本実施例では、まず、カイラル剤を添加しなかった以外は実施例 1と全く同一にして 液晶(la)を調製した。  In this example, first, a liquid crystal (la) was prepared in the same manner as in Example 1 except that no chiral agent was added.
[0110] 次に、液晶(la)を用いて、図 10に示す液晶表示装置 (TN— LCD) 11を作製し、 特性を評価した。 [0110] Next, using the liquid crystal (la), a liquid crystal display device (TN—LCD) 11 shown in FIG. Characteristics were evaluated.
[0111] 液晶表示装置 (TN— LCD) 11は、液晶(la)を用いると共に、配向膜 5a, 5bとして プレティルト角が低い液晶配向材(日産化学株式会社製、商品名: SE— 410)を用 い、上下基板 6a, 6b間の捩れ角が 90° の左捩れになるように処理した以外は、実 施例 1の液晶表示装置(STN— LCD) 1と全く同一にして作製した。  [0111] The liquid crystal display device (TN-LCD) 11 uses liquid crystal (la) and uses a liquid crystal alignment material (trade name: SE-410, manufactured by Nissan Chemical Co., Ltd.) having a low pretilt angle as the alignment films 5a and 5b. The liquid crystal display device (STN—LCD) 1 of Example 1 was manufactured exactly the same except that it was processed so that the twist angle between the upper and lower substrates 6a and 6b was 90 °.
[0112] 次に、本実施例で作製した液晶表示装置 (TN— LCD) 11における、レスポンスの 温度依存性を— 20〜25°Cの範囲の温度で、スタティック駆動と、 1/64DUTY駆動 とについて測定した。結果を表 5に示す。  [0112] Next, in the liquid crystal display device (TN—LCD) 11 fabricated in this example, the temperature dependence of the response is in the range of 20 to 25 ° C. Static drive, 1/64 DUTY drive Was measured. The results are shown in Table 5.
[0113] また、 1/64DUTY駆動を行ったときのレスポンスの温度依存性を図 11に示す。  [0113] Fig. 11 shows the temperature dependence of the response when 1/64 DUTY drive is performed.
比較例 3  Comparative Example 3
[0114] 本比較例では、液晶(la)に代えて、液晶相溶性パラジウム 銀二元ナノ粒子を全 く含まない液晶分子混合物 (大日本インキ化学工業株式会社製 STN用液晶、商品 名: LC3)を用いた以外は、実施例 3と全く同一にして、図 10に示す液晶表示装置( TN-LCD) 11を作製した。  [0114] In this comparative example, instead of the liquid crystal (la), a liquid crystal molecule mixture containing no liquid crystal compatible palladium silver binary nanoparticles (Dainippon Ink Chemical Co., Ltd. STN liquid crystal, product name: LC3) A liquid crystal display device (TN-LCD) 11 shown in FIG. 10 was produced in the same manner as in Example 3 except that was used.
[0115] 次に、本比較例で作製した液晶表示装置 11における、レスポンスの温度依存性を 実施例 3と全く同一にして測定した。結果を表 6に示す。  [0115] Next, the temperature dependence of the response in the liquid crystal display device 11 produced in this comparative example was measured in exactly the same way as in Example 3. The results are shown in Table 6.
[0116] また、 1/64DUTY駆動を行ったときのレスポンスの温度依存性を図 11に実施例  [0116] Figure 11 shows the temperature dependence of the response when 1/64 DUTY drive is performed.
3と併せて示す。  Shown together with 3.
[0117] [表 5]  [0117] [Table 5]
Figure imgf000027_0001
Figure imgf000027_0001
[0118] [表 6] スタティック ,区動 1 / 6 4 D U T Y駆動 [0118] [Table 6] Static, Ku 1/4 DUTY drive
Inn 立上り時間 立下り時間 立上り時間 立下り時間  Inn Rise Time Fall Time Rise Time Fall Time
(°C) ns) vms) ns) Vtns)  (° C) ns) vms) ns) Vtns)
- 2 0 1 0 0 2 4 3 4 4 8 4 3 9  -2 0 1 0 0 2 4 3 4 4 8 4 3 9
0 1 7 . 1 1 8 . 0 7 9 . 2 8 0 . 5  0 1 7. 1 1 8. 0 7 9. 2 8 0. 5
2 5 6 . 4 1 3 . 2 1 5 . 9 2 5 . 3  2 5 6. 4 1 3. 2 1 5. 9 2 5. 3
[0119] 表 5, 6及び、図 11から、 25°C 0°Cにおいて、実施例 3の液晶表示装置 11の方が 比較例 3の液晶表示装置 11よりもレスポンスが高速であり、特に DUTY駆動におい てその差が顕著になることが明らかである。 From Tables 5 and 6 and FIG. 11, at 25 ° C. and 0 ° C., the liquid crystal display device 11 of Example 3 has a faster response than the liquid crystal display device 11 of Comparative Example 3, and particularly DUTY. It is clear that the difference becomes significant in driving.
実施例 4  Example 4
[0120] 本実施例では、液晶相溶性パラジウム 銀二元ナノ粒子含有液晶の全量に対して  [0120] In this example, the total amount of liquid crystal-compatible palladium-silver binary nanoparticles-containing liquid crystal
0. 05重量%の銀原子と、 0. 05重量%のパラジウム原子とを含むようにした以外は 、実施例 1と全く同一にして液晶(lb)を調製した。  A liquid crystal (lb) was prepared in exactly the same manner as in Example 1, except that 0.05% by weight of silver atoms and 0.05% by weight of palladium atoms were contained.
[0121] 次に、液晶(lb)を用いた以外は、実施例 1と全く同一にして、図 1に示す液晶表示 装置(STN— LCD) 1を作製した。また、実施例 1と全く同一にして、補償セルを作製 し、本実施例の液晶表示装置 1に積層した。そして、本実施例で作製した液晶表示 装置 1のノーマリーブラックモードにおける電圧一透過率特性 (駆動周波数依存性)を 、実施例 1と全く同一にして測定した。結果を図 12に示す。  [0121] Next, a liquid crystal display device (STN-LCD) 1 shown in Fig. 1 was produced in the same manner as in Example 1 except that the liquid crystal (lb) was used. In addition, a compensation cell was fabricated in exactly the same manner as in Example 1, and laminated on the liquid crystal display device 1 of this example. The voltage-transmittance characteristics (drive frequency dependence) in the normally black mode of the liquid crystal display device 1 produced in this example were measured in exactly the same way as in Example 1. The results are shown in FIG.
[0122] 図 12から、液晶相溶性パラジウム 銀二元ナノ粒子含有液晶の全量に対して、銀 の含有量が 0. 05重量%であるときには、図 2に示す場合(実施例 1、液晶相溶性パ ラジウム 銀二元ナノ粒子含有液晶の全量に対して、銀の含有量が 0. 02重量%)と 同様に駆動周波数依存性が低いことが明らかである。  [0122] From FIG. 12, when the silver content is 0.05% by weight with respect to the total amount of liquid crystal-compatible palladium-silver binary nanoparticles-containing liquid crystal, the case shown in FIG. 2 (Example 1, liquid crystal compatibility) It is clear that the drive frequency dependence is low as in the case of 0.02% by weight of silver with respect to the total amount of liquid crystal containing palladium binary nanoparticles.
実施例 5  Example 5
[0123] 本実施例では、液晶相溶性パラジウム 銀二元ナノ粒子含有液晶の全量に対して  [0123] In this example, the total amount of liquid crystal-compatible palladium-silver binary nanoparticle-containing liquid crystals was used.
0. 08重量%の銀原子と、 0. 02重量%のパラジウム原子とを含むようにした以外は 、実施例 1と全く同一にして液晶(Ic)を調製した。  A liquid crystal (Ic) was prepared in exactly the same manner as in Example 1, except that 0.08% by weight of silver atoms and 0.02% by weight of palladium atoms were contained.
[0124] 次に、液晶(Ic)を用いた以外は、実施例 1と全く同一にして、図 1に示す液晶表示 装置(STN— LCD) 1を作製した。また、実施例 1と全く同一にして、補償セルを作製 し、本実施例の液晶表示装置 1に積層した。そして、本実施例で作製した液晶表示 装置 1のノーマリーブラックモードにおける電圧一透過率特性 (駆動周波数依存性)を 、実施例 1と全く同一にして測定した。結果を図 13に示す。 Next, a liquid crystal display device (STN—LCD) 1 shown in FIG. 1 was produced in the same manner as in Example 1 except that the liquid crystal (Ic) was used. Also, a compensation cell was made exactly as in Example 1. Then, it was laminated on the liquid crystal display device 1 of this example. The voltage-transmittance characteristics (drive frequency dependence) in the normally black mode of the liquid crystal display device 1 produced in this example were measured in exactly the same way as in Example 1. The results are shown in FIG.
[0125] 図 13から、液晶相溶性パラジウム 銀二元ナノ粒子含有液晶の全量に対して、銀 の含有量が 0. 08重量%であるときには、図 12に示す場合に比較して、駆動周波数 依存性が高くなることが明らかである。 [0125] From FIG. 13, when the silver content is 0.08% by weight with respect to the total amount of liquid crystal-compatible palladium-silver binary nanoparticle-containing liquid crystals, it depends on the driving frequency compared to the case shown in FIG. It is clear that the nature is higher.
実施例 6  Example 6
[0126] 本実施例では、液晶相溶性パラジウム 銀二元ナノ粒子含有液晶の全量に対して 、 0. 04重量%の銀原子と、 0. 16重量%のパラジウム原子とを含むようにした以外は 、実施例 1と全く同一にして液晶(Id)を調製した。  [0126] In this example, except that the liquid crystal-compatible palladium silver binary nanoparticle-containing liquid crystal contains 0.04 wt% of silver atoms and 0.16 wt% of palladium atoms. A liquid crystal (Id) was prepared exactly as in Example 1.
[0127] 次に、液晶(Id)を用いた以外は、実施例 1と全く同一にして、図 1に示す液晶表示 装置(STN— LCD) 1を作製した。また、実施例 1と全く同一にして、補償セルを作製 し、本実施例の液晶表示装置 1に積層した。そして、本実施例で作製した液晶表示 装置 1のノーマリーブラックモードにおける電圧一透過率特性 (駆動周波数依存性)を 、実施例 1と全く同一にして測定した。結果を図 14に示す。  Next, a liquid crystal display device (STN—LCD) 1 shown in FIG. 1 was produced in the same manner as in Example 1 except that the liquid crystal (Id) was used. In addition, a compensation cell was fabricated in exactly the same manner as in Example 1, and laminated on the liquid crystal display device 1 of this example. The voltage-transmittance characteristics (drive frequency dependence) in the normally black mode of the liquid crystal display device 1 produced in this example were measured in exactly the same way as in Example 1. The results are shown in FIG.
[0128] 本実施例では、銀原子とパラジウム原子との重量比は実施例 1と同一の 1 : 4である  In this example, the weight ratio of silver atoms to palladium atoms is 1: 4, the same as in Example 1.
1S 銀原子、ノ ラジウム原子の絶対量が増加している。しかし、図 14から、液晶相溶 性パラジウム 銀二元ナノ粒子含有液晶の全量に対して、銀の含有量が 0. 04重量 %である本実施例では、図 2に示す場合と同様に駆動周波数依存性が低いことが明 らかである。  1S The absolute amount of silver and noradium atoms is increasing. However, from FIG. 14, it can be seen from this example that the silver content is 0.04 wt% with respect to the total amount of liquid crystal-compatible palladium-silver binary nanoparticle-containing liquid crystals, as in the case of FIG. It is clear that the dependency is low.
実施例 7  Example 7
[0129] 本実施例では、液晶相溶性パラジウム 銀二元ナノ粒子含有液晶の全量に対して 、 0. 08重量%の銀原子と、 0. 32重量%のパラジウム原子とを含むようにした以外は 、実施例 1と全く同一にして液晶(Ie)を調製した。  [0129] In this example, except that the liquid crystal-compatible palladium silver binary nanoparticle-containing liquid crystal contains 0.08% by weight of silver atoms and 0.32% by weight of palladium atoms with respect to the total amount of liquid crystals. A liquid crystal (Ie) was prepared in exactly the same manner as in Example 1.
[0130] 次に、液晶(Ie)を用いた以外は、実施例 1と全く同一にして、図 1に示す液晶表示 装置(STN— LCD) 1を作製した。また、実施例 1と全く同一にして、補償セルを作製 し、本実施例の液晶表示装置 1に積層した。そして、本実施例で作製した液晶表示 装置 1のノーマリーブラックモードにおける電圧一透過率特性 (駆動周波数依存性)を 、実施例 1と全く同一にして測定した。結果を図 15に示す。 Next, a liquid crystal display device (STN—LCD) 1 shown in FIG. 1 was produced in the same manner as in Example 1 except that the liquid crystal (Ie) was used. In addition, a compensation cell was fabricated in exactly the same manner as in Example 1, and laminated on the liquid crystal display device 1 of this example. The voltage-transmittance characteristics (driving frequency dependence) in the normally black mode of the liquid crystal display device 1 manufactured in this example were The measurement was performed exactly as in Example 1. The results are shown in FIG.
[0131] 本実施例では、銀原子とパラジウム原子との重量比は実施例 1と同一の 1 : 4である 力 銀原子、パラジウム原子の絶対量が実施例 6に比較してさらに増加し、液晶相溶 性パラジウム 銀二元ナノ粒子含有液晶の全量に対して、銀の含有量が 0. 08重量 %となっている。図 15から、本実施例の場合には、図 12, 14に示す場合に比較して 、駆動周波数依存性が高くなることが明らかである。  [0131] In this example, the weight ratio of silver atoms to palladium atoms is 1: 4, which is the same as in Example 1. The absolute amount of silver atoms and palladium atoms is further increased compared to Example 6, Liquid crystal compatible palladium The silver content is 0.08% by weight with respect to the total amount of liquid crystal containing silver binary nanoparticles. From FIG. 15, it is clear that the drive frequency dependency is higher in the case of the present embodiment than in the case shown in FIGS.
[0132] 前記実施例 4〜7により、液晶相溶性パラジウム 銀二元ナノ粒子含有液晶の駆動 周波数依存性を低くするためには、液晶相溶性パラジウム 銀二元ナノ粒子含有液 晶の全量に対して、銀の含有量が 0. 05重量%以下であることが好ましいことが明ら 力、である。  [0132] According to Examples 4 to 7, in order to lower the driving frequency dependency of the liquid crystal-compatible palladium-silver binary nanoparticle-containing liquid crystal, the total amount of liquid crystal-compatible palladium-silver binary nanoparticle-containing liquid crystal is It is apparent that the silver content is preferably 0.05% by weight or less.
参考例  Reference example
[0133] 本参考例では、まず、次のようにして、液晶相溶性パラジウム 銀二元ナノ粒子含 有液晶(以下、液晶 (III)と称する)を調製した。  In this reference example, first, a liquid crystal containing a liquid crystal-compatible palladium / silver binary nanoparticle (hereinafter referred to as liquid crystal (III)) was prepared as follows.
[0134] 石英製のシュレンク管に、 4, 一n ペンチルー 4 シァノビフエニル 0. 33g (l . 32 mmol)、テトラヒドロフラン 36. 7ml及び 2 プロパノール 10mlを加え、室温で攪拌し な力 Sら、 0. Olmmol/1過塩素酸銀のテトラヒドロフラン溶液 0. 66ml (銀原子として 0 . 0066mmol)及び 0. Olmmol/1酢酸パラジウムのテトラヒドロフラン溶液 2. 64ml (パラジウム原子として 0. 0264mmol)を順次添加して混合溶液を調製し、該混合溶 液を凍結脱気した。次に、反応系内をアルゴン雰囲気とし、 500W超高圧水銀灯(ゥ シォ電機株式会社製、商品名: UI 502Q)を用いて、紫外光を 2時間照射する操 作を 2回繰り返すことにより、黒褐色の均一な液晶相溶性パラジウム 銀二元ナノ粒 子分散液 100mlを得た。次に、得られた液晶相溶性パラジウム—銀二元ナノ粒子分 散液 71mlに複数種の液晶分子混合物(大日本インキ化学工業株式会社製 STN用 液晶、商品名: LC3) 34. 53gを添加し、減圧下で濃縮及び乾燥させて、灰色均一の 液晶(III) 4. 88g (含有全金属量; 4. 88mg)を得た。  [0134] To a Schlenk tube made of quartz, 0.33 g (l. 32 mmol) of 4, 1 n pentyl-4-cyanobiphenyl, 36.7 ml of tetrahydrofuran and 10 ml of 2 propanol were added, and stirring force at room temperature S et al., 0. Olmmol / 1 tetrahydrofuran solution of silver perchlorate 0.66 ml (0.0065 mmol as silver atom) and 0. Olmmol / 1 tetrahydrofuran solution of palladium acetate 2.64 ml (0.0264 mmol as palladium atom) were added in order, and the mixed solution was Prepared and freeze degassed the mixed solution. Next, the atmosphere inside the reaction system was set to an argon atmosphere, and the operation of irradiating with ultraviolet light for 2 hours was repeated twice using a 500 W ultra-high pressure mercury lamp (product name: UI 502Q). 100 ml of a uniform liquid crystal-compatible palladium-silver binary nanoparticle dispersion was obtained. Next, 34.53g of liquid crystal molecule mixture (liquid crystal for STN manufactured by Dainippon Ink & Chemicals, Inc., trade name: LC3) was added to 71ml of the liquid crystal compatible palladium-silver binary nanoparticle dispersion. The solution was concentrated and dried under reduced pressure to obtain 4.88 g of gray uniform liquid crystal (III) (total amount of metal contained; 4.88 mg).
[0135] 次に、液晶(III)を用いて、図 1に示す液晶表示装置(STN LCD) 1を作製し、特 性を評価した。  Next, a liquid crystal display device (STN LCD) 1 shown in FIG. 1 was prepared using liquid crystal (III), and the characteristics were evaluated.
[0136] 本参考例では、液晶表示装置(STN LCD) 1は、液晶(III)を用いた以外は、実 施例 1と全く同一にして作製した。 [0136] In this reference example, the liquid crystal display device (STN LCD) 1 was actually used except that the liquid crystal (III) was used. It was made exactly the same as Example 1.
[0137] 次に、上下基板 6a, 6b間の捩れ角力 240° の右捩れになるように処理すると共 に、液晶セル 7に液晶相溶性パラジウム 銀二元ナノ粒子を全く含まな!/、複数種の 液晶分子混合物(大日本インキ化学工業株式会社製 STN用液晶、商品名: LC3)を 封入した以外は、本実施例の液晶表示装置 1と全く同一にして補償セル(図示せず) を作製し、本実施例の液晶表示装置 1に積層した。液晶表示装置 1と補償セルとで は、セル中央の液晶分子のダイレクタ方向が直交するようにされている。  [0137] Next, the liquid crystal cell 7 does not contain any liquid crystal-compatible palladium-silver binary nanoparticles in addition to being processed so as to be right-twisted with a twist angle force of 240 ° between the upper and lower substrates 6a and 6b! A compensation cell (not shown) was prepared in exactly the same way as the liquid crystal display device 1 of this example, except that the liquid crystal molecule mixture (Dai Nippon Ink Chemical Co., Ltd. STN liquid crystal, product name: LC3) was sealed. Then, it was laminated on the liquid crystal display device 1 of this example. In the liquid crystal display device 1 and the compensation cell, the director directions of the liquid crystal molecules at the center of the cell are orthogonal to each other.
[0138] 次に、本参考例で作製した液晶表示装置 1のノーマリーブラックモードにおける電 圧-透過率特性 (駆動周波数依存性)を、実施例 1と全く同一にして測定した。結果を 図 16に示す。  [0138] Next, the voltage-transmittance characteristics (drive frequency dependence) in the normally black mode of the liquid crystal display device 1 produced in this reference example were measured in exactly the same manner as in Example 1. The results are shown in Figure 16.
[0139] また、本参考例で作製した液晶表示装置 1を用いて、ォォカミの画像を表示した。  [0139] Further, using the liquid crystal display device 1 produced in the present reference example, a wolf image was displayed.
結果を外観写真として図 17に示す。尚、このとき、液晶表示装置 1は前記補償セル に代えて補償フィルムを用いた。  The results are shown in Fig. 17 as an appearance photograph. At this time, the liquid crystal display device 1 used a compensation film instead of the compensation cell.
[0140] 次に、本参考例で作製した液晶表示装置 1の電圧 コントラスト特性を、実施例 1と 全く同一にして測定し、電圧 コントラスト特性から最適電圧(最大コントラストを得ら れる電圧)を求め、最適電圧でのレスポンス特性(1/64DUTY駆動)の測定を、 35〜85°Cの範囲の温度において行った。結果を表 7に示す。  [0140] Next, the voltage contrast characteristics of the liquid crystal display device 1 fabricated in this reference example were measured exactly the same as in Example 1, and the optimum voltage (voltage that could obtain the maximum contrast) was obtained from the voltage contrast characteristics. The response characteristics at the optimum voltage (1/64 DUTY drive) were measured at a temperature in the range of 35 to 85 ° C. The results are shown in Table 7.
[0141] 次に、本参考例で作製した液晶表示装置 1の液晶セル 7の顕微鏡写真を撮影した カ 該顕微鏡写真ではギャップコントロール剤を示す白点が観察されるだけであって 、金属ナノ粒子の凝集を示す黒点は観察されなかった。これは、本参考例で作製し た液晶表示装置 1の液晶セル 7では、金属ナノ粒子がほとんど凝集していないため、 顕微鏡でも観察できなレ、ためと考えられる。  [0141] Next, a microphotograph of the liquid crystal cell 7 of the liquid crystal display device 1 produced in the present reference example was taken. In the microphotograph, only white spots indicating a gap control agent were observed. No black spots indicating aggregation were observed. This is thought to be because the metal nanoparticles in the liquid crystal cell 7 of the liquid crystal display device 1 produced in this reference example are hardly aggregated and therefore cannot be observed with a microscope.
[0142] [表 7] 温度 駆動周波数 立上り時問 立下り時間 TO立上り時間 TO立 ]-'り時問 最適電 £h (。c) (Hz) Cms) (ma) tis) (V) [0142] [Table 7] Temperature Drive frequency Rising time Falling time TO Rising time TO Rising]-'During time Optimal power £ h (.c) (Hz) Cms) (ma) tis) (V)
1 000 1 3 3 7 6 6 09 6 1 764 8 6 1— 28 2 7. 0 1 000 1 3 3 7 6 6 09 6 1 764 8 6 1— 28 2 7. 0
- 3 0 300 1 1 6 2 0 9 96 7 1 3 540 1 0 26 0 1 . 4 -3 0 300 1 1 6 2 0 9 96 7 1 3 540 1 0 26 0 1 .4
1 00 1 2 2 6 7 4 84 0 1 84 5 7 5 0 70 1 6. 8 1 00 1 2 2 6 7 4 84 0 1 84 5 7 5 0 70 1 6. 8
1 000 3 2 6 3 3 25 0 44 8 9 3 32 9 1 7. 6 一 2 0 300 26 9 3 2 2 3 0 4 7 34 2 309 1 5. 4 1 000 3 2 6 3 3 25 0 44 8 9 3 32 9 1 7. 6 One 2 0 300 26 9 3 2 2 3 0 4 7 34 2 309 1 5. 4
1 00 2 5 00 1 44 9 4 54 8 1 53 7 1 4. 9 1 00 2 5 00 1 44 9 4 54 8 1 53 7 1 4. 9
1 000 9 8 2 2 54 1 600 26 9 1 4. 61 000 9 8 2 2 54 1 600 26 9 1 4. 6
0 300 9 3 2 2 30 1 70 6 244 1 4. 00 300 9 3 2 2 30 1 70 6 244 1 4. 0
1 0 0 9 1 0 258 1 744 2 79 1 3. 81 0 0 9 1 0 258 1 744 2 79 1 3. 8
1 000 2 7 1 1 0 5 44 5 1 1 2 1 3. 81 000 2 7 1 1 0 5 44 5 1 1 2 1 3. 8
2 5 300 2 7 9 1 0 7 4 5 8 1 1 6 1 3. 8 2 5 300 2 7 9 1 0 7 4 5 8 1 1 6 1 3. 8
1 00 2 3 5 7 5 40 7 79 1 5. 2 1 00 2 3 5 7 5 40 7 79 1 5. 2
1 000 1 24 9 ] 1 9 1 9 5 1 4. 01 000 1 24 9] 1 9 1 9 5 1 4.0
5 0 300 1 4 8 4 7 2 1 8 5 1 1 5. 8 5 0 300 1 4 8 4 7 2 1 8 5 1 1 5. 8
1 00 8 0 3 3 1 3 2 34 2 0. 0 1 00 8 0 3 3 1 3 2 34 2 0. 0
1 000 8 7 9 6 1 0 7 9 9 1 5. 21 000 8 7 9 6 1 0 7 9 9 1 5. 2
7 0 300 2 1 7 3 3 2 5 6 8 5 1 . 0 7 0 300 2 1 7 3 3 2 5 6 8 5 1 .0
1 00 5 5 1 9 7 6 20 2 5. 2 1 00 5 5 1 9 7 6 20 2 5. 2
1 000 94 8 7 1 0 6 90 1 6. 01 000 94 8 7 1 0 6 90 1 6. 0
8 0 300 1 94 3 3 2 2 3 36 2 0. 6 8 0 300 1 94 3 3 2 2 3 36 2 0. 6
1 00 5 5 1 9 6 1 20 2 8. 6 1 00 5 5 1 9 6 1 20 2 8. 6
1 00 0 1 4 7 5 7 1 6 9 6 0 1 6. 01 00 0 1 4 7 5 7 1 6 9 6 0 1 6. 0
8 5 300 1 9 7 3 6 2 2 1 38 2 1. 0 8 5 300 1 9 7 3 6 2 2 1 38 2 1. 0
1 00 5 5 1 9 6 1 20 2 9. 6 O立上り…電圧切換えから立上るまでの時間 TO立下り · · ·電圧切換えから立下るまでの時間 1 00 5 5 1 9 6 1 20 2 9. 6 O rising ... Time from voltage switching to rising TO falling time · · · Time from voltage switching to falling
図 16から、参考例の液晶(III)を用いる液晶表示装置 1では、印加電圧の増加に 伴い透過率も増加)ており、電圧により液晶表示装置 1の透過率 (表示)を制御可能で あること力 S明ら力、である。しかし、図 16では、駆動周波数を変えることにより、透過率 曲線が大幅にシフトしており、 DUTY駆動表示には適さないことが明らかである。  From FIG. 16, in the liquid crystal display device 1 using the liquid crystal (III) of the reference example, the transmittance increases as the applied voltage increases), and the transmittance (display) of the liquid crystal display device 1 can be controlled by the voltage. That power S clear power. However, in Fig. 16, it is clear that the transmittance curve is greatly shifted by changing the drive frequency, which is not suitable for DUTY drive display.
[0144] 前記 DUTY駆動表示につ!/、て、参考例の液晶(III)を用いる液晶表示装置 1では 、図 17に示すように、表示ムラが見られる。これは、 DUTY駆動では表示状態により 実効的に力、かる周波数が変化するため場所により Vthが変化し、前記表示ムラが生 じたあのと考免られる。 [0144] In the liquid crystal display device 1 using the liquid crystal (III) of the reference example for the DUTY drive display, display unevenness is seen as shown in FIG. In DUTY drive, the effective force and frequency change depending on the display state, so Vth changes depending on the location, and it is considered that the display unevenness occurred.
[0145] 次に、表 7と表 2との比較から、氷点下の低温であって、液晶分子が高粘度になる 領域では、参考例の液晶(III)を用いる液晶表示装置 1の方が、比較例 1の液晶表示 装置 1に比較して、レスポンス時間が 1/2〜2/3に短縮され、レスポンスがより高速 になることが明らかである。また、表 7と表 2との比較から、低温領域では、参考例の液 晶(III)を用いる液晶表示装置 1の方が、比較例 1の液晶表示装置 1に比較して、駆 動電圧 (表中の最適電圧に相当)が低ぐ消費電力を低減することができることが明ら かである。しかし、高温領域では、参考例の液晶(III)を用いる液晶表示装置 1の方 力 比較例 1の液晶表示装置 1に比較して、駆動電圧が高くなつている。  [0145] Next, from comparison between Table 7 and Table 2, the liquid crystal display device 1 using the liquid crystal (III) of the reference example is in the region where the liquid crystal molecules are highly viscous at a low temperature below freezing point. Compared with the liquid crystal display device 1 of Comparative Example 1, it is clear that the response time is shortened to 1/2 to 2/3 and the response is faster. Further, from comparison between Table 7 and Table 2, in the low temperature range, the liquid crystal display device 1 using the liquid crystal (III) of the reference example has a driving voltage higher than that of the liquid crystal display device 1 of Comparative Example 1. It is clear that low power consumption (corresponding to the optimum voltage in the table) can be reduced. However, in the high temperature range, the driving voltage of the liquid crystal display device 1 using the liquid crystal (III) of the reference example is higher than that of the liquid crystal display device 1 of the comparative example 1.
[0146] 尚、前記各実施例では、ノーマリーブラックモードについて説明しているが、ノーマ リーホワイトモードでも同様の作用効果を得ることができる。  In each of the above embodiments, the normally black mode has been described. However, similar effects can be obtained even in the normally white mode.
図面の簡単な説明  Brief Description of Drawings
[0147] [図 1]本発明の液晶表示装置の一構成例を示す説明的断面図。  FIG. 1 is an explanatory cross-sectional view showing a configuration example of a liquid crystal display device of the present invention.
[図 2]本発明の第 1の実施例の液晶表示装置における電圧一透過率特性を示すダラ フ。  FIG. 2 is a graph showing voltage-transmittance characteristics in the liquid crystal display device according to the first embodiment of the present invention.
[図 3]本発明の第 1の実施例の液晶表示装置に画像を表示したときの外観写真。  FIG. 3 is an external view photograph when an image is displayed on the liquid crystal display device of the first embodiment of the present invention.
[図 4]本発明の第 1の実施例の液晶表示装置に画像を表示し 10°Cで画像を切替 えた直後の外観写真。  FIG. 4 is an appearance photograph immediately after an image is displayed on the liquid crystal display device of the first embodiment of the present invention and the image is switched at 10 ° C.
[図 5]本発明の第 1の実施例の液晶表示装置の液晶セルの顕微鏡写真。  FIG. 5 is a micrograph of a liquid crystal cell of a liquid crystal display device according to a first embodiment of the present invention.
[図 6]本発明の第 1の実施例に対する比較例の液晶表示装置の液晶セルの顕微鏡 写真。 FIG. 6 shows a liquid crystal cell microscope of a liquid crystal display device of a comparative example with respect to the first embodiment of the present invention. Photo.
[図 7]本発明の第 2の実施例の液晶表示装置における電圧一透過率特性を示すダラ フ。  FIG. 7 is a graph showing voltage-transmittance characteristics in the liquid crystal display device according to the second embodiment of the present invention.
[図 8]本発明の第 2の実施例の液晶表示装置の液晶セルの顕微鏡写真。  FIG. 8 is a micrograph of a liquid crystal cell of a liquid crystal display device according to a second embodiment of the present invention.
[図 9]本発明の第 2の実施例に対する比較例の液晶表示装置の液晶セルの顕微鏡 写真。  FIG. 9 is a micrograph of a liquid crystal cell of a liquid crystal display device of a comparative example with respect to the second embodiment of the present invention.
[図 10]本発明の液晶表示装置の他の構成例を示す説明的断面図。  FIG. 10 is an explanatory cross-sectional view showing another configuration example of the liquid crystal display device of the present invention.
[図 11]本発明の第 3の実施例の液晶表示装置において DUTY駆動を行ったときの 応答性の温度依存性を示すグラフ。  FIG. 11 is a graph showing the temperature dependence of responsiveness when DUTY driving is performed in the liquid crystal display device according to the third embodiment of the present invention.
[図 12]本発明の第 4の実施例の液晶表示装置における電圧一透過率特性を示すグ ラフ。  FIG. 12 is a graph showing voltage-transmittance characteristics in the liquid crystal display device according to the fourth embodiment of the present invention.
[図 13]本発明の第 5の実施例の液晶表示装置における電圧一透過率特性を示すグ ラフ。  FIG. 13 is a graph showing voltage-transmittance characteristics in the liquid crystal display device of Example 5 of the present invention.
[図 14]本発明の第 6の実施例の液晶表示装置における電圧一透過率特性を示すグ ラフ。  FIG. 14 is a graph showing voltage-transmittance characteristics in a liquid crystal display device according to a sixth embodiment of the present invention.
[図 15]本発明の第 7の実施例の液晶表示装置における電圧一透過率特性を示すグ ラフ。  FIG. 15 is a graph showing voltage-transmittance characteristics in the liquid crystal display device according to the seventh embodiment of the present invention.
[図 16]本発明に対する参考例の液晶表示装置における電圧一透過率特性を示すグ ラフ。  FIG. 16 is a graph showing voltage-transmittance characteristics of a liquid crystal display device of a reference example according to the present invention.
[図 17]本発明に対する参考例の液晶表示装置に画像を表示したときの外観写真。 符号の説明  FIG. 17 is an external view photograph when an image is displayed on a liquid crystal display device of a reference example according to the present invention. Explanation of symbols
1 , 11 · · ·液晶表示装置、 2a, 2b…ガラス基板、 3a, 3b…透明電極膜、 4a, 4b …絶縁膜、 5a, 5b…配向膜、 6a, 6b…基板、 7· · ·液晶セル、 8 · · ·シール剤層 、 9· · ·導通材パターン、 10a, 10b…偏光板。  1, 11 ··· Liquid crystal display device, 2a, 2b… Glass substrate, 3a, 3b… Transparent electrode film, 4a, 4b… Insulating film, 5a, 5b… Alignment film, 6a, 6b… Substrate, 7 ··· Liquid crystal Cell, 8 ... sealant layer, 9 ... conductive material pattern, 10a, 10b ... polarizing plate.

Claims

請求の範囲  The scope of the claims
少なくとも 1種の液晶分子と、下記一般式(1)で表される第二級アルコールと、有機 溶媒とを混合して得られた混合溶液を還流させながら、少なくとも 1種の金属イオン溶 液を添加して反応させることによって得られる液晶相溶性粒子であって、該金属ィォ ンが還元されてなる金属ナノ粒子と、該金属ナノ粒子を核として該金属ナノ粒子の周 囲に結合している該液晶分子とからなる液晶相溶性粒子を含むことを特徴とする液 晶相溶性粒子含有液晶。
Figure imgf000035_0001
While refluxing a mixed solution obtained by mixing at least one liquid crystal molecule, a secondary alcohol represented by the following general formula (1), and an organic solvent, at least one metal ion solution is added. A liquid crystal compatible particle obtained by adding and reacting, a metal nanoparticle obtained by reducing the metal ion, and binding around the metal nanoparticle with the metal nanoparticle as a nucleus. Liquid crystal compatible particle-containing liquid crystal, comprising liquid crystal compatible particles comprising the liquid crystal molecules.
Figure imgf000035_0001
(式中、 R1及び R2は、同一または異なっていてもよい炭化水素基を示し、置換基を有 していても良い。なお、 R1及び R2は、互いに結合して環を形成していてもよい。 ) 請求項 1記載の液晶相溶性粒子含有液晶にお!/、て、 (Wherein R 1 and R 2 represent a hydrocarbon group which may be the same or different, and may have a substituent. R 1 and R 2 are bonded to each other to form a ring. In the liquid crystal containing liquid crystal compatible particles according to claim 1,
前記混合溶液は、 30〜200°Cの範囲の温度で還流されることを特徴とする液晶相 溶性粒子含有液晶。  Liquid crystal compatible particle-containing liquid crystal, wherein the mixed solution is refluxed at a temperature in the range of 30 to 200 ° C.
請求項 1記載の液晶相溶性粒子含有液晶にお!/、て、  In the liquid crystal containing liquid crystal compatible particles according to claim 1,
前記混合溶液は、 40〜150°Cの範囲の温度で還流されることを特徴とする液晶相 溶性粒子含有液晶。  Liquid crystal compatible particle-containing liquid crystal, wherein the mixed solution is refluxed at a temperature in a range of 40 to 150 ° C.
請求項 1記載の液晶相溶性粒子含有液晶にお!/、て、  In the liquid crystal containing liquid crystal compatible particles according to claim 1,
前記金属イオンは、 Au+、 Au3+、 Ag+、 Cu+、 Cu2+、 Ru2+、 Ru3+、 Ru4+、 Rh2+、 Rh3+、 Pd2+、 Pd4+、 Os4+、 Ir+、 Ir3+、 Pt2+、 Pt4+、 Fe2+、 Fe3+、 Co2+、 Co3+からな る群から選ばれる少なくとも 1種の金属イオンであることを特徴とする液晶相溶性粒子 含有液晶。 The metal ions are Au + , Au 3+ , Ag + , Cu + , Cu 2+ , Ru 2+ , Ru 3+ , Ru 4+ , Rh 2+ , Rh 3+ , Pd 2+ , Pd 4+ , Must be at least one metal ion selected from the group consisting of Os 4+ , Ir + , Ir 3+ , Pt 2+ , Pt 4+ , Fe 2+ , Fe 3+ , Co 2+ , Co 3+ Liquid crystal compatible particles containing liquid crystal.
請求項 1記載の液晶相溶性粒子含有液晶にお!/、て、  In the liquid crystal containing liquid crystal compatible particles according to claim 1,
前記液晶相溶性粒子は、パラジウム 銀二元ナノ粒子を核とすることを特徴とする 液晶相溶性粒子含有液晶。  The liquid crystal compatible particle-containing liquid crystal characterized in that the liquid crystal compatible particle has a palladium-silver binary nanoparticle as a nucleus.
請求項 5記載の液晶相溶性粒子含有液晶にお!/、て、  In the liquid crystal containing the liquid crystal compatible particles according to claim 5,!
前記パラジウム 銀二元ナノ粒子は、液晶相溶性粒子含有液晶全体に対して 0. 0 5重量%以下の量の銀を含有することを特徴とする液晶相溶性粒子含有液晶。 The palladium-silver binary nanoparticles are 0.0% of the total liquid crystal containing liquid crystal compatible particles. Liquid crystal-compatible particle-containing liquid crystal containing silver in an amount of 5% by weight or less.
[7] 請求項 1記載の液晶相溶性粒子含有液晶にお!/、て、 [7] The liquid crystal containing the liquid crystal compatible particles according to claim 1! /,
前記液晶相溶性粒子含有液晶は、該液晶相溶性粒子含有液晶全体に対して 0. 0 The liquid crystal containing liquid crystal compatible particles contains 0.0% of the total liquid crystal containing liquid crystal compatible particles.
01 - 0. 5重量%の範囲の量の前記液晶相溶性粒子を含有することを特徴とする液 晶相溶性粒子含有液晶。 A liquid crystal-compatible particle-containing liquid crystal comprising the liquid crystal-compatible particle in an amount ranging from 01 to 0.5% by weight.
[8] 請求項 1記載の液晶相溶性粒子含有液晶にお!/、て、  [8] The liquid crystal containing the liquid crystal compatible particles according to claim 1! /,
前記液晶相溶性粒子含有液晶は、該液晶相溶性粒子含有液晶全体に対して 0. 0 The liquid crystal containing liquid crystal compatible particles contains 0.0% of the total liquid crystal containing liquid crystal compatible particles.
02- 0. 2重量%の範囲の量の前記液晶相溶性粒子を含有することを特徴とする液 晶相溶性粒子含有液晶。 02- 0. A liquid crystal compatible particle-containing liquid crystal comprising the liquid crystal compatible particle in an amount in the range of 2% by weight.
[9] 少なくとも 1種の液晶分子と、下記一般式(1)で表される第二級アルコールと、有機 溶媒とを混合して得られた混合溶液を還流させながら、少なくとも 1種の金属イオン溶 液を添加して反応させることによって得られる液晶相溶性粒子であって、該金属ィォ ンが還元されてなる金属ナノ粒子と、該金属ナノ粒子を核として該金属ナノ粒子の周 囲に結合している該液晶分子とからなる液晶相溶性粒子を含む液晶相溶性粒子含 有液晶が封入された液晶セルを備えることを特徴とする液晶表示装置。
Figure imgf000036_0001
[9] While refluxing a mixed solution obtained by mixing at least one liquid crystal molecule, a secondary alcohol represented by the following general formula (1), and an organic solvent, at least one metal ion Liquid crystal compatible particles obtained by adding and reacting a solution, metal nanoparticles obtained by reducing the metal ions, and the metal nanoparticles as a nucleus around the metal nanoparticles. A liquid crystal display device comprising: a liquid crystal cell in which a liquid crystal containing liquid crystal compatible particles containing liquid crystal compatible particles composed of the liquid crystal molecules bonded to each other is enclosed.
Figure imgf000036_0001
(式中、 R1及び R2は、同一または異なっていてもよい炭化水素基を示し、置換基を有 していても良い。なお、 R1及び R2は、互いに結合して環を形成していてもよい。 ) [10] 請求項 9記載の液晶表示装置にお!/、て、 (Wherein R 1 and R 2 represent a hydrocarbon group which may be the same or different, and may have a substituent. R 1 and R 2 are bonded to each other to form a ring. ) [10] In the liquid crystal display device according to claim 9,! /,
前記液晶セルは、前記液晶相溶性粒子含有液晶と共にカイラル剤を含むことを特 徴とする液晶表示装置。  The liquid crystal display device, wherein the liquid crystal cell includes a chiral agent together with the liquid crystal compatible particle-containing liquid crystal.
[11] 請求項 9記載の液晶表示装置において、 [11] The liquid crystal display device according to claim 9,
前記液晶セルにおける前記液晶相溶性粒子含有液晶のツイスト角は 180〜270° の範囲の角度であることを特徴とする液晶表示装置。  The liquid crystal display device, wherein the liquid crystal cell has a twist angle of the liquid crystal compatible particle-containing liquid crystal in the range of 180 to 270 °.
[12] 請求項 9記載の液晶表示装置におレ、て、 [12] In the liquid crystal display device according to claim 9,
前記液晶相溶性粒子は、パラジウム 銀二元ナノ粒子を核とすることを特徴とする 液晶表示装置。 The liquid crystal compatible particles are characterized by having palladium-silver binary nanoparticles as nuclei. Liquid crystal display device.
[13] 請求項 12記載の液晶表示装置において、 [13] The liquid crystal display device according to claim 12,
前記パラジウム 銀二元ナノ粒子は、前記液晶相溶性粒子含有液晶全体に対して 0. 05重量%以下の量の銀を含有することを特徴とする液晶表示装置。  The palladium silver binary nanoparticles contain 0.05% by weight or less of silver with respect to the whole liquid crystal compatible particle-containing liquid crystal.
[14] 請求項 9記載の液晶表示装置にお!/、て、 [14] In the liquid crystal display device according to claim 9,! /,
前記液晶相溶性粒子含有液晶は、該液晶相溶性粒子含有液晶全体に対して 0. 0 The liquid crystal containing liquid crystal compatible particles contains 0.0% of the total liquid crystal containing liquid crystal compatible particles.
01 - 0. 5重量%の範囲の量の前記液晶相溶性粒子を含有することを特徴とする液 曰日 不¾¾11_。 01 to 0.5% by weight of the liquid crystal-compatible particles in an amount ranging from 5 to 5% by weight.
[15] 請求項 9記載の液晶表示装置にお!/、て、  [15] In the liquid crystal display device according to claim 9,! /,
前記液晶相溶性粒子含有液晶は、該液晶相溶性粒子含有液晶全体に対して 0. 0 The liquid crystal containing liquid crystal compatible particles contains 0.0% of the total liquid crystal containing liquid crystal compatible particles.
02- 0. 2重量%の範囲の量の前記液晶相溶性粒子を含有することを特徴とする液 曰日 不¾¾11_。 02- 0. A liquid deficiency characterized in that it contains the liquid crystal compatible particles in an amount in the range of 2% by weight.
[16] 請求項 9記載の液晶表示装置におレ、て、  [16] The liquid crystal display device according to claim 9, wherein
DUTY駆動を用いるドットマトリクスパネルであることを特徴とする液晶表示装置。  A liquid crystal display device characterized by being a dot matrix panel using DUTY drive.
[17] 請求項 9記載の液晶表示装置におレ、て、 [17] In the liquid crystal display device according to claim 9,
スーパーツイストネマテイク LCD、ツイストネマテイク LCD、インプレーンスィッチン グ LCD、ゲストホスト型 LCD、ポリマーネットワーク型 LCDからなる群から選択される 1種の液晶表示装置であることを特徴とする液晶表示装置。  A liquid crystal display device characterized by being a liquid crystal display device selected from the group consisting of a super twist nematic LCD, a twist nematic LCD, an in-plane switching LCD, a guest host LCD, and a polymer network LCD .
[18] 請求項 9記載の液晶表示装置にお!/、て、 [18] In the liquid crystal display device according to claim 9,! /,
スーパーツイストネマテイクモードまたはツイストネマテイクモードによる単純マトリク ス表示装置であることを特徴とする液晶表示装置。  A liquid crystal display device characterized by being a simple matrix display device in a super twist nematic take mode or a twist nematic take mode.
[19] 請求項 9記載の液晶表示装置にお!/、て、 [19] In the liquid crystal display device according to claim 9,! /,
ツイストネマテイクモードまたはインプレーンスイッチングモードによるアクティブマト リクス表示装置であることを特徴とする液晶表示装置。  A liquid crystal display device characterized by being an active matrix display device using a twisted nematic mode or an in-plane switching mode.
PCT/JP2007/070897 2006-10-30 2007-10-26 Liquid crystal containing liquid-crystal-compatible particles and liquid-crystal display WO2008053800A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006293706A JP5019847B2 (en) 2006-10-30 2006-10-30 Liquid crystal compatible particle-containing liquid crystal and liquid crystal display device
JP2006-293706 2006-10-30

Publications (1)

Publication Number Publication Date
WO2008053800A1 true WO2008053800A1 (en) 2008-05-08

Family

ID=39344140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070897 WO2008053800A1 (en) 2006-10-30 2007-10-26 Liquid crystal containing liquid-crystal-compatible particles and liquid-crystal display

Country Status (3)

Country Link
JP (1) JP5019847B2 (en)
TW (1) TW200833823A (en)
WO (1) WO2008053800A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042748A (en) * 2009-08-21 2011-03-03 Osaka Univ Nanoparticle dispersed liquid crystal, method for producing the same and liquid crystal display

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200740961A (en) * 2006-01-31 2007-11-01 Ube Industries Dispersions containing liquid crystal compatible particles, pastes prepared therefrom, and processes for production of both
JP6069197B2 (en) * 2010-07-15 2017-02-01 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung Liquid crystal display with liquid crystal medium and polymer stabilized homeotropic alignment
US9234135B2 (en) * 2010-08-19 2016-01-12 Merck Patent Gmbh Liquid-crystalline medium and liquid-crystal displays
CN102681329A (en) * 2012-04-28 2012-09-19 光峰光电(无锡)有限公司 High-efficient single stereoscopic projection system
JP2015105348A (en) * 2013-11-29 2015-06-08 学校法人東京理科大学 Liquid crystal composition

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149683A (en) * 2001-08-31 2003-05-21 Naoki Toshima Liquid crystal compatible particle, method for manufacturing the same, and liquid crystal display device
JP2004347618A (en) * 2003-04-14 2004-12-09 Dainippon Printing Co Ltd High-speed response liquid crystal element and method for driving same
WO2007088826A1 (en) * 2006-01-31 2007-08-09 Ube Industries, Ltd. Dispersions containing liquid crystal compatible particles, pastes prepared therefrom, and processes for production of both

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006291016A (en) * 2005-04-08 2006-10-26 Nano Opt Kenkyusho:Kk Liquid crystal compatible nanorod, method for producing the same, liquid crystal medium, and liquid crystal element
JP5303868B2 (en) * 2006-06-06 2013-10-02 宇部興産株式会社 Liquid crystal compatible particles containing nickel, pastes thereof, and methods for producing them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003149683A (en) * 2001-08-31 2003-05-21 Naoki Toshima Liquid crystal compatible particle, method for manufacturing the same, and liquid crystal display device
JP2004347618A (en) * 2003-04-14 2004-12-09 Dainippon Printing Co Ltd High-speed response liquid crystal element and method for driving same
WO2007088826A1 (en) * 2006-01-31 2007-08-09 Ube Industries, Ltd. Dispersions containing liquid crystal compatible particles, pastes prepared therefrom, and processes for production of both

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011042748A (en) * 2009-08-21 2011-03-03 Osaka Univ Nanoparticle dispersed liquid crystal, method for producing the same and liquid crystal display

Also Published As

Publication number Publication date
JP2008111009A (en) 2008-05-15
TW200833823A (en) 2008-08-16
JP5019847B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
TWI794367B (en) Liquid crystal composition and liquid crystal display element
EP3443050B1 (en) Composition for nanoencapsulation and nanocapsules comprising a liquid-crystalline medium
CN103958644B (en) Nematic liquid-crystal composition and the liquid crystal display device employing said composition
CN101712874B (en) Large optical anisotropic liquid crystal composition
US20080106689A1 (en) Display Element And Display Device
WO2008053800A1 (en) Liquid crystal containing liquid-crystal-compatible particles and liquid-crystal display
Chen et al. A polymer microsphere-filled cholesteric-liquid crystal film with bistable electro-optical characteristics
US20170336663A1 (en) Bistable liquid crystal dispersion devices comprising metal-organic mesogens and applications thereof
US20170357131A1 (en) Light modulation element
CN103180410A (en) Liquid crystal composition containing polymerizable compound, and liquid crystal display element utilizing same
CN110325621A (en) Liquid-crystal composition and liquid crystal display element
WO2004092302A1 (en) Particle compatible with liquid crystal, its manufacturing method, and liquid crystal device
JP2013166950A (en) Liquid crystal composition
WO2018078078A1 (en) Nanocapsules comprising a liquid-crystalline medium
US10793776B2 (en) Compositions comprising functionalized polyvinyl alcohol and nanocapsules containing a liquid crystalline medium
WO2018189068A1 (en) Composition for nanoencapsulation and nanocapsules comprising a liquid-crystalline medium
CN106281361B (en) Polymer network liquid crystal display
KR20100112592A (en) Small scale functional materials
CN104531164A (en) High molecular reinforced negative cholesteric phase mixed liquid crystal material and application method thereof
CN104974766A (en) High-clearing-point and high-refractive-index anisotropic negative liquid crystal composition and application thereof
JP5566109B2 (en) Liquid crystal display
JP2009025485A (en) Liquid crystal display device
CN112433403A (en) Light modulation device
He et al. A study on electro-optical properties of polymer dispersed liquid crystal films with thiol-isocyanate-ene ternary network prepared by nucleophile-initiated thiol-ene click reaction and thiol-isocyanate coupling reaction
JP2009025484A (en) Liquid-crystal-compatible particle-containing liquid crystal, and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830631

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830631

Country of ref document: EP

Kind code of ref document: A1