WO2008053534A1 - Doherty amplifier - Google Patents
Doherty amplifier Download PDFInfo
- Publication number
- WO2008053534A1 WO2008053534A1 PCT/JP2006/321769 JP2006321769W WO2008053534A1 WO 2008053534 A1 WO2008053534 A1 WO 2008053534A1 JP 2006321769 W JP2006321769 W JP 2006321769W WO 2008053534 A1 WO2008053534 A1 WO 2008053534A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amplifier
- peak
- doherty
- amplifying elements
- radiator
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F3/211—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
- H03F1/0205—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
- H03F1/0288—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers using a main and one or several auxiliary peaking amplifiers whereby the load is connected to the main amplifier using an impedance inverter, e.g. Doherty amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/32—Modifications of amplifiers to reduce non-linear distortion
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/20—Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F2203/21—Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F2203/211—Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
- H03F2203/21106—An input signal being distributed in parallel over the inputs of a plurality of power amplifiers
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2203/00—Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
- H03F2203/20—Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F2203/21—Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F2203/211—Indexing scheme relating to power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
- H03F2203/21142—Output signals of a plurality of power amplifiers are parallel combined to a common output
Definitions
- the present invention relates to a Doherty amplifier used in a base station distortion compensation type power amplifying apparatus and the like, and more particularly to a Doherty amplifier whose temperature characteristics are improved in order to perform distortion compensation with high power efficiency.
- Non-Patent Document 1 As a high-efficiency distortion compensation method in a power amplification device of a base station, a predistortion method that cancels the original distortion by creating a reverse characteristic distortion and a feedforward method that applies distortion control to the front side A so-called cross-scan selection system is introduced in Non-Patent Document 1 and so on.
- Non-patent document 2 also introduces a base station distortion-compensated power amplifying device using a feed-forward method and Dono and tee amplifiers. Furthermore, by combining the above-mentioned cross scan selection method with a Dono and Tee amplifier, it is possible to achieve further higher efficiency and lower distortion of the base station distortion compensation power amplifier.
- FIG. 1 is a block diagram showing a configuration of a conventional base station distortion compensation power amplifying apparatus that combines a cross scan selection method and a Doherty amplifier.
- two main amplifiers are a first Dono, tee amplifier 1 and a second Dono, tee amplifier 2.
- the base station distortion compensation power amplifier can be made more efficient.
- the first Doherty amplifier 1 has a feedback path from the output side distributor 4 to the synthesizer 9 ⁇ delay unit 8 ⁇ distributor 7 ⁇ distributor 3 ⁇ first dono, tee amplifier 1.
- Distortion control is performed by feed-forward control based on.
- the second Doherty amplifier 2 creates a distortion having an inverse characteristic with respect to the first Dono and Tee amplifier 1 and inputs the distortion to the synthesizer 6 (that is, by applying predistortion).
- the distortion input from Doherty amplifier 1 to distributor 4 ⁇ delayer 5 ⁇ combiner 6 is canceled out. This makes it possible to achieve both high efficiency and distortion compensation of the base station distortion compensation power amplifier.
- the Doherty amplifier used in the base station distortion compensation power amplifying apparatus as shown in FIG. 1 was first devised by Mr. WHDoherty in 1936, and was introduced in Non-Patent Document 3, for example. ing.
- Fig. 2 is a block diagram showing the basic configuration of the Doherty amplifier.
- the Doherty amplifier includes a carrier amplifying element 21 and a first ⁇ / 4 phase shifter 22 that are always operating, and a peak amplifying element 23 and a second end / 4 that operate only when the peak power is high. And phase shifter 24. Since such a Dono and Tee amplifier is a well-known technique, description of its operation is omitted.
- the cross scan selection type distortion compensation circuit as shown in Fig. 1 uses two sets of Dono and Tee amplifiers as shown in Fig. 2. Therefore, in order to perform sufficient distortion compensation, the distortion characteristics of two sets (plurality) of Dono and Tee amplifiers (that is, the first Dono, Tee amplifier 1 and the second Doherty amplifier 2 shown in FIG. 1) are used. It is necessary to align. For this purpose, the temperature rise values of the two pairs (multiple) Donot and Tee amplifiers must be set to the same value.
- FIG. 3 is a conceptual diagram of the prior art showing an arrangement example in which two sets of Doherty amplifiers in parallel configuration are mounted on the same radiator.
- Fig. 3 shows a configuration in which the first Dono, tee amplifier 1 and second Doherty amplifier 2 are mounted on the same radiator (fin) 31 in the cross-scan selection type distortion compensation circuit in Fig. 1. Is shown.
- the first Doherte Carrier amplifying element CI and peak amplifying element PI of amplifier 1 and carrier amplifying element C2 and peak amplifying element P2 of second Doherty amplifier 2 are mounted on the same radiator 31 to achieve a temperature balance of each amplifying element.
- the first Doherte Carrier amplifying element CI and peak amplifying element PI of amplifier 1 and carrier amplifying element C2 and peak amplifying element P2 of second Doherty amplifier 2 are mounted on the same radiator 31 to achieve a temperature balance of each amplifying element.
- Non-Patent Document 1 2002 IEICE Electronics Society Conference “Distortion-Canceling Power Synthesis Amplifier”
- Non-Patent Document 3 "A New High Efficiency Power Amplifier For Modulared Wave", Proceeding of the Institude of Radio Engineers, Vol.24, No.9.September 1936
- the radiator 31 on which the first Dono amplifier Tee 1 and the second Doherty amplifier 2 are mounted is forcibly air-cooled upward with a fan 32.
- the temperature difference between the first dough / tee amplifier 1 and the second dough / tee amplifier 2 becomes small.
- the heat of the second Dono the carrier amplifier C2 of the tee amplifier 2 on the upstream side of the wind is conducted toward the carrier amplifier C1 of the first Doherty amplifier 1 on the downstream side of the wind.
- a temperature difference At is generated between the carrier amplifier C1 and the carrier amplifier C2 that are always operating.
- the characteristics of the first Dono, Tee amplifier 1 and the second Doherty amplifier 2 vary, and there is a difference in the output power of both Doherty amplifiers. This is a factor that reduces power efficiency.
- the radiator 31 having the first dough / tee amplifier 1 and the second dono / ti amplifier 2 is provided with a plurality of fans (for example, two fans).
- the first Doherty amplifier is caused by the airflow variation of multiple fans (two fans 32a, 32b).
- a difference occurs between the output powers of the Dono and Tee amplifiers, which again causes a power loss in the combiner 6 on the output side, which causes a reduction in power efficiency.
- a radiator 31 equipped with the first dough / tee amplifier 1 and the second dough / tee amplifier 2 is connected to the left fan by a large fan 33.
- forced air cooling is applied to the right side of the fan, there is a difference in air volume between the center and outside of the radiator 31. Therefore, a temperature difference occurs between the center and the outside of the radiator 31, and the temperature difference
- carrier amplifier C1 of the tee amplifier 1 and the second Dono, carrier amplifier C2 of the tee amplifier 2 is Arise.
- the explanation will be made assuming FIG. 3. If the thickness of the heat dissipation board excluding the radiator portion through which air flows in the radiator 31 is increased, the thermal resistance is lowered, and the heat dissipation board portion is reduced. As a result, the heat conductivity of the heat dissipation substrate increases and the heat distribution on the heat dissipation substrate can be made uniform. As a result, the temperature rise values of the carrier amplifier C1 of the first Donoty and tee amplifier 1 and the carrier amplifier C2 of the second Doherty amplifier 2 can be made substantially the same value. However, the thicker part of the heat dissipation substrate increases the total weight of the heatsink, resulting in problems such as the overall distortion compensation device of the Doherty amplifier becoming heavier.
- An object of the present invention is to realize both power balance, high-efficiency power amplification, and good distortion compensation by setting the temperature rise values of a plurality of Doherty amplifiers configured in parallel to be substantially the same. It is to provide a Dono and Tee amplifier that can perform the above.
- the Dono and tee amplifier of the present invention is a Dono and tee amplifier in which a plurality of Dono and tee amplifier circuits are connected in parallel, and a plurality of amplifying elements having the same function are connected to the same radiator. Adopt the configuration to be installed.
- the temperature rise values of a plurality of amplifying elements having the same function can be made substantially the same value, so that various characteristics of a plurality of Doherty amplifying circuits are made uniform. be able to.
- a plurality of carrier amplifying elements that are always operating can be maintained at substantially the same temperature, and a plurality of peak amplifying elements that operate when the peak power is large are also at substantially the same temperature. Can be maintained. As a result, it is possible to prevent deterioration of various characteristics caused by temperature change of the Doherty amplifier, and to realize high power efficiency and good distortion compensation.
- FIG. 1 is a block diagram showing a configuration of a conventional base station distortion compensation power amplifying apparatus combining a cross scan selection method and a Dono and tee amplifier.
- FIG. 3 Conceptual diagram of conventional technology showing an example of arrangement in which two sets of Doherty amplifiers in parallel configuration are mounted on the same radiator
- FIG. 7 is a circuit diagram in which two sets of Dono and Tee amplifiers applied in parallel to each embodiment of the present invention are combined in parallel.
- FIG. 8 Configuration diagram of the Doherty amplifier of Embodiment 1 showing the arrangement of each element when the two sets of Doherty amplifiers shown in FIG. 7 are mounted on a radiator.
- FIG. 9 is a configuration diagram of the Doherty amplifier according to the second embodiment showing the arrangement of each element when the two Dono and Tee amplifiers shown in FIG. 7 are mounted on a multilayer substrate.
- FIG. 10 Circuit diagram of N-Way Doherty amplifier applied to the third embodiment.
- FIG. 11A Equivalent circuit in configuration diagram of Doherty amplifier in Embodiment 3 in which two sets of Dono and Tee amplifiers are combined in parallel using N-Way Doherty amplifiers
- FIG. 11B Effective circuit arrangement in the configuration diagram of the Doherty amplifier of Embodiment 3 in which two sets of Dono and Tee amplifiers are combined in parallel using N-Way Dono and Tee amplifiers.
- FIG. 12A Equivalent circuit in the configuration diagram of the Dono and Ty amplifiers of the modified example of Embodiment 3 in which the peak amplifying elements of the same capacity are combined in the same radiator in the N-Way Doherty amplifier
- FIG. 12B N- Way Effective circuit arrangement in the Dono and Ty amplifier configuration diagram of the modified example of Embodiment 3 in which the peak amplifying elements of the same capacity are combined in the same radiator in the Dono and Ty amplifiers
- FIG. 13 Configuration diagram of the Doherty amplifier of Embodiment 4 showing the configuration of an N-Way Dono, tee amplifier capable of changing the number of peak amplifying elements.
- the Doherty amplifier in a configuration in which a plurality of Dono and Tee amplifiers are combined in parallel, amplification elements having the same function are arranged in the same radiator to achieve uniform temperature rise. That is, since the Doherty amplifier is composed of a carrier amplifying element that always operates and a peak amplifying element that operates only when the peak power is high, a plurality of Doherty amplifiers constituting a base station distortion compensation power amplifying apparatus and the like are arranged in parallel. In the circuit, carrier amplifiers are mounted on the same radiator, and peak amplifying elements are mounted on the same radiator.
- the temperature characteristics of a plurality of Dono and Tee amplifiers can be made uniform, so that deterioration of various characteristics caused by temperature changes of the Doherty amplifier can be prevented.
- it is possible to achieve high power efficiency and good distortion compensation and it is possible to provide a high quality cross scan selection type base station distortion compensation power amplifying apparatus and the like.
- FIG. 7 is a circuit diagram in which two sets of Dono and tee amplifier circuits applied to each embodiment of the present invention are combined in parallel.
- a first Doherty amplifier 101 and a second Doherty amplifier 102 are connected in parallel by an input-side distributor 103 and an output-side combiner 104. It becomes the composition.
- the first Donotty amplifier 101 includes a carrier amplifying element C101 and a first 4th phase shifter RC101 that operate constantly, a peak amplifying element P101 that operates only when the peak power is high, and a second ⁇ / 4. It consists of a parallel circuit with phaser RP101.
- the second Dotno and T-amplifiers 102 are a carrier amplifying element C102 and a first quarter-phase shifter RC102 that are always operated, a peak amplifying element P102 that operates only when the peak power is high, and a second ⁇ . It consists of a parallel circuit with the / 4 phase shifter RP102. Since the operation of the Doherty amplifier having such a configuration is a well-known technique, a description thereof will be omitted.
- FIG. 8 is a configuration diagram of the Doherty amplifier according to the first embodiment showing the arrangement of each element when the two sets of Doherty amplifiers shown in FIG. 7 are mounted on a radiator.
- the carrier amplifying element radiator 106 is equipped with a carrier amplifying element C 101 of the first Doherty amplifier 101 and a carrier amplifying element C 102 of the second Donoty amplifier 102.
- the peak amplifying element radiator 107 is equipped with a peak amplifying element P101 of the first Doherty amplifier 101 and a second Donoty, a peak amplifying element P102 of the tee amplifier 102. That is, the carrier amplifying element radiator 106 and the peak amplifying element radiator 107 are each equipped with an amplifying element having the same function.
- the first Dono, tee amplifier 101 includes the first end / 4-phase shifter RC101 and the second end / 4-phase shifter RP101 in FIG.
- the second Doherty amplifier 102 the first end / 4-phase shifter RC102 and the second end / 4-phase shifter RP102 are connected as shown in FIG.
- the first Doherty amplifier 101 and the second Donotty amplifier 102 are connected in parallel by the combiner 104 on the output side.
- the carrier amplification element C101 and the peak amplification element P101 constitute the first Doherty amplifier 101, and the carrier amplification element C102 and the peak amplification element P102
- the second Doherty amplifier 102 is configured. Then, by combining these two (multiple) Dono and Tee amplifiers in close proximity, the Doherty amplifiers are combined in parallel. To realize.
- the carrier amplifying element C101 of the first Doherty amplifier 101 having the same function and the carrier amplifying element C102 of the second Doherty amplifier 102 are the same radiator (that is, the radiator for the carrier amplifier). It is possible to maintain the same temperature rise value.
- the peak amplifying element P101 of the first Donotty amplifier 101 having the same function and the peak amplifying element P102 of the second Doherty amplifier 102 are the same radiator (that is, the radiator for the peak amplifying element). 107), it is possible to maintain the same temperature rise value.
- the first Doherty amplifier 101 and the second Dono and tee amplifier 102 can be made to have the same characteristics, so that the base station distortion compensation power combining the cross scan selection method and the Dono and tee amplifiers. Even when applied to an amplifying device, it is possible to achieve high efficiency of power amplification and good distortion characteristics.
- a plurality of carrier amplifiers are arranged on one radiator, and a plurality of peak amplifying elements are arranged on another radiator.
- Temperature characteristics of multiple dono and tee amplifiers by connecting multiple dono and tee amplifiers in parallel by circuit connection. Can be aligned. As a result, good distortion compensation can be performed while maintaining high power amplification efficiency.
- the temperature rise values of the carrier amplifier C101 of the first Dono, the tee amplifier 101 and the carrier amplifier C102 of the second Doherty amplifier 102 can be made more uniform, and the first The temperature rise values of the peak amplifying element P101 of the Dono and tee amplifier 101 and the peak amplifying element P102 of the second Dono and tee amplifier 102 can be made more uniform.
- a plurality of amplifying elements formed on the same wafer and packaged, for example, two amplifying elements are operated alternately to perform amplification.
- a configuration of a Doherty amplifier using an element can also be used.
- transistor amplifiers for example, C101 and C102
- transistor amplifiers that are mounted on the carrier amplifier radiator 106 and operate with the other signal are mounted on the peak amplifier radiator 107, multiple transistor amplifiers on the side that operates at the same timing Since the temperature rise value can be made substantially the same value, the push-pull amplifier can be stably operated regardless of the temperature change.
- each Doherty amplifier By configuring in this way, it is possible to align the inherent variations and aging of the devices that constitute each transistor amplifier (each Doherty amplifier) just by aligning the temperature characteristics of each transistor amplifier (or each Doherty amplifier). Therefore, power loss on the output side synthesized by each transistor amplifier (each Doherty amplifier) can be prevented. As a result, it becomes possible to operate a power amplifying apparatus composed of a plurality of Dono and Tee amplifiers without maintenance.
- push-pull type amplifying elements having different output capacities are mounted on the same radiator.
- a 10w push-pull amplifier eg, C101, C102
- a 20w push-pull amplifier eg, P101, P102
- the temperature rise value of multiple push-pull amplifiers operating with the same power capacity can be made to be almost the same value, so that the push-pull amplifier is stable regardless of temperature changes. Can be operated automatically.
- FIG. 9 is a configuration diagram of the Dono / Tee amplifier according to the second embodiment showing the arrangement of each element when the two sets of Dono / Tee amplifiers shown in FIG. 7 are mounted on a multilayer substrate.
- the carrier amplifier C101 and the peak amplifier P101 of the first Doherty amplifier 101 are connected to the first ⁇ / 4 phase shifter and the second ⁇ / Force patterned with 4 phase shifter
- Carrier amplification element C101 side pattern and peak amplification element P101 side pattern is placed in a pattern that is slightly offset upward from the first substrate 111 in the figure. It has been.
- the carrier amplifier C 102 and the peak amplifier P102 of the second Dono, tee amplifier 102 are provided with the first ⁇ / 4 phase shifter and the second ⁇ / 4 Force phased with phase shifter Carrier amplification element
- the pattern on the C102 side and the pattern on the peak amplification element P102 side are patterned in a slightly spaced manner on the lower side of the second substrate 112 in the figure.
- the carrier amplifying element C102 and the peak amplifying element P102 of the second Doherty amplifier 102 are the carrier of the first Donotty amplifier 101 when the first substrate 111 and the second substrate 112 are overlapped.
- Amplifying element C101 and peak amplifying element P101 are patterned in such a way that they do not overlap at the upper and lower positions.
- the carrier amplification element C101 of the first Doherty amplifier 101 and the carrier amplification element C102 of the second Doherty amplifier 102 are arranged close to each other, and the peak amplification element of the first Doherty amplifier 101 is P101 and the peak amplifying element P102 of the second Doherty amplifier 102 are arranged close to each other. That is, the configuration is such that amplification elements having the same function are arranged close to each other.
- FIG. 10 is a circuit diagram of an N-Way Dono and Tee amplifier applied to the third embodiment. As shown in FIG. 10, N peak amplifying elements P101-1 to P101-N are connected in parallel to one carrier amplifying element C101 to constitute an N-Way Doherty amplifier.
- N-Way Dono and Tee amplifier having a configuration in which peak amplifying elements are connected in multiple stages as shown in FIG. 10 is known as an amplifier with little decrease in efficiency even when the efficiency back-off is large.
- the N-Way Dono, tee amplifier can take a large back-off expressed by the difference between the maximum output amplitude level of one peak amplifying element and the saturation power level (that is, one peak Since the maximum output amplitude level of the amplifying element can be increased to the limit of the saturation power level), the power efficiency when the number of parallel connections of the peak amplifying element is increased as the peak power increases is always maximized. It becomes possible to maintain the state.
- FIG. 11 is a configuration diagram of the Doherty amplifier according to Embodiment 3 in which two sets of Doherty amplifiers are combined in parallel using N-Way Doherty amplifiers.
- FIG. 11A is an equivalent circuit
- FIG. 11B is an effective circuit. Shows the arrangement.
- Fig. 11 shows the configuration of a Doherty amplifier when two sets of two-way Doherty amplifiers are combined in parallel when two peak amplifying elements are arranged in parallel.
- the carrier amplifying element C101 and the two peak amplifying elements PlOl-l, P101-2 are a two-way Doherty amplifier, and the carrier amplifying element C102 and the two peak amplifying elements P102-1, P102-2 are already present.
- a pair of 2-way Doherty amplifiers are already present.
- the pair of 2-way Doherty amplifiers 1-way peak amplifying element P 101-1 and the other pair of 2-way doherty amplifiers 1-way peak amplifying element P102-1 have the same function.
- the 2-way peak amplifying element P101-2 of the tee amplifier and the other pair of 2-way Doherty amplifier 2-way peak amplifying element P102-2 have the same function, so the third radiator 123 Are arranged.
- peak amplifying elements of the same way are mounted on the same heatsink.
- carrier amplification elements having the same function can be set to substantially the same temperature, and other peak amplification elements having the same function can be set to substantially the same temperature. it can.
- the carrier amplifying element C101 and the carrier amplifying element C102 that are always operating are arranged at the peak amplifying element P10 1 ⁇ on the upstream side (lower side in the figure) of the cooling air.
- 1, P102-1, P101-2, P102-2 may be affected by heat.
- the radiator 121 having the carrier amplifying elements C101 and C102 that are always operating and generate a large amount of heat is disposed in the center.
- a radiator 122 equipped with peak amplifying elements P101-1, P102-1, and a radiator 123 equipped with peak amplifying elements P101-2, P102-2 are arranged. With such an arrangement, the temperature characteristics of each amplifying element can be more accurately aligned even in N-Way Dono and Ty amplifiers.
- FIG. 12 is a configuration diagram of a Dono / Tee amplifier according to a modification of Embodiment 3 in which peak amplifying elements having the same capacity are combined in the same heat radiator in an N-Way Doherty amplifier, and FIG. An equivalent circuit, Figure 12B, shows an effective circuit arrangement. That is, the equivalent circuit of FIG. 12A differs from the equivalent circuit of FIG. 11A in that the peak amplifying elements P101-1 and P1 01-2 having the same capacity are combined into the same radiator 122 and other peak amplifying elements having the same capacity. P102-1 and P102-2 are just put together in the same radiator 123. By doing so, the peak amplifying elements having the same capacity are not easily affected by heat, so that the temperature of each peak amplifying element can be made more uniform.
- the radiator 121 having the carrier amplifying elements C101 and C102 that are always operating and generate a large amount of heat is disposed at the center.
- a heatsink 122 equipped with peak amplifying elements P101-1 and P101-2 with the same capacity and a heatsink 123 equipped with other peak amplifying elements P102-1 and P102-2 with the same capacity are arranged. To do.
- N-Way Dono, tee amplification thus, the temperature characteristics of each amplifying element can be more accurately aligned.
- the peak amplifying elements having the same capacity are arranged on the same radiator, so that the temperature distribution in the radiator is simplified. Therefore, the circuit design of the N-Way Doherty amplifier can be simplified. Furthermore, since the distortion characteristics of Dono and Tee amplifiers are dominated by the carrier amplifying elements that are operating at all times, by placing the carrier amplifying elements in the center, the temperature rise value of each carrier amplifying element is made uniform. Therefore, better distortion characteristics can be realized when used in a base station distortion compensation power amplifier.
- Embodiment 3 a configuration example of a 2-way Dono / tee amplifier using two peak amplifying elements has been described.
- N peak amplifying elements Often composed of N-Way Doherty amplifiers using elements.
- the configuration of an N-way Donot-tee amplifier capable of connecting N peak amplifying elements will be described.
- FIG. 13 is a configuration diagram of the Dono / tee amplifier of the fourth embodiment showing the configuration of an N-way Doherty amplifier capable of changing the number of peak amplifying elements.
- the basic configuration shown in Fig. 13 is the equivalent circuit of Fig. 11A, where a divider 131 and a divider 132 with a 50 ⁇ line force are arranged on the input side, and a synthesizer 133 and a synthesizer 134 with a 50 ⁇ line force on the output side. Is placed.
- carrier amplification elements C101 and C102 are arranged in the first radiator 121, and the first-way peak amplification elements P101-1 and P102-1
- the second radiator 122 having the second force and the second-way peak amplifying elements P101-2 and P102-2 are disposed in the third radiator 123. Furthermore, when increasing the number of peak amplifying elements to N-way, the input side of a pair of 3-way peak amplifying elements is connected to distributor 132, and the output side of the peak amplifying element is connected to synthesizer 133. Connect to.
- the input side of the other set of 3-way peak amplifying elements is connected to the distributor 131, and the output side of the peak amplifying elements is connected to the combiner 134.
- the input side of the peak amplifying element is sequentially connected to the distributors 131 and 132 and the output of the peak amplifying element until the N-way peak amplifying element is reached.
- the temperature rise values of the amplification elements having the same function can be made substantially the same value, so that high efficiency and low distortion can be realized.
- the compensation power amplifier can be effectively used for a large capacity power amplifier.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Amplifiers (AREA)
Abstract
It is arranged that the temperature rise values of a plurality of doherty amplifiers combined in parallel be the same, thereby achieving a high efficiency of power amplification and an excellent distortion compensation. A carrier amplifying element heat-dissipator (106) includes, as amplifying elements having the same function, both a carrier amplifying element (C101) of a first doherty amplifier (101) and a carrier amplifying element (C102) of a second doherty amplifier (102). A peak amplifying element heat-dissipator (107) includes, as amplifying elements having the same function that is different from that of the carrier amplifying elements, both a peak amplifying element (P101) of the first doherty amplifier (101) and a peak amplifying element (P102) of the second doherty amplifier (102). A distributor (103) and a combiner (104) are used to connect the first and second doherty amplifiers (101,102) in parallel.
Description
明 細 書 Specification
ドハティ増幅器 Doherty amplifier
技術分野 Technical field
[0001] 本発明は、基地局歪補償方式の電力増幅装置などに用いられるドハティ増幅器に 関し、特に、高い電力効率で歪補償を行うために温度特性の改善を図ったドハティ 増幅器に関する。 TECHNICAL FIELD [0001] The present invention relates to a Doherty amplifier used in a base station distortion compensation type power amplifying apparatus and the like, and more particularly to a Doherty amplifier whose temperature characteristics are improved in order to perform distortion compensation with high power efficiency.
背景技術 Background art
[0002] 従来より、基地局の電力増幅装置における高効率な歪補償方式として、逆特性の 歪を作って本来の歪を相殺するプリディストーション方式と前方側に歪制御をかける フィードフォワード方式とを組み合わせた、 、わゆるクロスキャンセレーシヨン方式が 非特許文献 1などに紹介されている。また、フィードフォワード方式とドノ、ティ増幅器を 用いた基地局歪補償電力増幅装置も非特許文献 2などに紹介されている。さらに、 上記のクロスキャンセレーシヨン方式とドノ、ティ増幅器を組み合わせることによって、 基地局歪補償電力増幅装置の更なる高効率化と低歪化を実現することが可能であ る。 Conventionally, as a high-efficiency distortion compensation method in a power amplification device of a base station, a predistortion method that cancels the original distortion by creating a reverse characteristic distortion and a feedforward method that applies distortion control to the front side A so-called cross-scan selection system is introduced in Non-Patent Document 1 and so on. Non-patent document 2 also introduces a base station distortion-compensated power amplifying device using a feed-forward method and Dono and tee amplifiers. Furthermore, by combining the above-mentioned cross scan selection method with a Dono and Tee amplifier, it is possible to achieve further higher efficiency and lower distortion of the base station distortion compensation power amplifier.
[0003] 図 1は、クロスキャンセレーシヨン方式とドハティ増幅器を組み合わせた従来の基地 局歪補償電力増幅装置の構成を示すブロック図である。すなわち、一般的なクロスキ ヤンセレーシヨン方式の基地局歪補償電力増幅装置において、図 1に示すように、 2 つの主増幅器として第 1のドノ、ティ増幅器 1と第 2のドノ、ティ増幅器 2を並列的な構成 で使用することにより、基地局歪補償電力増幅装置をさらに高効率ィヒすることができ る。図 1において、第 1のドハティ増幅器 1は、その出力側の分配器 4から、合成器 9 →遅延器 8→分配器 7→分配器 3→第 1のドノ、ティ増幅器 1に至る帰還経路によるフ イードフォワード制御によって歪制御を行っている。また、第 2のドハティ増幅器 2は、 第 1のドノ、ティ増幅器 1に対して逆特性の歪を作って合成器 6へ入力することにより( つまり、プリディストーションをかけることにより)、第 1のドハティ増幅器 1から分配器 4 →遅延器 5→合成器 6へ入力される歪を相殺して ヽる。これによつて基地局歪補償電 力増幅装置の高効率化と歪補償を併せて実現することができる。
[0004] また、図 1に示すような基地局歪補償電力増幅装置に用いられるドハティ増幅器は 、 1936年に W.H.Doherty氏によって最初に考案されたものであり、例えば非特許文 献 3などに紹介されている。直交変数多重変調方式 (OFDM : Orthogonal Frequency Divisional Multiplexing)などのように多数のキャリアを用いた信号波形の場合は、ピ ーク電力対平均電力の比が高くなるので、高い電力効率を得るためにドノ、ティ増幅 器が好んで用いられている。このように、ドノ、ティ増幅器は増幅器の高効率ィ匕技術と して広く知られている。図 2は、ドハティ増幅器の基本的な構成を示すブロック図であ る。図 2に示すように、ドハティ増幅器は、常時動作しているキャリア増幅素子 21及び 第 1の λ /4位相器 22とピーク電力が高いときのみ動作するピーク増幅素子 23及び 第 2のえ /4位相器 24とによって構成されている。なお、このようなドノ、ティ増幅器は 周知の技術であるのでその動作については説明を省略する。 FIG. 1 is a block diagram showing a configuration of a conventional base station distortion compensation power amplifying apparatus that combines a cross scan selection method and a Doherty amplifier. In other words, in a general cross-cancellation-type base station distortion-compensated power amplifier, as shown in FIG. 1, two main amplifiers are a first Dono, tee amplifier 1 and a second Dono, tee amplifier 2. By using a parallel configuration, the base station distortion compensation power amplifier can be made more efficient. In FIG. 1, the first Doherty amplifier 1 has a feedback path from the output side distributor 4 to the synthesizer 9 → delay unit 8 → distributor 7 → distributor 3 → first dono, tee amplifier 1. Distortion control is performed by feed-forward control based on. In addition, the second Doherty amplifier 2 creates a distortion having an inverse characteristic with respect to the first Dono and Tee amplifier 1 and inputs the distortion to the synthesizer 6 (that is, by applying predistortion). The distortion input from Doherty amplifier 1 to distributor 4 → delayer 5 → combiner 6 is canceled out. This makes it possible to achieve both high efficiency and distortion compensation of the base station distortion compensation power amplifier. [0004] Further, the Doherty amplifier used in the base station distortion compensation power amplifying apparatus as shown in FIG. 1 was first devised by Mr. WHDoherty in 1936, and was introduced in Non-Patent Document 3, for example. ing. In the case of a signal waveform using a large number of carriers such as Orthogonal Frequency Divisional Multiplexing (OFDM), the ratio of peak power to average power is high, so that high power efficiency can be obtained. Dono and Tee amplifiers are preferred. Thus, the Dono and Tee amplifiers are widely known as high-efficiency technology for amplifiers. Fig. 2 is a block diagram showing the basic configuration of the Doherty amplifier. As shown in FIG. 2, the Doherty amplifier includes a carrier amplifying element 21 and a first λ / 4 phase shifter 22 that are always operating, and a peak amplifying element 23 and a second end / 4 that operate only when the peak power is high. And phase shifter 24. Since such a Dono and Tee amplifier is a well-known technique, description of its operation is omitted.
[0005] 図 1に示すようなクロスキャンセレーシヨン方式の歪補償回路においては、図 2に示 すような構成のドノ、ティ増幅器を二組使用している。そこで、充分な歪補償を行うため には二組 (複数)のドノ、ティ増幅器 (つまり、図 1に示す第 1のドノ、ティ増幅器 1と第 2 のドハティ増幅器 2)の歪特性を揃える必要がある。そのためには二組 (複数)のドノ、 ティ増幅器の温度上昇値をほぼ同じ値に揃える必要がある。つまり、二組 (複数)のド ハティ増幅器に温度差が生じるとクロスキャンセレーシヨンの動作が安定しないので、 二組 (複数)のドハティ増幅器 (図 1に示す第 1のドハティ増幅器 1と第 2のドハティ増 幅器 2)に温度差が生じないようにする必要がある。また、高出力なドハティ増幅器が 必要な場合においても、複数のドハティ増幅器を並列合成して使用する方法がとら れるが、この場合においても、広い電力範囲に亘つて高効率を維持するためには、こ れらの複数のドノ、ティ増幅器の温度上昇値をほぼ同じ値に揃える必要がある。つまり 、複数のドノ、ティ増幅器に温度差が生じないようにそれぞれの増幅素子を冷却する 必要がある。 [0005] The cross scan selection type distortion compensation circuit as shown in Fig. 1 uses two sets of Dono and Tee amplifiers as shown in Fig. 2. Therefore, in order to perform sufficient distortion compensation, the distortion characteristics of two sets (plurality) of Dono and Tee amplifiers (that is, the first Dono, Tee amplifier 1 and the second Doherty amplifier 2 shown in FIG. 1) are used. It is necessary to align. For this purpose, the temperature rise values of the two pairs (multiple) Donot and Tee amplifiers must be set to the same value. In other words, if a temperature difference occurs between two sets (multiple) of Doherty amplifiers, the operation of the cross scan selection will not be stable, so two sets of (multiple) Doherty amplifiers (first Doherty amplifier 1 and second It is necessary to prevent the temperature difference from occurring in the Doherty amplifier 2). Even when a high-power Doherty amplifier is required, a method of combining multiple Doherty amplifiers in parallel can be used, but in this case as well, in order to maintain high efficiency over a wide power range, Therefore, it is necessary to align the temperature rise values of these multiple Dono and Tee amplifiers to almost the same value. That is, it is necessary to cool each amplifying element so as not to cause a temperature difference between the plurality of Dono and Tee amplifiers.
[0006] 図 3は、並列構成の二組のドハティ増幅器を同一の放熱器に搭載した配置例を示 す従来技術の概念図である。すなわち、図 3は、図 1におけるクロスキャンセレーショ ン方式の歪補償回路において、第 1のドノ、ティ増幅器 1と第 2のドハティ増幅器 2を同 一の放熱器 (フィン) 31に搭載した構成を示している。図 3に示すように、第 1のドハテ
ィ増幅器 1のキャリア増幅素子 CI及びピーク増幅素子 PIと第 2のドハティ増幅器 2の キャリア増幅素子 C2及びピーク増幅素子 P2が同一の放熱器 31に搭載され、各増幅 素子の温度バランスを図って 、る。 [0006] FIG. 3 is a conceptual diagram of the prior art showing an arrangement example in which two sets of Doherty amplifiers in parallel configuration are mounted on the same radiator. In other words, Fig. 3 shows a configuration in which the first Dono, tee amplifier 1 and second Doherty amplifier 2 are mounted on the same radiator (fin) 31 in the cross-scan selection type distortion compensation circuit in Fig. 1. Is shown. As shown in Figure 3, the first Doherte Carrier amplifying element CI and peak amplifying element PI of amplifier 1 and carrier amplifying element C2 and peak amplifying element P2 of second Doherty amplifier 2 are mounted on the same radiator 31 to achieve a temperature balance of each amplifying element. The
非特許文献 1: 2002年電子情報通信学会エレクトロニクスソサイエティ大会資料『歪 み相殺形電力合成増幅器の検討』 Non-Patent Document 1: 2002 IEICE Electronics Society Conference “Distortion-Canceling Power Synthesis Amplifier”
特干文献 2: High efficiency feed— forward ampliner using RF predistortion iinenze rand the modified Doherty Amplifier", 2004 IEEE MTT— S Digest Special Reference 2: High efficiency feed— forward ampliner using RF predistortion iinenze rand the modified Doherty Amplifier ", 2004 IEEE MTT— S Digest
非特許文献 3: "A New High Efficiency Power Amplifier For Modulared Wave",Proce edingof the Institude of Radio Engineers , Vol.24, No .9.September 1936 Non-Patent Document 3: "A New High Efficiency Power Amplifier For Modulared Wave", Proceeding of the Institude of Radio Engineers, Vol.24, No.9.September 1936
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0007] し力しながら、図 3のような放熱器 31の向きで第 1のドハティ増幅器 1と第 2のドノヽテ ィ増幅器 2を同じ放熱器 31に搭載した構成だけでは、自然空冷による放熱作用によ つて第 2のドノ、ティ増幅器 2の熱が第 1のドノ、ティ増幅器 1側へ伝導するので、第 2の ドハティ増幅器 2の温度より第 1のドハティ増幅器 1の温度の方が高くなつて両者に温 度差が生じる。そこで、図 4の構成図に示すように、第 1のドノ、ティ増幅器 1と第 2のド ハティ増幅器 2を搭載した放熱器 31をファン 32で下方カゝら上方へ強制空冷する構成 とすれば、第 1のドノ、ティ増幅器 1と第 2のドノ、ティ増幅器 2の温度差は小さくなる。し かし、風の上流側にある第 2のドノ、ティ増幅器 2のキャリア増幅器 C2の熱は、風の下 流側にある第 1のドハティ増幅器 1のキャリア増幅器 C1の方へ伝導するので、常時動 作するキャリア増幅器 C1とキャリア増幅器 C2には温度差 A tが生じる。そのため、第 1のドノ、ティ増幅器 1と第 2のドハティ増幅器 2の諸特性にばらつきが生じ、両者のド ハティ増幅器の出力電力に差が生じるので、出力側の合成器 6において電力損失が 発生して電力効率を低下させる要因となる。 [0007] However, with the configuration in which the first Doherty amplifier 1 and the second Donotty amplifier 2 are mounted on the same radiator 31 in the direction of the radiator 31 as shown in FIG. Due to the heat dissipation action, the heat of the second Donoty tee amplifier 2 is conducted to the first Donoty tee amplifier 1 side, so the temperature of the first Doherty amplifier 1 is lower than the temperature of the second Doherty amplifier 2. The higher the temperature, the difference in temperature occurs. Therefore, as shown in the configuration diagram of FIG. 4, the radiator 31 on which the first Dono amplifier Tee 1 and the second Doherty amplifier 2 are mounted is forcibly air-cooled upward with a fan 32. Then, the temperature difference between the first dough / tee amplifier 1 and the second dough / tee amplifier 2 becomes small. However, the heat of the second Dono, the carrier amplifier C2 of the tee amplifier 2 on the upstream side of the wind is conducted toward the carrier amplifier C1 of the first Doherty amplifier 1 on the downstream side of the wind. A temperature difference At is generated between the carrier amplifier C1 and the carrier amplifier C2 that are always operating. As a result, the characteristics of the first Dono, Tee amplifier 1 and the second Doherty amplifier 2 vary, and there is a difference in the output power of both Doherty amplifiers. This is a factor that reduces power efficiency.
[0008] また、図 5の構成図に示すように、第 1のドノ、ティ増幅器 1と第 2のドノ、ティ増幅器 2 を搭載した放熱器 31を複数のファン (例えば、 2つのファン 32a, 32b)で横方向(つ まり、図の左方力 右方)へ強制空冷する構成にした場合は、複数のファン(2つのフ アン 32a, 32b)の風量ばらつきによって第 1のドハティ増幅器 1と第 2のドノ、ティ増幅
器 2で温度差 A tが生じる。その結果、各ドノ、ティ増幅器の出力電力に差が生じるの で、やはり出力側の合成器 6において電力損失が発生して電力効率を低下させる要 因となる。 In addition, as shown in the configuration diagram of FIG. 5, the radiator 31 having the first dough / tee amplifier 1 and the second dono / ti amplifier 2 is provided with a plurality of fans (for example, two fans). 32a, 32b) in the case of forced air cooling in the horizontal direction (that is, the left force in the figure to the right), the first Doherty amplifier is caused by the airflow variation of multiple fans (two fans 32a, 32b). 1 and second dono, tee amplification Temperature difference At occurs in vessel 2. As a result, a difference occurs between the output powers of the Dono and Tee amplifiers, which again causes a power loss in the combiner 6 on the output side, which causes a reduction in power efficiency.
[0009] また、図 6の構成図に示すように、第 1のドノ、ティ増幅器 1と第 2のドノ、ティ増幅器 2 を搭載した放熱器 31を大型のファン 33で左方カゝら右方へ強制空冷する構成にした 場合は、放熱器 31の中心部と外側で風量に差が生じる。そのため、放熱器 31の中 心部と外側で温度差が生じ、第 1のドノ、ティ増幅器 1のキャリア増幅器 C1と第 2のドノ、 ティ増幅器 2のキャリア増幅器 C2で温度差 A tが生じる。その結果、各ドハティ増幅 器の出力電力に差が生じるので、やはり出力側の合成器 6にお 、て電力損失が発生 して電力効率を低下させる要因となる。また、大型のファン 33を用いることによってド ハティ増幅器の歪補償装置全体の構成が大型になるなどの不具合も生じる。 In addition, as shown in the configuration diagram of FIG. 6, a radiator 31 equipped with the first dough / tee amplifier 1 and the second dough / tee amplifier 2 is connected to the left fan by a large fan 33. When forced air cooling is applied to the right side of the fan, there is a difference in air volume between the center and outside of the radiator 31. Therefore, a temperature difference occurs between the center and the outside of the radiator 31, and the temperature difference At between the first Dono, carrier amplifier C1 of the tee amplifier 1 and the second Dono, carrier amplifier C2 of the tee amplifier 2 is Arise. As a result, there is a difference in the output power of each Doherty amplifier, which also causes a power loss in the output-side combiner 6 and decreases the power efficiency. In addition, the use of the large fan 33 causes problems such as an increase in the size of the entire distortion compensation device of the Doherty amplifier.
[0010] また、特に図示しないが、図 3を想定して説明すると、放熱器 31において空気の流 通するラジェータ部分を除く放熱基板の厚みを厚くすれば熱抵抗が下がり、放熱基 板の部分の熱伝導率が上昇して放熱基板上の熱分布を均一にすることができる。そ の結果、第 1のドノ、ティ増幅器 1のキャリア増幅器 C1と第 2のドハティ増幅器 2のキヤリ ァ増幅器 C2の温度上昇値をほぼ同じ値にすることができる。しかし、放熱基板の部 分が厚くなることによって放熱器の総重量が増加してしまい、結果的に、ドハティ増幅 器の歪補償装置全体が重くなつてしまうなどの不具合が生じる。 [0010] Although not particularly illustrated, the explanation will be made assuming FIG. 3. If the thickness of the heat dissipation board excluding the radiator portion through which air flows in the radiator 31 is increased, the thermal resistance is lowered, and the heat dissipation board portion is reduced. As a result, the heat conductivity of the heat dissipation substrate increases and the heat distribution on the heat dissipation substrate can be made uniform. As a result, the temperature rise values of the carrier amplifier C1 of the first Donoty and tee amplifier 1 and the carrier amplifier C2 of the second Doherty amplifier 2 can be made substantially the same value. However, the thicker part of the heat dissipation substrate increases the total weight of the heatsink, resulting in problems such as the overall distortion compensation device of the Doherty amplifier becoming heavier.
[0011] 本発明の目的は、並列構成された複数のドハティ増幅器の温度上昇値がほぼ同じ になるようにして、電力のバランスと高効率な電力増幅と良好な歪補償を併せて実現 することができるドノ、ティ増幅器を提供することである。 An object of the present invention is to realize both power balance, high-efficiency power amplification, and good distortion compensation by setting the temperature rise values of a plurality of Doherty amplifiers configured in parallel to be substantially the same. It is to provide a Dono and Tee amplifier that can perform the above.
課題を解決するための手段 Means for solving the problem
[0012] 本発明のドノ、ティ増幅器は、複数のドノ、ティ増幅回路が並列に接続されたドノ、ティ 増幅器であって、同一機能を有する複数の増幅素子が同一の放熱器に搭載される 構成を採る。 [0012] The Dono and tee amplifier of the present invention is a Dono and tee amplifier in which a plurality of Dono and tee amplifier circuits are connected in parallel, and a plurality of amplifying elements having the same function are connected to the same radiator. Adopt the configuration to be installed.
発明の効果 The invention's effect
[0013] 本発明のドノ、ティ増幅器によれば、同一機能を有する複数の増幅素子の温度上昇 値をほぼ同じ値にすることができるので、複数のドハティ増幅回路の諸特性を揃える
ことができる。その結果、複数のドノ、ティ増幅回路を並列接続して構成したクロスキヤ ンセレーシヨン方式の基地局歪補償電力増幅装置などにおいて電力を高効率ィ匕す ることができると共に、良好な歪特性を実現することができる。 [0013] According to the Dono and tee amplifiers of the present invention, the temperature rise values of a plurality of amplifying elements having the same function can be made substantially the same value, so that various characteristics of a plurality of Doherty amplifying circuits are made uniform. be able to. As a result, it is possible to increase power efficiency and achieve good distortion characteristics in a cross-cancellation-type base station distortion compensation power amplifier that is configured by connecting multiple Dono and Tee amplifier circuits in parallel. can do.
[0014] 具体的な例として、常時動作している複数のキャリア増幅素子をほぼ同じ温度に維 持することができると共に、ピーク電力が大きいときに動作する複数のピーク増幅素 子もほぼ同じ温度に維持することができる。その結果、ドハティ増幅器の温度変化な どによって生じる諸特性の劣化を防ぎ、電力の高効率化と良好な歪補償を実現する ことが可能となる。 [0014] As a specific example, a plurality of carrier amplifying elements that are always operating can be maintained at substantially the same temperature, and a plurality of peak amplifying elements that operate when the peak power is large are also at substantially the same temperature. Can be maintained. As a result, it is possible to prevent deterioration of various characteristics caused by temperature change of the Doherty amplifier, and to realize high power efficiency and good distortion compensation.
図面の簡単な説明 Brief Description of Drawings
[0015] [図 1]クロスキャンセレーシヨン方式とドノ、ティ増幅器を組み合わせた従来の基地局歪 補償電力増幅装置の構成を示すブロック図 [0015] FIG. 1 is a block diagram showing a configuration of a conventional base station distortion compensation power amplifying apparatus combining a cross scan selection method and a Dono and tee amplifier.
[図 2]ドノ、ティ増幅器の基本的な構成を示すブロック図 [Figure 2] Block diagram showing the basic configuration of the Dono and Tee amplifiers
[図 3]並列構成の二組のドハティ増幅器を同一の放熱器に搭載した配置例を示す従 来技術の概念図 [Fig. 3] Conceptual diagram of conventional technology showing an example of arrangement in which two sets of Doherty amplifiers in parallel configuration are mounted on the same radiator
圆 4]ドハティ増幅器を搭載した放熱器を強制空冷した従来技術の構成図 圆 4] Configuration diagram of conventional technology with forced air cooling of a radiator with a Doherty amplifier
[図 5]ドハティ増幅器を搭載した放熱器を強制空冷した従来技術の構成図 [Fig.5] Configuration of conventional technology with forced air cooling of a radiator with a Doherty amplifier
[図 6]ドハティ増幅器を搭載した放熱器を強制空冷した従来技術の構成図 [Figure 6] Configuration diagram of conventional technology with forced air cooling of a radiator with a Doherty amplifier
[図 7]本発明の各実施の形態に適用される二組のドノ、ティ増幅器を並列合成した回 路図 FIG. 7 is a circuit diagram in which two sets of Dono and Tee amplifiers applied in parallel to each embodiment of the present invention are combined in parallel.
[図 8]図 7に示す二組のドハティ増幅器を放熱器に搭載したときの各素子の配置を示 す実施の形態 1のドハティ増幅器の構成図 [FIG. 8] Configuration diagram of the Doherty amplifier of Embodiment 1 showing the arrangement of each element when the two sets of Doherty amplifiers shown in FIG. 7 are mounted on a radiator.
[図 9]図 7に示す二組のドノ、ティ増幅器を多層基板に搭載したときの各素子の配置を 示す実施の形態 2のドハティ増幅器の構成図 FIG. 9 is a configuration diagram of the Doherty amplifier according to the second embodiment showing the arrangement of each element when the two Dono and Tee amplifiers shown in FIG. 7 are mounted on a multilayer substrate.
[図 10]実施の形態 3に適用される N— Wayドハティ増幅器の回路図 [FIG. 10] Circuit diagram of N-Way Doherty amplifier applied to the third embodiment.
[図 11A]N— Wayドハティ増幅器を用いて二組のドノ、ティ増幅器を並列合成した実施 の形態 3のドハティ増幅器の構成図における等価回路 [Fig. 11A] Equivalent circuit in configuration diagram of Doherty amplifier in Embodiment 3 in which two sets of Dono and Tee amplifiers are combined in parallel using N-Way Doherty amplifiers
[図 11B]N— Wayドノ、ティ増幅器を用いて二組のドノ、ティ増幅器を並列合成した実施 の形態 3のドハティ増幅器の構成図における効果的な回路の配置
[図 12A]N— Wayドハティ増幅器において同じ容量のピーク増幅素子を同一の放熱 器にまとめた実施の形態 3の変形例のドノ、ティ増幅器の構成図における等価回路 [図 12B]N— Wayドノ、ティ増幅器において同じ容量のピーク増幅素子を同一の放熱 器にまとめた実施の形態 3の変形例のドノ、ティ増幅器の構成図における効果的な回 路の配置 [FIG. 11B] Effective circuit arrangement in the configuration diagram of the Doherty amplifier of Embodiment 3 in which two sets of Dono and Tee amplifiers are combined in parallel using N-Way Dono and Tee amplifiers. [Fig. 12A] Equivalent circuit in the configuration diagram of the Dono and Ty amplifiers of the modified example of Embodiment 3 in which the peak amplifying elements of the same capacity are combined in the same radiator in the N-Way Doherty amplifier [Fig. 12B] N- Way Effective circuit arrangement in the Dono and Ty amplifier configuration diagram of the modified example of Embodiment 3 in which the peak amplifying elements of the same capacity are combined in the same radiator in the Dono and Ty amplifiers
[図 13]ピーク増幅素子の台数を変更することが可能な N— Wayドノ、ティ増幅器の構 成を示す実施の形態 4のドハティ増幅器の構成図 [Fig. 13] Configuration diagram of the Doherty amplifier of Embodiment 4 showing the configuration of an N-Way Dono, tee amplifier capable of changing the number of peak amplifying elements.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 〈発明の概要〉 <Outline of the Invention>
本発明のドハティ増幅器は、複数のドノ、ティ増幅器を並列合成する構成において、 同一機能を有する増幅素子同士を同一の放熱器に配置して温度上昇の均一化を図 つている。すなわち、ドハティ増幅器は、常時動作するキャリア増幅素子とピーク電力 が高いときのみ動作するピーク増幅素子とによって構成されているので、基地局歪補 償電力増幅装置などを構成する複数のドハティ増幅器の並列回路において、キヤリ ァ増幅器同士を同一の放熱器に搭載し、かつピーク増幅素子同士を他の同一の放 熱器に搭載する。これによつて、複数のドノ、ティ増幅器の温度特性を揃えることがで きるので、ドハティ増幅器の温度変化などによって生じる諸特性の劣化を防ぐことが できる。その結果、電力の高効率化と良好な歪補償を実現することが可能となり、高 品質なクロスキャンセレーシヨン方式の基地局歪補償電力増幅装置等を提供するこ とがでさる。 In the Doherty amplifier according to the present invention, in a configuration in which a plurality of Dono and Tee amplifiers are combined in parallel, amplification elements having the same function are arranged in the same radiator to achieve uniform temperature rise. That is, since the Doherty amplifier is composed of a carrier amplifying element that always operates and a peak amplifying element that operates only when the peak power is high, a plurality of Doherty amplifiers constituting a base station distortion compensation power amplifying apparatus and the like are arranged in parallel. In the circuit, carrier amplifiers are mounted on the same radiator, and peak amplifying elements are mounted on the same radiator. As a result, the temperature characteristics of a plurality of Dono and Tee amplifiers can be made uniform, so that deterioration of various characteristics caused by temperature changes of the Doherty amplifier can be prevented. As a result, it is possible to achieve high power efficiency and good distortion compensation, and it is possible to provide a high quality cross scan selection type base station distortion compensation power amplifying apparatus and the like.
[0017] 次に、本発明のドノ、ティ増幅器の具体的な実施の形態の幾つかについて詳細に説 明する。なお、以下の各実施の形態で用いる図面において、同一の構成要素は同 一の符号を付し、かつ重複する説明は可能な限り省略する。なお、以下の説明では 、クロスキャンセレーシヨン方式とドノ、ティ増幅器とを組み合わせた基地局歪補償電 力増幅装置、及び高出力なドハティ増幅器が必要な場合に複数のドハティ増幅回路 を並列合成した電力増幅装置を想定した、複数のドハティ増幅回路の並列合成にお ける実施の形態について述べることにする。 [0017] Next, some specific embodiments of the Dono / Tee amplifier of the present invention will be described in detail. Note that in the drawings used in the following embodiments, the same components are denoted by the same reference numerals, and redundant description will be omitted as much as possible. In the following explanation, a base station distortion compensation power amplifier combining a cross scan selection method with a Dono and Tee amplifier, and a plurality of Doherty amplifier circuits are combined in parallel when a high output Doherty amplifier is required. An embodiment in parallel synthesis of a plurality of Doherty amplifier circuits assuming the above-described power amplifying device will be described.
[0018] 〈実施の形態 1〉
図 7は、本発明の各実施の形態に適用される二組のドノ、ティ増幅回路を並列合成 した回路図である。図 7に示すように、二糸且のドハティ増幅器は、第 1のドハティ増幅 器 101と第 2のドハティ増幅器 102が、入力側の分配器 103及び出力側の合成器 10 4によって並列に接続された構成となっている。第 1のドノ、ティ増幅器 101は、常時動 作するキャリア増幅素子 C101及び第 1のえ /4位相器 RC101と、ピーク電力が高い ときのみ動作するピーク増幅素子 P101及び第 2の λ /4位相器 RP101との並列回 路によって構成されている。また、第 2のドノ、ティ増幅器 102は、常時動作するキヤリ ァ増幅素子 C102及び第 1のえ /4位相器 RC102と、ピーク電力が高いときのみ動作 するピーク増幅素子 P102及び第 2の λ /4位相器 RP102との並列回路によって構 成されている。なお、このような構成のドハティ増幅器の動作につては周知の技術で あるのでその説明は省略する。 <Embodiment 1> FIG. 7 is a circuit diagram in which two sets of Dono and tee amplifier circuits applied to each embodiment of the present invention are combined in parallel. As shown in FIG. 7, in the double-threaded Doherty amplifier, a first Doherty amplifier 101 and a second Doherty amplifier 102 are connected in parallel by an input-side distributor 103 and an output-side combiner 104. It becomes the composition. The first Donotty amplifier 101 includes a carrier amplifying element C101 and a first 4th phase shifter RC101 that operate constantly, a peak amplifying element P101 that operates only when the peak power is high, and a second λ / 4. It consists of a parallel circuit with phaser RP101. In addition, the second Dotno and T-amplifiers 102 are a carrier amplifying element C102 and a first quarter-phase shifter RC102 that are always operated, a peak amplifying element P102 that operates only when the peak power is high, and a second λ. It consists of a parallel circuit with the / 4 phase shifter RP102. Since the operation of the Doherty amplifier having such a configuration is a well-known technique, a description thereof will be omitted.
[0019] 図 8は、図 7に示す二組のドハティ増幅器を放熱器に搭載したときの各素子の配置 を示す実施の形態 1のドハティ増幅器の構成図である。図 8に示すように、キャリア増 幅素子用放熱器 106には、第 1のドハティ増幅器 101のキャリア増幅素子 C101と第 2のドノ、ティ増幅器 102のキャリア増幅素子 C102が搭載されている。また、ピーク増 幅素子用放熱器 107には、第 1のドハティ増幅器 101のピーク増幅素子 P101と第 2 のドノ、ティ増幅器 102のピーク増幅素子 P102が搭載されている。つまり、キャリア増 幅素子用放熱器 106及びピーク増幅素子用放熱器 107には、それぞれ同一機能を 有する増幅素子が搭載されて!ヽる。 FIG. 8 is a configuration diagram of the Doherty amplifier according to the first embodiment showing the arrangement of each element when the two sets of Doherty amplifiers shown in FIG. 7 are mounted on a radiator. As shown in FIG. 8, the carrier amplifying element radiator 106 is equipped with a carrier amplifying element C 101 of the first Doherty amplifier 101 and a carrier amplifying element C 102 of the second Donoty amplifier 102. In addition, the peak amplifying element radiator 107 is equipped with a peak amplifying element P101 of the first Doherty amplifier 101 and a second Donoty, a peak amplifying element P102 of the tee amplifier 102. That is, the carrier amplifying element radiator 106 and the peak amplifying element radiator 107 are each equipped with an amplifying element having the same function.
[0020] そして、図 7の回路構成で示したように、第 1のドノ、ティ増幅器 101は第 1のえ /4位 相器 RC101と第 2のえ /4位相器 RP101を図 8のように回路接続し、第 2のドハティ 増幅器 102は第 1のえ /4位相器 RC102と第 2のえ /4位相器 RP102を図 8のように 回路接続し、さらに、入力側の分配器 103及び出力側の合成器 104によって第 1の ドハティ増幅器 101と第 2のドノ、ティ増幅器 102とを並列に接続する。 [0020] Then, as shown in the circuit configuration of FIG. 7, the first Dono, tee amplifier 101 includes the first end / 4-phase shifter RC101 and the second end / 4-phase shifter RP101 in FIG. In the second Doherty amplifier 102, the first end / 4-phase shifter RC102 and the second end / 4-phase shifter RP102 are connected as shown in FIG. The first Doherty amplifier 101 and the second Donotty amplifier 102 are connected in parallel by the combiner 104 on the output side.
[0021] 図 8のような放熱器上の素子配置の構成において、キャリア増幅素子 C101とピー ク増幅素子 P101で第 1のドハティ増幅器 101を構成し、キャリア増幅素子 C102とピ ーク増幅素子 P102で第 2のドハティ増幅器 102を構成する。そして、これら 2台(複 数台)のドノ、ティ増幅器を近接して構成することによってドハティ増幅器の並列合成
を実現する。 In the configuration of the element arrangement on the radiator as shown in FIG. 8, the carrier amplification element C101 and the peak amplification element P101 constitute the first Doherty amplifier 101, and the carrier amplification element C102 and the peak amplification element P102 Thus, the second Doherty amplifier 102 is configured. Then, by combining these two (multiple) Dono and Tee amplifiers in close proximity, the Doherty amplifiers are combined in parallel. To realize.
[0022] これによつて、同一機能を有する第 1のドハティ増幅器 101のキャリア増幅素子 C1 01と第 2のドハティ増幅器 102のキャリア増幅素子 C102は、同一の放熱器 (つまり、 キャリア増幅器用放熱器 106)に搭載されているので、ほぼ同じ温度上昇値に維持 することができる。また、他の同一機能を有する第 1のドノ、ティ増幅器 101のピーク増 幅素子 P101と第 2のドハティ増幅器 102のピーク増幅素子 P102は、同一の放熱器 (つまり、ピーク増幅素子用放熱器 107)に搭載されているので、ほぼ同じ温度上昇 値に維持することができる。この結果、第 1のドハティ増幅器 101と第 2のドノ、ティ増幅 器 102を同じ特性に揃えることができるので、クロスキャンセレーシヨン方式とドノ、ティ 増幅器とを組み合わせた基地局歪補償電力増幅装置に適用しても、電力増幅の高 効率化と良好な歪特性を実現することができる。 Accordingly, the carrier amplifying element C101 of the first Doherty amplifier 101 having the same function and the carrier amplifying element C102 of the second Doherty amplifier 102 are the same radiator (that is, the radiator for the carrier amplifier). It is possible to maintain the same temperature rise value. In addition, the peak amplifying element P101 of the first Donotty amplifier 101 having the same function and the peak amplifying element P102 of the second Doherty amplifier 102 are the same radiator (that is, the radiator for the peak amplifying element). 107), it is possible to maintain the same temperature rise value. As a result, the first Doherty amplifier 101 and the second Dono and tee amplifier 102 can be made to have the same characteristics, so that the base station distortion compensation power combining the cross scan selection method and the Dono and tee amplifiers. Even when applied to an amplifying device, it is possible to achieve high efficiency of power amplification and good distortion characteristics.
[0023] すなわち、一つの放熱器上に複数のキャリア増幅素子を配置し、他の放熱器上に 複数のピーク増幅素子を配置するというように、複数のドノ、ティ増幅器のうちで同じ機 能を有する増幅素子同士を組み合わせて同一の放熱器に搭載し、回路接続によつ て複数台のドノ、ティ増幅器を並列に接続することにより、複数のドノ、ティ増幅器の温 度特性を揃えることができる。その結果、電力増幅を高効率に維持しながら良好な歪 補償を行うことができる。 That is, a plurality of carrier amplifiers are arranged on one radiator, and a plurality of peak amplifying elements are arranged on another radiator. Temperature characteristics of multiple dono and tee amplifiers by connecting multiple dono and tee amplifiers in parallel by circuit connection. Can be aligned. As a result, good distortion compensation can be performed while maintaining high power amplification efficiency.
[0024] なお、図 8においては自然空冷を想定しているのでファンが備えられていないが、 キャリア増幅素子用放熱器 106の下部及びピーク増幅素子用放熱器 107の下部に それぞれファンを備えて強制空冷を行えば、第 1のドノ、ティ増幅器 101のキャリア増 幅素子 C101及び第 2のドハティ増幅器 102のキャリア増幅素子 C102の温度上昇 値をさらに均一に揃えることができると共に、第 1のドノ、ティ増幅器 101のピーク増幅 素子 P101及び第 2のドノ、ティ増幅器 102のピーク増幅素子 P102の温度上昇値もさ らに均一に揃えることができる。 In FIG. 8, since natural air cooling is assumed, a fan is not provided. However, a fan is provided below the carrier amplifying element radiator 106 and below the peak amplifying element radiator 107, respectively. If forced air cooling is performed, the temperature rise values of the carrier amplifier C101 of the first Dono, the tee amplifier 101 and the carrier amplifier C102 of the second Doherty amplifier 102 can be made more uniform, and the first The temperature rise values of the peak amplifying element P101 of the Dono and tee amplifier 101 and the peak amplifying element P102 of the second Dono and tee amplifier 102 can be made more uniform.
[0025] また、実施の形態 1の変形例として、同一ウェハー上で形成されていてパッケージ 化された複数の増幅素子、例えば、 2つの増幅素子を交互に動作させて増幅を行う プッシュプル型増幅素子を用いたドハティ増幅器の構成にすることもできる。つまり、 図 8において、一方の信号で動作するトランジスタ増幅器 (例えば、 C101、 C102)を
キャリア増幅器用放熱器 106に搭載し、他方の信号で動作するトランジスタ増幅器( 例えば、 P101、 P102)をピーク増幅素子用放熱器 107に搭載すれば、同じタイミン グで動作する側の複数のトランジスタ増幅器の温度上昇値をほぼ同じ値にすることが できるので、温度変化に関わらずプッシュプル増幅器を安定的に動作させることがで きる。 [0025] As a modification of the first embodiment, a plurality of amplifying elements formed on the same wafer and packaged, for example, two amplifying elements are operated alternately to perform amplification. A configuration of a Doherty amplifier using an element can also be used. In other words, in FIG. 8, transistor amplifiers (for example, C101 and C102) that operate with one signal are connected. If transistor amplifiers (for example, P101 and P102) that are mounted on the carrier amplifier radiator 106 and operate with the other signal are mounted on the peak amplifier radiator 107, multiple transistor amplifiers on the side that operates at the same timing Since the temperature rise value can be made substantially the same value, the push-pull amplifier can be stably operated regardless of the temperature change.
[0026] このように構成することにより、各トランジスタ増幅器 (または、各ドハティ増幅器)の 温度特性を揃えるだけでなぐ各トランジスタ増幅器 (各ドハティ増幅器)を構成する デバイスの固有のバラツキや経年変化を揃えることができるので、各トランジスタ増幅 器 (各ドハティ増幅器)で合成された出力側の電力損失を防ぐことができる。その結果 、複数のドノ、ティ増幅器で構成された電力増幅装置などをメンテナンスフリーで運用 することが可能となる。 [0026] By configuring in this way, it is possible to align the inherent variations and aging of the devices that constitute each transistor amplifier (each Doherty amplifier) just by aligning the temperature characteristics of each transistor amplifier (or each Doherty amplifier). Therefore, power loss on the output side synthesized by each transistor amplifier (each Doherty amplifier) can be prevented. As a result, it becomes possible to operate a power amplifying apparatus composed of a plurality of Dono and Tee amplifiers without maintenance.
[0027] また、一般的には、複数台のドハティ増幅器を製作する場合には、デバイスに固有 なバラツキを補正するために、製作時において、ドハティ増幅器に使用される分配器 や合成器を一台ずつ微調整する必要があるが、本実施の形態による増幅素子の組 み合わせ構成にすることにより、分配器や合成器の調整工数を減らすことが可能とな る。 [0027] In general, when a plurality of Doherty amplifiers are manufactured, a distributor and a combiner used for the Doherty amplifiers are integrated at the time of manufacturing in order to correct variations inherent in the device. Although it is necessary to make fine adjustments for each table, the number of adjustment steps for the distributor and the combiner can be reduced by using the combination configuration of the amplifying elements according to this embodiment.
[0028] さらに、実施の形態 1の他の変形例として、出力容量の異なるプッシュプル型増幅 素子を組み合わせて用いる場合は、同一電力のプッシュプル型増幅素子同士を同 一の放熱器に搭載することもできる。例えば、図 8において、 10w型のプッシュプル 型増幅素子 (例えば、 C101、 C102)をキャリア増幅器用放熱器 106に搭載し、 20w 型のプッシュプル型増幅素子(例えば、 P101、 P102)をピーク増幅素子用放熱器 1 07に搭載すれば、同じ電力容量で動作する複数のプッシュプル型増幅素子の温度 上昇値をほぼ同じ値にすることができるので、温度変化に関わらずプッシュプル増幅 器を安定的に動作させることができる。 [0028] Further, as another modification of the first embodiment, when push-pull type amplifying elements having different output capacities are used in combination, push-pull type amplifying elements having the same power are mounted on the same radiator. You can also. For example, in Fig. 8, a 10w push-pull amplifier (eg, C101, C102) is mounted on the carrier amplifier radiator 106, and a 20w push-pull amplifier (eg, P101, P102) is peak amplified. If installed in the element heatsink 107, the temperature rise value of multiple push-pull amplifiers operating with the same power capacity can be made to be almost the same value, so that the push-pull amplifier is stable regardless of temperature changes. Can be operated automatically.
[0029] また、このようにして出力容量の異なるプッシュプル型増幅素子を用いて回路を構 成する場合、同一の電力容量のプッシュプル型増幅素子を同一の放熱器に構成す ることにより、独立した出力容量の異なる増幅素子を用いてプッシュプル増幅回路を 構成する場合よりもコストを削減することができる。
[0030] 〈実施の形態 2〉 [0029] When a circuit is configured using push-pull amplifiers having different output capacities in this way, by configuring push-pull amplifiers having the same power capacity in the same radiator, The cost can be reduced as compared with the case where the push-pull amplifier circuit is configured by using independent amplifying elements having different output capacities. <Embodiment 2>
実施の形態 2では多層基板に複数(二組)のドノ、ティ増幅器を配置して並列合成す る場合について説明する。図 9は、図 7に示す二組のドノ、ティ増幅器を多層基板に搭 載したときの各素子の配置を示す実施の形態 2のドノ、ティ増幅器の構成図である。 In the second embodiment, a case will be described in which a plurality (two sets) of Dono and Tee amplifiers are arranged on a multilayer substrate and synthesized in parallel. FIG. 9 is a configuration diagram of the Dono / Tee amplifier according to the second embodiment showing the arrangement of each element when the two sets of Dono / Tee amplifiers shown in FIG. 7 are mounted on a multilayer substrate.
[0031] 図 9において、左図の第 1の基板 111には、第 1のドハティ増幅器 101のキャリア増 幅素子 C101とピーク増幅素子 P101が第 1の λ /4位相器及び第 2の λ /4位相器と 共にパター-ングされている力 キャリア増幅素子 C101側のパターンとピーク増幅 素子 P101側のパターンは、第 1の基板 111の図の上方側に偏ってやや隔てた配置 でパター-ングされて 、る。 In FIG. 9, on the first substrate 111 in the left diagram, the carrier amplifier C101 and the peak amplifier P101 of the first Doherty amplifier 101 are connected to the first λ / 4 phase shifter and the second λ / Force patterned with 4 phase shifter Carrier amplification element C101 side pattern and peak amplification element P101 side pattern is placed in a pattern that is slightly offset upward from the first substrate 111 in the figure. It has been.
[0032] また、中図の第 2の基板 112には、第 2のドノ、ティ増幅器 102のキャリア増幅素子 C 102とピーク増幅素子 P102が第 1の λ /4位相器及び第 2の λ /4位相器と共にパタ 一ユングされている力 キャリア増幅素子 C102側のパターンとピーク増幅素子 P102 側のパターンは、第 2の基板 112の図の下方側に偏ってやや隔てた配置でパター- ングされている。つまり、第 2のドハティ増幅器 102のキャリア増幅素子 C102及びピ ーク増幅素子 P102は、第 1の基板 111と第 2の基板 112を重ねたときに、第 1のドノ、 ティ増幅器 101のキャリア増幅素子 C101及びピーク増幅素子 P101と上下の位置で 重ならな 、ようにずらしてパターユングされて 、る。 [0032] Further, on the second substrate 112 in the middle figure, the carrier amplifier C 102 and the peak amplifier P102 of the second Dono, tee amplifier 102 are provided with the first λ / 4 phase shifter and the second λ / 4 Force phased with phase shifter Carrier amplification element The pattern on the C102 side and the pattern on the peak amplification element P102 side are patterned in a slightly spaced manner on the lower side of the second substrate 112 in the figure. Has been. That is, the carrier amplifying element C102 and the peak amplifying element P102 of the second Doherty amplifier 102 are the carrier of the first Donotty amplifier 101 when the first substrate 111 and the second substrate 112 are overlapped. Amplifying element C101 and peak amplifying element P101 are patterned in such a way that they do not overlap at the upper and lower positions.
[0033] このような第 1の基板 111と第 2の基板 112のパターユングにより、第 1の基板 111と 第 2の基板 112を重ねて多層基板 113にしたときには、図 9の右図に示すように、第 1 のドハティ増幅器 101のキャリア増幅素子 C101と第 2のドハティ増幅器 102のキヤリ ァ増幅素子 C102が近接して配置され、かつ、第 1のドノ、ティ増幅器 101のピーク増 幅素子 P101と第 2のドハティ増幅器 102のピーク増幅素子 P102が近接して配置さ れた構成となる。つまり、同一機能を有する増幅素子同士が近接して配置された構 成となる。 When the first substrate 111 and the second substrate 112 are overlapped to form the multilayer substrate 113 by such patterning of the first substrate 111 and the second substrate 112, it is shown in the right diagram of FIG. Thus, the carrier amplification element C101 of the first Doherty amplifier 101 and the carrier amplification element C102 of the second Doherty amplifier 102 are arranged close to each other, and the peak amplification element of the first Doherty amplifier 101 is P101 and the peak amplifying element P102 of the second Doherty amplifier 102 are arranged close to each other. That is, the configuration is such that amplification elements having the same function are arranged close to each other.
[0034] すなわち、第 1の基板 111と第 2の基板 112にそれぞれパターユングされた二組の ドハティ増幅器 101, 102を多層基板 113に積層した場合は、同一の機能を有する 増幅素子同士が近接して配置された構成になるので、同一の機能を有する増幅素 子をほぼ同じ温度に揃えることができる。これによつて、複数のドハティ増幅器で並列
構成した基地局歪補償電力増幅装置の電力増幅を高効率に維持しながら良好な歪 補償を実現することができる。 That is, when two sets of Doherty amplifiers 101 and 102 patterned on the first substrate 111 and the second substrate 112 are stacked on the multilayer substrate 113, amplification elements having the same function are close to each other. Therefore, amplifying elements having the same function can be arranged at substantially the same temperature. This allows multiple Doherty amplifiers in parallel Good distortion compensation can be realized while maintaining high power amplification of the constructed base station distortion compensation power amplifier.
[0035] 〈実施の形態 3〉 <Embodiment 3>
実施の形態 3ではピーク増幅素子が多段接続された N— Wayドハティ増幅器の構 成について説明する。図 10は、実施の形態 3に適用される N— Wayドノ、ティ増幅器 の回路図である。図 10に示すように、 1個のキャリア増幅素子 C101に対して N個の ピーク増幅素子 P101— 1〜P101— Nが並列に接続されて N - Wayドハティ増幅器 を構成している。 In the third embodiment, the configuration of an N-way Doherty amplifier in which peak amplification elements are connected in multiple stages will be described. FIG. 10 is a circuit diagram of an N-Way Dono and Tee amplifier applied to the third embodiment. As shown in FIG. 10, N peak amplifying elements P101-1 to P101-N are connected in parallel to one carrier amplifying element C101 to constitute an N-Way Doherty amplifier.
[0036] 図 10のようにピーク増幅素子が多段接続された構成の N— Wayドノ、ティ増幅器は 、効率バックオフを大きくとっても効率の低下が少ない増幅器として知られている。す なわち、 N— Wayドノ、ティ増幅器は、 1個のピーク増幅素子の出力最大振幅レベルと 飽和電力レベルの差で表わされるバックオフを大きくとることができるので(つまり、 1 個のピーク増幅素子の出力最大振幅レベルを飽和電力レベルぎりぎりまで大きくす ることができるので)、ピーク電力が増加するにしたがってピーク増幅素子の並列接 続の個数を増カロしたときの電力効率を常に最大の状態を維持することが可能となる。 [0036] An N-Way Dono and Tee amplifier having a configuration in which peak amplifying elements are connected in multiple stages as shown in FIG. 10 is known as an amplifier with little decrease in efficiency even when the efficiency back-off is large. In other words, the N-Way Dono, tee amplifier can take a large back-off expressed by the difference between the maximum output amplitude level of one peak amplifying element and the saturation power level (that is, one peak Since the maximum output amplitude level of the amplifying element can be increased to the limit of the saturation power level), the power efficiency when the number of parallel connections of the peak amplifying element is increased as the peak power increases is always maximized. It becomes possible to maintain the state.
[0037] 図 11は、 N— Wayドハティ増幅器を用いて二組のドハティ増幅器を並列合成した 実施の形態 3のドハティ増幅器の構成図であり、図 11Aは等価回路、図 11Bは効果 的な回路の配置を示している。すなわち、図 11は、ピーク増幅素子を 2個並列にした ときの 2— Wayドハティ増幅器を二組並列合成した場合のドハティ増幅器の構成を示 している。キャリア増幅素子 C101と 2個のピーク増幅素子 PlOl— l, P101— 2がー 組の 2— Wayドハティ増幅器であり、キャリア増幅素子 C102と 2個のピーク増幅素子 P102- 1, P102— 2がもう一組の 2— Wayドハティ増幅器である。 FIG. 11 is a configuration diagram of the Doherty amplifier according to Embodiment 3 in which two sets of Doherty amplifiers are combined in parallel using N-Way Doherty amplifiers. FIG. 11A is an equivalent circuit, and FIG. 11B is an effective circuit. Shows the arrangement. In other words, Fig. 11 shows the configuration of a Doherty amplifier when two sets of two-way Doherty amplifiers are combined in parallel when two peak amplifying elements are arranged in parallel. The carrier amplifying element C101 and the two peak amplifying elements PlOl-l, P101-2 are a two-way Doherty amplifier, and the carrier amplifying element C102 and the two peak amplifying elements P102-1, P102-2 are already present. A pair of 2-way Doherty amplifiers.
[0038] 図 11Aの等価回路に示すように、二組の 2— Wayドハティ増幅器において、一組の 2—Wayドハティ増幅器のキャリア増幅素子 C101と他の一組の 2—Wayドハティ増 幅器のキャリア増幅素子 C102は、同一機能を有するので第 1の放熱器 121に配置 されている。さらに、一組の 2— Wayドハティ増幅器の 1— Way目のピーク増幅素子 P 101— 1と他の一組の 2— Wayドハティ増幅器の 1— Way目のピーク増幅素子 P102 —1は同一機能を有するので第 2の放熱器 122に配置し、かつ、一組の 2— Wayドノ、
ティ増幅器の 2—Way目のピーク増幅素子 P101— 2と他の一組の 2—Wayドハティ 増幅器の 2—Way目のピーク増幅素子 P102— 2も同一機能を有するので第 3の放 熱器 123に配置されている。つまり、同一 Wayのピーク増幅素子は同一の放熱器に 搭載されている。これによつて、実施の形態 1で述べた場合と同様に、同一機能を有 するキャリア増幅素子同士をほぼ同じ温度にし、他の同一機能を有するピーク増幅 素子同士をほぼ同じ温度にすることができる。 [0038] As shown in the equivalent circuit of FIG. 11A, in two sets of two-way Doherty amplifiers, a pair of two-way Doherty amplifiers C101 and another set of two-way Doherty amplifiers Since the carrier amplifying element C102 has the same function, it is arranged in the first radiator 121. In addition, the pair of 2-way Doherty amplifiers 1-way peak amplifying element P 101-1 and the other pair of 2-way doherty amplifiers 1-way peak amplifying element P102-1 have the same function. Because it has a second radiator 122 and a set of 2-way dono, The 2-way peak amplifying element P101-2 of the tee amplifier and the other pair of 2-way Doherty amplifier 2-way peak amplifying element P102-2 have the same function, so the third radiator 123 Are arranged. In other words, peak amplifying elements of the same way are mounted on the same heatsink. As a result, similarly to the case described in the first embodiment, carrier amplification elements having the same function can be set to substantially the same temperature, and other peak amplification elements having the same function can be set to substantially the same temperature. it can.
[0039] し力しながら、図 11Aのような配置では、常時動作するキャリア増幅素子 C101とキ ャリア増幅素子 C102が、冷却風の上流側(図の下方側)にあるピーク増幅素子 P10 1— 1、 P102— 1、 P101— 2、 P102— 2からの熱の影響を受けるおそれがある。 However, in the arrangement as shown in FIG. 11A, the carrier amplifying element C101 and the carrier amplifying element C102 that are always operating are arranged at the peak amplifying element P10 1− on the upstream side (lower side in the figure) of the cooling air. 1, P102-1, P101-2, P102-2 may be affected by heat.
[0040] そこで、図 11Bの効果的な回路の配置図に示すように、常時動作していて多くの熱 を発生させるキャリア増幅素子 C101, C102を搭載した放熱器 121を中心部に配置 して、その両側に、ピーク増幅素子 P101— 1、 P102— 1を搭載した放熱器 122と、 ピーク増幅素子 P101— 2、 P102— 2を搭載した放熱器 123を配置する。このような 配置構成にすることによって、 N— Wayドノ、ティ増幅器においても各増幅素子の温 度特性をさらに正確に揃えることができる。 Therefore, as shown in the layout diagram of the effective circuit in FIG. 11B, the radiator 121 having the carrier amplifying elements C101 and C102 that are always operating and generate a large amount of heat is disposed in the center. On both sides, a radiator 122 equipped with peak amplifying elements P101-1, P102-1, and a radiator 123 equipped with peak amplifying elements P101-2, P102-2 are arranged. With such an arrangement, the temperature characteristics of each amplifying element can be more accurately aligned even in N-Way Dono and Ty amplifiers.
[0041] 図 12は、 N— Wayドハティ増幅器において同じ容量のピーク増幅素子を同一の放 熱器にまとめた実施の形態 3の変形例のドノ、ティ増幅器の構成図であり、図 12Aは 等価回路、図 12Bは効果的な回路の配置を示している。すなわち、図 12Aの等価回 路が図 11Aの等価回路と異なるところは、同じ容量のピーク増幅素子 P101— 1、 P1 01— 2を同一の放熱器 122にまとめ、他の同じ容量のピーク増幅素子 P102—l、 P 102— 2を同一の放熱器 123にまとめたところである。このようにすることによって、同 じ容量同士のピーク増幅素子は熱の影響を受け難いので各ピーク増幅素子の温度 をさらに均一にすることができる。 [0041] FIG. 12 is a configuration diagram of a Dono / Tee amplifier according to a modification of Embodiment 3 in which peak amplifying elements having the same capacity are combined in the same heat radiator in an N-Way Doherty amplifier, and FIG. An equivalent circuit, Figure 12B, shows an effective circuit arrangement. That is, the equivalent circuit of FIG. 12A differs from the equivalent circuit of FIG. 11A in that the peak amplifying elements P101-1 and P1 01-2 having the same capacity are combined into the same radiator 122 and other peak amplifying elements having the same capacity. P102-1 and P102-2 are just put together in the same radiator 123. By doing so, the peak amplifying elements having the same capacity are not easily affected by heat, so that the temperature of each peak amplifying element can be made more uniform.
[0042] また、図 12Bの効果的な回路の配置図に示すように、常時動作していて多くの熱を 発生させるキャリア増幅素子 C101, C102を搭載した放熱器 121を中心部に配置し て、その両側に、同じ容量のピーク増幅素子 P101— 1、 P101— 2を搭載した放熱器 122と、他の同じ容量のピーク増幅素子 P102— 1、 P102— 2を搭載した放熱器 123 をそれぞれ配置する。このような配置構成にすることによって、 N— Wayドノ、ティ増幅
器において各増幅素子の温度特性をさらに正確に揃えることができる。 Further, as shown in the layout diagram of the effective circuit in FIG. 12B, the radiator 121 having the carrier amplifying elements C101 and C102 that are always operating and generate a large amount of heat is disposed at the center. On both sides, a heatsink 122 equipped with peak amplifying elements P101-1 and P101-2 with the same capacity and a heatsink 123 equipped with other peak amplifying elements P102-1 and P102-2 with the same capacity are arranged. To do. By adopting such an arrangement, N-Way Dono, tee amplification Thus, the temperature characteristics of each amplifying element can be more accurately aligned.
[0043] また、図 12に示すように、複数台の N— Wayドハティ増幅器において、同じ容量の ピーク増幅素子を同じ放熱器上に配置した構成することにより、放熱器における温度 分布が単純ィ匕されるので N— Wayドハティ増幅器の回路設計を簡略ィ匕することがで きる。さらに、ドノ、ティ増幅器の歪特性は常時動作しているキャリア増幅素子が支配 的となるため、キャリア増幅素子を中心部に配置することによって、各キャリア増幅素 子の温度上昇値が均一になるため、基地局歪補償電力増幅装置などに用いればよ り良好な歪特性を実現することができる。 [0043] Also, as shown in FIG. 12, in a plurality of N-Way Doherty amplifiers, the peak amplifying elements having the same capacity are arranged on the same radiator, so that the temperature distribution in the radiator is simplified. Therefore, the circuit design of the N-Way Doherty amplifier can be simplified. Furthermore, since the distortion characteristics of Dono and Tee amplifiers are dominated by the carrier amplifying elements that are operating at all times, by placing the carrier amplifying elements in the center, the temperature rise value of each carrier amplifying element is made uniform. Therefore, better distortion characteristics can be realized when used in a base station distortion compensation power amplifier.
[0044] 〈実施の形態 4〉 <Embodiment 4>
上記の実施の形態 3ではピーク増幅素子を 2個用いた 2— Wayドノ、ティ増幅器の構 成例について説明したが、実際の基地局歪補償電力増幅装置などの回路では N個 のピーク増幅素子を用いた N— Wayドハティ増幅器で構成される場合が多 ヽ。その ような場合には、必要に応じてピーク増幅素子を数増しできるような構成にすることが 望ま 、。そこで実施の形態 4では N個のピーク増幅素子を接続できる N— Wayドノ、 ティ増幅器の構成について説明する。 In Embodiment 3 above, a configuration example of a 2-way Dono / tee amplifier using two peak amplifying elements has been described. However, in an actual circuit such as a base station distortion compensation power amplifying apparatus, N peak amplifying elements Often composed of N-Way Doherty amplifiers using elements. In such a case, it is desirable to have a configuration in which the number of peak amplifying elements can be increased as necessary. In the fourth embodiment, therefore, the configuration of an N-way Donot-tee amplifier capable of connecting N peak amplifying elements will be described.
[0045] 図 13は、ピーク増幅素子の台数を変更することが可能な N— Wayドハティ増幅器 の構成を示す実施の形態 4のドノ、ティ増幅器の構成図である。図 13に示す基本構 成は図 11Aの等価回路であり、入力側に 50 Ω線路力もなる分配器 131及び分配器 132が配置され、出力側に 50 Ω線路力もなる合成器 133及び合成器 134が配置さ れている。 FIG. 13 is a configuration diagram of the Dono / tee amplifier of the fourth embodiment showing the configuration of an N-way Doherty amplifier capable of changing the number of peak amplifying elements. The basic configuration shown in Fig. 13 is the equivalent circuit of Fig. 11A, where a divider 131 and a divider 132 with a 50 Ω line force are arranged on the input side, and a synthesizer 133 and a synthesizer 134 with a 50 Ω line force on the output side. Is placed.
[0046] 図 13の構成図では、図 11の構成と同様に、キャリア増幅素子 C101, C102が第 1 の放熱器 121に配置され、 1— Way目のピーク増幅素子 P101— 1, P102— 1力第 2 の放熱器 122に配置され、かつ、 2—Way目のピーク増幅素子 P101— 2, P102— 2が第 3の放熱器 123に配置されている。さらに、ピーク増幅素子を N— Wayまで数 増しする場合は、一組の 3— Way目のピーク増幅素子の入力側を分配器 132に接 続し、そのピーク増幅素子の出力側を合成器 133に接続する。さらに、他の一組の 3 —Way目のピーク増幅素子の入力側を分配器 131に接続し、そのピーク増幅素子 の出力側を合成器 134に接続する。
[0047] このようにして、二組のドハティ増幅器について、 N— Way目のピーク増幅素子に 至るまで、ピーク増幅素子の入力側を分配器 131, 132に順次接続すると共にピー ク増幅素子の出力側を合成器 133, 134に順次接続して行けば、ピーク増幅素子が N個並列に構成された N— Wayドハティ増幅器を構成することができる。 In the configuration diagram of FIG. 13, similarly to the configuration of FIG. 11, carrier amplification elements C101 and C102 are arranged in the first radiator 121, and the first-way peak amplification elements P101-1 and P102-1 The second radiator 122 having the second force and the second-way peak amplifying elements P101-2 and P102-2 are disposed in the third radiator 123. Furthermore, when increasing the number of peak amplifying elements to N-way, the input side of a pair of 3-way peak amplifying elements is connected to distributor 132, and the output side of the peak amplifying element is connected to synthesizer 133. Connect to. Further, the input side of the other set of 3-way peak amplifying elements is connected to the distributor 131, and the output side of the peak amplifying elements is connected to the combiner 134. [0047] In this way, with respect to the two sets of Doherty amplifiers, the input side of the peak amplifying element is sequentially connected to the distributors 131 and 132 and the output of the peak amplifying element until the N-way peak amplifying element is reached. By sequentially connecting the sides to the synthesizers 133 and 134, an N-Way Doherty amplifier having N peak amplifying elements arranged in parallel can be constructed.
[0048] すなわち、実施の形態 4においては、複数のピーク増幅素子を接続するための 50 That is, in the fourth embodiment, 50 for connecting a plurality of peak amplifying elements.
Ω線路力もなる分配器 131, 132及び合成器 133, 134をあら力じめ用意し、必要に 応じてピーク増幅素子を順次に分配器 131, 132と合成器 133, 134に接続して行 けばよい。このような構成にすることにより、 N— Wayドハティ増幅器のピーク増幅素 子の段数を容易に変更することが可能となる。 Prepare distributors 131, 132 and combiners 133, 134 that also have Ω line power, and connect peak amplifying elements to distributors 131, 132 and combiners 133, 134 in sequence as necessary. That's fine. With this configuration, it is possible to easily change the number of peak amplification elements of the N-Way Doherty amplifier.
産業上の利用可能性 Industrial applicability
[0049] 本発明によれば、ドハティ増幅器を並列合成した場合に同じ機能を有する増幅素 子の温度上昇値をほぼ同じ値にして高効率化と低歪化を実現することができるので 、歪補償電力増幅装置ゃ大容量の電力増幅装置などに有効に利用することができ る。
[0049] According to the present invention, when Doherty amplifiers are combined in parallel, the temperature rise values of the amplification elements having the same function can be made substantially the same value, so that high efficiency and low distortion can be realized. The compensation power amplifier can be effectively used for a large capacity power amplifier.
Claims
[1] 複数のドハティ増幅回路が並列に接続されたドハティ増幅器であって、 [1] A Doherty amplifier in which a plurality of Doherty amplifier circuits are connected in parallel,
同一機能を有する複数の増幅素子が同一の放熱器に搭載されるドハティ増幅器。 A Doherty amplifier in which a plurality of amplifying elements having the same function are mounted on the same radiator.
[2] 同一機能を有する複数の増幅素子は複数のキャリア増幅素子であり、別な同一機 能を有する複数の増幅素子は複数のピーク増幅素子であり、 [2] A plurality of amplifying elements having the same function are a plurality of carrier amplifying elements, and a plurality of amplifying elements having another same function are a plurality of peak amplifying elements,
前記複数のキャリア増幅素子は第 1の放熱器に搭載され、前記複数のピーク増幅 素子は第 2の放熱器に搭載される請求項 1に記載のドハティ増幅器。 2. The Doherty amplifier according to claim 1, wherein the plurality of carrier amplification elements are mounted on a first radiator, and the plurality of peak amplification elements are mounted on a second radiator.
[3] 前記ピーク増幅素子が N個並列に接続された N— Wayドハティ増幅器であるとき、 同一の Wayにあるピーク増幅素子は同一の放熱器に搭載される請求項 2に記載のド ハティ増幅器。 3. The Doherty amplifier according to claim 2, wherein when the N peak amplifying elements are N-way Doherty amplifiers connected in parallel, the peak amplifying elements in the same Way are mounted on the same radiator. .
[4] 前記ピーク増幅素子が N個並列に接続された N— Wayドハティ増幅器であるとき、 同一容量のピーク増幅素子は同一の放熱器に搭載される請求項 2に記載のドハティ 増幅器。 4. The Doherty amplifier according to claim 2, wherein when the N peak amplifying elements are N-way Doherty amplifiers connected in parallel, the peak amplifying elements having the same capacity are mounted on the same radiator.
[5] 前記ピーク増幅素子を搭載した第 2の放熱器が複数個あるとき、前記複数のキヤリ ァ増幅素子を搭載した第 1の放熱器を中心に配置し、その両側に前記複数の第 2の 放熱器を配置する請求項 3に記載のドノ、ティ増幅器。 [5] When there are a plurality of second radiators mounted with the peak amplifying element, the first radiator mounted with the plurality of carrier amplifying elements is arranged in the center, and the plurality of second radiators are arranged on both sides thereof. 4. The Dono and tee amplifier according to claim 3, wherein a radiator is disposed.
[6] 前記 N— Wayドノ、ティ増幅器の入力側及び出力側に、前記ピーク増幅素子の接続 個数を自在に増減できる分配器及び合成器を備える請求項 3に記載のドハティ増幅 6. The Doherty amplification according to claim 3, further comprising a distributor and a combiner that can freely increase or decrease the number of connected peak amplifying elements on the input side and the output side of the N-way Dono and tee amplifier.
[7] 複数のドハティ増幅回路が並列に接続されたドハティ増幅器であって、 [7] A Doherty amplifier in which a plurality of Doherty amplifier circuits are connected in parallel,
第 1の基板に第 1のドノ、ティ増幅回路をパターユングし、第 2の基板に第 2のドノヽテ ィ増幅回路をパターニングして、前記第 1の基板と前記第 2の基板を積層して多層基 板を構成したとき、同一機能を有する複数の増幅素子が近接して配置されるドハティ 増幅器。 The first substrate and the second substrate are patterned on the first substrate, the second substrate amplifier circuit is patterned on the second substrate, and the first substrate and the second substrate are patterned. A Doherty amplifier in which a plurality of amplifying elements having the same function are arranged close to each other when a multilayer substrate is formed by stacking.
[8] 同一機能を有する複数の増幅素子は複数のキャリア増幅素子であり、別な同一機 能を有する複数の増幅素子は複数のピーク増幅素子であり、 [8] A plurality of amplifying elements having the same function are a plurality of carrier amplifying elements, and a plurality of amplifying elements having another same function are a plurality of peak amplifying elements,
前記複数のキャリア増幅素子が近接して配置されると共に、前記複数のピーク増幅 素子が近接して配置される請求項 7に記載のドハティ増幅器。
8. The Doherty amplifier according to claim 7, wherein the plurality of carrier amplifying elements are arranged close to each other, and the plurality of peak amplifying elements are arranged close to each other.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008541947A JPWO2008053534A1 (en) | 2006-10-31 | 2006-10-31 | Doherty amplifier |
PCT/JP2006/321769 WO2008053534A1 (en) | 2006-10-31 | 2006-10-31 | Doherty amplifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2006/321769 WO2008053534A1 (en) | 2006-10-31 | 2006-10-31 | Doherty amplifier |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2008053534A1 true WO2008053534A1 (en) | 2008-05-08 |
Family
ID=39343893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/321769 WO2008053534A1 (en) | 2006-10-31 | 2006-10-31 | Doherty amplifier |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2008053534A1 (en) |
WO (1) | WO2008053534A1 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008062371A2 (en) * | 2006-11-23 | 2008-05-29 | Nxp B.V. | Integrated doherty type amplifier arrangement with high power efficiency |
WO2011024281A1 (en) * | 2009-08-27 | 2011-03-03 | 株式会社 東芝 | Doherty amplifier system and transmitter using same |
WO2011046031A1 (en) * | 2009-10-13 | 2011-04-21 | 日本電気株式会社 | Power amplifier and method for operating same |
KR20110068439A (en) * | 2009-12-16 | 2011-06-22 | 삼성전자주식회사 | A combined cell doherty power amplify apparatus and method |
JP2012029239A (en) * | 2010-07-27 | 2012-02-09 | Sumitomo Electric Device Innovations Inc | Doherty amplifier |
JP2012114711A (en) * | 2010-11-25 | 2012-06-14 | Mitsubishi Electric Corp | Amplifier and communication device |
EP2521257A1 (en) * | 2011-05-06 | 2012-11-07 | Nxp B.V. | Doherty amplifier circuit |
WO2012125279A3 (en) * | 2011-03-16 | 2013-01-03 | Cree, Inc. | Enhanced doherty amplifier |
WO2013078992A1 (en) * | 2011-11-28 | 2013-06-06 | 华为技术有限公司 | Doherty power amplifier and method and device for improving power amplification efficiency thereof |
JP2014168312A (en) * | 2014-06-18 | 2014-09-11 | Sumitomo Electric Device Innovations Inc | Doherty amplifier |
WO2014146585A1 (en) * | 2013-03-20 | 2014-09-25 | 华为技术有限公司 | Doherty power amplification circuit and power amplifier |
EP2751926A4 (en) * | 2011-12-15 | 2015-07-29 | Ericsson Telefon Ab L M | Doherty power amplification apparatus and method |
JP2016131369A (en) * | 2015-01-09 | 2016-07-21 | 株式会社東芝 | High frequency signal amplifying device |
EP2498396A4 (en) * | 2009-11-04 | 2017-01-18 | SK Telecom. Co., Ltd. | Doherty amplifier |
ITUB20153048A1 (en) * | 2015-08-10 | 2017-02-10 | Itelco Broadcast S R L | MODULE STRUCTURE FOR POWER AMPLIFIER FOR DOUBLE-STAGE RADIO FREQUENCY AND MODULAR AMPLIFIER USING SUCH MODULES |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57125505A (en) * | 1981-01-29 | 1982-08-04 | Fujitsu Ltd | Ultrahigh frequency amplifier |
JPH08181553A (en) * | 1994-12-27 | 1996-07-12 | Matsushita Electric Ind Co Ltd | Power amplifier |
JP2001518731A (en) * | 1997-09-30 | 2001-10-16 | モトローラ・インコーポレイテッド | Apparatus and method for amplifying a signal |
JP2005303771A (en) * | 2004-04-14 | 2005-10-27 | Mitsubishi Electric Corp | High frequency power amplifier |
JP2006067176A (en) * | 2004-08-26 | 2006-03-09 | Nec Corp | Doherty amplifier parallel operation circuit |
-
2006
- 2006-10-31 WO PCT/JP2006/321769 patent/WO2008053534A1/en active Application Filing
- 2006-10-31 JP JP2008541947A patent/JPWO2008053534A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57125505A (en) * | 1981-01-29 | 1982-08-04 | Fujitsu Ltd | Ultrahigh frequency amplifier |
JPH08181553A (en) * | 1994-12-27 | 1996-07-12 | Matsushita Electric Ind Co Ltd | Power amplifier |
JP2001518731A (en) * | 1997-09-30 | 2001-10-16 | モトローラ・インコーポレイテッド | Apparatus and method for amplifying a signal |
JP2005303771A (en) * | 2004-04-14 | 2005-10-27 | Mitsubishi Electric Corp | High frequency power amplifier |
JP2006067176A (en) * | 2004-08-26 | 2006-03-09 | Nec Corp | Doherty amplifier parallel operation circuit |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008062371A3 (en) * | 2006-11-23 | 2008-12-18 | Nxp Bv | Integrated doherty type amplifier arrangement with high power efficiency |
WO2008062371A2 (en) * | 2006-11-23 | 2008-05-29 | Nxp B.V. | Integrated doherty type amplifier arrangement with high power efficiency |
US8237498B2 (en) | 2009-08-27 | 2012-08-07 | Kabushiki Kaisha Toshiba | Doherty amplifier system and transmitter using the same |
WO2011024281A1 (en) * | 2009-08-27 | 2011-03-03 | 株式会社 東芝 | Doherty amplifier system and transmitter using same |
JP5642077B2 (en) * | 2009-08-27 | 2014-12-17 | 株式会社東芝 | Doherty amplifier system and transmitter using the same |
JPWO2011024281A1 (en) * | 2009-08-27 | 2013-01-24 | 株式会社東芝 | Doherty amplifier system and transmitter using the same |
US8736364B2 (en) | 2009-10-13 | 2014-05-27 | Nec Corporation | Power amplifier and method of operation thereof |
JP5440818B2 (en) * | 2009-10-13 | 2014-03-12 | 日本電気株式会社 | Power amplifier and operation method thereof |
WO2011046031A1 (en) * | 2009-10-13 | 2011-04-21 | 日本電気株式会社 | Power amplifier and method for operating same |
EP2498396A4 (en) * | 2009-11-04 | 2017-01-18 | SK Telecom. Co., Ltd. | Doherty amplifier |
KR20110068439A (en) * | 2009-12-16 | 2011-06-22 | 삼성전자주식회사 | A combined cell doherty power amplify apparatus and method |
KR101709347B1 (en) | 2009-12-16 | 2017-03-09 | 삼성전자주식회사 | A combined cell doherty power amplify apparatus and method |
JP2012029239A (en) * | 2010-07-27 | 2012-02-09 | Sumitomo Electric Device Innovations Inc | Doherty amplifier |
JP2012114711A (en) * | 2010-11-25 | 2012-06-14 | Mitsubishi Electric Corp | Amplifier and communication device |
US9564864B2 (en) | 2011-03-16 | 2017-02-07 | Cree, Inc. | Enhanced doherty amplifier |
WO2012125279A3 (en) * | 2011-03-16 | 2013-01-03 | Cree, Inc. | Enhanced doherty amplifier |
US8749306B2 (en) | 2011-03-16 | 2014-06-10 | Cree, Inc. | Enhanced Doherty amplifier |
EP2521257A1 (en) * | 2011-05-06 | 2012-11-07 | Nxp B.V. | Doherty amplifier circuit |
US8710924B2 (en) | 2011-05-06 | 2014-04-29 | Nxp, B.V. | Doherty amplifier circuit |
WO2013078992A1 (en) * | 2011-11-28 | 2013-06-06 | 华为技术有限公司 | Doherty power amplifier and method and device for improving power amplification efficiency thereof |
US8994450B2 (en) | 2011-11-28 | 2015-03-31 | Huawei Technologies Co., Ltd. | Doherty power amplifier, and method and device for improving power amplification efficiency of Doherty power amplifier |
EP2751926A4 (en) * | 2011-12-15 | 2015-07-29 | Ericsson Telefon Ab L M | Doherty power amplification apparatus and method |
US9374041B2 (en) | 2011-12-15 | 2016-06-21 | Telefonaktiebolaget Lm Ericsson (Publ) | Doherty power amplification apparatus and method |
WO2014146585A1 (en) * | 2013-03-20 | 2014-09-25 | 华为技术有限公司 | Doherty power amplification circuit and power amplifier |
US9484866B2 (en) | 2013-03-20 | 2016-11-01 | Huawei Technologies Co., Ltd. | Doherty power amplifying circuit and power amplifier |
JP2014168312A (en) * | 2014-06-18 | 2014-09-11 | Sumitomo Electric Device Innovations Inc | Doherty amplifier |
JP2016131369A (en) * | 2015-01-09 | 2016-07-21 | 株式会社東芝 | High frequency signal amplifying device |
ITUB20153048A1 (en) * | 2015-08-10 | 2017-02-10 | Itelco Broadcast S R L | MODULE STRUCTURE FOR POWER AMPLIFIER FOR DOUBLE-STAGE RADIO FREQUENCY AND MODULAR AMPLIFIER USING SUCH MODULES |
Also Published As
Publication number | Publication date |
---|---|
JPWO2008053534A1 (en) | 2010-02-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2008053534A1 (en) | Doherty amplifier | |
Cao et al. | Continuous-mode hybrid asymmetrical load-modulated balanced amplifier with three-way modulation and multi-band reconfigurability | |
Indirayanti et al. | A 32 GHz 20 dBm-P SAT transformer-based Doherty power amplifier for multi-Gb/s 5G applications in 28 nm bulk CMOS | |
US8154339B2 (en) | V-band high-power transmitter with integrated power combiner | |
US11171610B2 (en) | Transformer-based doherty power amplifier | |
US8710924B2 (en) | Doherty amplifier circuit | |
US9325280B2 (en) | Multi-way doherty amplifier | |
EP2297847B1 (en) | Rf power amplifiers with linearization | |
US6639463B1 (en) | Adaptive power amplifier system and method | |
US20110140775A1 (en) | Combined cell doherty power amplification apparatus and method | |
WO2017028563A1 (en) | Symmetry doherty power amplification circuit apparatus and power amplifier | |
US20140320214A1 (en) | Doherty power amplification apparatus and method | |
JP2005117599A (en) | High frequency amplifier | |
US10637403B2 (en) | Digital upconversion for multi-band multi-order power amplifiers | |
JP2011507445A (en) | 3-Way Hatty Amplifier with Minimal Output Network | |
JP2006197556A (en) | Amplifier | |
KR20050031663A (en) | Doherty power amplifying apparatus | |
EP2963810B1 (en) | Doherty power amplification circuit and power amplifier | |
US7557652B2 (en) | Power amplifier system | |
JP2004222151A (en) | Doherty amplifier | |
CN102696172A (en) | High-frequency power amplifier having Doherty enhancement | |
CN103633944B (en) | A kind of system and method for being used for operation power amplifier and load modulation network | |
JP2006311485A (en) | Radio transmitter and amplifier | |
Sakata et al. | Adaptive input-power distribution in Doherty power amplifier using modified Wilkinson power divider | |
Gajadharsing et al. | Analysis and design of a 200 W LDMOS based Doherty amplifier for 3 G base stations |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 06822698 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2008541947 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06822698 Country of ref document: EP Kind code of ref document: A1 |