WO2008053724A1 - Liquid crystal display device and television receiver - Google Patents

Liquid crystal display device and television receiver Download PDF

Info

Publication number
WO2008053724A1
WO2008053724A1 PCT/JP2007/070472 JP2007070472W WO2008053724A1 WO 2008053724 A1 WO2008053724 A1 WO 2008053724A1 JP 2007070472 W JP2007070472 W JP 2007070472W WO 2008053724 A1 WO2008053724 A1 WO 2008053724A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
liquid crystal
pixel
crystal display
sub
Prior art date
Application number
PCT/JP2007/070472
Other languages
French (fr)
Japanese (ja)
Inventor
Akiyoshi Fujii
Kazuhiko Tsuda
Akira Sakai
Kyoko Azumada
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2008053724A1 publication Critical patent/WO2008053724A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133611Direct backlight including means for improving the brightness uniformity

Definitions

  • the present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device and a television receiver that improve contrast.
  • a liquid crystal display device as one type of flat panel display has a liquid crystal panel that controls image display and a backlight that illuminates the liquid crystal panel because the liquid crystal panel itself does not emit light. is doing.
  • the knock light is always turned on, and the amount of transmitted light is controlled by a liquid crystal panel placed on the light emitting side of the backlight.
  • polarizing plates are respectively arranged on the front and back sides of the liquid crystal panel, and light emitted from the backlight on the back side is linearly passed through the polarizing plates on the incident side, that is, on the back side of the liquid crystal panel. This light is polarized, and this light is modulated for each pixel by a liquid crystal panel and then analyzed by a polarizing plate on the output side.
  • the display quality of the black display is determined by how efficiently the light from the backlight is absorbed by the two polarizing plates placed on the front and back of the liquid crystal panel.
  • Patent Documents 1 and 2 have backlight units that use LEDs as light sources, and each adjusts the light according to the corresponding image area.
  • the display quality is improved by dimming.
  • Patent Document 1 Japanese Publication “JP 2002-99250 A (Publication Date: April 5, 2002)”
  • Patent Document 2 Japanese publication “JP 2002-91385 gazette (publication date: March 27, 2002)”
  • Patent Document 3 US (US) Published Patent Gazette “Patent No. 6927908 (Registration Date: August 9, 2005)”
  • Patent Document 4 Japanese Patent Publication “Japanese Unexamined Patent Publication No. 6-27412” (Publication Date: February 4, 1994) Disclosure of Invention
  • the luminous efficiency of the LED is increased, the number of LEDs required to obtain the required luminance can be reduced, but the luminance distribution on the backlight exit surface must be averaged. Furthermore, it is necessary to increase the distance between the light emitting part of the LED and the light irradiation surface of the backlight. Therefore, there arises a problem that the thickness of the entire backlight becomes thicker than that of a backlight using a conventional fluorescent tube.
  • the irradiation area of one LED is made a square, and this square unit is spread out, so when there is a difference in brightness between adjacent square units.
  • a luminance boundary appears at the unit boundary, and this luminance boundary appears as a spot on the image display screen.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a dimming function and a thin backlight unit, and to balance the luminance distribution on the light exit surface of the backlight. And providing a liquid crystal display device capable of improving image display quality.
  • a liquid crystal display device includes a liquid crystal display device including an image display panel including a liquid crystal display panel and a light source that irradiates the liquid crystal display panel.
  • a transmissive liquid crystal display panel is provided between the image display panel and the light source, and the gradation display is performed based on the luminance information included in the video signal input to the image display panel. It is characterized by the fact that a light panel is provided! /!
  • liquid crystal display panel for image display is also simply referred to as an image display panel
  • liquid crystal display panel for dimming is also simply referred to as a dimming panel.
  • the transmissive liquid crystal display panel is provided between the image display panel and the light source, and the luminance information included in the video signal input to the image display panel is displayed. Since the light control panel that performs gradation display is provided, the light emitted from the light source passes through the light adjustment panel that performs gradation display and is applied to the image display panel. It will be.
  • a dimming function is provided by the dimming panel even when there is no dimming function like a backlight unit of a fluorescent tube. A high-quality image can be obtained by using a simple backlight.
  • the thickness of the entire backlight unit can be made very thin and inexpensive, about the diameter of the fluorescent tube.
  • the size of the pixels constituting the dimming panel is larger than the size of the pixels constituting the image display panel!
  • the light transmitted through the pixels of the light control panel is surely applied to the corresponding pixels of the image display panel.
  • the corresponding pixel of the image display panel is surely shielded. Therefore, in the image display panel, white can be made white and black can be made black, so that the contrast can be sufficiently increased.
  • the pixels constituting the light control panel have a polygonal shape in which pixel electrodes constituting adjacent pixels are adjacent to each other!
  • the pixel electrodes constituting the adjacent pixels have a polygonal shape that is adjacent to each other at the sides, the adjacent pixels surrounding one pixel must always pass through the boundary line in both the horizontal and diagonal directions. Because it does not touch at a point, it is easy to adjust the halftone so that the change in brightness is smooth.
  • the pixels constituting the light control panel are preferably hexagonal.
  • the boundary between the pixels is preferably an uneven shape.
  • the boundary between the pixels is in a state where a part of each pixel is inserted.
  • the luminance distribution at the pixel boundary can be smoothed.
  • the power distribution S can be achieved with a luminance distribution that does not give a sense of incongruity.
  • the uneven shape includes a zigzag shape, a wave shape, and the like.
  • the light control panel is driven by a segment in which a signal wiring for supplying a drive signal for driving the pixel electrode is directly connected to a pixel electrode constituting the pixel. It is preferable that the drive system.
  • the segment drive method does not require a switching element such as a transistor and a control circuit for controlling the switching element, so that the light control panel can be manufactured at low cost.
  • the pixel boundary is a portion between adjacent pixels, and the distance is the pixel boundary line width.
  • the pixel boundary is the pixel boundary
  • the pixel boundary line width is the pixel boundary line.
  • the dimming panel when the dimming panel is driven in the normally black mode and adjacent pixels display white, only the pixels are displayed black, so that the image display panel is configured.
  • the aperture ratio of the pixel is lowered and the influence on the display is increased.
  • the distance between the pixels of the dimming panel is at least shorter than the length in the short-side direction of the pixels configured in the image display panel, so that the pixels have an opening area of the pixel of the image display panel. It is possible to reduce the proportion of the pixel area, and to suppress a decrease in the aperture ratio of the pixel. As a result, it is possible to eliminate the deterioration in display quality due to a decrease in the aperture ratio of the pixels.
  • Each pixel of the dimming panel is connected with a signal wiring for supplying a driving signal to the pixel, and the line width of the signal wiring is the image display panel. It is preferable that the length of each pixel is shorter than the length in the short side direction of the pixel! /.
  • the width of the signal wiring is smaller than the size of the pixel configured in the image display panel, but the width of the signal wiring is narrow.
  • a desired resistance value cannot be obtained for the signal wiring, and the pixel cannot be driven normally.
  • each pixel of the dimming panel is connected to two or more signal wirings, so that the resistance value of the wiring necessary for driving each pixel can be obtained. Can be driven normally.
  • the width of the signal wiring can be made narrower than in the case of one signal wiring for driving the pixel.
  • the width of each signal line can be narrowed, so that it is possible to further suppress the decrease in the aperture ratio of the pixel.
  • the signal wiring connected to each pixel is in a state of being drawn out from the driving driver at the shortest distance. For this reason, the closer to the driver for driving, the more signal wiring passes over the pixel, and the number of signal wiring passing over the pixel decreases as the distance from the driving driver decreases, so the signal wiring occupies each pixel.
  • the ratio is different. That is, each pixel has a different aperture ratio, which may cause a reduction in image display quality.
  • the dummy wiring is formed to have the same length as each signal wiring.
  • the aperture ratio in each pixel can be made the same.
  • a scattering plate for scattering light is provided between the image display panel and the light control panel.
  • the light emitted from the light control panel can be scattered to smooth the luminance change in the image display panel, that is, it can be reduced.
  • the scattering plate is disposed so as to be spaced from the light control panel!
  • a television receiver of the present invention includes a tuner unit that receives a television broadcast, and a liquid crystal display device that displays the television broadcast received by the tuner unit, and the liquid crystal display device includes: The liquid crystal display device described above is applied.
  • the image display panel and the light control panel have two different functions and configurations. Panel is required. In this way, when manufacturing a liquid crystal display device having an image display panel and a dimming panel having different functions and configurations, the panel manufacturing process uses different substrates but the same size. Will produce more panels.
  • the light control panel is configured by connecting a plurality of sub-panels. This is because the dimming panel is on the back surface and is not directly seen by the observer, so even if the sub-panels are joined together, the boundary can be made inconspicuous. This also means that the dimming panel can be manufactured by using existing lines for manufacturing other panels or simple lines, and combining the completed panels.
  • the liquid crystal display panel of the existing size is used for manufacturing the light control panel.
  • the production line of the display device can be used effectively and efficiently. Therefore, the liquid crystal display device of the present invention is particularly effective for a line for manufacturing a large-sized liquid crystal display device with a large capital investment.
  • the light control panel further includes a substrate, and the plurality of sub-panels are attached to the substrate adjacent to each other! /.
  • each boundary between adjacent pixels constituting the light control panel has an uneven shape.
  • the power S can be obtained by making the luminance distribution without a sense of incongruity.
  • the uneven shape includes a zigzag shape, a wave shape, and the like.
  • the boundary between the plurality of sub-panels is provided at a position different from the boundary of the pixels constituting the light control panel.
  • the boundary between the plurality of sub-panels includes a liquid crystal seal line in the sub-panel in which liquid crystal is sealed, an end (cut portion) of the sub-panel, and the like.
  • the boundary of the sub-panel is provided at a position different from the pixel boundary.
  • the shape of the boundary between the sub-panels can be a simple shape. For this reason, multiple sub-panels that do not impair the wrinkle effect due to the uneven shape of the pixel boundary are connected together. A large dimming panel can be formed.
  • the pixels constituting the light control panel have a hexagonal shape, and the center of the hexagonal pixel is
  • the sub panels are connected to each other so that a line obtained by connecting the apexes of the hexagons is a boundary between the plurality of sub panels.
  • the pixels constituting the light control panel have a polygonal shape in which adjacent pixels are adjacent to each other on the sides.
  • the shape of the pixel is a polygonal shape in which adjacent pixels are adjacent to each other on the side, the adjacent pixels surrounding one pixel must be bounded in both the horizontal and diagonal directions. Since the pixels are arranged via a line and the pixels do not touch each other at a point, it is possible to easily adjust the halftone so that the luminance change is smooth.
  • the pixels constituting the light control panel preferably have a hexagonal shape.
  • the driving method of the light control panel is preferably a segment driving method.
  • the light control panel can be manufactured at low cost.
  • a scattering plate for scattering light is provided between the image display panel and the light control panel.
  • the light emitted from the light control panel can be scattered to smooth the luminance change in the image display panel, that is, it can be reduced.
  • the scattering plate is arranged so as to be separated from the light control panel! [0076] According to the above configuration, by disposing the scattering plate away from the light control panel, it is possible to prevent diffusion of the polarized light emitted from the image display panel from being disturbed by the scattering plate. Use the power S to get the effect.
  • a television receiver of the present invention includes a tuner unit that receives a television broadcast, and the liquid crystal display device according to any one of the above that displays the television broadcast received by the tuner unit. It is characterized by that!
  • the provision of the above-described liquid crystal display device makes it possible to provide a television receiver with improved display quality.
  • the liquid crystal display device is a liquid crystal display device including an image display panel including a liquid crystal display panel and a light source that emits light from the back side of the liquid crystal display panel.
  • a transmissive liquid crystal display panel is provided between the image display panel and the light source, and gradation display is performed based on luminance information included in a video signal input to the image display panel.
  • a light control panel is provided.
  • the light source is a backlight
  • the cost and thickness necessary to obtain the same brightness in the backlight can be made cheaper and thinner than when the LED is used.
  • the liquid crystal display device includes a transmissive liquid crystal display panel between the image display panel and the light source, and is included in the video signal input to the image display panel.
  • a dimming panel is provided that performs gradation display based on luminance information to be displayed.
  • the dimming panel includes a plurality of sub-panels, and the size of the pixels constituting the sub-panel is determined by the image display. The size of the pixels that make up the panel is larger! /, And the multiple sub-panels are connected together! /
  • the image display quality can be improved by improving the contrast without causing the above-described problems that occur when an LED is used as a light source, and the display device can be improved. It is possible to provide a liquid crystal display device that can be efficiently manufactured even when the size is increased.
  • FIG. 1, showing an embodiment of the present invention is a perspective view showing a main configuration of a liquid crystal display device It is.
  • FIG. 2 A schematic cross-sectional view of the liquid crystal display device shown in FIG.
  • FIG. 3 is a diagram showing a display example of the image display panel shown in FIG.
  • FIG. 5 is a graph showing the relationship between the penetration distance between the pixels in the arrangement state shown in FIG. 4 and the luminance.
  • FIG. 8 A diagram showing a pixel structure of the light control panel and an example of wiring to the pixels.
  • FIG. 9 is a cross-sectional view taken along the line AA of the light control panel shown in FIG. 8 (b).
  • FIG. 11 A schematic block diagram showing a drive circuit for driving the liquid crystal display device of the present invention.
  • FIG. 12 is a schematic configuration diagram showing an example of a liquid crystal projector device using the liquid crystal display device of the present invention.
  • FIG. 13 is a schematic configuration diagram showing another example of a liquid crystal projector device using the liquid crystal display device of the present invention.
  • Fig. 15 is a diagram showing the relationship between the pixels of the light control panel and the wiring.
  • FIG. 17 is a cross-sectional view of the pixel shown in FIG.
  • FIG. 18 is a diagram illustrating a relationship between a pixel of the light control panel and a drive driver.
  • FIG. 19 is a cross-sectional view of the pixel shown in FIG.
  • FIG. 19 is a cross-sectional view taken along the line DD of the pixel shown in FIG.
  • FIG. 21 A diagram showing a manufacturing process of the light control panel.
  • FIG. 22 is a perspective view showing a schematic configuration of a liquid crystal display device according to another embodiment of the present invention.
  • FIG. 23 is a cross-sectional view taken along the line EE of the liquid crystal display device shown in FIG.
  • FIG. 24 A schematic diagram showing the configuration of the light control panel provided in the liquid crystal display device shown in FIG. 22.
  • FIG. 25 is a diagram showing a pixel structure of a sub-panel constituting the light control panel and an example of wiring to the pixels. .
  • FIG. 26 is a cross-sectional view taken along line FF of the sub-panel shown in FIG. 25 (b).
  • Fig. 27 is a plan view of a sub-panel constituting the light control panel.
  • Fig. 29 is a schematic diagram showing the shape of the boundary of the sub-panel.
  • FIG. 30 is a schematic diagram showing how sub-panels having boundaries shown in FIG. 29 are joined together.
  • 31 (a)] is a partial cross-sectional view showing a cross-sectional configuration of a light control panel formed by connecting two sub-panels by a first method and a polarizing plate.
  • 31 (b)] is a partial plan view schematically showing the state of the surface of the light control panel shown in FIG. 31 (a).
  • 32 (a)] is a partial cross-sectional view showing a cross-sectional configuration of a light control panel formed by connecting two sub-panels by a second method and a polarizing plate.
  • 32 (b)] is a partial plan view schematically showing the state of the surface of the light control panel shown in FIG. 32 (a).
  • FIG. 33 is a schematic diagram showing the nomination of the light control panel constituting the liquid crystal display device of the present invention.
  • FIG. 34 is a schematic diagram showing an example of a pixel shape of a light control panel and a panel boundary shape of a sub-panel.
  • FIG. 35 is a schematic block diagram of a television receiver including the liquid crystal display device of the present invention.
  • FIG. 36 is a block diagram showing the relationship between the tuner unit and the liquid crystal display device in the television receiver shown in FIG.
  • FIG. 37 is an exploded perspective view of the television receiver shown in FIG.
  • Embodiment 1 An embodiment of the present invention will be described as follows.
  • the liquid crystal display device has a structure in which a light control panel 1 is arranged between an image display panel 2 and a knock light unit 3.
  • a light control panel 1 is arranged between an image display panel 2 and a knock light unit 3.
  • illustration of an optical film such as a light diffusion plate provided in the backlight unit 3 is omitted.
  • the dimming panel 1 is composed of a display panel composed of a plurality of pixels 20 each independently performing grayscale display including halftone display.
  • the pixel 20 of the light control panel 1 has a larger area than the pixel (not shown) of the image display panel 2.
  • the pixel 20 is arranged in a precise manner based on a hexagon so that the pixels 20 in the diagonal direction are adjacent to each other.
  • borders are not necessarily touched by adjacent pixels, and it is easy to adjust the halftone so that the luminance changes smoothly.
  • the image display panel 2 is a liquid crystal display panel having an image display surface 2a in which a plurality of pixels (not shown) are arranged in a matrix.
  • a scattering plate 71 is installed between the image display panel 2 and the light control panel 1.
  • the scattering plate 71 scatters the light transmitted through the light control panel 1 so as to obscure the display boundary of the light control panel 1.
  • the scattering plate 71 is preferably installed on the side close to the image display panel 2 with this interval.
  • the power of the scatter plate 71 installed between the panels can be further enhanced. Therefore, there is an advantage that the diffusion effect can be obtained while suppressing that the polarized light emitted from the dimming panel 1 is disturbed by the scattering plate 71.
  • the backlight unit 3 uses a plurality of fluorescent lamps as light sources, a surface facing the image display panel 2 as a light exit surface 3a, and light from the light exit surface 3a toward the image display panel 2. It comes to irradiate.
  • the light control panel 1 includes the image display panel 2 and the backlight unit.
  • a liquid crystal layer 4 sandwiched between two substrates, a polarizing plate 5 on the knock light unit 3 side, and a polarizing plate 5 on the light incident side of the image display panel 2
  • the panel configuration is capable of gray scale display.
  • the image display panel 2 is a liquid crystal display panel in which a liquid crystal layer 4 is provided between glass substrates 201 and 202 and a plurality of pixels (not shown) are arranged in a matrix.
  • Glass substrate 201 2 is a liquid crystal display panel in which a liquid crystal layer 4 is provided between glass substrates 201 and 202 and a plurality of pixels (not shown) are arranged in a matrix.
  • Glass substrate 201 2 is a liquid crystal display panel in which a liquid crystal layer 4 is provided between glass substrates 201 and 202 and a plurality of pixels (not shown) are arranged in a matrix.
  • Glass substrate 201 2 is a liquid crystal display panel in which a liquid crystal layer 4 is provided between glass substrates 201 and 202 and a plurality of pixels (not shown) are arranged in a matrix.
  • Glass substrate 201 2 is a liquid crystal display panel in which a liquid crystal layer 4 is provided between glass substrates 201 and 202 and a plurality of pixels (not shown) are arranged in
  • the polarizing plate on the exit side (the side opposite to the backlight unit 3 side) of the dimming panel 1 can also serve as the polarizing plate 5 of the image display panel 2. Omitted.
  • a polarizing plate 5 may be further provided between the light control panel 1 and the scattering plate 71, that is, so that the scattering plate 71 is sandwiched between the polarizing plates 5. In this case, since the polarized light disturbed by the light control panel 1 can be absorbed, the contrast can be further improved.
  • the scattering plate 71 is disposed close to the image display panel 2, and the dimming panel 1 is an area boundary while suppressing disturbance of light by the scattering plate 71 as described above.
  • the distance is set at a distance d.
  • the area boundary pattern displayed on the light control panel 1 is not sufficiently diffused and may be recognized through the image display panel 2.
  • the scattering degree of the scattering plate 71 When the scattering degree of the scattering plate 71 is increased, the polarized light emitted from the light control panel 1 is disturbed by the scattering plate and absorbed by the polarizing plate 5 installed on the incident side of the image display panel 2. As a result, the efficiency of light use decreases.
  • the polarizing plate 5 on the incident side of the light control panel 1 can be a polarizing plate that also has a selection function.
  • the backlight unit 3 is a general backlight using a lamp 8 made of a fluorescent tube as a light source. Therefore, although the backlight unit 3 can adjust the light to some extent on the entire emission surface or for each fluorescent tube, the emission surface is divided into a plurality of areas so that light can be adjusted for each area. Hana! /, Na! /, ...
  • the shape of the fluorescent tube itself is complicated.
  • there is a limit to the size of the divided area depending on the size of the fluorescent tube and it is not possible to deal with fine areas.
  • the driving circuit for the fluorescent tube becomes complicated.
  • FIGS. 3A and 3B show a case where an image is displayed in the liquid crystal display device of the present embodiment.
  • FIG. 3 (a) is an example in which an image is displayed on the image display panel 2.
  • FIG. 3 (b) is a diagram of the dimming panel 1 for the image of FIG. 3 (a). The projected pattern image is shown.
  • the dimming panel 1 reflects the average transmittance of the corresponding image display panel 2, and displays the gray scale in units of hexagonal pixels.
  • the liquid crystal display device has the power to display an image by changing the transmittance of each pixel of the image display panel with a constant luminous flux from the backlight. After the light is displayed in grayscale in a mosaic pattern on the light control panel 1. You can enter the image display panel 2.
  • Fig. 3 (b) is basically the power to display the gray scale pattern reflecting the brightness distribution of the image shown in Fig. 3 (a).
  • the display location in Fig. 3 (b), corresponding to the high point, also has a high transmittance.
  • the thick part in (a) of FIG. 3 is also enlarged in (b) of FIG. 3, and this improves the contrast because light leakage from the dark part is suppressed.
  • the display image is expressed through two panels of the light control panel 1 and the image display panel 2.
  • the bright part of the display image is expressed by the maximum transmittance of both, so the brightness that can be expressed by a single image display panel is the maximum value, and the dark part of the display image is The black display will be displayed together.
  • the black representation since the image display panel 2 is displayed using the leakage light when displaying black on the light control panel 1 as the backlight, the display gradation width of the dark portion is widened. It can be said that. In other words, in this method, the white display on one image display panel 2 is maximized, the gradation expression in the dark direction spreads from here, and the black display becomes an expression through two black display states. The black display is darker than a single display panel.
  • the pixel 20 of the light control panel 1 is a pixel based on a hexagon. This is because all the adjacent pixel forces are adjacent to each other at the boundary by using a hexagonal shape, so that the luminance change between adjacent luminances can be adjusted in the same way in either direction. That is, for example, if square pixels are simply arranged, the force that makes contact with adjacent pixels at the top, bottom, left, and right can be only point contact with the adjacent pixels in the diagonal direction. This causes a problem that the change in luminance in the oblique direction is different from the change in other directions.
  • the shape of the pixel is preferably a hexagon.
  • the shape of the pixel is not limited to this shape, and a shape in which all adjacent pixels are in line contact with each other, for example, an octagonal shape is used. There may be.
  • FIG. 4 shows an example in which the uneven pixel boundary 41 b of the adjacent pixel enters the hexagonal pixel boundary 41 a serving as the reference of the pixel 20 in a zigzag manner.
  • the hexagonal region surrounded by the dotted line indicates the pixel boundary 4 la, and the portion of the pixels 20 entering in a zigzag shape indicates the uneven pixel boundary 41b.
  • the zigzag shape described above is a shape in which a boundary pattern in which pixels are opposed to each other in a straight line is inserted, and at the apex where three hexagonal pixels confront each other, the directional force on the apex and thus the entering distance is shortened. Is set to
  • this entering portion is defined by the pitch of the entering portion, that is, the entering pitch and the entering distance.
  • the pixel A shown in FIG. 4 has a large transmittance and is in a white display state, and the pixel B shown in FIG.
  • the pattern in which the edge portions of adjacent pixels are inserted into each other has an equal area and a symmetrical shape with respect to the boundary of the hexagonal basic pattern.
  • Fig. 6 shows an example in which three consecutive pixels of the area table panel display 50% gray, white, and black in the same manner as in Figs.
  • a broken line indicates a case where the pixel boundary is a straight line, and the luminance changes abruptly at the boundary.
  • a solid line state was a state enters the pixel boundary, it forces s Such that can smooth the luminance change.
  • the intrusion shape is a zigzag-shaped force.
  • the uneven shape includes a zigzag shape, a wave shape, and the like.
  • the boundary between pixel electrodes is not on a straight line, and a pixel electrode adjacent to an arbitrary pixel electrode is formed so as to partially surround the arbitrary pixel electrode.
  • the luminance distribution gradually changes at the boundary between the white display and black display pixels.
  • the distance d between the image display panel 2 and the dimming panel 1 is the distance d.
  • the liquid crystal layer 4 between each panel is equivalent to the thickness of the substrate and the polarizing plate. Therefore, there is a difference between the image and the shading of the light control panel 1.
  • the conditions differ depending on whether the distance apart by d is air or a transparent spacer having a refractive index is sandwiched. Needless to say, if it is better to provide the distance d, the force and parallax cannot be increased by inserting a spacer having a refractive index larger than that of the air layer.
  • the upper limit of the pixel size is determined within a range that can be charged by the drive driver within the time when the area of the image display panel 2 corresponding to the pixel is rewritten.
  • the width of the pixel is assumed. The width is 20mm.
  • the above (2) and (3) are for adjusting the penetration pitch of the light control panel 1 and the image display panel 2. It is determined by the scattering degree of the scattering plate 71 placed between the light panel 1 and the condition of the distance d.
  • the boundary of the pixels displayed on the light control panel 1 through the image display panel 2 is insufficiently distorted by the scattering plate 71 when the penetration pitch is large, that is, the scattering plate 71 does not have enough force. If the degree of scattering! / Is insufficient, or if the panels are close to each other! /, The contour of the entangled shape may be recognized.
  • the scattering plate 71 is installed, and the interval d is provided according to the scattering plate 71.
  • Table 1 shows that a scattering plate 71 having a haze value of 40 or 80 is placed on a light control panel, and an image display panel having a pixel pitch of 140 Hm or 200 ⁇ m is further spaced apart.
  • the scattering plate 71 has a characteristic of scattering incident light in a direction different from the traveling direction.
  • the haze value expressing the scattering characteristic is a numerical value indicating how much light is incident in the traveling direction of the light force perpendicularly incident on the scattering plate 71. The larger the value, the stronger the scattering. In other words, haze 80 indicates that 80% of the incident light travels in a direction different from the incident direction.
  • FIG. 7 When polarized light enters the scattering plate 71, the polarized light is disturbed by scattering.
  • the graph shown in Fig. 7 is based on a polarizing plate placed in crossed Nicols, and a scattering plate A and B with a haze of 80 is inserted between them, and the polar angle is 0 degree perpendicular to the polarizing plate surface. It shows the direction contrast. Both the scattering plates A and B have a lower contrast than the polarizing plate alone, and the scattering power is disturbed by the scattering plate.
  • the degree of scattering may be increased.
  • the depolarization effect of the scattering plate also increases, it cannot be increased unnecessarily.
  • the contrast further decreased when the haze level was further increased.
  • the above (1) to (4) are related to each other, and the conditions differ depending on the size of the image display panel 2 and how to set the visibility. is there.
  • the example shown here is merely an embodiment, and although the configuration parameters are determined by the method shown here, the configuration is not limited by the number of these parameters. Not too long.
  • a vertically aligned liquid crystal panel is used for the following reason.
  • the dimming panel 1 requires a wide viewing angle characteristic, and the alignment of the liquid crystal used in the image display panel 2 is wide based on the vertical alignment. Since this is a liquid crystal panel with phase difference compensation to obtain a viewing angle, a vertically aligned liquid crystal panel is used.
  • the alignment of the liquid crystal panel used as the light control panel 1 is not limited to the vertical alignment but may be other alignments.
  • Fig. 8 (a) is an overall perspective view of the light control panel 1
  • Fig. 8 (b) is an enlarged view of the region X of the light control panel 1 shown in Fig. 8 (a).
  • the figure is shown.
  • the pixel shape is a simple hexagonal shape rather than the intrusive shape.
  • the pixel 20 has a hexagonal shape, it has a hexagonal pixel electrode.
  • This hexagonal pixel electrode was a regular hexagon with a distance of 25 mm between the opposing sides.
  • the pixel size of RGB color for a 37-inch LCD panel is about 430 squares for high-vision. Accordingly, the pixel size of the light control panel 1 is set to have an area approximately 12500 times the pixel area of the image display panel 2 because the distance between opposite sides is 25 mm here.
  • FIG. 9 is a cross-sectional view taken along line AA shown in (b) of FIG.
  • the dimming panel 1 has a configuration in which the liquid crystal layer 4 is sandwiched between the substrates 101a ′ and 101b.
  • the substrate lO la 'lOlb only needs to be a transparent substrate, so the material can be glass, plastic, transparent resin film, etc.!
  • a transparent electrode to be the pixel electrode 9a is formed on one of the two substrates 101a via the wiring 11 and the interlayer insulating layer 10, and the opposite electrode 9b is formed on the entire surface of the other substrate 101b.
  • a transparent electrode is formed.
  • An alignment film (not shown) is formed on the surface of these transparent electrodes.
  • A1 and Mo which are materials of the wiring 11, were formed in this order by continuous film formation on a glass substrate by sputtering.
  • the material of the wiring 11 is not limited to these. Instead of A1, Cu, Al alloy, or Cu alloy may be used. Further, refractory metals such as Ti and Ta may be used instead of Mo.
  • A1 and Mo were selected to use wet etching for low resistance and wiring formation, and the film thickness was set to 3000A for A1 and 1000A for Mo.
  • a photoresist was applied to process the formed metal film into a wiring, and a spring pattern was formed on the resist by photolithography. Thereafter, Al and Mo were wet-etched with an etching solution, and then the resist was removed to form wiring 11.
  • the wiring width of the wiring 11 to each pixel 20 was set to 100 ⁇ m.
  • the number of wirings 11 of the light control panel 1 increases toward the pixel 20 at the end of the panel as shown in FIG. 8 (b). Although the distance between opposite sides of the pixel 20 is 25 mm, the electrode width of the wiring 11 is about 100 m, so that the aperture ratio is not drastically reduced by the wiring 11.
  • a photosensitive acrylic resin was applied as an interlayer insulating layer 10 between the transparent electrode to be the pixel electrode 9a, and a contact hole 12 was formed by photolithography.
  • an ITO film was formed on the interlayer insulating layer 10 of the substrate 101a as a transparent electrode to be the pixel electrode 9a by sputtering.
  • the ITO film and the wiring 11 are connected via a contact hole 12 formed in the interlayer insulating layer 10.
  • the substrate 101b shown in FIG. 9 is formed as a counter electrode 9b by ITO film force S sputtering, which is a transparent electrode, on the entire surface.
  • An alignment film (not shown) is further formed on the substrate 101a and the substrate 101b having the above-described configuration.
  • the alignment film was formed by printing a polyimide film with a thickness of 500A. After that, if necessary, rubbing is applied as a liquid crystal alignment treatment, and UV irradiation is performed. After each substrate is formed with a sealing resin (not shown) and bonded to the outer periphery of the panel, a liquid crystal material is injected between the substrates. A light panel 1 is formed.
  • the liquid crystal alignment was vertical alignment, and the gap between the upper and lower substrates was 5 m.
  • beads are dispersed over the entire surface of the substrate.
  • the overall configuration of the light control panel 1 having the above configuration is as shown in FIG.
  • driving drivers 13 are arranged on the left and right, and each pixel 20 is driven from the left and right.
  • the substrate 101a on which the wiring is formed out of the two substrates constituting the light control panel 1 is an area where the driving driver 13 is mounted at the end.
  • Each wiring 11 is wired so as to be concentrated in the driver mounting region at the end of the substrate 101a so as to be connected to the driver terminal of the driving driver 13.
  • the wiring 11 to the pixels 20 arranged in the left-right direction is a force shown by one in FIG. 10. As shown in FIG. 8 (b), a plurality of wirings 11 correspond to each pixel 20, respectively. It is a bunch of.
  • the arrangement of the wiring 11 to the pixel 20 is not limited to the example shown in FIG. 8B.
  • a light-shielding area 14 is provided at the outer edge of the light control panel 1 so that no extra light wraps around the image display panel 2.
  • FIG. 11 is a schematic configuration block diagram of a video signal supply circuit for supplying video signals to the light control panel 1 and the image display panel 2 constituting the liquid crystal display device according to the present embodiment. is there.
  • This video signal supply circuit is provided in a liquid crystal controller, for example.
  • the video signal supply circuit includes a frame memory 301 for temporarily storing an externally input video signal, and a video signal stored in the frame memory 301.
  • An area display signal generation circuit 302 for generating a display signal for the dimming panel 1 and an image for generating a display signal for the image display panel 2 from the video signal stored in the frame memory 301
  • a display signal generation circuit 303 for generating a display signal for the dimming panel 1 and an image for generating a display signal for the image display panel 2 from the video signal stored in the frame memory 301
  • a display signal generation circuit 303 for generating a display signal for the dimming panel 1 and an image for generating a display signal for the image display panel 2 from the video signal stored in the frame memory 301.
  • the area display signal generation circuit 302 extracts only the luminance signal from the video signal stored in the frame memory 301, performs area separation and gradation level measurement to determine the gradation for each pixel, The area display gradation is determined, and the area display gradation signal is output to the light control panel 1 as the area display signal.
  • the image display signal generation circuit 303 extracts both the luminance signal and the color signal from the video signal stored in the frame memory 301 and corrects the color and gradation of the pixel in the corresponding area.
  • the corrected color signal and gradation signal are output to the image display panel 2 as image display signals.
  • the area display signal generation circuit 302 extracts a luminance signal from the video signal stored in the frame memory 301, and then determines a gradation for each area with respect to the luminance signal. Therefore, the gradation level is measured by performing a mapping process in which the area is associated with the pixel position. Therefore, in the area display signal generation circuit 302 described above, area separation and gradation level measurement are performed.
  • a reference gradation is determined for each area.
  • This reference gradation means that the entire area is displayed in this gradation, and is determined from the gradation of each pixel corresponding to the area.
  • the pixel group of the image display panel corresponding to a certain area has a high gradation and whiteness! / If it is an image, the entire area may be unified with the highest pixel group! / And the number of gradations! /.
  • the image display panel 2 displays an image using both luminance signals and color signals
  • the light control panel 1 displays a gray image from the gray signal generated from the luminance signal. Since the whole image is displayed in combination with the brightness information, brightness information is expressed through two panels. Therefore, a panel that expresses gradation by transmitting light, such as a transmissive liquid crystal panel, is the product of the gradations of both panels, so the gradation is adjusted on the light control panel 1 side for a bright image. Lowering it will result in a dark black image.
  • the entire pixel group of the image display panel 2 is expressed as ⁇ !
  • the average value of the entire luminance information of the pixels corresponding to this area may be set, or may be set more conservatively than the average.
  • the gradation level of the pixel corresponding to the area is measured, and the reference gradation is determined according to the nature.
  • a reference gradation may be determined by providing a gradation lookup table according to the character in advance and appropriately reading out from the lookup table according to the pixel gradation level corresponding to the area.
  • the image of the image display panel 2 needs to be corrected accordingly. This is because, as described above, light is transmitted through two panels to display an image, and color expression is shifted unless correction is made to color information depending on the gradation of area display.
  • the image on the image display panel 2 and the image on the light control panel 1 can be displayed in synchronization with each other so as to display the entire image.
  • it may be corrected to make the shading of each area smoother.
  • the pixels can be processed into an arbitrary shape in the light control panel, so that the luminance distribution is averaged.
  • the shape of the pixels in the panel can be easily accommodated by modifying the mask pattern, compared to the processing of the backlight partition plate with LED as the light source, and this allows the luminance distribution to change smoothly. Can do.
  • the divided areas are formed in the shape of a partition plate or a light guide plate. Therefore, a mold is required and it is difficult to devise the shape of the boundary region in detail.
  • the screen size can be changed by changing the cut-out size from the substrate, and the pattern change can also be handled by changing the mask at the time of production. There is.
  • a liquid crystal display panel including a light transmission type liquid crystal display panel and a backlight that irradiates light from the back side of the liquid crystal display panel.
  • a transmissive liquid crystal display panel is provided between the image display panel and the backlight, and is based on luminance information included in a video signal input to the image display panel! /
  • a light control panel for gradation display is provided!
  • the luminance information included in the video signal input to the image display panel is formed of a transmissive liquid crystal display panel between the image display panel and the backlight. Based on this, a light control panel for gradation display is provided! /, So that the light emitted from the knock light is transmitted through the light control panel for gradation display and the image is displayed. The display panel will be irradiated.
  • a backlight with a uniform luminance distribution can be realized simply by arranging the fluorescent tubes in a flat shape. Therefore, the thickness of the backlight must be made very thin, about the diameter of the fluorescent tube. Is possible.
  • the present invention can be applied to the following liquid crystal projector in addition to the liquid crystal display device as described above.
  • FIG. 12 is a diagram showing an example in which the liquid crystal display device of the present invention is applied to a liquid crystal projector.
  • a projector that composes and projects an image with three transmissive liquid crystal panels will be described.
  • LCD non-nore 1004, 1005, and 1006 are panels corresponding to R, G, and B signals, respectively. A full color image is formed by combining the images displayed here.
  • LCD panels corresponding to R, G, B signals 1004, 1005 are LCD panels corresponding to R, G, B signals.
  • , 1006 corresponds to an image display panel.
  • a panel corresponding to the light control panel is a liquid crystal panel 1008 arranged on the light source 1001 side of the liquid crystal panels 1004, 1005, and 1006.
  • the position of the polarizing plate is not clearly shown, but it goes without saying that the liquid crystal panels 1004, 1005, and 1006 are on the incident and exit sides of the image display panel. It is also installed on the incident side of the liquid crystal panel 1008 as a dimming panel.
  • the contrast can be further improved by installing the liquid crystal panel 1008 as a light control panel on the emission side.
  • the light emitted from the light source 1001 is adjusted by the fly-eye lens 1002 so that it becomes a secondary light source having a uniform luminance distribution in the projection plane.
  • the light passing through the fly-eye lens enters the light control panel, and after displaying the luminance distribution according to the image, the cross dichroic mirror (cross diced mouth) 1003 B Separated into each color.
  • the G light is directly incident on the liquid crystal panels 1004 to 1006 by the cross dichroic mirror 1003 by the R and B lights.
  • each panel undergoes modulation corresponding to the image signal in each panel, and enters the cross-diode port 1010, where the R, G, and B lights are combined, and then the projection lens 1007 Is projected on the screen.
  • the dimming panel is one, but as is clear from FIG. 12, the liquid crystal panel 1005 that displays the G signal and the liquid crystal panels 1004 and 1006 that display the R and B signals.
  • the distance from the light control panel is different!
  • the parallelism of the light from the light source is fairly good within ⁇ 5 degrees, so there is a problem even if the display that has passed through the light control panel that does not display fine details is different at each image display panel. There is no.
  • Fig. 13 is a diagram showing another example in which the liquid crystal display device of the present invention is applied to a liquid crystal projector.
  • a liquid crystal projector provided with an optical system composed of three reflective liquid crystal panels and a transmissive light control panel will be described.
  • Liquid crystal screens 1101, 1102, and 1103 are reflective liquid crystal panels corresponding to G and B signals, respectively, and function as image display panels.
  • the liquid crystal panel 1104 positioned in the vicinity of the liquid crystal panels 1101, 1102, and 1103 is a transmissive liquid crystal panel and functions as a light control panel.
  • the liquid crystal panel 1104 is installed on the incident light side of a polarized beam splitter (PBS) 1107 on which the liquid crystal panels 1101, 1102, and 1103 are installed.
  • PBS polarized beam splitter
  • the light source 1001, the fly-eye lens 1002, the cross dyke mouth plate 0, and the projection lens 1007 are the same as those of the liquid crystal projector shown in FIG.
  • the light emitted from the fly-eye lens 1002 is first separated into R light and G and B light by a dichroic mirror (dicing port) 1105, and the R light passes through the mirror 1110 to the liquid crystal panel 1101. Head in the direction.
  • the G and B lights are separated into G light and B light at the next diced opening 1106, and the G light is reflected and directed toward the liquid crystal panel 1102, while the B light is transmitted and transmitted through the liquid crystal panel 1103. Head in the direction of.
  • each light After being separated into R, G, and B lights, each light is incident on a liquid crystal panel 1104, which is a dimming panel, and is modulated into a grayscale display that matches the brightness distribution of each image.
  • the light that has entered PBS 1107 is reflected toward the liquid crystal panel, and is then modulated by the liquid crystal panel based on the image signal and returned to PBS 1107 again. Since the polarization direction of the modulated light is converted by 90 °, the light travels straight without being reflected by the PBS 1107 and proceeds to the cross dichroic 1010, where each color light is synthesized and proceeds to the projection lens.
  • PBS 1107 is further placed on the exit side of the fly-eye lens 1002, and a part of polarized light reflected by the PBS 1107 is returned to the light source 1001 again by the mirror 1108 and reused.
  • a ⁇ / 2 plate 1109 is installed on the exit side of 1107 to rotate the polarization direction by 90 °.
  • the present invention can also be applied to a liquid crystal projector, and the contrast can be easily improved by passing the light control panel.
  • the pixel boundary is a portion between adjacent pixels, and the distance is defined as the pixel boundary line width.
  • the pixel boundary is defined as the pixel boundary line width. This is the distance between pixels.
  • the pixels may affect the image displayed on the image display panel 2.
  • FIG. 14 (a) is an enlarged view of a pixel portion of the light control panel 1
  • FIG. 14 (b) is a pixel of the light control panel 1 shown in FIG. 14 (a).
  • FIG. 6 is an enlarged view of the vicinity Y between the pixels (pixel boundary 41b). Note that the pixels constituting the dimming panel 1 are originally connected in a state where adjacent pixels are in an uneven shape as shown in FIG. However, in FIG. 14 (a) and (b) used for the present explanation, for convenience of explanation, two adjacent pixels 20 and 20 (in FIG. 14 (a) and (b), the pixel (1) and the pixel ( 2) is equivalent)), and only the pixels that are the contact portions of these pixels are intruded.
  • the inter-pixel 41b shown in (a) and (b) of Fig. 14 is always black display when the light control panel 1 is in the normally black mode.
  • the pixel spacing is confirmed on the image, which may affect the image quality.
  • the distance between the pixels is Wa
  • the length of the pixels formed on the image display panel in the short side direction is the length of the short side part.
  • the pixel 20 serves as a light shielding portion.
  • the image displayed on the image display panel 2 by the signal line may be affected, and the quality of the display image may be reduced.
  • FIG. 15 shows an enlarged view of the pixel portion of the light control panel 1 shown in FIG. 8B and wiring for driving the pixel.
  • a simple hexagonal arrangement in which the pixel shape is not an intrusive shape will be described as an example.
  • FIG. 16 shows an enlarged view of the pixel portion of the light control panel 1 and a state where two or more wirings are connected to drive the pixel.
  • a simple hexagonal arrangement in which the pixel shape is not an intrusive shape will be described as an example.
  • FIG. 17 shows a cross-sectional view taken along line BB shown in FIG.
  • the light control panel 1 is composed of an insulating substrate 101a made of a glass substrate, a wiring 11, an insulating layer 10, and a pixel electrode 9a made of a transparent electrode from the bottom, and an insulating side made of a glass substrate on the opposite side.
  • Board 1
  • a counter electrode 9b composed of a transparent electrode facing the pixel electrode 9a is formed on 01b, and the liquid crystal layer 4 is sandwiched therebetween.
  • the signal wiring width is Ws and the length of the short side portion of the pixel of the image display panel 2 is Wb
  • the signal wiring width Ws of the dimming panel 1 is described above.
  • the length of the short side is shorter than the length Wb!
  • the ratio of the signal wiring (wiring 11) to the opening area of the pixel of the image display panel 2 can be reduced, a decrease in the aperture ratio of the pixel can be suppressed. As a result, it is possible to eliminate the deterioration in display quality due to the decrease in pixel aperture ratio.
  • each pixel 20 of the light control panel 1 has two or more pixels.
  • the upper signal wiring (wiring 11) may be connected.
  • the resistance value of the wiring 11 necessary to drive each pixel 20 can be obtained by adjusting the number of wirings connected to each pixel 20. Can be driven normally.
  • the width of the signal wiring can be made narrower than in the case of a single signal wiring for driving the pixel 20. It is possible to further suppress the decrease in the aperture ratio.
  • the light control panel 1 is segment-driven, and thus is directly connected so that one wiring 11 corresponds to one pixel 20. . Moreover, since the wiring 11 is arranged so as to straddle the adjacent pixels 20, the closer to the drive driver (not shown) to which the wiring 11 is connected, the more the number of wirings 11 passing through one pixel 20 is. As the distance from the drive driver increases, the number of wires 11 passing through one pixel 20 decreases.
  • the combined pixel size of each RGB color is approximately 370 Hm square for noisy and Ivision, and the pixel size is 430 ⁇ m for Hi-Vision. Smaller than a 37-inch LCD panel.
  • the pixel size of the light control panel needs to be reduced as the pixel size changes.
  • the decrease in the aperture ratio of each pixel 20 due to the difference in the number of wirings 11 passing through each pixel 20 cannot be ignored, and as a result, the quality of the display image may be degraded.
  • FIG. 18 shows an enlarged view of the pixel portion of the light control panel 1, the wiring 11 for driving the pixel 20, and the drive driver 13 for driving each pixel 20.
  • FIG. 19 shows a cross-sectional view taken along line CC shown in FIG. 20 is shown in FIG. Show the cross sectional view along the DD line!
  • the light control panel 1 having the above-described configuration includes an insulating substrate 101a made of a glass substrate from below, and wiring.
  • each pixel 20 Since each pixel 20 is segment driven, the wiring from the driving driver 13 is directly connected to each pixel 20.
  • the dummy wiring 311 that is not directly connected to the driver 13 for driving is formed in the same line as the driving wiring 11 of each pixel 20 in all the pixels 20, so that the bottom of each pixel 20 is formed. Since the area of the wiring 11 serving as a light shielding portion that passes through does not change, the change in the aperture ratio of each pixel 20 when viewed from the image display panel 2 side is reduced, and the influence on the image can be reduced.
  • the combined length of the wiring 11 and the dummy wiring 311 provided on the line of the wiring 11 is the same as the combined length of the other wiring 11 and the dummy wiring 311.
  • the aperture ratio of each pixel 20 can be made the same, and even if the pixel size of the light control panel 1 is reduced, the power S can be suppressed to suppress the deterioration of display quality.
  • a metal film 111 to be the wiring 11 is formed on the glass substrate to be the insulating substrate 101a by a sputtering method or the like, and FIG. As shown, segment driving wiring 11 is formed by patterning by photolithography.
  • an insulating film 110 to be the insulating layer 10 is formed by CVD so as to cover the entire substrate on which the wiring 11 is formed, and (d) in FIG. As shown in FIG. 4, the contact hole 10a is formed by patterning by photolithography.
  • a transparent electrode is formed by sputtering or the like. Then, (e)
  • the pixel electrode 9a is formed by patterning by photolithography. Thereby, a pixel electrode substrate is manufactured.
  • a transparent electrode (ITO) is formed on the insulating substrate 101b serving as the counter glass substrate by a sputtering method or the like, thereby forming the counter electrode 9b.
  • a polyimide resin is applied to the substrate on which the pixel electrode 9a is formed and the entire substrate on which the counter electrode 9b is formed by spin coating or the like, followed by rubbing to form an alignment film. To do.
  • a seal material made of epoxy resin or the like is applied to the counter substrate on which the alignment film is formed on the frame-like pattern that lacks the liquid crystal inlet so as to surround the display area. By doing so, a seal pattern is formed.
  • a spherical spacer is then sprayed inside the seal pattern.
  • a UV curable resin is applied to the liquid crystal injection port, and the liquid crystal is irradiated by UV irradiation. Seal the material. Thereby, the liquid crystal layer 4 is formed, and the light control panel 1 is manufactured.
  • the image display panel 2 and the light control panel 1 are provided. Two types of panels with different functions and configurations are required. Thus, when manufacturing a liquid crystal display device having an image display panel 2 and a dimming panel 1 having different functions and configurations, different types of substrates of the same size are used in the panel manufacturing process. The panel manufactured in will be further manufactured.
  • the dimming panel 1 is configured by a plurality of sub-panels, thereby manufacturing other panels.
  • An example of creating a simple line and reducing the capital investment for manufacturing the panel will be explained.
  • the liquid crystal display device has a structure in which a light control panel 1 is disposed between an image display panel 2 and a backlight unit (light source) 3 as shown in FIG. is there.
  • a backlight unit (light source) 3 as shown in FIG. is there.
  • illustration of an optical film such as a light diffusing plate provided in the backlight unit 3 is omitted.
  • the liquid crystal display device has almost the same configuration as the liquid crystal display device according to the first embodiment, but the dimming panel 1 includes two sub-panels la. And lb is different. The two sub-panels la and lb are bonded with their ends overlapped. Note that the number of sub-panels is not limited to two, and may be set as appropriate according to the size of the light control panel 1 as long as it is a plurality of sub-panels.
  • the dimming panel 1 is a display panel composed of a plurality of pixels 20 each independently performing grayscale display including halftone display.
  • the area of the pixel 20 of the light control panel 1 is larger than that of the pixel (not shown) of the image display panel 2. Further, it is a close-packed arrangement based on a hexagon so that the pixels 20 in the diagonal direction are adjacent to each other.
  • the boundary line is not necessarily touched by a point, so it is easy to adjust the halftone so that the change in luminance is smooth.
  • FIG. 23 is a cross-sectional view taken along the line EE of the liquid crystal display device shown in FIG.
  • the light control panel 1 includes the image display panel 2 and the backlight unit. It is located between The light control panel 1 is composed of two sub-panels la and 1b. The two sub-panels la and lb are glued together by overlapping their ends!
  • Each sub-panel la'lb is configured by sandwiching the liquid crystal layer 4 between two substrates 101a '101b.
  • Two polarizing plates 5 and 5 are arranged so as to sandwich a panel formed by joining the two sub-panels la and lb.
  • the polarizing plate 5 provided on the backlight 3 side with respect to the sub-panel and the polarizing plate 5 provided on the image display panel 2 side with respect to the sub-panel have a panel configuration capable of gray scale display. Yes.
  • the two polarizing plates 5 arranged with the sub-panel interposed therebetween have a crossed Nicols relationship.
  • the dimming panel 1 is configured by connecting two sub-panels la ′ lb. A specific method for connecting the sub-panels will be described later.
  • the image display panel 2 includes a liquid crystal display panel in which a liquid crystal layer 4 is provided between glass substrates 201 and 202, and a plurality of pixels (not shown) are arranged in a matrix.
  • Polarizing plates 5 and 5 having a crossed Nicols relationship are arranged on the outside of the glass substrates 201 and 202, respectively.
  • the polarizing plate 5 provided between the light control panel 1 and the scattering plate 71 may be omitted. However, by providing the polarizing plate 5, the polarization disturbed by the light control panel 1 can be absorbed and the contrast can be further improved, so that the polarizing plate 5 is provided! / I prefer to do that!
  • the scattering plate 71 is disposed close to the image display panel 2, and the dimming panel 1 is the area boundary while suppressing the disturbance of light by the scattering plate 71 as described above. In order to effectively detract from the distance, the distance is set at a distance d.
  • the area boundary pattern displayed on the light control panel 1 is not sufficiently diffused and may be recognized through the image display panel 2.
  • optical films such as a scattering plate 7 and a prism sheet 6 are disposed.
  • the polarizing plate 5 provided on the light incident side of the light control panel 1 can be a polarizing plate having a selection function.
  • the backlight unit 3 is a general backlight using a lamp 8 made of a fluorescent tube as a light source. Therefore, the knocklight unit 3 is capable of dimming to some extent on the entire emission surface or in units of fluorescent tubes.
  • the light emission surface is not divided, and the light can not be adjusted for each of the divided areas.
  • An image display example in the case of performing gradation expression for each area in the image display panel 2 using the light control panel 1 is the same as that in the first embodiment, and therefore here. Detailed description is omitted.
  • a vertically aligned liquid crystal panel is used as in the first embodiment.
  • the alignment of the liquid crystal panel used as the light control panel 1 is not limited to the vertical alignment but may be other alignments.
  • FIG. 24 schematically shows the configuration of the light control panel 1 provided in the liquid crystal display device of the present invention.
  • the dimming panel 1 is formed by connecting a plurality (four in this case) of sub-panels la ⁇ lb-lc-Id to each other! /.
  • the number of sub-panels constituting the light control panel 1 is not particularly limited, and can be appropriately changed according to the size of the target display device and the size of the sub-panel. Further, the dimming panel 1 may be produced by combining different sizes of sub-panels that are not necessarily the same size.
  • Each sub-panel la'lb'lc'ld is an independent panel.
  • liquid crystal is sealed in each sub-panel, and each panel can independently drive the pixels formed therein. Therefore, a driver for driving is mounted on the periphery of each sub-panel here.
  • FIG. 25 (a) shows an overall perspective view of the sub-panel la
  • FIG. 25 (b) shows an enlarged view of the region X of the sub-panel la shown in FIG. 25 (a).
  • the pixel shape is a simple hexagonal shape rather than the intrusive shape.
  • Subpanel la ⁇ constituting light control panel 1 As a display method of Id, a segment display method is used from the viewpoint that gradation expression is possible and panel cost can be kept low. Adopted. Since the segment method requires a driving wiring for each pixel, it is necessary to provide wiring 11 for all the pixels 20 as shown in FIG. 25 (b).
  • the pixel 20 since the pixel 20 has a hexagonal shape, it has a hexagonal pixel electrode.
  • the hexagonal pixel electrode has a regular hexagonal distance of 25 mm between the opposing sides (that is, the distance that the wiring passes over the hexagonal pixel electrode in FIG. 25B).
  • type 37 fluid The pixel size of the crystal panel combined with each RGB color is about 430 m square for high-definition. Therefore, the pixel size of the light control panel 1 (sub-panel la) has an area approximately 12500 times the pixel area of the image display panel 2 because the distance between the opposite sides is 25 mm here.
  • FIG. 26 is a cross-sectional view taken along line FF shown in FIG. 25 (b).
  • the sub-panel la has a configuration in which the liquid crystal layer 4 is sandwiched between the substrates 101a ′ 101b.
  • the substrate lOla'lOlb may be a transparent substrate, any of glass, plastic, transparent resin film, etc. can be used as its material.
  • One of the two substrates 101a is provided with a transparent electrode to be the pixel electrode 9a via the wiring 11 and the interlayer insulating layer 10, and the other substrate 101b has a counter electrode 9b on the entire surface. A transparent electrode is formed. Then, after an alignment film (not shown) is formed on the surface of these transparent electrodes, the substrate 101a and the substrate 101b are arranged to face each other at a desired distance, and a liquid crystal is sealed between them. Formed!
  • A1 and Mo which are the materials of the wiring 11, were formed by continuous film formation in this order on a glass substrate.
  • the material of the wiring 11 is not limited to these. Instead of A1, Cu, A1 alloy or Cu alloy may be used. Further, refractory metals such as Ti and Ta may be used instead of Mo.
  • A1 and Mo were selected as materials for wiring 11, and the film thicknesses were set to ⁇ 1: 300 ⁇ and: ⁇ : 100 ⁇ .
  • a photoresist was applied to process the formed metal film into a wiring, and a spring pattern was formed on the resist by photolithography. Thereafter, Al and Mo were wet-etched with an etching solution, and then the resist was removed to form wiring 11.
  • the wiring width of the wiring 11 to each pixel 20 was set to 100 ⁇ m.
  • the liquid crystal panel uses a segment system, so the wiring of the light control panel 1
  • the number of pixels increases as the pixel 20 at the edge of the panel increases.
  • the electrode width of the wiring 11 is about 100 m while the distance between opposite sides of the pixel 20 is 25 mm, the aperture ratio is not drastically reduced by the wiring 11.
  • a photosensitive acrylic resin was applied as an interlayer insulating layer 10 between the transparent electrode to be the pixel electrode 9a, and the contact hole 12 was formed by photolithography.
  • an ITO film was formed as a transparent electrode to be the pixel electrode 9a on the interlayer insulating layer 10 of the substrate 101a by sputtering.
  • the ITO film and the wiring 11 are connected via a contact hole 12 formed in the interlayer insulating layer 10.
  • the substrate 101b shown in FIG. 26 is formed by ITO film force S sputtering, which is a transparent electrode, on the entire surface as the counter electrode 9b.
  • An alignment film (not shown) is further formed on the substrate 101a and the substrate 101b having the above-described configuration.
  • the alignment film was formed by printing a polyimide film with a thickness of 500A. Then, if necessary, rubbing and UV irradiation are performed as alignment treatment of the liquid crystal, and each substrate is formed by adhering a sealing resin (not shown) on the outer periphery of the panel, and then a liquid crystal material is injected between the substrates.
  • the panel la is formed.
  • the liquid crystal alignment was vertical alignment, and the gap between the upper and lower substrates was 5 m.
  • beads are spread over the entire surface of the substrate.
  • each pixel 20 is driven from the left and right.
  • the substrate 101a on which the wiring is formed has a region where the driving driver 13 is mounted at the end.
  • Each wiring 11 is wired so as to be concentrated to the driver mounting area at the end of the substrate 101a so as to be connected to the driver terminal of the driving driver 13.
  • the wiring 11 to the pixels 20 arranged in the left-right direction is a single force shown in FIG. 27. As shown in (b) of FIG. It is a bundle from the book.
  • a light shielding area 14 is provided at the outer edge of the sub-panel la so that no excessive light wraps around the image display panel 2.
  • the plurality of sub-panels manufactured as described above are positioned according to the pattern and connected. After this, components such as TAB are mounted, and the light control panel is completed.
  • the mounting of the TAB or the like for driving the light control panel may be performed after the connection or before the connection.
  • the scattering plate 71 and the polarizing plate 5 of the light control panel 1 are also installed.
  • the liquid crystal display device having the configuration shown in FIG. 23 is manufactured by the procedure as described above.
  • the liquid crystal display device shown in FIG. 23 shows an example in which two sub-panels la ′ lb are overlapped and joined to each other.
  • the light control panel 1 is composed of two sub-panels la ′ lb, and the end portions of the sub-panels are connected to each other.
  • the polarizing plate 5 cannot be applied directly, so that the polarizing plate 5 is preferably installed away from the light control panel 1.
  • the distance d between the scattering plate 71 and the light control panel 1 is such that the sub panel la and the sub panel lb overlap each other, and the distance d is different for each sub panel. Therefore, when setting the distance d, the haze values of the entrance pitch and the scattering plate are adjusted so that the entrance pattern of the pixel boundary 41a of both of the two sub-panels can be made.
  • each sub-panel manufactured as described above has a force S, which is a segment drive panel having hexagonal pixels, and its pixel boundary (area boundary) is a complicated entry due to a flaw. (See Fig. 4). For this reason, if the sub-panel is divided in pixel units (area units), complicated area boundaries are divided, and it is difficult to divide the sub-panels.
  • the pixel 20 of the dimming panel 1 has a pixel based on a hexagon as described above. Therefore, the boundary between the sub-panels la 'lb, that is, the sub-panel la and the sub-panel lb It is considered that the method of connecting the connecting parts based on this hexagon is the general method.
  • the pixel 20 of the power dimming panel 1 has an intrusion shape as shown in FIG. 4 of the first embodiment in order to smoothly connect gradations between adjacent pixels.
  • the penetration pitch of this penetration shape is a complex shape with a few hundred microns and a penetration distance of about 10 mm. It is difficult to divide the panel along this shape, considering the width and shape of the seal part of the current liquid crystal panel. Therefore, if the sub-panel is divided in units of pixels, the end of the sub-panel cannot be formed according to the intrusion shape, and the effect of the intrusion shape cannot be effectively used at the connecting portion of the sub-panels.
  • the center point 20a of the three hexagonal pixels (area) 20 shown in Fig. 28 and the three hexagonal apexes adjacent to each center point are formed.
  • Hexagonal shape is considered the basic pattern.
  • the boundary between adjacent sub-panels be formed by this line S.
  • the force indicating the boundary of the sub-panel is the line indicated by S in Figure 29.
  • Line S is a line formed by alternately connecting the hexagonal center of the pixel and the vertex of the hexagon.
  • the line S is also called a division line.
  • the line S is formed by a combination of straight lines that do not divide the penetration pattern that is the boundary of the pixels, it can also be formed as a liquid crystal seal pattern. Further, the sub-panel may be cut along the line S to form a sub-panel having the line S as an end.
  • FIG. 29 shows a state where the line S in FIG. 28 is used as a dividing boundary and divided into the inner side (liquid crystal side, upper side in FIG. 29) and the outer side (lower side in FIG. 29) of the sub-panel la.
  • this line S is used as a liquid crystal sealing material line, no liquid crystal is present below the line S in FIG.
  • the above applies to cases (1) and (2) above.
  • the line S can be formed as a pixel pattern.
  • the seal line is formed at a position away from the pixel end. Therefore, in this case, the sub-panels are overlapped with each other, and the alignment is performed in a pixel pattern.
  • the seal pattern may be formed in the same shape as the line S at a distant place where pixels are not formed, or may be a simple straight line pattern when the seal line is not conspicuous as being transparent.
  • the cross-sectional view shown in Fig. 23 shows this state.
  • the pixel boundaries of each sub-panel are exactly like the line S, and the upper and lower sub-panels are aligned and overlapped based on this pattern! Therefore, the seal position between the sub-panels matches! This corresponds to case (3) above.
  • the pixels delimited by the line S have an area of 1/3 or 2/3 of a hexagon as shown in FIG. [0338]
  • a new hexagon that is formed by connecting the center and apex of the hexagon that constitutes the pixel is not based on the hexagonal boundary originally based on pixels as the division boundary of the sub-panel.
  • line S By setting this as the boundary of the sub-panels, it is possible to divide the dimming panel into a plurality of sub-panels with a simple boundary line without breaking the penetration structure between pixels while maintaining the penetration effect.
  • Fig. 30 shows a state in which the sub-panels la 'lb having S1 and S2 as division lines are connected to each other.
  • the harm IJ lines S1 and S2 also represent the shape of the boundary of the subpanel (end of the subpanel). As shown in Figure 30, align each subpanel la 'lb so that each split line S 1' S2 matches.
  • each sub-panel la 'lb may be a panel having the harm ij line SI' S2 as a seal line and an end face (that is, the seal line and the end face of the sub-panel are at the same position).
  • a panel having a dividing line of S 1 'S2 as a seal boundary inside the substrate may be used.
  • the dividing lines S1 to S2 shown in FIG. 30 may be pixel pattern boundaries as described above. In the case of (2) above, if plastic is used as the substrate material, processing is possible even for lines like S1-S2. Also, if the substrate is glass, it is difficult to form a line like S1.
  • the first method is a method of joining the sub-panels at the end so that the panel surfaces of the plurality of sub-panels to be joined are in a single plane. This method is suitable when the sub-panels to be joined have a split line force S, a seal line and an end face.
  • Figure 31 (a) shows the dimming panel 1 formed by joining two sub-panels la 'lb by this method, and the sub-panel connection of polarizing plates 5 and 5 holding them. The cross-sectional structure of the part is shown.
  • Fig. 31 (b) shows the state of the surface of the light control panel 1 shown in Fig. 31 (a).
  • FIG. The cross section of the panel shown in FIG. 31 (a) is a cross section taken along line GG shown in FIG. 31 (b).
  • the sub-panel la and the sub-panel lb have a connection portion between the portions indicated by the arrows A.
  • the seal line 53 of each sub-panel la ′ lb exists at the position of the connection portion A.
  • Sub-panel la and sub-panel lb are both attached to glass substrate (substrate) 30. By making the adhesive used at this time the same refractive index as that of the glass substrate 30, the joints can be made inconspicuous.
  • a polarizing plate 5 is disposed on the glass substrate 30.
  • the seal line (seal part) 53 of each sub-panel la ′ lb has a shape like a line S 1 ′ S2 shown in FIG.
  • plastic In order to cut the boundary of sub panel la 'lb with line S as shown in Fig. 13, it is preferable to use plastic as the material of substrate 101a' 101b that constitutes the sub panel, and cut by punching or laser.
  • the thickness of the light control panel 1 to be formed is equal to that of the panel. It can be constant over the entire surface. Further, since there is no step between the subpanel la and the subpanel lb, the force S can be applied by directly attaching the polarizing plate 5 to the light control panel 1 without providing a space.
  • the second method is a method in which a plurality of sub-panels are overlapped and connected.
  • the light control panel 1 of the liquid crystal display device shown in FIG. 23 is formed using this method.
  • FIG. 32 (a) shows the dimming panel 1 formed by joining two sub-panels la 'lb by this method, and the sub-panel connection of the polarizing plates 5 and 5 holding them.
  • FIG. 32 (b) schematically shows the state of the surface of the light control panel 1 shown in FIG. 32 (a).
  • the cross section of the panel shown in FIG. 32 (a) is a cross-sectional view taken along line HH shown in FIG. 32 (b).
  • the sub-panel la ′ lb shown in this figure is a case where seal lines 54 and 55 are formed inward from the end portions of the substrates 101a and 101b.
  • the light control panel 1 formed by the second method has two sub-types as shown in Fig. 32 (a). Panels la 'lb are connected by overlapping the ends. In this case, since the sub-panels la ′ 1 b overlap each other, the polarizing plate 5 cannot be directly attached to the panel. Therefore, the polarizing plate 5 is placed at a distance from the sub-panel la ⁇ lb! /.
  • FIG. 32 (b) is a plan view of the connecting portion of each sub-panel la'lb.
  • the end 51 of the sub panel la is indicated by a solid line
  • the end 52 of the sub panel lb is indicated by a broken line.
  • the hexagons indicated by double lines on each sub-panel la'lb are hexagons formed by solid lines S and broken lines T in FIG.
  • the hexagonal pixel 20 is indicated by a broken line.
  • each sub-panel la 'lb is positioned so that the seal lines 54 and 55 of each sub-panel la' lb are aligned.
  • one pixel 20 is formed by combining some of the pixels of each subpanel.
  • the merit of this method is that the panels can be bonded to each other on the surface, so the glass substrate 30 that is the above-mentioned reinforcement is required! It is possible to connect them with simple alignment.
  • a wiring for driving the pixel 20 is formed so as to overlap with the seal line, whereby a decrease in the aperture ratio due to the wiring can be suppressed.
  • a light shielding line may be formed along the boundary of the newly considered basic hexagon, such as the S and T lines in FIG. 28, and wiring may be formed by overlapping this line! /, .
  • the thickness of the liquid crystal layer is about 3 to 5 ⁇ m
  • the thickness of the seal lines 54 and 55 is also about the same. Therefore, to ensure the cell gap in the sealing resin, the amount of filler or beads mixed in the sealing material is adjusted, and the light transmittance is good! Can be raised. In addition, it is possible to make this line difficult to see by forming a prism along this seal line.
  • the boundary between the pixels constituting the dimming panel has a complicated intrusion shape, and the boundary between the sub-panels constitutes the dimming panel
  • a dimming panel can be formed by connecting a plurality of sub-panels without impairing the effect of the effect.
  • one pixel is configured by combining a part of the pixels of adjacent sub-panels.
  • the substrates 101a and 101b constituting the sub-panel it is preferable to use a plastic substrate. This is because a plastic substrate can be manufactured to be thinner than a glass substrate, so that it is easy to superimpose and the panel does not become thicker in the overlap region. In addition, if a plastic substrate is used, division can be facilitated as compared with the case of a glass substrate. Therefore, for example, it is possible to divide the sub-panel along a line S that is not a straight line as shown in FIG.
  • the liquid crystal display panel of the present invention is not necessarily limited to the one provided at a position different from the boundary of the pixels constituting the boundary force dimming panel between the sub-panels as described above.
  • the light control panel may be formed by connecting a plurality of sub-panels. That is, the scope of the present invention includes a case where the pixel boundary of the light control panel and the boundary between the sub-panels are all or partially coincident with each other.
  • the sub-panel is cut so that the seal line and the cutting line of each sub-panel overlap as much as possible.
  • dicing technology can basically only cut straight lines.
  • the dimming panel is formed by connecting a plurality of sub-panels! /, A method of connecting the sub-panels, a pixel shape, and an intrusion shape at the pixel boundary (area boundary). The presence or absence can be changed as appropriate.
  • FIG. 33 shows a nomination of the light control panel constituting the liquid crystal display device of the present invention.
  • FIG. 34 (a) to FIG. 34 (f) show examples of the pixel shape of the light control panel and the panel boundary shape of the sub-panel.
  • FIG. 34 On the left side of Fig. 33, the pixel shape of the light control panel and the nodalization of the panel boundary of the sub panel are shown.
  • the part showing the shape of the pixel is a corresponding figure in (a) to (f) of FIG. 34 (however, the pixel having a hexagonal shape is not shown).
  • an assumed panel boundary (division line) of the same sub-panel is indicated by a line S1 or S2.
  • FIG. 33 shows a method of connecting a plurality of sub-panels.
  • the details of each method are as follows, with the force S as described above and each specific example illustrated.
  • the light control panel is formed by connecting a plurality of sub-panels as described above. Therefore, it is preferable to apply the configuration of the present invention particularly when a large liquid crystal display device is formed.
  • the panel is manufactured by using a large-sized panel-dedicated production line.
  • a sub-panel is manufactured using an existing panel manufacturing line, and a plurality of sub-panels are connected to manufacture a single large dimming panel.
  • the production line for the sub-panel can be used as a production line for a light control panel of a liquid crystal display device having a normal size. Since other liquid crystal display devices are also manufactured at the liquid crystal display manufacturing plant, if the liquid crystal display device of the present invention is manufactured with the above-described line configuration, the production capacity of the entire plant is greatly reduced. Can be prevented.
  • FIG. 35 a television receiver including the liquid crystal display device of the present invention will be described below with reference to FIGS. 35 to 37.
  • FIG. 35 a television receiver including the liquid crystal display device of the present invention
  • FIG. 35 shows a circuit block of a liquid crystal display device 601 for a television receiver.
  • the liquid crystal display device 601 includes a Y / C separation circuit 500, a video chroma circuit 5001, an A / D converter 502, a liquid crystal controller 503, a liquid crystal node 504, and a backlight drive circuit. 505, knock light 506, microcomputer 507, and gradation circuit 508.
  • the liquid crystal panel 504 includes a first liquid crystal panel (image display panel) and a second liquid crystal panel.
  • an input video signal of a television signal is input to the Y / C separation circuit 500 and separated into a luminance signal and a color signal.
  • the luminance and color signals are converted to R, G, and B, which are the three primary colors of light, by the video chroma circuit 501, and this analog RGB signal is converted to a digital RGB signal by the A / D converter 502, liquid Input to the crystal controller 503.
  • the RGB signal from the liquid crystal controller 503 is input at a predetermined timing, and the RGB gradation voltages from the gradation circuit 508 are supplied to display an image.
  • the microcomputer 507 controls the entire system including these processes.
  • Video signals such as a video signal based on television broadcasting, a video signal captured by a camera, a video signal supplied via an Internet line, and a video signal recorded on a DVD can be used as the video signal. Based on! /, Can be displayed.
  • the tuner unit 600 shown in FIG. 36 receives a television broadcast and outputs a video signal, and the liquid crystal display device 601 displays an image (video) based on the video signal output from the tuner unit 600. Do.
  • the liquid crystal display device 601 is wrapped in a first housing 311 and a second housing 316. It becomes a sandwiched structure!
  • the first housing 311 is formed with an opening 311a through which an image displayed on the liquid crystal display device 601 is transmitted.
  • the second casing 316 covers the back side of the liquid crystal display device 601.
  • An operation circuit 315 for operating the liquid crystal display device 601 is provided, and a support member is provided below. 318 is attached.
  • the liquid crystal display device of the present invention can obtain an image with a small display angle effect and a high contrast display quality, it can be used for television receivers, movie and broadcast models. Applicable to Utah etc.
  • the light control panel includes a plurality of sub-panels, the liquid crystal display device of the present invention can be efficiently manufactured when the display device becomes large. Therefore, the liquid crystal display device of the present invention can be suitably used for a large display device.

Abstract

A liquid crystal display device is provided with an image display panel (2) composed of a light transmitting liquid crystal display panel, and a backlight (3) for projecting light from the back side of the image display panel (2). A light control panel (1), which is composed of a transmissive liquid crystal display panel for performing gradation display based on luminance information included in a video signal inputted to the image display panel (2), is arranged between the image display panel (2) and the backlight (3). Since the size of a pixel configuring the light control panel (1) is larger than the size of a pixel configuring the image display panel (2), luminance distribution is made uniform and image display qualities can be improved with the thin backlight unit (3).

Description

明 細 書  Specification
液晶表示装置及びテレビジョン受信機  Liquid crystal display device and television receiver
技術分野  Technical field
[0001] 本発明は、液晶表示装置に関し、特にコントラストを向上させる液晶表示装置及び テレビジョン受信機に関するものである。  The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display device and a television receiver that improve contrast.
背景技術  Background art
[0002] 近年、大型で薄!/、表示装置として、フラットパネルディスプレイが市場に普及してき ている。フラットパネルディスプレイが身近になるにつれ、その表示性能の向上が望ま れている。  [0002] In recent years, flat panel displays have become widespread in the market as large, thin and / or display devices. As flat panel displays become familiar, it is desirable to improve their display performance.
[0003] フラットパネルディスプレイの一方式としての液晶表示装置は、液晶パネル自体が 自ら発光しないことから、画像の表示を司る液晶パネルと、この液晶パネルに対して 光を照明するバックライトとを有している。このような液晶表示装置では、ノ ックライト は常時点灯状態としておき、バックライトの光出射側に置かれた液晶パネルで、透過 する光の量をコントロールしてレ、る。  [0003] A liquid crystal display device as one type of flat panel display has a liquid crystal panel that controls image display and a backlight that illuminates the liquid crystal panel because the liquid crystal panel itself does not emit light. is doing. In such a liquid crystal display device, the knock light is always turned on, and the amount of transmitted light is controlled by a liquid crystal panel placed on the light emitting side of the backlight.
[0004] 通常、液晶パネルの正面および背面には偏光板がそれぞれ配置され、背面側にあ るバックライトから照射された光を入射側、つまり液晶パネルの背面側に偏光板を通 して直線偏光とし、この光を、液晶パネルで画素毎に変調を行った後、出射側の偏 光板で検光している。黒を表示する場合、液晶パネルの正面および背面に配置され た 2枚の偏光板でバックライトからの光を如何に効率よく光を吸収させるかで、黒表示 の表示品位が決まる。  [0004] Normally, polarizing plates are respectively arranged on the front and back sides of the liquid crystal panel, and light emitted from the backlight on the back side is linearly passed through the polarizing plates on the incident side, that is, on the back side of the liquid crystal panel. This light is polarized, and this light is modulated for each pixel by a liquid crystal panel and then analyzed by a polarizing plate on the output side. When displaying black, the display quality of the black display is determined by how efficiently the light from the backlight is absorbed by the two polarizing plates placed on the front and back of the liquid crystal panel.
[0005] しかし、たとえ液晶パネルが黒を表示する状態であっても、液晶パネルの中の液晶 配向乱れ、液晶パネルを構成する各膜間の屈折率差やカラーフィルター顔料での散 乱、光学補償の限界など様々な原因によって、常時点灯しているバックライト光のうち 入射側と出射側との偏光板でできるクロスニコル条件を充分満足しなかった光が出 射側の偏光板から幾らか抜けてしまう。この漏れ光は、暗室で黒表示の液晶パネル を観察すると、黒表示であるはずの画面がグレーに浮いていることで観察され、コント ラスト(白表示と黒表示との光量差)を低減させる要因となっており、液晶表示装置の 高品位画像への課題の一つである。 [0005] However, even if the liquid crystal panel displays black, the liquid crystal orientation in the liquid crystal panel is disturbed, the refractive index difference between the films constituting the liquid crystal panel, the dispersion with the color filter pigment, the optical Due to various reasons such as the limit of compensation, some of the light that does not sufficiently satisfy the crossed Nicols condition that can be achieved by the polarizing plates on the incident side and the outgoing side of the backlight light that is always lit is emitted from the polarizing plate on the outgoing side. It will come off. This leakage light is observed when a black display LCD panel is observed in a dark room, because the screen that should be black is floating in gray, reducing the contrast (light intensity difference between white display and black display). Factor of the liquid crystal display device. This is one of the challenges for high-quality images.
[0006] このような課題に対して、例えば、特許文献 1 , 2では、 LEDを光源としたバックライ トユニットを持ち、それぞれを対応する画像領域に合せて調光する、つまり暗い表示 では LEDを減光するなどして、表示品位の向上を図っている。 [0006] To deal with such problems, for example, Patent Documents 1 and 2 have backlight units that use LEDs as light sources, and each adjusts the light according to the corresponding image area. The display quality is improved by dimming.
特許文献 1 :日本国公開公報「特開 2002— 99250号公報 (公開日: 2002年 4月 5日 )」  Patent Document 1: Japanese Publication “JP 2002-99250 A (Publication Date: April 5, 2002)”
特許文献 2 :日本国公開公報「特開 2002— 91385号公報 (公開日: 2002年 3月 27 日)」  Patent Document 2: Japanese publication “JP 2002-91385 gazette (publication date: March 27, 2002)”
特許文献 3:米国(US)公開特許公報「特許第 6927908号公報 (登録日: 2005年 8 月 9曰)  Patent Document 3: US (US) Published Patent Gazette “Patent No. 6927908 (Registration Date: August 9, 2005)”
特許文献 4 :日本国公開公報「特開平 6— 27412号公報 (公開日: 1994年 2月 4日) 発明の開示  Patent Document 4: Japanese Patent Publication “Japanese Unexamined Patent Publication No. 6-27412” (Publication Date: February 4, 1994) Disclosure of Invention
[0007] ところで、 LEDを用いたバックライトユニットにおいては、光源である LEDの発光点 が点発光に近いこともあり必要輝度を得るためには多数の LEDを敷き詰めなければ ならない。このように、多数の LEDを搭載するとコスト高となる。そのため、 LEDの発 光効率を上げ、できるだけ少なレ、個数で必要輝度を得ることが必要となる。  [0007] By the way, in a backlight unit using LEDs, a light emitting point of an LED as a light source is close to point light emission, and a large number of LEDs must be spread to obtain a required luminance. In this way, when a large number of LEDs are installed, the cost increases. For this reason, it is necessary to increase the luminous efficiency of the LED and obtain the required brightness with the smallest possible number and quantity.
[0008] しかしながら、 LEDの発光効率を上げれば、必要輝度を得るための LEDの個数は 少なくて済む一方でバックライト出射面の輝度分布を平均化させる必要から、 LED間 隔を空けて配置し、さらに、 LEDの発光部とバックライトの光照射面との間の距離を 長くとる必要がある。従って、バックライト全体の厚みが従来の蛍光管を用いたバック ライトよりも厚くなるという問題が生じる。  However, if the luminous efficiency of the LED is increased, the number of LEDs required to obtain the required luminance can be reduced, but the luminance distribution on the backlight exit surface must be averaged. Furthermore, it is necessary to increase the distance between the light emitting part of the LED and the light irradiation surface of the backlight. Therefore, there arises a problem that the thickness of the entire backlight becomes thicker than that of a backlight using a conventional fluorescent tube.
[0009] また、 LEDを用いたバックライトシステムでは、一つの LEDの照射領域を四角形と して、この四角形状のユニットを敷き詰めているので、隣り合う四角形状のユニットに 輝度差が生じた場合、ユニット境界に輝度境界が出現し、この輝度境界が画像表示 画面に斑として見えるという問題が生じる。  [0009] In addition, in the backlight system using LEDs, the irradiation area of one LED is made a square, and this square unit is spread out, so when there is a difference in brightness between adjacent square units. In this case, a luminance boundary appears at the unit boundary, and this luminance boundary appears as a spot on the image display screen.
[0010] さらに、 LEDを用いたバックライトシステムでは、一つの LEDの照射領域を 1ュニッ トとして斜め方向に隣接するユニットの輝度差につ!/、ては平均化が難しレ、と!/、う問題 が生じる。 [0011] 本発明は、上記の課題を鑑みなされたものであり、その目的は、調光機能を備え持 つた上で厚みの薄いバックライトユニットで、バックライトの光出射面の輝度分布を均 一にするとともに、画像表示品位の向上が図れる液晶表示装置を提供することである [0010] Furthermore, in a backlight system using LEDs, it is difficult to average the brightness difference between units adjacent in an oblique direction with one LED irradiation area as a unit! / A problem arises. The present invention has been made in view of the above problems, and an object of the present invention is to provide a dimming function and a thin backlight unit, and to balance the luminance distribution on the light exit surface of the backlight. And providing a liquid crystal display device capable of improving image display quality.
[0012] 本発明に係る液晶表示装置は、上記課題を解決するために、液晶表示パネルから なる画像表示用パネルと、該液晶表示パネルを照射する光源とを備えた液晶表示装 置において、上記画像表示用パネルと上記光源との間に、透過型の液晶表示パネ ルからなり、該画像表示用パネルに入力される映像信号に含まれる輝度情報に基づ V、て階調表示を行う調光用パネルが設けられて!/、ることを特徴として!/、る。 [0012] In order to solve the above problems, a liquid crystal display device according to the present invention includes a liquid crystal display device including an image display panel including a liquid crystal display panel and a light source that irradiates the liquid crystal display panel. A transmissive liquid crystal display panel is provided between the image display panel and the light source, and the gradation display is performed based on the luminance information included in the video signal input to the image display panel. It is characterized by the fact that a light panel is provided! /!
[0013] なお、本明細書においては、上記画像表示用の液晶表示パネルは、単に画像表 示用パネルとも記載し、上記調光用の液晶表示パネルは、単に調光用パネルとも記 載する。  In the present specification, the liquid crystal display panel for image display is also simply referred to as an image display panel, and the liquid crystal display panel for dimming is also simply referred to as a dimming panel. .
[0014] 上記の構成によれば、上記画像表示用パネルと上記光源との間に、透過型の液晶 表示パネルからなり、該画像表示用パネルに入力される映像信号に含まれる輝度情 報に基づいて階調表示を行う調光用パネルが設けられていることで、光源から照射さ れた光は階調表示を行っている調光用パネルを透過して画像表示用パネルに照射 されることになる。  [0014] According to the above configuration, the transmissive liquid crystal display panel is provided between the image display panel and the light source, and the luminance information included in the video signal input to the image display panel is displayed. Since the light control panel that performs gradation display is provided, the light emitted from the light source passes through the light adjustment panel that performs gradation display and is applied to the image display panel. It will be.
[0015] これにより、画像表示用パネルに対して、映像信号に基づいて表示される画像の各 領域の明暗度合いに応じて透過量の調整された光 (調光)を照射することが可能とな る。つまり、画像表示用パネルへの照射光量は、調光用パネルによって調整されるこ とになる。  [0015] Thereby, it is possible to irradiate the image display panel with light (dimming) whose transmission amount is adjusted according to the degree of brightness of each area of the image displayed based on the video signal. Become. That is, the amount of light applied to the image display panel is adjusted by the light control panel.
[0016] このように、画像表示用パネルへの照射光量を調光用パネルによって調整すること で、画像表示用パネルから漏れる光を少なくし、その結果、コントラストを向上させるこ と力 Sできる。  As described above, by adjusting the amount of light applied to the image display panel with the light control panel, light leaking from the image display panel can be reduced, and as a result, the power S can be improved.
[0017] しかも、 LEDを光源に用いたバックライトと異なり,蛍光管のバックライトユニットのよ うに調光機能がない場合においても調光用パネルによって調光機能が付与されるた め、このようなバックライトに用いて高品位な画像を得ることが可能となる。  [0017] In addition, unlike a backlight using an LED as a light source, a dimming function is provided by the dimming panel even when there is no dimming function like a backlight unit of a fluorescent tube. A high-quality image can be obtained by using a simple backlight.
[0018] つまり、蛍光管を平面状に並べたバックライトによって実現することが可能となるの で、バックライトユニット全体の厚みを蛍光管の直径程度の非常に薄く安価にすること が可能となる。 That is, it can be realized by a backlight in which fluorescent tubes are arranged in a plane. Thus, the thickness of the entire backlight unit can be made very thin and inexpensive, about the diameter of the fluorescent tube.
[0019] 以上のことから、バックライトにおいて同一の輝度を得るために必要なコストおよび 厚みを、 LEDを用いた場合よりも安ぐかつ薄くすることが可能となる。  [0019] From the above, it is possible to make the cost and thickness necessary for obtaining the same luminance in the backlight cheaper and thinner than in the case of using the LED.
[0020] さらに、上記調光用パネルを構成する画素のサイズは、上記画像表示用パネルを 構成する画素のサイズよりも大きレ、ことが好まし!/、。  [0020] Further, it is preferable that the size of the pixels constituting the dimming panel is larger than the size of the pixels constituting the image display panel!
[0021] この場合、調光用パネルの画素を透過する光は、画像表示用パネルの対応する画 素に対して確実に照射されることになる。逆に、調光用パネルの画素で遮蔽された場 合には、画像表示用パネルの対応する画素を確実に遮蔽させることになる。よって、 画像表示用パネルにおいて、白はより白く、黒はより黒くすることができるので、コント ラストを十分に高めることができる。  In this case, the light transmitted through the pixels of the light control panel is surely applied to the corresponding pixels of the image display panel. On the other hand, when the light is blocked by the pixel of the light control panel, the corresponding pixel of the image display panel is surely shielded. Therefore, in the image display panel, white can be made white and black can be made black, so that the contrast can be sufficiently increased.
[0022] 上記調光用パネルを構成する画素は、隣接する画素を構成する画素電極同士が 辺で隣あって!/、る多角形状であることが好まし!/、。  [0022] It is preferable that the pixels constituting the light control panel have a polygonal shape in which pixel electrodes constituting adjacent pixels are adjacent to each other!
[0023] このように、隣接する画素を構成する画素電極同士が辺で隣あっている多角形状 であることで、 1個の画素を囲む隣接画素は、横、斜め方向共に必ず境界線を介し、 点で接することはないので、輝度の変化が滑らかになるように中間調を調整し易くな  As described above, since the pixel electrodes constituting the adjacent pixels have a polygonal shape that is adjacent to each other at the sides, the adjacent pixels surrounding one pixel must always pass through the boundary line in both the horizontal and diagonal directions. Because it does not touch at a point, it is easy to adjust the halftone so that the change in brightness is smooth.
[0024] 例えば、上記調光用パネルを構成する画素は、六角形状であることが好ましい。 For example, the pixels constituting the light control panel are preferably hexagonal.
[0025] 上記画素同士の境界は、凹凸形状であることが好ましい。 The boundary between the pixels is preferably an uneven shape.
[0026] この場合、画素同士の境界は互いの画素の一部が入込んだ状態となる。これにより In this case, the boundary between the pixels is in a state where a part of each pixel is inserted. This
、画素の境界における輝度分布を滑らかにすることができる。 The luminance distribution at the pixel boundary can be smoothed.
[0027] そして、この画素同士の入り込み量を調整することで、違和感の無い輝度分布にす ること力 Sでさる。 [0027] Then, by adjusting the amount of penetration between the pixels, the power distribution S can be achieved with a luminance distribution that does not give a sense of incongruity.
[0028] このように、画素境界を入れ込み状にすることで、画素の輝度変化を滑らかにする ことが可能である。  [0028] In this way, by making the pixel boundary in an embedded state, it is possible to smooth the luminance change of the pixel.
[0029] なお、上記凹凸形状には、ジグザグ形状、波形状などが含まれる。  [0029] Note that the uneven shape includes a zigzag shape, a wave shape, and the like.
[0030] 上記調光用パネルの駆動方式は、画素を構成する画素電極に、該画素電極を駆 動するための駆動用信号を供給するための信号配線が直接接続されているセグメン ト駆動方式であることが好ましレ、。 [0030] The light control panel is driven by a segment in which a signal wiring for supplying a drive signal for driving the pixel electrode is directly connected to a pixel electrode constituting the pixel. It is preferable that the drive system.
[0031] このように、セグメント駆動方式であれば、トランジスタ等のスイッチング素子および このスイッチング素子を制御するための制御回路を必要としないので、調光用パネル を安価に製造できる。 In this manner, the segment drive method does not require a switching element such as a transistor and a control circuit for controlling the switching element, so that the light control panel can be manufactured at low cost.
[0032] 上記のように隣接画素同士が入込んだ状態で接続されている場合、この画素境界 となる領域が大きくなるので、画素境界の表示への影響が大きくなる。  [0032] When adjacent pixels are connected in a state where they are inserted as described above, the area serving as the pixel boundary becomes larger, so that the influence on the display of the pixel boundary is increased.
[0033] ここで、画素境界とは、隣合う画素間の部分であり、その距離のことを画素境界線幅 とするが、説明の便宜上、上記画素境界を画素間、画素境界線幅を画素間距離とす  Here, the pixel boundary is a portion between adjacent pixels, and the distance is the pixel boundary line width. For convenience of explanation, the pixel boundary is the pixel boundary, and the pixel boundary line width is the pixel boundary line. Distance
[0034] 例えば、調光用パネルがノーマリブラックモードで駆動されており、隣接画素同士が 白表示であった場合、画素間のみが黒表示となるので、画像表示用パネルに構成さ れた画素の開口率が低下し、表示への影響が大きくなる。このために、上記調光用 パネルの画素間距離を、少なくとも画像表示用パネルに構成された画素の短辺方向 の長さよりも短くすることで、画素間が画像表示用パネルの画素の開口領域に占める 割合を小さくでき、画素の開口率低下を抑制することができる。この結果、画素の開 口率低下による表示品位の低下を無くすことができる。 [0034] For example, when the dimming panel is driven in the normally black mode and adjacent pixels display white, only the pixels are displayed black, so that the image display panel is configured. The aperture ratio of the pixel is lowered and the influence on the display is increased. For this purpose, the distance between the pixels of the dimming panel is at least shorter than the length in the short-side direction of the pixels configured in the image display panel, so that the pixels have an opening area of the pixel of the image display panel. It is possible to reduce the proportion of the pixel area, and to suppress a decrease in the aperture ratio of the pixel. As a result, it is possible to eliminate the deterioration in display quality due to a decrease in the aperture ratio of the pixels.
[0035] また、上記調光用パネルの各画素には、駆動用信号を該画素それぞれに供給する ための信号配線が接続されており、上記信号配線の線幅が、上記画像表示用パネ ルの各画素内にお!/、て該画素の短辺方向の長さよりも短!/、ことが好まし!/、。  [0035] Each pixel of the dimming panel is connected with a signal wiring for supplying a driving signal to the pixel, and the line width of the signal wiring is the image display panel. It is preferable that the length of each pixel is shorter than the length in the short side direction of the pixel! /.
[0036] これにより、信号配線が画像表示用パネルの画素の開口領域に占める割合を小さ くできるので、画素の開口率低下を抑制することができる。この結果、画素の開口率 低下による表示品位の低下を無くすことができる。  [0036] This makes it possible to reduce the ratio of the signal wiring to the opening area of the pixel of the image display panel, thereby suppressing a decrease in the opening ratio of the pixel. As a result, it is possible to eliminate deterioration in display quality due to reduction in the aperture ratio of the pixel.
[0037] 上記の画素の開口率低下を抑制するためには、信号配線の幅が画像表示用パネ ルに構成された画素のサイズよりもちいさくすることが好ましいが、信号配線の幅が狭 くなることで、信号配線に所望される抵抗値が得られず、正常に画素を駆動できない という問題が生じる。画素を正常に駆動するためには、所望する抵抗値になるように 信号配線幅を広げる必要がある。このため、信号配線が画像表示用パネルの画素に 対して占める割合をある程度まで下げることができず、この結果、画素の開口率の低 下をある程度までしか抑制できな力、つた。 [0037] In order to suppress the reduction in the aperture ratio of the pixel, it is preferable that the width of the signal wiring is smaller than the size of the pixel configured in the image display panel, but the width of the signal wiring is narrow. As a result, a desired resistance value cannot be obtained for the signal wiring, and the pixel cannot be driven normally. In order to drive the pixel normally, it is necessary to widen the signal wiring width so as to obtain a desired resistance value. For this reason, the ratio of the signal wiring to the pixels of the image display panel cannot be lowered to some extent. As a result, the aperture ratio of the pixels is low. A force that can only be controlled to a certain extent.
[0038] そこで、上記調光用パネルの各画素には、それぞれ 2本以上の信号配線が接続さ れていることで、各画素を駆動するために必要となる配線の抵抗値を得ることができ、 正常に駆動することが可能となる。これにより、画素を駆動させるための信号配線が 1 本の場合よりも、信号配線の幅を狭くすることが可能となる。この結果、画素上の信号 配線が複数本存在しても、それぞれの信号配線の幅を狭くできるので、画素の開口 率の低下をさらに抑制することが可能となる。  [0038] Therefore, each pixel of the dimming panel is connected to two or more signal wirings, so that the resistance value of the wiring necessary for driving each pixel can be obtained. Can be driven normally. As a result, the width of the signal wiring can be made narrower than in the case of one signal wiring for driving the pixel. As a result, even if there are a plurality of signal lines on the pixel, the width of each signal line can be narrowed, so that it is possible to further suppress the decrease in the aperture ratio of the pixel.
[0039] また、調光用パネルは、セグメント駆動されているので、各画素に接続される信号配 線は、駆動用ドライバから最短距離で引き出された状態となっている。このため、駆動 用ドライバに近いほど画素上を通る信号配線の本数は多くなり、駆動ドライバから遠 ざかるにつれて画素上を通る信号配線の本数は少なくなるので、各画素に対して信 号配線が占める割合が異なる。つまり、各画素において、開口率がそれぞれ異なるこ とになるので、画像の表示品位の低下を招く虞がある。  Further, since the light control panel is segment-driven, the signal wiring connected to each pixel is in a state of being drawn out from the driving driver at the shortest distance. For this reason, the closer to the driver for driving, the more signal wiring passes over the pixel, and the number of signal wiring passing over the pixel decreases as the distance from the driving driver decreases, so the signal wiring occupies each pixel. The ratio is different. That is, each pixel has a different aperture ratio, which may cause a reduction in image display quality.
[0040] そこで、上記信号配線の延設方向に並ぶ画素上に、各画素上を通る配線の本数 が同じになるようにダミー配線を設けることで、各画素に対して信号配線が占める割 合を同じにすることができる。これにより、開口率のバラツキに起因する画像の表示品 位の低下を抑制できる。  [0040] Therefore, by providing dummy wiring on the pixels arranged in the extending direction of the signal wiring so that the number of wirings passing through each pixel is the same, the ratio of the signal wiring to each pixel is increased. Can be the same. As a result, it is possible to suppress a decrease in image display quality due to variations in the aperture ratio.
[0041] なお、上記ダミー配線は、それぞれの信号配線と同じ長さに形成されていることが 好ましぐこの場合には、各画素における開口率を同じにすることが可能となる。  [0041] It is preferable that the dummy wiring is formed to have the same length as each signal wiring. In this case, the aperture ratio in each pixel can be made the same.
[0042] 上記画像表示用パネルと上記調光用パネルとの間に光を散乱させる散乱板が設 けられていることが好ましい。  [0042] It is preferable that a scattering plate for scattering light is provided between the image display panel and the light control panel.
[0043] この場合、調光用パネルから出射される光を散乱させて画像表示用パネルにおけ る輝度変化を滑らかにできる、すなわち暈すことができる。  [0043] In this case, the light emitted from the light control panel can be scattered to smooth the luminance change in the image display panel, that is, it can be reduced.
[0044] 上記散乱板は、上記調光用パネルに対して離間して配置されて!/、ること力 S好ましレ、  [0044] The scattering plate is disposed so as to be spaced from the light control panel!
[0045] このように、散乱板を調光用パネルに対して離間して配置させることで、画像表示 用パネルから出射した偏光が散乱板で乱されることを抑制しつつ拡散の効果を得ら れること力 Sでさる。 [0046] 本発明のテレビジョン受信機は、テレビジョン放送を受信するチューナ部と、該チュ ーナ部で受信したテレビジョン放送を表示する液晶表示装置とを備え、上記液晶表 示装置に、上述した液晶表示装置を適用したことを特徴としている。 As described above, by disposing the scattering plate away from the dimming panel, a diffusion effect is obtained while suppressing the polarization emitted from the image display panel from being disturbed by the scattering plate. The power S [0046] A television receiver of the present invention includes a tuner unit that receives a television broadcast, and a liquid crystal display device that displays the television broadcast received by the tuner unit, and the liquid crystal display device includes: The liquid crystal display device described above is applied.
[0047] 上記の構成によれば、液晶表示装置の更なる薄型化を実現しつつ、コントラストの 高い高品位のテレビ画像を表示することができるテレビジョン受信機を実現すること ができる。  [0047] According to the above configuration, it is possible to realize a television receiver capable of displaying a high-definition television image with high contrast while realizing further thinning of the liquid crystal display device.
[0048] ところで、画像表示用パネルと光源との間に、調光用パネルを設置した構造におい ては、画像表示用パネルと調光用パネルとレ、う互いに機能および構成の異なる 2種 類のパネルが必要となる。このように、互いに機能および構成の異なる画像表示用パ ネルと調光用パネルとを備えた液晶表示装置を製造する場合、パネル製造工程に おいては、種類は異なるが同サイズの基板で製造されるパネルを更に製造すること になる。  [0048] By the way, in the structure in which the light control panel is installed between the image display panel and the light source, the image display panel and the light control panel have two different functions and configurations. Panel is required. In this way, when manufacturing a liquid crystal display device having an image display panel and a dimming panel having different functions and configurations, the panel manufacturing process uses different substrates but the same size. Will produce more panels.
[0049] これは言い換えると、パネル製造工程において、各パネルの作製のために同一製 造ラインの生産能力を上げる必要が生じることを意味する。  In other words, this means that in the panel manufacturing process, it is necessary to increase the production capacity of the same manufacturing line in order to manufacture each panel.
[0050] 本発明の液晶表示装置においては、上記調光用パネルが複数のサブパネルを繋 ぎ合わせて構成されている。これは調光用パネルが裏面にあって直接観察者から視 認されることがないため、サブパネル同士を繋ぎ合わせても、その境界を目立たなく することができるためである。このことは、調光用パネルを他のパネルを製造する既存 のラインや、簡素なラインで作製し、でき上がったパネルを組み合わせることによって 調光用パネルを作製できることも意味してレ、る。  In the liquid crystal display device of the present invention, the light control panel is configured by connecting a plurality of sub-panels. This is because the dimming panel is on the back surface and is not directly seen by the observer, so even if the sub-panels are joined together, the boundary can be made inconspicuous. This also means that the dimming panel can be manufactured by using existing lines for manufacturing other panels or simple lines, and combining the completed panels.
[0051] 上記の構成によれば、既存の大きさ(比較的小さいサイズ)のサブパネルを組み合 わせて構成することができるため、調光用パネルの製造には、既存の大きさの液晶表 示装置の製造ラインを有効に効率よく使用することができる。したがって、本発明の 液晶表示装置は、設備投資の大きい大型の液晶表示装置を製造するラインに特に 有効である。  [0051] According to the above configuration, since the sub-panel of the existing size (relatively small size) can be combined, the liquid crystal display panel of the existing size is used for manufacturing the light control panel. The production line of the display device can be used effectively and efficiently. Therefore, the liquid crystal display device of the present invention is particularly effective for a line for manufacturing a large-sized liquid crystal display device with a large capital investment.
[0052] 上記の複数のサブパネル同士が繋ぎ合わせられている部分では、各サブパネル同 士が重ね合わせられてレ、ることが好ましレ、。  [0052] In the portion where the plurality of sub-panels are connected to each other, it is preferable that the sub-panels are overlapped.
[0053] 上記の構成によれば、各サブパネル同士を面で接着することができるため、結合強 度を高くすることカできる。そのため、サブパネル同士を繋ぎ合せる際に、補強のた めのガラス基板などを設ける必要がなくなる。 [0053] According to the above configuration, since the sub-panels can be bonded to each other on the surface, You can increase the degree. Therefore, it is not necessary to provide a glass substrate for reinforcement when connecting the sub-panels.
[0054] 上記調光用パネルは、基板をさらに有しており、上記複数のサブパネルは、上記基 板上に互いに隣接して貼り付けられて!/、ることが好まし!/、。 [0054] It is preferable that the light control panel further includes a substrate, and the plurality of sub-panels are attached to the substrate adjacent to each other! /.
[0055] 上記の構成によれば、複数のサブパネルを繋ぎ合わせて形成されたパネル表面に 段差が生ずることなぐ複数のサブパネルを繋ぎ合わせることができる。そのため、サ ブパネルの表面に偏光板などを直接設けることができる。 [0055] According to the above configuration, it is possible to connect a plurality of sub-panels without causing a step on a panel surface formed by connecting the plurality of sub-panels. Therefore, a polarizing plate or the like can be directly provided on the surface of the sub panel.
[0056] なお、分割したパネルを繋ぎ合わせる技術としては、特許文献 3, 4などに開示され ているものが挙げられる。しかし、これらの技術は何れも大型の画像表示パネルを複 数のパネルで構成するものであり、パネルの継ぎ目を目立たないようにすることがポ イントとされている。したがって、本発明のように、バックライト側に配置されたパネルを 複数のサブパネルに分割するものとは異なる。 [0056] Note that techniques disclosed in Patent Documents 3 and 4 may be cited as techniques for joining the divided panels. However, all of these technologies constitute a large image display panel with a plurality of panels, and the point is to make the joints of the panels inconspicuous. Therefore, unlike the present invention, the panel arranged on the backlight side is different from the one divided into a plurality of sub-panels.
[0057] 上記調光用パネルを構成する互いに隣接する画素同士の各境界は、凹凸形状で あることが好ましい。 [0057] It is preferable that each boundary between adjacent pixels constituting the light control panel has an uneven shape.
[0058] 上記の構成によれば、画素同士の境界は互いの画素の一部が入り込んだ状態とな る。これにより、画素の境界における輝度分布を滑らかにすることができる。  [0058] According to the above configuration, a part of each pixel enters the boundary between the pixels. Thereby, the luminance distribution at the pixel boundary can be smoothed.
[0059] そして、この画素同士の入り込み量を調整することで、違和感の無い輝度分布にす ること力 Sでさる。  [0059] Then, by adjusting the amount of penetration between the pixels, the power S can be obtained by making the luminance distribution without a sense of incongruity.
[0060] このように、画素境界を入り込み状にすることで、画素の輝度変化を滑らかにするに は有効である。なお、上記凹凸形状には、ジグザグ形状、波形状などが含まれる。  [0060] In this way, it is effective to smooth the luminance change of a pixel by making the pixel boundary intrusive. Note that the uneven shape includes a zigzag shape, a wave shape, and the like.
[0061] 上記複数のサブパネル同士の境界は、上記調光用パネルを構成する画素の境界 とは異なる位置に設けられて!/、ること力 S好ましレ、。  [0061] The boundary between the plurality of sub-panels is provided at a position different from the boundary of the pixels constituting the light control panel.
[0062] 上記複数のサブパネル同士の境界とは、液晶を封入しているサブパネルにおける 液晶のシールライン、サブパネルの端部(切断部分)などである。  [0062] The boundary between the plurality of sub-panels includes a liquid crystal seal line in the sub-panel in which liquid crystal is sealed, an end (cut portion) of the sub-panel, and the like.
[0063] 上記の構成によれば、調光用パネルを構成する画素の境界が複雑な凹凸形状を 有していても、サブパネルの境界は、この画素境界とは異なる位置に設けられている ため、サブパネルの境界の形状を単純な形状とすることができる。そのため、画素境 界の凹凸形状による暈しの効果を損なうことなぐ複数のサブパネルを繋ぎ合わせて 大型の調光用パネルを形成することができる。 [0063] According to the above configuration, even if the boundary of the pixels constituting the light control panel has a complicated uneven shape, the boundary of the sub-panel is provided at a position different from the pixel boundary. The shape of the boundary between the sub-panels can be a simple shape. For this reason, multiple sub-panels that do not impair the wrinkle effect due to the uneven shape of the pixel boundary are connected together. A large dimming panel can be formed.
[0064] なお、このような調光用パネルを観察者側から見た場合、隣接する各サブパネルの 画素の一部同士を組み合わせて一つの画素が形成されているように見える。 [0064] When such a light control panel is viewed from the observer side, it seems that one pixel is formed by combining some of the pixels of each adjacent sub-panel.
[0065] 上記調光用パネルを構成する画素は六角形状であり、該六角形状の画素の中心とThe pixels constituting the light control panel have a hexagonal shape, and the center of the hexagonal pixel is
、該六角形の頂点とを結んで得られる線が、上記複数のサブパネル同士の境界とな るように、各サブパネル同士が繋ぎ合わせられていることが好ましい。 In addition, it is preferable that the sub panels are connected to each other so that a line obtained by connecting the apexes of the hexagons is a boundary between the plurality of sub panels.
[0066] 上記の構成によれば、繋ぎ合せられる各サブパネルの端部を、互いに同じ形状に すること力 Sできる。そのため、同じ製造ラインで各サブパネルの端部を形成することが できる。 [0066] According to the above configuration, it is possible to make the force S so that the ends of the sub-panels to be joined have the same shape. Therefore, the end of each sub-panel can be formed on the same production line.
[0067] 上記調光用パネルを構成する画素は、隣接する画素同士が辺で隣り合つている多 角形状であることが好ましい。  [0067] It is preferable that the pixels constituting the light control panel have a polygonal shape in which adjacent pixels are adjacent to each other on the sides.
[0068] 上記の構成によれば、画素の形状が、隣接する画素同士が辺で隣あっている多角 形状であることで、 1個の画素を囲む隣接画素は、横、斜め方向共に必ず境界線を 介して配置され、画素同士が点で接することはないので、輝度変化が滑らかになるよ うな中間調の調整を容易に行うことができる。 [0068] According to the above configuration, since the shape of the pixel is a polygonal shape in which adjacent pixels are adjacent to each other on the side, the adjacent pixels surrounding one pixel must be bounded in both the horizontal and diagonal directions. Since the pixels are arranged via a line and the pixels do not touch each other at a point, it is possible to easily adjust the halftone so that the luminance change is smooth.
[0069] 上記調光用パネルを構成する画素は、六角形状であることが好ましい。 [0069] The pixels constituting the light control panel preferably have a hexagonal shape.
[0070] 上記の構成によれば、六角形状の画素を最密配置することで、 1個の画素を囲む 隣接画素が、横、斜め方向共に必ず境界線を介して配置され、画素同士が点で接 することはないので、輝度変化が滑らかになるような中間調の調整を容易に行うこと ができる。 [0070] According to the above configuration, by arranging hexagonal pixels in a close-packed manner, adjacent pixels surrounding one pixel are always arranged via a boundary line in both the horizontal and diagonal directions, and the pixels are dotted. Therefore, it is easy to adjust the halftone so that the luminance change is smooth.
[0071] 上記調光用パネルの駆動方式は、セグメント駆動方式であることが好ましい。  [0071] The driving method of the light control panel is preferably a segment driving method.
[0072] 上記の構成によれば、調光用パネルを安価に製造できる。 [0072] According to the above configuration, the light control panel can be manufactured at low cost.
[0073] 上記画像表示用パネルと上記調光用パネルとの間に光を散乱させる散乱板が設 けられていることが好ましい。  [0073] It is preferable that a scattering plate for scattering light is provided between the image display panel and the light control panel.
[0074] 上記の構成によれば、調光用パネルから出射される光を散乱させて画像表示用パ ネルにおける輝度変化を滑らかにできる、すなわち暈すことができる。 [0074] According to the above configuration, the light emitted from the light control panel can be scattered to smooth the luminance change in the image display panel, that is, it can be reduced.
[0075] 上記散乱板は、上記調光用パネルに対して離間して配置されて!/、ること力 S好ましレ、 [0076] 上記の構成によれば、散乱板を調光用パネルに対して離間して配置させることで、 画像表示用パネルから出射した偏光が散乱板で乱されることを抑制しつつ拡散の効 果を得ること力 Sでさる。 [0075] The scattering plate is arranged so as to be separated from the light control panel! [0076] According to the above configuration, by disposing the scattering plate away from the light control panel, it is possible to prevent diffusion of the polarized light emitted from the image display panel from being disturbed by the scattering plate. Use the power S to get the effect.
[0077] また、本発明のテレビジョン受信機は、テレビジョン放送を受信するチューナ部と、 該チューナ部で受信したテレビジョン放送を表示する上記の何れかに記載の液晶表 示装置とを備えてレ、ることを特徴として!/、る。  [0077] Further, a television receiver of the present invention includes a tuner unit that receives a television broadcast, and the liquid crystal display device according to any one of the above that displays the television broadcast received by the tuner unit. It is characterized by that!
[0078] 上記の構成によれば、上記の液晶表示装置を備えていることにより、表示品位の向 上したテレビジョン受信機を提供できる。  [0078] According to the above configuration, the provision of the above-described liquid crystal display device makes it possible to provide a television receiver with improved display quality.
[0079] 以上のように、本発明に係る液晶表示装置は、液晶表示パネルからなる画像表示 用パネルと、該液晶表示パネルの背面側から光を照射する光源とを備えた液晶表示 装置において、上記画像表示用パネルと上記光源との間に、透過型の液晶表示パ ネルからなり、該画像表示用パネルに入力される映像信号に含まれる輝度情報に基 づレ、て階調表示を行う調光用パネルが設けられてレ、る。光源がバックライトである場 合は、バックライトにおいて同一の輝度を得るために必要なコストおよび厚みを、 LE Dを用いた場合よりも安ぐかつ薄くすることができるという効果を奏する。  [0079] As described above, the liquid crystal display device according to the present invention is a liquid crystal display device including an image display panel including a liquid crystal display panel and a light source that emits light from the back side of the liquid crystal display panel. A transmissive liquid crystal display panel is provided between the image display panel and the light source, and gradation display is performed based on luminance information included in a video signal input to the image display panel. A light control panel is provided. When the light source is a backlight, the cost and thickness necessary to obtain the same brightness in the backlight can be made cheaper and thinner than when the LED is used.
[0080] また、本発明にかかる液晶表示装置は、上記画像表示用パネルと上記光源との間 に、透過型の液晶表示パネルからなり、上記画像表示用パネルに入力される映像信 号に含まれる輝度情報に基づいて階調表示を行う調光用パネルが設けられており、 上記調光用パネルは、複数のサブパネルから構成されており、該サブパネルを構成 する画素のサイズが、上記画像表示用パネルを構成する画素のサイズよりも大きくな つて!/、るとともに、上記複数のサブパネルは互いに繋ぎ合わせられて!/、るものである  Further, the liquid crystal display device according to the present invention includes a transmissive liquid crystal display panel between the image display panel and the light source, and is included in the video signal input to the image display panel. A dimming panel is provided that performs gradation display based on luminance information to be displayed. The dimming panel includes a plurality of sub-panels, and the size of the pixels constituting the sub-panel is determined by the image display. The size of the pixels that make up the panel is larger! /, And the multiple sub-panels are connected together! /
[0081] したがって、本発明によれば、 LEDを光源として使用した場合に発生する上述の問 題点が生ずることなぐコントラストの向上を図ることにより画像表示品位の向上が図 れるとともに、表示装置が大型化した場合にも効率的に製造することのできる液晶表 示装置を提供することができるとレ、う効果を奏する。 Therefore, according to the present invention, the image display quality can be improved by improving the contrast without causing the above-described problems that occur when an LED is used as a light source, and the display device can be improved. It is possible to provide a liquid crystal display device that can be efficiently manufactured even when the size is increased.
図面の簡単な説明  Brief Description of Drawings
[0082] [図 1]本発明の実施形態を示すものであり、液晶表示装置の要部構成を示す斜視図 である。 FIG. 1, showing an embodiment of the present invention, is a perspective view showing a main configuration of a liquid crystal display device It is.
園 2]図 1に示す液晶表示装置の概略断面図である。 2] A schematic cross-sectional view of the liquid crystal display device shown in FIG.
園 3]図 1に示す画像表示パネルの表示例を示す図である。 3] is a diagram showing a display example of the image display panel shown in FIG.
園 4]本発明の調光用パネルの画素同士の配置状態を示す図である。 4] A diagram showing an arrangement state of pixels of the light control panel of the present invention.
園 5]図 4に示す配置状態状態の画素同士の入り込み距離と輝度との関係を示すグ ラフである。 5 is a graph showing the relationship between the penetration distance between the pixels in the arrangement state shown in FIG. 4 and the luminance.
園 6]図 4に示す配置状態状態の画素同士の輝度を示すグラフである。 6] A graph showing the luminance between pixels in the arrangement state shown in FIG.
園 7]拡散板の種類による、コントラスト比の違!/、を示すグラフである。 7] A graph showing the difference in contrast ratio depending on the type of diffuser.
園 8]調光用パネルの画素構造と画素への配線例を示す図である。 FIG. 8] A diagram showing a pixel structure of the light control panel and an example of wiring to the pixels.
[図 9]図 8の (b)に示す調光用パネルの AA線矢視断面図である。 FIG. 9 is a cross-sectional view taken along the line AA of the light control panel shown in FIG. 8 (b).
園 10]調光用パネルの平面図である。 [10] It is a plan view of the light control panel.
園 11]本発明の液晶表示装置を駆動するための駆動回路を示す概略ブロック図であ 園 12]本発明の液晶表示装置を用いた液晶プロジェクター装置の一例を示す概略 構成図である。 FIG. 11] A schematic block diagram showing a drive circuit for driving the liquid crystal display device of the present invention. [12] FIG. 12 is a schematic configuration diagram showing an example of a liquid crystal projector device using the liquid crystal display device of the present invention.
園 13]本発明の液晶表示装置を用いた液晶プロジェクター装置の他の例を示す概 略構成図である。 13] FIG. 13 is a schematic configuration diagram showing another example of a liquid crystal projector device using the liquid crystal display device of the present invention.
園 14]調光用パネルにおける画素境界の形状を示す図である。 14] A diagram showing the shape of the pixel boundary in the light control panel.
園 15]調光用パネルの画素と配線との関係を示す図である。 Fig. 15] is a diagram showing the relationship between the pixels of the light control panel and the wiring.
園 16]調光用パネルの画素と配線との関係を示す図である。 16] It is a diagram showing the relationship between the pixels of the light control panel and the wiring.
園 17]図 16に示す画素の BB線矢視断面図である。 17] is a cross-sectional view of the pixel shown in FIG.
園 18]調光用パネルの画素と駆動ドライバとの関係を示す図である。 FIG. 18 is a diagram illustrating a relationship between a pixel of the light control panel and a drive driver.
園 19]図 18に示す画素の CC線矢視断面図である。 19] FIG. 19 is a cross-sectional view of the pixel shown in FIG.
園 20]図 18に示す画素の DD線矢視断面図である。 20] FIG. 19 is a cross-sectional view taken along the line DD of the pixel shown in FIG.
園 21]調光用パネルの製造工程を示す図である。 FIG. 21] A diagram showing a manufacturing process of the light control panel.
[図 22]本発明の他の実施の形態にかかる液晶表示装置の概略構成を示す斜視図で ある。  FIG. 22 is a perspective view showing a schematic configuration of a liquid crystal display device according to another embodiment of the present invention.
園 23]図 22に示す液晶表示装置の EE線矢視断面図である。 園 24]図 22に示す液晶表示装置が備えた調光用パネルの構成を示す模式図である 園 25]調光用パネルを構成するサブパネルの画素構造と画素への配線例を示す図 である。 FIG. 23] is a cross-sectional view taken along the line EE of the liquid crystal display device shown in FIG. FIG. 24] A schematic diagram showing the configuration of the light control panel provided in the liquid crystal display device shown in FIG. 22. [25] FIG. 25 is a diagram showing a pixel structure of a sub-panel constituting the light control panel and an example of wiring to the pixels. .
[図 26]図 25の(b)に示すサブパネルの FF線矢視断面図である。  FIG. 26 is a cross-sectional view taken along line FF of the sub-panel shown in FIG. 25 (b).
園 27]調光用パネルを構成するサブパネルの平面図である。 Fig. 27] is a plan view of a sub-panel constituting the light control panel.
園 28]サブパネルの端部(シールライン)の形状を説明する模式図である。 [28] It is a schematic diagram for explaining the shape of the end (seal line) of the sub-panel.
園 29]サブパネルの境界の形状を示す模式図である。 Fig. 29] is a schematic diagram showing the shape of the boundary of the sub-panel.
[図 30]図 29に示す境界を有するサブパネル同士を繋ぎ合わせる様子を示す模式図 である。  FIG. 30 is a schematic diagram showing how sub-panels having boundaries shown in FIG. 29 are joined together.
園 31(a)]2つのサブパネルを第 1の方法によって繋ぎ合わせて形成された調光用パ ネル、および、偏光板の断面構成を示す部分断面図である。 31 (a)] is a partial cross-sectional view showing a cross-sectional configuration of a light control panel formed by connecting two sub-panels by a first method and a polarizing plate.
園 31(b)]図 31 (a)に示す調光用パネルの表面の状態を模式的に示す部分平面図 である。 31 (b)] is a partial plan view schematically showing the state of the surface of the light control panel shown in FIG. 31 (a).
園 32(a)]2つのサブパネルを第 2の方法によって繋ぎ合わせて形成された調光用パ ネル、および、偏光板の断面構成を示す部分断面図である。 32 (a)] is a partial cross-sectional view showing a cross-sectional configuration of a light control panel formed by connecting two sub-panels by a second method and a polarizing plate.
園 32(b)]図 32 (a)に示す調光用パネルの表面の状態を模式的に示す部分平面図 である。 32 (b)] is a partial plan view schematically showing the state of the surface of the light control panel shown in FIG. 32 (a).
園 33]本発明の液晶表示装置を構成する調光用パネルのノ リエーシヨンを示す模式 図である。 [33] FIG. 33 is a schematic diagram showing the nomination of the light control panel constituting the liquid crystal display device of the present invention.
[図 34]調光用パネルの画素の形状、および、サブパネルのパネル境界の形状の例を 示す模式図である。  FIG. 34 is a schematic diagram showing an example of a pixel shape of a light control panel and a panel boundary shape of a sub-panel.
園 35]本発明の液晶表示装置を備えたテレビジョン受信機の概略ブロック図である。 園 36]図 35に示すテレビジョン受信機におけるチューナ部と液晶表示装置との関係 を示すブロック図である。 [35] FIG. 35 is a schematic block diagram of a television receiver including the liquid crystal display device of the present invention. 36] FIG. 36 is a block diagram showing the relationship between the tuner unit and the liquid crystal display device in the television receiver shown in FIG.
園 37]図 35に示すテレビジョン受信機の分解斜視図である。 37] is an exploded perspective view of the television receiver shown in FIG.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
〔実施の形態 1〕 本発明の一実施の形態について説明すれば、以下の通りである。 Embodiment 1 An embodiment of the present invention will be described as follows.
[0084] 本実施の形態にかかる液晶表示装置は、図 1に示すように、画像表示用パネル 2と 、ノ ックライトユニット 3との間に、調光用パネル 1を配置した構造である。なお、図 1で は、バックライトユニット 3に設けられている、光拡散板などの光学フィルムの図示は省 略している。 As shown in FIG. 1, the liquid crystal display device according to the present embodiment has a structure in which a light control panel 1 is arranged between an image display panel 2 and a knock light unit 3. In FIG. 1, illustration of an optical film such as a light diffusion plate provided in the backlight unit 3 is omitted.
[0085] 上記調光用パネル 1は、それぞれが独立して中間調表示を含むグレースケール表 示を行なう、複数の画素 20で構成された表示パネルからなる。  The dimming panel 1 is composed of a display panel composed of a plurality of pixels 20 each independently performing grayscale display including halftone display.
[0086] 上記調光用パネル 1の画素 20は、画像表示用パネル 2の画素(図示せず)より面積 が大きなものとする。また、上下左右斜め方向の画素 20がそれぞれ隣接するように、 六角形を基本とした細密配置となっている。 It is assumed that the pixel 20 of the light control panel 1 has a larger area than the pixel (not shown) of the image display panel 2. In addition, the pixel 20 is arranged in a precise manner based on a hexagon so that the pixels 20 in the diagonal direction are adjacent to each other.
[0087] このように、画素 20を六角形とすることにより、 1個の画素 20を囲む隣接画素 20は[0087] In this way, by making the pixels 20 hexagonal, the adjacent pixels 20 surrounding one pixel 20 are
、横、斜め方向共に必ず境界線を介し、隣接画素と点で接することはないので、輝度 の変化が滑らかになるように中間調を調整し易くなる。 In both horizontal and diagonal directions, borders are not necessarily touched by adjacent pixels, and it is easy to adjust the halftone so that the luminance changes smoothly.
[0088] 上記画像表示用パネル 2は、複数の画素(図示せず)がマトリクス状に配置された 画像表示面 2aを有する液晶表示パネルからなる。 The image display panel 2 is a liquid crystal display panel having an image display surface 2a in which a plurality of pixels (not shown) are arranged in a matrix.
[0089] 上記画像表示用パネル 2と上記調光用パネル 1との間には、散乱板 71が設置され ている。この散乱板 71によって、調光用パネル 1を透過した光を散乱させることで、該 調光用パネル 1の表示境界を暈すようになつている。 A scattering plate 71 is installed between the image display panel 2 and the light control panel 1. The scattering plate 71 scatters the light transmitted through the light control panel 1 so as to obscure the display boundary of the light control panel 1.
[0090] なお、調光用パネル 1と画像表示用パネル 2との間は、ある間隔をおいて設置され[0090] It should be noted that a space is provided between the light control panel 1 and the image display panel 2.
、散乱板 71は、この間隔の画像表示用パネル 2に近い側に設置されるのが好ましいThe scattering plate 71 is preferably installed on the side close to the image display panel 2 with this interval.
。このように、調光用パネル 1と画像表示用パネル 2とを所定の間隔をあけて配置する ことにより、各パネルの間に設置された散乱板 71による暈しの効果をさらに高めるば 力、りでなぐ調光用パネル 1から出射した偏光が散乱板 71で乱されることを抑制しつ つ拡散の効果を得られることができるというメリットがある。 . In this way, by arranging the light control panel 1 and the image display panel 2 at a predetermined interval, the power of the scatter plate 71 installed between the panels can be further enhanced. Therefore, there is an advantage that the diffusion effect can be obtained while suppressing that the polarized light emitted from the dimming panel 1 is disturbed by the scattering plate 71.
[0091] 上記バックライトユニット 3は、複数の蛍光灯を光源とし、画像表示用パネル 2に対 向する面を光出射面 3aとして、該光出射面 3aから画像表示用パネル 2に向かって光 を照射するようになっている。 [0091] The backlight unit 3 uses a plurality of fluorescent lamps as light sources, a surface facing the image display panel 2 as a light exit surface 3a, and light from the light exit surface 3a toward the image display panel 2. It comes to irradiate.
[0092] 上記調光用パネル 1は、図 2に示すように、画像表示用パネル 2とバックライトュニッ ト 3との間に位置し、 2枚の基板に挟まれた液晶層 4をもち、ノ ックライトユニット 3側の 偏光板 5と画像表示用パネル 2の光入射側との偏光板 5とで、グレースケール表示が 可能なパネル構成となってレ、る。 As shown in FIG. 2, the light control panel 1 includes the image display panel 2 and the backlight unit. A liquid crystal layer 4 sandwiched between two substrates, a polarizing plate 5 on the knock light unit 3 side, and a polarizing plate 5 on the light incident side of the image display panel 2 The panel configuration is capable of gray scale display.
[0093] 上記画像表示用パネル 2は、ガラス基板 201 · 202間に液晶層 4を設け、複数の画 素(図示せず)がマトリクス状に配置された液晶表示パネルである。ガラス基板 201 · 2The image display panel 2 is a liquid crystal display panel in which a liquid crystal layer 4 is provided between glass substrates 201 and 202 and a plurality of pixels (not shown) are arranged in a matrix. Glass substrate 201 2
02のそれぞれ外側には、クロスニコルの関係にある偏光板 5 · 5が配置されている。 On each outer side of 02, polarizing plates 5 and 5 having a crossed Nicol relationship are arranged.
[0094] なお、図 2では、調光用パネル 1の出射側 (バックライトユニット 3側と反対側)の偏光 板は、画像表示用パネル 2の偏光板 5と兼ねることが出来るので、ここでは省略して いる。ここでは、調光用パネル 1の偏光板 5と画像表示用パネル 2の入射側の偏光板In FIG. 2, the polarizing plate on the exit side (the side opposite to the backlight unit 3 side) of the dimming panel 1 can also serve as the polarizing plate 5 of the image display panel 2. Omitted. Here, the polarizing plate 5 of the light control panel 1 and the polarizing plate on the incident side of the image display panel 2
5とはクロスニコルの関係を有している。 5 has a crossed Nicols relationship.
[0095] また、調光用パネル 1と散乱板 71との間に、つまり散乱板 71を偏光板 5で挟むよう に更に偏光板 5を設置しても良い。この場合は、調光用パネル 1で乱された偏光を吸 収することができるので更にコントラストを向上させることが可能である。 Further, a polarizing plate 5 may be further provided between the light control panel 1 and the scattering plate 71, that is, so that the scattering plate 71 is sandwiched between the polarizing plates 5. In this case, since the polarized light disturbed by the light control panel 1 can be absorbed, the contrast can be further improved.
[0096] 前述したように、散乱板 71は、画像表示用パネル 2に接近して配置し、調光用パネ ル 1とは、前述したように散乱板 71による光の乱れを抑えつつエリア境界を効果的に 暈すために距離を間隔 dだけ離して設置している。 [0096] As described above, the scattering plate 71 is disposed close to the image display panel 2, and the dimming panel 1 is an area boundary while suppressing disturbance of light by the scattering plate 71 as described above. In order to effectively detract from the distance, the distance is set at a distance d.
[0097] 散乱板 71が調光用パネル 1の出射側に密着している場合、つまり間隔 dが 0の場合[0097] When scattering plate 71 is in close contact with the exit side of light control panel 1, that is, when distance d is 0
、調光用パネル 1に表示されるエリア境界パターンが、十分拡散されず、画像表示用 パネル 2を通して認識される虞がある。 The area boundary pattern displayed on the light control panel 1 is not sufficiently diffused and may be recognized through the image display panel 2.
[0098] そこで、上記のエリア境界パターンが認識されないようにするために、散乱板 71の 散乱度合レ、を強くすることが考えられるが、以下のような問題が生じる。 Therefore, in order to prevent the area boundary pattern from being recognized, it is conceivable to increase the scattering degree of the scattering plate 71, but the following problems arise.
[0099] 散乱板 71の散乱度合いを強くすると、調光用パネル 1から出射した偏光が散乱板 で乱され、画像表示用パネル 2の入射側に設置された偏光板 5で吸収されることにな り光利用の効率が低下する。 When the scattering degree of the scattering plate 71 is increased, the polarized light emitted from the light control panel 1 is disturbed by the scattering plate and absorbed by the polarizing plate 5 installed on the incident side of the image display panel 2. As a result, the efficiency of light use decreases.
[0100] 従って、散乱板 71では出来る限り偏光解消が生じないことが重要であることがわか る。つまり、偏光が乱されず、調光用パネル 1の境界パターンが暈けて滑らかな輝度 分布が得られるようにある距離を保って散乱板 71を設置する必要がある。 [0100] Accordingly, it can be seen that it is important that the depolarization does not occur in the scattering plate 71 as much as possible. In other words, it is necessary to install the scattering plate 71 at a certain distance so that the polarization pattern is not disturbed and the boundary pattern of the light control panel 1 is blurred to obtain a smooth luminance distribution.
[0101] 上記バックライトユニット 3と調光用パネル 1との間には、散乱板 7、プリズムシート 6 などの光学フィルムが配置される。 [0101] Between the backlight unit 3 and the light control panel 1, there are a scattering plate 7 and a prism sheet 6 An optical film such as is arranged.
[0102] 尚、調光用パネル 1の入射側の偏光板 5には、選択機能をかねた偏光板とすること が出来る。 [0102] The polarizing plate 5 on the incident side of the light control panel 1 can be a polarizing plate that also has a selection function.
[0103] 次に、上記バックライトユニット 3は、光源として蛍光管からなるランプ 8をもちいた一 般的なバックライトである。したがって、バックライトユニット 3では出射面全体で、若し くは蛍光管毎にある程度の調光は可能であるが、出射面を複数の領域に分割し、そ の領域毎に調光できるようにはなって!/、な!/、。  Next, the backlight unit 3 is a general backlight using a lamp 8 made of a fluorescent tube as a light source. Therefore, although the backlight unit 3 can adjust the light to some extent on the entire emission surface or for each fluorescent tube, the emission surface is divided into a plurality of areas so that light can be adjusted for each area. Hana! /, Na! /, ...
[0104] また、蛍光管からなるバックライトユニット 3において、複数の領域毎に分割するには 、領域毎に蛍光管を設け、 ON— OFF可能な機構にしなくてはならないため、以下の ような種々の問題が生じる。  [0104] Further, in order to divide the backlight unit 3 composed of fluorescent tubes into a plurality of regions, it is necessary to provide a fluorescent tube for each region and make a mechanism that can be turned on and off. Various problems arise.
[0105] 例えば、分割された領域の形状に応じて蛍光管を配置する場合、蛍光管自体の形 状が複雑になる。また、蛍光管の大きさによって分割された領域サイズに限界が生じ 、細かいエリアに対応できない。さらに、エリアの数が多くなれば、蛍光管の駆動用回 路が複雑になる。  [0105] For example, when the fluorescent tube is arranged according to the shape of the divided area, the shape of the fluorescent tube itself is complicated. In addition, there is a limit to the size of the divided area depending on the size of the fluorescent tube, and it is not possible to deal with fine areas. Furthermore, as the number of areas increases, the driving circuit for the fluorescent tube becomes complicated.
[0106] しかしながら、本実施の形態では、エリア毎の階調表現を調光用パネル 1の液晶に て調節するため、上記のような蛍光管からなるバックライトユニット 3側への負担はなく However, in the present embodiment, since the gradation expression for each area is adjusted by the liquid crystal of the light control panel 1, there is no burden on the backlight unit 3 side made of the fluorescent tube as described above.
、常時点灯していればよいので、機構が簡単となる。 As long as it is always on, the mechanism is simple.
[0107] 上記調光用パネル 1を用いて、画像表示用パネル 2におけるエリア毎の階調表現を 行った場合の画像表示例について以下に説明する。 [0107] An image display example in the case where gradation display for each area in the image display panel 2 is performed using the light control panel 1 will be described below.
[0108] 図 3の(a) (b)は、本実施例の液晶表示装置において、画像を表示した場合を示し ている。 [0108] FIGS. 3A and 3B show a case where an image is displayed in the liquid crystal display device of the present embodiment.
[0109] 図 3の(a)は、画像表示用パネル 2に画像を表示した例であり、一方,図 3の(b)は、 図 3の(a)の画像に対する調光用パネル 1に映し出されたパターン画像を示す。  FIG. 3 (a) is an example in which an image is displayed on the image display panel 2. On the other hand, FIG. 3 (b) is a diagram of the dimming panel 1 for the image of FIG. 3 (a). The projected pattern image is shown.
[0110] 調光用パネル 1は、対応する画像表示用パネル 2の平均透過率を反映し、六角形 の画素単位でグレースケール表示をしてレ、る。  [0110] The dimming panel 1 reflects the average transmittance of the corresponding image display panel 2, and displays the gray scale in units of hexagonal pixels.
[0111] 通常、液晶表示装置は、バックライトからの一定の光束を画像表示用パネルの各画 素の透過率を変化させることによって画像表示を行なっていた力 本実施の形態で は、バックライト光は調光用パネル 1でモザイク状にグレースケール表示された後に 画像表示用パネル 2へと入るようになってレ、る。 [0111] Normally, the liquid crystal display device has the power to display an image by changing the transmittance of each pixel of the image display panel with a constant luminous flux from the backlight. After the light is displayed in grayscale in a mosaic pattern on the light control panel 1. You can enter the image display panel 2.
[0112] 図 3の(b)は、基本的に、図 3の(a)に示す画像の明るさ分布を反映したグレースケ ールパターンを表示する力 図 3の(a)における明るいところ、即ち透過率の高いとこ ろに対応する図 3の (b)における表示箇所も同様に透過率が高くなつている。一方、 図 3の(a)における喑ぃ部分は、図 3の(b)においても喑くなっており、これによつて、 暗い部分からの漏れ光が抑えられるために、コントラストが向上する。  [0112] Fig. 3 (b) is basically the power to display the gray scale pattern reflecting the brightness distribution of the image shown in Fig. 3 (a). The display location in Fig. 3 (b), corresponding to the high point, also has a high transmittance. On the other hand, the thick part in (a) of FIG. 3 is also enlarged in (b) of FIG. 3, and this improves the contrast because light leakage from the dark part is suppressed.
[0113] つまり、画像表示用パネル 2に対する照射光量を調光用パネル 1によって調整する ことで、画像表示用パネル 2から漏れる光を少なくし、その結果、コントラストを向上さ せること力 Sできると!/、う効果を奏する。  [0113] That is, by adjusting the amount of light applied to the image display panel 2 with the light control panel 1, the light leaking from the image display panel 2 can be reduced, and as a result, the power S can be improved. ! /
[0114] 上記構成の液晶表示装置においては、表示画像は調光用パネル 1と画像表示用 パネル 2との 2枚のパネルを通して表現されることになる。これにより、表示画像のうち の明るい部分は双方の最大透過率で表現される為、従来一枚の画像表示用パネル で表現可能な明るさが最大値となり、表示画像のうちの暗い部分は双方の黒表示を 合せて表現されることになる。  In the liquid crystal display device having the above-described configuration, the display image is expressed through two panels of the light control panel 1 and the image display panel 2. As a result, the bright part of the display image is expressed by the maximum transmittance of both, so the brightness that can be expressed by a single image display panel is the maximum value, and the dark part of the display image is The black display will be displayed together.
[0115] 即ち、黒表現は調光用パネル 1で黒を表示した時の漏れ光をバックライト光として、 画像表示用パネル 2を表示することになる為、暗い部分の表示階調幅が広がったとも いえるのである。つまり、本方式では、一枚の画像表示用パネル 2での白表示を最大 として、ここから暗い方向の階調表現が広がり、黒表示は 2枚の黒表示状態を通した 表現となるので、黒表示は 1枚の表示パネルよりもより沈んだ黒となる。  [0115] That is, in the black representation, since the image display panel 2 is displayed using the leakage light when displaying black on the light control panel 1 as the backlight, the display gradation width of the dark portion is widened. It can be said that. In other words, in this method, the white display on one image display panel 2 is maximized, the gradation expression in the dark direction spreads from here, and the black display becomes an expression through two black display states. The black display is darker than a single display panel.
[0116] このため、画像としてはより締まった画像となり、コントラストが向上することになる。  [0116] For this reason, the image is tighter and the contrast is improved.
[0117] 本実施の形態では、調光用パネル 1の画素 20は六角形を基準とした画素とした。こ れは、六角形とすることにより隣接画素力 全て境界線で隣接することになる為、いず れの方向においても隣接輝度間の輝度変化を同じように調整できる。即ち例えば四 角形の画素を単純に並べたものであれば、上下左右は隣接画素と境界線で接触す る力 斜め方向の隣接画素とは、点接触にしか成らない。このため斜め方向の輝度 変化が、そのほかの方向の変化とは異なってしまうという問題が生じる。このような問 題を回避するためにも、画素の形状は六角形が好ましいが、この形状に限定されるも のではなく、隣接する画素同士がすべて線接触できる形状、例えば八角形状などで あってもよい。 In the present embodiment, the pixel 20 of the light control panel 1 is a pixel based on a hexagon. This is because all the adjacent pixel forces are adjacent to each other at the boundary by using a hexagonal shape, so that the luminance change between adjacent luminances can be adjusted in the same way in either direction. That is, for example, if square pixels are simply arranged, the force that makes contact with adjacent pixels at the top, bottom, left, and right can be only point contact with the adjacent pixels in the diagonal direction. This causes a problem that the change in luminance in the oblique direction is different from the change in other directions. In order to avoid such problems, the shape of the pixel is preferably a hexagon. However, the shape of the pixel is not limited to this shape, and a shape in which all adjacent pixels are in line contact with each other, for example, an octagonal shape is used. There may be.
[0118] 上記では、調光用パネル 1で画素 20を六角形状とした画素の境界を暈す方法とし て、散乱板 71と所定の間隔を置いて暈す方法を述べた。し力もこの方法では、暈す ことの出来る範囲は散乱板 71の散乱強度と間隔距離を調整することになるので、暈 すことのできる範囲はエリア境界近傍に限られ、広い範囲で境界暈しを調整すること が困難であり、調光用パネルの画素面積が大きくなるとこの方法での暈しでは充分 対応が出来なくなる。  [0118] In the above, as a method of making the pixel boundary of the light control panel 1 the pixel 20 having a hexagonal shape, a method of making it fly with a predetermined distance from the scattering plate 71 has been described. In this method, the range that can be corrected is adjusted by the scattering intensity and spacing distance of the scattering plate 71. Therefore, the range that can be corrected is limited to the vicinity of the area boundary, and the boundary can be adjusted over a wide range. It is difficult to adjust the brightness, and if the pixel area of the dimming panel is increased, it is not possible to sufficiently cope with this method.
[0119] そこで、以下においては、画素面積が大きくなつても暈しを効果的に行うことが可能 な入り込み画素構造について説明する。すなわち、以下では、画素同士のエリア境 界はジグザグ形状として画素が互いに入り込んだ形状として暈す方法につ!/、て説明 する。  [0119] Therefore, in the following, a description will be given of an interleaved pixel structure that can be effectively distorted even when the pixel area is large. In other words, in the following, a method will be described in which the area boundary between pixels is formed in a zigzag shape so that the pixels enter each other.
[0120] 図 4は、画素 20の基準となる六角形の画素境界 41aに対して隣接画素の凹凸の画 素境界 41bを互いにジグザグにして入り込んだ例を示している。図 4において点線で 囲った六角形状の領域が画素境界 4 laを示し、画素 20同士のジグザグ形状で入り 込んでいる部分が凹凸の画素境界 41bを示している。  FIG. 4 shows an example in which the uneven pixel boundary 41 b of the adjacent pixel enters the hexagonal pixel boundary 41 a serving as the reference of the pixel 20 in a zigzag manner. In FIG. 4, the hexagonal region surrounded by the dotted line indicates the pixel boundary 4 la, and the portion of the pixels 20 entering in a zigzag shape indicates the uneven pixel boundary 41b.
[0121] 上記ジグザグ形状は、画素が互いに直線で対峙する境界パターンが入り込んだ形 状であり、六角形の 3個の画素が対峙する頂点では、頂点に向力、つて入込み距離が 短くなるように設定されている。 [0121] The zigzag shape described above is a shape in which a boundary pattern in which pixels are opposed to each other in a straight line is inserted, and at the apex where three hexagonal pixels confront each other, the directional force on the apex and thus the entering distance is shortened. Is set to
[0122] この入り込んだ部分は、図 4に示すように、入り込んだ部分のピッチ、つまり入り込み ピッチと入り込んだ距離で定義される。 [0122] As shown in Fig. 4, this entering portion is defined by the pitch of the entering portion, that is, the entering pitch and the entering distance.
[0123] ここで、入れ込み量について、図 4と図 5を参照しながら以下に説明する。 Here, the amount of insertion will be described below with reference to FIG. 4 and FIG.
[0124] 図 4に示す Aの画素が、透過率が大きく白表示状態であり、同図に示す Bの画素が[0124] The pixel A shown in FIG. 4 has a large transmittance and is in a white display state, and the pixel B shown in FIG.
、黒表示状態である場合について画素間の平均輝度の変化について述べる。 A change in average luminance between pixels in the case of the black display state will be described.
[0125] はじめに、 A, B画素内の長方形領域(画素の境界が破線)で A— B方向に垂直方 向の平均輝度の変化をみると、図 5に示す破線で示したように、平均輝度の変化が 画素境界で急峻になってレ、ること力 Sわ力、る。 [0125] First, looking at the change in average luminance in the vertical direction in the A–B direction in the rectangular area (pixel boundaries are broken lines) in the A and B pixels, as shown by the broken lines in FIG. The change in brightness becomes steep at the pixel boundary.
[0126] 一方、 A, B画素内の長方形領域 (入り込み部分で形成した境界が実線)で A— B 方向に垂直方向の平均輝度の変化をみると、図 5に示す実線で示したように、平均 輝度の変化が画素境界の入り込み部分で滑らかであることがわかる。この滑らかに輝 度が傾斜する範囲は、入り込み量によって決まり、画素のサイズに合せて入り込み量 を調整することによって、違和感の無い輝度分布範囲を各画素に形成することが可 能となる。 On the other hand, when the change in average luminance in the direction perpendicular to the A–B direction in the rectangular area in the A and B pixels (the boundary formed by the intrusion part is a solid line), as shown by the solid line in FIG. ,average It can be seen that the change in luminance is smooth at the entrance of the pixel boundary. The range in which the brightness is smoothly inclined is determined by the amount of penetration, and by adjusting the amount of penetration according to the size of the pixel, it is possible to form a luminance distribution range without any sense of incongruity in each pixel.
[0127] 画素が図 4に示す破線のように、隣接画素境界が直線の場合では、画素間の輝度 分布の急峻な変化が画像表示用パネル上においても斑となって確認され画像を見 難くさせる。  [0127] When the pixel boundary is a straight line as shown by the broken line in FIG. 4, a sharp change in the luminance distribution between the pixels is confirmed as a spot on the image display panel, making it difficult to view the image. Let
[0128] 一方、画素が図 4に示す実線のように、入れ込み状にした場合では、隣接画素間の 輝度差が大きくなつたとしても輝度変化が平均化され滑らかとなるので、画像上で輝 度分布が認識され難ぐ画素間の輝度分布による斑が目立たないようになる。  [0128] On the other hand, when the pixels are embedded as shown by the solid line in FIG. 4, even if the luminance difference between adjacent pixels becomes large, the luminance change is averaged and smoothed. Spots due to the luminance distribution between pixels, which makes it difficult to recognize the degree distribution, become inconspicuous.
[0129] このように、エリア境界を入れ込み状にすることで、隣接画素間の輝度変化を滑ら かにすることが可能である。  [0129] In this way, by making the area boundary into a shape, it is possible to smooth the luminance change between adjacent pixels.
[0130] 尚、近接画素のエッジ部分を互いに入れ込み状態にしたパターンは、六角形の基 本パターンの境界に対して、面積の等しレ、対称形とした。  It should be noted that the pattern in which the edge portions of adjacent pixels are inserted into each other has an equal area and a symmetrical shape with respect to the boundary of the hexagonal basic pattern.
[0131] 図 6は、図 4、図 5と同様にして、エリア表用パネルの連続する 3画素が 50%グレー 、白、黒表示となった場合の例を示している。  [0131] Fig. 6 shows an example in which three consecutive pixels of the area table panel display 50% gray, white, and black in the same manner as in Figs.
[0132] 図 4と同様連続する画素で領域を仮定し、隣接方向に平均輝度分布をとつている。  [0132] As in FIG. 4, an area is assumed with continuous pixels, and an average luminance distribution is taken in the adjacent direction.
破線は画素境界が直線の場合で、境界で急激に輝度が変化することを示す。一方、 画素境界を入り込み状態にしたのが実線の状態で、滑らかな輝度変化に出来ること 力 s カゝる。 A broken line indicates a case where the pixel boundary is a straight line, and the luminance changes abruptly at the boundary. On the other hand, a solid line state was a state enters the pixel boundary, it forces s Such that can smooth the luminance change.
[0133] 上記の説明では、入り込み形状は、ジグザグ形状とした力 これに限定されるもので はなぐ例えば、凹凸形状であればよい。この凹凸形状には、ジグザグ形状、波形状 なども含まれる。そして、滑らかな輝度変化を生じさせるには、画素電極同士の境界 がー直線上でないこと、任意の画素電極に隣接する画素電極が、該任意の画素電 極を部分的に囲むように形成されて!/、ればよレ、。  [0133] In the above description, the intrusion shape is a zigzag-shaped force. The uneven shape includes a zigzag shape, a wave shape, and the like. In order to cause a smooth luminance change, the boundary between pixel electrodes is not on a straight line, and a pixel electrode adjacent to an arbitrary pixel electrode is formed so as to partially surround the arbitrary pixel electrode. /!
[0134] 更に、画像表示パネルを通して調光用パネル 1を見たときに、調光用パネル 1のェ リア境界における輝度分布が滑らかに変化する条件として、以下のことが重要となる [0135] (1)画像表示パネルを斜めから見たときに、画像と調光用パネルの濃淡とのずれ( 視差)が少ないこと [0134] Further, the following is important as a condition for smoothly changing the luminance distribution at the area boundary of the light control panel 1 when the light control panel 1 is viewed through the image display panel. [0135] (1) When the image display panel is viewed obliquely, there is little deviation (parallax) between the image and the light and shade of the light control panel.
(2)調光用パネルの境界、つまりエリア表示ジグザグ境界が認識されないこと (2) Dimming panel boundaries, that is, area display zigzag boundaries are not recognized
(3)エリア境界の入り込みピッチと画像表示パネルの画素ピッチとの間でモアレが 発生しないこと (3) No moire between the area boundary penetration pitch and the pixel pitch of the image display panel
(4)白表示と黒表示の画素の境界で、輝度分布が徐々に変化すること まず、(1)については、画像表示用パネル 2と調光用パネル 1との間に間隔 dだけ距 離があることと、また間隔 dが 0となって画像表示用パネル 2と調光用パネル 1とが接し て置かれても各パネルの液晶層 4の間には、基板と偏光板の厚み相当の距離がある ために、画像と調光用パネル 1の濃淡とにずれが生じる。  (4) The luminance distribution gradually changes at the boundary between the white display and black display pixels. First, for (1), the distance d between the image display panel 2 and the dimming panel 1 is the distance d. In addition, even if the distance d becomes 0 and the image display panel 2 and the light control panel 1 are placed in contact with each other, the liquid crystal layer 4 between each panel is equivalent to the thickness of the substrate and the polarizing plate. Therefore, there is a difference between the image and the shading of the light control panel 1.
[0136] 調光用パネル 1からの光力 画像と重なって違和感無く見える為に、ここでは斜め 力、ら見たときの画像と調光用パネル 1の濃淡とのずれ力 一つの画素サイズの 20% 以内であるとして上記(1)を満足する条件とした。  [0136] Light power from the panel 1 for dimming In order to overlap the image and look uncomfortable, here the diagonal force, the shift power between the image when viewed and the shading of the panel 1 for dimming One pixel size The condition satisfying the above (1) was determined to be within 20%.
[0137] 例えば、画像表示用パネル 2を垂直方向から 80° の角度から見たとすると、間隔 d 力 SOのときの視差は、ガラスゃスぺーサの屈折率が 1 · 5とすれば、 1 · 5mm程度にな る。この視差が画素サイズの 20%とすると、 d = 0の時の画素サイズは、 7· 5mmとな り、このサイズが実質画素の最小サイズとなる。  [0137] For example, if the image display panel 2 is viewed from an angle of 80 ° from the vertical direction, the parallax at the distance d force SO is 1 if the refractive index of the glass spacer is 1 · 5. · It will be about 5mm. If this parallax is 20% of the pixel size, the pixel size when d = 0 is 7.5 mm, which is the minimum size of the actual pixel.
[0138] 間隔 dが 0よりも大きいときは、視差はこの dに応じて大きくなる。  [0138] When the interval d is larger than 0, the parallax increases in accordance with d.
[0139] また、 dだけ距離を置いた間隔が、空気であるか屈折率を持った透明なスぺーサを 挟んでいるかによっても条件が異なる。間隔 dを設けたほうが良い場合は、空気層より も大きな屈折率も持ったスぺーサを揷入した方力、視差が大きくならないので良いこ とは言うまでも無い。  [0139] In addition, the conditions differ depending on whether the distance apart by d is air or a transparent spacer having a refractive index is sandwiched. Needless to say, if it is better to provide the distance d, the force and parallax cannot be increased by inserting a spacer having a refractive index larger than that of the air layer.
[0140] 尚、画素サイズの上限は、画素が対応する画像表示用パネル 2の領域が書き換え られる時間内に駆動ドライバで充電可能な範囲で決められる。ここでは、画像表示用 パネル 2のソースドライバの 1出力端子が充電する 1画素に力、かる抵抗と駆動時の寄 生容量の積、 CRと略同等な CRを想定して、画素の幅を決め、その幅を 20mmとして いる。  [0140] The upper limit of the pixel size is determined within a range that can be charged by the drive driver within the time when the area of the image display panel 2 corresponding to the pixel is rewritten. Here, assuming that one output terminal of the source driver of the image display panel 2 is charged, one pixel is charged, the product of the resistance applied and the parasitic capacitance at the time of driving, and CR that is approximately equivalent to CR, the width of the pixel is assumed. The width is 20mm.
[0141] 次に、上記(2) (3)は、調光用パネル 1の入り込みピッチ、画像表示用パネル 2と調 光用パネル 1との間に置かれる散乱板 71の散乱度合い、間隔 dの条件によって決め られる。 [0141] Next, the above (2) and (3) are for adjusting the penetration pitch of the light control panel 1 and the image display panel 2. It is determined by the scattering degree of the scattering plate 71 placed between the light panel 1 and the condition of the distance d.
[0142] つまり、画像表示用パネル 2を通して調光用パネル 1に表示された画素の境界は、 入り込みピッチが大きい場合、散乱板 71による暈しが不十分、つまり散乱板 71がな 力 たりまたその散乱度合!/、が不十分である場合や、各パネル間が接近して!/、る場 合に入り込み形状の輪郭が認識されることがある。  [0142] That is, the boundary of the pixels displayed on the light control panel 1 through the image display panel 2 is insufficiently distorted by the scattering plate 71 when the penetration pitch is large, that is, the scattering plate 71 does not have enough force. If the degree of scattering! / Is insufficient, or if the panels are close to each other! /, The contour of the entangled shape may be recognized.
[0143] 入れ込みピッチのみに注目すればこのピッチは小さいほど目立ち難くなる。しかし 細かくすると形状が複雑になり製造不良が引起こされ易くなるといったデメリットや、 更に入り込みピッチと画像表示用パネル 2の画素ピッチとの間でモアレが生じ、表示 画像が劣化することもあるため、モアレ発生を防止する必要がある。  [0143] If attention is paid only to the insertion pitch, the smaller this pitch is, the less noticeable it is. However, if it is made finer, the shape becomes complicated and manufacturing defects are likely to be caused. Further, moire occurs between the penetration pitch and the pixel pitch of the image display panel 2, and the displayed image may deteriorate. It is necessary to prevent moiré.
[0144] 従って、エリア境界が認識されず、モアレも解消されるためには、図 2に示すように、 散乱板 71を設置し、該散乱板 71に応じて間隔 dを設けることになる。  Therefore, in order to prevent the area boundary from being recognized and to eliminate the moire, as shown in FIG. 2, the scattering plate 71 is installed, and the interval d is provided according to the scattering plate 71.
[0145] [表 1]  [0145] [Table 1]
Figure imgf000022_0001
Figure imgf000022_0001
数値:ピッチ(jU m)  Number: Pitch (jU m)
[0146] 表 1は、調光用パネル上にヘイズ値が 40か 80の散乱板 71を置き、更に間隔 dを離 して画素ピッチ 140 H m若しくは 200 μ mをもった画像表示パネルを置!/、たとき、画 像表示パネルから調光用パネルの画素間の境界の入り込み形状を見たとき、モアレ が見えた時の入り込みピッチを間隔 dに対して示したものである。 [0146] Table 1 shows that a scattering plate 71 having a haze value of 40 or 80 is placed on a light control panel, and an image display panel having a pixel pitch of 140 Hm or 200 μm is further spaced apart. When! /, Is seen from the image display panel, the penetration depth at the boundary between the pixels of the light control panel, the penetration pitch when the moiré is seen is shown with respect to the distance d.
[0147] 表 1内の数値はモアレが観察されな力、つた最大ピッチ(単位 m)を示す。すなわち 、示した数値以上のピッチでモアレが観察されたことを示して!/、る。  [0147] The numbers in Table 1 indicate the force at which no moire is observed and the maximum pitch (in m). That is, it shows that moire was observed at a pitch greater than the indicated value! /.
[0148] 表を横方向に見ていくと、散乱板 71をおいて、間隔 dを大きく取るほど入り込みピッ チが大きくなり暈し効果が大きくなるので、モアレは観察されなくなることが分る。 [0149] また、散乱度合いが大きくなるヘイズ の大きい散乱板 71ほどモアレは見えにくく なる。因みに散乱板 71を揷入しないと全ての場合でモアレが観察されたので、散乱
Figure imgf000023_0001
[0148] Looking at the table in the horizontal direction, it can be understood that the moire effect is not observed because the penetration pitch increases and the effect becomes greater as the distance d increases with the scattering plate 71. [0149] In addition, the moiré is less visible as the scattering plate 71 has a higher haze and a greater degree of scattering. Incidentally, moire was observed in all cases unless the scattering plate 71 was inserted.
Figure imgf000023_0001
[0150] 画像表示用パネル 2の画素ピッチに対しては、ここの実験では画素ピッチが大きく なるほどモアレが発生するピッチが大きくなる傾向を示した。尚、表の中の一は、検討 の為に用意した入り込みサンプルの用意した最大ピッチ(850 m)内でモアレが観 察されなかったことを示して!/、る。  [0150] With respect to the pixel pitch of the image display panel 2, in this experiment, the larger the pixel pitch, the larger the pitch at which moire occurs. The one in the table indicates that no moire was observed within the maximum pitch (850 m) prepared for the intrusion sample prepared for examination!
[0151] 以上のようにモアレを防止するには、散乱板の散乱度合い、入り込みピッチ、画像 表示パネルと調光用パネルとの距離を適切な関係に設定する必要があることがわか  [0151] As described above, in order to prevent moiré, it is necessary to set the scattering degree of the scattering plate, the penetration pitch, and the distance between the image display panel and the light control panel in an appropriate relationship.
[0152] 次に、散乱板 71について述べる。散乱板 71は入射した光をその進行方向とは異 なる方向へ散らす特性を持っている。散乱特性を表現するヘイズ値は、散乱板 71に 垂直に入射した光力 進行方向にどれだけ出てくるかを示す数値であり、値が大きい ほど散乱が強いことを示している。つまりヘイズ 80は、入射光の 80%が入射方向とは 異なる方向に進むことを示す。 Next, the scattering plate 71 will be described. The scattering plate 71 has a characteristic of scattering incident light in a direction different from the traveling direction. The haze value expressing the scattering characteristic is a numerical value indicating how much light is incident in the traveling direction of the light force perpendicularly incident on the scattering plate 71. The larger the value, the stronger the scattering. In other words, haze 80 indicates that 80% of the incident light travels in a direction different from the incident direction.
[0153] 偏光した光が散乱板 71に入射したときこの偏光が散乱によって乱される。図 7に示 すグラフは、クロスニコルに置いた偏光板を基準として、これらの間にヘイズ 80の散 乱板 A、 Bを揷入し、偏光板面に垂直方向を 0度とした極角方向のコントラストを示し たものである。散乱板 A, B共に偏光板のみに比較してコントラストが低下し、散乱板 で偏光が乱されてレ、ること力 Sわ力、る。  [0153] When polarized light enters the scattering plate 71, the polarized light is disturbed by scattering. The graph shown in Fig. 7 is based on a polarizing plate placed in crossed Nicols, and a scattering plate A and B with a haze of 80 is inserted between them, and the polar angle is 0 degree perpendicular to the polarizing plate surface. It shows the direction contrast. Both the scattering plates A and B have a lower contrast than the polarizing plate alone, and the scattering power is disturbed by the scattering plate.
[0154] 散乱板による暈け効果のみを強調するなら散乱度合いを大きくすればよいが、散乱 板の偏光解消効果も大きくなるため、むやみに大きくすることは出来ない。ここでは明 記していないが、ヘイズ直を更に上げるとコントラストは更に低下した。  [0154] If only the blurring effect by the scattering plate is emphasized, the degree of scattering may be increased. However, since the depolarization effect of the scattering plate also increases, it cannot be increased unnecessarily. Although not stated here, the contrast further decreased when the haze level was further increased.
[0155] 同じヘイズ 80の散乱板 A, Bにおいてもコントラストは異なり、散乱板 Aの方が偏光 を乱しにくぐコントラストが高くなつた。画像表示パネルと調光用パネルとを重ねて用 V、る本構成にぉレ、ては、散乱板によって偏光が乱されな!/、ほうが光利用効率が高く なるため、ここでは散乱板 Aを採用することにした。  [0155] Contrasts were also different for scattering plates A and B with the same haze of 80. Scattering plate A had higher contrast that made it difficult to disturb polarization. In this configuration, the image display panel and the light control panel are overlapped. V, the polarization is not disturbed by the scattering plate! /, Because the light utilization efficiency is higher. Decided to adopt.
[0156] 尚、図 7に示すグラフでは、角度が 40度を超えると殆どコントラストが無いが、これは 極角からの角度に対してクロスニコル条件が崩れ、コントラストが低下する偏光板の 特性によるものであり、散乱板のみの特性で角度が大きい方のコントラストが低下して いるものではない。尚、コントラスト比の散乱板 A, Bにおける違いは散乱板の内部構 造によって違いが生じたものと考えられ、表 1のモアレ観察では、偏光板は関係しな いので、散乱板 A, Bによる違いは生じない。 [0156] In the graph shown in Fig. 7, there is almost no contrast when the angle exceeds 40 degrees. This is due to the characteristics of the polarizing plate in which the crossed Nicols condition collapses with respect to the angle from the polar angle and the contrast is lowered, and the contrast of the larger angle is not lowered due to the characteristics of the scattering plate alone. The difference in contrast ratio between scattering plates A and B is considered to be caused by the internal structure of the scattering plate. In the moire observation shown in Table 1, the polarizing plate is not relevant. There will be no difference.
[0157] 以上を本構成に沿ってまとめると、上述したようにエリア幅を 20mmとし、視差による ずれ量を調光用パネルの画素幅の 20%以内とした本構成では、画像表示パネルと 調光用パネルとの間隔 dは、空気距離で 2mm程度、ガラスのような屈折率 1. 5の材 料を挟むとすれば 3mm程度となる。この様に視差の観点から間隔 dの上限が凡そ決 [0157] Summarizing the above along the present configuration, as described above, in this configuration in which the area width is 20 mm and the deviation due to parallax is within 20% of the pixel width of the light control panel, the image display panel and The distance d from the light panel is about 2 mm in terms of air distance, and about 3 mm if a glass-like material with a refractive index of 1.5 is sandwiched. In this way, from the viewpoint of parallax, the upper limit of the distance d is roughly decided.
[0158] 次に、表 1から、ヘイズ 80の散乱板を選び、入り込みピッチは 850 μ m以下で形成 すれば、入り込み形状が目立たず、モアレも発生せずに構成できることが分る。 [0158] Next, it can be seen from Table 1 that if a scattering plate with a haze of 80 is selected and formed with a penetration pitch of 850 µm or less, the penetration shape is not noticeable and moire does not occur.
[0159] 上記 (4)は、調光用パネルから出射した偏光が散乱された際に、散乱板によって偏 光が乱され、本来画像表示パネル入射側偏光板で吸収されるべき光が通ってしまう ことによりコントラストが低下する、または吸収されずに透過すべき光が吸収されること により、光利用効率が低下することがあるため、このような偏光解消を出来るだけ少な くする必要があることを示して!/、る。  [0159] In the above (4), when the polarized light emitted from the light control panel is scattered, the polarization is disturbed by the scattering plate, and light that should be absorbed by the polarizing plate on the incident side of the image display panel passes through. Therefore, it is necessary to reduce such depolarization as much as possible, because the contrast may decrease, or the light that should be transmitted without being absorbed may be absorbed. Show me! /
[0160] 最後に、上記(4)については、図 4、図 5、図 6において説明をした通りである。  [0160] Finally, (4) is the same as described in FIGS. 4, 5, and 6.
[0161] エリア境界で輝度分布が滑らかに繋がるためには、図 5の入り込み距離で調整を行 つた。ここでは、エリア幅の 70%に相当する 14mmを入り込み距離とすることで、滑ら 力、な輝度分布が得られた。  [0161] In order to smoothly connect the luminance distribution at the area boundary, adjustment was made with the penetration distance in Fig. 5. Here, 14mm, which corresponds to 70% of the area width, was taken as the intrusion distance, and a smooth brightness distribution was obtained.
[0162] 以上、上記(1)〜(4)は、互いに関連しており、画像表示用パネル 2の大きさや、視 差の設定をどのようにするかによつて条件が異なってくるものである。ここで示した例 はあくまで一実施形態であって、ここで示した手法によって構成パラメータが決定さ れることはあっても、これらパラメータの数 によって本構成が限定されるものではな いことは言うまでも無い。  [0162] As described above, the above (1) to (4) are related to each other, and the conditions differ depending on the size of the image display panel 2 and how to set the visibility. is there. The example shown here is merely an embodiment, and although the configuration parameters are determined by the method shown here, the configuration is not limited by the number of these parameters. Not too long.
[0163] 次に、本実施の形態にかかる調光用パネル 1としては、以下の理由から垂直配向 の液晶パネルを用いてレ、る。 [0164] 調光用パネル 1は、画像表示用パネル 2と同様に、広い視角特性が必要であること 、そして、画像表示用パネル 2に使用されている液晶の配向も垂直配向を基本として 広視角を得るための位相差補償を行った液晶パネルであることから、垂直配向の液 晶パネルを使用している。 [0163] Next, as the light control panel 1 according to the present embodiment, a vertically aligned liquid crystal panel is used for the following reason. [0164] Like the image display panel 2, the dimming panel 1 requires a wide viewing angle characteristic, and the alignment of the liquid crystal used in the image display panel 2 is wide based on the vertical alignment. Since this is a liquid crystal panel with phase difference compensation to obtain a viewing angle, a vertically aligned liquid crystal panel is used.
[0165] なお、本発明は、調光用パネル 1として用いる液晶パネルの配向は、垂直配向に限 定されるものではなぐ他の配向であってもよい。  [0165] In the present invention, the alignment of the liquid crystal panel used as the light control panel 1 is not limited to the vertical alignment but may be other alignments.
[0166] 上記調光用パネル 1の構造について詳細に説明する。  [0166] The structure of the light control panel 1 will be described in detail.
[0167] 図 8の(a)は、調光用パネル 1の全体斜視図を示し、図 8の(b)は、図 8の(a)で示し た調光用パネル 1の領域 Xの拡大図を示している。ここでは、説明の便宜上、上述し たように、画素形状は入り込み形状ではなぐ単純な六角形状とする。  [0167] Fig. 8 (a) is an overall perspective view of the light control panel 1, and Fig. 8 (b) is an enlarged view of the region X of the light control panel 1 shown in Fig. 8 (a). The figure is shown. Here, for convenience of explanation, as described above, the pixel shape is a simple hexagonal shape rather than the intrusive shape.
[0168] また、調光用パネル 1の表示方法として、階調表現が可能であること、パネルコスト を低く抑えるとの観点からセグメント表示の方式を採用した。セグメント方式では各画 素毎に駆動用の配線が必要となるので、図 8の(b)に示すように、全ての画素 20に配 線 11を施す必要がある。  [0168] In addition, as a display method of the light control panel 1, a segment display method was adopted from the viewpoints that gradation expression is possible and the panel cost is kept low. In the segment method, a wiring for driving is required for each pixel. Therefore, as shown in (b) of FIG. 8, it is necessary to provide the wiring 11 to all the pixels 20.
[0169] ここで、画素 20は、六角形状であるので、六角形の画素電極を有している。この六 角形の画素電極は、対向する辺の距離が 25mmの正六角形とした。例えば、 37型 の液晶パネルの、 RGB各色を合わせた画素サイズは、ハイビジョン対応で概ね 430 角となる。したがって、調光用パネル 1の画素サイズは、ここでは対辺間距離が 2 5mmであるため、画像表示用パネル 2の画素面積の略 12500倍の面積を有するよ うに設定される。  Here, since the pixel 20 has a hexagonal shape, it has a hexagonal pixel electrode. This hexagonal pixel electrode was a regular hexagon with a distance of 25 mm between the opposing sides. For example, the pixel size of RGB color for a 37-inch LCD panel is about 430 squares for high-vision. Accordingly, the pixel size of the light control panel 1 is set to have an area approximately 12500 times the pixel area of the image display panel 2 because the distance between opposite sides is 25 mm here.
[0170] 図 9は、図 8の(b)に示す AA線矢視断面図である。  FIG. 9 is a cross-sectional view taken along line AA shown in (b) of FIG.
[0171] 調光用パネル 1について、図 9に示す断面図を参照にさらに詳細に説明する。  [0171] The light control panel 1 will be described in more detail with reference to the cross-sectional view shown in FIG.
[0172] 調光用パネル 1は、基板 101a ' 101b間に液晶層 4を挟んだ構成をしている。ここで 基板 lO la ' lOlbは、透明な基板であればよいので、その材料としては、ガラス、プラ スチック、透明樹脂フィルムなどの!/、ずれであってもよレ、。 The dimming panel 1 has a configuration in which the liquid crystal layer 4 is sandwiched between the substrates 101a ′ and 101b. Here, the substrate lO la 'lOlb only needs to be a transparent substrate, so the material can be glass, plastic, transparent resin film, etc.!
[0173] 2枚の基板のうち一方の基板 101aには、配線 11と層間絶縁層 10を介して画素電 極 9aとなる透明電極が形成され、他方の基板 101bには、全面に対向電極 9bとなる 透明電極が形成されている。そして、これら透明電極の表面に、配向膜(図示せず) が形成された後、基板 101a及び基板 101bを所望の距離をおいて対向配置され、こ の間に液晶が封入され、液晶パネルが形成される。 [0173] A transparent electrode to be the pixel electrode 9a is formed on one of the two substrates 101a via the wiring 11 and the interlayer insulating layer 10, and the opposite electrode 9b is formed on the entire surface of the other substrate 101b. A transparent electrode is formed. An alignment film (not shown) is formed on the surface of these transparent electrodes. After the substrate is formed, the substrate 101a and the substrate 101b are arranged to face each other at a desired distance, and a liquid crystal is sealed between them to form a liquid crystal panel.
[0174] ここでは、基板 101aとして、先ずガラス基板上にスパッタリングで、配線 11の材料 である A1と Moとをこの順番で連続成膜で形成した。配線 11の材料は、これらに限定 されるものではなぐ A1の替わりに Cu、 Al合金、 Cu合金を使用しても良い。また、 M oの替わりに Ti、 Taなどの高融点金属を用いても良い。ここでは、低抵抗と配線形成 にウエットエッチングを利用する為に A1と Moを選び、その膜厚を、 A1を 3000A、 Mo を 1000 Aとした。 [0174] Here, as the substrate 101a, first, A1 and Mo, which are materials of the wiring 11, were formed in this order by continuous film formation on a glass substrate by sputtering. The material of the wiring 11 is not limited to these. Instead of A1, Cu, Al alloy, or Cu alloy may be used. Further, refractory metals such as Ti and Ta may be used instead of Mo. Here, A1 and Mo were selected to use wet etching for low resistance and wiring formation, and the film thickness was set to 3000A for A1 and 1000A for Mo.
[0175] 次に、成膜した金属膜を配線に加工すベぐフォトレジストを塗布しフォトリソグラフィ によりレジストに配泉パターンを形成した。この後エッチング液により Al、 Moをゥエツ トエッチング処理をした後レジストを剥離し、配線 11を形成した。ここで各画素 20へ の配線 11の配線幅は 100 μ mとした。  [0175] Next, a photoresist was applied to process the formed metal film into a wiring, and a spring pattern was formed on the resist by photolithography. Thereafter, Al and Mo were wet-etched with an etching solution, and then the resist was removed to form wiring 11. Here, the wiring width of the wiring 11 to each pixel 20 was set to 100 μm.
[0176] 尚、上記液晶パネルではセグメント方式を採用した為、調光用パネル 1の配線 11は 、図 8の(b)に示すように、パネルの端にある画素 20に行くほどその本数が増えるが 、画素 20の対辺間距離が 25mmに対して、配線 11の電極幅が 100 m程度なので 、配線 11によって開口率が極端に低下することはない。  [0176] Since the liquid crystal panel employs the segment method, the number of wirings 11 of the light control panel 1 increases toward the pixel 20 at the end of the panel as shown in FIG. 8 (b). Although the distance between opposite sides of the pixel 20 is 25 mm, the electrode width of the wiring 11 is about 100 m, so that the aperture ratio is not drastically reduced by the wiring 11.
[0177] 形成された配線 11の上には画素電極 9aとなる透明電極との間に層間絶縁層 10と して、感光性アクリル樹脂を塗布しフォトリソグラフィにより、コンタクトホール 12を形成 した。  [0177] On the formed wiring 11, a photosensitive acrylic resin was applied as an interlayer insulating layer 10 between the transparent electrode to be the pixel electrode 9a, and a contact hole 12 was formed by photolithography.
[0178] 次に、上記基板 101aの層間絶縁層 10上に、スパッタにて画素電極 9aとなる透明 電極として ITO膜を成膜した。 ITO膜と配線 11とは、層間絶縁層 10に形成されたコ ンタクトホール 12を介して接続される。  [0178] Next, an ITO film was formed on the interlayer insulating layer 10 of the substrate 101a as a transparent electrode to be the pixel electrode 9a by sputtering. The ITO film and the wiring 11 are connected via a contact hole 12 formed in the interlayer insulating layer 10.
[0179] 上記 ITO膜は、スパッタリング成膜を行なわれた後、レジストが塗布され、フォトリソ グラフィにて形成された画素電極のレジストパターンをマスクにして、ウエットエツチン グにより ITO膜が加工され、画素電極 9aが形成された。 [0179] After the ITO film is formed by sputtering, a resist is applied, and the ITO film is processed by wet etching using the resist pattern of the pixel electrode formed by photolithography as a mask. A pixel electrode 9a was formed.
[0180] 一方、図 9に示す基板 101bは、対向電極 9bとして全面に透明電極である ITO膜 力 Sスパッタリングで成膜されてレ、る。 On the other hand, the substrate 101b shown in FIG. 9 is formed as a counter electrode 9b by ITO film force S sputtering, which is a transparent electrode, on the entire surface.
[0181] 上記構成の基板 101a及び基板 101bには、さらに、配向膜(図示せず)が成膜され る。配向膜は、ポリイミド膜を 500Aの厚さで印刷により形成された。この後必要に応 じ、液晶の配向処理としてラビングゃ紫外線照射を行い、各基板はシール樹脂(図示 せず)をパネル外周に形成し貼り合わされた後、基板間に液晶材料が注入され、調 光用パネル 1が形成される。 [0181] An alignment film (not shown) is further formed on the substrate 101a and the substrate 101b having the above-described configuration. The The alignment film was formed by printing a polyimide film with a thickness of 500A. After that, if necessary, rubbing is applied as a liquid crystal alignment treatment, and UV irradiation is performed. After each substrate is formed with a sealing resin (not shown) and bonded to the outer periphery of the panel, a liquid crystal material is injected between the substrates. A light panel 1 is formed.
[0182] 尚、ここでは、液晶配向は垂直配向を用い、上部、下部基板の隙間は、 5 mとし た。またこの両基板間距離を保証する方法として、ビーズを基板全面に散布している [0182] Here, the liquid crystal alignment was vertical alignment, and the gap between the upper and lower substrates was 5 m. As a method of guaranteeing the distance between the two substrates, beads are dispersed over the entire surface of the substrate.
[0183] 上記構成の調光用パネル 1の全体構成は、図 10に示すようになる。ここでは、左右 に駆動用ドライバ 13を配置し、各画素 20を左右から駆動する例を示している。図 9に 示した調光用パネル 1の断面図において、調光用パネル 1を構成する 2枚の基板のう ち、配線を形成した基板 101aは、端部に駆動用ドライバ 13を搭載する領域を有し、 各配線 11は、駆動用ドライバ 13のドライバ端子に接続されるように、該基板 101a端 部でドライバ搭載領域に向力、つて集約されるように配線されている。 [0183] The overall configuration of the light control panel 1 having the above configuration is as shown in FIG. Here, an example is shown in which driving drivers 13 are arranged on the left and right, and each pixel 20 is driven from the left and right. In the cross-sectional view of the light control panel 1 shown in FIG. 9, the substrate 101a on which the wiring is formed out of the two substrates constituting the light control panel 1 is an area where the driving driver 13 is mounted at the end. Each wiring 11 is wired so as to be concentrated in the driver mounting region at the end of the substrate 101a so as to be connected to the driver terminal of the driving driver 13.
[0184] また、左右方向に並んだ画素 20への配線 11は、図 10では 1本で示している力 図 8の(b)に示す如くそれぞれが各画素 20に対応するように複数本からの束になって いる。  Further, the wiring 11 to the pixels 20 arranged in the left-right direction is a force shown by one in FIG. 10. As shown in FIG. 8 (b), a plurality of wirings 11 correspond to each pixel 20, respectively. It is a bunch of.
[0185] 尚、画素 20への配線 11の配置は、図 8の(b)に示すような例に限定されるものでは ない。  Note that the arrangement of the wiring 11 to the pixel 20 is not limited to the example shown in FIG. 8B.
[0186] また、上記調光用パネル 1の外縁部には、図 10に示すように、画像表示用パネル 2 に余分な光の回り込みが無いように、遮光エリア 14が設けられている。  Further, as shown in FIG. 10, a light-shielding area 14 is provided at the outer edge of the light control panel 1 so that no extra light wraps around the image display panel 2.
[0187] ここで、上記構成の液晶表示装置において、画像表示するための動作について、 図 11に示すブロック図を参照しながら以下に説明する。  Here, an operation for displaying an image in the liquid crystal display device having the above configuration will be described below with reference to a block diagram shown in FIG.
[0188] 図 11は、本実施の形態にかかる液晶表示装置を構成する調光用パネル 1と画像 表示用パネル 2とにそれぞれ映像信号を供給するための映像信号供給回路の概略 構成ブロック図である。この映像信号供給回路は、例えば、液晶コントローラなどに備 えられている。  FIG. 11 is a schematic configuration block diagram of a video signal supply circuit for supplying video signals to the light control panel 1 and the image display panel 2 constituting the liquid crystal display device according to the present embodiment. is there. This video signal supply circuit is provided in a liquid crystal controller, for example.
[0189] 上記映像信号供給回路は、図 11に示すように、外部から入力された映像信号を一 時的に蓄えるフレームメモリ 301と、該フレームメモリ 301に蓄えられた映像信号から 、調光用パネル 1への表示信号を生成するためのエリア表示信号生成回路 302と、 該フレームメモリ 301に蓄えられた映像信号から、画像表示用パネル 2への表示信号 を生成するための画像表示信号生成回路 303とで構成されている。 As shown in FIG. 11, the video signal supply circuit includes a frame memory 301 for temporarily storing an externally input video signal, and a video signal stored in the frame memory 301. An area display signal generation circuit 302 for generating a display signal for the dimming panel 1 and an image for generating a display signal for the image display panel 2 from the video signal stored in the frame memory 301 And a display signal generation circuit 303.
[0190] 上記エリア表示信号生成回路 302は、フレームメモリ 301に蓄えられた映像信号か ら輝度信号のみを抽出し、画素毎に階調を決定するためにエリア分離、階調レベル 測定を行い、エリア表示用階調を決定し、このエリア表示用階調信号をエリア表示信 号として調光用パネル 1へ出力するようになっている。  [0190] The area display signal generation circuit 302 extracts only the luminance signal from the video signal stored in the frame memory 301, performs area separation and gradation level measurement to determine the gradation for each pixel, The area display gradation is determined, and the area display gradation signal is output to the light control panel 1 as the area display signal.
[0191] 一方、上記画像表示信号生成回路 303は、フレームメモリ 301に蓄えられた映像信 号から輝度信号と色信号の両方を抽出し、対応エリアの画素の色、階調を補正し、こ の補正された色信号及び階調信号を画像表示信号として画像表示用パネル 2へ出 力するようになっている。  On the other hand, the image display signal generation circuit 303 extracts both the luminance signal and the color signal from the video signal stored in the frame memory 301 and corrects the color and gradation of the pixel in the corresponding area. The corrected color signal and gradation signal are output to the image display panel 2 as image display signals.
[0192] 具体的には、上記エリア表示信号生成回路 302では、フレームメモリ 301に蓄えら れている映像信号から輝度信号を抽出したのち、該輝度信号に対して、エリア毎に 階調を決めるために、画素の位置に対してエリアを対応させるマッピング処理を行い 階調レベルを測定するようになっている。したがって、上記のエリア表示信号生成回 路 302では、エリア分離、階調レベル測定としている。  [0192] Specifically, the area display signal generation circuit 302 extracts a luminance signal from the video signal stored in the frame memory 301, and then determines a gradation for each area with respect to the luminance signal. Therefore, the gradation level is measured by performing a mapping process in which the area is associated with the pixel position. Therefore, in the area display signal generation circuit 302 described above, area separation and gradation level measurement are performed.
[0193] 次に、各エリアに対して、基準となる階調を決定する。この基準となる階調はエリア 全体をこの階調で表示することを意味しており、エリアに対応する各画素の階調から 決定される。例えばあるエリアに対応する画像表示パネルの画素群の階調が高く白 っぽ!/、画像であれば、エリア全体を画素群の一番高!/、階調数で統一させても良!/、。  [0193] Next, a reference gradation is determined for each area. This reference gradation means that the entire area is displayed in this gradation, and is determined from the gradation of each pixel corresponding to the area. For example, the pixel group of the image display panel corresponding to a certain area has a high gradation and whiteness! / If it is an image, the entire area may be unified with the highest pixel group! / And the number of gradations! /.
[0194] 本構成の液晶表示装置では、輝度信号と色信号の両方で画像表示を行う画像表 示用パネル 2と、輝度信号から作った濃淡信号から濃淡画像表示を行う調光用パネ ノレ 1とを組み合わせて全体画像を表示するようになっているため、輝度情報について は、 2枚のパネルを通して表現されることになる。従って、透過型液晶パネルのように 光を透過させて階調表現をするパネルは、双方のパネルの階調の積となるので、明 るい画像に対して調光用パネル 1側で階調を低くすると全体に暗ぐ黒っぽい画像に なってしまう。  [0194] In the liquid crystal display device with this configuration, the image display panel 2 displays an image using both luminance signals and color signals, and the light control panel 1 displays a gray image from the gray signal generated from the luminance signal. Since the whole image is displayed in combination with the brightness information, brightness information is expressed through two panels. Therefore, a panel that expresses gradation by transmitting light, such as a transmissive liquid crystal panel, is the product of the gradations of both panels, so the gradation is adjusted on the light control panel 1 side for a bright image. Lowering it will result in a dark black image.
[0195] 一方、画像表示用パネル 2の画素群全体が喑!、階調で表現されて!/、る場合は、そ のエリアに対応する画素の輝度情報全体の平均値としても良いし、平均よりも喑めに 設定しても良い。このようにエリアに対応する画素の階調レベルを測定しその性格に 合わせて基準階調を決定する。これは予め性格に合わせた階調ルックアップテープ ルをもたせエリアに対応する画素階調レベルに合わせてルックアップテーブルから適 宜読み出すことよって基準階調を決定しても良い。 [0195] On the other hand, if the entire pixel group of the image display panel 2 is expressed as 喑! The average value of the entire luminance information of the pixels corresponding to this area may be set, or may be set more conservatively than the average. In this way, the gradation level of the pixel corresponding to the area is measured, and the reference gradation is determined according to the nature. In this case, a reference gradation may be determined by providing a gradation lookup table according to the character in advance and appropriately reading out from the lookup table according to the pixel gradation level corresponding to the area.
[0196] 以上のように、調光用パネル 1の階調が決定されるとそれに合わせて画像表示用パ ネル 2の画像の補正が必要となる。前述したように 2枚のパネルに光を透過して画像 表示するため、エリア表示の階調によって、色情報にも補正を与えないと、色表現が ずれてしまうためである。  [0196] As described above, when the gradation of the light control panel 1 is determined, the image of the image display panel 2 needs to be corrected accordingly. This is because, as described above, light is transmitted through two panels to display an image, and color expression is shifted unless correction is made to color information depending on the gradation of area display.
[0197] このようにして、出来た画像表示用パネル 2への画像と、調光用パネル 1への画像 をそれぞれ同期させて表示させ全体の画像表示とすることが出来る。尚、エリア表示 用の階調を決定した後に、各エリアの濃淡をより滑らかにするために補正することを fiつても良い。  [0197] In this way, the image on the image display panel 2 and the image on the light control panel 1 can be displayed in synchronization with each other so as to display the entire image. In addition, after determining the gradation for area display, it may be corrected to make the shading of each area smoother.
[0198] このように本実施の形態に力、かる液晶表示装置では、調光用パネル 1を使用するた め、調光用パネル内で画素を任意の形状に加工できるので、輝度分布を平均化させ られるメリットがある。つまり、 LEDを光源に持つバックライトの仕切り板の加工と比較 すると、パネル内の画素の形状はマスクパターンの修正で容易に対応することができ 、これにより、輝度分布に滑らかな変化をもたせることができる。  [0198] In the liquid crystal display device that is effective in this embodiment as described above, since the light control panel 1 is used, the pixels can be processed into an arbitrary shape in the light control panel, so that the luminance distribution is averaged. There is an advantage that can be realized. In other words, the shape of the pixels in the panel can be easily accommodated by modifying the mask pattern, compared to the processing of the backlight partition plate with LED as the light source, and this allows the luminance distribution to change smoothly. Can do.
[0199] LEDを光源にもった分割バックライトでは、分割された区域は仕切り板や導光板形 状で形成される。従って成形型が必要になる上、境界領域の形状を細かく工夫する ことは困難である。  [0199] In a divided backlight using LEDs as light sources, the divided areas are formed in the shape of a partition plate or a light guide plate. Therefore, a mold is required and it is difficult to devise the shape of the boundary region in detail.
[0200] また、画面サイズにたいして専用の設計となることから設計変更が行ない難くコスト 面や時間面で課題が生じる。  [0200] In addition, since the design is dedicated to the screen size, it is difficult to change the design, and there are problems in terms of cost and time.
[0201] これに対して、本方式においては、画面サイズへは、基板からの切り出しサイズの 変更でよぐまたパターンの変更も作製時のマスク変更で対応できる為上記課題が生 じないというメリットがある。 [0201] In contrast, in this method, the screen size can be changed by changing the cut-out size from the substrate, and the pattern change can also be handled by changing the mask at the time of production. There is.
[0202] 以上のように、本実施の形態では、光透過型の液晶表示パネルからなる画像表示 用パネルと、該液晶表示パネルの背面側から光を照射するバックライトとを備えた液 晶表示装置において、上記画像表示用パネルと上記バックライトとの間に、透過型の 液晶表示パネルからなり、該画像表示用パネルに入力される映像信号に含まれる輝 度情報に基づ!/、て階調表示を行う調光用パネルが設けられて!/、る例を示した。 [0202] As described above, in this embodiment, a liquid crystal display panel including a light transmission type liquid crystal display panel and a backlight that irradiates light from the back side of the liquid crystal display panel. In the crystal display device, a transmissive liquid crystal display panel is provided between the image display panel and the backlight, and is based on luminance information included in a video signal input to the image display panel! / In this example, a light control panel for gradation display is provided!
[0203] 上記の構成によれば、上記画像表示用パネルと上記バックライトとの間に、透過型 の液晶表示パネルからなり、該画像表示用パネルに入力される映像信号に含まれる 輝度情報に基づレ、て階調表示を行う調光用パネルが設けられて!/、ることで、ノ ックラ イトから照射された光は階調表示を行っている調光用パネルを透過して画像表示用 パネルに照射されることになる。  [0203] According to the above configuration, the luminance information included in the video signal input to the image display panel is formed of a transmissive liquid crystal display panel between the image display panel and the backlight. Based on this, a light control panel for gradation display is provided! /, So that the light emitted from the knock light is transmitted through the light control panel for gradation display and the image is displayed. The display panel will be irradiated.
[0204] これにより、画像表示用パネルに対して、映像信号に基づいて表示される画像の各 領域の明暗度合いに応じて透過量の調整された光 (調光)を照射することが可能とな る。つまり、画像表示用パネルへの照射光量は、調光用パネルによって調整されるこ とになる。  [0204] With this, it is possible to irradiate the image display panel with light (dimming) whose transmission amount is adjusted according to the degree of brightness of each area of the image displayed based on the video signal. Become. That is, the amount of light applied to the image display panel is adjusted by the light control panel.
[0205] このように、画像表示用パネルへの照射光量を調光用パネルによって調整すること で、画像表示用パネルから漏れる光を少なくし、その結果、コントラストを向上させるこ と力 Sできる。  In this way, by adjusting the amount of light applied to the image display panel with the light control panel, light leaking from the image display panel can be reduced, and as a result, the contrast can be improved.
[0206] しかも、バックライト側で調光の必要がなくなるので、バックライトとして蛍光管を用い ること力 S可倉 となる。  [0206] Moreover, since there is no need for dimming on the backlight side, the force to use a fluorescent tube as the backlight becomes S Kurakura.
[0207] したがって、蛍光管を平面状にならべるだけで、輝度分布が均一化されたバックラ イトを実現することが可能となるので、バックライトの厚みを蛍光管の直径程度の非常 に薄くすることが可能となる。  [0207] Therefore, a backlight with a uniform luminance distribution can be realized simply by arranging the fluorescent tubes in a flat shape. Therefore, the thickness of the backlight must be made very thin, about the diameter of the fluorescent tube. Is possible.
[0208] 以上のことから、バックライトにおいて同一の輝度を得るために必要なコストおよび 厚みを、 LEDを用いた場合よりも安ぐかつ薄くすることが可能となる。 [0208] From the above, it is possible to make the cost and thickness necessary for obtaining the same luminance in the backlight cheaper and thinner than in the case of using the LED.
[0209] なお、本発明は、上述のような液晶表示装置のほかに、以下に示す液晶プロジェク ターにも適用できる。 It should be noted that the present invention can be applied to the following liquid crystal projector in addition to the liquid crystal display device as described above.
[0210] 図 12は、本発明の液晶表示装置を液晶プロジェクターに応用した例を示す図であ る。ここでは、透過型の液晶パネル 3枚にて画像を構成し投影するプロジェクターに ついて説明する。  FIG. 12 is a diagram showing an example in which the liquid crystal display device of the present invention is applied to a liquid crystal projector. Here, a projector that composes and projects an image with three transmissive liquid crystal panels will be described.
[0211] 液晶ノ ネノレ 1004, 1005, 1006は、それぞれ R、 G、 Bの各信号に対応したパネル を示しており、ここに表示される画像を合成することによってフルカラー画像を形成す るようになっている。ここでは、 R, G, Bの各信号に対応した液晶パネル 1004, 1005[0211] LCD non-nore 1004, 1005, and 1006 are panels corresponding to R, G, and B signals, respectively. A full color image is formed by combining the images displayed here. Here, LCD panels corresponding to R, G, B signals 1004, 1005
, 1006が画像表示用パネルに相当するものとする。 , 1006 corresponds to an image display panel.
[0212] 調光用パネルに相当するパネルは、液晶パネル 1004, 1005, 1006の光源 1001 側に配置された液晶パネル 1008である。 [0212] A panel corresponding to the light control panel is a liquid crystal panel 1008 arranged on the light source 1001 side of the liquid crystal panels 1004, 1005, and 1006.
[0213] 図 12において、偏光板の位置を明記していないが、画像表示用パネルとしての、 液晶パネル 1004, 1005, 1006の入射、出射側にあるのは言うまでも無い。また、調 光用パネルとしての液晶パネル 1008の入射側にも設置されている。 [0213] In FIG. 12, the position of the polarizing plate is not clearly shown, but it goes without saying that the liquid crystal panels 1004, 1005, and 1006 are on the incident and exit sides of the image display panel. It is also installed on the incident side of the liquid crystal panel 1008 as a dimming panel.
[0214] また、調光用パネルとしての液晶パネル 1008の出射側に設置しても良ぐこの場 合は更にコントラストが向上する。 [0214] In addition, in this case, the contrast can be further improved by installing the liquid crystal panel 1008 as a light control panel on the emission side.
[0215] 光源 1001から出射した光は、フライアイレンズ 1002によって、投影面内が均一な 輝度分布をもった 2次光源となる様調整される。 [0215] The light emitted from the light source 1001 is adjusted by the fly-eye lens 1002 so that it becomes a secondary light source having a uniform luminance distribution in the projection plane.
[0216] 次に、フライアイレンズを通った光は調光用パネルに入り、画像に合わせた輝度分 布表示となったのち、クロスダイクロイツクミラー(クロスダイク口) 1003で、 R, G, B各 色に分離される。 [0216] Next, the light passing through the fly-eye lens enters the light control panel, and after displaying the luminance distribution according to the image, the cross dichroic mirror (cross diced mouth) 1003 B Separated into each color.
[0217] 分離された光のうち、 G光は直接、 R, B光は、クロスダイクロイツクミラー 1003によつ て各液晶パネル 1004〜; 1006に入射される。  Of the separated lights, the G light is directly incident on the liquid crystal panels 1004 to 1006 by the cross dichroic mirror 1003 by the R and B lights.
[0218] 各パネルに入射した光は、各パネルにて画像信号に対応した変調をうけ、クロスダ イク口 1010に入射し、ここで R, G, B各光は合成された後、投影レンズ 1007を通し てスクリーンに投影される。  [0218] The light incident on each panel undergoes modulation corresponding to the image signal in each panel, and enters the cross-diode port 1010, where the R, G, and B lights are combined, and then the projection lens 1007 Is projected on the screen.
[0219] 本例では、調光用パネルは、 1枚であるが、図 12から明らかなように G信号を表示 する液晶パネル 1005と、 R, B信号を表示する液晶パネル 1004, 1006とは、調光 用パネルからの距離が異なって!/、る。プロジェクターの場合光源からの光の平行度 はプラスマイナス 5度以内とかなり良いため、元々細かな表示を行わない調光用パネ ルを通ってきた表示は各画像表示パネルのところで異なっていても問題はない。  [0219] In this example, the dimming panel is one, but as is clear from FIG. 12, the liquid crystal panel 1005 that displays the G signal and the liquid crystal panels 1004 and 1006 that display the R and B signals. The distance from the light control panel is different! In the case of a projector, the parallelism of the light from the light source is fairly good within ± 5 degrees, so there is a problem even if the display that has passed through the light control panel that does not display fine details is different at each image display panel. There is no.
[0220] しかしながら、照明光の平行度がもっと悪い場合においては、画像表示用パネル面 で異なる輝度分布が問題となる場合もある。そのような場合は、リレーレンズ 1009を 光路中に設置し、補正を行うことが可能である。 [0221] 図 13は、本発明の液晶表示装置を液晶プロジェクターに応用した他の例を示す図 である。ここでは、反射型の液晶パネル 3枚と透過型の調光用パネルで構成した光学 系を備えた液晶プロジェクターについて説明する。 [0220] However, when the parallelism of the illumination light is worse, a different luminance distribution on the image display panel may be a problem. In such a case, the relay lens 1009 can be installed in the optical path to correct it. [0221] Fig. 13 is a diagram showing another example in which the liquid crystal display device of the present invention is applied to a liquid crystal projector. Here, a liquid crystal projector provided with an optical system composed of three reflective liquid crystal panels and a transmissive light control panel will be described.
[0222] 液晶ノ ネノレ 1101 , 1102, 1103は、それぞれ G、 Bの各信号に対応した反射型 の液晶パネルであり、画像表示用パネルとして機能する。 [0222] Liquid crystal screens 1101, 1102, and 1103 are reflective liquid crystal panels corresponding to G and B signals, respectively, and function as image display panels.
[0223] これら液晶パネル 1101 , 1102, 1103に近接してそれぞれは位置された液晶パネ ノレ 1104は、透過型の液晶パネルであり、調光用パネルとして機能する。 The liquid crystal panel 1104 positioned in the vicinity of the liquid crystal panels 1101, 1102, and 1103 is a transmissive liquid crystal panel and functions as a light control panel.
[0224] 上記液晶パネル 1104は、液晶パネル 1101 , 1102, 1103が設置されている偏光 ビームスプリツター(PBS) 1107の入射光側に設置されている。 The liquid crystal panel 1104 is installed on the incident light side of a polarized beam splitter (PBS) 1107 on which the liquid crystal panels 1101, 1102, and 1103 are installed.
[0225] なお、光源 1001、フライアイレンズ 1002、クロスダイク口皿 0、投影レンズ 1007に ついては、図 12に示す液晶プロジェクターのものと同じである。 Note that the light source 1001, the fly-eye lens 1002, the cross dyke mouth plate 0, and the projection lens 1007 are the same as those of the liquid crystal projector shown in FIG.
[0226] フライアイレンズ 1002から出射した光は、ダイクロイツクミラー(ダイク口) 1105でま ず R光と、 G、 B光とに分離され、 R光は、ミラー 1110を介して液晶パネル 1101の方 向に向かう。一方、 G、 B光は、次のダイク口 1106で、 G光と B光に分離され、 G光は 反射されて液晶パネル 1102の方向へ向力、い、 B光は透過して液晶パネル 1103の 方向へ向かう。 [0226] The light emitted from the fly-eye lens 1002 is first separated into R light and G and B light by a dichroic mirror (dicing port) 1105, and the R light passes through the mirror 1110 to the liquid crystal panel 1101. Head in the direction. On the other hand, the G and B lights are separated into G light and B light at the next diced opening 1106, and the G light is reflected and directed toward the liquid crystal panel 1102, while the B light is transmitted and transmitted through the liquid crystal panel 1103. Head in the direction of.
[0227] R, G, B各光に分離されたのち、それぞれの光は調光用パネルである液晶パネル 1104に入射され各画像の明喑分布に合ったグレースケール表示へと変調される。  [0227] After being separated into R, G, and B lights, each light is incident on a liquid crystal panel 1104, which is a dimming panel, and is modulated into a grayscale display that matches the brightness distribution of each image.
[0228] その後、 PBS1107に入った光は、液晶パネルのほうへ反射された後、液晶パネル によって画像信号に基づいて変調され、再び PBS1107に戻される。変調された光 は偏光方向が 90° 変換されているため、 PBS 1107で反射されず直進し、クロスダイ クロ 1010へと進み、ここで各色光は合成され、投影レンズへと進む。  [0228] After that, the light that has entered PBS 1107 is reflected toward the liquid crystal panel, and is then modulated by the liquid crystal panel based on the image signal and returned to PBS 1107 again. Since the polarization direction of the modulated light is converted by 90 °, the light travels straight without being reflected by the PBS 1107 and proceeds to the cross dichroic 1010, where each color light is synthesized and proceeds to the projection lens.
[0229] 尚、ここでは、フライアイレンズ 1002の出射側に更に PBS 1107を置き、 PBS1107 で反射される一部の偏光をミラー 1108で再度光源 1001へ戻し再利用を行っている 。また、調光用パネルである液晶 1104の入射側偏光と、各 R, G, Bの液晶パネル 1 101〜; 1103の入射側偏光とは、偏光方向が 90° 異なるため、光源 1001側の PBS 1107の出射側に偏光方向を 90° 回転させるための λ /2板 1109を設置している。  Here, PBS 1107 is further placed on the exit side of the fly-eye lens 1002, and a part of polarized light reflected by the PBS 1107 is returned to the light source 1001 again by the mirror 1108 and reused. In addition, the incident-side polarization of the liquid crystal 1104, which is a light control panel, and the R-, G-, and B-liquid crystal panels 1101 to 1103; A λ / 2 plate 1109 is installed on the exit side of 1107 to rotate the polarization direction by 90 °.
[0230] 尚、図 12、図 13で示した液晶プロジェクターの場合は、液晶プロジェクター内での 光平行度がよいため直視パネルの実施例で示したような視差が付かない上に光利 用効率の観点から必ずしも散乱板を用いる必要はな!/、。散乱板が必要な場合は調 光用パネルである液晶パネル 1008、 1104の出射側に設置すればよぐ調光用パネ ノレから画像表示パネルまでの距離があるので、ヘイズ値も小さく出来る。 [0230] In the case of the liquid crystal projector shown in FIG. 12 and FIG. Because of the good light parallelism, there is no parallax as shown in the direct-view panel example, and it is not always necessary to use a scattering plate from the viewpoint of light utilization efficiency! If a scattering plate is required, the haze value can be reduced because there is a distance from the light control panel to the image display panel if it is installed on the exit side of the liquid crystal panels 1008 and 1104, which are light control panels.
[0231] 以上、図 12及び図 13に示す例のように、本発明は液晶プロジェクターにも適用が 可能であり、調光用パネルを通すことによってコントラストを容易に向上させることが 可能である。 As described above, as in the examples shown in FIGS. 12 and 13, the present invention can also be applied to a liquid crystal projector, and the contrast can be easily improved by passing the light control panel.
[0232] 上記構成の液晶表示装置では、調光用パネルである調光用パネル 1における、隣 接画素同士が画素境界において、凹凸形状の入り込み状態で接続されている。ここ で、画素境界とは、隣合う画素間の部分であり、その距離のことを画素境界線幅とす るが、以下において、説明の便宜上、上記画素境界を画素間、画素境界線幅を画素 間距離とする。隣接する画素間距離の長さによっては、該画素間が、画像表示用パ ネル 2が表示する画像に影響を与える虞がある。  [0232] In the liquid crystal display device having the above configuration, adjacent pixels in the light control panel 1 that is a light control panel are connected to each other in a concavo-convex shape at the pixel boundary. Here, the pixel boundary is a portion between adjacent pixels, and the distance is defined as the pixel boundary line width. In the following, for convenience of explanation, the pixel boundary is defined as the pixel boundary line width. This is the distance between pixels. Depending on the length of the distance between adjacent pixels, the pixels may affect the image displayed on the image display panel 2.
[0233] 以下に、上記調光用パネル 1における画素間の影響と、その解消方法について説 明する。  [0233] The following describes the influence between pixels in the light control panel 1 and how to eliminate it.
[0234] 図 14の(a)は、調光用パネル 1の画素部分の拡大図であり、さらに、図 14の(b)は 、図 14の(a)に示す調光用パネル 1の画素間(画素境界 41b)近傍 Yの拡大図である 。なお、調光用パネル 1を構成する画素同士は、本来、図 4に示すように、隣接画素 同士が凹凸形状となるように入り込んだ状態で接続されている。但し、今回説明に使 用する図 14の(a) (b)では、説明の便宜上、隣接する 2つの画素 20 · 20 (図 14の(a) (b)では、画素(1)、画素(2)が相当)と称する)のみを示し、これら画素同士の接触 部分である画素間のみを入り込み形状にしてレ、る。  FIG. 14 (a) is an enlarged view of a pixel portion of the light control panel 1, and FIG. 14 (b) is a pixel of the light control panel 1 shown in FIG. 14 (a). FIG. 6 is an enlarged view of the vicinity Y between the pixels (pixel boundary 41b). Note that the pixels constituting the dimming panel 1 are originally connected in a state where adjacent pixels are in an uneven shape as shown in FIG. However, in FIG. 14 (a) and (b) used for the present explanation, for convenience of explanation, two adjacent pixels 20 and 20 (in FIG. 14 (a) and (b), the pixel (1) and the pixel ( 2) is equivalent)), and only the pixels that are the contact portions of these pixels are intruded.
[0235] ところで、図 14の(a) (b)に示す画素間 41bは、調光用パネル 1がノーマリブラック モードの場合、常時黒表示であるため、隣接画素が互いに白表示である場合、画像 表示パネル側から見たときに、画像上に画素間が確認され、画質に影響を及ぼす可 能性がある。  [0235] By the way, the inter-pixel 41b shown in (a) and (b) of Fig. 14 is always black display when the light control panel 1 is in the normally black mode. When viewed from the image display panel side, the pixel spacing is confirmed on the image, which may affect the image quality.
[0236] そこで、本発明では、図 14の(b)に示すように、画素間距離を Waとし、画像表示用 パネルに形成された画素の短辺方向の長さを短辺部の長さ Wbとしたときに、この画 素間距離 Waを上記短辺部の長さ Wbよりも小さくする。 Therefore, in the present invention, as shown in FIG. 14 (b), the distance between the pixels is Wa, and the length of the pixels formed on the image display panel in the short side direction is the length of the short side part. When Wb The inter-element distance Wa is made smaller than the length Wb of the short side part.
[0237] このようにすることで、画像表示用パネル 2側から見た時の画像に対する隣接画素 間 41bの影響を低減することができる。 [0237] By doing so, it is possible to reduce the influence of the adjacent pixel 41b on the image when viewed from the image display panel 2 side.
[0238] 次に、上記調光用パネル 1における配線 11と画像表示用パネルに形成された画素[0238] Next, the wiring 11 in the light control panel 1 and the pixels formed on the image display panel
20との関係が表示画像に及ぼす影響と、その解消方法(1)について説明する。 The effect of the relationship with 20 on the display image and the solution (1) will be described.
[0239] 通常、配線 11は Cuなどの導電膜からなるので、画素 20に対しては遮光部となる。 [0239] Usually, since the wiring 11 is made of a conductive film such as Cu, the pixel 20 serves as a light shielding portion.
このため、信号線によって画像表示用パネル 2が表示する画像に影響を与え、表示 画像の品位を低下させる虞がある。  For this reason, the image displayed on the image display panel 2 by the signal line may be affected, and the quality of the display image may be reduced.
[0240] そこで、本願発明では、上記の配線 11の影響を低減させるために、以下のような措 置を講じている。 [0240] Therefore, in the present invention, the following measures are taken in order to reduce the influence of the wiring 11 described above.
[0241] 図 15は、図 8の(b)に示す調光用パネル 1の画素部分とその画素を駆動するため に配線を拡大して示している。ここでは、画素形状は入り込み形状でなぐ単純な六 角形配置を例にとって説明する。  FIG. 15 shows an enlarged view of the pixel portion of the light control panel 1 shown in FIG. 8B and wiring for driving the pixel. Here, a simple hexagonal arrangement in which the pixel shape is not an intrusive shape will be described as an example.
[0242] また、図 16は、調光用パネル 1の画素部分とその画素を駆動するために 2本以上 の配線が接続された状態を拡大して示している。ここでは、画素形状は入り込み形状 でなぐ単純な六角形配置を例にとって説明する。 [0242] FIG. 16 shows an enlarged view of the pixel portion of the light control panel 1 and a state where two or more wirings are connected to drive the pixel. Here, a simple hexagonal arrangement in which the pixel shape is not an intrusive shape will be described as an example.
[0243] また、図 17は、図 16に示す BB線矢視断面図を示している。この図において、調光 用パネル 1は、下からガラス基板からなる絶縁性基板 101a、配線 11、絶縁層 10、透 明電極からなる画素電極 9aで構成され、対向側はガラス基板からなる絶縁性基板 1[0243] FIG. 17 shows a cross-sectional view taken along line BB shown in FIG. In this figure, the light control panel 1 is composed of an insulating substrate 101a made of a glass substrate, a wiring 11, an insulating layer 10, and a pixel electrode 9a made of a transparent electrode from the bottom, and an insulating side made of a glass substrate on the opposite side. Board 1
01b上に上記画素電極 9aに対向する透明電極で構成された対向電極 9bが形成さ れており、その間には液晶層 4が挟まれた構造となっている。 A counter electrode 9b composed of a transparent electrode facing the pixel electrode 9a is formed on 01b, and the liquid crystal layer 4 is sandwiched therebetween.
[0244] まず、図 15に示すように、信号配線幅を Ws、画像表示用パネル 2の画素の短辺部 の長さを Wbとしたときに、上記調光用パネル 1の信号配線幅 Wsが、上記短辺部の 長さ Wbよりも短!/、こと力 S好ましレ、。 First, as shown in FIG. 15, when the signal wiring width is Ws and the length of the short side portion of the pixel of the image display panel 2 is Wb, the signal wiring width Ws of the dimming panel 1 is described above. However, the length of the short side is shorter than the length Wb!
[0245] これにより、信号配線 (配線 11)が画像表示用パネル 2の画素の開口領域に占める 割合を小さくできるので、画素の開口率低下を抑制することができる。この結果、画素 の開口率低下による表示品位の低下を無くすことができる。 Accordingly, since the ratio of the signal wiring (wiring 11) to the opening area of the pixel of the image display panel 2 can be reduced, a decrease in the aperture ratio of the pixel can be suppressed. As a result, it is possible to eliminate the deterioration in display quality due to the decrease in pixel aperture ratio.
[0246] また、図 16に示すように、上記調光用パネル 1の各画素 20には、それぞれ 2本以 上の信号配線 (配線 11)が接続されていてもよい。これにより、それぞれの信号配線 の幅を狭くしたとしても、各画素 20に接続する配線の本数を調整することで、各画素 20を駆動するために必要となる配線 11の抵抗値を得ることができ、正常に駆動する ことが可能となる。この結果、画素 20上の信号配線が複数本存在しても、画素 20を 駆動させるための信号配線が 1本の場合よりも、信号配線の幅を狭くすることが可能 となるので、画素 20の開口率の低下をさらに抑制することが可能となる。 [0246] As shown in FIG. 16, each pixel 20 of the light control panel 1 has two or more pixels. The upper signal wiring (wiring 11) may be connected. As a result, even if the width of each signal wiring is narrowed, the resistance value of the wiring 11 necessary to drive each pixel 20 can be obtained by adjusting the number of wirings connected to each pixel 20. Can be driven normally. As a result, even if there are a plurality of signal wirings on the pixel 20, the width of the signal wiring can be made narrower than in the case of a single signal wiring for driving the pixel 20. It is possible to further suppress the decrease in the aperture ratio.
[0247] さらに、上記解消方法(1)とは異なる、上記調光用パネル 1における配線 11と画素 20との関係が表示画像に及ぼす影響と、その解消方法(2)について説明する。  Further, the influence of the relationship between the wiring 11 and the pixel 20 in the dimming panel 1 on the display image, which is different from the elimination method (1), and the elimination method (2) will be described.
[0248] 上記調光用パネル 1は、図 8の(b)に示すように、セグメント駆動であるため、一つの 画素 20に対して一本の配線 11が対応するように直接接続されている。しかも、配線 11は、隣接する画素 20をまたぐように配設されているため、配線 11が接続されてい る駆動ドライバ(図示せず)に近いほど、一つの画素 20を通る配線 11の本数が多ぐ 駆動ドライバから遠ざかるにつれて、一つの画素 20を通る配線 11の本数が少なくな  [0248] As shown in FIG. 8 (b), the light control panel 1 is segment-driven, and thus is directly connected so that one wiring 11 corresponds to one pixel 20. . Moreover, since the wiring 11 is arranged so as to straddle the adjacent pixels 20, the closer to the drive driver (not shown) to which the wiring 11 is connected, the more the number of wirings 11 passing through one pixel 20 is. As the distance from the drive driver increases, the number of wires 11 passing through one pixel 20 decreases.
[0249] これによつて、図 8の(b)に示すように、各画素 20を通る配線 11の本数が異なれば 、画像表示用パネル 2側からみたときに、各画素 20の開口率が異なるが、各画素サ ィズに対して、この信号配線の幅は非常に狭いため、極端に開口率が低下すること はない。 Thus, as shown in FIG. 8 (b), if the number of wirings 11 passing through each pixel 20 is different, the aperture ratio of each pixel 20 is higher when viewed from the image display panel 2 side. Although different, for each pixel size, the width of this signal line is very narrow, so the aperture ratio does not drop extremely.
[0250] し力、し、例えば、 32型の液晶パネルの場合、 RGB各色合わせた画素サイズは、ノ、 イビジョン対応で概ね 370 H m角となり、画素サイズがハイビジョン対応で 430 μ m角 である 37型の液晶パネルに比べて小さくなる。  [0250] For example, in the case of a 32-inch LCD panel, the combined pixel size of each RGB color is approximately 370 Hm square for Noi and Ivision, and the pixel size is 430 μm for Hi-Vision. Smaller than a 37-inch LCD panel.
[0251] このため、調光用パネルの画素サイズも上記の画素サイズの変化に伴い、小さくす る必要がある。その場合、各画素 20を通る配線 11の本数の違いによる、各画素 20 の開口率の低下を無視することが出来なくなり、その結果、表示画像の品位を低下さ せる虞がある。  [0251] For this reason, the pixel size of the light control panel needs to be reduced as the pixel size changes. In that case, the decrease in the aperture ratio of each pixel 20 due to the difference in the number of wirings 11 passing through each pixel 20 cannot be ignored, and as a result, the quality of the display image may be degraded.
[0252] 図 18は、調光用パネル 1の画素部分とその画素 20を駆動するための配線 11、およ び各画素 20を駆動させるための駆動ドライバ 13を拡大して示している。  FIG. 18 shows an enlarged view of the pixel portion of the light control panel 1, the wiring 11 for driving the pixel 20, and the drive driver 13 for driving each pixel 20.
[0253] 図 19は、図 18に示す CC線矢視断面図を示している。また、図 20は、図 18に示す DD線矢視断面図を示して!/、る。 FIG. 19 shows a cross-sectional view taken along line CC shown in FIG. 20 is shown in FIG. Show the cross sectional view along the DD line!
[0254] 上記構成の調光用パネル 1は、下からガラス基板からなる絶縁性基板 101a、配線  [0254] The light control panel 1 having the above-described configuration includes an insulating substrate 101a made of a glass substrate from below, and wiring.
11、およびダミー配線 311、絶縁層 10、透明電極からなる画素電極 9aで構成され、 対向側はガラス基板からなる絶縁性基板 10 lbと透明電極からなる対向電極 9bで構 成されており、その間には液晶層 4が挟まれた構造となっている。  11 and a dummy wiring 311, an insulating layer 10, and a pixel electrode 9a made of a transparent electrode, and the opposite side is made of an insulating substrate 10 lb made of a glass substrate and a counter electrode 9b made of a transparent electrode. Has a structure in which the liquid crystal layer 4 is sandwiched.
[0255] 各画素 20は、セグメント駆動であるため、駆動用ドライバ 13からの配線が各画素 20 に直接接続されている。これに対して、直接駆動用ドライバ 13とは接続していないダ ミー配線 311を、全ての画素 20において各画素 20の駆動用の配線 11と同じライン に形成することによって、各画素 20下を通る遮光部分となる配線 11の面積が変わら ないので、画像表示用パネル 2側から見たときの各画素 20における開口率の変化が 少なくなり、画像への影響が低減出来る。このとき、上記配線 11と、該配線 11のライ ン上に設けられたダミー配線 311とをあわせたときの長さを、他の配線 11とダミー配 線 311とを合わせた長さと同じにすることで、各画素 20の開口率を同じにすることが でき、調光用パネル 1の画素サイズが小さくなつたとしても、表示品位の低下を抑制 すること力 S可倉 となる。  [0255] Since each pixel 20 is segment driven, the wiring from the driving driver 13 is directly connected to each pixel 20. On the other hand, the dummy wiring 311 that is not directly connected to the driver 13 for driving is formed in the same line as the driving wiring 11 of each pixel 20 in all the pixels 20, so that the bottom of each pixel 20 is formed. Since the area of the wiring 11 serving as a light shielding portion that passes through does not change, the change in the aperture ratio of each pixel 20 when viewed from the image display panel 2 side is reduced, and the influence on the image can be reduced. At this time, the combined length of the wiring 11 and the dummy wiring 311 provided on the line of the wiring 11 is the same as the combined length of the other wiring 11 and the dummy wiring 311. Thus, the aperture ratio of each pixel 20 can be made the same, and even if the pixel size of the light control panel 1 is reduced, the power S can be suppressed to suppress the deterioration of display quality.
[0256] ここで、上記調光用パネル 1の製造方法について、図 21の(a)〜図 21の(f)を参照 しながら以下に説明する。  [0256] Here, a method for manufacturing the light control panel 1 will be described below with reference to (a) to (f) of FIG.
[0257] まず、図 21の(a)に示すように、絶縁性基板 101aとなるガラス基板上に配線 11とな る金属膜 111をスパッタリング法などにより成膜し、図 21の(b)に示すように、フォトリ ソグラフィによりパターユングすることでセグメント駆動用の配線 11を形成する。 First, as shown in FIG. 21 (a), a metal film 111 to be the wiring 11 is formed on the glass substrate to be the insulating substrate 101a by a sputtering method or the like, and FIG. As shown, segment driving wiring 11 is formed by patterning by photolithography.
[0258] 次に、図 21の(c)に示すように、配線 11が形成された基板全体を覆うように CVDで 絶縁層 10となる絶縁膜 110を成膜し、図 21の(d)に示すように、フォトリソグラフィに よりパターユングすることでコンタクトホール 10aを設ける。 Next, as shown in FIG. 21 (c), an insulating film 110 to be the insulating layer 10 is formed by CVD so as to cover the entire substrate on which the wiring 11 is formed, and (d) in FIG. As shown in FIG. 4, the contact hole 10a is formed by patterning by photolithography.
[0259] さらに、スパッタリング法などにより透明電極 (ITO)を成膜する。その後、図 21の(e[0259] Further, a transparent electrode (ITO) is formed by sputtering or the like. Then, (e
)に示すように、フォトリソグラフィによりパターユングすることで画素電極 9aを形成す る。これにより、画素電極基板が作製される。 ), The pixel electrode 9a is formed by patterning by photolithography. Thereby, a pixel electrode substrate is manufactured.
[0260] 次に、対向ガラス基板となる絶縁性基板 101b上にスパッタリング法などにより透明 電極 (ITO)を成膜することで、対向電極 9bを形成する。 [0261] 続いて、画素電極 9aが形成された基板、および対向電極 9bが形成された基板全 体に、スピンコート法などでポリイミド樹脂を塗布した後に、ラビング処理を行なうこと で配向膜を形成する。 [0260] Next, a transparent electrode (ITO) is formed on the insulating substrate 101b serving as the counter glass substrate by a sputtering method or the like, thereby forming the counter electrode 9b. [0261] Subsequently, a polyimide resin is applied to the substrate on which the pixel electrode 9a is formed and the entire substrate on which the counter electrode 9b is formed by spin coating or the like, followed by rubbing to form an alignment film. To do.
[0262] 次に、配向膜の形成された対向基板にスクリーン印刷法などにより、エポキシ樹脂 などからなるシール材料を、表示領域を囲むように液晶注入口の部分を欠いた枠状 ノ ターンに塗布することにより、シールパターンを形成する。  [0262] Next, a seal material made of epoxy resin or the like is applied to the counter substrate on which the alignment film is formed on the frame-like pattern that lacks the liquid crystal inlet so as to surround the display area. By doing so, a seal pattern is formed.
[0263] そして、そのシールパターンの内側に球状のスぺーサを散布する。 [0263] A spherical spacer is then sprayed inside the seal pattern.
[0264] 続!/、て、スぺーサが散布された対向基板と、上記作製された画素電極基板とを貼り 合わせた後に加熱することにより、シールパターンを硬化させて、空の液晶表示プレ パネルを作製する。 [0264] Continuing! / The counter substrate on which the spacers are dispersed and the pixel electrode substrate fabricated above are bonded together and heated to cure the seal pattern, thereby emptying the liquid crystal display plate. Make a panel.
[0265] さらに、図 21の(f)に示すように、空の液晶表示プレパネルに、減圧法により液晶材 料を注入した後、液晶注入口に UV硬化樹脂を塗布し、 UV照射により、液晶材料を 封止する。これによつて、液晶層 4形成され、調光用パネル 1が作製される。  Furthermore, as shown in FIG. 21 (f), after injecting liquid crystal material into the empty liquid crystal display prepanel by the decompression method, a UV curable resin is applied to the liquid crystal injection port, and the liquid crystal is irradiated by UV irradiation. Seal the material. Thereby, the liquid crystal layer 4 is formed, and the light control panel 1 is manufactured.
[0266] ところで、図 1に示すように、画像表示用パネル 2とバックライトユニット 3との間に、 調光用パネル 1を設置した構造においては、画像表示用パネル 2と調光用パネル 1と いう互いに機能および構成の異なる 2種類のパネルが必要となる。このように、互い に機能および構成の異なる画像表示用パネル 2と調光用パネル 1とを備えた液晶表 示装置を製造する場合、パネル製造工程においては、種類は異なるが同サイズの基 板で製造されるパネルを更に製造することになる。  By the way, as shown in FIG. 1, in the structure in which the light control panel 1 is installed between the image display panel 2 and the backlight unit 3, the image display panel 2 and the light control panel 1 are provided. Two types of panels with different functions and configurations are required. Thus, when manufacturing a liquid crystal display device having an image display panel 2 and a dimming panel 1 having different functions and configurations, different types of substrates of the same size are used in the panel manufacturing process. The panel manufactured in will be further manufactured.
[0267] これは言い換えると、パネル製造工程において、各パネルの作製のために製造ライ ンを増やす必要が生じることを意味する。この場合、画像表示用パネル 2と調光用パ ネル 1のサイズが同じであれば、パネルサイズが大きくなればなるほど、パネルの製 造のための設備投資が大きくなる。  [0267] In other words, in the panel manufacturing process, it is necessary to increase the number of manufacturing lines for manufacturing each panel. In this case, if the size of the image display panel 2 and the dimming panel 1 are the same, the larger the panel size, the larger the capital investment for manufacturing the panel.
[0268] そこで、以下の実施の形態 2では、画像表示用パネル 2と調光用パネル 1のうち、調 光用パネル 1を、複数のサブパネルで構成することで、他のパネルを製造する既存の ラインや、簡素なラインで作製して、パネルの製造のための設備投資を抑える例につ いて説明する。  [0268] Therefore, in the following second embodiment, among the image display panel 2 and the dimming panel 1, the dimming panel 1 is configured by a plurality of sub-panels, thereby manufacturing other panels. An example of creating a simple line and reducing the capital investment for manufacturing the panel will be explained.
[0269] 〔実施の形態 2〕 本発明の一実施の形態について説明すれば、以下の通りである。なお、前記実施 の形態 1で説明した部材と同一機能を有する部材には同一の符号を付記し、詳細な 説明は省略する。 [Embodiment 2] An embodiment of the present invention will be described as follows. Note that members having the same functions as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
[0270] 本実施の形態にかかる液晶表示装置は、図 22に示すように、画像表示用パネル 2 と、バックライトユニット(光源) 3との間に、調光用パネル 1を配置した構造である。な お、図 22では、バックライトユニット 3に設けられている、光拡散板などの光学フィルム の図示は省略している。  The liquid crystal display device according to the present embodiment has a structure in which a light control panel 1 is disposed between an image display panel 2 and a backlight unit (light source) 3 as shown in FIG. is there. In FIG. 22, illustration of an optical film such as a light diffusing plate provided in the backlight unit 3 is omitted.
[0271] ここで、本実施の形態にかかる液晶表示装置は、前記の実施の形態 1にかかる液 晶表示装置とほとんど同じ構成であるが、調光用パネル 1が、 2枚のサブパネル laお よび lbから構成されている点で異なる。この 2枚のサブパネル laおよび lbは、その 端部同士が重ね合わせられて接着されている。なお、サブパネルの枚数は、 2枚に 限定されず、複数枚であればよぐ調光用パネル 1のサイズに応じて適宜設定すれ ばよい。  [0271] Here, the liquid crystal display device according to the present embodiment has almost the same configuration as the liquid crystal display device according to the first embodiment, but the dimming panel 1 includes two sub-panels la. And lb is different. The two sub-panels la and lb are bonded with their ends overlapped. Note that the number of sub-panels is not limited to two, and may be set as appropriate according to the size of the light control panel 1 as long as it is a plurality of sub-panels.
[0272] また、上記調光用パネル 1の機能としては、前記の実施の形態 1で説明した調光用 パネルと同じである。すなわち、調光用パネル 1は、それぞれが独立して中間調表示 を含むグレースケール表示を行なう、複数の画素 20で構成された表示パネルからな  [0272] The function of the light control panel 1 is the same as that of the light control panel described in the first embodiment. In other words, the dimming panel 1 is a display panel composed of a plurality of pixels 20 each independently performing grayscale display including halftone display.
[0273] そして、上記調光用パネル 1の画素 20は、画像表示用パネル 2の画素(図示せず) よりも面積が大きくなつている。また、上下左右斜め方向の画素 20がそれぞれ隣接 するように、六角形を基本とした最密配置となっている。 [0273] The area of the pixel 20 of the light control panel 1 is larger than that of the pixel (not shown) of the image display panel 2. Further, it is a close-packed arrangement based on a hexagon so that the pixels 20 in the diagonal direction are adjacent to each other.
[0274] このように、画素 20を六角形とすることにより、 1個の画素 20を囲む隣接画素 20は[0274] Thus, by making the pixel 20 hexagonal, the adjacent pixels 20 surrounding one pixel 20 are
、横、斜め方向共に必ず境界線を介し、点で接することはないので、輝度の変化が 滑らかになるように中間調を調整し易くなる。 In both horizontal and diagonal directions, the boundary line is not necessarily touched by a point, so it is easy to adjust the halftone so that the change in luminance is smooth.
[0275] 上記画像表示用パネル 2及びバックライトユニット 3については、前記実施の形態 1 と構成及び機能が同じであるので、ここでは詳細な説明は省略する。 [0275] Since the image display panel 2 and the backlight unit 3 have the same configuration and function as those of the first embodiment, detailed description thereof is omitted here.
[0276] 続いて、本実施の形態の液晶表示装置のより具体的な構成について、図 23を用い て説明する。図 23は、図 22に示す液晶表示装置の EE線矢視断面図である。 [0276] Next, a more specific configuration of the liquid crystal display device of the present embodiment will be described with reference to FIG. FIG. 23 is a cross-sectional view taken along the line EE of the liquid crystal display device shown in FIG.
[0277] 上記調光用パネル 1は、図 23に示すように、画像表示用パネル 2とバックライトュニ ット 3との間に位置している。そして、調光用パネル 1は、 2枚のサブパネル laおよび 1 bから構成されている。この 2枚のサブパネル laおよび lbは、その端部同士が重ね 合わせられて接着されて!/、る。 [0277] As shown in Fig. 23, the light control panel 1 includes the image display panel 2 and the backlight unit. It is located between The light control panel 1 is composed of two sub-panels la and 1b. The two sub-panels la and lb are glued together by overlapping their ends!
[0278] 各サブパネル la ' lbは、 2枚の基板 101a ' 101b間に液晶層 4を挟んで構成されて いる。この 2枚のサブパネル laおよび lbが繋ぎ合わされて形成されたパネルを挟み 込むように、 2枚の偏光板 5 · 5がそれぞれ配置されている。つまり、サブパネルに対し てバックライト 3側に設けられた偏光板 5と、サブパネルに対して画像表示用パネル 2 側に設けられた偏光板 5とで、グレースケール表示が可能なパネル構成となっている 。このサブパネルを挟んで配置された 2枚の偏光板 5は、クロスニコルの関係を有して いる。 [0278] Each sub-panel la'lb is configured by sandwiching the liquid crystal layer 4 between two substrates 101a '101b. Two polarizing plates 5 and 5 are arranged so as to sandwich a panel formed by joining the two sub-panels la and lb. In other words, the polarizing plate 5 provided on the backlight 3 side with respect to the sub-panel and the polarizing plate 5 provided on the image display panel 2 side with respect to the sub-panel have a panel configuration capable of gray scale display. Yes. The two polarizing plates 5 arranged with the sub-panel interposed therebetween have a crossed Nicols relationship.
[0279] このように、本実施の形態にかかる液晶表示装置では、 2枚のサブパネル la ' lbを 繋ぎ合わせて調光用パネル 1が構成されている。サブパネル同士を繋ぎ合わせる具 体的な方法にっレ、ては後述する。  As described above, in the liquid crystal display device according to the present embodiment, the dimming panel 1 is configured by connecting two sub-panels la ′ lb. A specific method for connecting the sub-panels will be described later.
[0280] 上記画像表示用パネル 2は、ガラス基板 201 · 202間に液晶層 4を設け、複数の画 素(図示せず)がマトリクス状に配置された液晶表示パネルからなる。ガラス基板 201 •202のそれぞれ外側には、クロスニコルの関係にある偏光板 5 · 5が配置されている  [0280] The image display panel 2 includes a liquid crystal display panel in which a liquid crystal layer 4 is provided between glass substrates 201 and 202, and a plurality of pixels (not shown) are arranged in a matrix. Polarizing plates 5 and 5 having a crossed Nicols relationship are arranged on the outside of the glass substrates 201 and 202, respectively.
[0281] なお、調光用パネル 1と散乱板 71との間に設けられた偏光板 5は省略することも可 能である。しかし、この偏光板 5を設けることによって、調光用パネル 1で乱された偏 光を吸収することができ、コントラストをさらに向上させることができるため、上記の偏 光板 5が設けられて!/、ることが好まし!/、。 [0281] The polarizing plate 5 provided between the light control panel 1 and the scattering plate 71 may be omitted. However, by providing the polarizing plate 5, the polarization disturbed by the light control panel 1 can be absorbed and the contrast can be further improved, so that the polarizing plate 5 is provided! / I prefer to do that!
[0282] 前述したように、散乱板 71は、画像表示用パネル 2に接近して配置し、調光用パネ ル 1とは、前述したように散乱板 71による光の乱れを抑えつつエリア境界を効果的に 暈すために距離を間隔 dだけ離して設置している。 [0282] As described above, the scattering plate 71 is disposed close to the image display panel 2, and the dimming panel 1 is the area boundary while suppressing the disturbance of light by the scattering plate 71 as described above. In order to effectively detract from the distance, the distance is set at a distance d.
[0283] 散乱板 71が調光用パネル 1の出射側に密着している場合、つまり間隔 dが 0の場合[0283] When the scattering plate 71 is in close contact with the exit side of the light control panel 1, that is, when the distance d is 0
、調光用パネル 1に表示されるエリア境界パターンが、十分拡散されず、画像表示用 パネル 2を通して認識される虞がある。 The area boundary pattern displayed on the light control panel 1 is not sufficiently diffused and may be recognized through the image display panel 2.
[0284] そこで、上記のエリア境界パターンが認識されないようにするために、散乱板 71の 散乱度合レ、を強くすることが考えられるが、以下のような問題が生じる。 [0284] Therefore, in order to prevent the above area boundary pattern from being recognized, Although it is conceivable to increase the degree of scattering, the following problems arise.
[0285] 散乱板 71の散乱度合いを強くすると、調光用パネル 1から出射した偏光が散乱板 で乱され、画像表示用パネル 2の入射側に設置された偏光板 5で吸収されることにな り光利用の効率が低下する。 [0285] When the scattering degree of the scattering plate 71 is increased, the polarized light emitted from the light control panel 1 is disturbed by the scattering plate and absorbed by the polarizing plate 5 installed on the incident side of the image display panel 2. As a result, the efficiency of light use decreases.
[0286] ここで、散乱板 71では出来る限り偏光解消が生じないことが重要であることがわか る。つまり、偏光が乱されず、調光用パネル 1の境界パターンが暈けて滑らかな輝度 分布が得られるようにある程度の距離 dを保って散乱板 71を設置する必要がある。 [0286] Here, it can be seen that it is important that the depolarization does not occur as much as possible in the scattering plate 71. That is, it is necessary to install the scattering plate 71 while maintaining a certain distance d so that the polarization pattern is not disturbed and the boundary pattern of the light control panel 1 is blurred to obtain a smooth luminance distribution.
[0287] 上記バックライトユニット 3と調光用パネル 1との間には、散乱板 7、プリズムシート 6 などの光学フィルムが配置される。 [0287] Between the backlight unit 3 and the light control panel 1, optical films such as a scattering plate 7 and a prism sheet 6 are disposed.
[0288] なお、調光用パネル 1の光の入射側に設けられた偏光板 5には、選択機能を兼ね た偏光板とすることができる。 [0288] The polarizing plate 5 provided on the light incident side of the light control panel 1 can be a polarizing plate having a selection function.
[0289] 次に、バックライトユニット 3について説明する。バックライトユニット 3は、光源として 蛍光管からなるランプ 8を用いた一般的なバックライトである。したがって、ノ ックライト ユニット 3では出射面全体で、あるいは蛍光管単位で、ある程度の調光は可能である 力 出射面を分割し、その分割されたエリア毎に調光できるようにはなっていない。 [0289] Next, the backlight unit 3 will be described. The backlight unit 3 is a general backlight using a lamp 8 made of a fluorescent tube as a light source. Therefore, the knocklight unit 3 is capable of dimming to some extent on the entire emission surface or in units of fluorescent tubes. The light emission surface is not divided, and the light can not be adjusted for each of the divided areas.
[0290] また、蛍光管からなるバックライトュュット 3において、エリア毎に分割するには、エリ ァ毎に蛍光管を設け、 ON— OFF可能な機構にしなくてはならないため、以下のよう な種々の問題が生じる。 [0290] In order to divide each area in the backlight unit 3 composed of fluorescent tubes, it is necessary to provide a fluorescent tube for each area and make the mechanism capable of turning on and off. Various problems arise.
[0291] 例えば、エリアの形状に応じて蛍光管を配置する場合、蛍光管自体の形状が複雑 になる。また、蛍光管の大きさによって画素サイズに限界が生じ、細かいエリアに対応 できない。さらに、エリアの数が多くなれば、蛍光管の駆動用回路が複雑になる。 [0291] For example, when a fluorescent tube is arranged according to the shape of the area, the shape of the fluorescent tube itself is complicated. In addition, the pixel size is limited by the size of the fluorescent tube, so it cannot handle fine areas. Furthermore, as the number of areas increases, the circuit for driving the fluorescent tube becomes complicated.
[0292] しかしながら、本実施の形態では、エリア毎の階調表現を調光用パネル 1の液晶に て調節するため、上記のような蛍光管からなるバックライトユニット 3側への負担はなく[0292] However, in the present embodiment, since the gradation expression for each area is adjusted by the liquid crystal of the light control panel 1, there is no burden on the backlight unit 3 side including the fluorescent tube as described above.
、常時点灯していればよい。そのため、バックライトの機構を簡略化することができる。 It suffices if it is always on. Therefore, the backlight mechanism can be simplified.
[0293] 上記調光用パネル 1を用いて、画像表示用パネル 2におけるエリア毎の階調表現を 行った場合の画像表示例については、前記の実施の形態 1と同様であるので、ここ では詳細な説明は省略する。 [0293] An image display example in the case of performing gradation expression for each area in the image display panel 2 using the light control panel 1 is the same as that in the first embodiment, and therefore here. Detailed description is omitted.
[0294] また、上記調光用パネル 1の画素 20の形状についても、前記の実施の形態 1と同 様であるので、ここでは詳細な説明は省略する。 [0294] The shape of the pixel 20 of the light control panel 1 is the same as that of the first embodiment. Therefore, detailed description is omitted here.
[0295] 本実施の形態にかかる調光用パネル 1としては、前記と実施の形態 1と同様に、垂 直配向の液晶パネルを用いている。  [0295] As the light control panel 1 according to the present embodiment, a vertically aligned liquid crystal panel is used as in the first embodiment.
[0296] なお、本実施の形態では、調光用パネル 1として用いる液晶パネルの配向は、垂直 配向に限定されるものではなぐ他の配向であってもよい。  [0296] In the present embodiment, the alignment of the liquid crystal panel used as the light control panel 1 is not limited to the vertical alignment but may be other alignments.
[0297] 次に、上記調光用パネル 1の構造について詳細に説明する。  [0297] Next, the structure of the light control panel 1 will be described in detail.
[0298] 図 24には、本発明の液晶表示装置に備えられた調光用パネル 1の構成を模式的 に示す。図 24に示すように、ここでは、調光用パネル 1は、複数 (ここでは 4枚)のサブ パネル la · lb - lc - Idを互いに繋ぎ合わせて構成されて!/、る。調光用パネル 1を構 成するサブパネルの枚数は、特に限定はされず、 目的とする表示装置の大きさ、およ び、サブパネルの大きさに合わせて適宜変更することができる。また、各サブパネル の大きさは全て同じである必要はなぐ異なる大きさのものを組み合わせて調光用パ ネノレ 1を作製してもよい。  FIG. 24 schematically shows the configuration of the light control panel 1 provided in the liquid crystal display device of the present invention. As shown in FIG. 24, here, the dimming panel 1 is formed by connecting a plurality (four in this case) of sub-panels la · lb-lc-Id to each other! /. The number of sub-panels constituting the light control panel 1 is not particularly limited, and can be appropriately changed according to the size of the target display device and the size of the sub-panel. Further, the dimming panel 1 may be produced by combining different sizes of sub-panels that are not necessarily the same size.
[0299] 各サブパネル la ' lb ' lc ' ldは、互いに独立したパネルとなっている。つまり、各サ ブパネルのそれぞれに液晶が封入され、各パネルが単独でそれぞれの中に形成し ている画素を駆動することが可能である。したがって、各サブパネルの周辺には、ここ では図示はしてレ、な!/、が、駆動用のドライバが搭載されて!/、る。  [0299] Each sub-panel la'lb'lc'ld is an independent panel. In other words, liquid crystal is sealed in each sub-panel, and each panel can independently drive the pixels formed therein. Therefore, a driver for driving is mounted on the periphery of each sub-panel here.
[0300] 次に、調光用パネル 1を構成するサブパネルの詳しい構成を説明する。  [0300] Next, a detailed configuration of the sub-panel constituting the light control panel 1 will be described.
[0301] 図 25の(a)には、サブパネル laの全体斜視図を示し、図 25の(b)には、図 25の(a )で示したサブパネル laの領域 Xの拡大図を示す。ここでは、説明の便宜上、上述し たように、画素形状は入り込み形状ではなぐ単純な六角形状とする。  [0301] FIG. 25 (a) shows an overall perspective view of the sub-panel la, and FIG. 25 (b) shows an enlarged view of the region X of the sub-panel la shown in FIG. 25 (a). Here, for convenience of explanation, as described above, the pixel shape is a simple hexagonal shape rather than the intrusive shape.
[0302] 調光用パネル 1を構成するサブパネル la〜; Idの表示方法としては、階調表現が可 能であること、および、パネルコストを低く抑えることができるという観点からセグメント 表示の方式を採用した。セグメント方式では各画素毎に駆動用の配線が必要となる ので、図 25の(b)に示すように、全ての画素 20に配線 11を施す必要がある。  [0302] Subpanel la ~ constituting light control panel 1; As a display method of Id, a segment display method is used from the viewpoint that gradation expression is possible and panel cost can be kept low. Adopted. Since the segment method requires a driving wiring for each pixel, it is necessary to provide wiring 11 for all the pixels 20 as shown in FIG. 25 (b).
[0303] ここで、画素 20は六角形状であるので、六角形の画素電極を有している。この六角 形の画素電極は、対向する辺同士の距離(つまり、図 25の(b)において、六角形の 画素電極上を配線が通過する距離)を 25mmの正六角形とした。例えば、 37型の液 晶パネルの、 RGB各色を合わせた画素サイズは、ハイビジョン対応で概ね 430 m 角となる。したがって、調光用パネル 1 (サブパネル la)の画素サイズは、ここでは対 辺間距離が 25mmであるため、画像表示用パネル 2の画素面積の略 12500倍の面 積を有している。 [0303] Here, since the pixel 20 has a hexagonal shape, it has a hexagonal pixel electrode. The hexagonal pixel electrode has a regular hexagonal distance of 25 mm between the opposing sides (that is, the distance that the wiring passes over the hexagonal pixel electrode in FIG. 25B). For example, type 37 fluid The pixel size of the crystal panel combined with each RGB color is about 430 m square for high-definition. Therefore, the pixel size of the light control panel 1 (sub-panel la) has an area approximately 12500 times the pixel area of the image display panel 2 because the distance between the opposite sides is 25 mm here.
[0304] 図 26は、図 25の(b)に示す FF線矢視断面図である。 [0304] FIG. 26 is a cross-sectional view taken along line FF shown in FIG. 25 (b).
[0305] サブパネル laについて、図 26に示す断面図を参照してさらに詳細に説明する。  [0305] The subpanel la will be described in more detail with reference to the cross-sectional view shown in FIG.
[0306] サブパネル laは、基板 101a' 101b間に液晶層 4を挟んだ構成をしている。ここで 基板 lOla' lOlbは、透明な基板であればよいので、その材料としては、ガラス、プラ スチック、透明樹脂フィルムなどのいずれも利用可能である。  The sub-panel la has a configuration in which the liquid crystal layer 4 is sandwiched between the substrates 101a ′ 101b. Here, since the substrate lOla'lOlb may be a transparent substrate, any of glass, plastic, transparent resin film, etc. can be used as its material.
[0307] 2枚の基板のうち一方の基板 101aには、配線 11と層間絶縁層 10を介して画素電 極 9aとなる透明電極が形成され、他方の基板 101bには、全面に対向電極 9bとなる 透明電極が形成されている。そして、これら透明電極の表面に、配向膜(図示せず) が形成された後、基板 101a及び基板 101bが所望の距離をおいて対向配置され、こ の間に液晶が封入され、液晶パネルが形成されて!、る。  [0307] One of the two substrates 101a is provided with a transparent electrode to be the pixel electrode 9a via the wiring 11 and the interlayer insulating layer 10, and the other substrate 101b has a counter electrode 9b on the entire surface. A transparent electrode is formed. Then, after an alignment film (not shown) is formed on the surface of these transparent electrodes, the substrate 101a and the substrate 101b are arranged to face each other at a desired distance, and a liquid crystal is sealed between them. Formed!
[0308] ここで、上記サブパネル laの製造方法を説明する。基本的には、前記実施の形態 1で説明した調光用パネル 1の製造方法と同じである。  [0308] Here, a method for producing the sub-panel la will be described. Basically, it is the same as the manufacturing method of the light control panel 1 described in the first embodiment.
[0309] すなわち、基板 101aとして、先ずガラス基板上にスパッタリングで、配線 11の材料 である A1と Moとをこの順番で連続成膜で形成した。配線 11の材料は、これらに限定 されるものではなぐ A1の替わりに Cu、 A1合金、 Cu合金を使用してもよい。また、 Mo の替わりに Ti、 Taなどの高融点金属を用いてもよい。ここでは、低抵抗と配線形成に ウエットエッチングを利用するために、配線 11の材料として A1と Moを選び、その膜厚 を、 Α1 : 300θΑ、 Μο : 100θΑとした。  [0309] That is, as the substrate 101a, first, A1 and Mo, which are the materials of the wiring 11, were formed by continuous film formation in this order on a glass substrate. The material of the wiring 11 is not limited to these. Instead of A1, Cu, A1 alloy or Cu alloy may be used. Further, refractory metals such as Ti and Ta may be used instead of Mo. Here, in order to use wet etching for low resistance and wiring formation, A1 and Mo were selected as materials for wiring 11, and the film thicknesses were set to Α1: 300θΑ and: ο: 100θΑ.
[0310] 次に、成膜した金属膜を配線に加工すベぐフォトレジストを塗布しフォトリソグラフィ によりレジストに配泉パターンを形成した。この後エッチング液により Al、 Moをゥエツ トエッチング処理した後に、レジストを剥離し、配線 11を形成した。ここで各画素 20へ の配線 11の配線幅は 100 μ mとした。  [0310] Next, a photoresist was applied to process the formed metal film into a wiring, and a spring pattern was formed on the resist by photolithography. Thereafter, Al and Mo were wet-etched with an etching solution, and then the resist was removed to form wiring 11. Here, the wiring width of the wiring 11 to each pixel 20 was set to 100 μm.
[0311] なお、上記液晶パネルではセグメント方式を採用したため、調光用パネル 1の配線  [0311] The liquid crystal panel uses a segment system, so the wiring of the light control panel 1
11は、図 25の(b)に示すように、パネルの端にある画素 20に行くほどその本数が増 えるが、画素 20の対辺間距離が 25mmに対して、配線 11の電極幅が 100 m程度 なので、配線 11によって開口率が極端に低下することはなレ、。 As shown in Fig. 25 (b), the number of pixels increases as the pixel 20 at the edge of the panel increases. However, since the electrode width of the wiring 11 is about 100 m while the distance between opposite sides of the pixel 20 is 25 mm, the aperture ratio is not drastically reduced by the wiring 11.
[0312] 形成された配線 11の上には、画素電極 9aとなる透明電極との間に、層間絶縁層 1 0として感光性アクリル樹脂を塗布し、フォトリソグラフィによりコンタクトホール 12を形 成した。 [0312] On the formed wiring 11, a photosensitive acrylic resin was applied as an interlayer insulating layer 10 between the transparent electrode to be the pixel electrode 9a, and the contact hole 12 was formed by photolithography.
[0313] 次に、上記基板 101aの層間絶縁層 10上に、スパッタにて画素電極 9aとなる透明 電極として ITO膜を成膜した。 ITO膜と配線 11とは、層間絶縁層 10に形成されたコ ンタクトホール 12を介して接続される。  [0313] Next, an ITO film was formed as a transparent electrode to be the pixel electrode 9a on the interlayer insulating layer 10 of the substrate 101a by sputtering. The ITO film and the wiring 11 are connected via a contact hole 12 formed in the interlayer insulating layer 10.
[0314] 上記 ITO膜は、スパッタリング成膜が行なわれた後、レジストが塗布され、フォトリソ グラフィにて形成された画素電極のレジストパターンをマスクにして、ウエットエツチン グにより ITO膜が加工され、画素電極 9aが形成された。 [0314] After the ITO film is formed by sputtering, a resist is applied, and the ITO film is processed by wet etching using the resist pattern of the pixel electrode formed by photolithography as a mask. A pixel electrode 9a was formed.
[0315] 一方、図 26に示す基板 101bは、対向電極 9bとして全面に透明電極である ITO膜 力 Sスパッタリングで成膜されてレ、る。 On the other hand, the substrate 101b shown in FIG. 26 is formed by ITO film force S sputtering, which is a transparent electrode, on the entire surface as the counter electrode 9b.
[0316] 上記構成の基板 101a及び基板 101bには、さらに、配向膜(図示せず)が成膜され る。配向膜は、ポリイミド膜を 500Aの厚さで印刷により形成された。この後必要に応 じ、液晶の配向処理としてラビングゃ紫外線照射を行い、各基板はシール樹脂(図示 せず)をパネル外周に形成し貼り合わされた後、基板間に液晶材料が注入され、サ ブパネル laが形成される。  [0316] An alignment film (not shown) is further formed on the substrate 101a and the substrate 101b having the above-described configuration. The alignment film was formed by printing a polyimide film with a thickness of 500A. Then, if necessary, rubbing and UV irradiation are performed as alignment treatment of the liquid crystal, and each substrate is formed by adhering a sealing resin (not shown) on the outer periphery of the panel, and then a liquid crystal material is injected between the substrates. The panel la is formed.
[0317] なお、ここでは、液晶配向は垂直配向を用い、上部、下部基板の隙間は、 5 mと した。またこの両基板間距離を保証する方法として、ビーズを基板全面に散布してい  [0317] Here, the liquid crystal alignment was vertical alignment, and the gap between the upper and lower substrates was 5 m. As a method of guaranteeing the distance between the two substrates, beads are spread over the entire surface of the substrate.
[0318] 上記のようにして製造されたサブパネル laの全体構成は、図 27に示すようになる。 [0318] The overall structure of the sub-panel la manufactured as described above is as shown in FIG.
ここでは、左右に駆動用ドライバ 13を配置し、各画素 20を左右から駆動する例を示 している。図 26に示したサブパネル laの断面図において、サブパネル laを構成する 2枚の基板のうち、配線を形成した基板 101aは、端部に駆動用ドライバ 13を搭載す る領域を有ている。各配線 11は、駆動用ドライバ 13のドライバ端子に接続されるよう に、該基板 101a端部でドライバ搭載領域に向力 て集約されるように配線されてい [0319] また、左右方向に並んだ画素 20への配線 11は、図 27では 1本で示している力 図 25の (b)に示すように、それぞれが各画素 20に対応するように複数本からの束にな つている。 Here, an example is shown in which driving drivers 13 are arranged on the left and right, and each pixel 20 is driven from the left and right. In the cross-sectional view of the sub-panel la shown in FIG. 26, of the two substrates constituting the sub-panel la, the substrate 101a on which the wiring is formed has a region where the driving driver 13 is mounted at the end. Each wiring 11 is wired so as to be concentrated to the driver mounting area at the end of the substrate 101a so as to be connected to the driver terminal of the driving driver 13. [0319] Also, the wiring 11 to the pixels 20 arranged in the left-right direction is a single force shown in FIG. 27. As shown in (b) of FIG. It is a bundle from the book.
[0320] なお、画素 20への配線 1 1の配置は、図 25の(b)に示すような例に限定されるもの ではない。  [0320] Note that the arrangement of the wiring 11 to the pixel 20 is not limited to the example shown in Fig. 25B.
[0321] また、サブパネル laの外縁部には、図 27に示すように、画像表示用パネル 2に余 分な光の回り込みが無いように、遮光エリア 14が設けられている。  [0321] Further, as shown in FIG. 27, a light shielding area 14 is provided at the outer edge of the sub-panel la so that no excessive light wraps around the image display panel 2.
[0322] そして、上記のようにして製造された複数のサブパネルを、パターンに合わせて位 置決めをして繋ぎ合わせる。この後、 TABなどの部品を実装し、調光用パネルが完 成する。  [0322] Then, the plurality of sub-panels manufactured as described above are positioned according to the pattern and connected. After this, components such as TAB are mounted, and the light control panel is completed.
[0323] このとき調光用パネルを駆動するための TABなどの実装は、繋ぎ合わせをしてから 行っても、繋ぎ合わせをする前に行ってもよい。  [0323] At this time, the mounting of the TAB or the like for driving the light control panel may be performed after the connection or before the connection.
[0324] 最後に、画像表示用パネル 2とバックライトユニット 3とを組み合わせて一体化する。 [0324] Finally, the image display panel 2 and the backlight unit 3 are combined and integrated.
この際、散乱板 71、調光用パネル 1の偏光板 5の設置も行う。  At this time, the scattering plate 71 and the polarizing plate 5 of the light control panel 1 are also installed.
[0325] 上記のような手順によって、図 23に示すような構成を有する液晶表示装置が製造さ れる。 [0325] The liquid crystal display device having the configuration shown in FIG. 23 is manufactured by the procedure as described above.
[0326] なお、図 23に示す液晶表示装置は、 2枚のサブパネル la ' lbが互いに重なり合つ て結合している場合を例に挙げて示している。つまり、本実施の形態においては、調 光用パネル 1は、 2枚のサブパネル la ' lbからなり、サブパネルの端部同士が重なつ た状態で繋がっている。ここで、このように繋いだ場合は各パネルが上下に重なる関 係から表面に段差が生じる。この状態では偏光板 5を直接貼ることができなくなるの で、偏光板 5は調光用パネル 1から離して設置することが好ましい。また、散乱板 71と 調光用パネル 1との距離は、サブパネル laおよびサブパネル lbが重なっている関係 で、サブパネルごとに距離 dが異なってくる。そのため、距離 dを設定する場合は、 2 枚のサブパネル双方の画素境界 41aの入り込みパターンが暈けるように、入り込みピ ツチおよび散乱板のヘイズ値を調整する。  Note that the liquid crystal display device shown in FIG. 23 shows an example in which two sub-panels la ′ lb are overlapped and joined to each other. In other words, in the present embodiment, the light control panel 1 is composed of two sub-panels la ′ lb, and the end portions of the sub-panels are connected to each other. Here, when they are connected in this way, there is a step on the surface due to the relationship in which the panels overlap vertically. In this state, the polarizing plate 5 cannot be applied directly, so that the polarizing plate 5 is preferably installed away from the light control panel 1. Further, the distance d between the scattering plate 71 and the light control panel 1 is such that the sub panel la and the sub panel lb overlap each other, and the distance d is different for each sub panel. Therefore, when setting the distance d, the haze values of the entrance pitch and the scattering plate are adjusted so that the entrance pattern of the pixel boundary 41a of both of the two sub-panels can be made.
[0327] ところで、上述のようにして製造された各サブパネルは、六角形の画素を有するセ グメント駆動パネルである力 S、その画素境界 (エリア境界)は暈しのために複雑な入り 込み状になっている(図 4参照)。そのため、画素単位(エリア単位)でサブパネルを 分断すると、複雑なエリア境界を分断することになり、分断が困難であるばかりか、サ ブパネル同士を繋ぐことが困難となる。 [0327] By the way, each sub-panel manufactured as described above has a force S, which is a segment drive panel having hexagonal pixels, and its pixel boundary (area boundary) is a complicated entry due to a flaw. (See Fig. 4). For this reason, if the sub-panel is divided in pixel units (area units), complicated area boundaries are divided, and it is difficult to divide the sub-panels.
[0328] つまり、調光用パネル 1の画素 20は、上述したように、六角形を基本とした画素を持 つているため、各サブパネル la ' lbの境界、つまり、サブパネル laとサブパネル lbと の繋ぎ部分も、この六角形を基準として繋ぎ合わせるという方法が一般的であると考 X_られる。  That is, as described above, the pixel 20 of the dimming panel 1 has a pixel based on a hexagon as described above. Therefore, the boundary between the sub-panels la 'lb, that is, the sub-panel la and the sub-panel lb It is considered that the method of connecting the connecting parts based on this hexagon is the general method.
[0329] ところ力 調光用パネル 1の画素 20は、隣接する画素間で階調を滑らかに繋ぐため に、前記実施の形態 1の図 4に示すような入り込み形状をしている。そして、この入り 込み形状の入込みピッチは数百ミクロン、入込み距離は 10ミリ程度と複雑な形状をし ている。この形状に沿ってパネルを分割することは、現在の液晶パネルのシール部 分の幅や形状から考えて困難である。したがって、画素単位でサブパネルを分割す ると、この入り込み形状どおりにサブパネルの端部を形成することはできず、サブパネ ルの繋ぎ部分で入り込み形状の効果を有効に利用することができない。  However, the pixel 20 of the power dimming panel 1 has an intrusion shape as shown in FIG. 4 of the first embodiment in order to smoothly connect gradations between adjacent pixels. The penetration pitch of this penetration shape is a complex shape with a few hundred microns and a penetration distance of about 10 mm. It is difficult to divide the panel along this shape, considering the width and shape of the seal part of the current liquid crystal panel. Therefore, if the sub-panel is divided in units of pixels, the end of the sub-panel cannot be formed according to the intrusion shape, and the effect of the intrusion shape cannot be effectively used at the connecting portion of the sub-panels.
[0330] そこで、本実施の形態においては、図 28のように図示された 3個の六角形状の画 素(エリア) 20の中心点 20aと各中心点に隣接する六角形の 3頂点からできた六角形 を基本パターンと考える。  [0330] Therefore, in the present embodiment, the center point 20a of the three hexagonal pixels (area) 20 shown in Fig. 28 and the three hexagonal apexes adjacent to each center point are formed. Hexagonal shape is considered the basic pattern.
[0331] この各画素(エリア) 20の中心 20aから、エリア頂点にむかってラインを引き、このラ インでできる六角形(実線 Sと破線 Tとを結んで得られる六角形)の基本パターン同士 を結んで得られる実線 Sは、エリア境界の暈しパターン (入り込み形状)を分断するこ とがない。このラインをパネルの継ぎライン(あるいはシールライン)とすれば、エリア境 界を形成する複雑な入り込み形状をサブパネルの境界、または、シールラインとする ことを避けること力 Sできる。この基本パターンの六角形の各辺は、ジグザクの入り込み 形状を有する画素境界 4 laと一致していないため、この六角形の辺でサブパネルを 分割すれば、画素境界の複雑な入り込み形状を変更する必要がなレ、。  [0331] Draw a line from the center 20a of each pixel (area) 20 toward the top of the area, and create a hexagonal pattern (hexagon obtained by connecting the solid line S and the broken line T) with this line. The solid line S obtained by connecting the lines does not divide the area boundary fringe pattern (intrusion shape). If this line is used as a panel joint line (or seal line), it is possible to avoid the complicated intrusion that forms the area boundary from becoming the sub-panel boundary or seal line. The hexagonal sides of this basic pattern do not coincide with the pixel boundary 4 la, which has a zigzag intrusion shape, so dividing the subpanel with this hexagonal side changes the complex intrusion shape of the pixel boundary. I need it.
[0332] そのため、隣接するサブパネル同士の境界をこのライン Sで形成することが好ましい 。ここで、隣接するサブパネル同士の境界とは、次の 3通りの場合がある。即ち、 (1) 液晶を封入しているサブパネルにおける液晶のシールライン力 サブパネル同士の 境界の場合、(2)サブパネルの端部(切断部分)が、サブパネル同士の境界の場合、 そして、(3)画素電極のパターン (すなわち、画素同士の境界)が、サブパネル同士 の境界の場合である。このとき、(1) (2)の場合では、実質上、シールラインがサブパ ネル同士の境界となるのに対して、(3)の場合では、画素パターンの端部がサブパネ ル同士の境界となり、シールラインは別のところに存在する。 [0332] Therefore, it is preferable that the boundary between adjacent sub-panels be formed by this line S. Here, there are the following three types of boundaries between adjacent sub-panels. That is, (1) The sealing line force of the liquid crystal in the sub-panel enclosing the liquid crystal In the case of a boundary, (2) the end of the sub-panel (cut portion) is a boundary between sub-panels, and (3) the pixel electrode pattern (that is, the boundary between pixels) is a boundary between sub-panels. is there. At this time, in the cases of (1) and (2), the seal line is effectively the boundary between the sub-panels, whereas in the case of (3), the end of the pixel pattern is the boundary between the sub-panels. The seal line exists elsewhere.
[0333] このため、入り込み形状を利用した画素境界の暈し効果はそのまま維持することが 可能である。この観点からサブパネルの境界を示したの力 図 29の Sで示すラインで ある。ライン Sは、画素の六角形中心と、六角形の頂点を交互に結んでできる線であ る。ここでは、ライン Sを分割ラインとも呼ぶ。  [0333] For this reason, it is possible to maintain the blurring effect of the pixel boundary using the intrusion shape as it is. From this point of view, the force indicating the boundary of the sub-panel is the line indicated by S in Figure 29. Line S is a line formed by alternately connecting the hexagonal center of the pixel and the vertex of the hexagon. Here, the line S is also called a division line.
[0334] このライン Sは、画素の境界である入り込みパターンを分断することなぐ直線の組 み合わせで形成されているために、液晶のシールパターンとして形成することも可能 である。また、このライン Sでサブパネルを切断し、ライン Sを端部として有するサブパ ネルを形成してもよい。  [0334] Since the line S is formed by a combination of straight lines that do not divide the penetration pattern that is the boundary of the pixels, it can also be formed as a liquid crystal seal pattern. Further, the sub-panel may be cut along the line S to form a sub-panel having the line S as an end.
[0335] 図 29は、図 28のライン Sを分割境界としてサブパネル laの内部側(液晶側、図 29 の上方)と外部側(図 29の下方)とに分けた状態を示している。また、このライン Sを、 液晶のシール材のラインとして使用した場合には、図 29のライン Sより下方には、液 晶が入っていないことになる。以上は上記(1) (2)の場合に当てはまる。  FIG. 29 shows a state where the line S in FIG. 28 is used as a dividing boundary and divided into the inner side (liquid crystal side, upper side in FIG. 29) and the outer side (lower side in FIG. 29) of the sub-panel la. In addition, when this line S is used as a liquid crystal sealing material line, no liquid crystal is present below the line S in FIG. The above applies to cases (1) and (2) above.
[0336] さらに、このライン Sを画素パターンとして形成することも可能である。このときシール ラインはこの画素端部から離れた位置に形成されることになる。従ってこの場合サブ パネル同士は上下に重ね合わされ、ァライメントは画素のパターンで行なうことになる 。シールパターンは、画素の形成されない離れた場所で、ライン Sと同様な形状で形 成してもよいし、シールラインが透明に近く目立たないときは、単純な直線パターンと してもよい。図 23に示す断面図は、この状態を表しており、それぞれのサブパネルの 画素境界が丁度ライン Sのように出来ており、このパターン基準で上下のサブパネル がァライメントされて重ねられて!/、るので、サブパネル間のシール位置が一致して!/ヽ ない。これが上記(3)の場合に該当する。  [0336] Further, the line S can be formed as a pixel pattern. At this time, the seal line is formed at a position away from the pixel end. Therefore, in this case, the sub-panels are overlapped with each other, and the alignment is performed in a pixel pattern. The seal pattern may be formed in the same shape as the line S at a distant place where pixels are not formed, or may be a simple straight line pattern when the seal line is not conspicuous as being transparent. The cross-sectional view shown in Fig. 23 shows this state. The pixel boundaries of each sub-panel are exactly like the line S, and the upper and lower sub-panels are aligned and overlapped based on this pattern! Therefore, the seal position between the sub-panels matches! This corresponds to case (3) above.
[0337] これらの場合、ライン Sで区切られた画素は、図 29に示すとおり、六角形の 1/3も しくは 2/3の面積となる。 [0338] このように、本来画素を基本とした六角形の境界をサブパネルの分割境界とするの ではなぐ画素を構成する六角形の中心と頂点とを結んでできる新たな六角形を基 本としたライン Sを想定する。これをサブパネルの境界とすることにより、入り込み効果 を維持しつつ、画素間の入り込み構造を分断することなく単純な境界線で、調光用 パネルを複数のサブパネルを分割することができる。 [0337] In these cases, the pixels delimited by the line S have an area of 1/3 or 2/3 of a hexagon as shown in FIG. [0338] In this way, a new hexagon that is formed by connecting the center and apex of the hexagon that constitutes the pixel is not based on the hexagonal boundary originally based on pixels as the division boundary of the sub-panel. Assume line S. By setting this as the boundary of the sub-panels, it is possible to divide the dimming panel into a plurality of sub-panels with a simple boundary line without breaking the penetration structure between pixels while maintaining the penetration effect.
[0339] 図 30は、 S 1と S2をそれぞれ分割ラインとして持った各サブパネル la' lbを互いに 繋ぐ様子を示している。分害 IJライン S1 . S2は、サブパネルの境界(サブパネルの端部 )の形状を表すものでもある。図 30に示すように、各分割ライン S 1 ' S2がー致するよう に各サブパネル la' lbを合わせる。  [0339] Fig. 30 shows a state in which the sub-panels la 'lb having S1 and S2 as division lines are connected to each other. The harm IJ lines S1 and S2 also represent the shape of the boundary of the subpanel (end of the subpanel). As shown in Figure 30, align each subpanel la 'lb so that each split line S 1' S2 matches.
[0340] なお、各サブパネル la' lbは、分害 ijライン SI ' S2をシールラインかつ端面としたパ ネル(つまり、シールラインとサブパネルの端面が同じ位置にあるもの)であってもよい し、基板の内側に S 1 ' S2の分割ラインをシール境界としてもつパネルであってもよい 。さらに、図 30に示す分割ライン S1 - S2は、画素パターン境界であってもよいのは上 記の通りである。上記(2)の場合は、プラスチックを基板材料として用いると、 S1 - S2 のようなラインでも加工が可能である。また、基板がガラスであれば、 S1 . S2のような ラインに形成することが困難であるため、上記(1)の場合のように、ガラス基板の端部 力、ら内側に S 1 - S2のシールラインを形成する力、、あるいは、上記(3)の場合のように 、サブパネル同士の境界を画素同士の境界と一致させ、各パネルを、 S1 . S2ライン を一致させるように重ね合わせることによって繁ぐことカできる。  [0340] It should be noted that each sub-panel la 'lb may be a panel having the harm ij line SI' S2 as a seal line and an end face (that is, the seal line and the end face of the sub-panel are at the same position). A panel having a dividing line of S 1 'S2 as a seal boundary inside the substrate may be used. Further, the dividing lines S1 to S2 shown in FIG. 30 may be pixel pattern boundaries as described above. In the case of (2) above, if plastic is used as the substrate material, processing is possible even for lines like S1-S2. Also, if the substrate is glass, it is difficult to form a line like S1. S2, so as in the case of (1) above, the end force of the glass substrate, S 1-S2 The force that forms the seal line of the sub-panel, or the boundary between the sub-panels coincides with the boundary between the pixels as in (3) above, and the panels are overlapped so that the S1 and S2 lines coincide with each other. Can thrive.
[0341] ここで、上記のように画素境界が複雑な入り込み形状を有している場合に好適な、 複数のサブパネル同士を繋ぎ合わせる方法について説明する。  [0341] Here, a method for connecting a plurality of sub-panels, which is preferable when the pixel boundary has a complicated intrusion shape as described above, will be described.
[0342] まず、第 1の方法は、繋ぎ合わせられる複数のサブパネルのパネル表面が一平面 状になるように、サブパネル同士を端部で繋ぎ合わせる方法である。この方法は、繋 ぎ合わせられる各サブパネルの分割ライン力 S、シールラインかつ端面である場合に好 適な方法である。  [0342] First, the first method is a method of joining the sub-panels at the end so that the panel surfaces of the plurality of sub-panels to be joined are in a single plane. This method is suitable when the sub-panels to be joined have a split line force S, a seal line and an end face.
[0343] 図 31 (a)には、この方法によって、 2つのサブパネル la ' lbを繋ぎ合わせて形成さ れた調光用パネル 1、および、それを狭持する偏光板 5 · 5のサブパネル接続部分の 断面構成を示す。図 31 (b)には、図 31 (a)に示す調光用パネル 1の表面の状態を模 式的に示す図である。なお、図 31 (a)に示すパネルの断面は、図 31 (b)に示す GG 線矢視断面である。 [0343] Figure 31 (a) shows the dimming panel 1 formed by joining two sub-panels la 'lb by this method, and the sub-panel connection of polarizing plates 5 and 5 holding them. The cross-sectional structure of the part is shown. Fig. 31 (b) shows the state of the surface of the light control panel 1 shown in Fig. 31 (a). FIG. The cross section of the panel shown in FIG. 31 (a) is a cross section taken along line GG shown in FIG. 31 (b).
[0344] サブパネル laおよびサブパネル lbは、矢印 Aで示す部分がパネル同士の接続部 となっている。なお、この接続部 Aの位置に、各サブパネル la ' lbのシールライン 53 が存在する。サブパネル laおよびサブパネル lbは、ともにガラス基板(基板) 30に貼 り付けられている。このとき使用する接着剤を、ガラス基板 30と同じ屈折率とすること で、繋ぎ目を目立たなくすることができる。ガラス基板 30の上に、偏光板 5が配置され ている。  [0344] The sub-panel la and the sub-panel lb have a connection portion between the portions indicated by the arrows A. In addition, the seal line 53 of each sub-panel la ′ lb exists at the position of the connection portion A. Sub-panel la and sub-panel lb are both attached to glass substrate (substrate) 30. By making the adhesive used at this time the same refractive index as that of the glass substrate 30, the joints can be made inconspicuous. A polarizing plate 5 is disposed on the glass substrate 30.
[0345] また、図 31 (b)に示すように、各サブパネル la ' lbのシールライン(シール部) 53は 、図 30に示すライン S 1 ' S2のような形状を有している。サブパネル la ' lbの境界を 図 13のようなライン Sで切断するためには、サブパネルを構成する基板 101a ' 101b の材料としてプラスチックを使用し、打ち抜きやレーザーによって切断を行うことが好 ましい。  Further, as shown in FIG. 31 (b), the seal line (seal part) 53 of each sub-panel la ′ lb has a shape like a line S 1 ′ S2 shown in FIG. In order to cut the boundary of sub panel la 'lb with line S as shown in Fig. 13, it is preferable to use plastic as the material of substrate 101a' 101b that constitutes the sub panel, and cut by punching or laser.
[0346] この第 1の方法によれば、 1枚のガラス基板 30上にサブパネル la ' lbが互いに隣 接して貼り付けられているので、形成される調光用パネル 1の厚さがパネルの全面に わたって一定にすることができる。また、サブパネル laとサブパネル lbとの間に段差 ができないため、空間を設けることなく偏光板 5を調光用パネル 1に直接貼り付けるこ と力 Sできる。  [0346] According to the first method, since the sub-panel la 'lb is attached adjacent to each other on one glass substrate 30, the thickness of the light control panel 1 to be formed is equal to that of the panel. It can be constant over the entire surface. Further, since there is no step between the subpanel la and the subpanel lb, the force S can be applied by directly attaching the polarizing plate 5 to the light control panel 1 without providing a space.
[0347] 続いて、第 2の方法について説明する。第 2の方法は、複数のサブパネル同士を重 ね合わせて繋ぎ合わせる方法である。図 23に示す液晶表示装置の調光用パネル 1 は、この方法を利用して形成される。  [0347] Next, the second method will be described. The second method is a method in which a plurality of sub-panels are overlapped and connected. The light control panel 1 of the liquid crystal display device shown in FIG. 23 is formed using this method.
[0348] 図 32 (a)には、この方法によって、 2つのサブパネル la ' lbを繋ぎ合わせて形成さ れた調光用パネル 1、および、それを狭持する偏光板 5 · 5のサブパネル接続部分の 断面構成を示す。図 32 (b)には、図 32 (a)に示す調光用パネル 1の表面の状態を模 式的に示す。なお、図 32 (a)に示すパネルの断面は、図 32 (b)に示す HH線矢視断 面である。また、この図に示すサブパネル la ' lbは、基板 101a · 101bの端部から内 側にシールライン 54 · 55を形成した場合のものである。  [0348] Fig. 32 (a) shows the dimming panel 1 formed by joining two sub-panels la 'lb by this method, and the sub-panel connection of the polarizing plates 5 and 5 holding them. The cross-sectional structure of the part is shown. FIG. 32 (b) schematically shows the state of the surface of the light control panel 1 shown in FIG. 32 (a). Note that the cross section of the panel shown in FIG. 32 (a) is a cross-sectional view taken along line HH shown in FIG. 32 (b). Further, the sub-panel la ′ lb shown in this figure is a case where seal lines 54 and 55 are formed inward from the end portions of the substrates 101a and 101b.
[0349] この第 2の方法で形成された調光用パネル 1は、図 32 (a)に示すように、 2つのサブ パネル la ' lbの端部同士を重ね合わせて接続している。この場合、サブパネル la ' 1 b同士が重なるので、パネルに直接偏光板 5を貼ることができない。そこで、偏光板 5 は、サブパネル la · lbから距離を置!/、て設置されて!/、る。 [0349] The light control panel 1 formed by the second method has two sub-types as shown in Fig. 32 (a). Panels la 'lb are connected by overlapping the ends. In this case, since the sub-panels la ′ 1 b overlap each other, the polarizing plate 5 cannot be directly attached to the panel. Therefore, the polarizing plate 5 is placed at a distance from the sub-panel la · lb! /.
[0350] 図 32 (b)は、各サブパネル la ' lbの接続部分の平面図である。この図では、サブ パネル laの端部 51を実線で、サブパネル lbの端部 52を破線で示している。図 32 ( b)において、各サブパネル la ' lb上に二重線で示された六角形は、図 28において 実線 Sと破線 Tとで形成された六角形である。一方、六角形の画素 20は、破線で示さ れている。 [0350] FIG. 32 (b) is a plan view of the connecting portion of each sub-panel la'lb. In this figure, the end 51 of the sub panel la is indicated by a solid line, and the end 52 of the sub panel lb is indicated by a broken line. In FIG. 32 (b), the hexagons indicated by double lines on each sub-panel la'lb are hexagons formed by solid lines S and broken lines T in FIG. On the other hand, the hexagonal pixel 20 is indicated by a broken line.
[0351] この図に示すように、第 2の方法では、各サブパネル la ' lbのシールライン 54 · 55 がー致するように各サブパネル la ' lbの位置決めをしている。このようにして繋ぎ合 わされることで、サブパネル laとサブパネル lbとの境界では、各サブパネルの画素 の一部をそれぞれ組み合わせて一つの画素 20が形成されている。  As shown in this figure, in the second method, each sub-panel la 'lb is positioned so that the seal lines 54 and 55 of each sub-panel la' lb are aligned. By being connected in this way, at the boundary between the subpanel la and the subpanel lb, one pixel 20 is formed by combining some of the pixels of each subpanel.
[0352] この方法のメリットは、互いのパネルを面で接着することができるので、上述した補 強となるガラス基板 30が必要な!/、こと、画素境界が複雑な形状であってもサブパネ ルの簡単な位置合わせで繋ぎ合わせが可能であることなどが挙げられる。  [0352] The merit of this method is that the panels can be bonded to each other on the surface, so the glass substrate 30 that is the above-mentioned reinforcement is required! It is possible to connect them with simple alignment.
[0353] 特にガラス基板では、複雑な分断ラインを形成することができないので、基板の内 側にシールラインをつくり、繋ぐときにこのラインが重なるようにするという上記の方法 を採用することが好ましい。  [0353] In particular, since a glass substrate cannot form a complicated dividing line, it is preferable to employ the above-described method in which a sealing line is formed on the inner side of the substrate so that the lines overlap when connected. .
[0354] また、画素 20を駆動するための配線を、シールラインと重ねて作ることによって配線 による開口率低下を抑制することができる。さらに、図 28の S, Tのラインのような新た に考えた基本六角形の境界に沿わせて遮光ラインを形成しておき、このラインと重ね 合わせて配線を形成してもよ!/、。  [0354] In addition, a wiring for driving the pixel 20 is formed so as to overlap with the seal line, whereby a decrease in the aperture ratio due to the wiring can be suppressed. Furthermore, a light shielding line may be formed along the boundary of the newly considered basic hexagon, such as the S and T lines in FIG. 28, and wiring may be formed by overlapping this line! /, .
[0355] また、液晶層の厚さは 3〜5 μ m程度であるためのシールライン 54 · 55の厚さも同 程度である。そのため、シール樹脂内のセルギャップを保証するためにシール材に 混入されるフイラ一またはビーズの量を調整し、光透過性のよ!/、接着樹脂を選定する ことによってシールラインの光透過率を上げることができる。また、このシールラインに 沿ってプリズムを形成することによって、見かけ上、このラインを見え難くすることが可 能である。 [0356] 以上のような各方法を利用することによって、調光用パネルを構成する画素同士の 境界が複雑な入り込み形状を有しており、サブパネル同士の境界が調光用パネルを 構成する画素の境界とは異なる位置に設けられている場合に、その暈しの効果を損 なうことなぐ複数のサブパネルを繋ぎ合わせて調光用パネルを形成することができ る。上記のような方法によって繋ぎ合わされた各サブパネルの境界では、隣接するサ ブパネル同士の画素の一部を組み合わせて一つの画素が構成されることになる。 [0355] Further, since the thickness of the liquid crystal layer is about 3 to 5 μm, the thickness of the seal lines 54 and 55 is also about the same. Therefore, to ensure the cell gap in the sealing resin, the amount of filler or beads mixed in the sealing material is adjusted, and the light transmittance is good! Can be raised. In addition, it is possible to make this line difficult to see by forming a prism along this seal line. [0356] By using each method as described above, the boundary between the pixels constituting the dimming panel has a complicated intrusion shape, and the boundary between the sub-panels constitutes the dimming panel In the case where it is provided at a position different from the boundary, a dimming panel can be formed by connecting a plurality of sub-panels without impairing the effect of the effect. At the boundary between the sub-panels connected by the above method, one pixel is configured by combining a part of the pixels of adjacent sub-panels.
[0357] なお、サブパネルを構成する基板 101a · 101bとしては、プラスチック基板を用いる ことが好ましい。これは、プラスチック基板は、ガラス基板よりも薄く製造できるので、 重ね合わせが容易であり、かつ、重ね領域でパネルが厚くならないためである。また 、プラスチック基板を使用すれば、ガラス基板の場合と比較して分断も容易にできる ので、例えば、図 29に示すような直線ではないライン Sでサブパネルを分断すること も可能となる。  [0357] As the substrates 101a and 101b constituting the sub-panel, it is preferable to use a plastic substrate. This is because a plastic substrate can be manufactured to be thinner than a glass substrate, so that it is easy to superimpose and the panel does not become thicker in the overlap region. In addition, if a plastic substrate is used, division can be facilitated as compared with the case of a glass substrate. Therefore, for example, it is possible to divide the sub-panel along a line S that is not a straight line as shown in FIG.
[0358] なお、本発明の液晶表示パネルは、上記のように、サブパネル同士の境界力 調 光用パネルを構成する画素の境界とは異なる位置に設けられているものには必ずし も限定はされず、調光用パネルが複数のサブパネルを繋ぎ合わせて形成されている ものであればよい。つまり、調光用パネルの画素境界とサブパネル同士の境界とが全 てまたは部分的に一致しているものも本発明の範疇に含まれる。  [0358] Note that the liquid crystal display panel of the present invention is not necessarily limited to the one provided at a position different from the boundary of the pixels constituting the boundary force dimming panel between the sub-panels as described above. The light control panel may be formed by connecting a plurality of sub-panels. That is, the scope of the present invention includes a case where the pixel boundary of the light control panel and the boundary between the sub-panels are all or partially coincident with each other.
[0359] 例えば、上記の第 1の方法を利用する場合において、基板 lOla' lOlbとしてガラ スが使用されていると、シールラインと各サブパネルの切断ラインとができるだけ重な るようにサブパネルを切断するためには、ダイヤモンド粒子を塗布したブレードによつ て切断処理を行うダイシング技術を利用することが好ましい。しかし、ダイシング技術 では基本的に直線に切断することしかできない。  [0359] For example, in the case of using the first method described above, if glass is used as the substrate lOla 'lOlb, the sub-panel is cut so that the seal line and the cutting line of each sub-panel overlap as much as possible. In order to achieve this, it is preferable to use a dicing technique in which cutting is performed by a blade coated with diamond particles. However, dicing technology can basically only cut straight lines.
[0360] そこで、基板 101a' 101bとしてガラスを使用する場合には、図 29に示すようなライ ン Sのような形状ではなぐ単純な直線形状でサブパネルを切断することが望ましい。 そのため、この場合には、調光用パネルの画素境界とサブパネル同士の境界とが部 分的に一致することになる。  [0360] Therefore, when glass is used as the substrates 101a '101b, it is desirable to cut the sub-panel with a simple linear shape rather than the shape of the line S as shown in FIG. Therefore, in this case, the pixel boundary of the dimming panel and the boundary between sub-panels partially match.
[0361] また、上記の第 2の方法の変形例として、サブパネルの端部 51 .52にシールライン を形成し、 2枚のサブパネル la' lbを重ねた場合に各シールラインが異なる位置に なるように貼り合せることで繋ぐことも可能である。 [0361] Further, as a modification of the second method described above, when a seal line is formed at the end 51.52 of the sub-panel and the two sub-panels la 'lb are overlapped, the seal lines are placed at different positions. It is also possible to connect them by pasting them together.
[0362] 以上、本実施の形態の液晶表示装置における調光用パネルについて説明したが、 本発明は必ずしもこの構成に限定はされない。本発明においては、調光用パネルが 複数のサブパネルを繋ぎ合わせて構成されて!/、ればよぐサブパネルを繋ぎ合わせ る方法、画素の形状、および、画素境界 (エリア境界)における入り込み形状の有無 などは、適宜変更が可能である。  [0362] Although the light control panel in the liquid crystal display device of the present embodiment has been described above, the present invention is not necessarily limited to this configuration. In the present invention, the dimming panel is formed by connecting a plurality of sub-panels! /, A method of connecting the sub-panels, a pixel shape, and an intrusion shape at the pixel boundary (area boundary). The presence or absence can be changed as appropriate.
[0363] 図 33には、本発明の液晶表示装置を構成する調光用パネルのノ リエーシヨンを示 す。図 34の(a)〜図 34の(f)には、調光用パネルの画素の形状、および、サブパネ ルのパネル境界の形状の例を示す。  [0363] FIG. 33 shows a nomination of the light control panel constituting the liquid crystal display device of the present invention. FIG. 34 (a) to FIG. 34 (f) show examples of the pixel shape of the light control panel and the panel boundary shape of the sub-panel.
[0364] 図 33の左側には、調光用パネルの画素の形状およびサブパネルのパネル境界の ノ リエーシヨンを示す。この図において、画素の形状を示している箇所には、図 34の (a)〜図 34の(f)において対応する図を示す(但し、画素の形状が六角形のものに ついては図示せず)。また、図 34の(a)〜図 34の(f)では、想定されるサブパネル同 士のパネル境界(分割ライン)をライン S 1または S 2で示している。  [0364] On the left side of Fig. 33, the pixel shape of the light control panel and the nodalization of the panel boundary of the sub panel are shown. In this figure, the part showing the shape of the pixel is a corresponding figure in (a) to (f) of FIG. 34 (however, the pixel having a hexagonal shape is not shown). ). Further, in FIG. 34 (a) to FIG. 34 (f), an assumed panel boundary (division line) of the same sub-panel is indicated by a line S1 or S2.
[0365] 図 33の右側には、複数のサブパネルを繋ぎ合わせる方法を示す。この各方法の詳 細は、上述したとおりである力 S、各具体例を例示すると以下の通りである。  [0365] The right side of Fig. 33 shows a method of connecting a plurality of sub-panels. The details of each method are as follows, with the force S as described above and each specific example illustrated.
(i)各サブパネル同士が重ね合わせられて繋ぎあわせられている構成(図 23、図 32 ( a) ) D (i) Configuration in which the sub-panels are overlapped and joined together (Fig. 23, Fig. 32 (a)) D
(ii)各サブパネル同士が同一平面上に隣接するようにして繋ぎ合わせられている構 成(図 31 (a)参照)。この構成は、一つの基板上に各サブパネルが互いに隣接して 貝占り付けられて!/、る構成である。  (ii) A configuration in which the sub-panels are joined together on the same plane (see Fig. 31 (a)). In this configuration, each sub-panel is adjacent to each other on a single substrate and is shelled! /.
[0366] また、複数のサブパネルを繋ぎ合わせの方法につ!/、ては、パネル間の境界となる 部分が、  [0366] In addition, there is a way to connect multiple sub-panels! /
(a)繋ぎ合わされた各サブパネルの境界力 S、液晶パネルの画素境界とならないように 、サブパネル同士が繋ぎ合わされている構成、  (a) A configuration in which the sub-panels are connected to each other so that the boundary force S between the connected sub-panels does not become a pixel boundary of the liquid crystal panel,
(b)繋ぎ合わされた各サブパネルの境界が、液晶パネルの画素境界で構成されるよ うに、サブパネル同士が繋ぎ合わされている構成  (b) A configuration in which the sub-panels are connected so that the boundary between the connected sub-panels is formed by the pixel boundary of the liquid crystal panel.
に分類される。 [0367] 尚、上記構成の液晶表示装置において、画像表示するための動作は、前記実施の 形態 1の図 11のブロック図で示された構成によって行われるが、前記実施の形態 1と 同じであるので、ここでは省略する。 are categorized. [0367] In the liquid crystal display device having the above-described configuration, the operation for displaying an image is performed by the configuration shown in the block diagram of Fig. 11 of the first embodiment, which is the same as the first embodiment. Because there are, it is omitted here.
[0368] 本実施の形態にかかる液晶表示装置は、以上のように、調光用パネルが複数のサ ブパネルを繋ぎ合わせて形成されたものである。そのため、特に大型の液晶表示装 置を形成する場合に本発明の構成を適用することが好ましい。  In the liquid crystal display device according to the present embodiment, the light control panel is formed by connecting a plurality of sub-panels as described above. Therefore, it is preferable to apply the configuration of the present invention particularly when a large liquid crystal display device is formed.
[0369] このような大型の液晶表示装置を製造する場合、観察者側に配置される表示用パ ネルについては、大型パネル専用の製造ラインを使用してパネルの製造を行い、 , ックライト側に配置される調光用パネルについては、まず既存のパネル用の製造ライ ンを使用してサブパネルを製造し、このサブパネルを複数個繋ぎ合わせて 1枚の大 型の調光用パネルと製造することができる。これによれば、サブパネル用の製造ライ ンは、通常の大きさの液晶表示装置の調光用パネルの製造ラインとして使用すること もできる。液晶表示装置の製造工場では、他の液晶表示装置も製造されるため、上 記のようなライン構成で本発明の液晶表示装置を製造すれば、工場全体としての生 産能力が大きく低下することを防止することができる。  [0369] When manufacturing such a large-sized liquid crystal display device, for the display panel arranged on the observer side, the panel is manufactured by using a large-sized panel-dedicated production line. Regarding the dimming panel to be arranged, first, a sub-panel is manufactured using an existing panel manufacturing line, and a plurality of sub-panels are connected to manufacture a single large dimming panel. Can do. According to this, the production line for the sub-panel can be used as a production line for a light control panel of a liquid crystal display device having a normal size. Since other liquid crystal display devices are also manufactured at the liquid crystal display manufacturing plant, if the liquid crystal display device of the present invention is manufactured with the above-described line configuration, the production capacity of the entire plant is greatly reduced. Can be prevented.
[0370] 次に、本発明の液晶表示装置を備えたテレビジョン受信機について、図 35〜図 37 を参照しながら以下に説明する。  [0370] Next, a television receiver including the liquid crystal display device of the present invention will be described below with reference to FIGS. 35 to 37. FIG.
[0371] 図 35は、テレビジョン受信機用の液晶表示装置 601の回路ブロックを示す。  [0371] FIG. 35 shows a circuit block of a liquid crystal display device 601 for a television receiver.
[0372] 液晶表示装置 601は、図 35に示すように、 Y/C分離回路 500、ビデオクロマ回路 5 01、 A/Dコンノ ータ 502、液晶コントローラ 503、液晶ノ ネル 504、バックライト駆動 回路 505、ノ ックライト 506、マイコン 507、階調回路 508を備えた構成となっている。  [0372] As shown in FIG. 35, the liquid crystal display device 601 includes a Y / C separation circuit 500, a video chroma circuit 5001, an A / D converter 502, a liquid crystal controller 503, a liquid crystal node 504, and a backlight drive circuit. 505, knock light 506, microcomputer 507, and gradation circuit 508.
[0373] 上記液晶パネル 504は、第 1の液晶パネル (画像表示パネル)と第 2の液晶パネル  [0373] The liquid crystal panel 504 includes a first liquid crystal panel (image display panel) and a second liquid crystal panel.
(調光用パネル)の 2枚構成であり、上述した実施の形態で説明した何れの構成であ つてもよい。  This is a two-panel configuration (light control panel), and may be any configuration described in the above-described embodiment.
[0374] 上記構成の液晶表示装置 601において、まず、テレビ信号の入力映像信号は、 Y /C分離回路 500に入力され、輝度信号と色信号に分離される。輝度信号と色信号 はビデオクロマ回路 501にて光の 3原色である、 R、 G、 Bに変換され、さらに、このァ ナログ RGB信号は A/Dコンバータ 502により、デジタル RGB信号に変換され、液 晶コントローラ 503に入力される。 [0374] In the liquid crystal display device 601 having the above configuration, first, an input video signal of a television signal is input to the Y / C separation circuit 500 and separated into a luminance signal and a color signal. The luminance and color signals are converted to R, G, and B, which are the three primary colors of light, by the video chroma circuit 501, and this analog RGB signal is converted to a digital RGB signal by the A / D converter 502, liquid Input to the crystal controller 503.
[0375] 液晶パネル 504では液晶コントローラ 503からの RGB信号が所定のタイミングで入 力されると共に、階調回路 508からの RGBそれぞれの階調電圧が供給され、画像が 表示されることになる。これらの処理を含め、システム全体の制御はマイコン 507が行 うことになる。 In the liquid crystal panel 504, the RGB signal from the liquid crystal controller 503 is input at a predetermined timing, and the RGB gradation voltages from the gradation circuit 508 are supplied to display an image. The microcomputer 507 controls the entire system including these processes.
[0376] なお、映像信号として、テレビジョン放送に基づく映像信号、カメラにより撮像された 映像信号、インターネット回線を介して供給される映像信号、 DVDに記録された映 像信号など、様々な映像信号に基づ!/、て表示可能である。  [0376] Note that various video signals such as a video signal based on television broadcasting, a video signal captured by a camera, a video signal supplied via an Internet line, and a video signal recorded on a DVD can be used as the video signal. Based on! /, Can be displayed.
[0377] さらに、図 36に示すチューナ部 600ではテレビジョン放送を受信して映像信号を出 力し、液晶表示装置 601ではチューナ部 600から出力された映像信号に基づいて 画像(映像)表示を行う。 [0377] Further, the tuner unit 600 shown in FIG. 36 receives a television broadcast and outputs a video signal, and the liquid crystal display device 601 displays an image (video) based on the video signal output from the tuner unit 600. Do.
[0378] また、上記構成の液晶表示装置をテレビジョン受信機とするとき、例えば、図 37に 示すように、液晶表示装置 601を第 1筐体 311と第 2筐体 316とで包み込むようにし て挟持した構成となって!/、る。 [0378] When the liquid crystal display device having the above configuration is a television receiver, for example, as shown in FIG. 37, the liquid crystal display device 601 is wrapped in a first housing 311 and a second housing 316. It becomes a sandwiched structure!
[0379] 第 1筐体 311は、液晶表示装置 601で表示される映像を透過させる開口部 311aが 形成されている。 [0379] The first housing 311 is formed with an opening 311a through which an image displayed on the liquid crystal display device 601 is transmitted.
[0380] また、第 2筐体 316は、液晶表示装置 601の背面側を覆うものであり、該液晶表示 装置 601を操作するための操作用回路 315が設けられるとともに、下方に支持用部 材 318が取り付けられている。  [0380] The second casing 316 covers the back side of the liquid crystal display device 601. An operation circuit 315 for operating the liquid crystal display device 601 is provided, and a support member is provided below. 318 is attached.
[0381] 以上のように、上記構成のテレビジョン受信機や映像モニタにおいて、表示装置に 本願発明の液晶表示装置を用いることで、コントラストが高ぐ表示品位の高い映像 を表示することが可能となる。  [0381] As described above, in the television receiver and the video monitor having the above-described configuration, by using the liquid crystal display device of the present invention as a display device, it is possible to display a video with high contrast and high display quality. Become.
[0382] 本発明は上述した各実施形態に限定されるものではなぐ請求項に示した範囲で 種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適 宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 産業上の利用の可能性  [0382] The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and can be obtained by appropriately combining technical means disclosed in different embodiments. Such embodiments are also included in the technical scope of the present invention. Industrial applicability
[0383] 本発明の液晶表示装置は、視角特性の影響が少なぐ且つコントラストの高い表示 品位の高い画像を得ることができるので、テレビジョン受信機、映画用や放送用のモ ユタ等に適用できる。また、本発明の液晶表示装置は、調光用パネルが複数のサブ パネルで構成されているため、表示装置が大型になった場合に効率的に製造するこ とができる。それゆえ、本発明の液晶表示装置は、大型の表示装置に好適に利用で きる。 [0383] Since the liquid crystal display device of the present invention can obtain an image with a small display angle effect and a high contrast display quality, it can be used for television receivers, movie and broadcast models. Applicable to Utah etc. In addition, since the light control panel includes a plurality of sub-panels, the liquid crystal display device of the present invention can be efficiently manufactured when the display device becomes large. Therefore, the liquid crystal display device of the present invention can be suitably used for a large display device.

Claims

請求の範囲 The scope of the claims
[1] 液晶表示パネルからなる画像表示用パネルと、該液晶表示パネルを照射する光源 とを備えた液晶表示装置にぉレ、て、  [1] A liquid crystal display device provided with an image display panel including a liquid crystal display panel and a light source for illuminating the liquid crystal display panel,
上記画像表示用パネルと上記光源との間に、透過型の液晶表示パネルからなり、 該画像表示用パネルに入力される映像信号に含まれる輝度情報に基づいて階調表 示を行う調光用パネルが設けられ、  A dimming display comprising a transmissive liquid crystal display panel between the image display panel and the light source, and performing gradation display based on luminance information included in a video signal input to the image display panel. A panel is provided,
上記調光用パネルを構成する画素のサイズは、上記画像表示用パネルを構成する 画素のサイズよりも大きいことを特徴とする液晶表示装置。  A liquid crystal display device, wherein a size of a pixel constituting the dimming panel is larger than a size of a pixel constituting the image display panel.
[2] 上記調光用パネルは、複数のサブパネルから構成され、  [2] The dimming panel is composed of a plurality of sub-panels,
上記複数のサブパネルは互いに繋ぎ合わせられて!/、ることを特徴とする請求項 1に 記載の液晶表示装置。  2. The liquid crystal display device according to claim 1, wherein the plurality of sub-panels are connected to each other! /.
[3] 複数のサブパネル同士が繋ぎ合わせられている部分では、各サブパネル同士が重 ね合わせられていることを特徴とする請求項 2に記載の液晶表示装置。  [3] The liquid crystal display device according to [2], wherein the sub-panels are overlapped with each other in a portion where the plurality of sub-panels are connected to each other.
[4] 上記調光用パネルは、基板をさらに有しており、 [4] The light control panel further includes a substrate,
上記複数のサブパネルは、上記基板上に互いに隣接して貼り付けられていることを 特徴とする請求項 2に記載の液晶表示装置。  3. The liquid crystal display device according to claim 2, wherein the plurality of sub-panels are attached adjacent to each other on the substrate.
[5] 上記調光用パネルを構成する互いに隣接する画素同士の各境界は、凹凸形状で あることを特徴とする請求項 2に記載の液晶表示装置。 5. The liquid crystal display device according to claim 2, wherein each boundary between adjacent pixels constituting the dimming panel has an uneven shape.
[6] 上記複数のサブパネル同士の境界は、上記調光用パネルを構成する画素の境界 とは異なる位置に設けられていることを特徴とする請求項 5に記載の液晶表示装置。 6. The liquid crystal display device according to claim 5, wherein a boundary between the plurality of sub-panels is provided at a position different from a boundary between pixels constituting the dimming panel.
[7] 上記調光用パネルを構成する画素は六角形状であり、該六角形状の画素の中心と[7] The pixels constituting the light control panel have a hexagonal shape, and the center of the hexagonal pixel and
、該六角形の頂点とを結んで得られる線が、上記複数のサブパネル同士の境界とな るように、各サブパネル同士が繋ぎ合わせられていることを特徴とする請求項 5に記 載の液晶表示装置。 6. The liquid crystal according to claim 5, wherein the sub-panels are connected to each other so that a line obtained by connecting the apexes of the hexagon is a boundary between the plurality of sub-panels. Display device.
[8] 上記調光用パネルを構成する画素は、隣接する画素を構成する画素電極同士が 辺で隣あっている多角形状であることを特徴とする請求項 1または 2に記載の液晶表 示装置。  [8] The liquid crystal display according to claim 1 or 2, wherein the pixels constituting the dimming panel have a polygonal shape in which pixel electrodes constituting adjacent pixels are adjacent to each other at sides. apparatus.
[9] 上記調光用パネルを構成する画素は、六角形状であることを特徴とする請求項 1ま たは 2に記載の液晶表示装置。 [9] The pixels constituting the dimming panel have a hexagonal shape. Or 2. A liquid crystal display device according to 2.
[10] 上記調光用パネルを構成する画素同士の境界は、凹凸形状であることを特徴とす る請求項 1に記載の液晶表示装置。 10. The liquid crystal display device according to claim 1, wherein the boundary between the pixels constituting the light control panel is an uneven shape.
[11] 上記調光用パネルの画素間にある画素間距離は、上記画像表示用パネルの各画 素の短辺方向の長さよりも短いことを特徴とする請求項 10に記載の液晶表示装置。 11. The liquid crystal display device according to claim 10, wherein an inter-pixel distance between pixels of the dimming panel is shorter than a length in a short side direction of each pixel of the image display panel. .
[12] 上記調光用パネルは、セグメント駆動されることを特徴とする請求項 1〜; 11のいず れか 1項に記載の液晶表示装置。 12. The liquid crystal display device according to any one of claims 1 to 11, wherein the light control panel is segment driven.
[13] 上記調光用パネルの各画素には、駆動用信号を該画素それぞれに供給するため の信号配線が接続されており、 [13] Each pixel of the dimming panel is connected to a signal wiring for supplying a driving signal to each pixel.
上記信号配線の線幅が、上記画像表示用パネルの各画素内において該画素の短 辺方向の長さよりも短いことを特徴とする請求項 12に記載の液晶表示装置。  13. The liquid crystal display device according to claim 12, wherein a line width of the signal wiring is shorter than a length in a short side direction of each pixel in each pixel of the image display panel.
[14] 上記調光用パネルの各画素には、それぞれ少なくとも 2本の信号配線が接続され ていることを特徴とする請求項 13に記載の液晶表示装置。 14. The liquid crystal display device according to claim 13, wherein at least two signal lines are connected to each pixel of the dimming panel.
[15] 上記調光用パネルにおける、信号配線の延設方向に並ぶ画素上には、各画素上 を通る配線の本数が同じになるようにダミー配線が設けられていることを特徴とする請 求項 13または 14に記載の液晶表示装置。 [15] In the above dimming panel, dummy wirings are provided on the pixels arranged in the signal wiring extending direction so that the number of wirings passing through each pixel is the same. The liquid crystal display device according to claim 13 or 14.
[16] 上記画像表示用パネルと上記調光用パネルとの間に光を散乱させる散乱板が設 けられていることを特徴とする請求項;!〜 15のいずれか 1項に記載の液晶表示装置 [16] The liquid crystal according to any one of [1] to [15], wherein a scattering plate that scatters light is provided between the image display panel and the light control panel. Display device
[17] 上記散乱板は、上記調光用パネルに対して離間して配置されていることを特徴とす る請求項 16に記載の液晶表示装置。 17. The liquid crystal display device according to claim 16, wherein the scattering plate is spaced apart from the light control panel.
[18] テレビジョン放送を受信するチューナ部と、該チューナ部で受信したテレビジョン放 送を表示する請求項;!〜 17の何れか 1項に記載の液晶表示装置とを備えたテレビジ ヨン受信機。 [18] A television receiver comprising: a tuner unit that receives a television broadcast; and the television broadcast received by the tuner unit; and the liquid crystal display device according to any one of! To 17 Machine.
PCT/JP2007/070472 2006-11-02 2007-10-19 Liquid crystal display device and television receiver WO2008053724A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2006299510 2006-11-02
JP2006-299510 2006-11-02
JP2007-035507 2007-02-15
JP2007035507 2007-02-15
JP2007-099907 2007-04-05
JP2007099907 2007-04-05

Publications (1)

Publication Number Publication Date
WO2008053724A1 true WO2008053724A1 (en) 2008-05-08

Family

ID=39344067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070472 WO2008053724A1 (en) 2006-11-02 2007-10-19 Liquid crystal display device and television receiver

Country Status (1)

Country Link
WO (1) WO2008053724A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141483A (en) * 2010-01-08 2011-07-21 Goto Optical Mfg Co Dividing/projecting method for starlit sky in planetarium
JP2018044988A (en) * 2016-09-12 2018-03-22 エルジー ディスプレイ カンパニー リミテッド Image display device and image display method
WO2022048033A1 (en) * 2020-09-02 2022-03-10 厦门天马微电子有限公司 Display panel and display device
WO2022083312A1 (en) * 2020-10-19 2022-04-28 京东方科技集团股份有限公司 Display module and manufacturing method therefor, and display device
US11410618B2 (en) 2020-03-31 2022-08-09 Sharp Kabushiki Kaisha Dimming panel, dimming unit, and liquid crystal display device
US11538435B2 (en) 2020-12-08 2022-12-27 Sharp Kabushiki Kaisha Dimming panel and liquid crystal display device
US11562702B2 (en) 2020-03-31 2023-01-24 Sharp Kabushiki Kaisha Dimming unit, and liquid crystal display device
US11852933B2 (en) 2021-07-20 2023-12-26 Sharp Display Technology Corporation Liquid crystal display device
US11934073B2 (en) 2022-08-09 2024-03-19 Sharp Display Technology Corporation Liquid crystal panel, display device, and dimming device
US11971632B2 (en) 2022-08-01 2024-04-30 Sharp Kabushiki Kaisha Dimming panel, production method for dimming panel and liquid crystal display device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57610A (en) * 1980-06-02 1982-01-05 Hitachi Ltd Liquid crystal display device
JPS6084981U (en) * 1983-11-17 1985-06-12 シャープ株式会社 display device
JPH03129324A (en) * 1989-10-13 1991-06-03 Sony Corp Planar display device
JPH07168157A (en) * 1993-12-15 1995-07-04 Casio Comput Co Ltd Liquid crystal display device
JP2001174796A (en) * 1999-12-21 2001-06-29 Toshiba Corp Liquid crystal display device
JP2004029800A (en) * 2002-06-21 2004-01-29 Asulab Sa Batch manufacturing method of stacked cells, such as liquid crystal display cell and electrochemical photo-voltaic cell
JP2005301026A (en) * 2004-04-14 2005-10-27 Stanley Electric Co Ltd Color liquid crystal display and its display method
JP2006243687A (en) * 2005-02-03 2006-09-14 Nikon Corp Display device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57610A (en) * 1980-06-02 1982-01-05 Hitachi Ltd Liquid crystal display device
JPS6084981U (en) * 1983-11-17 1985-06-12 シャープ株式会社 display device
JPH03129324A (en) * 1989-10-13 1991-06-03 Sony Corp Planar display device
JPH07168157A (en) * 1993-12-15 1995-07-04 Casio Comput Co Ltd Liquid crystal display device
JP2001174796A (en) * 1999-12-21 2001-06-29 Toshiba Corp Liquid crystal display device
JP2004029800A (en) * 2002-06-21 2004-01-29 Asulab Sa Batch manufacturing method of stacked cells, such as liquid crystal display cell and electrochemical photo-voltaic cell
JP2005301026A (en) * 2004-04-14 2005-10-27 Stanley Electric Co Ltd Color liquid crystal display and its display method
JP2006243687A (en) * 2005-02-03 2006-09-14 Nikon Corp Display device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011141483A (en) * 2010-01-08 2011-07-21 Goto Optical Mfg Co Dividing/projecting method for starlit sky in planetarium
JP2018044988A (en) * 2016-09-12 2018-03-22 エルジー ディスプレイ カンパニー リミテッド Image display device and image display method
US11410618B2 (en) 2020-03-31 2022-08-09 Sharp Kabushiki Kaisha Dimming panel, dimming unit, and liquid crystal display device
US11562702B2 (en) 2020-03-31 2023-01-24 Sharp Kabushiki Kaisha Dimming unit, and liquid crystal display device
WO2022048033A1 (en) * 2020-09-02 2022-03-10 厦门天马微电子有限公司 Display panel and display device
WO2022083312A1 (en) * 2020-10-19 2022-04-28 京东方科技集团股份有限公司 Display module and manufacturing method therefor, and display device
US11538435B2 (en) 2020-12-08 2022-12-27 Sharp Kabushiki Kaisha Dimming panel and liquid crystal display device
US11852933B2 (en) 2021-07-20 2023-12-26 Sharp Display Technology Corporation Liquid crystal display device
US11971632B2 (en) 2022-08-01 2024-04-30 Sharp Kabushiki Kaisha Dimming panel, production method for dimming panel and liquid crystal display device
US11934073B2 (en) 2022-08-09 2024-03-19 Sharp Display Technology Corporation Liquid crystal panel, display device, and dimming device

Similar Documents

Publication Publication Date Title
WO2008053724A1 (en) Liquid crystal display device and television receiver
JP4870151B2 (en) Liquid crystal display device and television receiver
JP5914530B2 (en) High contrast grayscale and color display
JP4878032B2 (en) Liquid crystal display device and television receiver
JP4787224B2 (en) Seamless display manufacturing method
KR101753446B1 (en) Directional Back Light Unit, Method of operating the same and Display device including the Directional Back Light Unit
US20110051029A1 (en) Display device, electronic apparatus, and projection imaging apparatus
JP2006184877A (en) Liquid crystal display device
US20100149225A1 (en) Illuminator and display having same
US9741293B2 (en) Display device with optical separation and respective liquid crystal panels
JP2008233549A (en) Liquid crystal display device
JP2006091841A (en) High luminance liquid crystal display device
KR20080061894A (en) Liquid crystal display panel and method for manufacturing the same
JP2006196374A (en) Backlight device and liquid crystal display device
JP2007310161A (en) Liquid crystal display device and television receiver
KR20070028297A (en) Display
JP2009175600A (en) Liquid crystal panel and liquid crystal display device
JP2008122536A (en) Liquid crystal display device, method for driving liquid crystal display device, and television receiver
JP2009042315A (en) Liquid crystal display and television receiving device
JP4985154B2 (en) Light source device, display device, and optical member
JP2004029220A (en) Projection display device and liquid crystal panel
JPH07114015A (en) Liquid crystal display device
JP2009222797A (en) Liquid crystal display panel and liquid crystal display device
JP2008039936A (en) Liquid crystal display, liquid crystal drive device, and television receiver
JP4510397B2 (en) Liquid crystal display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP