WO2008050683A1 - Power output device, and hybrid automobile - Google Patents

Power output device, and hybrid automobile Download PDF

Info

Publication number
WO2008050683A1
WO2008050683A1 PCT/JP2007/070438 JP2007070438W WO2008050683A1 WO 2008050683 A1 WO2008050683 A1 WO 2008050683A1 JP 2007070438 W JP2007070438 W JP 2007070438W WO 2008050683 A1 WO2008050683 A1 WO 2008050683A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
shaft
motor
transmission
power
Prior art date
Application number
PCT/JP2007/070438
Other languages
French (fr)
Japanese (ja)
Inventor
Hidehiro Oba
Yukihiko Ideshio
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to CN2007800397809A priority Critical patent/CN101528494B/en
Priority to DE112007002522.0T priority patent/DE112007002522B4/en
Priority to US12/447,059 priority patent/US8091661B2/en
Publication of WO2008050683A1 publication Critical patent/WO2008050683A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/727Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path
    • F16H3/728Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously with at least two dynamo electric machines for creating an electric power path inside the gearing, e.g. using generator and motor for a variable power torque path with means to change ratio in the mechanical gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/486Operating parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/16Ratio selector position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/0866Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft
    • F16H2037/0873Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft with switching, e.g. to change ranges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2007Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with two sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/201Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with three sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2041Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with four engaging means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2064Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes using at least one positive clutch, e.g. dog clutch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2097Transmissions using gears with orbital motion comprising an orbital gear set member permanently connected to the housing, e.g. a sun wheel permanently connected to the housing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Definitions

  • the present invention relates to a power output device that outputs power to a drive shaft and a hybrid vehicle including the same.
  • the two output elements of the planetary gear device are respectively fixed to the inner periphery of the corresponding rotor of the electric drive unit.
  • a power distribution mechanism including an input element connected to the internal combustion engine, a reaction force element connected to the first motor 'generator, and an output element connected to the second motor' generator, and an output member
  • two clutches for selectively connecting the axle shaft as an output element and a reaction force element of the power distribution mechanism (see, for example, Patent Document 3).
  • the reaction force element of the power distribution mechanism is connected to the output member and the connection between the output element and the output member is released.
  • the two clutches are controlled, thereby suppressing the occurrence of power circulation that drives the first motor 'generator by the electric power generated by the second motor' generator using a part of the power of the output member.
  • Patent Document 1 JP 2005-155891 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-106389
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-125876
  • the power output apparatus as described above outputs the required power to the drive shaft while converting the torque from the internal combustion engine with two electric motors, thereby efficiently driving the internal combustion engine.
  • the force structure that makes it possible to drive is complicated and difficult to downsize! /, Which has some problems in terms of mounting on vehicles.
  • a power output apparatus includes:
  • a power output device that outputs power to a drive shaft
  • a first electric motor that can input and output power
  • a second electric motor that can input and output power
  • a power distribution and integration mechanism configured such that the elements can differentially rotate with each other; an input element connected to one of the first and second elements of the power distribution and integration mechanism; a fixed element; and an output element. And the three differential elements configured to be capable of differentially rotating with respect to each other, the output differential element of the differential gear differential rotation mechanism, and the first and second of the power distribution and integration mechanism.
  • Transmission means including connection means capable of selectively connecting the other element to the drive shaft;
  • This power output apparatus has an input element, a fixed element, and an output element connected to either one of the first and second elements of the power distribution and integration mechanism, and these three elements are mutually connected.
  • the transmission differential rotation mechanism configured to be capable of differential rotation, the output element of the transmission differential rotation mechanism, and the other of the first and second elements of the power distribution and integration mechanism are selectively linked to the drive shaft.
  • Such shift transmission means can be configured with comparatively few! / Parts, has a simple and compact configuration, and is excellent in mountability.
  • the power from one of the first and second elements of the power distribution and integration mechanism can be obtained. Can be output to the drive shaft after being shifted by the differential rotation mechanism for shifting. Further, in this power output device, if both the output element of the speed-changing differential rotation mechanism and the other one of the first and second elements of the power distribution and integration mechanism are connected to the drive shaft by the connecting means of the speed change transmission means, the internal combustion engine Power from the engine can be transmitted mechanically (directly) to the drive shaft at a fixed gear ratio.
  • this power output device if the other of the first and second elements of the power distribution and integration mechanism is connected to the drive shaft by the connecting means of the transmission transmission means, the power from the other of the first and second elements is transmitted. It is possible to output directly to the drive shaft. Therefore, according to this shift transmission means, the power from the power distribution and integration mechanism can be shifted in a plurality of stages and output to the drive shaft.
  • the first motor connected to the first element serving as the output element is used as the motor. It is possible to make the second motor connected to the second element that functions and the reaction force element function as a generator.
  • the second motor connected to the second element serving as the output element functions as a motor and is counteracted.
  • the first motor connected to the first element, which is the force element can function as a generator.
  • this power output device functions as a generator, particularly when the rotation speed of the first or second motor, which functions as an electric motor, increases by appropriately switching the connection state by the connecting means. Generation of so-called power circulation can be suppressed by preventing the rotation speed of the second or first motor from becoming a negative value. As a result, according to this power output device, it is possible to improve the power transmission efficiency satisfactorily in a wider operating range.
  • the transmission differential rotation mechanism of the transmission transmission means is a three-element planetary gear mechanism. It may be. As a result, the transmission transmission means can be configured more compactly.
  • the transmission differential rotation mechanism connects the first sun gear and the second sun gear with different numbers of teeth, and the first pinion gear meshed with the first sun gear and the second pinion gear meshed with the second sun gear.
  • a planetary gear mechanism including a carrier that holds at least one stepped gear If a planetary gear mechanism including such a stepped gear is used as a transmission differential rotation mechanism, a larger reduction ratio can be easily set.
  • first and second motors are arranged substantially coaxially with the internal combustion engine, and the power distribution and integration mechanism is arranged substantially coaxially with both motors between the first motor and the second motor. May be. As a result, the entire power output apparatus can be configured more compactly.
  • the power output apparatus when the internal combustion engine, the first and second electric motors, and the power distribution and integration mechanism are arranged substantially coaxially, the power output apparatus according to the present invention provides the first and second power distribution integration mechanisms.
  • a hollow shaft connected to one of the two elements and connected to the input element of the differential rotation mechanism for shifting, and connected to the other of the first and second elements, and the hollow shaft and the speed change A connection shaft extending toward the drive shaft through the differential rotation mechanism for the transmission, the connection means of the transmission transmission means may be connected to the output element of the transmission differential rotation mechanism. Either one or both of the shafts may be selectively connectable to the drive shaft.
  • the power from the first element and the power from the second element of the power distribution and integration mechanism can be output substantially coaxially and in the same direction, so that the speed change transmission means can be the internal combustion engine or the first and second electric motors. Therefore, it can be arranged almost coaxially with the power distribution and integration mechanism. Therefore, this configuration is extremely suitable for a vehicle that travels mainly by driving the rear wheels.
  • connection means of the transmission transmission means is the first and second of the power distribution and integration mechanism.
  • a first parallel-shaft gear train that connects any one of the two elements and the transmission shaft; a second parallel-shaft gear train that is connected to the other of the first and second elements; the transmission shaft;
  • Both the first connection state in which the drive shaft is connected, the second connection state in which the second parallel shaft gear train and the drive shaft are connected, and both the transmission shaft and the second parallel shaft gear train May include switching means capable of selectively switching between a third coupled state coupled to the transmission shaft.
  • the connecting means of the transmission transmission means includes the transmission shaft, two sets of parallel shaft gear trains, and the switching means, the switching means and the differential rotation mechanism for transmission are arranged around the transmission shaft.
  • the power output device can be configured as a two-shaft type, and even if the internal combustion engine, the first and second motors, and the power distribution and integration mechanism are arranged almost coaxially, the power output device An increase in the axial direction (width direction dimension) can be suppressed. Therefore, this power output apparatus is compact and excellent in mountability, and is extremely suitable for a vehicle that travels mainly by driving the front wheels.
  • the first or second element of the power distribution and integration mechanism is connected to the transmission shaft via a parallel shaft gear train, the transmission ratio between the first element or the second element and the transmission shaft can be set freely. It is also possible.
  • the power output apparatus may further include a fixing means capable of fixing any one of the rotating shaft of the first electric motor and the rotating shaft of the second electric motor so as not to rotate.
  • a fixing means capable of fixing any one of the rotating shaft of the first electric motor and the rotating shaft of the second electric motor so as not to rotate.
  • the power output apparatus includes a connection between the first electric motor and the first element, a release of the connection, a connection between the second electric motor and the second element, and connection of the connection.
  • a connection / disconnection means capable of executing any one of the release and the connection between the internal combustion engine and the third element and the release of the connection may be further provided.
  • the power output device having such connection / disconnection means if the connection / disconnection means releases the connection, the internal combustion engine is substantially made to function as the first and second electric motors by the function of the power distribution and integration mechanism. And can be separated from the transmission means.
  • this power output device when the connection / disconnection means releases the connection and stops the internal combustion engine, the power from at least one of the powers of the first and second motors is changed by the transmission transmission means. Thus, it is possible to efficiently transmit to the drive shaft. Therefore, according to this power output device, it is possible to reduce the maximum torque required for the first and second motors, and the force S can be further reduced in size of the first and second motors. .
  • one of the first and second elements of the power distribution and integration mechanism to which a larger torque is input from the third element connected to the engine shaft is the first motor or
  • the second electric motor may be connected to the first electric motor or the second electric motor via a decelerating means that decelerates the rotation of the rotating shaft of the second electric motor.
  • the speed reduction means This makes it possible to more effectively reduce the torque burden of the first or second motor connected to the, thereby reducing the size of the motor and reducing its power loss.
  • the power distribution and integration mechanism includes a sun gear, a ring gear, and a carrier that holds at least one set of two pinion gears that mesh with each other and one of the sun gear and the other meshes with the ring gear.
  • a double pinion type planetary gear mechanism wherein the first element is one of the sun gear and the carrier, the second element is the other of the sun gear and the carrier, and the third element is the ring gear. It may be.
  • the power distribution and integration mechanism is such that p ⁇ 0.5 when the gear ratio of the power distribution and integration mechanism, which is a value obtained by dividing the number of teeth of the sun gear by the number of teeth of the ring gear, is p.
  • the speed reduction means is configured such that the speed reduction ratio is a value in the vicinity of p / (1- P ) and is disposed between the first motor or the second motor and the carrier. Also good. In such a power distribution and integration mechanism of various specifications, the distribution ratio of torque from the internal combustion engine to the carrier is larger than that of the sun gear. Therefore, by disposing the speed reduction means between the carrier and the first or second electric motor, it is possible to reduce the size of the first or second electric motor and reduce its power loss. In addition, if the reduction ratio of the reduction means is set to a value in the vicinity of p / (1-p), the specifications of the first and second motors can be made substantially the same. In addition to improving productivity, costs can be reduced.
  • the power distribution and integration mechanism which is a double pinion planetary gear mechanism, is a value obtained by dividing the number of teeth of the sun gear by the number of teeth of the ring gear. It may be configured such that ⁇ > 0.5 when the gear ratio of the power distribution and integration mechanism is P.
  • the reduction means has a reduction ratio in the vicinity of (1 ⁇ ) / ⁇ . And may be arranged between the first motor or the second motor and the sun gear.
  • the power distribution and integration mechanism is a single pinion planetary gear mechanism including a sun gear, a ring gear, and a carrier that holds at least one pinion gear that meshes with both the sun gear and the ring gear.
  • the first element is one of the sun gear and the ring gear
  • the second element is the other of the sun gear and the ring gear
  • the third element is the carrier
  • the number of teeth of the sun gear is determined.
  • the gear ratio of the power distribution and integration mechanism which is a value divided by the number of teeth of the ring gear
  • the reduction means is configured so that the reduction ratio is a value in the vicinity of ⁇ , and the first Alternatively, it may be disposed between the second electric motor and the ring gear.
  • the torque distribution ratio from the internal combustion engine to the ring gear is larger than that of the sun gear. Therefore, by arranging a reduction gear between the ring gear and the first or second electric motor, it is possible to reduce the size of the first or second electric motor and reduce its power loss. Furthermore, if the reduction ratio of the speed reduction means is set to a value in the vicinity of ⁇ , the specifications of the first and second motors can be made substantially the same, which improves the productivity of the power output device. Cost can be reduced.
  • a hybrid vehicle includes any one of the power output devices described above, and includes drive wheels that are driven by power from the drive shaft.
  • the power output device mounted on this hybrid vehicle is simple and compact, has excellent mountability, and can improve power transmission efficiency in a wider driving range. And running performance can be improved satisfactorily.
  • FIG. 1 is a schematic configuration diagram of a hybrid vehicle 20 according to an embodiment of the present invention.
  • FIG. 2 Dynamic distribution / integration mechanism for changing the transmission gear ratio of the transmission 60 in the upshifting direction according to changes in the vehicle speed when the hybrid vehicle 20 of the embodiment is driven with the operation of the engine 22. And the relationship between the rotational speed and torque of the main elements of transmission 60 It is explanatory drawing to do.
  • FIG. 3 is an explanatory view similar to FIG.
  • FIG. 4 is an explanatory view similar to FIG.
  • FIG. 5 is an explanatory view similar to FIG.
  • FIG. 6 is a chart showing clutch clutch and clutch position setting states of clutch C1 of transmission 60 when hybrid vehicle 20 of the embodiment travels.
  • FIG. 7 When the motor MG2 functions as a generator and the motor MG1 functions as an electric motor, a common relationship representing the relationship between the rotational speed and torque of each element of the power distribution and integration mechanism 40 and each element of the reduction gear mechanism 50 is shown. It is explanatory drawing which shows an example of a diagram.
  • FIG. 8 Co-represents the relationship between the rotational speed and torque of each element of the power distribution and integration mechanism 40 and each element of the reduction gear mechanism 50 when the motor MG1 functions as a generator and the motor MG2 functions as an electric motor. It is explanatory drawing which shows an example of a diagram.
  • FIG. 9 is an explanatory diagram for explaining a motor travel mode in the hybrid vehicle 20 of the embodiment.
  • FIG. 10 is a schematic configuration diagram of a hybrid vehicle 20A according to a modification.
  • FIG. 11 is a chart showing the setting states of clutch CO ′, brake B 0, clutch positions of clutches Cla and Clb of transmission 60A, etc. during travel of hybrid vehicle 20A of a modified example.
  • FIG. 12 is a schematic configuration diagram of a hybrid vehicle 20B according to a modification.
  • FIG. 13 is a schematic configuration diagram of a hybrid vehicle 20C according to a modification.
  • FIG. 1 is a schematic configuration diagram of a hybrid vehicle 20 according to an embodiment of the present invention.
  • the hybrid vehicle 20 shown in the figure is configured as a rear-wheel drive vehicle, and includes an engine 22 disposed at the front of the vehicle and a dynamic power distribution and integration mechanism connected to a crankshaft 26 that is an output shaft of the engine 22 ( (Differential rotation mechanism) 40, a motor MG1 capable of generating electricity connected to the power distribution and integration mechanism 40, and the motor MG1 and the motor MG1 are arranged coaxially and connected to the power distribution and integration mechanism 40 via the reduction gear mechanism 50.
  • (Differential rotation mechanism) 40 a motor MG1 capable of generating electricity connected to the power distribution and integration mechanism 40
  • the motor MG1 and the motor MG1 are arranged coaxially and connected to the power distribution and integration mechanism 40 via the reduction gear mechanism 50.
  • Motor MG2 capable of generating electricity and power distribution integration
  • a transmission 60 that can shift the power from the mechanism 40 and transmit it to the drive shaft 66, and an electronic control unit for a hybrid that controls the entire hybrid vehicle 20 (hereinafter referred to as “Hybrid E CUJ! /,”) 70 etc. are provided.
  • the engine 22 is an internal combustion engine that outputs power by being supplied with hydrocarbon fuel such as gasoline or light oil.
  • the engine control unit (hereinafter referred to as an "engine ECU") 24 is configured to Control of ignition timing, intake air volume, etc.
  • the engine ECU 24 receives signals from various sensors that are provided for the engine 22 and detect the operating state of the engine 22.
  • the engine ECU 24 communicates with the hybrid ECU 70 and controls the operation of the engine 22 based on the control signal from the hybrid ECU 70, the signal from the sensor, and the like, and data on the operation state of the engine 22 as necessary. Output to hybrid ECU70.
  • the motor MG1 and the motor MG2 are both configured as well-known synchronous generator motors that operate as a generator and can operate as an electric motor, and are batteries 35 that are secondary batteries via inverters 31 and 32. And exchange power.
  • a power line 39 connecting the inverters 31 and 32 and the battery 35 is configured as a positive and negative bus shared by the inverters 31 and 32, and is generated by one of the motors MG1 and MG2. Electric power can be consumed by the other motor. Therefore, the notch 35 is charged / discharged by the electric power generated by the motor M Gl or MG2 or the insufficient power, and charging / discharging is performed if the power balance is balanced by the motors MG1 and MG2. It will not be done.
  • the motors MG1 and MG2 are both driven and controlled by a motor electronic control unit (hereinafter referred to as “motor ECU”) 30.
  • the motor ECU 30 includes signals necessary for driving and controlling the motors MG1 and MG2, such as signals from rotational position detection sensors 33 and 34 for detecting the rotational positions of the rotors of the motors MG1 and MG2, and current sensors (not shown).
  • the phase current applied to the motors MG1 and MG2 detected by the above is input, and the motor ECU 30 outputs switching control signals to the inverters 31 and 32.
  • the motor ECU 30 executes a rotation speed calculation routine (not shown) based on signals input from the rotation position detection sensors 33 and 34, and calculates the rotation speeds Nml and Nm2 of the rotors of the motors MG1 and MG2.
  • the motor ECU 30 communicates with the hybrid ECU 70, and the hybrid E Based on a control signal from the CU 70, the motors MG1 and MG2 are driven and controlled, and data on the operating state of the motors MG1 and MG2 is output to the hybrid ECU 70 as necessary.
  • the battery 35 is managed by a battery electronic control unit (hereinafter referred to as “battery ECU”) 36.
  • the battery ECU 36 has signals necessary for managing the battery 35, for example, the voltage between terminals from a voltage sensor (not shown) installed between the terminals of the battery 35, and the power connected to the output terminal of the battery 35.
  • a charge / discharge current from a current sensor (not shown) attached to the line 39, a battery temperature Tb from a temperature sensor 37 attached to the battery 35, and the like are input.
  • the battery ECU 36 outputs data on the state of the battery 35 to the hybrid ECU 70 and the engine ECU 24 by communication as necessary. Further, the battery ECU 36 calculates the remaining capacity SOC based on the integrated value of the charging / discharging current detected by the current sensor in order to manage the battery 35.
  • the power distribution and integration mechanism 40 is housed in a transmission case (not shown) together with the motors MG1 and MG2, the reduction gear mechanism 50, and the transmission 60, and is arranged coaxially with the crankshaft 26 at a predetermined distance from the engine 22.
  • the power distribution and integration mechanism 40 of the embodiment includes a sun gear 41 of an external gear, a ring gear 42 of an internal gear arranged concentrically with the sun gear 41, and one of them is a sun gear 41 and the other is a ring gear.
  • a carrier 45 that holds at least one pair of two pinion gears 43 and 44 that rotate and revolve freely, and includes a sun gear 41 (first element), a ring gear 42 (third element), and a carrier 45 ( The second element) is a double pinion type planetary gear mechanism configured to be able to rotate differentially with respect to each other.
  • the power distribution and integration mechanism 40 is configured such that the gear ratio p (the value obtained by dividing the number of teeth of the sun gear 41 by the number of teeth of the ring gear 42) is p ⁇ 0.5.
  • the sun gear 41 which is the first element of the power distribution and integration mechanism 40, includes a hollow sun gear shaft 41a that extends from the sun gear 41 to the side opposite to the engine 22 (rear side of the vehicle) to form a series of hollow shafts and a hollow gear.
  • the first motor shaft 46 is connected to a motor MG1 (hollow rotor) as a first electric motor.
  • the carrier 45 as the second element has a reduction gear mechanism 50 disposed between the power distribution and integration mechanism 40 and the engine 22, and a hollow first extension extending from the reduction gear mechanism 50 (sun gear 51) toward the engine 22.
  • 2Motor shaft (second shaft) 55 All motors MG2 (hollow rotor) are connected.
  • the crankshaft 26 of the engine 22 is connected to the ring gear 42 as the third element via a ring gear shaft 42a and a damper 28 extending through the second motor shaft 55 and the motor MG2.
  • the reduction gear mechanism 50 includes an external gear sun gear 51, an internal gear ring gear 52 arranged concentrically with the sun gear 51, and a plurality of pinion gears 53 that mesh with both the sun gear 51 and the ring gear 52.
  • a single pinion type planetary gear mechanism including a carrier 54 that holds a plurality of pinion gears 53 so as to rotate and revolve.
  • the reduction gear mechanism 50 has a reduction ratio (the number of teeth of the sun gear 51 / the number of teeth of the ring gear 52), when the gear ratio of the power distribution and integration mechanism 40 is p, in the vicinity of p / (1-p). It is configured to be the value of.
  • the sun gear 51 of the reduction gear mechanism 50 is connected to the rotor of the motor MG2 via the second motor shaft 55 described above. Further, the ring gear 52 of the reduction gear mechanism 50 is fixed to the carrier 45 of the power distribution integration mechanism 40, whereby the reduction gear mechanism 50 is substantially integrated with the power distribution integration mechanism 40.
  • the carrier 54 of the reduction gear mechanism 50 is fixed to the transmission case. Therefore, by the action of the reduction gear mechanism 50, the power from the motor MG2 is decelerated and input to the carrier 45 of the power distribution and integration mechanism 40, and the power from the carrier 45 is increased and input to the motor MG2. Will be. If the reduction gear mechanism 50 is arranged between the motor MG2 and the power distribution and integration mechanism 40 and integrated with the power distribution and integration mechanism 40 as in the embodiment, the power output device becomes more compact. ⁇
  • the motor MG 1 functions as a connection / disconnection means for connecting and releasing the connection.
  • a clutch CO is provided that functions as a fixing means that can fix the first motor shaft 46 (sun gear 41), which is the rotation shaft of the first motor shaft 46, so that it cannot rotate.
  • the clutch CO is fixed to the tip of the sun gear shaft 41a (right end in the figure), the dog fixed to one end (left end in the figure) of the first motor shaft 46, and the transmission case. 1 and an engaging member that can be engaged with these dogs and driven by an electric, electromagnetic, or hydraulic actuator 100. As shown in FIG. It is possible to selectively switch to “Jission”.
  • the clutch position force position of the clutch CO of the embodiment when the clutch position force position of the clutch CO of the embodiment is set, the connection of the dog of the sun gear shaft 41a and the dog of the first motor shaft 46 via the engaging member, that is, the motor MG1 and the power distribution integration mechanism 40 The connection with the sun gear 41 is released.
  • the motor MG1 as the first motor and the sun gear 41 as the first element of the power distribution integration mechanism 40 Therefore, the engine 22 can be substantially disconnected from the motors MG1 and MG2 and the transmission 60 by the function of the power distribution and integration mechanism 40.
  • the sun gear 41 and the first motor shaft 46 (motor MG1), which are the first elements of the power distribution and integration mechanism 40, can be fixed in a non-rotatable manner.
  • the first motor shaft 46 that can be connected to the sun gear 41 of the power distribution and integration mechanism 40 via the clutch C0 is further extended from the motor MG1 to the side opposite to the engine 22 (rear of the vehicle). Connected to transmission 60. From the carrier 45 of the power distribution and integration mechanism 40, a carrier shaft (connecting shaft) 45a extends through the hollow sun gear shaft 41a and the first motor shaft 46 on the side opposite to the engine 22 (rear of the vehicle). The carrier shaft 45a can also be connected to the transmission 60.
  • the power distribution and integration mechanism 40 is placed between the motors MG1 and MG2 coaxially arranged between the motor MG1 and the motor MG2 arranged coaxially with each other, and the engine 22 is arranged coaxially with the motor MG2.
  • the transmission 60 is opposed to the transmission 60 with the power distribution and integration mechanism 40 interposed therebetween.
  • the components of the power output device such as the engine 22, the motors MG1, MG2, the power distribution and integration mechanism 40, and the transmission 60 are the engine 22, the motor MG2, (the reduction gear mechanism 50),
  • the power distribution and integration mechanism 40, the motor MG1, and the transmission 60 are arranged in the order of coaxial.
  • the power output device is compact and excellent in mountability, mainly driven by driving the rear wheels.
  • the hybrid vehicle 20 can be suitable.
  • the transmission 60 includes a transmission differential rotation mechanism 61 that is a single pinion planetary gear mechanism (deceleration mechanism) capable of decelerating and outputting input power at a predetermined reduction ratio, and a clutch as a coupling means. Including C1.
  • the transmission differential rotation mechanism 61 holds a sun gear 62 as an input element, a ring gear 63 as a fixed element arranged concentrically with the sun gear 62, and a plurality of pinion gears 64 that mesh with both the sun gear 62 and the ring gear 63.
  • the sun gear 62, the ring gear 63, and the carrier 65 can be differentially rotated with each other. As shown in FIG. 1, the sun gear 62 of the transmission differential rotation mechanism 61 is connected to the first motor shaft 46.
  • the ring gear 63 of the transmission differential rotation mechanism 61 is fixed to the transmission case so as not to rotate. Further, a hollow carrier shaft 65a extending toward the rear of the vehicle is connected to the carrier 65 of the transmission differential rotation mechanism 61. The carrier shaft 45a extended from the carrier 45 as the second element of the power distribution and integration mechanism 40 passes through the first motor shaft 46 and the carrier shaft 65a.
  • the clutch C1 is one of the carrier 65 (carrier shaft 65a) as an output element of the differential rotation mechanism 61 for shifting and the carrier 45 (carrier shaft 45a) as the second element of the power distribution and integration mechanism 40.
  • both can be selectively connected to the drive shaft 66.
  • the clutch C1 includes, for example, a dog fixed to the tip (right end in the drawing) of the carrier shaft 65a connected to the carrier 65 of the transmission differential rotation mechanism 61, and the transmission differential rotation mechanism 61.
  • the clutch position which is the position of the engaging member, can be selectively switched between “L position”, “M position” and “R position”. That is, when the clutch position of the clutch C1 of the transmission 60 is set to the L position, the dog and drive of the carrier shaft 65a connected to the carrier 65 which is the output element of the transmission differential rotation mechanism 61 via the engaging member are driven.
  • the shaft 66 dog is connected with less loss.
  • the sun gear shaft 41a, the first motor shaft 46, and the gear shift differential The sun gear 41, which is the first element of the power distribution and integration mechanism, and the drive shaft 66 are connected via the rotation mechanism 61 and the clutch CI (hereinafter, such a connection state by the clutch C1 is referred to as a “first connection state” as appropriate). ).
  • the carrier 45 of the distribution and integration mechanism 40 is directly connected to the drive shaft 66 (hereinafter, such a connection state by the clutch C1 is appropriately referred to as a “third connection state”). Further, when the clutch position of the clutch C1 is set to the R position, the dog of the carrier shaft 45a and the dog of the drive shaft 66 are connected with less loss via the engaging member, so that the carrier shaft 45a and the dog of the drive shaft 66 are connected.
  • the carrier 45, which is the second element of the power distribution and integration mechanism 40, and the drive shaft 66 are connected via the clutch C1 (hereinafter, such a connected state by the clutch C1 is appropriately referred to as a “second connected state”). As shown in FIG. 1, the drive shaft 66 is connected to rear wheels 69a and 69b as drive wheels via a differential gear 68.
  • the hybrid ECU 70 is configured as a microprocessor centered on the CPU 72. In addition to the CPU 72, a ROM 74 that stores a processing program, a RAM 76 that temporarily stores data, an input / output port and a communication port (not shown) Is provided.
  • the hybrid ECU 70 has an ignition signal from the ignition switch (start switch) 80, a shift position SP from the shift position sensor 82 that detects the shift position SP, which is the operating position of the shift lever 81, and the amount of depression of the accelerator pedal 83
  • the accelerator pedal position sensor 84 detects the accelerator opening Acc from the accelerator pedal position sensor 84
  • the brake pedal position sensor BP detects the depression amount of the brake pedal 85
  • the vehicle speed V from the vehicle speed sensor 87 passes through the input port.
  • the hybrid ECU 70 is connected to the engine ECU 24, the motor ECU 30, and the battery ECU 36 via a communication port, and exchanges various control signals and data with the engine ECU 24, the motor ECU 30, and the battery ECU 36. Yes. Also Actuators 100, 101, and 102 that drive BO, clutch CO, and clutch CI of transmission 60 are also controlled by hybrid ECU 70.
  • FIGS. 2 to 5 show power distribution when the speed ratio of the transmission 60 is changed in the upshift direction in accordance with the change in the vehicle speed when the hybrid vehicle 20 is driven with the operation of the engine 22.
  • FIG. 5 is an explanatory diagram illustrating the relationship between the rotational speed and torque of main elements of the integrated mechanism 40 and the transmission 60.
  • FIG. 6 is a chart showing the clutch position setting state of the clutch CO and the clutch C1 of the transmission 60 when the hybrid vehicle 20 is traveling.
  • the engine ECU 24 is controlled by the engine ECU 24 under the overall control of the hybrid ECU 70 based on the depression amount of the accelerator pedal 83 and the vehicle speed V.
  • the motors MG1 and MG2 are controlled by the ECU 30, and the actuators 100 and 101 (the clutch C0 and the clutch C1 of the transmission 60) are directly controlled by the hybrid ECU 70. 2 to 5, the S axis represents the rotation speed of the sun gear 41 of the power distribution and integration mechanism 40 (the rotation speed Nml of the motor MG1, that is, the first motor shaft 46), and the R axis represents the ring gear of the power distribution and integration mechanism 40.
  • the number of revolutions of 42 (the number of revolutions of the engine 22 Ne), the C axis the number of revolutions of the carrier 45 of the power distribution and integration mechanism 40 (the number of revolutions of the carrier shaft 45a and the ring gear 52 of the reduction gear mechanism 50), and the 54 axis of deceleration
  • the rotation speed of the carrier 54 of the gear mechanism 50 and the 51 axis indicate the rotation speed of the sun gear 51 of the reduction gear mechanism 50 (the rotation speed Nm2 of the motor MG2, that is, the second motor shaft 55).
  • the 62 axis indicates the rotation speed of the sun gear 62 of the transmission differential rotation mechanism 61 of the transmission 60
  • the 65 and 66 axes indicate the rotation speed of the carrier 65 and the drive shaft 66 of the transmission differential rotation mechanism 61.
  • Each axis indicates the number of rotations of the ring gear 63 of the transmission differential rotation mechanism 61.
  • the clutch CO is basically set to the M position, and the motor MG1, that is, the first motor shaft 46 is driven via the sun gear shaft 41a. Connected to the sun gear 41 of the distribution integration mechanism 40.
  • the clutch C1 of the transmission 60 is set to the L position (see FIG. 6).
  • this state is referred to as the “first shift state (1st gear)” of the transmission 60 and! / (Fig. 2).
  • the sun gear 41 as the first element of the power distribution and integration mechanism 40 is driven via the sun gear shaft 41a, the first motor shaft 46, the speed change differential rotation mechanism 61, and the clutch C1.
  • the motor MG1 connected to the sun gear 41 via the clutch CO or the like functions as an electric motor and the reaction force becomes the output element of the sun gear 41 of the power distribution and integration mechanism 40.
  • the motors MG1 and MG2 can be driven and controlled so that the motor MG2 connected to the carrier 45 serving as an element functions as a generator.
  • the power distribution and integration mechanism 40 distributes the power from the engine 22 input via the ring gear 42 to the sun gear 41 side and the carrier 45 side according to the gear ratio ⁇ , and Motor that functions as an electric motor ⁇ Power from G1 is integrated and output to the sun gear 41 side.
  • FIG. 7 shows an example of a collinear diagram showing the relationship between the rotational speed and torque in each element of the power distribution and integration mechanism 40 and each element of the reduction gear mechanism 50 in the first torque conversion mode.
  • S-axis, R-axis, C-axis, 54-axis and 51-axis are the same as those in Fig. 2, and ⁇ is the gear ratio of power distribution and integration mechanism 40, The gear ratio of gear mechanism 50 is shown respectively.
  • thick arrows indicate the torque acting on each element.
  • the torque value When the arrow is upward in the figure, the torque value is positive, and when the arrow is downward in the figure, the torque value is Is negative (same for Figures 2 to 5, 8, and 9).
  • the power from the engine 22 is torque converted by the power distribution and integration mechanism 40 and the motors MG1 and MG2 and output to the sun gear 41 to control the rotation speed of the motor MG2.
  • the ratio between the rotational speed of the engine 22 and the rotational speed of the sun gear 41, which is an output element can be continuously and continuously changed.
  • the power output to the sun gear 41 is transmitted to the sun gear 62 of the transmission differential rotation mechanism 61 via the sun gear shaft 41a and the first motor shaft 46, and the gear of the transmission differential rotation mechanism 61 is also transmitted.
  • the gear is shifted (decelerated) at a gear ratio x / (1 + p X)) based on the ratio p X (see Fig. 2), and then output to the drive shaft 66.
  • the transmission 60 When the vehicle speed V of the hybrid vehicle 20 increases in the state shown in FIG. 2, that is, the transmission 60 is in the first speed change state and the torque conversion mode is the first torque conversion mode,
  • the rotational speed of the carrier 45 of the power distribution and integration mechanism 40 and the rotational speed of the drive shaft 66 (carrier shaft 65a) are substantially matched.
  • the clutch C1 of the transmission 60 is set to the M position, and the dog of the carrier shaft 65a (transmission differential rotation mechanism 61), the dog of the carrier shaft 45a and the dog of the drive shaft 66 are connected to distribute power. It is possible to connect both the sun gear 41 and the carrier 45 of the integrated mechanism 40 to the drive shaft 66.
  • the carrier shaft 65a and the carrier shaft 45a have the same number of rotations. Therefore, the clutch position of the clutch C1 of the transmission 60 is set to the M position.
  • the position of the carrier shaft 65a (transmission differential rotation mechanism 61) and the drive shaft 66 can be disconnected by easily switching from the R position to the R position.
  • the state where the clutch CO is set to the M position and the clutch C1 is set to the R position in this way is referred to as the second shift state (second gear) of the transmission 60 (FIG. 4).
  • the carrier 45 as the second element of the power distribution and integration mechanism 40 is coupled to the drive shaft 66 via the carrier shaft 45a and the clutch C1.
  • the carrier 45 of the power distribution and integration mechanism 40 serves as an output element, and the motor MG2 connected to the carrier 45 functions as an electric motor and serves as a reaction force element. It is possible to drive and control the motors MG1 and MG2 so that the motor MG1 connected to 41 functions as a generator.
  • the power distribution and integration mechanism 40 distributes the power from the engine 22 input via the ring gear 42 to the sun gear 41 side and the carrier 45 side according to the gear ratio p, and the power from the engine 22 is also distributed. And the power from the motor MG2, which functions as an electric motor, are integrated and output to the carrier 45 side.
  • FIG. 8 shows an example of a collinear diagram showing the relationship between the number of revolutions and torque in each element of the power distribution and integration mechanism 40 and each element of the reduction gear mechanism 50 in the second torque conversion mode.
  • the reference numerals in FIG. 8 are the same as those in FIG.
  • the power from the engine 22 is torque converted by the power distribution and integration mechanism 40 and the motors MG1 and MG2 and output to the carrier 45 to control the rotational speed of the motor MG1.
  • the ratio between the number of revolutions of the engine 22 and the number of revolutions of the carrier 45 as an output element can be continuously and continuously changed.
  • the power output to the carrier 45 is directly output to the drive shaft 66 via the carrier shaft 45a and the clutch C1.
  • the motor MG1 The rotational speed of the sun gear 41 as the first element of the motor shaft 46 and the power distribution and integration mechanism 40 approaches the value 0.
  • the first motor shaft 46 (motor MG1) and the sun gear 41 can be fixed in a non-rotatable state by setting the clutch CO to the R position.
  • the torque command for the motors MG1 and MG2 is set to the value 0 while the first motor shaft 46 and the sun gear 41 are fixed to be non-rotatable by the clutch CO while the carrier shaft 45a is connected to the drive shaft 66 by the clutch C1.
  • the motors MG1 and MG2 run idly without executing either power or regenerative power, and the power (torque) from the engine 22 is fixed (constant) without conversion to electric energy.
  • the gear is changed at a gear ratio (a gear ratio based on the gear ratio p of the power distribution and integration mechanism 40) and then directly transmitted to the drive shaft 66.
  • the mode in which the first motor shaft 46 and the sun gear 41 are fixed to be non-rotatable by the clutch CO while the carrier shaft 45a (carrier 45) is connected to the drive shaft 66 by the clutch C1 of the transmission 60 as described above is also referred to as “simultaneous.
  • the state shown in Fig. 5 is called "2-speed fixed state".
  • the first torque conversion mode and the second torque conversion mode are alternately switched as the transmission 60 switches between the first and second shift states.
  • Rotation speed of motor MG1 or MG2 that functions especially as an electric motor Nml Or, when Nm2 rises, it is possible to prevent the rotation number Nm2 or Nml of the motor MG2 or MG1 functioning as a generator from becoming a negative value. Therefore, in the hybrid vehicle 20, in the first torque conversion mode, as the rotational speed of the motor MG2 becomes negative! /, The motor MG1 uses a part of the power output to the sun gear 41. When power is generated and motor MG2 consumes the electric power generated by motor MG1 and outputs power!
  • the motor MG1's rotation speed becomes negative under power circulation and the second torque conversion mode.
  • the motor MG2 generates power using a part of the power output to the carrier 45, and the motor MG1 consumes the power generated by the motor MG2 and outputs power to suppress the generation of power circulation.
  • Power transmission efficiency can be improved in a wider range of operation.
  • the motors MG1 and MG2 can be downsized. Furthermore, if the hybrid vehicle 20 is driven under the above-described simultaneous engagement mode, the power from the engine 22 can be mechanically (directly) transmitted to the drive shaft 66 at a fixed gear ratio.
  • the opportunity to mechanically output power from the engine 22 to the drive shaft 66 without conversion to engineering energy can be increased, and the power transmission efficiency can be further improved in a wider operating range.
  • the engine power is electric when the reduction ratio between the engine and the drive shaft is relatively large. Since the power transmission efficiency deteriorates and the motor MG1 and MG2 tend to generate heat because they are converted more by the work energy, the above-mentioned simultaneous engagement mode particularly reduces the speed between the engine 22 and the drive shaft. This is particularly advantageous when the ratio is relatively large.
  • the simultaneous engagement mode is once executed between the first torque conversion mode and the second torque conversion mode. It is possible to execute the change of the shift state, that is, the switching between the first torque conversion mode and the second torque conversion mode extremely smoothly and without shock, without causing so-called torque loss at the time of change of the shift state.
  • the motor running fi mode is configured such that either the motor MG1 or MG2 is powered while the clutch CO is set to the M position and the motor MG1 is connected to the sun gear 41 of the power distribution and integration mechanism 40.
  • Engagement clutch 1 Motor running mode and either motor MG1 or MG2 with clutch CO set to R position and motor MG1 disconnected from power transmission integrated mechanism 40 sun gear 41 Clutch disengagement that outputs power to both motor MG1 and MG2 in the motor travel mode and with clutch CO set to the R position and motor MG1 disconnected from sun gear 41 of power distribution integration mechanism 40 It is roughly divided into two-motor running mode that makes it possible to use the power from
  • the transmission 60 is set to the 1st shift state by setting the clutch C1 to the L position as shown in Fig. 6 with the clutch CO set to the M position. Setting force to output power only to motor MG1, setting clutch C1 to the R position as shown in Fig. 6 with clutch C0 set to the M position, and setting transmission 60 to the second shift state Power is output only to motor MG2.
  • the sun gear 41 of the power distribution and integration mechanism 40 and the first motor shaft 46 are connected by the clutch C0.
  • the motor MG1 or MG2 outputs power and is driven by the motor MG2 or MG1 to idle (see the broken line in FIG. 9).
  • the clutch C0 When the clutch release 1-motor running mode is executed, the clutch C0 is set to the R position and the motor MG1 is disconnected from the sun gear 41 of the power distribution integration mechanism 40 as shown in FIG.
  • the clutch C1 is set to the L position to set the transmission 60 to the 1st shift state and the power is output only to the motor MG1, and the clutch C1 is set to the R position as shown in FIG.
  • the transmission 60 is set to the second shift state, and only the motor MG2 outputs power.
  • Force, clutch release 1 Under the motor running mode, as shown by the one-dot chain line and two-dot chain line in Fig. 9, the connection between the sun gear 41 and the motor MG1 by the clutch C0 is released.
  • the crankshaft 26 of the engine 22 that is stopped by the function of the mechanism 40 is rotated, and the motor MG1 or MG2 that is stopped is rotated. This can avoid the reduction in power transmission efficiency.
  • the clutch CO is set to the R position and the clutch MG1 and the sun gear 41 of the power distribution / integration mechanism 40 are disconnected as shown in FIG.
  • the transmission 60 is set to the aforementioned first and second speed simultaneous engagement state, and at least one of the motors MG1 and MG2 is driven and controlled.
  • the speed change state of the transmission 60 can be easily changed to efficiently transmit power to the drive shaft 66.
  • the transmission 60 is set to the first shift state and power is output only to the motor MG1 under the clutch release 1 motor running mode, the carrier shaft 45a is synchronized with the drive shaft 66 in rotation. If the rotation speed Nm2 of the motor MG2 is adjusted and the clutch position of the clutch C1 of the transmission 60 is switched from the L position to the M position, the above-described 1-second speed simultaneous engagement state, that is, the 2-motor traveling mode is entered. You can.
  • the simultaneous engagement state of the transmission 60 is once executed.
  • Changing the shifting state without causing loose torque loss is extremely smooth and shocking. It is possible to execute without. If the required driving force increases under these motor driving modes, or the remaining capacity SOC of the battery 35 decreases, it depends on the shifting state of the transmission 60 (the clutch position of the clutch C1).
  • the engine 22 is cranked by the motor MG1 or MG2 and the engine 22 is started.
  • the hybrid vehicle 20 of the embodiment includes the sun gear 62 as the input element connected to the sun gear 41 as the first element of the power distribution and integration mechanism 40, the ring gear 63 as the fixed element, and the carrier as the output element. 65, and the three elements are configured so that these three elements can be differentially rotated with each other, the sun gear 62 of the transmission differential rotation mechanism 61, and the second element of the power distribution and integration mechanism 40.
  • a transmission 60 including a clutch C1 as a connecting means capable of selectively connecting the carrier 45 to the drive shaft 66 is provided.
  • the transmission 60 can be configured with relatively few parts, has a simple and compact configuration, and is excellent in mountability.
  • the carrier 65 (carrier shaft 65a), which is the output element of the transmission differential rotation mechanism 61, is connected to the drive shaft 66 by the clutch C1 of the transmission 60, the first element of the power distribution and integration mechanism 40 is obtained.
  • the power S from the rotating sun gear 41 can be output to the drive shaft 66 after being shifted by the differential rotation mechanism 61 for shifting.
  • the clutch C1 of the transmission 60 causes the carrier 65 (carrier shaft 65a) of the differential rotation mechanism 61 for speed change and the carrier 45 (carrier shaft 45a) as the second element of the power distribution and integration mechanism 40 to move.
  • the power from the engine 22 can be mechanically (directly) transmitted to the drive shaft 66 at a fixed gear ratio.
  • the carrier 45 carrier shaft 45a
  • the power from the carrier 45 is supplied to the drive shaft 66. Can be output directly. Therefore, according to this transmission 60, it is possible to shift the power from the power distribution and integration mechanism 40 in a plurality of stages and output it to the drive shaft 66.
  • the sun gear 41 as the first element of the power distribution and integration mechanism 40 when the sun gear 41 as the first element of the power distribution and integration mechanism 40 is connected to the drive shaft 66 by the clutch C1 of the transmission 60, the first gear connected to the sun gear 41 as the output element is connected.
  • the motor MG1 functions as an electric motor as an electric motor
  • the second electric motor is connected to a carrier 45 that is a reaction force element.
  • Data MG2 can function as a generator.
  • the motor MG2 connected to the carrier 45 as the output element functions as an electric motor.
  • the motor MG1 connected to the sun gear 41 which is a reaction force element, can function as a generator.
  • the transmission differential rotation mechanism 61 of the transmission 60 is a single pinion planetary gear mechanism as in the embodiment, the transmission 60 can be configured more compactly.
  • the motors MG1 and MG2 are arranged substantially coaxially with the engine 22 and the power distribution and integration mechanism 40 is arranged between the motors MG1 and MG2 and substantially coaxially with each other, these are configured. It is possible to make the entire power output device more compact.
  • the hybrid vehicle 20 in which the engine 22, the motors MG1 and MG2, and the power distribution / integration mechanism 40 are arranged substantially coaxially in this way is connected to the sun gear 41, which is the first element of the power distribution / integration mechanism 40, and is changed in speed.
  • the sun gear shaft 41a and the first motor shaft 46 as a hollow shaft connected to the sun gear 62 of the differential rotation mechanism 61 for use, and the carrier 45 as the second element of the power distribution integrated mechanism 40 and as a hollow shaft
  • the sun gear shaft 41a, the first motor shaft 46, and the carrier shaft 45a as a connecting shaft extending through the transmission differential rotation mechanism 61 toward the drive shaft 66, and the clutch C1 of the transmission 60 Is configured such that one or both of the carrier 65 (carrier shaft 65a) and the carrier shaft 45a, which are output elements of the transmission differential rotation mechanism 61, can be selectively connected to the drive shaft 66.
  • the power from the sun gear 41 of the power distribution and integration mechanism 40 and the power from the carrier 45 can be output in substantially the same direction and in the same direction, so that the transmission 60 can be driven by the engine 22, motors MG1, MG2,
  • the distribution and integration mechanism 40 can be arranged substantially coaxially. Therefore, take The configuration is extremely suitable for the hybrid vehicle 20 that is driven mainly by driving the rear wheels.
  • the clutch CO provided in the hybrid vehicle 20 can fix the first motor shaft 46, which is the rotation shaft of the motor MG1, in a non-rotatable manner. Therefore, as described above, when the carrier 45 of the power distribution and integration mechanism 40 connected to the motor MG2 is connected to the drive shaft 66 by the clutch C1 of the transmission 60, the first motor shaft 46 is not rotated by the clutch CO. Even if the power is fixed, the power from the engine 22 can be mechanically (directly) transmitted to the drive shaft 66 at a fixed gear ratio. As a result, the hybrid vehicle 20 can satisfactorily improve the power transmission efficiency in a wider driving range.
  • the fixing means as described above is for fixing the rotation of the element (the sun gear 41 in the embodiment) which is a reaction force element of the power distribution integration mechanism when the minimum speed ratio by the transmission is set.
  • the second motor shaft 55 or the carrier 45 of the motor MG2 may be fixed.
  • a brake for fixing the first motor shaft 46 (sun gear 41) or the second motor shaft 55 (carrier 45) may be employed separately from the clutch CO.
  • the hybrid vehicle 20 of the embodiment includes the sun gear shaft 41a and the first motor shaft 46, that is, the clutch C0 that performs the connection between the sun gear 41 and the motor MG1 and the release of the connection. .
  • the engine 22 if the connection between the sun gear shaft 41a and the first motor shaft 46 by the clutch C0 is released, the engine 22 is substantially driven by the function of the power distribution and integration mechanism 40, and the motor MG1, MG2 and transmission 60 Can be separated from Therefore, in the hybrid vehicle 20, if the clutch C0 is released and the engine 22 is stopped, the power from at least one of the motors MG1 and MG2 is transmitted to the drive shaft 66 along with the change of the transmission state of the transmission 60. Can be transmitted efficiently.
  • the clutch C0 is not limited to the one that performs the connection between the sun gear 41 and the motor MG1 and the cancellation of the connection.
  • the clutch C0 executes connection between the carrier 45 (second element) and the second motor shaft 55 (motor MG2) and release of the connection.
  • the connection between the crankshaft 26 of the engine 22 and the ring gear 42 (third element) may be performed and the connection may be released.
  • the sun gear 4 1 Compared to the above, the distribution ratio of the torque from the engine 22 to the carrier 45 becomes larger. Therefore, as shown in the example in FIG. 1, by arranging the reduction gear mechanism 50 between the carrier 45 and the motor MG2, the motor MG2 can be reduced in size and its power loss can be reduced. .
  • the gear ratio of the power distribution and integration mechanism 40 is p
  • the reduction ratio of the reduction gear mechanism 50 is a value near p / d
  • the specifications of the motors MG1 and MG2 are roughly Since they can be the same, productivity of the hybrid vehicle 20 and the power output device can be improved and costs can be reduced.
  • the power distribution and integration mechanism 40 which is a double pinion planetary gear mechanism, may be configured such that the gear ratio is p> 0.5.
  • the reduction gear mechanism 50 has a reduction ratio of ( 1 p) / ⁇ It is preferable that the value be in the vicinity of ⁇ and be arranged between the sun gear 11 and the motor MG1 or MG2.
  • FIG. 10 is a schematic configuration diagram of a hybrid vehicle 20 ⁇ ⁇ according to a modification.
  • the function of the clutch CO of the hybrid vehicle 20 described above is shared by the clutch CO ′ and the brake B0 that are driven by the hydraulic actuator 88, respectively.
  • the hybrid vehicle 20A includes a transmission 60A in which the function of the clutch C1 described above is shared by the clutches Cla and Clb driven by the hydraulic actuator 88, respectively. That is, in the hybrid vehicle 20A of the modified example, the clutch CO ′ is driven to connect the sun gear 41 of the power distribution and integration mechanism 40 and the first motor shaft 46 (motor MG1) and to release the connection.
  • the first motor shaft 46 which is the rotation shaft of the motor MG1
  • the first motor shaft 46 can be fixed in a non-rotatable manner by driving the brake B0.
  • the clutch Cla of the transmission 60A by connecting the clutch Cla of the transmission 60A, the carrier shaft 65a connected to the carrier 65, which is the output element of the transmission differential rotation mechanism 61, and the drive shaft 66 are connected, thereby connecting the clutch C0 '. If this is the case, the sun gear shaft 41a, the first motor shaft 46, the transmission differential rotation mechanism 61, and the power distribution and integration mechanism via the clutch Cla
  • the first connected state in which the sun gear 41 as the first element and the drive shaft 66 are connected can be realized.
  • Fig. 11 shows the settings of the clutch CO ', brake B0, clutch Cla and Clb clutch positions of the transmission 60A, etc. when the hybrid vehicle 20A is running.
  • FIG. 12 is a schematic configuration diagram of a hybrid vehicle 20B according to a modification.
  • the hybrid vehicle 20B shown in the figure is provided with a transmission 60B including a transmission differential rotation mechanism 90, which is a planetary gear mechanism including a stepped gear 96, instead of the transmission 60 of the hybrid vehicle 20 described above. is there. That is, the transmission differential rotation mechanism 90 of the transmission 60B includes a first sun gear 91 and a second sun gear 92 having different numbers of teeth, a first pinion gear 93 and a second sun gear 92 that mesh with the first sun gear 91.
  • a planetary gear mechanism including a carrier 95 that holds a plurality of stepped gears 96 that are connected to mating second pinion gears 94.
  • the carrier 95 (input element) of the transmission differential rotation mechanism 90 is connected to the first motor shaft 46 and the second sun gear 92 (fixed element) rotates with respect to the transmission case. Fixed to impossible.
  • a hollow sun gear shaft 91a is connected to the first sun gear 91 (output element) of the transmission differential rotation mechanism 90 toward the rear of the vehicle.
  • the carrier shaft 45a extending from the carrier 45, which is the second element of the power distribution and integration mechanism 40, penetrates the first motor shaft 46 and the sunshaft shaft 91a.
  • the clutch C1 includes a first sun gear 91 (sun gear shaft 91a) that is an output element of the differential rotation mechanism 90 for speed change and a carrier 45 (carrier shaft that is the second element of the power distribution integration mechanism 40). 45a) or both of them can be selectively connected to the drive shaft 66.
  • the speed change differential rotating mechanism 90 If the sun gear shaft 91a connected to the first sun gear 91, which is the output element, and the drive shaft 66 are connected, and the clutch CO is connected, the sun gear shaft 41a, the first motor shaft 46, A first coupling state in which the sun gear 41, which is the first element of the power distribution and integration mechanism, and the drive shaft 66 are coupled via the differential rotation mechanism 90 and the clutch C1 can be realized.
  • the clutch C1 of the transmission 60B is set to the R position, the carrier shaft 45a and the drive shaft 66 are connected, and thereby, the carrier 45 and the drive shaft 66 as the second element of the power distribution and integration mechanism 40 are connected. The second connected state can be realized. If the clutch C1 of the transmission 60B is set to the M position, the third connection state in which both the carrier 45 and the sun gear 41 of the power distribution and integration mechanism 40 are connected to the drive shaft 66 can be realized. Also in the hybrid vehicle 20B provided with such a transmission 60B, the same operational effect as the above-described hybrid vehicles 20, 20A can be obtained.
  • the transmission 60B having the speed change differential rotation mechanism 90 including the stepped gear 96 it has a single pinion type planetary gear mechanism that tends to increase the rotation speed of the pinion gear when setting a larger reduction ratio. Compared to a transmission, a larger reduction ratio can be set easily.
  • FIG. 13 is a schematic configuration diagram of a hybrid vehicle 20C according to another modification.
  • the hybrid vehicles 20, 20A and 20B described above are configured as rear-wheel drive vehicles
  • the hybrid vehicle 20C of the modified example is configured as a front-wheel drive vehicle.
  • the hybrid vehicle 20C has the sun gear 11 of the external gear, the inner teeth formed on the inner periphery thereof, and the outer teeth formed on the outer periphery thereof, and is disposed concentrically with the sun gear 11.
  • Ring gear 12 and a carrier 14 that holds a plurality of pinion gears 13 that mesh with both the sun gear 11 and the inner teeth of the ring gear 12.
  • the sun gear 11 (first element), the ring gear 12 (second element), and the carrier 14 (Third element) is provided with a power distribution and integration mechanism 10 which is a single pinion planetary gear mechanism configured to be able to rotate differentially with each other!
  • the power distribution and integration mechanism 10 is configured such that the gear ratio p (the value obtained by dividing the number of teeth of the sun gear 11 by the number of teeth of the ring gear 12) is p ⁇ 0.5.
  • the sun gear 11 as the first element of the power distribution integrated mechanism 10 is a first electric motor through a sun gear shaft l la, a clutch CO "and a first motor shaft 46 that extend from the sun gear 11 to the opposite side of the engine 22.
  • All motors MG1 (rotor) are connected, and the ring gear 12 as the second element ,
  • the reduction gear mechanism 50 disposed on the engine 22 side of the power distribution and integration mechanism 10, the second reduction gear mechanism 50 (sun gear 51), and the second through a hollow second motor shaft 55 extending toward the engine 22.
  • Motor MG2 (hollow rotor) as an electric motor is connected.
  • the crankshaft 26 of the engine 22 is connected to the carrier 14 as the third element via a carrier shaft 14a and a damper 28 extending through the second motor shaft 55 and the motor MG2.
  • the transmission 60C is always in mesh with the transmission differential rotation mechanism 90 including the stepped gear 96, the transmission shaft 97, the drive gear 47 attached to the first motor shaft 46, and the drive gear 47.
  • a second connected gear constituted by a first driven gear train composed of a first driven gear 98 and a ring gear 12 of the power distribution and integration mechanism 10 and a second driven gear 99 that always meshes with the external teeth of the ring gear 12.
  • the transmission shaft 97 is rotatably supported by a bearing (not shown), extends in parallel with the first motor shaft 46 and the second motor shaft 55, and is a first sun gear 91 which is an output element of the transmission differential rotation mechanism 90. It is fixed to.
  • the transmission shaft 97 is connected to the second sun gear 92, which is a fixed element of the transmission differential rotation mechanism 90, and extends through the hollow shaft fixed to the transmission case in the right direction in the figure.
  • the first driven gear 98 of the first connecting gear train is supported so as to be rotatable around one end (the left end in the figure) of the transmission shaft 97 and is an input element of the differential rotation mechanism 90 for shifting.
  • the second driven gear 99 which is engaged with the outer teeth of the ring gear 12 and constitutes the second connecting gear train is arranged on the side (right side in the drawing) of the transmission differential rotation mechanism 90 and the transmission shaft 97 It is supported by a bearing (not shown) so as to be rotatable around.
  • the output gear 110 is connected to front wheels 69c and 69d as drive wheels via a gear mechanism 67 including a drive shaft 66 and a differential gear 68.
  • a gear mechanism 67 including a drive shaft 66 and a differential gear 68 In the embodiment, the number of teeth of the outer teeth of the drive gear 47 constituting the first connecting gear train and the outer teeth of the ring gear 12 constituting the second connecting gear train are the same, and the first connecting gear train is The force S in which the number of teeth of the first driven gear 98 constituting the same and the second driven gear 99 constituting the second connecting gear train are made the same, the number of teeth of these gears can be arbitrarily determined.
  • the clutch included in the transmission 60C can connect either or both of the transmission shaft 97 and the second driven gear 99 of the second connecting gear train to the output gear 110.
  • the clutch includes, for example, a dog fixed to one end (right end in the figure) of the transmission shaft 97, a dog fixed to the second driven gear 99, a dog of the transmission shaft 97, and a second driven gear 99.
  • a dog clutch including a dog fixed to the output gear 110 so as to be positioned around the dog, and an engaging member that can be engaged with the dog and driven by an electric, electromagnetic, or hydraulic actuator 101 As shown in FIG. 13, the position of the engaging member can be selectively switched.
  • a brake B0 ⁇ that functions as a fixing means capable of fixing the first motor shaft 46, which is the rotation shaft of the motor MG1, in a non-rotatable manner is provided in the vicinity of the motor MG1.
  • the brake B0 is composed of a dog fixed to the drive gear 47 via an engaging member driven by an electric, electromagnetic or hydraulic actuator 102 and a fixing dog fixed to the transmission case. Is configured as a dog clutch that can and child uncoupled both with coupling with no loss! /, Ru.
  • the hybrid vehicle according to the present invention may be configured as a front-wheel drive vehicle, and also in the hybrid vehicle 20C of FIG. 13, the above-described hybrid vehicles 20, 20A, The same effect as 20B can be obtained.
  • a transmission 60C shown in FIG. 13 includes a transmission shaft 97 extending in parallel with the first and second motor shafts 46 and 55, a first and second connecting gear trains of parallel shaft type, and a switching means.
  • the power output device can be configured as a two-shaft type by arranging the clutch C1' and the differential rotation mechanism 90 for variable speed around the transmission shaft 97, and the engine Even if the motor 22 and the motors MG1 and MG2 and the power distribution and integration mechanism 10 are arranged substantially coaxially, an increase in the axial direction (vehicle width direction) size of the power output device can be suppressed. Therefore, the power output apparatus of FIG. 13 is compact and excellent in mountability, and is extremely suitable for the hybrid vehicle 20C that travels mainly by driving the front wheels.
  • the sun gear 11 of the power distribution and integration mechanism 10 is connected to the transmission shaft 97 via the parallel shaft type first connection gear train, and the parallel shaft type second connection gear train is connected. If the ring gear 12 of the power distribution and integration mechanism 10 is connected to the drive shaft 66 via the drive shaft 66, the transmission gear ratio between the sun gear 11 and the transmission shaft 97 and between the ring gear 12 and the drive shaft 66 is set to be independent. It is also possible to do. As a result, the degree of freedom in setting the transmission ratio of the transmission 60C can be increased, and the power transmission efficiency can be further improved. In the example of FIG.
  • the force in which the outer teeth are formed on the ring gear 12 of the power distribution and integration mechanism 10 and the ring gear 12 itself constitutes the first coupling gear train is not limited to this. That is, instead of forming external teeth on the ring gear 12, a gear similar to the drive gear 47 may be connected to the ring gear 12, and the gear may be engaged with the second driven gear 99 to form the second connection gear train. .
  • the differential rotation mechanism for transmission of the transmission 60C may be a single pinion type planetary gear mechanism! /.
  • the clutch C0 ⁇ and the brake B0 ⁇ may be driven by a hydraulic actuator, and the function of the clutch C1 'of the transmission 60C is divided into two clutches driven by the hydraulic actuator, respectively. Also good.
  • the hybrid vehicle 20C includes the power distribution and integration mechanism 10 that is a single pinion planetary gear mechanism in which the gear ratio p is less than 0.5 as described above.
  • the torque distribution ratio from the engine 22 to the ring gear 12 is larger than that in the sun gear 11. Therefore, as shown in FIG. 13, by arranging reduction gear mechanism 50 between ring gear 12 and motor MG2, motor MG2 can be reduced in size and its power loss can be reduced.
  • the reduction ratio pr of the reduction gear mechanism 50 is set to If the power distribution / integration mechanism 10 has a value close to the gear ratio p, the motor MG1 and MG2 can have substantially the same specifications, which improves the productivity of the engine 22 and the power output device. Cost can be reduced.
  • a mechanism for connecting and releasing the sun gear 41 and the motor MG1, and the first motor shaft 46 (sun gears 41, 11 ) May be omitted or all of the reduction gear mechanism 50 may be omitted.
  • the hybrid vehicle 20, 20A, 20B may be configured as a four-wheel drive vehicle based on a rear wheel drive.
  • the hybrid vehicle 20C described above may be configured as a four-wheel drive vehicle based on a front wheel drive. May be.
  • the power distribution and integration mechanism 40 includes the first sun gear and the second sun gear having different numbers of teeth, the first pinion gear and the second sun gear meshing with the first sun gear.
  • a planetary gear mechanism including a carrier that holds at least one stepped gear formed by connecting a second pinion gear that meshes with a sun gear may be used.
  • the power distribution and integration mechanism 10 may be configured as a double pinion planetary gear mechanism.
  • the power output device according to the present invention is a vehicle, ship, or aircraft other than an automobile. It may be mounted on a moving body such as, or may be incorporated into a fixed facility such as a construction facility.
  • the present invention can be used in the manufacturing industry of power output devices and hybrid vehicles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Arrangement Of Transmissions (AREA)
  • Structure Of Transmissions (AREA)

Abstract

Provided is a hybrid automobile (20) comprising an engine (22), motors (MG1 and MG2) and a power distribution/integration mechanism (40) arranged on an axis common to one another. Further comprised is a speed-changing differential rotation mechanism (61) constituted to include a sun gear (62) as an input element to be connected to a sun gear (41) or a first element of the power distribution/integration mechanism (40), a ring gear (63) as a stationary element, and a carrier (65) as an output element, and constituted such that those three elements can rotate differentially of one another. Still further comprised is a transmission (60) including a clutch (C1) acting as connecting means for connecting the sun gear (62) of the speed-changing differential rotation mechanism (61) and a carrier (45) or a second element of the power distribution/integration mechanism (40) selectively to a drive shaft (66).

Description

明 細 書  Specification
動力出力装置およびハイブリッド自動車  Power output device and hybrid vehicle
技術分野  Technical field
[0001] 本発明は、駆動軸に動力を出力する動力出力装置およびそれを備えたハイブリツ ド自動車に関する。  TECHNICAL FIELD [0001] The present invention relates to a power output device that outputs power to a drive shaft and a hybrid vehicle including the same.
背景技術  Background art
[0002] 従来から、この種の動力出力装置として、内燃機関と、 2体の電動機と、いわゆるラ ビニョ型の遊星歯車機構と、遊星歯車機構の 2つの出力要素を選択的に出力軸に 連結可能な平行軸式変速機とを備えた動力出力装置が知られている(例えば、特許 文献 1参照)。また、従来から、内燃機関に接続される入力要素および 2つの出力要 素を含む遊星歯車装置と、当該遊星歯車機構の対応する出力要素にそれぞれ接続 されるカウンタシャフトを含む平行軸式変速機とを備えたものも知られている(例えば 、特許文献 2参照)。この動力出力装置では、遊星歯車装置の 2つの出力要素が電 気駆動部の対応したロータの内周にそれぞれ固定されている。なお、従来から、内燃 機関に接続された入力要素と、第 1モータ'ジェネレータに接続された反力要素と、 第 2モータ'ジェネレータに接続された出力要素とを含む動力分配機構と、出力部材 としてのアクスル軸を動力分配機構の出力要素と反力要素とに選択的に接続させる ための 2つのクラッチとを備えたものも知られている(例えば、特許文献 3参照)。この 動力出力装置では、第 1モータ'ジェネレータが負回転でカ行するようになると、動力 分配機構の反力要素が出力部材に接続されると共に出力要素と出力部材との接続 が解除されるように 2つのクラッチが制御され、それにより、出力部材の動力の一部を 用いて第 2モータ'ジェネレータが発電した電力により第 1モータ'ジェネレータを駆動 する動力循環の発生が抑制される。  Conventionally, as this type of power output device, an internal combustion engine, two electric motors, a so-called Ravigne type planetary gear mechanism, and two output elements of the planetary gear mechanism are selectively coupled to an output shaft. 2. Description of the Related Art A power output apparatus including a parallel shaft type transmission that can be used is known (for example, see Patent Document 1). Further, conventionally, a planetary gear device including an input element connected to an internal combustion engine and two output elements, and a parallel shaft transmission including a countershaft respectively connected to a corresponding output element of the planetary gear mechanism, There are also known ones (see, for example, Patent Document 2). In this power output device, the two output elements of the planetary gear device are respectively fixed to the inner periphery of the corresponding rotor of the electric drive unit. Conventionally, a power distribution mechanism including an input element connected to the internal combustion engine, a reaction force element connected to the first motor 'generator, and an output element connected to the second motor' generator, and an output member There are also known ones including two clutches for selectively connecting the axle shaft as an output element and a reaction force element of the power distribution mechanism (see, for example, Patent Document 3). In this power output device, when the first motor generator is driven in a negative rotation, the reaction force element of the power distribution mechanism is connected to the output member and the connection between the output element and the output member is released. Thus, the two clutches are controlled, thereby suppressing the occurrence of power circulation that drives the first motor 'generator by the electric power generated by the second motor' generator using a part of the power of the output member.
特許文献 1 :特開 2005— 155891号公報  Patent Document 1: JP 2005-155891 A
特許文献 2:特開 2003— 106389号公報  Patent Document 2: Japanese Patent Laid-Open No. 2003-106389
特許文献 3:特開 2005— 125876号公報  Patent Document 3: Japanese Patent Laid-Open No. 2005-125876
発明の開示 [0003] 上述のような動力出力装置は、内燃機関からの動力を 2体の電動機によりトルク変 換しながら要求される動力を駆動軸に出力することにより、内燃機関を効率のよい運 転ポイントで運転可能とするものである力 構造が複雑でコンパクト化し難!/、ものであ り、車両への搭載性の面で多少の問題を有している。また、より広範な走行領域にお いて動力の伝達効率を向上させるという点で、従来の動力出力装置にはなお改善の 余地がある。 Disclosure of the invention [0003] The power output apparatus as described above outputs the required power to the drive shaft while converting the torque from the internal combustion engine with two electric motors, thereby efficiently driving the internal combustion engine. The force structure that makes it possible to drive is complicated and difficult to downsize! /, Which has some problems in terms of mounting on vehicles. In addition, there is still room for improvement in the conventional power output device in terms of improving power transmission efficiency in a wider driving range.
[0004] そこで、本発明は、シンプルかつコンパクトで搭載性に優れた動力出力装置および それを備えたハイブリッド自動車の提供を目的の一つとする。また、本発明は、より広 範な運転領域において動力の伝達効率を向上させることができる動力出力装置およ びそれを備えたハイブリッド自動車の提供を目的の一つとする。  [0004] Accordingly, an object of the present invention is to provide a power output device that is simple, compact and excellent in mountability, and a hybrid vehicle including the power output device. Another object of the present invention is to provide a power output apparatus capable of improving power transmission efficiency in a wider driving range and a hybrid vehicle equipped with the power output apparatus.
[0005] 本発明による動力出力装置およびハイブリッド自動車は、上述の目的を達成するた めに以下の手段を採って!/、る。 [0005] The power output apparatus and the hybrid vehicle according to the present invention employ the following means to achieve the above-mentioned object!
[0006] 本発明による動力出力装置は、 [0006] A power output apparatus according to the present invention includes:
駆動軸に動力を出力する動力出力装置であって、  A power output device that outputs power to a drive shaft,
内燃機関と、  An internal combustion engine;
動力を入出力可能な第 1電動機と、  A first electric motor that can input and output power;
動力を入出力可能な第 2電動機と、  A second electric motor that can input and output power;
前記第 1電動機の回転軸に接続される第 1要素と前記第 2電動機の回転軸に接続 される第 2要素と前記内燃機関の機関軸に接続される第 3要素とを含むと共にこれら 3つの要素が互いに差動回転できるように構成された動力分配統合機構と、 前記動力分配統合機構の前記第 1および第 2要素の何れか一方に接続される入 力要素と固定要素と出力要素とを有すると共にこれら 3つの要素が互いに差動回転 できるように構成された変速用差動回転機構と、前記変速用差動回転機構の前記出 力要素と前記動力分配統合機構の前記第 1および第 2要素の他方とを前記駆動軸 に選択的に連結可能な連結手段とを含む変速伝達手段と、  Including a first element connected to the rotating shaft of the first motor, a second element connected to the rotating shaft of the second motor, and a third element connected to the engine shaft of the internal combustion engine. A power distribution and integration mechanism configured such that the elements can differentially rotate with each other; an input element connected to one of the first and second elements of the power distribution and integration mechanism; a fixed element; and an output element. And the three differential elements configured to be capable of differentially rotating with respect to each other, the output differential element of the differential gear differential rotation mechanism, and the first and second of the power distribution and integration mechanism. Transmission means including connection means capable of selectively connecting the other element to the drive shaft;
を備えるものである。  Is provided.
[0007] この動力出力装置は、動力分配統合機構の第 1および第 2要素の何れか一方に接 続される入力要素と固定要素と出力要素とを有すると共にこれら 3つの要素が互いに 差動回転できるように構成された変速用差動回転機構と、変速用差動回転機構の出 力要素と動力分配統合機構の第 1および第 2要素の他方とを駆動軸に選択的に連 結可能な連結手段とを含む変速伝達手段を備える。かかる変速伝達手段は、比較 的少な!/、部品で構成可能であると共にシンプルかつコンパクトな構成を有し、搭載性 に優れるものである。また、この動力出力装置では、変速伝達手段の連結手段により 変速用差動回転機構の出力要素を駆動軸に連結すれば、動力分配統合機構の第 1および第 2要素の何れか一方からの動力を変速用差動回転機構により変速した上 で駆動軸に出力することができる。更に、この動力出力装置では、変速伝達手段の 連結手段により変速用差動回転機構の出力要素と動力分配統合機構の第 1および 第 2要素の他方との双方を駆動軸に連結すれば、内燃機関からの動力を固定された 変速比で機械的(直接)に駆動軸へと伝達することができる。また、この動力出力装 置では、変速伝達手段の連結手段により動力分配統合機構の第 1および第 2要素の 他方を駆動軸に連結すれば、当該第 1および第 2要素の他方からの動力を駆動軸に 直接出力することが可能となる。従って、この変速伝達手段によれば、動力分配統合 機構からの動力を複数段階に変速して駆動軸に出力することが可能となる。そして、 この動力出力装置では、変速伝達手段の連結手段により動力分配統合機構の第 1 要素が駆動軸に連結されるときには、出力要素となる第 1要素に接続される第 1電動 機を電動機として機能させ、かつ反力要素となる第 2要素に接続される第 2電動機を 発電機として機能させることが可能となる。また、変速伝達手段の連結手段により動 力分配統合機構の第 2要素が駆動軸に連結されるときには、出力要素となる第 2要 素に接続される第 2電動機を電動機として機能させ、かつ反力要素となる第 1要素に 接続される第 1電動機を発電機として機能させることが可能となる。これにより、この動 力出力装置では、連結手段による連結状態の切り替えを適宜実行することにより、特 に電動機として機能する第 1または第 2電動機の回転数が高まったときに発電機とし て機能する第 2または第 1電動機の回転数が負の値にならないようにして、いわゆる 動力循環の発生を抑制することができる。この結果、この動力出力装置によれば、よ り広範な運転領域において動力の伝達効率を良好に向上させることが可能となる。 また、前記変速伝達手段の前記変速用差動回転機構は、 3要素式遊星歯車機構 であってもよい。これにより、変速伝達手段をよりコンパクトに構成することが可能とな る。そして、変速用差動回転機構は、互いに異なる歯数をもった第 1サンギヤおよび 第 2サンギヤと、第 1サンギヤと嚙合する第 1ピニオンギヤと第 2サンギヤと嚙合する第 2ピニオンギヤとを連結してなる段付ギヤを少なくとも 1つ保持するキャリアとを含む遊 星歯車機構であってもよい。このような段付ギヤを含む遊星歯車機構を変速用差動 回転機構として用いれば、より大きな減速比を容易に設定することが可能となる。 [0007] This power output apparatus has an input element, a fixed element, and an output element connected to either one of the first and second elements of the power distribution and integration mechanism, and these three elements are mutually connected. The transmission differential rotation mechanism configured to be capable of differential rotation, the output element of the transmission differential rotation mechanism, and the other of the first and second elements of the power distribution and integration mechanism are selectively linked to the drive shaft. And a transmission means including a connecting means capable of being connected. Such shift transmission means can be configured with comparatively few! / Parts, has a simple and compact configuration, and is excellent in mountability. Further, in this power output device, if the output element of the differential transmission rotating mechanism is connected to the drive shaft by the connecting means of the transmission transmission means, the power from one of the first and second elements of the power distribution and integration mechanism can be obtained. Can be output to the drive shaft after being shifted by the differential rotation mechanism for shifting. Further, in this power output device, if both the output element of the speed-changing differential rotation mechanism and the other one of the first and second elements of the power distribution and integration mechanism are connected to the drive shaft by the connecting means of the speed change transmission means, the internal combustion engine Power from the engine can be transmitted mechanically (directly) to the drive shaft at a fixed gear ratio. Further, in this power output device, if the other of the first and second elements of the power distribution and integration mechanism is connected to the drive shaft by the connecting means of the transmission transmission means, the power from the other of the first and second elements is transmitted. It is possible to output directly to the drive shaft. Therefore, according to this shift transmission means, the power from the power distribution and integration mechanism can be shifted in a plurality of stages and output to the drive shaft. In this power output apparatus, when the first element of the power distribution and integration mechanism is connected to the drive shaft by the connecting means of the transmission transmission means, the first motor connected to the first element serving as the output element is used as the motor. It is possible to make the second motor connected to the second element that functions and the reaction force element function as a generator. Further, when the second element of the power distribution and integration mechanism is coupled to the drive shaft by the coupling means of the transmission transmission means, the second motor connected to the second element serving as the output element functions as a motor and is counteracted. The first motor connected to the first element, which is the force element, can function as a generator. As a result, this power output device functions as a generator, particularly when the rotation speed of the first or second motor, which functions as an electric motor, increases by appropriately switching the connection state by the connecting means. Generation of so-called power circulation can be suppressed by preventing the rotation speed of the second or first motor from becoming a negative value. As a result, according to this power output device, it is possible to improve the power transmission efficiency satisfactorily in a wider operating range. The transmission differential rotation mechanism of the transmission transmission means is a three-element planetary gear mechanism. It may be. As a result, the transmission transmission means can be configured more compactly. The transmission differential rotation mechanism connects the first sun gear and the second sun gear with different numbers of teeth, and the first pinion gear meshed with the first sun gear and the second pinion gear meshed with the second sun gear. And a planetary gear mechanism including a carrier that holds at least one stepped gear. If a planetary gear mechanism including such a stepped gear is used as a transmission differential rotation mechanism, a larger reduction ratio can be easily set.
[0009] 更に、前記第 1および第 2電動機は前記内燃機関と概ね同軸に配置され、前記動 力分配統合機構は前記第 1電動機と前記第 2電動機との間に両電動機と概ね同軸 に配置されてもよい。これにより、動力出力装置の全体をよりコンパクトに構成すること が可能となる。 [0009] Further, the first and second motors are arranged substantially coaxially with the internal combustion engine, and the power distribution and integration mechanism is arranged substantially coaxially with both motors between the first motor and the second motor. May be. As a result, the entire power output apparatus can be configured more compactly.
[0010] このように、内燃機関と第 1および第 2電動機と動力分配統合機構とが概ね同軸に 配置される場合、本発明による動力出力装置は、前記動力分配統合機構の前記第 1 および第 2要素の何れか一方に接続されると共に前記変速用差動回転機構の前記 入力要素に接続される中空軸と、前記第 1および第 2要素の他方に接続されると共に 前記中空軸および前記変速用差動回転機構を通つて前記駆動軸に向けて延びる連 結軸とを更に備えてもよぐ前記変速伝達手段の前記連結手段は、前記変速用差動 回転機構の前記出力要素と前記連結軸との何れか一方または双方を前記駆動軸に 選択的に連結可能であってもよい。これにより、動力分配統合機構の第 1要素からの 動力と第 2要素からの動力とを概ね同軸かつ同方向に出力することができるので、変 速伝達手段を内燃機関や第 1および第 2電動機、動力分配統合機構と概ね同軸に 配置することが可能となる。従って、かかる構成は、主に後輪を駆動して走行する車 両に極めて好適なものとなる。  [0010] Thus, when the internal combustion engine, the first and second electric motors, and the power distribution and integration mechanism are arranged substantially coaxially, the power output apparatus according to the present invention provides the first and second power distribution integration mechanisms. A hollow shaft connected to one of the two elements and connected to the input element of the differential rotation mechanism for shifting, and connected to the other of the first and second elements, and the hollow shaft and the speed change A connection shaft extending toward the drive shaft through the differential rotation mechanism for the transmission, the connection means of the transmission transmission means may be connected to the output element of the transmission differential rotation mechanism. Either one or both of the shafts may be selectively connectable to the drive shaft. As a result, the power from the first element and the power from the second element of the power distribution and integration mechanism can be output substantially coaxially and in the same direction, so that the speed change transmission means can be the internal combustion engine or the first and second electric motors. Therefore, it can be arranged almost coaxially with the power distribution and integration mechanism. Therefore, this configuration is extremely suitable for a vehicle that travels mainly by driving the rear wheels.
[0011] また、内燃機関と第 1および第 2電動機と動力分配統合機構とが概ね同軸に配置さ れる場合、前記変速伝達手段の前記連結手段は、前記動力分配統合機構の前記 第 1および第 2要素の何れか一方と前記伝達軸とを連結する第 1平行軸式ギヤ列と、 前記第 1および第 2要素の他方に連結される第 2平行軸式ギヤ列と、前記伝達軸と 前記駆動軸とが連結される第 1連結状態と、前記第 2平行軸式ギヤ列と前記駆動軸 とが連結される第 2連結状態と、前記伝達軸および前記第 2平行軸式ギヤ列の双方 が前記伝達軸に連結される第 3連結状態とを選択的に切り替え可能な切替手段とを 含むものとされてもよい。このように変速伝達手段の連結手段を上記伝達軸と 2組の 平行軸式ギヤ列と切替手段とを含むものとすれば、切替手段や変速用差動回転機 構を伝達軸の周りにそれと同軸に配置することにより動力出力装置を 2軸式のものと して構成可能となり、内燃機関と第 1および第 2電動機と動力分配統合機構とを概ね 同軸に配置しても、動力出力装置の軸方向(幅方向寸法)の増加を抑制することがで きる。従って、この動力出力装置は、コンパクトで搭載性に優れて主に前輪を駆動し て走行する車両に極めて好適なものとなる。また、平行軸式ギヤ列を介して動力分配 統合機構の第 1または第 2要素を伝達軸に連結すれば、第 1要素または第 2要素と 伝達軸との間の変速比を自在に設定することも可能となる。 [0011] In addition, when the internal combustion engine, the first and second motors, and the power distribution and integration mechanism are arranged substantially coaxially, the connection means of the transmission transmission means is the first and second of the power distribution and integration mechanism. A first parallel-shaft gear train that connects any one of the two elements and the transmission shaft; a second parallel-shaft gear train that is connected to the other of the first and second elements; the transmission shaft; Both the first connection state in which the drive shaft is connected, the second connection state in which the second parallel shaft gear train and the drive shaft are connected, and both the transmission shaft and the second parallel shaft gear train May include switching means capable of selectively switching between a third coupled state coupled to the transmission shaft. Thus, if the connecting means of the transmission transmission means includes the transmission shaft, two sets of parallel shaft gear trains, and the switching means, the switching means and the differential rotation mechanism for transmission are arranged around the transmission shaft. By arranging them coaxially, the power output device can be configured as a two-shaft type, and even if the internal combustion engine, the first and second motors, and the power distribution and integration mechanism are arranged almost coaxially, the power output device An increase in the axial direction (width direction dimension) can be suppressed. Therefore, this power output apparatus is compact and excellent in mountability, and is extremely suitable for a vehicle that travels mainly by driving the front wheels. In addition, if the first or second element of the power distribution and integration mechanism is connected to the transmission shaft via a parallel shaft gear train, the transmission ratio between the first element or the second element and the transmission shaft can be set freely. It is also possible.
[0012] 更に、本発明による動力出力装置は、前記第 1電動機の回転軸と前記第 2電動機 の回転軸との何れか一方を回転不能に固定可能な固定手段を更に備えてもよい。こ れにより、固定手段に対応していない第 1または第 2電動機に接続される動力分配統 合機構の第 1または第 2要素が変速伝達手段の連結手段によって駆動軸に連結さ れているときに、固定手段に対応した第 2または第 1電動機の回転軸を当該固定手 段により回転不能に固定すれば、内燃機関からの動力を固定された変速比で機械 的(直接)に駆動軸へと伝達することができる。従って、この動力出力装置によれば、 より一層広範な運転領域において動力の伝達効率を良好に向上させることが可能と なる。 [0012] Furthermore, the power output apparatus according to the present invention may further include a fixing means capable of fixing any one of the rotating shaft of the first electric motor and the rotating shaft of the second electric motor so as not to rotate. As a result, when the first or second element of the power distribution and integration mechanism connected to the first or second electric motor not corresponding to the fixing means is connected to the drive shaft by the connecting means of the transmission transmission means. In addition, if the rotation shaft of the second or first motor corresponding to the fixing means is fixed to be non-rotatable by the fixing means, the power from the internal combustion engine is mechanically (directly) transferred to the drive shaft at a fixed gear ratio. Can be communicated. Therefore, according to this power output device, power transmission efficiency can be improved satisfactorily in a wider operating range.
[0013] また、本発明による動力出力装置は、前記第 1電動機と前記第 1要素との接続およ び該接続の解除と、前記第 2電動機と前記第 2要素との接続および該接続の解除と 、前記内燃機関と前記第 3要素との接続および該接続の解除との何れ力、を実行可能 な接続断接手段を更に備えてもよい。このような接続断接手段を備えた動力出力装 置では、接続断接手段に上記接続を解除させれば、動力分配統合機構の機能によ り内燃機関を実質的に第 1および第 2電動機や変速伝達手段から切り離すことが可 能となる。これにより、この動力出力装置では、接続断接手段に上記接続を解除させ ると共に内燃機関を停止させれば、第 1および第 2電動機の少なくとも何れ力、からの 動力を変速伝達手段によって変速して駆動軸に効率よく伝達することが可能となる。 従って、この動力出力装置によれば、第 1および第 2電動機に要求される最大トルク 等を低下させることが可能となり、第 1および第 2電動機のより一層の小型化を図るこ と力 Sできる。 [0013] Further, the power output apparatus according to the present invention includes a connection between the first electric motor and the first element, a release of the connection, a connection between the second electric motor and the second element, and connection of the connection. A connection / disconnection means capable of executing any one of the release and the connection between the internal combustion engine and the third element and the release of the connection may be further provided. In the power output device having such connection / disconnection means, if the connection / disconnection means releases the connection, the internal combustion engine is substantially made to function as the first and second electric motors by the function of the power distribution and integration mechanism. And can be separated from the transmission means. Thus, in this power output device, when the connection / disconnection means releases the connection and stops the internal combustion engine, the power from at least one of the powers of the first and second motors is changed by the transmission transmission means. Thus, it is possible to efficiently transmit to the drive shaft. Therefore, according to this power output device, it is possible to reduce the maximum torque required for the first and second motors, and the force S can be further reduced in size of the first and second motors. .
[0014] 更に、前記動力分配統合機構の前記第 1および第 2要素のうちの前記機関軸に接 続される前記第 3要素からより大きなトルクが入力される一方は、前記第 1電動機また は前記第 2電動機の回転軸の回転を減速する減速手段を介して前記第 1電動機ま たは前記第 2電動機と接続されてもよい。このように、動力分配統合機構の第 1およ び第 2要素のうち、内燃機関からのトルクの分配比率が大きい方を減速手段を介して 第 1または第 2電動機と接続すれば、減速手段に接続された第 1または第 2電動機の トルク負担をより効果的に軽減して、当該電動機を小型化すると共にその動力損失 の低減化を図ることが可能となる。  [0014] Further, one of the first and second elements of the power distribution and integration mechanism to which a larger torque is input from the third element connected to the engine shaft is the first motor or The second electric motor may be connected to the first electric motor or the second electric motor via a decelerating means that decelerates the rotation of the rotating shaft of the second electric motor. As described above, if one of the first and second elements of the power distribution and integration mechanism having a larger torque distribution ratio from the internal combustion engine is connected to the first or second electric motor via the speed reduction means, the speed reduction means This makes it possible to more effectively reduce the torque burden of the first or second motor connected to the, thereby reducing the size of the motor and reducing its power loss.
[0015] この場合、前記動力分配統合機構は、サンギヤと、リングギヤと、互いに嚙合すると 共に一方が前記サンギヤと他方が前記リングギヤと嚙合する 2つのピニオンギヤの組 を少なくとも 1組保持するキャリアとを含むダブルピニオン式遊星歯車機構であり、前 記第 1要素は前記サンギヤおよび前記キャリアの何れか一方であると共に前記第 2要 素は前記サンギヤおよび前記キャリアの他方であり、前記第 3要素は前記リングギヤ であってもよい。そして、前記動力分配統合機構は、前記サンギヤの歯数を前記リン グギヤの歯数で除した値である該動力分配統合機構のギヤ比を pとしたときに、 p < 0. 5となるように構成され、前記減速手段は、その減速比が p / (1— P )近傍の 値となるように構成されると共に前記第 1電動機または前記第 2電動機と前記キャリア との間に配置されてもよい。このような諸元の動力分配統合機構においては、サンギ ャに比べてキャリアに対する内燃機関からのトルクの分配比率が大きくなる。従って、 キャリアと第 1または第 2電動機との間に減速手段を配置することにより、当該第 1また は第 2電動機の小型化とその動力損失の低減化を図ることが可能となる。また、減速 手段の減速比を p / (1— p )近傍の値とすれば、第 1および第 2電動機の諸元を概 ね同一のものとすることが可能となるので、動力出力装置の生産性を向上させると共 にコストの低減化を図ることができる。更に、ダブルピニオン式遊星歯車機構である動 力分配統合機構は、前記サンギヤの歯数を前記リングギヤの歯数で除した値である 該動力分配統合機構のギヤ比を Pとしたときに、 β > 0. 5となるように構成されてもよ ぐこの場合、前記減速手段は、その減速比が(1 ρ ) / ρ近傍の値となるように構 成されると共に前記第 1電動機または前記第 2電動機と前記サンギヤとの間に配置さ れてもよい。 [0015] In this case, the power distribution and integration mechanism includes a sun gear, a ring gear, and a carrier that holds at least one set of two pinion gears that mesh with each other and one of the sun gear and the other meshes with the ring gear. A double pinion type planetary gear mechanism, wherein the first element is one of the sun gear and the carrier, the second element is the other of the sun gear and the carrier, and the third element is the ring gear. It may be. The power distribution and integration mechanism is such that p <0.5 when the gear ratio of the power distribution and integration mechanism, which is a value obtained by dividing the number of teeth of the sun gear by the number of teeth of the ring gear, is p. The speed reduction means is configured such that the speed reduction ratio is a value in the vicinity of p / (1- P ) and is disposed between the first motor or the second motor and the carrier. Also good. In such a power distribution and integration mechanism of various specifications, the distribution ratio of torque from the internal combustion engine to the carrier is larger than that of the sun gear. Therefore, by disposing the speed reduction means between the carrier and the first or second electric motor, it is possible to reduce the size of the first or second electric motor and reduce its power loss. In addition, if the reduction ratio of the reduction means is set to a value in the vicinity of p / (1-p), the specifications of the first and second motors can be made substantially the same. In addition to improving productivity, costs can be reduced. Furthermore, the power distribution and integration mechanism, which is a double pinion planetary gear mechanism, is a value obtained by dividing the number of teeth of the sun gear by the number of teeth of the ring gear. It may be configured such that β> 0.5 when the gear ratio of the power distribution and integration mechanism is P. In this case, the reduction means has a reduction ratio in the vicinity of (1 ρ) / ρ. And may be arranged between the first motor or the second motor and the sun gear.
[0016] また、前記動力分配統合機構は、サンギヤと、リングギヤと、前記サンギヤおよび前 記リングギヤの双方と嚙合するピニオンギヤを少なくとも 1つ保持するキャリアとを含 むシングルピニオン式遊星歯車機構であり、前記第 1要素は前記サンギヤおよび前 記リングギヤの何れか一方であると共に前記第 2要素は前記サンギヤおよび前記リン グギヤの他方であり、前記第 3要素は前記キャリアであり、前記サンギヤの歯数を前 記リングギヤの歯数で除した値である前記動力分配統合機構のギヤ比を ρとしたとき に、前記減速手段は、減速比が ρ近傍の値となるように構成されると共に前記第 1ま たは第 2電動機と前記リングギヤとの間に配置されてもよい。このような諸元の動力分 配統合機構においては、サンギヤに比べてリングギヤに対する内燃機関からのトルク の分配比率が大きくなる。従って、リングギヤと第 1または第 2電動機との間に減速手 段を配置することにより、当該第 1または第 2電動機の小型化とその動力損失の低減 化を図ることが可能となる。更に、減速手段の減速比を ρ近傍の値とすれば、第 1お よび第 2電動機の諸元を概ね同一のものとすることが可能となるので、動力出力装置 の生産性を向上させると共にコストの低減化を図ることができる。  [0016] The power distribution and integration mechanism is a single pinion planetary gear mechanism including a sun gear, a ring gear, and a carrier that holds at least one pinion gear that meshes with both the sun gear and the ring gear. The first element is one of the sun gear and the ring gear, the second element is the other of the sun gear and the ring gear, the third element is the carrier, and the number of teeth of the sun gear is determined. When the gear ratio of the power distribution and integration mechanism, which is a value divided by the number of teeth of the ring gear, is ρ, the reduction means is configured so that the reduction ratio is a value in the vicinity of ρ, and the first Alternatively, it may be disposed between the second electric motor and the ring gear. In such a power distribution and integration mechanism, the torque distribution ratio from the internal combustion engine to the ring gear is larger than that of the sun gear. Therefore, by arranging a reduction gear between the ring gear and the first or second electric motor, it is possible to reduce the size of the first or second electric motor and reduce its power loss. Furthermore, if the reduction ratio of the speed reduction means is set to a value in the vicinity of ρ, the specifications of the first and second motors can be made substantially the same, which improves the productivity of the power output device. Cost can be reduced.
[0017] 本発明によるハイブリッド自動車は、上記何れかの動力出力装置を備え、前記駆動 軸からの動力により駆動される駆動輪を含むものである。このハイブリッド自動車に搭 載される動力出力装置は、シンプルかつコンパクトで搭載性に優れると共に、より広 範な運転領域において動力の伝達効率を向上可能なものであるから、このハイブリツ ド自動車では、燃費と走行性能とを良好に向上させることができる。  [0017] A hybrid vehicle according to the present invention includes any one of the power output devices described above, and includes drive wheels that are driven by power from the drive shaft. The power output device mounted on this hybrid vehicle is simple and compact, has excellent mountability, and can improve power transmission efficiency in a wider driving range. And running performance can be improved satisfactorily.
図面の簡単な説明  Brief Description of Drawings
[0018] [図 1]本発明の実施例に係るハイブリッド自動車 20の概略構成図である。  FIG. 1 is a schematic configuration diagram of a hybrid vehicle 20 according to an embodiment of the present invention.
[図 2]実施例のハイブリッド自動車 20をエンジン 22の運転を伴って走行させる場合に 車速変化に応じて変速機 60の変速比をシフトアップ方向に変化させていくときの動 力分配統合機構 40および変速機 60の主たる要素の回転数やトルクの関係を例示 する説明図である。 [Fig. 2] Dynamic distribution / integration mechanism for changing the transmission gear ratio of the transmission 60 in the upshifting direction according to changes in the vehicle speed when the hybrid vehicle 20 of the embodiment is driven with the operation of the engine 22. And the relationship between the rotational speed and torque of the main elements of transmission 60 It is explanatory drawing to do.
[図 3]図 2と同様の説明図である。  FIG. 3 is an explanatory view similar to FIG.
[図 4]図 2と同様の説明図である。  FIG. 4 is an explanatory view similar to FIG.
[図 5]図 2と同様の説明図である。  FIG. 5 is an explanatory view similar to FIG.
[図 6]実施例のハイブリッド自動車 20の走行時におけるクラッチ COや変速機 60のク ラッチ C1のクラッチポジションの設定状態を示す図表である。  FIG. 6 is a chart showing clutch clutch and clutch position setting states of clutch C1 of transmission 60 when hybrid vehicle 20 of the embodiment travels.
[図 7]モータ MG2が発電機として機能すると共にモータ MG1が電動機として機能す るときの動力分配統合機構 40の各要素と減速ギヤ機構 50の各要素とにおける回転 数やトルクの関係を表す共線図の一例を示す説明図である。  [Fig. 7] When the motor MG2 functions as a generator and the motor MG1 functions as an electric motor, a common relationship representing the relationship between the rotational speed and torque of each element of the power distribution and integration mechanism 40 and each element of the reduction gear mechanism 50 is shown. It is explanatory drawing which shows an example of a diagram.
[図 8]モータ MG1が発電機として機能すると共にモータ MG2が電動機として機能す るときの動力分配統合機構 40の各要素と減速ギヤ機構 50の各要素とにおける回転 数やトルクの関係を表す共線図の一例を示す説明図である。  [Fig. 8] Co-represents the relationship between the rotational speed and torque of each element of the power distribution and integration mechanism 40 and each element of the reduction gear mechanism 50 when the motor MG1 functions as a generator and the motor MG2 functions as an electric motor. It is explanatory drawing which shows an example of a diagram.
[図 9]実施例のハイブリッド自動車 20におけるモータ走行モードを説明するための説 明図である。  FIG. 9 is an explanatory diagram for explaining a motor travel mode in the hybrid vehicle 20 of the embodiment.
[図 10]変形例のハイブリッド自動車 20Aの概略構成図である。  FIG. 10 is a schematic configuration diagram of a hybrid vehicle 20A according to a modification.
[図 11]変形例のハイブリッド自動車 20Aの走行時におけるクラッチ CO' 、ブレーキ B 0、変速機 60Aのクラッチ Cla, Clbのクラッチポジション等の設定状態を示す図表 である。  FIG. 11 is a chart showing the setting states of clutch CO ′, brake B 0, clutch positions of clutches Cla and Clb of transmission 60A, etc. during travel of hybrid vehicle 20A of a modified example.
[図 12]変形例のハイブリッド自動車 20Bの概略構成図である。  FIG. 12 is a schematic configuration diagram of a hybrid vehicle 20B according to a modification.
[図 13]変形例のハイブリッド自動車 20Cの概略構成図である。  FIG. 13 is a schematic configuration diagram of a hybrid vehicle 20C according to a modification.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0019] 次に、本発明を実施するための最良の形態を実施例を用いて説明する。 Next, the best mode for carrying out the present invention will be described using examples.
[0020] 図 1は、本発明の実施例に係るハイブリッド自動車 20の概略構成図である。同図に 示すハイブリッド自動車 20は、後輪駆動車両として構成されており、車両前部に配置 されるエンジン 22と、エンジン 22の出力軸であるクランクシャフト 26に接続された動 力分配統合機構 (差動回転機構) 40と、動力分配統合機構 40に接続された発電可 能なモータ MG1と、このモータ MG1と同軸に配置されると共に減速ギヤ機構 50を 介して動力分配統合機構 40に接続された発電可能なモータ MG2と、動力分配統合 機構 40からの動力を変速して駆動軸 66に伝達可能な変速機 60と、ハイブリッド自動 車 20の全体をコントロールするハイブリッド用電子制御ユニット(以下、「ハイブリッド E CUJと!/、う) 70等とを備えるものである。 FIG. 1 is a schematic configuration diagram of a hybrid vehicle 20 according to an embodiment of the present invention. The hybrid vehicle 20 shown in the figure is configured as a rear-wheel drive vehicle, and includes an engine 22 disposed at the front of the vehicle and a dynamic power distribution and integration mechanism connected to a crankshaft 26 that is an output shaft of the engine 22 ( (Differential rotation mechanism) 40, a motor MG1 capable of generating electricity connected to the power distribution and integration mechanism 40, and the motor MG1 and the motor MG1 are arranged coaxially and connected to the power distribution and integration mechanism 40 via the reduction gear mechanism 50. Motor MG2 capable of generating electricity and power distribution integration A transmission 60 that can shift the power from the mechanism 40 and transmit it to the drive shaft 66, and an electronic control unit for a hybrid that controls the entire hybrid vehicle 20 (hereinafter referred to as “Hybrid E CUJ! /,”) 70 etc. Are provided.
[0021] エンジン 22は、ガソリンや軽油といった炭化水素系燃料の供給を受けて動力を出 力する内燃機関であり、エンジン用電子制御ユニット(以下、「エンジン ECU」という) 24から燃料噴射量や点火時期、吸入空気量等の制御を受けている。エンジン ECU 24には、エンジン 22に対して設けられて当該エンジン 22の運転状態を検出する各 種センサからの信号が入力される。そして、エンジン ECU24は、ハイブリッド ECU70 と通信しており、ハイブリッド ECU70からの制御信号や上記センサからの信号等に 基づいてエンジン 22を運転制御すると共に必要に応じてエンジン 22の運転状態に 関するデータをハイブリッド ECU70に出力する。  [0021] The engine 22 is an internal combustion engine that outputs power by being supplied with hydrocarbon fuel such as gasoline or light oil. The engine control unit (hereinafter referred to as an "engine ECU") 24 is configured to Control of ignition timing, intake air volume, etc. The engine ECU 24 receives signals from various sensors that are provided for the engine 22 and detect the operating state of the engine 22. The engine ECU 24 communicates with the hybrid ECU 70 and controls the operation of the engine 22 based on the control signal from the hybrid ECU 70, the signal from the sensor, and the like, and data on the operation state of the engine 22 as necessary. Output to hybrid ECU70.
[0022] モータ MG1およびモータ MG2は、何れも発電機として作動すると共に電動機とし て作動可能な周知の同期発電電動機として構成されており、インバータ 31 , 32を介 して二次電池であるバッテリ 35と電力のやり取りを行なう。インバータ 31 , 32とノ ッテ リ 35とを接続する電力ライン 39は、各インバータ 31 , 32が共用する正極母線および 負極母線として構成されており、モータ MG1 , MG2の何れか一方により発電される 電力を他方のモータで消費できるようになつている。従って、ノ ッテリ 35は、モータ M Gl , MG2の何れ力、から生じた電力や不足する電力により充放電されることになり、 モータ MG1 , MG2により電力収支のバランスをとるものとすれば充放電されないこと になる。モータ MG1 , MG2は、何れもモータ用電子制御ユニット(以下、「モータ EC U」という) 30により駆動制御される。モータ ECU30には、モータ MG1 , MG2を駆動 制御するために必要な信号、例えばモータ MG1 , MG2の回転子の回転位置を検 出する回転位置検出センサ 33, 34からの信号や、図示しない電流センサにより検出 されるモータ MG1 , MG2に印加される相電流等が入力されており、モータ ECU30 からは、インバータ 31 , 32へのスイッチング制御信号等が出力される。モータ ECU3 0は、回転位置検出センサ 33, 34から入力した信号に基づいて図示しない回転数 算出ルーチンを実行し、モータ MG1 , MG2の回転子の回転数 Nml , Nm2を計算 している。また、モータ ECU30は、ハイブリッド ECU70と通信しており、ハイブリッド E CU70からの制御信号等に基づいてモータ MG1 , MG2を駆動制御すると共に必要 に応じてモータ MG1 , MG2の運転状態に関するデータをハイブリッド ECU70に出 力する。 The motor MG1 and the motor MG2 are both configured as well-known synchronous generator motors that operate as a generator and can operate as an electric motor, and are batteries 35 that are secondary batteries via inverters 31 and 32. And exchange power. A power line 39 connecting the inverters 31 and 32 and the battery 35 is configured as a positive and negative bus shared by the inverters 31 and 32, and is generated by one of the motors MG1 and MG2. Electric power can be consumed by the other motor. Therefore, the notch 35 is charged / discharged by the electric power generated by the motor M Gl or MG2 or the insufficient power, and charging / discharging is performed if the power balance is balanced by the motors MG1 and MG2. It will not be done. The motors MG1 and MG2 are both driven and controlled by a motor electronic control unit (hereinafter referred to as “motor ECU”) 30. The motor ECU 30 includes signals necessary for driving and controlling the motors MG1 and MG2, such as signals from rotational position detection sensors 33 and 34 for detecting the rotational positions of the rotors of the motors MG1 and MG2, and current sensors (not shown). The phase current applied to the motors MG1 and MG2 detected by the above is input, and the motor ECU 30 outputs switching control signals to the inverters 31 and 32. The motor ECU 30 executes a rotation speed calculation routine (not shown) based on signals input from the rotation position detection sensors 33 and 34, and calculates the rotation speeds Nml and Nm2 of the rotors of the motors MG1 and MG2. In addition, the motor ECU 30 communicates with the hybrid ECU 70, and the hybrid E Based on a control signal from the CU 70, the motors MG1 and MG2 are driven and controlled, and data on the operating state of the motors MG1 and MG2 is output to the hybrid ECU 70 as necessary.
[0023] ノ ッテリ 35は、バッテリ用電子制御ユニット(以下、「バッテリ ECU」という) 36によつ て管理されている。バッテリ ECU36には、バッテリ 35を管理するのに必要な信号、例 えば、ノ ッテリ 35の端子間に設置された図示しない電圧センサからの端子間電圧、 ノ ッテリ 35の出力端子に接続された電力ライン 39に取り付けられた図示しない電流 センサからの充放電電流、バッテリ 35に取り付けられた温度センサ 37からのバッテリ 温度 Tb等が入力されている。バッテリ ECU36は、必要に応じてバッテリ 35の状態に 関するデータを通信によりハイブリッド ECU70やエンジン ECU24に出力する。更に 、バッテリ ECU36は、バッテリ 35を管理するために電流センサにより検出された充放 電電流の積算値に基づレ、て残容量 SOCも算出して!/、る。  The battery 35 is managed by a battery electronic control unit (hereinafter referred to as “battery ECU”) 36. The battery ECU 36 has signals necessary for managing the battery 35, for example, the voltage between terminals from a voltage sensor (not shown) installed between the terminals of the battery 35, and the power connected to the output terminal of the battery 35. A charge / discharge current from a current sensor (not shown) attached to the line 39, a battery temperature Tb from a temperature sensor 37 attached to the battery 35, and the like are input. The battery ECU 36 outputs data on the state of the battery 35 to the hybrid ECU 70 and the engine ECU 24 by communication as necessary. Further, the battery ECU 36 calculates the remaining capacity SOC based on the integrated value of the charging / discharging current detected by the current sensor in order to manage the battery 35.
[0024] 動力分配統合機構 40は、モータ MG1 , MG2、減速ギヤ機構 50、変速機 60と共 に図示しないトランスミッションケースに収容され、エンジン 22から所定距離を隔てて クランクシャフト 26と同軸に配置される。実施例の動力分配統合機構 40は、外歯歯 車のサンギヤ 41と、このサンギヤ 41と同心円上に配置される内歯歯車のリングギヤ 4 2と、互いに嚙合すると共に一方がサンギヤ 41と他方がリングギヤ 42と嚙合する 2つ のピニオンギヤ 43, 44の組を自転かつ公転自在に少なくとも 1組保持するキャリア 4 5とを含み、サンギヤ 41 (第 1要素)とリングギヤ 42 (第 3要素)とキャリア 45 (第 2要素) とが互いに差動回転できるように構成されたダブルピニオン式遊星歯車機構である。 実施例において、動力分配統合機構 40は、そのギヤ比 p (サンギヤ 41の歯数をリン グギヤ 42の歯数で除した値)が p < 0. 5となるように構成されている。かかる動力分 配統合機構 40の第 1要素たるサンギヤ 41には、当該サンギヤ 41からエンジン 22と は反対側(車両後方)に延びて一連の中空軸を構成する中空のサンギヤ軸 41aおよ び中空の第 1モータ軸 46を介して第 1電動機としてのモータ MG1 (中空のロータ)が 接続される。また、第 2要素たるキャリア 45には、動力分配統合機構 40とエンジン 22 との間に配置される減速ギヤ機構 50および当該減速ギヤ機構 50 (サンギヤ 51)から エンジン 22に向けて延びる中空の第 2モータ軸(第 2軸) 55を介して第 2電動機とし てのモータ MG2 (中空のロータ)が接続されている。更に、第 3要素たるリングギヤ 42 には、第 2モータ軸 55およびモータ MG2を通って延びるリングギヤ軸 42aおよびダ ンパ 28を介してエンジン 22のクランクシャフト 26が接続されている。 [0024] The power distribution and integration mechanism 40 is housed in a transmission case (not shown) together with the motors MG1 and MG2, the reduction gear mechanism 50, and the transmission 60, and is arranged coaxially with the crankshaft 26 at a predetermined distance from the engine 22. The The power distribution and integration mechanism 40 of the embodiment includes a sun gear 41 of an external gear, a ring gear 42 of an internal gear arranged concentrically with the sun gear 41, and one of them is a sun gear 41 and the other is a ring gear. And a carrier 45 that holds at least one pair of two pinion gears 43 and 44 that rotate and revolve freely, and includes a sun gear 41 (first element), a ring gear 42 (third element), and a carrier 45 ( The second element) is a double pinion type planetary gear mechanism configured to be able to rotate differentially with respect to each other. In the embodiment, the power distribution and integration mechanism 40 is configured such that the gear ratio p (the value obtained by dividing the number of teeth of the sun gear 41 by the number of teeth of the ring gear 42) is p <0.5. The sun gear 41, which is the first element of the power distribution and integration mechanism 40, includes a hollow sun gear shaft 41a that extends from the sun gear 41 to the side opposite to the engine 22 (rear side of the vehicle) to form a series of hollow shafts and a hollow gear. The first motor shaft 46 is connected to a motor MG1 (hollow rotor) as a first electric motor. Further, the carrier 45 as the second element has a reduction gear mechanism 50 disposed between the power distribution and integration mechanism 40 and the engine 22, and a hollow first extension extending from the reduction gear mechanism 50 (sun gear 51) toward the engine 22. 2Motor shaft (second shaft) 55 All motors MG2 (hollow rotor) are connected. Furthermore, the crankshaft 26 of the engine 22 is connected to the ring gear 42 as the third element via a ring gear shaft 42a and a damper 28 extending through the second motor shaft 55 and the motor MG2.
[0025] 減速ギヤ機構 50は、外歯歯車のサンギヤ 51と、このサンギヤ 51と同心円上に配置 される内歯歯車のリングギヤ 52と、サンギヤ 51およびリングギヤ 52の双方と嚙合する 複数のピニオンギヤ 53と、複数のピニオンギヤ 53を自転かつ公転自在に保持するキ ャリア 54とを備えるシングルピニオン式遊星歯車機構である。実施例において、減速 ギヤ機構 50は、その減速比(サンギヤ 51の歯数/リングギヤ 52の歯数)が動力分配 統合機構 40のギヤ比を pとしたときに、 p / (1— p )近傍の値となるように構成され ている。減速ギヤ機構 50のサンギヤ 51は、上述の第 2モータ軸 55を介してモータ M G2のロータに接続されている。また、減速ギヤ機構 50のリングギヤ 52は、動力分配 統合機構 40のキャリア 45に固定され、これにより減速ギヤ機構 50は動力分配統合 機構 40と実質的に一体化される。そして、減速ギヤ機構 50のキャリア 54は、トランス ミッションケースに対して固定されている。従って、減速ギヤ機構 50の作用により、モ ータ MG2からの動力が減速されて動力分配統合機構 40のキャリア 45に入力される と共に、キャリア 45からの動力が増速されてモータ MG2に入力されることになる。な お、実施例のように、減速ギヤ機構 50をモータ MG2と動力分配統合機構 40との間 に配置して動力分配統合機構 40と一体化させれば、動力出力装置をより一層コンパ ク卜ィ匕すること力 Sでさる。 [0025] The reduction gear mechanism 50 includes an external gear sun gear 51, an internal gear ring gear 52 arranged concentrically with the sun gear 51, and a plurality of pinion gears 53 that mesh with both the sun gear 51 and the ring gear 52. A single pinion type planetary gear mechanism including a carrier 54 that holds a plurality of pinion gears 53 so as to rotate and revolve. In the embodiment, the reduction gear mechanism 50 has a reduction ratio (the number of teeth of the sun gear 51 / the number of teeth of the ring gear 52), when the gear ratio of the power distribution and integration mechanism 40 is p, in the vicinity of p / (1-p). It is configured to be the value of. The sun gear 51 of the reduction gear mechanism 50 is connected to the rotor of the motor MG2 via the second motor shaft 55 described above. Further, the ring gear 52 of the reduction gear mechanism 50 is fixed to the carrier 45 of the power distribution integration mechanism 40, whereby the reduction gear mechanism 50 is substantially integrated with the power distribution integration mechanism 40. The carrier 54 of the reduction gear mechanism 50 is fixed to the transmission case. Therefore, by the action of the reduction gear mechanism 50, the power from the motor MG2 is decelerated and input to the carrier 45 of the power distribution and integration mechanism 40, and the power from the carrier 45 is increased and input to the motor MG2. Will be. If the reduction gear mechanism 50 is arranged between the motor MG2 and the power distribution and integration mechanism 40 and integrated with the power distribution and integration mechanism 40 as in the embodiment, the power output device becomes more compact.力
[0026] また、図 1に示すように、サンギヤ軸 41aと第 1モータ軸 46との間には、両者の接続 および当該接続の解除を実行する接続断接手段として機能すると共に、モータ MG 1の回転軸たる第 1モータ軸 46 (サンギヤ 41)を回転不能に固定可能な固定手段とし て機能するクラッチ COが設けられている。実施例において、クラッチ COは、例えば、 サンギヤ軸 41aの先端(図中右端)に固定されたドグと、第 1モータ軸 46の一端(図中 左端)に固定されたドグと、トランスミッションケースに固定された固定用ドグと、これら のドグと嚙合可能であると共に電気式、電磁式あるいは油圧式のァクチユエータ 100 により駆動される係合部材とを含むドグクラッチとして構成され、図 1に示すように、係 ジシヨン」に選択的に切り替え可能である。すなわち、実施例のクラッチ COのクラッチ ポジション力 ポジションに設定されると、係合部材を介したサンギヤ軸 41aのドグと 第 1モータ軸 46のドグとの接続すなわちモータ MG1と動力分配統合機構 40のサン ギヤ 41との接続が解除される。このように、クラッチ COによるサンギヤ軸 41aと第 1モ ータ軸 46との接続を解除した際には、第 1電動機としてのモータ MG1と動力分配統 合機構 40の第 1要素たるサンギヤ 41との接続が解除されることになり、動力分配統 合機構 40の機能によりエンジン 22を実質的にモータ MG1 , MG2や変速機 60から 切り離すことが可能となる。また、クラッチ COのクラッチポジションが Mポジションに設 定されると、係合部材を介してサンギヤ軸 41aのドグと第 1モータ軸 46のドグとがより 少ない損失で連結され、それによりモータ MG1と動力分配統合機構 40のサンギヤ 4 1とが接続されることになる。そして、クラッチ COのクラッチポジションが Rポジションに 設定されると、係合部材を介してサンギヤ軸 41aのドグと第 1モータ軸 46のドグと固定 用ドグとがより少ない損失で連結され、それにより、動力分配統合機構 40の第 1要素 たるサンギヤ 41や第 1モータ軸 46 (モータ MG1)を回転不能に固定することが可能 となる。 Further, as shown in FIG. 1, between the sun gear shaft 41a and the first motor shaft 46, the motor MG 1 functions as a connection / disconnection means for connecting and releasing the connection. A clutch CO is provided that functions as a fixing means that can fix the first motor shaft 46 (sun gear 41), which is the rotation shaft of the first motor shaft 46, so that it cannot rotate. In the embodiment, for example, the clutch CO is fixed to the tip of the sun gear shaft 41a (right end in the figure), the dog fixed to one end (left end in the figure) of the first motor shaft 46, and the transmission case. 1 and an engaging member that can be engaged with these dogs and driven by an electric, electromagnetic, or hydraulic actuator 100. As shown in FIG. It is possible to selectively switch to “Jission”. That is, when the clutch position force position of the clutch CO of the embodiment is set, the connection of the dog of the sun gear shaft 41a and the dog of the first motor shaft 46 via the engaging member, that is, the motor MG1 and the power distribution integration mechanism 40 The connection with the sun gear 41 is released. Thus, when the connection between the sun gear shaft 41a and the first motor shaft 46 by the clutch CO is released, the motor MG1 as the first motor and the sun gear 41 as the first element of the power distribution integration mechanism 40 Therefore, the engine 22 can be substantially disconnected from the motors MG1 and MG2 and the transmission 60 by the function of the power distribution and integration mechanism 40. Further, when the clutch position of the clutch CO is set to the M position, the dog of the sun gear shaft 41a and the dog of the first motor shaft 46 are connected with less loss through the engagement member, and thereby the motor MG1 is connected. The sun gear 4 1 of the power distribution and integration mechanism 40 is connected. Then, when the clutch position of the clutch CO is set to the R position, the dog of the sun gear shaft 41a, the dog of the first motor shaft 46, and the dog for fixing are connected with less loss through the engagement member. Thus, the sun gear 41 and the first motor shaft 46 (motor MG1), which are the first elements of the power distribution and integration mechanism 40, can be fixed in a non-rotatable manner.
そして、このように動力分配統合機構 40のサンギヤ 41にクラッチ C0を介して連結さ れ得る第 1モータ軸 46は、モータ MG1からエンジン 22とは反対側(車両後方)に更 に延出され、変速機 60に接続される。また、動力分配統合機構 40のキャリア 45から は、中空のサンギヤ軸 41aや第 1モータ軸 46を通してエンジン 22とは反対側(車両 後方)にキャリア軸(連結軸) 45aが延出されており、このキャリア軸 45aも変速機 60に 接続され得る。これにより、実施例において、動力分配統合機構 40は互いに同軸に 配置されたモータ MG1およびモータ MG2の間に両モータ MG1 , MG2と同軸に酉己 置され、エンジン 22はモータ MG2に同軸に並設されると共に動力分配統合機構 40 を挟んで変速機 60と対向することになる。すなわち、実施例では、エンジン 22、モー タ MG1 , MG2、動力分配統合機構 40および変速機 60という動力出力装置の構成 要素が、車両前方から、エンジン 22、モータ MG2、(減速ギヤ機構 50)、動力分配 統合機構 40、モータ MG1、変速機 60という順番で概ね同軸に配置されることになる 。これにより、動力出力装置をコンパクトで搭載性に優れて主に後輪を駆動して走行 するハイブリッド自動車 20に好適なものとすることができる。 The first motor shaft 46 that can be connected to the sun gear 41 of the power distribution and integration mechanism 40 via the clutch C0 is further extended from the motor MG1 to the side opposite to the engine 22 (rear of the vehicle). Connected to transmission 60. From the carrier 45 of the power distribution and integration mechanism 40, a carrier shaft (connecting shaft) 45a extends through the hollow sun gear shaft 41a and the first motor shaft 46 on the side opposite to the engine 22 (rear of the vehicle). The carrier shaft 45a can also be connected to the transmission 60. Thus, in the embodiment, the power distribution and integration mechanism 40 is placed between the motors MG1 and MG2 coaxially arranged between the motor MG1 and the motor MG2 arranged coaxially with each other, and the engine 22 is arranged coaxially with the motor MG2. At the same time, the transmission 60 is opposed to the transmission 60 with the power distribution and integration mechanism 40 interposed therebetween. In other words, in the embodiment, the components of the power output device such as the engine 22, the motors MG1, MG2, the power distribution and integration mechanism 40, and the transmission 60 are the engine 22, the motor MG2, (the reduction gear mechanism 50), The power distribution and integration mechanism 40, the motor MG1, and the transmission 60 are arranged in the order of coaxial. As a result, the power output device is compact and excellent in mountability, mainly driven by driving the rear wheels. The hybrid vehicle 20 can be suitable.
[0028] 変速機 60は、入力された動力を所定の減速比で減速して出力可能なシングルピニ オン式遊星歯車機構 (減速機構)である変速用差動回転機構 61と、連結手段として のクラッチ C1とを含む。変速用差動回転機構 61は、入力要素たるサンギヤ 62と、こ のサンギヤ 62と同心円上に配置される固定要素たるリングギヤ 63と、サンギヤ 62お よびリングギヤ 63の双方と嚙合するピニオンギヤ 64を複数保持する出力要素たるキ ャリア 65とを含み、サンギヤ 62とリングギヤ 63とキャリア 65とが互いに差動回転でき るように構成されている。変速用差動回転機構 61のサンギヤ 62は、図 1に示すように 、第 1モータ軸 46に接続される。また、変速用差動回転機構 61のリングギヤ 63は、ト ランスミッションケースに対して回転不能に固定される。更に、変速用差動回転機構 6 1のキャリア 65には車両後方に向けて延びる中空のキャリア軸 65aが接続される。そ して、動力分配統合機構 40の第 2要素たるキャリア 45から延出されたキャリア軸 45a は、第 1モータ軸 46とキャリア軸 65aとを貫通する。  The transmission 60 includes a transmission differential rotation mechanism 61 that is a single pinion planetary gear mechanism (deceleration mechanism) capable of decelerating and outputting input power at a predetermined reduction ratio, and a clutch as a coupling means. Including C1. The transmission differential rotation mechanism 61 holds a sun gear 62 as an input element, a ring gear 63 as a fixed element arranged concentrically with the sun gear 62, and a plurality of pinion gears 64 that mesh with both the sun gear 62 and the ring gear 63. The sun gear 62, the ring gear 63, and the carrier 65 can be differentially rotated with each other. As shown in FIG. 1, the sun gear 62 of the transmission differential rotation mechanism 61 is connected to the first motor shaft 46. Further, the ring gear 63 of the transmission differential rotation mechanism 61 is fixed to the transmission case so as not to rotate. Further, a hollow carrier shaft 65a extending toward the rear of the vehicle is connected to the carrier 65 of the transmission differential rotation mechanism 61. The carrier shaft 45a extended from the carrier 45 as the second element of the power distribution and integration mechanism 40 passes through the first motor shaft 46 and the carrier shaft 65a.
[0029] クラッチ C1は、変速用差動回転機構 61の出力要素たるキャリア 65 (キャリア軸 65a )と、動力分配統合機構 40の第 2要素たるキャリア 45 (キャリア軸 45a)との何れか一 方または双方を駆動軸 66に選択的に連結可能とするものである。すなわち、実施例 において、クラッチ C1は、例えば、変速用差動回転機構 61のキャリア 65に接続され たキャリア軸 65aの先端(図中右端)に固定されたドグと、変速用差動回転機構 61す なわちキャリア軸 65aの端部から突出したキャリア軸 45aの先端(図中右端)に固定さ れたドグと、キャリア軸 65aのドグおよびキャリア軸 45aのドグの周囲に位置するように 駆動軸 66に取り付けられたドグと、これらのドグと嚙合可能であると共に電気式、電 磁式あるいは油圧式のァクチユエータ 101により駆動される係合部材とを含むドグク ラッチとして構成され、図 1に示すように、係合部材の位置であるクラッチポジションを 「Lポジション」、「Mポジション」および「Rポジション」に選択的に切り替え可能である 。すなわち、変速機 60のクラッチ C1のクラッチポジションが Lポジションに設定される と、係合部材を介して変速用差動回転機構 61の出力要素たるキャリア 65に接続され たキャリア軸 65aのドグと駆動軸 66のドグとがより少ない損失で連結される。これによ り、クラッチ COが繋がれていれば、サンギヤ軸 41a、第 1モータ軸 46、変速用差動回 転機構 61およびクラッチ CIを介して動力分配統合機構の第 1要素たるサンギヤ 41 と駆動軸 66とが連結される(以下、適宜、このようなクラッチ C1による連結状態を「第 1連結状態」という)。また、クラッチ C1のクラッチポジションが Mポジションに設定され ると、係合部材を介してキャリア軸 65aのドグと動力分配統合機構 40の第 2要素たる キャリア 45からのキャリア軸 45aのドグと駆動軸 66のドグとがより少ない損失で連結さ れ、それによりキャリア軸 65aとキャリア軸 45aとの双方が駆動軸 66に連結される。す なわち、この場合には、クラッチ COが繋がれていれば、クラッチ C1により動力分配統 合機構 40のサンギヤ 41が変速用差動回転機構 61を介して駆動軸 66に連結される と共に動力分配統合機構 40のキャリア 45が直接駆動軸 66に連結されることになる( 以下、このようなクラッチ C1による連結状態を適宜「第 3連結状態」という)。更に、クラ ツチ C1のクラッチポジションが Rポジションに設定されると、係合部材を介してキャリア 軸 45aのドグと駆動軸 66のドグとがより少ない損失で連結され、それにより、キャリア 軸 45aおよびクラッチ C1を介して動力分配統合機構 40の第 2要素たるキャリア 45と 駆動軸 66とが連結される(以下、このようなクラッチ C1による連結状態を適宜「第 2連 結状態」という)。なお、駆動軸 66は、図 1に示すように、デフアレンシャルギヤ 68を介 して駆動輪としての後輪 69a, 69bに連結されることになる。 [0029] The clutch C1 is one of the carrier 65 (carrier shaft 65a) as an output element of the differential rotation mechanism 61 for shifting and the carrier 45 (carrier shaft 45a) as the second element of the power distribution and integration mechanism 40. Alternatively, both can be selectively connected to the drive shaft 66. That is, in the embodiment, the clutch C1 includes, for example, a dog fixed to the tip (right end in the drawing) of the carrier shaft 65a connected to the carrier 65 of the transmission differential rotation mechanism 61, and the transmission differential rotation mechanism 61. In other words, the dog fixed to the tip of the carrier shaft 45a protruding from the end of the carrier shaft 65a (the right end in the figure), and the drive shaft to be positioned around the dog of the carrier shaft 65a and the dog of the carrier shaft 45a 66 and a dog clutch that can be engaged with these dogs and driven by an electric, electromagnetic or hydraulic actuator 101, as shown in FIG. In addition, the clutch position, which is the position of the engaging member, can be selectively switched between “L position”, “M position” and “R position”. That is, when the clutch position of the clutch C1 of the transmission 60 is set to the L position, the dog and drive of the carrier shaft 65a connected to the carrier 65 which is the output element of the transmission differential rotation mechanism 61 via the engaging member are driven. The shaft 66 dog is connected with less loss. As a result, if the clutch CO is engaged, the sun gear shaft 41a, the first motor shaft 46, and the gear shift differential The sun gear 41, which is the first element of the power distribution and integration mechanism, and the drive shaft 66 are connected via the rotation mechanism 61 and the clutch CI (hereinafter, such a connection state by the clutch C1 is referred to as a “first connection state” as appropriate). ). When the clutch position of the clutch C1 is set to the M position, the dog of the carrier shaft 65a and the dog of the carrier shaft 45a from the carrier 45, which is the second element of the power distribution and integration mechanism 40, and the drive shaft via the engagement member The 66 dog is connected with less loss, so that both the carrier shaft 65a and the carrier shaft 45a are connected to the drive shaft 66. In other words, in this case, if the clutch CO is connected, the sun gear 41 of the power distribution and integration mechanism 40 is connected to the drive shaft 66 via the transmission differential rotation mechanism 61 by the clutch C1 and power is supplied. The carrier 45 of the distribution and integration mechanism 40 is directly connected to the drive shaft 66 (hereinafter, such a connection state by the clutch C1 is appropriately referred to as a “third connection state”). Further, when the clutch position of the clutch C1 is set to the R position, the dog of the carrier shaft 45a and the dog of the drive shaft 66 are connected with less loss via the engaging member, so that the carrier shaft 45a and the dog of the drive shaft 66 are connected. The carrier 45, which is the second element of the power distribution and integration mechanism 40, and the drive shaft 66 are connected via the clutch C1 (hereinafter, such a connected state by the clutch C1 is appropriately referred to as a “second connected state”). As shown in FIG. 1, the drive shaft 66 is connected to rear wheels 69a and 69b as drive wheels via a differential gear 68.
そして、ハイブリッド ECU70は、 CPU72を中心とするマイクロプロセッサとして構成 されており、 CPU72の他に処理プログラムを記憶する ROM74と、データを一時的 に記憶する RAM76と、図示しない入出力ポートおよび通信ポートとを備える。ハイブ リツド ECU70には、ィグニッシヨンスィッチ(スタートスィッチ) 80からのィグニッシヨン 信号、シフトレバー 81の操作位置であるシフトポジション SPを検出するシフトポジショ ンセンサ 82からのシフトポジション SP、アクセルペダル 83の踏み込み量を検出する アクセルペダルポジションセンサ 84からのアクセル開度 Acc、ブレーキペダル 85の 踏み込み量を検出するブレーキペダルポジションセンサ 86からのブレーキペダルポ ジシヨン BP、車速センサ 87からの車速 Vが入力ポートを介して入力される。そして、 ハイブリッド ECU70は、上述したように、エンジン ECU24やモータ ECU30、バッテ リ ECU36と通信ポートを介して接続されており、エンジン ECU24やモータ ECU30 、バッテリ ECU36と各種制御信号やデータのやり取りを行なっている。また、ブレー キ BOやクラッチ CO、変速機 60のクラッチ CIを駆動するァクチユエータ 100, 101 , 1 02もハイブリッド ECU70により制御される。 The hybrid ECU 70 is configured as a microprocessor centered on the CPU 72. In addition to the CPU 72, a ROM 74 that stores a processing program, a RAM 76 that temporarily stores data, an input / output port and a communication port (not shown) Is provided. The hybrid ECU 70 has an ignition signal from the ignition switch (start switch) 80, a shift position SP from the shift position sensor 82 that detects the shift position SP, which is the operating position of the shift lever 81, and the amount of depression of the accelerator pedal 83 The accelerator pedal position sensor 84 detects the accelerator opening Acc from the accelerator pedal position sensor 84, the brake pedal position sensor BP detects the depression amount of the brake pedal 85, and the vehicle speed V from the vehicle speed sensor 87 passes through the input port. Entered. As described above, the hybrid ECU 70 is connected to the engine ECU 24, the motor ECU 30, and the battery ECU 36 via a communication port, and exchanges various control signals and data with the engine ECU 24, the motor ECU 30, and the battery ECU 36. Yes. Also Actuators 100, 101, and 102 that drive BO, clutch CO, and clutch CI of transmission 60 are also controlled by hybrid ECU 70.
[0031] 次に、図 2から図 9を参照しながら、実施例のハイブリッド自動車 20の動作について 説明する。 Next, the operation of the hybrid vehicle 20 of the embodiment will be described with reference to FIGS. 2 to 9.
[0032] 図 2から図 5は、エンジン 22の運転を伴ってハイブリッド自動車 20を走行させる場 合に車速変化に応じて変速機 60の変速比をシフトアップ方向に変化させていくとき の動力分配統合機構 40および変速機 60の主たる要素の回転数やトルクの関係を例 示する説明図である。また、図 6は、ハイブリッド自動車 20の走行時におけるクラッチ COや変速機 60のクラッチ C1のクラッチポジションの設定状態を示す図表である。ハ イブリツド自動車 20が図 2から図 5に示す状態で走行する際には、アクセルペダル 83 の踏み込み量や車速 Vに基づくハイブリッド ECU70の統括的な制御のもと、ェンジ ン ECU24によりエンジン 22力 モータ ECU30によりモータ MG1 , MG2が制御され 、ァクチユエータ 100, 101 (クラッチ C0、変速機 60のクラッチ C1)はハイブリッド EC U70により直接制御される。なお、図 2から図 5において、 S軸は動力分配統合機構 4 0のサンギヤ 41の回転数(モータ MG1すなわち第 1モータ軸 46の回転数 Nml)を、 R軸は動力分配統合機構 40のリングギヤ 42の回転数(エンジン 22の回転数 Ne)を、 C軸は動力分配統合機構 40のキャリア 45の回転数 (キャリア軸 45aや減速ギヤ機構 50のリングギヤ 52の回転数)を、 54軸は減速ギヤ機構 50のキャリア 54の回転数を、 51軸は減速ギヤ機構 50のサンギヤ 51の回転数(モータ MG2すなわち第 2モータ軸 55の回転数 Nm2)をそれぞれ示す。また、 62軸は変速機 60の変速用差動回転機 構 61のサンギヤ 62の回転数を、 65, 66軸は変速用差動回転機構 61のキャリア 65 や駆動軸 66の回転数を、 63軸は変速用差動回転機構 61のリングギヤ 63の回転数 をそれぞれ示す。  [0032] FIGS. 2 to 5 show power distribution when the speed ratio of the transmission 60 is changed in the upshift direction in accordance with the change in the vehicle speed when the hybrid vehicle 20 is driven with the operation of the engine 22. FIG. 5 is an explanatory diagram illustrating the relationship between the rotational speed and torque of main elements of the integrated mechanism 40 and the transmission 60. FIG. 6 is a chart showing the clutch position setting state of the clutch CO and the clutch C1 of the transmission 60 when the hybrid vehicle 20 is traveling. When the hybrid vehicle 20 travels in the state shown in FIGS. 2 to 5, the engine ECU 24 is controlled by the engine ECU 24 under the overall control of the hybrid ECU 70 based on the depression amount of the accelerator pedal 83 and the vehicle speed V. The motors MG1 and MG2 are controlled by the ECU 30, and the actuators 100 and 101 (the clutch C0 and the clutch C1 of the transmission 60) are directly controlled by the hybrid ECU 70. 2 to 5, the S axis represents the rotation speed of the sun gear 41 of the power distribution and integration mechanism 40 (the rotation speed Nml of the motor MG1, that is, the first motor shaft 46), and the R axis represents the ring gear of the power distribution and integration mechanism 40. The number of revolutions of 42 (the number of revolutions of the engine 22 Ne), the C axis the number of revolutions of the carrier 45 of the power distribution and integration mechanism 40 (the number of revolutions of the carrier shaft 45a and the ring gear 52 of the reduction gear mechanism 50), and the 54 axis of deceleration The rotation speed of the carrier 54 of the gear mechanism 50 and the 51 axis indicate the rotation speed of the sun gear 51 of the reduction gear mechanism 50 (the rotation speed Nm2 of the motor MG2, that is, the second motor shaft 55). In addition, the 62 axis indicates the rotation speed of the sun gear 62 of the transmission differential rotation mechanism 61 of the transmission 60, and the 65 and 66 axes indicate the rotation speed of the carrier 65 and the drive shaft 66 of the transmission differential rotation mechanism 61. Each axis indicates the number of rotations of the ring gear 63 of the transmission differential rotation mechanism 61.
[0033] エンジン 22の運転を伴ってハイブリッド自動車 20を走行させる際には、基本的にク ラッチ COが Mポジションに設定され、モータ MG1すなわち第 1モータ軸 46がサンギ ャ軸 41aを介して動力分配統合機構 40のサンギヤ 41に接続される。そして、ハイブ リツド自動車 20の車速 Vが比較的低い際には、変速機 60のクラッチ C1が Lポジショ ンに設定される(図 6参照)。以下、この状態を変速機 60の「第 1変速状態(1速)」と!/、 う(図 2)。このような第 1変速状態のもとでは、動力分配統合機構 40の第 1要素たる サンギヤ 41がサンギヤ軸 41a、第 1モータ軸 46、変速用差動回転機構 61およびクラ ツチ C1を介して駆動軸 66に連結される。これにより、第 1変速状態のもとでは、動力 分配統合機構 40のサンギヤ 41が出力要素となって当該サンギヤ 41にクラッチ CO等 を介して接続されたモータ MG1が電動機として機能し、かつ反力要素となるキャリア 45に接続されたモータ MG2が発電機として機能するようにモータ MG1 , MG2を駆 動制御することが可能となる。この際、動力分配統合機構 40は、リングギヤ 42を介し て入力されるエンジン 22からの動力をサンギヤ 41側とキャリア 45側とにそのギヤ比 βに応じて分配すると共に、エンジン 22からの動力と電動機として機能するモータ Μ G1からの動力とを統合してサンギヤ 41側に出力する。以下、このようにモータ MG1 が電動機として機能すると共にモータ MG2が発電機として機能するモードを「第 1ト ルク変換モード」という。このような第 1トルク変換モードにおける動力分配統合機構 4 0の各要素と減速ギヤ機構 50の各要素とにおける回転数やトルクの関係を表す共線 図の一例を図 7に示す。なお、図 7おいて S軸、 R軸、 C軸、 54軸および 51軸は、図 2 力、ら図 5と同様のものを示し、 ρは動力分配統合機構 40のギヤ比を、 は減速ギヤ 機構 50の減速比をそれぞれ示す。また、図 7において、太線矢印は、各要素に作用 するトルクを示し、矢印が図中上向きである場合にはトルクの値が正であり、矢印が 図中下向きである場合にはトルクの値が負であることを示す(図 2から図 5、図 8、図 9 も同様)。力、かる第 1トルク変換モードのもとでは、エンジン 22からの動力が動力分配 統合機構 40とモータ MG1および MG2とによってトルク変換されてサンギヤ 41に出 力され、モータ MG2の回転数を制御することにより、エンジン 22の回転数と出力要 素たるサンギヤ 41の回転数との比を無段階かつ連続的に変化させることができる。 そして、サンギヤ 41に出力された動力は、サンギヤ軸 41aおよび第 1モータ軸 46を 介して変速用差動回転機構 61のサンギヤ 62へと伝達されると共に、変速用差動回 転機構 61のギヤ比 p X (図 2参照)に基づく変速比 x/ (1 + p X) )で変速 (減速) された上で駆動軸 66へと出力されることになる。 [0033] When the hybrid vehicle 20 is driven with the operation of the engine 22, the clutch CO is basically set to the M position, and the motor MG1, that is, the first motor shaft 46 is driven via the sun gear shaft 41a. Connected to the sun gear 41 of the distribution integration mechanism 40. When the vehicle speed V of the hybrid vehicle 20 is relatively low, the clutch C1 of the transmission 60 is set to the L position (see FIG. 6). Hereinafter, this state is referred to as the “first shift state (1st gear)” of the transmission 60 and! / (Fig. 2). Under such a first speed change state, the sun gear 41 as the first element of the power distribution and integration mechanism 40 is driven via the sun gear shaft 41a, the first motor shaft 46, the speed change differential rotation mechanism 61, and the clutch C1. Connected to shaft 66. As a result, under the first speed change state, the motor MG1 connected to the sun gear 41 via the clutch CO or the like functions as an electric motor and the reaction force becomes the output element of the sun gear 41 of the power distribution and integration mechanism 40. The motors MG1 and MG2 can be driven and controlled so that the motor MG2 connected to the carrier 45 serving as an element functions as a generator. At this time, the power distribution and integration mechanism 40 distributes the power from the engine 22 input via the ring gear 42 to the sun gear 41 side and the carrier 45 side according to the gear ratio β, and Motor that functions as an electric motor 動力 Power from G1 is integrated and output to the sun gear 41 side. Hereinafter, a mode in which the motor MG1 functions as an electric motor and the motor MG2 functions as a generator will be referred to as a “first torque conversion mode”. FIG. 7 shows an example of a collinear diagram showing the relationship between the rotational speed and torque in each element of the power distribution and integration mechanism 40 and each element of the reduction gear mechanism 50 in the first torque conversion mode. In Fig. 7, S-axis, R-axis, C-axis, 54-axis and 51-axis are the same as those in Fig. 2, and ρ is the gear ratio of power distribution and integration mechanism 40, The gear ratio of gear mechanism 50 is shown respectively. In FIG. 7, thick arrows indicate the torque acting on each element. When the arrow is upward in the figure, the torque value is positive, and when the arrow is downward in the figure, the torque value is Is negative (same for Figures 2 to 5, 8, and 9). Under the first torque conversion mode, the power from the engine 22 is torque converted by the power distribution and integration mechanism 40 and the motors MG1 and MG2 and output to the sun gear 41 to control the rotation speed of the motor MG2. Thus, the ratio between the rotational speed of the engine 22 and the rotational speed of the sun gear 41, which is an output element, can be continuously and continuously changed. The power output to the sun gear 41 is transmitted to the sun gear 62 of the transmission differential rotation mechanism 61 via the sun gear shaft 41a and the first motor shaft 46, and the gear of the transmission differential rotation mechanism 61 is also transmitted. The gear is shifted (decelerated) at a gear ratio x / (1 + p X)) based on the ratio p X (see Fig. 2), and then output to the drive shaft 66.
図 2に示す状態すなわち変速機 60が第 1変速状態にあると共にトルク変換モード が第 1トルク変換モードである状態でハイブリッド自動車 20の車速 Vが高まると、やが て動力分配統合機構 40のキャリア 45の回転数と駆動軸 66 (キャリア軸 65a)の回転 数とが概ね一致するようになる。これにより、変速機 60のクラッチ C1を Mポジションに 設定してキャリア軸 65aのドグ(変速用差動回転機構 61)とキャリア軸 45aのドグと駆 動軸 66のドグとを連結し、動力分配統合機構 40のサンギヤ 41とキャリア 45との双方 を駆動軸 66に連結することが可能となる。そして、変速機 60のクラッチ C1を Mポジシ ヨンに設定した状態でモータ MG1および MG2に対するトルク指令を ^10に設定すれ ば、図 3に示すように、モータ MG1および MG2はカ行および回生の何れをも実行せ ずに空転し、エンジン 22からの動力(トルク)は、電気工ネルギへの変換を伴うことな く固定された(一定の)変速比(第 1変速状態と後述の第 2変速状態との間の変速比) で機械的(直接)に駆動軸 66へと伝達されることになる。以下、このように、クラッチ C 1により動力分配統合機構 40のキャリア 45とサンギヤ 41との双方を駆動軸 66に連結 するようなモードを「同時係合モード」といい、特に、図 3に示す状態を「1 2速同時 係合状態」という。 When the vehicle speed V of the hybrid vehicle 20 increases in the state shown in FIG. 2, that is, the transmission 60 is in the first speed change state and the torque conversion mode is the first torque conversion mode, Thus, the rotational speed of the carrier 45 of the power distribution and integration mechanism 40 and the rotational speed of the drive shaft 66 (carrier shaft 65a) are substantially matched. As a result, the clutch C1 of the transmission 60 is set to the M position, and the dog of the carrier shaft 65a (transmission differential rotation mechanism 61), the dog of the carrier shaft 45a and the dog of the drive shaft 66 are connected to distribute power. It is possible to connect both the sun gear 41 and the carrier 45 of the integrated mechanism 40 to the drive shaft 66. If the torque command for the motors MG1 and MG2 is set to ^ 10 with the clutch C1 of the transmission 60 set to the M position, as shown in FIG. 3, the motors MG1 and MG2 Without being executed, the power (torque) from the engine 22 is fixed (constant) without any conversion to electric energy (the first gear shift state and the second gear shift described later). The gear ratio between the two states is mechanically (directly) transmitted to the drive shaft 66. Hereinafter, such a mode in which both the carrier 45 and the sun gear 41 of the power distribution and integration mechanism 40 are connected to the drive shaft 66 by the clutch C 1 is referred to as a “simultaneous engagement mode”, and particularly shown in FIG. This state is called “1 2nd gear simultaneous engagement state”.
図 3に示す 1—2速同時係合状態のもとでは、キャリア軸 65aとキャリア軸 45aとの回 転数が一致していることから、変速機 60のクラッチ C1のクラッチポジションを Mポジシ ヨンから Rポジションに容易に切り替えて、キャリア軸 65a (変速用差動回転機構 61) と駆動軸 66との連結を解除することができる。以下、このようにクラッチ COが Mポジシ ヨンに設定されると共にクラッチ C1が Rポジションに設定される状態を変速機 60の第 2変速状態(2速)という(図 4)。このような第 2変速状態のもとでは、動力分配統合機 構 40の第 2要素たるキャリア 45がキャリア軸 45aおよびクラッチ C1を介して駆動軸 6 6に連結される。これにより、第 2変速状態のもとでは、動力分配統合機構 40のキヤリ ァ 45が出力要素となって当該キャリア 45に接続されたモータ MG2が電動機として機 能し、かつ反力要素となるサンギヤ 41に接続されたモータ MG1が発電機として機能 するようにモータ MG1 , MG2を駆動制御することが可能となる。この際、動力分配統 合機構 40は、リングギヤ 42を介して入力されるエンジン 22からの動力をサンギヤ 41 側とキャリア 45側とにそのギヤ比 pに応じて分配すると共に、エンジン 22からの動力 と電動機として機能するモータ MG2からの動力とを統合してキャリア 45側に出力す る。以下、このようにモータ MG2が電動機として機能すると共にモータ MG1が発電 機として機能するモードを「第 2トルク変換モード」という。このような第 2トルク変換モ ードにおける動力分配統合機構 40の各要素と減速ギヤ機構 50の各要素とにおける 回転数やトルクの関係を表す共線図の一例を図 8に示す。なお、図 8における符号 は図 7のものと同様である。力、かる第 2トルク変換モードのもとでは、エンジン 22からの 動力が動力分配統合機構 40とモータ MG1および MG2とによってトルク変換されて キャリア 45に出力され、モータ MG1の回転数を制御することにより、エンジン 22の回 転数と出力要素たるキャリア 45の回転数との比を無段階かつ連続的に変化させるこ とができる。そして、キャリア 45に出力された動力は、キャリア軸 45aおよびクラッチ C 1を介して直接駆動軸 66へと出力されることになる。 Under the 1st and 2nd speed simultaneous engagement state shown in Fig. 3, the carrier shaft 65a and the carrier shaft 45a have the same number of rotations. Therefore, the clutch position of the clutch C1 of the transmission 60 is set to the M position. The position of the carrier shaft 65a (transmission differential rotation mechanism 61) and the drive shaft 66 can be disconnected by easily switching from the R position to the R position. Hereinafter, the state where the clutch CO is set to the M position and the clutch C1 is set to the R position in this way is referred to as the second shift state (second gear) of the transmission 60 (FIG. 4). Under such a second speed change state, the carrier 45 as the second element of the power distribution and integration mechanism 40 is coupled to the drive shaft 66 via the carrier shaft 45a and the clutch C1. As a result, under the second speed change state, the carrier 45 of the power distribution and integration mechanism 40 serves as an output element, and the motor MG2 connected to the carrier 45 functions as an electric motor and serves as a reaction force element. It is possible to drive and control the motors MG1 and MG2 so that the motor MG1 connected to 41 functions as a generator. At this time, the power distribution and integration mechanism 40 distributes the power from the engine 22 input via the ring gear 42 to the sun gear 41 side and the carrier 45 side according to the gear ratio p, and the power from the engine 22 is also distributed. And the power from the motor MG2, which functions as an electric motor, are integrated and output to the carrier 45 side. Hereinafter, the motor MG2 functions as an electric motor and the motor MG1 generates power. The mode that functions as a machine is called the “second torque conversion mode”. FIG. 8 shows an example of a collinear diagram showing the relationship between the number of revolutions and torque in each element of the power distribution and integration mechanism 40 and each element of the reduction gear mechanism 50 in the second torque conversion mode. The reference numerals in FIG. 8 are the same as those in FIG. Under the second torque conversion mode, the power from the engine 22 is torque converted by the power distribution and integration mechanism 40 and the motors MG1 and MG2 and output to the carrier 45 to control the rotational speed of the motor MG1. As a result, the ratio between the number of revolutions of the engine 22 and the number of revolutions of the carrier 45 as an output element can be continuously and continuously changed. The power output to the carrier 45 is directly output to the drive shaft 66 via the carrier shaft 45a and the clutch C1.
[0036] 図 4に示す状態すなわち変速機 60が第 2変速状態にあると共にトルク変換モード が第 2トルク変換モードである状態でハイブリッド自動車 20の車速 Vが高まると、やが てモータ MG1、第 1モータ軸 46および動力分配統合機構 40の第 1要素たるサンギ ャ 41の回転数が値 0に近づくことになる。これにより、クラッチ COを Rポジションに設 定して第 1モータ軸 46 (モータ MG1)およびサンギヤ 41を回転不能に固定すること が可能となる。そして、クラッチ C1によりキャリア軸 45aを駆動軸 66に連結したままク ラッチ COにより第 1モータ軸 46やサンギヤ 41を回転不能に固定した状態でモータ M G1および MG2に対するトルク指令を値 0に設定すれば、モータ MG1および MG2 は、カ行および回生の何れをも実行せずに空転し、エンジン 22からの動力(トルク) は、電気工ネルギへの変換を伴うことなぐ固定された(一定の)変速比 (動力分配統 合機構 40のギヤ比 pに基づく変速比)で変速された上で駆動軸 66へと直接伝達さ れることになる。以下、このように変速機 60のクラッチ C1によりキャリア軸 45a (キヤリ ァ 45)を駆動軸 66に連結したままクラッチ COにより第 1モータ軸 46やサンギヤ 41を 回転不能に固定するモードも「同時係合モード」といい、特に、図 5に示す状態を「2 速固定状態」という。なお、変速機 60の変速比をシフトダウン方向に変化させる場合 には、基本的に上記説明と逆の手順を実行すればよい。  If the vehicle speed V of the hybrid vehicle 20 increases in the state shown in FIG. 4, that is, the transmission 60 is in the second speed change state and the torque conversion mode is the second torque conversion mode, the motor MG1 The rotational speed of the sun gear 41 as the first element of the motor shaft 46 and the power distribution and integration mechanism 40 approaches the value 0. As a result, the first motor shaft 46 (motor MG1) and the sun gear 41 can be fixed in a non-rotatable state by setting the clutch CO to the R position. Then, the torque command for the motors MG1 and MG2 is set to the value 0 while the first motor shaft 46 and the sun gear 41 are fixed to be non-rotatable by the clutch CO while the carrier shaft 45a is connected to the drive shaft 66 by the clutch C1. For example, the motors MG1 and MG2 run idly without executing either power or regenerative power, and the power (torque) from the engine 22 is fixed (constant) without conversion to electric energy. The gear is changed at a gear ratio (a gear ratio based on the gear ratio p of the power distribution and integration mechanism 40) and then directly transmitted to the drive shaft 66. Hereinafter, the mode in which the first motor shaft 46 and the sun gear 41 are fixed to be non-rotatable by the clutch CO while the carrier shaft 45a (carrier 45) is connected to the drive shaft 66 by the clutch C1 of the transmission 60 as described above is also referred to as “simultaneous. In particular, the state shown in Fig. 5 is called "2-speed fixed state". When changing the gear ratio of the transmission 60 in the shift-down direction, the procedure reverse to the above description may be basically executed.
[0037] このように、実施例のハイブリッド自動車 20では、変速機 60の第 1および第 2変速 状態の切り換えに伴って第 1トルク変換モードと第 2トルク変換モードとが交互に切り 換えられるので、特に電動機として機能するモータ MG1または MG2の回転数 Nml または Nm2が高まったときに、発電機として機能するモータ MG2または MG1の回 転数 Nm2または Nmlが負の値にならないようにすることができる。従って、ハイブリツ ド自動車 20では、第 1トルク変換モードのもとで、モータ MG2の回転数が負になるこ とに伴!/、サンギヤ 41に出力される動力の一部を用いてモータ MG1が発電すると共 にモータ MG1により発電された電力をモータ MG2が消費して動力を出力すると!/、う 動力循環や、第 2トルク変換モードのもとで、モータ MG1の回転数が負になることに 伴レ、キャリア 45に出力される動力の一部を用いてモータ MG2が発電すると共にモ ータ MG2により発電された電力をモータ MG1が消費して動力を出力するという動力 循環の発生を抑制することが可能となり、より広範な運転領域において動力の伝達 効率を向上させることができる。また、このような動力循環の抑制に伴いモータ MG1 , MG2の最高回転数を抑えることができるので、それによりモータ MG1 , MG2を小 型化することも可能となる。更に、上述の同時係合モードのもとでハイブリッド自動車 20を走行させれば、固定変速比でエンジン 22からの動力を機械的(直接)に駆動軸 66へと伝達することができるので、電気工ネルギへの変換を伴うことなくエンジン 22 から駆動軸 66に動力を機械的に出力する機会を増やして、より広範な運転領域に おいて動力の伝達効率をより一層向上させることができる。一般に、エンジンと 2体の 電動機と遊星歯車機構のような動力分配統合機構とを用いた動力出力装置では、ェ ンジンと駆動軸との間の減速比が比較的大きいときにエンジンの動力が電気工ネル ギにより多く変換されるので動力の伝達効率が悪化すると共にモータ MG1 , MG2の 発熱を招く傾向にあることから、上述の同時係合モードは、特にエンジン 22と駆動軸 との間の減速比が比較的大きい場合に特に有利なものとなる。更に、実施例のハイ ブリツド自動車 20では、変速機 60の変速状態を変更する際に、第 1トルク変換モード と第 2トルク変換モードとの間で一旦同時係合モードが実行されることから、変速状態 の変更時におけるいわゆるトルク抜けを生じることはなぐ変速状態の変更すなわち 第 1トルク変換モードと第 2トルク変換モードとの切り換えを極めてスムースかつショッ ク無く実行することが可能となる。 Thus, in the hybrid vehicle 20 of the embodiment, the first torque conversion mode and the second torque conversion mode are alternately switched as the transmission 60 switches between the first and second shift states. Rotation speed of motor MG1 or MG2 that functions especially as an electric motor Nml Or, when Nm2 rises, it is possible to prevent the rotation number Nm2 or Nml of the motor MG2 or MG1 functioning as a generator from becoming a negative value. Therefore, in the hybrid vehicle 20, in the first torque conversion mode, as the rotational speed of the motor MG2 becomes negative! /, The motor MG1 uses a part of the power output to the sun gear 41. When power is generated and motor MG2 consumes the electric power generated by motor MG1 and outputs power! /, The motor MG1's rotation speed becomes negative under power circulation and the second torque conversion mode. As a result, the motor MG2 generates power using a part of the power output to the carrier 45, and the motor MG1 consumes the power generated by the motor MG2 and outputs power to suppress the generation of power circulation. Power transmission efficiency can be improved in a wider range of operation. Further, since the maximum number of rotations of the motors MG1 and MG2 can be suppressed in accordance with such suppression of power circulation, the motors MG1 and MG2 can be downsized. Furthermore, if the hybrid vehicle 20 is driven under the above-described simultaneous engagement mode, the power from the engine 22 can be mechanically (directly) transmitted to the drive shaft 66 at a fixed gear ratio. The opportunity to mechanically output power from the engine 22 to the drive shaft 66 without conversion to engineering energy can be increased, and the power transmission efficiency can be further improved in a wider operating range. In general, in a power output device using an engine, two electric motors, and a power distribution and integration mechanism such as a planetary gear mechanism, the engine power is electric when the reduction ratio between the engine and the drive shaft is relatively large. Since the power transmission efficiency deteriorates and the motor MG1 and MG2 tend to generate heat because they are converted more by the work energy, the above-mentioned simultaneous engagement mode particularly reduces the speed between the engine 22 and the drive shaft. This is particularly advantageous when the ratio is relatively large. Further, in the hybrid vehicle 20 of the embodiment, when the transmission state of the transmission 60 is changed, the simultaneous engagement mode is once executed between the first torque conversion mode and the second torque conversion mode. It is possible to execute the change of the shift state, that is, the switching between the first torque conversion mode and the second torque conversion mode extremely smoothly and without shock, without causing so-called torque loss at the time of change of the shift state.
続いて、図 6および図 9等を参照しながら、エンジン 22を停止させた状態でバッテリ 35からの電力を用いてモータ MG1やモータ MG2に動力を出力させ、それによりノヽ イブリツド自動車 20を走行させるモータ走行モードの概要について説明する。実施 例のハイブリッド自動車 20において、モータ走 fiモードは、クラッチ COを Mポジショ ンに設定してモータ MG1を動力分配統合機構 40のサンギヤ 41に接続したままモー タ MG1および MG2の何れか一方に動力を出力させるクラッチ係合 1モータ走行モ ードと、クラッチ COを Rポジションに設定してモータ MG1と動力分配統合機構 40の サンギヤ 41との接続を解除した状態でモータ MG1および MG2の何れか一方に動 力を出力させるクラッチ解放 1モータ走行モードと、クラッチ COを Rポジションに設定 してモータ MG1と動力分配統合機構 40のサンギヤ 41との接続を解除した状態でモ ータ MG1および MG2の双方からの動力を利用できるようにする 2モータ走行モード とに大別される。 Subsequently, referring to FIG. 6 and FIG. 9 and the like, with the engine 22 stopped, the electric power from the battery 35 is used to output power to the motor MG1 and the motor MG2. An outline of the motor travel mode in which the hybrid vehicle 20 is traveled will be described. In the hybrid vehicle 20 of the embodiment, the motor running fi mode is configured such that either the motor MG1 or MG2 is powered while the clutch CO is set to the M position and the motor MG1 is connected to the sun gear 41 of the power distribution and integration mechanism 40. Engagement clutch 1 Motor running mode and either motor MG1 or MG2 with clutch CO set to R position and motor MG1 disconnected from power transmission integrated mechanism 40 sun gear 41 Clutch disengagement that outputs power to both motor MG1 and MG2 in the motor travel mode and with clutch CO set to the R position and motor MG1 disconnected from sun gear 41 of power distribution integration mechanism 40 It is roughly divided into two-motor running mode that makes it possible to use the power from
クラッチ係合 1モータ走行モードを実行する際には、クラッチ COを Mポジションに設 定した状態で図 6に示すようにクラッチ C1を Lポジションに設定することにより変速機 60を第 1変速状態に設定してモータ MG1のみに動力を出力させる力、、クラッチ C0を Mポジションに設定した状態で図 6に示すようにクラッチ C1を Rポジションに設定する ことにより変速機 60を第 2変速状態に設定してモータ MG2のみに動力を出力させる 。力、かるクラッチ係合 1モータ走行モードのもとでは、クラッチ C0により動力分配統合 機構 40のサンギヤ 41と第 1モータ軸 46とが接続されていることから、動力を出力して Vヽなレ、モータ MG1または MG2は、動力を出力して!/、るモータ MG2または MG1に 連れ回されて空転することになる(図 9における破線参照)。また、クラッチ解放 1モー タ走行モードを実行する際には、クラッチ C0を Rポジションに設定してモータ MG1と 動力分配統合機構 40のサンギヤ 41との接続を解除した状態で、図 6に示すようにク ラッチ C1を Lポジションに設定することにより変速機 60を第 1変速状態に設定してモ ータ MG1のみに動力を出力させる力、、図 6に示すようにクラッチ C1を Rポジションに 設定することにより変速機 60を第 2変速状態に設定してモータ MG2のみ動力を出力 させる。力、かるクラッチ解放 1モータ走行モードのもとでは、図 9において一点鎖線お よび二点鎖線で示すように、クラッチ C0によるサンギヤ 41とモータ MG1との接続が 解除されることから、動力分配統合機構 40の機能により停止しているエンジン 22のク ランクシャフト 26の連れ回しや、停止しているモータ MG1または MG2の連れ回しが 回避され、それにより動力の伝達効率の低下を抑制することができる。更に、 2モータ 走行モードを実行する際には、クラッチ COを Rポジションに設定してモータ MG1と動 力分配統合機構 40のサンギヤ 41との接続を解除した状態で図 6に示すようにクラッ チ C1を Mポジションに設定することにより変速機 60を上述の 1 2速同時係合状態 に設定した上でモータ MG1および MG2の少なくとも何れか一方を駆動制御する。こ れにより、エンジン 22の連れ回しを回避しながらモータ MG1および MG2の双方から 動力を出力させ、モータ走行モードのもとで大きな動力を駆動軸 66に伝達することが できるので、いわゆる坂道発進を良好に実行したり、モータ走行時におけるトーイン グ性能等を良好に確保したりすることが可能となる。 Clutch Engagement When the 1-motor running mode is executed, the transmission 60 is set to the 1st shift state by setting the clutch C1 to the L position as shown in Fig. 6 with the clutch CO set to the M position. Setting force to output power only to motor MG1, setting clutch C1 to the R position as shown in Fig. 6 with clutch C0 set to the M position, and setting transmission 60 to the second shift state Power is output only to motor MG2. In the 1-motor running mode, the sun gear 41 of the power distribution and integration mechanism 40 and the first motor shaft 46 are connected by the clutch C0. The motor MG1 or MG2 outputs power and is driven by the motor MG2 or MG1 to idle (see the broken line in FIG. 9). When the clutch release 1-motor running mode is executed, the clutch C0 is set to the R position and the motor MG1 is disconnected from the sun gear 41 of the power distribution integration mechanism 40 as shown in FIG. The clutch C1 is set to the L position to set the transmission 60 to the 1st shift state and the power is output only to the motor MG1, and the clutch C1 is set to the R position as shown in FIG. As a result, the transmission 60 is set to the second shift state, and only the motor MG2 outputs power. Force, clutch release 1 Under the motor running mode, as shown by the one-dot chain line and two-dot chain line in Fig. 9, the connection between the sun gear 41 and the motor MG1 by the clutch C0 is released. The crankshaft 26 of the engine 22 that is stopped by the function of the mechanism 40 is rotated, and the motor MG1 or MG2 that is stopped is rotated. This can avoid the reduction in power transmission efficiency. Further, when the two-motor travel mode is executed, the clutch CO is set to the R position and the clutch MG1 and the sun gear 41 of the power distribution / integration mechanism 40 are disconnected as shown in FIG. By setting C1 to the M position, the transmission 60 is set to the aforementioned first and second speed simultaneous engagement state, and at least one of the motors MG1 and MG2 is driven and controlled. As a result, power can be output from both the motors MG1 and MG2 while avoiding rotation of the engine 22, and a large amount of power can be transmitted to the drive shaft 66 under the motor travel mode, so that the so-called hill start can be performed. It is possible to execute it well or to secure the towing performance when the motor is running.
そして、実施例のハイブリッド自動車 20では、クラッチ解放 1モータ走行モードが選 択されると、動力を効率よく駆動軸 66に伝達すべく変速機 60の変速状態を容易に 変更すること力できる。例えば、クラッチ解放 1モータ走行モードのもとで、変速機 60 を第 1変速状態に設定すると共にモータ MG1にのみ動力を出力させているときに、 キャリア軸 45aが駆動軸 66と回転同期するようにモータ MG2の回転数 Nm2を調整 し、変速機 60のクラッチ C1のクラッチポジションを Lポジションから Mポジションに切り 替えれば、上述の 1 2速同時係合状態すなわち 2モータ走行モードへと移行するこ とができる。そして、この状態でクラッチ C1のクラッチポジションを Mポジションから R ポジションに切り替えると共にモータ MG2のみに動力を出力させれば、上述の第 2 変速状態のもとでモータ MG2により出力される動力を駆動軸 66に伝達することが可 能となる。なお、クラッチ解放 1モータ走行モードのもとで変速機 60の変速状態をシ フトダウン方向に変化させる場合には、基本的に上記説明と逆の手順を実行すれば よい。この結果、実施例のハイブリッド自動車 20では、モータ走行モードのもとでも、 変速機 60を用いてサンギヤ 41やキャリア 45の回転数を変速してトルクを増幅するこ とができるので、モータ MG1 , MG2に要求される最大トルクを低下させることが可能 となり、モータ MG1 , MG2の小型化を図ることができる。また、このようなモータ走行 中における変速機 60の変速状態の変更に際しても、一旦変速機 60の同時係合状 態すなわち 2モータ走行モードが実行されることから、変速状態の変更時におけるい わゆるトルク抜けを生じることはなぐ変速状態の変更を極めてスムースかつショック 無く実行することが可能となる。なお、これらのモータ走行モードのもとで要求駆動力 が高まったり、バッテリ 35の残容量 SOCが低下したりしたような場合には、変速機 60 の変速状態(クラッチ C1のクラッチポジション)に応じて動力を出力しないことになる モータ MG1または MG2によるエンジン 22のクランキングを実行し、それによりェンジ ン 22を始動させる。 In the hybrid vehicle 20 of the embodiment, when the clutch disengagement 1 motor driving mode is selected, the speed change state of the transmission 60 can be easily changed to efficiently transmit power to the drive shaft 66. For example, when the transmission 60 is set to the first shift state and power is output only to the motor MG1 under the clutch release 1 motor running mode, the carrier shaft 45a is synchronized with the drive shaft 66 in rotation. If the rotation speed Nm2 of the motor MG2 is adjusted and the clutch position of the clutch C1 of the transmission 60 is switched from the L position to the M position, the above-described 1-second speed simultaneous engagement state, that is, the 2-motor traveling mode is entered. You can. In this state, if the clutch position of the clutch C1 is switched from the M position to the R position and power is output only to the motor MG2, the power output by the motor MG2 under the second shift state described above is driven to the drive shaft. It is possible to communicate to 66. It should be noted that when changing the shift state of the transmission 60 in the shift-down direction under the clutch disengagement 1 motor running mode, the procedure reverse to the above description may be basically executed. As a result, in the hybrid vehicle 20 of the embodiment, the torque can be amplified by changing the rotation speed of the sun gear 41 and the carrier 45 using the transmission 60 even in the motor travel mode. The maximum torque required for MG2 can be reduced, and the motors MG1 and MG2 can be downsized. In addition, when the transmission state of the transmission 60 is changed during such motor traveling, the simultaneous engagement state of the transmission 60, that is, the two-motor traveling mode is once executed. Changing the shifting state without causing loose torque loss is extremely smooth and shocking. It is possible to execute without. If the required driving force increases under these motor driving modes, or the remaining capacity SOC of the battery 35 decreases, it depends on the shifting state of the transmission 60 (the clutch position of the clutch C1). The engine 22 is cranked by the motor MG1 or MG2 and the engine 22 is started.
以上説明したように、実施例のハイブリッド自動車 20は、動力分配統合機構 40の 第 1要素たるサンギヤ 41に接続される入力要素としてのサンギヤ 62と固定要素とし てのリングギヤ 63と出力要素としてのキャリア 65とを有すると共にこれら 3つの要素が 互いに差動回転できるように構成された変速用差動回転機構 61と、変速用差動回 転機構 61のサンギヤ 62と動力分配統合機構 40の第 2要素たるキャリア 45とを駆動 軸 66に選択的に連結可能な連結手段としてのクラッチ C1とを含む変速機 60を備え る。かかる変速機 60は、比較的少ない部品で構成可能であると共にシンプルかつコ ンパタトな構成を有し、搭載性に優れるものである。また、ハイブリッド自動車 20では 、変速機 60のクラッチ C1により変速用差動回転機構 61の出力要素たるキャリア 65 ( キャリア軸 65a)を駆動軸 66に連結すれば、動力分配統合機構 40の第 1要素たるサ ンギヤ 41からの動力を変速用差動回転機構 61により変速した上で駆動軸 66に出力 すること力 Sできる。更に、ハイブリッド自動車 20では、変速機 60のクラッチ C1により変 速用差動回転機構 61のキャリア 65 (キャリア軸 65a)と動力分配統合機構 40の第 2 要素たるキャリア 45 (キャリア軸 45a)との双方を駆動軸 66に連結すれば、エンジン 2 2からの動力を固定された変速比で機械的(直接)に駆動軸 66へと伝達することがで きる。また、ハイブリッド自動車 20では、変速機 60のクラッチ C1により動力分配統合 機構 40の第 2要素たるキャリア 45 (キャリア軸 45a)を駆動軸 66に連結すれば、キヤリ ァ 45からの動力を駆動軸 66に直接出力することが可能となる。従って、この変速機 6 0によれば、動力分配統合機構 40からの動力を複数段階に変速して駆動軸 66に出 力することが可能となる。そして、ハイブリッド自動車 20では、変速機 60のクラッチ C1 により動力分配統合機構 40の第 1要素たるサンギヤ 41が駆動軸 66に連結されるとき には、出力要素となるサンギヤ 41に接続される第 1電動機としてモータ MG1を電動 機として機能させ、かつ反力要素となるキャリア 45に接続される第 2電動機としてのモ ータ MG2を発電機として機能させることが可能となる。また、変速機 60のクラッチ C1 により動力分配統合機構 40の第 2要素たるキャリア 45が駆動軸 66に連結されるとき には、出力要素となるキャリア 45に接続されるモータ MG2を電動機として機能させ、 かつ反力要素となるサンギヤ 41に接続されるモータ MG1を発電機として機能させる ことが可能となる。これにより、ハイブリッド自動車 20では、クラッチ C1による連結状態 すなわち変速機 60の変速状態の切り替えを適宜実行することにより、特に電動機と して機能するモータ MG1または MG2の回転数 Nmlまたは Nm2が高まったときに 発電機として機能するモータ MG2または MG1の回転数 Nm2または Nmlが負の値 にならないようにして、いわゆる動力循環の発生を抑制することができる。この結果、 ハイブリッド自動車 20では、より広範な運転領域において動力の伝達効率を良好に 向上させることが可能となり、燃費と走行性能とを良好に向上させることができる。 また、実施例のように、変速機 60の変速用差動回転機構 61をシングルピニオン式 遊星歯車機構とすれば、変速機 60をよりコンパクトに構成することが可能となる。更 に、実施例のように、モータ MG1および MG2をエンジン 22と概ね同軸に配置し、動 力分配統合機構 40をモータ MG1および MG2の間に両者と概ね同軸に配置すれ ば、これらにより構成される動力出力装置の全体をよりコンパクトに構成することが可 能となる。そして、このようにエンジン 22とモータ MG1 , MG2と動力分配統合機構 4 0とが概ね同軸に配置されるハイブリッド自動車 20は、動力分配統合機構 40の第 1 要素たるサンギヤ 41に接続されると共に変速用差動回転機構 61のサンギヤ 62に接 続される中空軸としてのサンギヤ軸 41aおよび第 1モータ軸 46と、動力分配統合機 構 40の第 2要素たるキャリア 45に接続されると共に中空軸としてのサンギヤ軸 41aお よび第 1モータ軸 46と変速用差動回転機構 61を通って駆動軸 66に向けて延びる連 結軸としてのキャリア軸 45aとを有しており、変速機 60のクラッチ C1は、変速用差動 回転機構 61の出力要素たるキャリア 65 (キャリア軸 65a)とキャリア軸 45aとの何れか 一方または双方を駆動軸 66に選択的に連結可能に構成されている。これにより、動 力分配統合機構 40のサンギヤ 41からの動力とキャリア 45からの動力とを概ね同軸 かつ同方向に出力することができるので、変速機 60をエンジン 22やモータ MG1 , M G2、動力分配統合機構 40と概ね同軸に配置することが可能となる。従って、かかる 構成は、主に後輪を駆動して走行するハイブリッド自動車 20に極めて好適なものとな As described above, the hybrid vehicle 20 of the embodiment includes the sun gear 62 as the input element connected to the sun gear 41 as the first element of the power distribution and integration mechanism 40, the ring gear 63 as the fixed element, and the carrier as the output element. 65, and the three elements are configured so that these three elements can be differentially rotated with each other, the sun gear 62 of the transmission differential rotation mechanism 61, and the second element of the power distribution and integration mechanism 40. A transmission 60 including a clutch C1 as a connecting means capable of selectively connecting the carrier 45 to the drive shaft 66 is provided. The transmission 60 can be configured with relatively few parts, has a simple and compact configuration, and is excellent in mountability. Further, in the hybrid vehicle 20, if the carrier 65 (carrier shaft 65a), which is the output element of the transmission differential rotation mechanism 61, is connected to the drive shaft 66 by the clutch C1 of the transmission 60, the first element of the power distribution and integration mechanism 40 is obtained. The power S from the rotating sun gear 41 can be output to the drive shaft 66 after being shifted by the differential rotation mechanism 61 for shifting. Further, in the hybrid vehicle 20, the clutch C1 of the transmission 60 causes the carrier 65 (carrier shaft 65a) of the differential rotation mechanism 61 for speed change and the carrier 45 (carrier shaft 45a) as the second element of the power distribution and integration mechanism 40 to move. If both are connected to the drive shaft 66, the power from the engine 22 can be mechanically (directly) transmitted to the drive shaft 66 at a fixed gear ratio. Further, in the hybrid vehicle 20, if the carrier 45 (carrier shaft 45a) as the second element of the power distribution and integration mechanism 40 is connected to the drive shaft 66 by the clutch C1 of the transmission 60, the power from the carrier 45 is supplied to the drive shaft 66. Can be output directly. Therefore, according to this transmission 60, it is possible to shift the power from the power distribution and integration mechanism 40 in a plurality of stages and output it to the drive shaft 66. In the hybrid vehicle 20, when the sun gear 41 as the first element of the power distribution and integration mechanism 40 is connected to the drive shaft 66 by the clutch C1 of the transmission 60, the first gear connected to the sun gear 41 as the output element is connected. The motor MG1 functions as an electric motor as an electric motor, and the second electric motor is connected to a carrier 45 that is a reaction force element. Data MG2 can function as a generator. When the carrier 45 as the second element of the power distribution and integration mechanism 40 is connected to the drive shaft 66 by the clutch C1 of the transmission 60, the motor MG2 connected to the carrier 45 as the output element functions as an electric motor. In addition, the motor MG1 connected to the sun gear 41, which is a reaction force element, can function as a generator. As a result, in the hybrid vehicle 20, when the speed Nml or Nm2 of the motor MG1 or MG2 functioning as an electric motor is increased by appropriately switching the connection state by the clutch C1, that is, the shift state of the transmission 60, as appropriate. Furthermore, the generation of so-called power circulation can be suppressed by preventing the rotation speed Nm2 or Nml of the motor MG2 or MG1 functioning as a generator from becoming a negative value. As a result, in the hybrid vehicle 20, the power transmission efficiency can be improved satisfactorily in a wider driving range, and the fuel consumption and driving performance can be improved. Further, if the transmission differential rotation mechanism 61 of the transmission 60 is a single pinion planetary gear mechanism as in the embodiment, the transmission 60 can be configured more compactly. Further, as in the embodiment, if the motors MG1 and MG2 are arranged substantially coaxially with the engine 22 and the power distribution and integration mechanism 40 is arranged between the motors MG1 and MG2 and substantially coaxially with each other, these are configured. It is possible to make the entire power output device more compact. The hybrid vehicle 20 in which the engine 22, the motors MG1 and MG2, and the power distribution / integration mechanism 40 are arranged substantially coaxially in this way is connected to the sun gear 41, which is the first element of the power distribution / integration mechanism 40, and is changed in speed. The sun gear shaft 41a and the first motor shaft 46 as a hollow shaft connected to the sun gear 62 of the differential rotation mechanism 61 for use, and the carrier 45 as the second element of the power distribution integrated mechanism 40 and as a hollow shaft The sun gear shaft 41a, the first motor shaft 46, and the carrier shaft 45a as a connecting shaft extending through the transmission differential rotation mechanism 61 toward the drive shaft 66, and the clutch C1 of the transmission 60 Is configured such that one or both of the carrier 65 (carrier shaft 65a) and the carrier shaft 45a, which are output elements of the transmission differential rotation mechanism 61, can be selectively connected to the drive shaft 66. As a result, the power from the sun gear 41 of the power distribution and integration mechanism 40 and the power from the carrier 45 can be output in substantially the same direction and in the same direction, so that the transmission 60 can be driven by the engine 22, motors MG1, MG2, The distribution and integration mechanism 40 can be arranged substantially coaxially. Therefore, take The configuration is extremely suitable for the hybrid vehicle 20 that is driven mainly by driving the rear wheels.
[0043] 更に、ハイブリッド自動車 20に設けられているクラッチ COは、モータ MG1の回転軸 たる第 1モータ軸 46を回転不能に固定可能なものである。従って、上述のようにモー タ MG2に接続される動力分配統合機構 40のキャリア 45が変速機 60のクラッチ C1 によって駆動軸 66に連結されているときに第 1モータ軸 46をクラッチ COにより回転不 能に固定しても、エンジン 22からの動力を固定された変速比で機械的(直接)に駆動 軸 66へと伝達することができる。この結果、ハイブリッド自動車 20では、より一層広範 な運転領域において動力の伝達効率を良好に向上させることが可能となる。なお、 上述のような固定手段は、変速機による最小変速比が設定されるときに動力分配統 合機構の反力要素となる要素(実施例ではサンギヤ 41)の回転を固定するものであ ればよぐ変速機の構成によっては、モータ MG2の第 2モータ軸 55あるいはキャリア 45を固定するものとされてもよい。また、固定手段の機能をクラッチ COにもたせる代 わりに、クラッチ COとは別に第 1モータ軸 46 (サンギヤ 41)あるいは第 2モータ軸 55 ( キャリア 45)を固定するブレーキを採用してもよい。 [0043] Further, the clutch CO provided in the hybrid vehicle 20 can fix the first motor shaft 46, which is the rotation shaft of the motor MG1, in a non-rotatable manner. Therefore, as described above, when the carrier 45 of the power distribution and integration mechanism 40 connected to the motor MG2 is connected to the drive shaft 66 by the clutch C1 of the transmission 60, the first motor shaft 46 is not rotated by the clutch CO. Even if the power is fixed, the power from the engine 22 can be mechanically (directly) transmitted to the drive shaft 66 at a fixed gear ratio. As a result, the hybrid vehicle 20 can satisfactorily improve the power transmission efficiency in a wider driving range. The fixing means as described above is for fixing the rotation of the element (the sun gear 41 in the embodiment) which is a reaction force element of the power distribution integration mechanism when the minimum speed ratio by the transmission is set. Depending on the configuration of the transmission, the second motor shaft 55 or the carrier 45 of the motor MG2 may be fixed. Instead of giving the function of the fixing means to the clutch CO, a brake for fixing the first motor shaft 46 (sun gear 41) or the second motor shaft 55 (carrier 45) may be employed separately from the clutch CO.
[0044] そして、実施例のハイブリッド自動車 20は、サンギヤ軸 41aと第 1モータ軸 46、すな わち、サンギヤ 41とモータ MG1との接続および当該接続の解除を実行するクラッチ C0を備えている。これにより、ハイブリッド自動車 20では、クラッチ C0によるサンギヤ 軸 41aと第 1モータ軸 46との接続を解除すれば、動力分配統合機構 40の機能により エンジン 22を実質的にモータ MG1 , MG2や変速機 60から切り離すことが可能とな る。従って、ハイブリッド自動車 20では、クラッチ C0を解放状態とすると共にエンジン 22を停止させれば、モータ MG1および MG2の少なくとも何れ力、からの動力を変速 機 60の変速状態の変更を伴って駆動軸 66に効率よく伝達することができる。この結 果、ハイブリッド自動車 20では、モータ MG1および MG2に要求される最大トルクを 低下させることが可能となり、モータ MG1および MG2のより一層の小型化を図ること ができる。ただし、クラッチ C0は、サンギヤ 41とモータ MG1との接続および当該接続 の解除を実行するものに限られない。すなわち、クラッチ C0は、キャリア 45 (第 2要素 )と第 2モータ軸 55 (モータ MG2)との接続および当該接続の解除を実行するもので あってもよぐエンジン 22のクランクシャフト 26とリングギヤ 42 (第 3要素)との接続およ び当該接続の解除を実行するものであってもよい。 [0044] The hybrid vehicle 20 of the embodiment includes the sun gear shaft 41a and the first motor shaft 46, that is, the clutch C0 that performs the connection between the sun gear 41 and the motor MG1 and the release of the connection. . Thus, in the hybrid vehicle 20, if the connection between the sun gear shaft 41a and the first motor shaft 46 by the clutch C0 is released, the engine 22 is substantially driven by the function of the power distribution and integration mechanism 40, and the motor MG1, MG2 and transmission 60 Can be separated from Therefore, in the hybrid vehicle 20, if the clutch C0 is released and the engine 22 is stopped, the power from at least one of the motors MG1 and MG2 is transmitted to the drive shaft 66 along with the change of the transmission state of the transmission 60. Can be transmitted efficiently. As a result, in hybrid vehicle 20, the maximum torque required for motors MG1 and MG2 can be reduced, and the motors MG1 and MG2 can be further miniaturized. However, the clutch C0 is not limited to the one that performs the connection between the sun gear 41 and the motor MG1 and the cancellation of the connection. In other words, the clutch C0 executes connection between the carrier 45 (second element) and the second motor shaft 55 (motor MG2) and release of the connection. The connection between the crankshaft 26 of the engine 22 and the ring gear 42 (third element) may be performed and the connection may be released.
[0045] 更に、実施例のハイブリッド自動車 20のように、ギヤ比 pが値 0· 5未満とされるダブ ルビ二オン式遊星歯車機構である動力分配統合機構 40を採用した場合、サンギヤ 4 1に比べてキャリア 45に対するエンジン 22からのトルクの分配比率が大きくなる。従 つて、図 1の例のように、キャリア 45とモータ MG2との間に減速ギヤ機構 50を配置す ることにより、モータ MG2の小型化とその動力損失の低減化を図ることが可能となる 。また、この場合には、動力分配統合機構 40のギヤ比を pとしたときに、減速ギヤ機 構 50の減速比 を p / d 近傍の値とすれば、モータ MG1および MG2の諸 元を概ね同一のものとすることが可能となるので、ハイブリッド自動車 20や動力出力 装置の生産性を向上させると共にコストの低減化を図ることができる。ただし、ダブル ピニオン式遊星歯車機構である動力分配統合機構 40は、そのギヤ比が p〉0. 5と なるように構成されてもよく、この場合、減速ギヤ機構 50は、その減速比が(1 p ) / β近傍の値となるように構成されると共にサンギヤ 11とモータ MG1または MG2と の間に配置されるとよい。  Furthermore, when the power distribution and integration mechanism 40 that is a double-bion type planetary gear mechanism in which the gear ratio p is less than 0.5 is used as in the hybrid vehicle 20 of the embodiment, the sun gear 4 1 Compared to the above, the distribution ratio of the torque from the engine 22 to the carrier 45 becomes larger. Therefore, as shown in the example in FIG. 1, by arranging the reduction gear mechanism 50 between the carrier 45 and the motor MG2, the motor MG2 can be reduced in size and its power loss can be reduced. . In this case, if the gear ratio of the power distribution and integration mechanism 40 is p, and the reduction ratio of the reduction gear mechanism 50 is a value near p / d, the specifications of the motors MG1 and MG2 are roughly Since they can be the same, productivity of the hybrid vehicle 20 and the power output device can be improved and costs can be reduced. However, the power distribution and integration mechanism 40, which is a double pinion planetary gear mechanism, may be configured such that the gear ratio is p> 0.5. In this case, the reduction gear mechanism 50 has a reduction ratio of ( 1 p) / β It is preferable that the value be in the vicinity of β and be arranged between the sun gear 11 and the motor MG1 or MG2.
[0046] 図 10は、変形例に係るハイブリッド自動車 20Αの概略構成図である。同図に示す ハイブリッド自動車 20Αでは、上述のハイブリッド自動車 20のクラッチ COの機能をそ れぞれ油圧式のァクチユエータ 88により駆動されるクラッチ CO' とブレーキ B0とに 分担させている。また、ハイブリッド自動車 20Aは、上述のクラッチ C1の機能をそれ ぞれ油圧式のァクチユエータ 88により駆動されるクラッチ Claおよび Clbとに分担さ せた変速機 60Aを備えている。すなわち、変形例のハイブリッド自動車 20Aでは、ク ラッチ CO' を駆動することにより動力分配統合機構 40のサンギヤ 41と第 1モータ軸 46 (モータ MG1)との接続および当該接続の解除を実行することが可能となり、ブレ ーキ B0を駆動することによりモータ MG1の回転軸たる第 1モータ軸 46を回転不能に 固定することが可能となる。また、変速機 60Aのクラッチ Claを繋ぐことにより変速用 差動回転機構 61の出力要素たるキャリア 65に接続されたキャリア軸 65aと駆動軸 66 とが連結され、これにより、クラッチ C0' が繋がれていれば、サンギヤ軸 41a、第 1モ ータ軸 46、変速用差動回転機構 61およびクラッチ Claを介して動力分配統合機構 の第 1要素たるサンギヤ 41と駆動軸 66とが連結される第 1連結状態を実現可能とな る。更に、クラッチ Clbを繋ぐことによりキャリア軸 45aと駆動軸 66とが連結され、これ により、動力分配統合機構 40の第 2要素たるキャリア 45と駆動軸 66とが連結される 第 2連結状態を実現可能となる。そして、クラッチ C laおよび Clbの双方を繋ぐことに より動力分配統合機構 40のサンギヤ 41とキャリア 45との双方が駆動軸 66に連結さ れる第 3連結状態を実現可能となる。図 11にハイブリッド自動車 20Aの走行時にお けるクラッチ CO' 、ブレーキ B0、変速機 60Aのクラッチ Claおよび Clbのクラッチポ ジシヨン等の設定状態を示す。このように、油圧式のクラッチ CO' およびブレーキ BO と、油圧式のクラッチ Claおよび Clbを含む変速機 60Aとを備えたハイブリッド自動 車 20Aにおいても、上述のハイブリッド自動車 20と同様の作用効果を得ることができ 図 12は、変形例に係るハイブリッド自動車 20Bの概略構成図である。同図に示す ハイブリッド自動車 20Bは、上述のハイブリッド自動車 20の変速機 60に代えて、段付 ギヤ 96を含む遊星歯車機構である変速用差動回転機構 90を含む変速機 60Bを備 えるものである。すなわち、変速機 60Bの変速用差動回転機構 90は、互いに異なる 歯数をもった第 1サンギヤ 91および第 2サンギヤ 92と、第 1サンギヤ 91と嚙合する第 1ピニオンギヤ 93と第 2サンギヤ 92と嚙合する第 2ピニオンギヤ 94とを連結してなる 段付ギヤ 96を複数保持するキャリア 95とを含む遊星歯車機構である。この場合、図 1 2に示すように、変速用差動回転機構 90のキャリア 95 (入力要素)が第 1モータ軸 46 に接続され、第 2サンギヤ 92 (固定要素)がトランスミッションケースに対して回転不能 に固定される。また、変速用差動回転機構 90の第 1サンギヤ 91 (出力要素)には、車 両後方に向けて中空のサンギヤ軸 91aが接続される。そして、動力分配統合機構 40 の第 2要素たるキャリア 45から延出されたキャリア軸 45aは、第 1モータ軸 46とサンギ ャ軸 91aとを貫通する。そして、ハイブリッド自動車 20Bにおいて、クラッチ C1は、変 速用差動回転機構 90の出力要素たる第 1サンギヤ 91 (サンギヤ軸 91a)と、動力分 配統合機構 40の第 2要素たるキャリア 45 (キャリア軸 45a)との何れか一方または双 方を駆動軸 66に選択的に連結できるように構成される。すなわち、変速機 60Bのクラ ツチ C1のクラッチポジションが Lポジションに設定されると、変速用差動回転機構 90 の出力要素たる第 1サンギヤ 91に接続されたサンギヤ軸 91aと駆動軸 66とが連結さ れ、これにより、クラッチ COが繋がれていれば、サンギヤ軸 41a、第 1モータ軸 46、変 速用差動回転機構 90およびクラッチ C1を介して動力分配統合機構の第 1要素たる サンギヤ 41と駆動軸 66とが連結される第 1連結状態を実現可能となる。また、変速機 60Bのクラッチ C1を Rポジションに設定すれば、キャリア軸 45aと駆動軸 66とが連結 され、これにより、動力分配統合機構 40の第 2要素たるキャリア 45と駆動軸 66とが連 結される第 2連結状態を実現可能となる。そして、変速機 60Bのクラッチ C1を Mポジ シヨンに設定すれば、動力分配統合機構 40のキャリア 45とサンギヤ 41との双方が駆 動軸 66に連結される第 3連結状態を実現可能となる。このような変速機 60Bを備えた ハイブリッド自動車 20Bにおいても、上述のハイブリッド自動車 20, 20Aと同様の作 用効果を得ることができる。そして、段付ギヤ 96を含む変速用差動回転機構 90を有 する変速機 60Bによれば、より大きな減速比を設定する際にピニオンギヤの回転数 が高まりがちなシングルピニオン式遊星歯車機構を有する変速機に比べて、より大き な減速比を容易に設定することが可能となる。 [0046] FIG. 10 is a schematic configuration diagram of a hybrid vehicle 20 変 形 according to a modification. In the hybrid vehicle 20 shown in the figure, the function of the clutch CO of the hybrid vehicle 20 described above is shared by the clutch CO ′ and the brake B0 that are driven by the hydraulic actuator 88, respectively. Further, the hybrid vehicle 20A includes a transmission 60A in which the function of the clutch C1 described above is shared by the clutches Cla and Clb driven by the hydraulic actuator 88, respectively. That is, in the hybrid vehicle 20A of the modified example, the clutch CO ′ is driven to connect the sun gear 41 of the power distribution and integration mechanism 40 and the first motor shaft 46 (motor MG1) and to release the connection. The first motor shaft 46, which is the rotation shaft of the motor MG1, can be fixed in a non-rotatable manner by driving the brake B0. In addition, by connecting the clutch Cla of the transmission 60A, the carrier shaft 65a connected to the carrier 65, which is the output element of the transmission differential rotation mechanism 61, and the drive shaft 66 are connected, thereby connecting the clutch C0 '. If this is the case, the sun gear shaft 41a, the first motor shaft 46, the transmission differential rotation mechanism 61, and the power distribution and integration mechanism via the clutch Cla The first connected state in which the sun gear 41 as the first element and the drive shaft 66 are connected can be realized. Furthermore, by connecting the clutch Clb, the carrier shaft 45a and the drive shaft 66 are connected, thereby realizing the second connection state in which the carrier 45, which is the second element of the power distribution and integration mechanism 40, and the drive shaft 66 are connected. It becomes possible. By connecting both the clutches Cla and Clb, it is possible to realize the third connection state in which both the sun gear 41 and the carrier 45 of the power distribution and integration mechanism 40 are connected to the drive shaft 66. Fig. 11 shows the settings of the clutch CO ', brake B0, clutch Cla and Clb clutch positions of the transmission 60A, etc. when the hybrid vehicle 20A is running. As described above, the hybrid vehicle 20A including the hydraulic clutch CO ′ and the brake BO and the transmission 60A including the hydraulic clutches Cla and Clb also obtains the same effects as the hybrid vehicle 20 described above. FIG. 12 is a schematic configuration diagram of a hybrid vehicle 20B according to a modification. The hybrid vehicle 20B shown in the figure is provided with a transmission 60B including a transmission differential rotation mechanism 90, which is a planetary gear mechanism including a stepped gear 96, instead of the transmission 60 of the hybrid vehicle 20 described above. is there. That is, the transmission differential rotation mechanism 90 of the transmission 60B includes a first sun gear 91 and a second sun gear 92 having different numbers of teeth, a first pinion gear 93 and a second sun gear 92 that mesh with the first sun gear 91. It is a planetary gear mechanism including a carrier 95 that holds a plurality of stepped gears 96 that are connected to mating second pinion gears 94. In this case, as shown in FIG. 12, the carrier 95 (input element) of the transmission differential rotation mechanism 90 is connected to the first motor shaft 46 and the second sun gear 92 (fixed element) rotates with respect to the transmission case. Fixed to impossible. Further, a hollow sun gear shaft 91a is connected to the first sun gear 91 (output element) of the transmission differential rotation mechanism 90 toward the rear of the vehicle. The carrier shaft 45a extending from the carrier 45, which is the second element of the power distribution and integration mechanism 40, penetrates the first motor shaft 46 and the sunshaft shaft 91a. In the hybrid vehicle 20B, the clutch C1 includes a first sun gear 91 (sun gear shaft 91a) that is an output element of the differential rotation mechanism 90 for speed change and a carrier 45 (carrier shaft that is the second element of the power distribution integration mechanism 40). 45a) or both of them can be selectively connected to the drive shaft 66. In other words, when the clutch position of the clutch C1 of the transmission 60B is set to the L position, the speed change differential rotating mechanism 90 If the sun gear shaft 91a connected to the first sun gear 91, which is the output element, and the drive shaft 66 are connected, and the clutch CO is connected, the sun gear shaft 41a, the first motor shaft 46, A first coupling state in which the sun gear 41, which is the first element of the power distribution and integration mechanism, and the drive shaft 66 are coupled via the differential rotation mechanism 90 and the clutch C1 can be realized. Further, if the clutch C1 of the transmission 60B is set to the R position, the carrier shaft 45a and the drive shaft 66 are connected, and thereby, the carrier 45 and the drive shaft 66 as the second element of the power distribution and integration mechanism 40 are connected. The second connected state can be realized. If the clutch C1 of the transmission 60B is set to the M position, the third connection state in which both the carrier 45 and the sun gear 41 of the power distribution and integration mechanism 40 are connected to the drive shaft 66 can be realized. Also in the hybrid vehicle 20B provided with such a transmission 60B, the same operational effect as the above-described hybrid vehicles 20, 20A can be obtained. And, according to the transmission 60B having the speed change differential rotation mechanism 90 including the stepped gear 96, it has a single pinion type planetary gear mechanism that tends to increase the rotation speed of the pinion gear when setting a larger reduction ratio. Compared to a transmission, a larger reduction ratio can be set easily.
図 13は、他の変形例に係るハイブリッド自動車 20Cの概略構成図である。上述の ハイブリッド自動車 20, 20Aおよび 20Bが後輪駆動車両として構成されるのに対して 、変形例のハイブリッド自動車 20Cは前輪駆動車両として構成されたものである。ノ、 イブリツド自動車 20Cは、図 13に示すように、外歯歯車のサンギヤ 11と、その内周に 形成された内歯と外周に形成された外歯とを有すると共にサンギヤ 11と同心円上に 配置されるリングギヤ 12と、サンギヤ 11およびリングギヤ 12の内歯の双方と嚙合する ピニオンギヤ 13を複数保持するキャリア 14とを含み、サンギヤ 11 (第 1要素)とリング ギヤ 12 (第 2要素)とキャリア 14 (第 3要素)とが互いに差動回転できるように構成され たシングルピニオン式遊星歯車機構である動力分配統合機構 10を備えて!/、る。実 施例において、動力分配統合機構 10は、そのギヤ比 p (サンギヤ 11の歯数をリング ギヤ 12の歯数で除した値)が p < 0. 5となるように構成されている。動力分配統合機 構 10の第 1要素たるサンギヤ 11には、当該サンギヤ 11からエンジン 22とは反対側 に延びるサンギヤ軸 l la、クラッチ CO" および第 1モータ軸 46を介して第 1電動機と してのモータ MG1 (ロータ)が接続されている。また、第 2要素たるリングギヤ 12には 、動力分配統合機構 10のエンジン 22側に配置される減速ギヤ機構 50および当該 減速ギヤ機構 50 (サンギヤ 51)力、らエンジン 22に向けて延びる中空の第 2モータ軸 5 5を介して第 2電動機としてのモータ MG2 (中空のロータ)が接続されている。更に、 第 3要素たるキャリア 14には、第 2モータ軸 55およびモータ MG2を通って延びるキヤ リア軸 14aおよびダンバ 28を介してエンジン 22のクランクシャフト 26が接続されてい FIG. 13 is a schematic configuration diagram of a hybrid vehicle 20C according to another modification. Whereas the hybrid vehicles 20, 20A and 20B described above are configured as rear-wheel drive vehicles, the hybrid vehicle 20C of the modified example is configured as a front-wheel drive vehicle. As shown in FIG. 13, the hybrid vehicle 20C has the sun gear 11 of the external gear, the inner teeth formed on the inner periphery thereof, and the outer teeth formed on the outer periphery thereof, and is disposed concentrically with the sun gear 11. Ring gear 12 and a carrier 14 that holds a plurality of pinion gears 13 that mesh with both the sun gear 11 and the inner teeth of the ring gear 12. The sun gear 11 (first element), the ring gear 12 (second element), and the carrier 14 (Third element) is provided with a power distribution and integration mechanism 10 which is a single pinion planetary gear mechanism configured to be able to rotate differentially with each other! In the embodiment, the power distribution and integration mechanism 10 is configured such that the gear ratio p (the value obtained by dividing the number of teeth of the sun gear 11 by the number of teeth of the ring gear 12) is p <0.5. The sun gear 11 as the first element of the power distribution integrated mechanism 10 is a first electric motor through a sun gear shaft l la, a clutch CO "and a first motor shaft 46 that extend from the sun gear 11 to the opposite side of the engine 22. All motors MG1 (rotor) are connected, and the ring gear 12 as the second element , The reduction gear mechanism 50 disposed on the engine 22 side of the power distribution and integration mechanism 10, the second reduction gear mechanism 50 (sun gear 51), and the second through a hollow second motor shaft 55 extending toward the engine 22. Motor MG2 (hollow rotor) as an electric motor is connected. Furthermore, the crankshaft 26 of the engine 22 is connected to the carrier 14 as the third element via a carrier shaft 14a and a damper 28 extending through the second motor shaft 55 and the motor MG2.
[0049] そして、変速機 60Cは、段付ギヤ 96を含む変速用差動回転機構 90と、伝達軸 97 と、第 1モータ軸 46に取り付けられた駆動ギヤ 47および当該駆動ギヤ 47と常時嚙合 する第 1従動ギヤ 98により構成される第 1連結ギヤ列と、動力分配統合機構 10のリン グギヤ 12および当該リングギヤ 12の外歯と常時嚙合する第 2従動ギヤ 99により構成 される第 2連結ギヤ列と、出力ギヤ 110と、クラッチ とを含む。伝達軸 97は、図 示しない軸受により回転自在に支持されて第 1モータ軸 46および第 2モータ軸 55と 平行に延在すると共に、変速用差動回転機構 90の出力要素たる第 1サンギヤ 91に 固定されている。そして、伝達軸 97は、変速用差動回転機構 90の固定要素たる第 2 サンギヤ 92に接続されると共にトランスミッションケースに固定された中空軸を貫通し て図中右方向に延在する。また、第 1連結ギヤ列の第 1従動ギヤ 98は、伝達軸 97の 一端(図中左端)の周りで回転自在となるように支持されると共に、変速用差動回転 機構 90の入力要素たるキャリア 95に接続される。更に、リングギヤ 12の外歯と嚙合し て第 2連結ギヤ列を構成する第 2従動ギヤ 99は、変速用差動回転機構 90の側方( 図中右側)に配置されると共に伝達軸 97の周りで回転自在となるように図示しない軸 受により支持されている。そして、出力ギヤ 110は、駆動軸 66を含むギヤ機構 67およ びデフアレンシャルギヤ 68を介して駆動輪としての前輪 69c, 69dに連結される。な お、実施例では、第 1連結ギヤ列を構成する駆動ギヤ 47の外歯と第 2連結ギヤ列を 構成するリングギヤ 12の外歯との歯数が同一とされ、第 1連結ギヤ列を構成する第 1 従動ギヤ 98とや第 2連結ギヤ列を構成する第 2従動ギヤ 99との歯数が同一とされる 力 S、これらのギヤの歯数は任意に定めることができる。 [0049] Then, the transmission 60C is always in mesh with the transmission differential rotation mechanism 90 including the stepped gear 96, the transmission shaft 97, the drive gear 47 attached to the first motor shaft 46, and the drive gear 47. A second connected gear constituted by a first driven gear train composed of a first driven gear 98 and a ring gear 12 of the power distribution and integration mechanism 10 and a second driven gear 99 that always meshes with the external teeth of the ring gear 12. Includes a row, an output gear 110, and a clutch. The transmission shaft 97 is rotatably supported by a bearing (not shown), extends in parallel with the first motor shaft 46 and the second motor shaft 55, and is a first sun gear 91 which is an output element of the transmission differential rotation mechanism 90. It is fixed to. The transmission shaft 97 is connected to the second sun gear 92, which is a fixed element of the transmission differential rotation mechanism 90, and extends through the hollow shaft fixed to the transmission case in the right direction in the figure. The first driven gear 98 of the first connecting gear train is supported so as to be rotatable around one end (the left end in the figure) of the transmission shaft 97 and is an input element of the differential rotation mechanism 90 for shifting. Connected to carrier 95. Further, the second driven gear 99 which is engaged with the outer teeth of the ring gear 12 and constitutes the second connecting gear train is arranged on the side (right side in the drawing) of the transmission differential rotation mechanism 90 and the transmission shaft 97 It is supported by a bearing (not shown) so as to be rotatable around. The output gear 110 is connected to front wheels 69c and 69d as drive wheels via a gear mechanism 67 including a drive shaft 66 and a differential gear 68. In the embodiment, the number of teeth of the outer teeth of the drive gear 47 constituting the first connecting gear train and the outer teeth of the ring gear 12 constituting the second connecting gear train are the same, and the first connecting gear train is The force S in which the number of teeth of the first driven gear 98 constituting the same and the second driven gear 99 constituting the second connecting gear train are made the same, the number of teeth of these gears can be arbitrarily determined.
[0050] また、変速機 60Cに含まれるクラッチ は、伝達軸 97と第 2連結ギヤ列の第 2従 動ギヤ 99との何れか一方または双方を出力ギヤ 110に連結可能なものである。実施 例において、クラッチ は、例えば、伝達軸 97の一端(図中右端)に固定されたド グと、第 2従動ギヤ 99に固定されたドグと、伝達軸 97のドグと第 2従動ギヤ 99のドグと の周囲に位置するように出力ギヤ 110に固定されたドグと、これらのドグと嚙合可能 であると共に電気式、電磁式あるいは油圧式のァクチユエータ 101により駆動される 係合部材とを含むドグクラッチとして構成され、図 13に示すように、係合部材の位置 択的に切り替え可能である。すなわち、変速機 60Cのクラッチ C1' のクラッチポジシ ヨンが Rポジションに設定されると、係合部材を介して変速用差動回転機構 90の出力 要素たる第 1サンギヤ 91に接続された伝達軸 97のドグと出力ギヤ 110のドグとが連 結され、これにより、クラッチ CO" が繋がれていれば、サンギヤ軸 l la、第 1モータ軸 46,第 1連結ギヤ列(駆動ギヤ 47および第 1従動ギヤ 98)、伝達軸 97、クラッチ C1 ' および出力ギヤ 110等を介して動力分配統合機構の第 1要素たるサンギヤ 11と駆 動軸 66とが連結される第 1連結状態を実現可能となる。また、変速機 60Cのクラッチ C1' を Lポジションに設定すれば、係合部材を介して第 2連結ギヤ列の第 2従動ギ ャ 99のドグと出力ギヤ 110のドグとが連結され、これにより、動力分配統合機構 10の 第 2要素たるリングギヤ 12と駆動軸 66とが連結される第 2連結状態を実現可能となる 。そして、変速機 60Cのクラッチ を Mポジションに設定すれば、係合部材を介し て伝達軸 97のドグと第 2従動ギヤ 99のドグと出力ギヤ 110のドグとが連結され、これ により、動力分配統合機構 10のサンギヤ 11とリングギヤ 12との双方が駆動軸 66に 連結される第 3連結状態を実現可能となる。なお、図 13に示すハイブリッド自動車 20 Cでは、モータ MG1の近傍に当該モータ MG1の回転軸たる第 1モータ軸 46を回転 不能に固定可能な固定手段として機能するブレーキ B0〃 が設けられている。この場 合、ブレーキ B0" は、電気式、電磁式あるいは油圧式のァクチユエータ 102により駆 動される係合部材を介して駆動ギヤ 47に固定されたドグとトランスミッションケースに 固定された固定用ドグとをより少ない損失で連結すると共に両者の連結を解除するこ とができるドグクラッチとして構成されて!/、る。 [0050] Further, the clutch included in the transmission 60C can connect either or both of the transmission shaft 97 and the second driven gear 99 of the second connecting gear train to the output gear 110. Implementation In the example, the clutch includes, for example, a dog fixed to one end (right end in the figure) of the transmission shaft 97, a dog fixed to the second driven gear 99, a dog of the transmission shaft 97, and a second driven gear 99. A dog clutch including a dog fixed to the output gear 110 so as to be positioned around the dog, and an engaging member that can be engaged with the dog and driven by an electric, electromagnetic, or hydraulic actuator 101 As shown in FIG. 13, the position of the engaging member can be selectively switched. That is, when the clutch position of the clutch C1 ′ of the transmission 60C is set to the R position, the transmission shaft 97 connected to the first sun gear 91, which is the output element of the transmission differential rotation mechanism 90, via the engagement member. If the dog of the output gear 110 and the dog of the output gear 110 are connected, and the clutch CO "is connected, the sun gear shaft l la, the first motor shaft 46, the first connection gear train (the drive gear 47 and the first gear) It becomes possible to realize the first connected state in which the sun gear 11 as the first element of the power distribution and integration mechanism and the drive shaft 66 are connected via the driven gear 98), the transmission shaft 97, the clutch C1 ′, the output gear 110, etc. If the clutch C1 ′ of the transmission 60C is set to the L position, the dog of the second driven gear 99 and the dog of the output gear 110 are connected via the engaging member. To drive the ring gear 12 as the second element of the power distribution and integration mechanism 10 It is possible to realize the second connected state in which the shaft 66 is connected to the transmission shaft 97. If the clutch of the transmission 60C is set to the M position, the dog of the transmission shaft 97 and the second driven gear 99 are connected via the engaging member. The dog and the dog of the output gear 110 are connected, which makes it possible to realize a third connected state in which both the sun gear 11 and the ring gear 12 of the power distribution and integration mechanism 10 are connected to the drive shaft 66. In the hybrid vehicle 20 C shown in Fig. 13, a brake B0〃 that functions as a fixing means capable of fixing the first motor shaft 46, which is the rotation shaft of the motor MG1, in a non-rotatable manner is provided in the vicinity of the motor MG1. The brake B0 "is composed of a dog fixed to the drive gear 47 via an engaging member driven by an electric, electromagnetic or hydraulic actuator 102 and a fixing dog fixed to the transmission case. Is configured as a dog clutch that can and child uncoupled both with coupling with no loss! /, Ru.
このように、本発明によるハイブリッド自動車は、前輪駆動車両として構成されてもよ ぐ図 13のハイブリッド自動車 20Cにおいても、上述のハイブリッド自動車 20, 20A, 20Bと同様の作用効果を得ることができる。また、図 13に示す変速機 60Cは、第 1お よび第 2モータ軸 46, 55と平行に延在する伝達軸 97と平行軸式の第 1および第 2連 結ギヤ列と切替手段としてのクラッチ C1' を含むものであるから、クラッチ C1' や変 速用差動回転機構 90を伝達軸 97の周りにそれと同軸に配置することにより動力出 力装置を 2軸式のものとして構成可能となり、エンジン 22とモータ MG1 , MG2と動力 分配統合機構 10とを概ね同軸に配置しても、動力出力装置の軸方向(車幅方向)寸 法の増加を抑制することができる。従って、図 13の動力出力装置は、コンパクトで搭 載性に優れて主に前輪を駆動して走行するハイブリッド自動車 20Cに極めて好適な ものとなる。また、変速機 60Cのように、平行軸式の第 1連結ギヤ列を介して動力分 配統合機構 10のサンギヤ 11を伝達軸 97に連結すると共に、平行軸式の第 2連結ギ ャ列を介して動力分配統合機構 10のリングギヤ 12を駆動軸 66に連結するようにす れば、サンギヤ 11と伝達軸 97との間やリングギヤ 12と駆動軸 66との間の変速比を自 在に設定することも可能となる。これにより、変速機 60Cの変速比設定の自由度を大 きくして動力の伝達効率のより一層の向上を図ることができる。なお、図 13の例では、 動力分配統合機構 10のリングギヤ 12に外歯を形成してリングギヤ 12自体が第 1連 結ギヤ列を構成している力 これに限られるものではない。すなわち、リングギヤ 12に 外歯を形成する代わりに、駆動ギヤ 47と同様のギヤをリングギヤ 12に接続して当該 ギヤを第 2従動ギヤ 99と嚙合させて第 2連結ギヤ列を構成してもよい。また、変速機 6 0Cの変速用差動回転機構は、シングルピニオン式の遊星歯車機構であってもよ!/、。 更に、クラッチ C0〃 やブレーキ B0〃 は油圧式ァクチユエータにより駆動されるもので あってもよく、変速機 60Cのクラッチ C1' の機能をそれぞれ油圧式ァクチユエータに より駆動される 2つのクラッチに分担させてもよい。そして、ハイブリッド自動車 20Cは 、上述のようにギヤ比 pが値 0. 5未満とされるシングルピニオン式遊星歯車機構であ る動力分配統合機構 10を備えているが、このような諸元の動力分配統合機構 10に おいては、サンギヤ 11に比べてリングギヤ 12に対するエンジン 22からのトルクの分 配比率が大きくなる。従って、図 13に示すように、リングギヤ 12とモータ MG2との間 に減速ギヤ機構 50を配置することにより、モータ MG2の小型化とその動力損失の低 減化を図ることが可能となる。また、この場合には、減速ギヤ機構 50の減速比 p rを 動力分配統合機構 10のギヤ比 p近傍の値とすれば、モータ MG1および MG2の諸 元を概ね同一のものとすることが可能となるので、エンジン 22、動力出力装置の生産 性を向上させると共にコストの低減化を図ることができる。 Thus, the hybrid vehicle according to the present invention may be configured as a front-wheel drive vehicle, and also in the hybrid vehicle 20C of FIG. 13, the above-described hybrid vehicles 20, 20A, The same effect as 20B can be obtained. A transmission 60C shown in FIG. 13 includes a transmission shaft 97 extending in parallel with the first and second motor shafts 46 and 55, a first and second connecting gear trains of parallel shaft type, and a switching means. Since the clutch C1 'is included, the power output device can be configured as a two-shaft type by arranging the clutch C1' and the differential rotation mechanism 90 for variable speed around the transmission shaft 97, and the engine Even if the motor 22 and the motors MG1 and MG2 and the power distribution and integration mechanism 10 are arranged substantially coaxially, an increase in the axial direction (vehicle width direction) size of the power output device can be suppressed. Therefore, the power output apparatus of FIG. 13 is compact and excellent in mountability, and is extremely suitable for the hybrid vehicle 20C that travels mainly by driving the front wheels. Also, like the transmission 60C, the sun gear 11 of the power distribution and integration mechanism 10 is connected to the transmission shaft 97 via the parallel shaft type first connection gear train, and the parallel shaft type second connection gear train is connected. If the ring gear 12 of the power distribution and integration mechanism 10 is connected to the drive shaft 66 via the drive shaft 66, the transmission gear ratio between the sun gear 11 and the transmission shaft 97 and between the ring gear 12 and the drive shaft 66 is set to be independent. It is also possible to do. As a result, the degree of freedom in setting the transmission ratio of the transmission 60C can be increased, and the power transmission efficiency can be further improved. In the example of FIG. 13, the force in which the outer teeth are formed on the ring gear 12 of the power distribution and integration mechanism 10 and the ring gear 12 itself constitutes the first coupling gear train is not limited to this. That is, instead of forming external teeth on the ring gear 12, a gear similar to the drive gear 47 may be connected to the ring gear 12, and the gear may be engaged with the second driven gear 99 to form the second connection gear train. . Further, the differential rotation mechanism for transmission of the transmission 60C may be a single pinion type planetary gear mechanism! /. Further, the clutch C0〃 and the brake B0〃 may be driven by a hydraulic actuator, and the function of the clutch C1 'of the transmission 60C is divided into two clutches driven by the hydraulic actuator, respectively. Also good. The hybrid vehicle 20C includes the power distribution and integration mechanism 10 that is a single pinion planetary gear mechanism in which the gear ratio p is less than 0.5 as described above. In the distribution and integration mechanism 10, the torque distribution ratio from the engine 22 to the ring gear 12 is larger than that in the sun gear 11. Therefore, as shown in FIG. 13, by arranging reduction gear mechanism 50 between ring gear 12 and motor MG2, motor MG2 can be reduced in size and its power loss can be reduced. In this case, the reduction ratio pr of the reduction gear mechanism 50 is set to If the power distribution / integration mechanism 10 has a value close to the gear ratio p, the motor MG1 and MG2 can have substantially the same specifications, which improves the productivity of the engine 22 and the power output device. Cost can be reduced.
[0052] なお、上述のハイブリッド自動車 20, 20A, 20B, 20Cにおいて、サンギヤ 41とモ ータ MG1との接続および当該接続の解除を実行する機構や、第 1モータ軸 46 (サン ギヤ 41 , 11)を固定する機構、減速ギヤ機構 50の何れかまたはすべてを省略しても よい。また、上述のハイブリッド自動車 20, 20A, 20Bは、何れも後輪駆動ベースの 4 輪駆動車両として構成されてもよぐ上述のハイブリッド自動車 20Cは、前輪駆動べ ースの 4輪駆動車両として構成されてもよい。更に、上述のハイブリッド自動車 20, 2 OA, 20Bにおいて、動力分配統合機構 40は、互いに異なる歯数をもった第 1サンギ ャおよび第 2サンギヤと、第 1サンギヤと嚙合する第 1ピニオンギヤと第 2サンギヤと嚙 合する第 2ピニオンギヤとを連結してなる段付ギヤを少なくとも 1つ保持するキャリアと を含む遊星歯車機構であってもよい。また、上述のハイブリッド自動車 20Cにおいて 、動力分配統合機構 10は、ダブルピニオン式の遊星歯車機構として構成されてもよ い。更に、上記実施例においては、動力出力装置をノ、イブリツド自動車 20, 20A, 2 OB, 20Cに搭載されるものとして説明した力 本発明による動力出力装置は、自動 車以外の車両や船舶、航空機などの移動体に搭載されるものであってもよぐ建設設 備などの固定設備に組み込まれるものであってもよい。  [0052] In the above-described hybrid vehicles 20, 20A, 20B, and 20C, a mechanism for connecting and releasing the sun gear 41 and the motor MG1, and the first motor shaft 46 (sun gears 41, 11 ) May be omitted or all of the reduction gear mechanism 50 may be omitted. The hybrid vehicle 20, 20A, 20B may be configured as a four-wheel drive vehicle based on a rear wheel drive. The hybrid vehicle 20C described above may be configured as a four-wheel drive vehicle based on a front wheel drive. May be. Further, in the hybrid vehicles 20, 2 OA, 20B described above, the power distribution and integration mechanism 40 includes the first sun gear and the second sun gear having different numbers of teeth, the first pinion gear and the second sun gear meshing with the first sun gear. A planetary gear mechanism including a carrier that holds at least one stepped gear formed by connecting a second pinion gear that meshes with a sun gear may be used. In the hybrid vehicle 20C described above, the power distribution and integration mechanism 10 may be configured as a double pinion planetary gear mechanism. Further, in the above embodiment, the power output device described as a power output device mounted on a hybrid vehicle 20, 20A, 2OB, 20C. The power output device according to the present invention is a vehicle, ship, or aircraft other than an automobile. It may be mounted on a moving body such as, or may be incorporated into a fixed facility such as a construction facility.
[0053] 以上、実施例を用いて本発明の実施の形態について説明した力 本発明は上記 実施例に何ら限定されるものではなく、本発明の要旨を逸脱しなレ、範囲内にお!/ヽて 、様々な変更をなし得ることはレ、うまでもなレ、。  [0053] The power described in the embodiment of the present invention using the examples as described above. The present invention is not limited to the above-described examples at all, and within the scope of the present invention without departing from the spirit of the present invention! / Hurry up, you can make various changes.
産業上の利用可能性  Industrial applicability
[0054] 本発明は、動力出力装置やハイブリッド自動車の製造産業等において利用可能で ある。 [0054] The present invention can be used in the manufacturing industry of power output devices and hybrid vehicles.

Claims

請求の範囲 The scope of the claims
[1] 駆動軸に動力を出力する動力出力装置であって、  [1] A power output device that outputs power to a drive shaft,
内燃機関と、  An internal combustion engine;
動力を入出力可能な第 1電動機と、  A first electric motor that can input and output power;
動力を入出力可能な第 2電動機と、  A second electric motor that can input and output power;
前記第 1電動機の回転軸に接続される第 1要素と前記第 2電動機の回転軸に接続 される第 2要素と前記内燃機関の機関軸に接続される第 3要素とを含むと共にこれら 3つの要素が互いに差動回転できるように構成された動力分配統合機構と、 前記動力分配統合機構の前記第 1および第 2要素の何れか一方に接続される入 力要素と固定要素と出力要素とを有すると共にこれら 3つの要素が互いに差動回転 できるように構成された変速用差動回転機構と、前記変速用差動回転機構の前記出 力要素と前記動力分配統合機構の前記第 1および第 2要素の他方とを前記駆動軸 に選択的に連結可能な連結手段とを含む変速伝達手段と、  Including a first element connected to the rotating shaft of the first motor, a second element connected to the rotating shaft of the second motor, and a third element connected to the engine shaft of the internal combustion engine. A power distribution and integration mechanism configured such that the elements can differentially rotate with each other; an input element connected to one of the first and second elements of the power distribution and integration mechanism; a fixed element; and an output element. And the three differential elements configured to be capable of differentially rotating with respect to each other, the output differential element of the differential gear differential rotation mechanism, and the first and second of the power distribution and integration mechanism. Transmission means including connection means capable of selectively connecting the other element to the drive shaft;
を備える動力出力装置。  A power output device comprising:
[2] 前記変速伝達手段の前記変速用差動回転機構は、 3要素式遊星歯車機構である 請求項 1に記載の動力出力装置。 2. The power output apparatus according to claim 1, wherein the speed change differential rotation mechanism of the speed change transmission means is a three-element planetary gear mechanism.
[3] 前記変速用差動回転機構は、互いに異なる歯数をもった第 1サンギヤおよび第 2サ ンギヤと、第 1サンギヤと嚙合する第 1ピニオンギヤと第 2サンギヤと嚙合する第 2ピニ オンギヤとを連結してなる段付ギヤを少なくとも 1つ保持するキャリアとを含む遊星歯 車機構である請求項 2に記載の動力出力装置。 [3] The transmission differential rotation mechanism includes a first sun gear and a second sun gear having different numbers of teeth, a first pinion gear meshing with the first sun gear, and a second pinion gear meshing with the second sun gear. 3. The power output device according to claim 2, wherein the power output device is a planetary gear mechanism including a carrier that holds at least one stepped gear.
[4] 前記第 1および第 2電動機は前記内燃機関と概ね同軸に配置され、前記動力分配 統合機構は前記第 1電動機と前記第 2電動機との間に両電動機と概ね同軸に配置さ れる請求項 1に記載の動力出力装置。 [4] The first and second electric motors are arranged substantially coaxially with the internal combustion engine, and the power distribution and integration mechanism is arranged between the first electric motor and the second electric motor and substantially coaxial with both electric motors. Item 4. The power output device according to Item 1.
[5] 請求項 4に記載の動力出力装置において、 [5] In the power output device according to claim 4,
前記動力分配統合機構の前記第 1および第 2要素の何れか一方に接続されると共 に前記変速用差動回転機構の前記入力要素に接続される中空軸と、  A hollow shaft connected to any one of the first and second elements of the power distribution and integration mechanism and to the input element of the differential rotation mechanism for shifting;
前記第 1および第 2要素の他方に接続されると共に前記中空軸および前記変速用 差動回転機構を通って前記駆動軸に向けて延びる連結軸とを更に備え、 前記変速伝達手段の前記連結手段は、前記変速用差動回転機構の前記出力要 素と前記連結軸との何れか一方または双方を前記駆動軸に選択的に連結可能であ る動力出力装置。 A connecting shaft connected to the other of the first and second elements and extending toward the drive shaft through the hollow shaft and the differential rotation mechanism for shifting; The connecting means of the shift transmission means is a power output device capable of selectively connecting either one or both of the output element and the connecting shaft of the differential transmission rotating mechanism to the drive shaft.
[6] 請求項 4に記載の動力出力装置において、 [6] In the power output device according to claim 4,
前記変速伝達手段の前記連結手段は、  The connecting means of the shift transmission means is
前記第 1および第 2電動機の回転軸と概ね平行に延びると共に前記変速用差動回 転機構の前記入力要素に接続される伝達軸と、  A transmission shaft extending substantially parallel to the rotation shafts of the first and second electric motors and connected to the input element of the differential rotation mechanism for shifting;
前記動力分配統合機構の前記第 1および第 2要素の何れか一方と前記伝達軸とを 連結する第 1平行軸式ギヤ列と、  A first parallel shaft type gear train that connects any one of the first and second elements of the power distribution and integration mechanism and the transmission shaft;
前記第 1および 2要素の他方に連結される第 2平行軸式ギヤ列と、  A second parallel shaft gear train coupled to the other of the first and second elements;
前記伝達軸と前記駆動軸とが連結される第 1連結状態と、前記第 2平行軸式ギヤ 歹 IJと前記駆動軸とが連結される第 2連結状態と、前記伝達軸および前記第 2平行軸 式ギヤ列の双方が前記伝達軸に連結される第 3連結状態とを選択的に切り替え可能 な切替手段とを含む動力出力装置。  A first connection state in which the transmission shaft and the drive shaft are connected; a second connection state in which the second parallel shaft gear 歹 IJ and the drive shaft are connected; and the transmission shaft and the second parallel state. A power output apparatus including switching means capable of selectively switching between a third coupled state in which both shaft gear trains are coupled to the transmission shaft.
[7] 前記第 1電動機の回転軸と前記第 2電動機の回転軸との何れか一方を回転不能に 固定可能な固定手段を更に備える請求項 1に記載の動力出力装置。 7. The power output apparatus according to claim 1, further comprising fixing means capable of fixing either one of the rotating shaft of the first electric motor and the rotating shaft of the second electric motor so as not to rotate.
[8] 前記第 1電動機と前記第 1要素との接続および該接続の解除と、前記第 2電動機と 前記第 2要素との接続および該接続の解除と、前記内燃機関と前記第 3要素との接 続および該接続の解除との何れ力、を実行可能な接続断接手段を更に備える請求項 1に記載の動力出力装置。 [8] Connection between the first motor and the first element and release of the connection, connection between the second motor and the second element and release of the connection, the internal combustion engine and the third element The power output apparatus according to claim 1, further comprising connection / disconnection means capable of executing any of the connection and release of the connection.
[9] 前記動力分配統合機構の前記第 1および第 2要素のうちの前記機関軸に接続され る前記第 3要素からより大きなトルクが入力される一方は、前記第 1電動機または前 記第 2電動機の回転軸の回転を減速する減速手段を介して前記第 1電動機または 前記第 2電動機と接続される請求項 1に記載の動力出力装置。 [9] Of the first and second elements of the power distribution and integration mechanism, one of the first motor or the second one that receives larger torque from the third element connected to the engine shaft 2. The power output apparatus according to claim 1, wherein the power output apparatus is connected to the first electric motor or the second electric motor via a speed reduction unit that decelerates rotation of a rotating shaft of the electric motor.
[10] 請求項 9に記載の動力出力装置において、 [10] In the power output device according to claim 9,
前記動力分配統合機構は、サンギヤと、リングギヤと、互いに嚙合すると共に一方 が前記サンギヤと他方が前記リングギヤと嚙合する 2つのピニオンギヤの組を少なくと も 1組保持するキャリアとを含むダブルピニオン式遊星歯車機構であり、前記第 1要 素は前記サンギヤおよび前記キャリアの何れか一方であると共に前記第 2要素は前 記サンギヤおよび前記キャリアの他方であり、前記第 3要素は前記リングギヤである 動力出力装置。 The power distribution and integration mechanism includes a sun gear, a ring gear, and a carrier that holds at least one pair of two pinion gears that mesh with each other and one meshes with the sun gear and the other meshes with the ring gear. A gear mechanism, the first The element is either the sun gear or the carrier, the second element is the other of the sun gear and the carrier, and the third element is the ring gear.
[11] 請求項 10に記載の動力出力装置において、 [11] The power output apparatus according to claim 10,
前記動力分配統合機構は、前記サンギヤの歯数を前記リングギヤの歯数で除した 値である該動力分配統合機構のギヤ比を Pとしたときに、 P < 0. 5となるように構成 され、前記減速手段は、減速比が ρ / (1— ρ )近傍の値となるように構成されると共 に前記第 1電動機または前記第 2電動機と前記キャリアとの間に配置される動力出力 装置。 The power distribution and integration mechanism is configured such that P <0.5 when the gear ratio of the power distribution and integration mechanism, which is a value obtained by dividing the number of teeth of the sun gear by the number of teeth of the ring gear, is P. The speed reduction means is configured so that the speed reduction ratio becomes a value in the vicinity of ρ / (1−ρ), and the power output disposed between the first motor or the second motor and the carrier. apparatus.
[12] 請求項 10に記載の動力出力装置において、  [12] The power output device according to claim 10,
前記動力分配統合機構は、前記サンギヤの歯数を前記リングギヤの歯数で除した 値である該動力分配統合機構のギヤ比を Ρとしたときに、 P > 0. 5となるように構成 され、前記減速手段は、減速比が(1 P ) / P近傍の値となるように構成されると共 に前記第 1電動機または前記第 2電動機と前記サンギヤとの間に配置される動力出 力装置。 The power distribution and integration mechanism is configured such that P > 0.5 when the gear ratio of the power distribution and integration mechanism is a value obtained by dividing the number of teeth of the sun gear by the number of teeth of the ring gear. The speed reduction means is configured so that the speed reduction ratio becomes a value in the vicinity of (1 P ) / P, and the power output disposed between the first motor or the second motor and the sun gear. apparatus.
[13] 請求項 9に記載の動力出力装置において、  [13] In the power output device according to claim 9,
前記動力分配統合機構は、サンギヤと、リングギヤと、前記サンギヤおよび前記リン グギヤの双方と嚙合するピニオンギヤを少なくとも 1つ保持するキャリアとを含むシン グルピ二オン式遊星歯車機構であり、前記第 1要素は前記サンギヤおよび前記リング ギヤの何れか一方であると共に前記第 2要素は前記サンギヤおよび前記リングギヤ の他方であり、前記第 3要素は前記キャリアであり、  The power distribution and integration mechanism is a single-pinion planetary gear mechanism including a sun gear, a ring gear, and a carrier that holds at least one pinion gear that meshes with both the sun gear and the ring gear. Is one of the sun gear and the ring gear, the second element is the other of the sun gear and the ring gear, and the third element is the carrier,
前記サンギヤの歯数を前記リングギヤの歯数で除した値である前記動力分配統合 機構のギヤ比を ρとしたときに、前記減速手段は、減速比が ρ近傍の値となるように 構成されると共に前記第 1または第 2電動機と前記リングギヤとの間に配置される動 力出力装置。  When the gear ratio of the power distribution and integration mechanism, which is a value obtained by dividing the number of teeth of the sun gear by the number of teeth of the ring gear, is ρ, the reduction means is configured so that the reduction ratio becomes a value in the vicinity of ρ. And a power output device disposed between the first or second electric motor and the ring gear.
[14] 請求項 1に記載の動力出力装置を備え、前記駆動軸からの動力により駆動される 駆動輪を含むハイブリッド自動車。  14. A hybrid vehicle comprising the power output device according to claim 1 and including drive wheels driven by power from the drive shaft.
PCT/JP2007/070438 2006-10-24 2007-10-19 Power output device, and hybrid automobile WO2008050683A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2007800397809A CN101528494B (en) 2006-10-24 2007-10-19 Power output device, and hybrid automobile
DE112007002522.0T DE112007002522B4 (en) 2006-10-24 2007-10-19 Power output device and hybrid vehicle
US12/447,059 US8091661B2 (en) 2006-10-24 2007-10-19 Power output apparatus and hybrid vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006288668A JP4222406B2 (en) 2006-10-24 2006-10-24 Power output device and hybrid vehicle
JP2006-288668 2006-10-24

Publications (1)

Publication Number Publication Date
WO2008050683A1 true WO2008050683A1 (en) 2008-05-02

Family

ID=39324482

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070438 WO2008050683A1 (en) 2006-10-24 2007-10-19 Power output device, and hybrid automobile

Country Status (5)

Country Link
US (1) US8091661B2 (en)
JP (1) JP4222406B2 (en)
CN (1) CN101528494B (en)
DE (1) DE112007002522B4 (en)
WO (1) WO2008050683A1 (en)

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4229156B2 (en) * 2006-09-06 2009-02-25 トヨタ自動車株式会社 Power output device and hybrid vehicle
JP4222407B2 (en) * 2006-10-25 2009-02-12 トヨタ自動車株式会社 Power output device and hybrid vehicle
JP4229175B2 (en) * 2006-11-22 2009-02-25 トヨタ自動車株式会社 Power output device, automobile equipped with the same, and method for controlling power output device
JP4229173B2 (en) * 2006-11-22 2009-02-25 トヨタ自動車株式会社 Power output device, automobile equipped with the same, and method for controlling power output device
JP4572956B2 (en) * 2008-06-03 2010-11-04 トヨタ自動車株式会社 Vehicle drive device
DE102010012667B4 (en) * 2010-03-24 2012-06-21 Voith Patent Gmbh driving device
DE102010053757A1 (en) * 2010-12-08 2012-06-14 Daimler Ag Hybrid drive device
JP5994794B2 (en) * 2013-01-08 2016-09-21 トヨタ自動車株式会社 Control device for hybrid vehicle
DE102013202381B4 (en) * 2013-02-14 2016-06-23 Schaeffler Technologies AG & Co. KG Drive device for a vehicle and vehicle with the drive device
SE539028C2 (en) 2014-03-20 2017-03-21 Scania Cv Ab Procedure for driving a vehicle with a hybrid drivetrain, vehicles with such a hybrid drivetrain, computer programs for controlling a vehicle's driving, and a computer software product comprising program code
SE538736C2 (en) 2014-03-20 2016-11-08 Scania Cv Ab A method of controlling a hybrid drive line to optimize the driving torque of an internal combustion engine arranged at the hybrid drive line
SE539660C2 (en) 2014-03-20 2017-10-24 Scania Cv Ab Method of starting an internal combustion engine in a hybrid drive line, vehicles with such a hybrid drive line, computer programs for starting an internal combustion engine, and a computer program product including program code
SE539030C2 (en) * 2014-03-20 2017-03-21 Scania Cv Ab A method for controlling a hybrid driver, vehicles with such a hybrid driver, computer programs for controlling such a hybrid driver, and a computer software product comprising program code
SE537896C2 (en) 2014-03-20 2015-11-17 Scania Cv Ab Method of starting an internal combustion engine in a hybrid drive line, vehicles with such a hybrid drive line, computer programs for starting an internal combustion engine, and a computer program product comprising program code
SE537897C2 (en) 2014-03-20 2015-11-17 Scania Cv Ab Procedure for driving a vehicle with a hybrid drivetrain, vehicles with such a hybrid drivetrain, computer programs for controlling a vehicle's driving, and a computer software product comprising program code
SE539032C2 (en) 2014-03-20 2017-03-21 Scania Cv Ab A method for controlling a hybrid driver, vehicles with such a hybrid driver, computer programs for controlling such a hybrid driver, and a computer software product comprising program code
SE539661C2 (en) 2014-03-20 2017-10-24 Scania Cv Ab Method for starting an internal combustion engine of a hybrid drive line, vehicles with such an internal combustion engine, computer programs for starting such an internal combustion engine, and a computer program product comprising program code
SE540692C2 (en) 2014-03-20 2018-10-09 Scania Cv Ab A method for controlling a hybrid driver, vehicles with such a hybrid driver, computer programs for controlling such a hybrid driver, and a computer software product comprising program code
SE539662C2 (en) 2014-03-20 2017-10-24 Scania Cv Ab Method of starting an internal combustion engine in a hybrid drive line, vehicles with such a hybrid drive line, computer programs for starting an internal combustion engine, and a computer program product including program code
SE540693C2 (en) 2014-03-20 2018-10-09 Scania Cv Ab A method for controlling a hybrid driver, vehicles with such a hybrid driver, computer programs for controlling such a hybrid driver, and a computer software product comprising program code
SE538187C2 (en) 2014-03-20 2016-03-29 Scania Cv Ab A method for controlling a hybrid driver, vehicles with such a hybrid driver, computer programs for controlling such a hybrid driver, and a computer software product comprising program code
SE539002C2 (en) 2014-03-20 2017-03-14 Scania Cv Ab A method for controlling a hybrid driver, vehicles with such a hybrid driver, computer programs for controlling such a hybrid driver, and a computer software product comprising program code
SE538735C2 (en) 2014-03-20 2016-11-08 Scania Cv Ab Procedure for controlling a hybrid drive line to optimize fuel consumption
TW201607792A (en) * 2014-08-29 2016-03-01 Kwang Yang Motor Co Coupling structure of dynamic and power supply for multipurpose vehicle
JP6404856B2 (en) * 2016-06-03 2018-10-17 トヨタ自動車株式会社 Hybrid car
JP2019077218A (en) * 2017-10-20 2019-05-23 トヨタ自動車株式会社 Driving device for hybrid vehicle
DE102019214986A1 (en) 2019-09-30 2021-04-01 Zf Friedrichshafen Ag Drive axle of an electric vehicle and powershift process
DE102019216562A1 (en) * 2019-10-28 2021-04-29 Zf Friedrichshafen Ag Drive arrangement of an electric vehicle and load shifting method
EP3868590B1 (en) * 2020-02-20 2022-11-23 Toyota Jidosha Kabushiki Kaisha Power transmission device
CN113022227B (en) * 2021-04-27 2022-06-07 吉林大学 Multi-mode double-motor coupling electric drive axle
CN113103826B (en) * 2021-05-12 2022-04-29 吉林大学 Torque directional distribution electric drive axle adopting double-planet-wheel cylindrical gear differential mechanism
DE102022203097A1 (en) 2022-03-30 2023-10-05 Zf Friedrichshafen Ag Drive unit for a drive axle of a vehicle

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07336810A (en) * 1994-06-06 1995-12-22 Aqueous Res:Kk Hybrid vehicle
JP2000062483A (en) * 1998-06-24 2000-02-29 General Motors Corp <Gm> Electromechanical transmission of 2-mode combined split type
JP2000108693A (en) * 1998-09-28 2000-04-18 Caterpillar Inc Elelctromechanical transmission
JP2000326739A (en) * 1999-05-19 2000-11-28 Kyowa Gokin Kk Driving device for automobile
JP2003104072A (en) * 2001-09-28 2003-04-09 Toyota Motor Corp Power output device and automobile having it
JP2005125876A (en) * 2003-10-22 2005-05-19 Toyota Motor Corp Hybrid vehicle driving device
JP2005155891A (en) * 2003-11-06 2005-06-16 Toyota Motor Corp Driving device of hybrid car
JP2005170227A (en) * 2003-12-10 2005-06-30 Aisin Aw Co Ltd Hybrid driving device
JP2005297786A (en) * 2004-04-12 2005-10-27 Toyota Motor Corp Driving device for hybrid vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5669842A (en) * 1996-04-29 1997-09-23 General Motors Corporation Hybrid power transmission with power take-off apparatus
US5730676A (en) * 1996-10-22 1998-03-24 General Motors Corporation Three-mode, input-split hybrid transmission
DE10133919A1 (en) 2001-07-12 2003-01-23 Bayerische Motoren Werke Ag Electromechanical gear
CN100551731C (en) * 2005-03-30 2009-10-21 爱信艾达株式会社 Hybrid drive

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07336810A (en) * 1994-06-06 1995-12-22 Aqueous Res:Kk Hybrid vehicle
JP2000062483A (en) * 1998-06-24 2000-02-29 General Motors Corp <Gm> Electromechanical transmission of 2-mode combined split type
JP2000108693A (en) * 1998-09-28 2000-04-18 Caterpillar Inc Elelctromechanical transmission
JP2000326739A (en) * 1999-05-19 2000-11-28 Kyowa Gokin Kk Driving device for automobile
JP2003104072A (en) * 2001-09-28 2003-04-09 Toyota Motor Corp Power output device and automobile having it
JP2005125876A (en) * 2003-10-22 2005-05-19 Toyota Motor Corp Hybrid vehicle driving device
JP2005155891A (en) * 2003-11-06 2005-06-16 Toyota Motor Corp Driving device of hybrid car
JP2005170227A (en) * 2003-12-10 2005-06-30 Aisin Aw Co Ltd Hybrid driving device
JP2005297786A (en) * 2004-04-12 2005-10-27 Toyota Motor Corp Driving device for hybrid vehicle

Also Published As

Publication number Publication date
DE112007002522T5 (en) 2009-09-10
US20090301800A1 (en) 2009-12-10
DE112007002522B4 (en) 2014-10-09
JP4222406B2 (en) 2009-02-12
CN101528494B (en) 2013-01-02
US8091661B2 (en) 2012-01-10
JP2008105496A (en) 2008-05-08
CN101528494A (en) 2009-09-09

Similar Documents

Publication Publication Date Title
JP4222406B2 (en) Power output device and hybrid vehicle
JP4222407B2 (en) Power output device and hybrid vehicle
JP4140647B2 (en) Power output device and hybrid vehicle
JP4229156B2 (en) Power output device and hybrid vehicle
JP4293268B2 (en) Power output apparatus and hybrid vehicle equipped with the same
JP4240091B2 (en) Power output device and hybrid vehicle
JP4450017B2 (en) Power output apparatus and hybrid vehicle equipped with the same
JP4007403B1 (en) Power output device and hybrid vehicle
JP4228007B2 (en) Power output device and vehicle equipped with the same
WO2008062659A1 (en) Coupling device, power output apparatus with the device, and hybrid vehicle
JP4229172B2 (en) CONNECTION DEVICE, POWER OUTPUT DEVICE EQUIPPED WITH THE SAME, AND HYBRID CAR
WO2008065792A1 (en) Power output device, automobile with the same, and method of controlling power output device
CN108621776B (en) Drive device for hybrid vehicle
JP5104493B2 (en) Power output device and vehicle
JP4179211B2 (en) Hybrid vehicle drive system
JP4434128B2 (en) Control device for vehicle drive device
JP4384152B2 (en) Power output device and hybrid vehicle
JP4285579B2 (en) Power output device and hybrid vehicle
JP4005589B2 (en) Power output device, automobile equipped with the same, and power transmission device
JP2009051263A (en) Power output device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780039780.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830172

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12447059

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120070025220

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112007002522

Country of ref document: DE

Date of ref document: 20090910

Kind code of ref document: P

122 Ep: pct application non-entry in european phase

Ref document number: 07830172

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)