WO2008050452A1 - Plasma display panel and its driving method - Google Patents

Plasma display panel and its driving method Download PDF

Info

Publication number
WO2008050452A1
WO2008050452A1 PCT/JP2006/321550 JP2006321550W WO2008050452A1 WO 2008050452 A1 WO2008050452 A1 WO 2008050452A1 JP 2006321550 W JP2006321550 W JP 2006321550W WO 2008050452 A1 WO2008050452 A1 WO 2008050452A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma display
display panel
electrode
phosphor layer
vertical
Prior art date
Application number
PCT/JP2006/321550
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Sasaki
Akihiro Takagi
Original Assignee
Hitachi Plasma Display Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plasma Display Limited filed Critical Hitachi Plasma Display Limited
Priority to PCT/JP2006/321550 priority Critical patent/WO2008050452A1/en
Publication of WO2008050452A1 publication Critical patent/WO2008050452A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/36Spacers, barriers, ribs, partitions or the like
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/293Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for address discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0202Addressing of scan or signal lines
    • G09G2310/0218Addressing of scan or signal lines with collection of electrodes in groups for n-dimensional addressing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/36Spacers, barriers, ribs, partitions or the like
    • H01J2211/361Spacers, barriers, ribs, partitions or the like characterized by the shape
    • H01J2211/363Cross section of the spacers

Definitions

  • the present invention relates to a plasma display panel and a driving method thereof.
  • a malfunction caused by an address discharge delay deteriorates the image quality. Therefore, it is necessary to improve the address discharge delay.
  • a method for improving the delay of the address discharge a method of performing an address discharge in a region without performing a sustain discharge between cells has been proposed. For example, by providing a display discharge cell in which a sustain discharge is performed and an address discharge cell that is formed separately from the display discharge cell and communicates with the display discharge cell through a gap, an address discharge cell is provided.
  • a plasma display panel having a stable characteristic has been proposed (for example, see Patent Document 1).
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2003-31131
  • An object of the present invention is to provide a plasma display panel capable of improving a delay in address discharge and expanding a drive margin, and a driving method thereof.
  • the plasma display panel of the present invention is arranged in a direction substantially perpendicular to the first substrate on which a plurality of first and second electrodes arranged in parallel are formed, and the first and second electrodes A plurality of third electrodes, vertical barrier ribs defining discharge spaces corresponding to the third electrodes, and at least three kinds of phosphor layers applied in the discharge spaces partitioned by the vertical barrier ribs are formed. 2 is sealed through a discharge space, and among the at least three types of phosphor layers, the height of the vertical barrier ribs disposed between the two specific phosphor layers is higher than the other vertical barrier ribs. Specially made low It is a sign.
  • the plasma display panel driving method of the present invention includes a first substrate on which a plurality of first and second electrodes arranged in parallel are formed, and a direction substantially perpendicular to the first and second electrodes.
  • a plurality of arranged third electrodes, a medial wall defining a discharge space corresponding to the third electrode, and at least three types of phosphor layers applied in the discharge space defined by the vertical partition are formed.
  • the height of the vertical barrier rib arranged between two specific phosphor layers out of at least three phosphor layers is sealed with the second substrate thus formed through the discharge space.
  • the height of the vertical barrier rib arranged between two specific types of phosphor layers is made lower than the other vertical barrier ribs, so that the address of one phosphor layer in the cell It becomes possible to mitigate the discharge delay by utilizing the priming effect of the cell of the other phosphor layer adjacent to the discharge.
  • FIG. 1 is a diagram showing a configuration example of a plasma display device according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view showing a structural example of a plasma display panel in an embodiment of the present invention.
  • FIG. 3A is a plan view of a plasma display panel according to an embodiment of the present invention.
  • FIG. 3B is a cross-sectional view schematically showing between I and I shown in FIG. 3A.
  • FIG. 4 is a plan view of a plasma display panel according to another embodiment of the present invention.
  • FIG. 5 is a diagram schematically showing a cross section of a plasma display panel in another embodiment of the present invention.
  • FIG. 6 is a conceptual diagram showing a configuration example of each field in the embodiment of the present invention.
  • FIG. 7 is a diagram showing an example of a driving waveform of the plasma display device in the embodiment of the present invention.
  • FIG. 1 is a diagram illustrating a configuration example of a plasma display device according to an embodiment of the present invention.
  • the plasma display device in this embodiment includes a plasma display panel 1, a sustain drive circuit 2, a scan drive circuit 3, an address drive circuit 4, a control circuit 5, and a power supply circuit 6.
  • the sustain drive circuit 2 has a circuit force that repeats sustain discharge (sustain discharge), and supplies a predetermined voltage to a plurality of X electrodes (sustain electrodes) XI, X2,..., Xn.
  • X electrodes stain electrodes
  • Xi each of the X electrodes XI, X2,..., Xn or their generic name is referred to as an X electrode Xi, and i means a subscript.
  • the scan driving circuit 3 includes a circuit that selects a row to be displayed by line-sequential scanning and a circuit that repeats sustain discharge, and includes a plurality of Y electrodes (scan electrodes) Yl, ⁇ 2, ..., ⁇ Supply a predetermined voltage to Hereinafter, each of ⁇ electrode Yl, ⁇ 2,..., ⁇ or their generic name is called ⁇ electrode Yi, and i means a subscript.
  • the address driving circuit 4 has a circuit power for selecting a column to be displayed, and supplies a predetermined voltage to the plurality of address electrodes A1, A2,.
  • each of the address electrodes Al, A2,... Or their generic name is referred to as an address electrode Aj, where j is a subscript.
  • the three drive circuits apply a predetermined voltage to each electrode during a reset period and a wall charge erasing period described later.
  • the control circuit 5 generates a control signal based on display data, a clock signal, a horizontal synchronization signal, a vertical synchronization signal, and the like input from the outside of the apparatus.
  • the control circuit 5 supplies the generated control signal to the sustain drive circuit 2, the scan drive circuit 3, and the address drive circuit 4, and controls these drive circuits 2-4.
  • the power supply circuit 6 supplies a predetermined voltage to the sustain drive circuit 2, the scan drive circuit 3, the address drive circuit 4, and the control circuit 5.
  • the power supply circuit 6 supplies drive voltages to be applied to the electrodes Xi, Yi, and Aj to the sustain drive circuit 2, the scan drive circuit 3, and the address drive circuit 4.
  • the Y electrode Yi and the X electrode Xi form a row extending in parallel in the horizontal direction, and the address electrode Aj forms a column extending in the vertical direction.
  • Y electrode Yi and X electrode Xi are alternately arranged in the vertical direction. That is, the Y electrode Yi and the X electrode Xi are arranged in parallel to each other, and the address electrode Aj is arranged in a direction substantially perpendicular to the Y electrode Yi and the X electrode Xi.
  • Y electrode Yi and address electrode Aj form a two-dimensional matrix of i rows and j columns.
  • the electrodes may be arranged such that a set of electrodes Xi, Yi, X (i + 1), Y (i + 1) is repeatedly arranged in the vertical direction.
  • the Y electrode Yi forms a row not only with the X electrode Xi but also with the X electrode X (i + 1).
  • the cell Cij is formed by the intersection of the Y electrode Yi and the address electrode Aj and the X electrode Xi adjacent thereto corresponding thereto.
  • This cell Cij corresponds to, for example, red (R), green (G), and blue (B) sub-pixels, and one pixel is constituted by these three sub-pixels.
  • Panel 1 displays an image by lighting a plurality of pixels arranged two-dimensionally.
  • Line order in scan drive circuit 3 Determines which cell is lit by the next scan circuit and address drive circuit 4, and repeatedly discharges by sustain drive circuit 2 and the circuit that repeats sustain discharge in scan drive circuit 3 By performing the above, the display operation in the plasma display device is performed.
  • FIG. 2 is an exploded perspective view showing a structural example of the plasma display panel 1 in the present embodiment.
  • the X electrode 11 corresponds to the X electrode Xi shown in FIG. 1
  • the Y electrode 12 corresponds to the Y electrode Yi shown in FIG.
  • the X electrode 11 and the Y electrode 12 are formed on the front glass substrate 10 so as to be parallel to each other.
  • a dielectric layer 13 for accumulating wall charges is deposited thereon.
  • an MgO (acid magnesium) protective layer 14 is deposited.
  • the address electrodes 15R, 15G, 15B correspond to the address electrode Aj shown in FIG.
  • the address electrodes 15R, 15G, and 15B are formed on the rear glass substrate 19 disposed so as to face the front glass substrate 10 in a direction perpendicular to the X electrode 11 and the Y electrode 12 (so as to intersect).
  • a dielectric layer 16 is deposited on the address electrodes 15R, 15G, 15B.
  • red, green and blue phosphors 18R, 18G and 18B are deposited thereon.
  • vertical barrier ribs vertical barriers that divide the discharge space on both sides of the address electrodes 15R, 15G, and 15B.
  • (Rib) 17 is formed, and phosphors 18 are arranged and applied in stripes for each color on the inner surface.
  • a red phosphor layer 18R is formed above the address electrode 15R
  • a green phosphor layer 18G is formed above the address electrode 15G
  • the address electrode 1 A blue phosphor layer 18B is formed above 5B.
  • a vertical partition wall 17RG is disposed between a red phosphor layer 18R formed corresponding to the address electrode 15R and a green phosphor layer 18G formed corresponding to the address electrode 15G.
  • a vertical partition 17GB is disposed between the green phosphor layer 18G and the blue phosphor layer 18B formed corresponding to the address electrode 15B, and the blue phosphor layer 18B and the red phosphor layer 18R.
  • a vertical partition 17 BR is disposed between the two.
  • the discharge between the X electrode 11 and the Y electrode 12 excites the phosphors 18R, 18G, and 18B to emit each color.
  • the front glass substrate 10 and the back glass substrate 19 are sealed, and Ne + Xe pegging gas or the like is sealed in the inside (the discharge space between the front glass substrate 10 and the back glass substrate 19).
  • the delay of the address discharge in the cells of the phosphor layer 18G is larger than the delay of the address discharge in the cells of the other phosphor layers 18R and 18B.
  • the phosphor layers 18R and 18B adjacent to the phosphor layer 18G have lower emission luminance in the phosphor layer 18B. Therefore, in this embodiment, the vertical partition 17GB disposed between the phosphor layers 18G and 18B is disposed between the vertical partition 17RG and the phosphor layers 18B and 18R disposed between the phosphor layers 18R and 18G.
  • the height of the partition wall is lower than the vertical partition wall 17 BR.
  • the priming effect by the address discharge performed in the phosphor layer 18B cell is utilized in the phosphor layer 18G cell by making the vertical partition wall 17GB lower than the vertical partition walls 17RG and 17BR. And delay of address discharge in the phosphor layer 18G cell can be mitigated.
  • the heights of the vertical partition walls 17RG, 17GB, and 17BR are different as described above, the heights of the applied phosphor layers 18R, 18G, and 18B are also different.
  • the horizontal width of the vertical partition 17GB before firing the partition may be made wider than that of the vertical partition 17RG, 17BR.
  • the vertical partition 17GB can be made lower than the vertical partition 17RG and 17BR by heat shrinkage after firing. Monkey.
  • FIG. 3A is a plan view of the plasma display panel 1 in the present embodiment.
  • the same components as those shown in FIG. 2 are denoted by the same reference numerals.
  • 11a is a metal electrode (bus electrode) in the X electrode
  • l ib is a transparent electrode in the X electrode.
  • the metal electrode (bus electrode) 11a and the transparent electrode l ib constitute the X electrode 11 shown in FIG.
  • 12a is a metal electrode (bus electrode) in the Y electrode and 12b is a transparent electrode in the Y electrode.
  • the metal electrode (bus electrode) 12a and the transparent electrode 12b constitute the Y electrode 12 shown in FIG.
  • the T-shaped transparent electrode l ib and the transparent electrode 12b are shown as an example.
  • the shape of the transparent electrode l ib and the transparent electrode 12b is not limited to this. Any conventionally known shape can be applied.
  • the metal electrode (bus electrode) 11a in the X electrode and the metal electrode (bus electrode) 12a in the Y electrode are arranged in parallel to each other, and the address electrodes 15R, 15G, and 15B are arranged so as to intersect with each other.
  • Vertical partition walls 17RG, 17GB, and 17BR are arranged on both sides of the address electrodes 15R, 15G, and 15B. In FIG. 3A, the width of the vertical partition wall 17GB is widened, and the height of the vertical partition wall 17GB is lower than that of the vertical partition walls 17RG and 17BR.
  • FIG. 3B is a diagram schematically showing a cross section between I and I shown in FIG. 3A.
  • the same components as those shown in FIG. 2 are denoted by the same reference numerals.
  • FIG. 3B shows only a cross section of the plasma display panel 1 on the rear glass substrate 19 side.
  • the back glass substrate 19 is provided with the address electrodes 15 R, 15 G, and 15 B and is covered with the dielectric layer 16.
  • Vertical partition 17RG between address electrodes 15R and 15G The vertical barrier ribs 17GB are disposed between the address electrodes 15G and 15B, and the vertical barrier ribs 17BR are disposed between the address electrodes 15B and 15R.
  • Phosphor layers 18R, 18G, and 18B are separately coated on the side surfaces of the dielectric layer 16 and the vertical barrier ribs 17RG, 17GB, and 17BR on the address electrodes 15R, 15G, and 15B.
  • the vertical partition wall 17GB is formed to be lower by D1 than the height HI of the vertical partition walls 17RG and 17BR. Normally, the height of the vertical partition walls is 130 to 160 / ⁇ ⁇ . If the height HI of the vertical partition walls 17RG and 17BR is about 150 / zm, the height of the vertical partition walls 17GB and the height of the vertical partition walls 17RG and 17BR The difference D1 is 5 m or more so that the height of the partition walls is clearly different and 20 ⁇ m or less so as not to receive the sustain discharge crosstalk, and 5 / z ⁇ to 10 / ⁇ m is desirable.
  • the width W of the vertical partition 17GB is 30% larger than W and W.
  • the comb is approximately 65 m.
  • the cell of the green phosphor layer 18G and the cell of the blue phosphor layer 18B! The discharge space (light emitting part) becomes narrow and the aperture ratio (opening area) decreases and the color balance is lost. Shimatsu.
  • the distances L, L, and L between adjacent vertical partition walls are made substantially equal.
  • the width W is larger than the widths W and W, the cells of the phosphor layers 18R, 18G, and 18B are connected.
  • the discharge space (light emitting part) can be made substantially the same size and the aperture ratio (opening area) can be made uniform, and the color balance can be prevented from being lost.
  • the force that lowers the height of the vertical partition walls 17RG and 17BR over the entire length of the vertical partition walls 17GB, as shown in Fig. 4, is a partial height of the vertical partition walls 17GB. May be lowered.
  • FIG. 4 is a plan view of a plasma display panel 1 according to another embodiment of the present invention.
  • the height of the vicinity 41 of the Y electrodes 12a and 12b that perform address discharge with the address electrode is set to other heights. It is designed to be lower than the vertical partition.
  • the horizontal width of the vertical partition 17GB is the same as the horizontal partition 17RG and 17BR except for a part 41. Accordingly, the height of the vertical partition walls 17 GB is substantially equal to the height of the vertical partition walls 17RG and 17BR except for the vicinity 41 of the Y electrodes 12a and 12b.
  • the width of the vertical partition 17GB in the vicinity 41 of the Y electrodes 12a and 12b is wider than the other medial walls, and the height of the vertical partition 17GB in the vicinity 41 is lower than the other vertical partitions. ing.
  • FIG. 5 is a view schematically showing a cross section of the plasma display panel 1 in another embodiment of the present invention.
  • FIG. 5 shows only the cross section of the plasma display panel 1 on the side of the rear glass substrate 19 as in FIG. 3B, and the same components as those shown in FIG. 3B are denoted by the same reference numerals. ing.
  • the distance is larger than L.
  • the light emission in the cell of the blue phosphor layer 18B can be increased to make the width of the vertical partition wall 17GB inconspicuous, and the deterioration of display quality can be suppressed.
  • the distance L between the vertical barrier ribs 17GB and 17RG corresponding to at least the green phosphor layer 18G with high brightness is the vertical barrier rib.
  • Distance between 17BR and 17RG should be larger than L, but between vertical partition walls 17GB and 17BR
  • the distance L is preferably larger than the distance L between the vertical partition walls 17BR and 17RG.
  • FIG. 6 is a conceptual diagram showing a configuration example of each field according to the present embodiment.
  • the image is formed in, for example, 60 fields Z seconds.
  • One field for example, 10 Subfields (first subfield 21, second subfield 22,..., Tenth subfield 30).
  • Each subfield 21-30 includes a reset period Tr, an address period Ta, and a sustain (sustain discharge) period Ts.
  • the sustain period T s may include a wall charge erasing period Te for reducing wall charges.
  • a predetermined voltage is applied to the X electrode Xi and the Y electrode Yi to initialize the cell Cij.
  • a predetermined voltage may be applied to the address electrode Aj.
  • each cell Cij In the address period Ta, light emission or non-light emission of each cell Cij is selected by address designation.
  • a scan panel is applied to the Y electrodes Yl, ⁇ 2,..., ⁇ by applying j scans, and the address pulses are applied to the address electrodes Aj corresponding to the scan pulses. This selects the light emission of cell Cij.
  • the address pulse of the address electrode Aj is generated corresponding to the scan pulse of the Y electrode Yi, the light emission of the cell Cij formed by the Y electrode Yi, the X electrode Xi, and the address electrode Aj is selected.
  • the address pulse of the address electrode Aj is not generated corresponding to the scan pulse of the Y electrode Yi, the light emission of the cell Cij formed by the Y electrode Yi, the X electrode Xi, and the address electrode Aj is not selected and is not Light emission is selected.
  • the normal sustain pulse is used.
  • Sustain discharge at a lower pressure (low potential) is applied to the X electrode Xi or the Y electrode Yi, and light emission by the sustain discharge and wall charge erasure are performed in the cell Cij that emits light in the subfield.
  • wall charges are erased by short pulses.
  • erasing includes the case where wall charges are reduced to such an extent that sustain discharge cannot be maintained, and is not limited to the meaning of complete erasing.
  • FIG. 7 is a timing chart showing an operation example of the plasma display device in the present embodiment.
  • FIG. 7 shows an example of drive waveforms related to the X electrode Xi, the Y electrode Yi, and the address electrode Aj in one subfield of a plurality of subfields constituting one frame.
  • one subfield is divided into a reset period Tr including a full write period and a full erase period, an address period Ta, and a sustain period Ts including a wall charge erase period Te.
  • a positive ramp voltage pulse (write blunt wave) 60 in which the voltage gradually increases is applied to the Y electrodes Yo and Ye, and a predetermined negative voltage (write voltage) is applied to the X electrodes Xo and Xe. 50 is applied.
  • a negative ramp voltage pulse (adjusted blunt wave) 61 that gradually decreases the voltage is applied to the Y electrodes Yo and Ye, and the X electrode
  • a predetermined positive voltage (adjustment voltage) 51 is applied to Xo and Xe.
  • the cell Cij is assigned in accordance with the input display data.
  • address discharge is performed line-sequentially.
  • address discharge (address selection) is performed for odd-numbered rows in the first half address period Tal, and address discharge (address selection) is performed for even-numbered rows in the second half address period Ta2.
  • the scan voltage 52 is applied to the X electrode Xo.
  • the scan pulse 62 is applied to the ⁇ electrode ⁇ selected by the line sequence, and a predetermined negative is applied to the non-selected ⁇ electrode Yo.
  • a voltage is applied.
  • a ground level voltage is applied to the X electrode Xe and the negative electrode Ye.
  • a (G), A (B) are selectively applied with address pulses 71, 81, 91 in synchronization with the scan pulse 62 of each row.
  • a discharge occurs between the address electrodes A (R), A (G), and A (B) of the cell that emits light and the Y electrode Yo selected in line order, and this is used as a priming.
  • wall charges of an amount capable of the next sustain discharge are accumulated on the MgO protective film surface on the X electrode Xo and the Y electrode Yo.
  • the scan voltage 53 is applied to the X electrode Xe.
  • the scan pulse 63 is applied to the Y electrode Ye selected by line sequential, and a predetermined negative voltage is applied to the non-selected Y electrode Ye.
  • a ground level voltage is applied to the X electrode Xo and the Y electrode Yo.
  • the address electrodes A (R), A (G), and A (B) corresponding to the cells that generate (emit light) sustain discharge are synchronized with the scan pulse 63 of each row.
  • Address pulses 72, 82 and 92 are selectively applied.
  • a discharge occurs between the address electrodes A (R), A (G), and A (B) of the cell that emits light and the Y electrode Ye selected in line order, and this is used as the priming (seeker)
  • X Wall charges of the amount that can be subjected to the next sustain discharge are accumulated on the MgO protective film surface on the electrodes Xe and Y.
  • sustain period Ts voltages having different polarities (sustain pulses, sustain pulses) 54, 55, 64, 65 are alternately applied to the X electrodes Xo, Xe and Y electrodes Yo, Ye of each display line. Then, a sustain discharge is performed between the X electrode Xo, Xe and the Y electrode Yo, Ye of the light emitting cell, and one subfield image is displayed.
  • a sustain pulse (pre-erase pulse) 56 similar to the normal sustain pulse 54 is applied to the X electrodes Xo and Xe, and the Y electrodes Yo and Ye are applied.
  • a sustain pulse (high voltage pulse before erasure) 66 having a voltage higher than the normal sustain pulse 64 is applied. From this, the X electrodes Xo, Xe and Y electrodes Yo, Ye of the light emitting cell cause a stronger discharge than the normal sustain discharge between the X electrodes Xo, Xe and Y electrodes Yo, Ye of the light emitting cell. It has a lot of wall charges.
  • a sustain pulse (erase pulse) 57 having a voltage lower than that of the normal sustain pulse 55 is applied to the X electrodes Xo and Xe, and a normal sustain pulse is applied to the Y electrodes Yo and Ye.
  • a sustain pulse (erase pulse) 67 similar to 65 is applied.
  • the normal sustain is achieved by using more wall charges than usual formed by the pre-erase pulse 56 and the pre-erase high-pressure pulse 66 between the X electrode Xo, Xe and the Y electrode Yo, Ye of the light emitting cell. It is possible to erase or reduce the wall charge between X electrode Xo, Xe and Y electrode Yo, Ye while emitting light in the cell by applying a voltage and causing sustain discharge, which is lower than in-discharge. Become ⁇ .
  • the address electrodes A (R), A (G), and A (B) corresponding to the cells that emit light according to the input display data are Address pulses are selectively applied in synchronization with the scan pulses of each row, and address discharge is performed between the address electrodes A (R), A (G), A (B) and the Y electrode Yi. In other words, the address discharge is performed in accordance with the input display data faithfully.
  • a blue cell adjacent to the cell is caused to emit light regardless of the input data.
  • the luminance ratio between the green cell and the blue cell is approximately 6: 1, so when the green cell is lit, even if a blue cell that is not normally lit is lit, the display is conspicuous.
  • the impact on quality is small.
  • a subfield corresponding to a low gradation is more inconspicuous, and a subfield corresponding to a low gradation generally has a small amount of priming particles present in the discharge space, so that a high effect can be expected.
  • the height of the vertical barrier ribs is made lower than that of the other vertical barrier ribs by making the horizontal width of the vertical barrier ribs before firing the barrier ribs wider than the width of the other vertical barrier ribs.
  • the method of making the height of the vertical barrier ribs lower than other vertical barrier ribs is not limited to this.
  • a plasma display panel having only vertical barrier ribs is described as an example.
  • the present invention can be applied to a plasma display panel having a horizontal barrier rib on the vertical barrier ribs. Needless to say.
  • the height of the vertical barrier ribs arranged between two specific types of phosphor layers is made lower than that of the other vertical barrier ribs, so that the priming effect of adjacent cells can be achieved. Can be used to reduce the delay of the address discharge and expand the drive margin, thereby realizing stable operation of the plasma display panel.

Abstract

A plasma display panel is provided with a first substrate on which a plurality of first and second electrodes are formed in parallel with each other, a plurality of third electrodes disposed in the substantially vertical direction with respect to the first and second electrodes, longitudinal partition walls for defining discharge spaces and a second substrate on which at least three kinds of coated fluorescent layers are formed in the defined discharge space, wherein the first substrate, the third electrodes, the partition wall and second substrate are sealed though the discharge space and the longitudinal partition walls disposed between specific two kinds of the fluorescent layers are made lower in height than the other longitudinal partition walls, so that delay at a cell of one of the fluorescent layers is eased by making use of a priming effect of a cell of the other of neighboring fluorescent layers and so that a driving margin of the plasma display panel can be enlarged.

Description

明 細 書  Specification
プラズマディスプレイパネル及びその駆動方法  Plasma display panel and driving method thereof
技術分野  Technical field
[0001] 本発明は、プラズマディスプレイパネル及びその駆動方法に関する。  The present invention relates to a plasma display panel and a driving method thereof.
背景技術  Background art
[0002] プラズマディスプレイパネルにおいて、アドレス放電の遅れに起因する誤動作は、 画像品質を低下させるため、アドレス放電遅れの改善が必要である。アドレス放電の 遅れを改善する方法の 1つとして、セル間のサスティン放電を行わな 、領域でァドレ ス放電を行う方法が提案されている。例えば、サスティン放電が行われる表示放電セ ルと、表示放電セルとは別個に形成され、隙間を介して表示放電セルに連通される アドレス放電が行われるアドレス放電セルとを設けることにより、アドレス放電特性の 安定ィ匕を図ったプラズマディスプレイパネルが提案されている(例えば、特許文献 1 参照。)。  [0002] In a plasma display panel, a malfunction caused by an address discharge delay deteriorates the image quality. Therefore, it is necessary to improve the address discharge delay. As a method for improving the delay of the address discharge, a method of performing an address discharge in a region without performing a sustain discharge between cells has been proposed. For example, by providing a display discharge cell in which a sustain discharge is performed and an address discharge cell that is formed separately from the display discharge cell and communicates with the display discharge cell through a gap, an address discharge cell is provided. A plasma display panel having a stable characteristic has been proposed (for example, see Patent Document 1).
[0003] しカゝしながら、セル間のサスティン放電を行わない領域でアドレス放電を行う方法は 、サスティン放電が行われる領域とは異なる放電領域を設けなければならず、セル間 に放電を行わな ヽ領域を持たな 、構造のプラズマディスプレイパネルには適用する ことができない。  However, in the method of performing address discharge in a region where sustain discharge between cells is not performed, a discharge region different from the region where sustain discharge is performed must be provided, and discharge is performed between cells. It cannot be applied to a plasma display panel with a structure that does not have a large area.
[0004] 特許文献 1 :特開 2003— 31131号公報  [0004] Patent Document 1: Japanese Patent Application Laid-Open No. 2003-31131
発明の開示  Disclosure of the invention
[0005] 本発明は、アドレス放電の遅れを改善し駆動マージンを拡大することができるブラ ズマディスプレイパネル及びその駆動方法を提供することを目的とする。  [0005] An object of the present invention is to provide a plasma display panel capable of improving a delay in address discharge and expanding a drive margin, and a driving method thereof.
[0006] 本発明のプラズマディスプレイパネルは、平行に配置された第 1及び第 2の電極が 複数形成された第 1の基板と、第 1及び第 2の電極に略垂直な方向に配置された複 数の第 3の電極、第 3の電極に対応して放電空間を区画する縦隔壁、及び縦隔壁で 区画される放電空間内に塗布された少なくとも 3種類の蛍光体層が形成された第 2の 基板とが放電空間を介して封着され、前記少なくとも 3種類の蛍光体層のうち、特定 2 種類の蛍光体層の間に配置された縦隔壁の高さを他の縦隔壁よりも低くしたことを特 徴とする。 [0006] The plasma display panel of the present invention is arranged in a direction substantially perpendicular to the first substrate on which a plurality of first and second electrodes arranged in parallel are formed, and the first and second electrodes A plurality of third electrodes, vertical barrier ribs defining discharge spaces corresponding to the third electrodes, and at least three kinds of phosphor layers applied in the discharge spaces partitioned by the vertical barrier ribs are formed. 2 is sealed through a discharge space, and among the at least three types of phosphor layers, the height of the vertical barrier ribs disposed between the two specific phosphor layers is higher than the other vertical barrier ribs. Specially made low It is a sign.
また、本発明のプラズマディスプレイパネルの駆動方法は、平行に配置された第 1 及び第 2の電極が複数形成された第 1の基板と、第 1及び第 2の電極に略垂直な方 向に配置された複数の第 3の電極、第 3の電極に対応して放電空間を区画する縦隔 壁、及び縦隔壁で区画される放電空間内に塗布された少なくとも 3種類の蛍光体層 が形成された第 2の基板とが放電空間を介して封着され、かつ少なくとも 3種類の蛍 光体層のうち、特定 2種類の蛍光体層の間に配置された縦隔壁の高さが他の縦隔壁 よりも低く形成されたプラズマディスプレイパネルにて、特定 2種類の蛍光体層のうち 発光輝度の高い蛍光体層のセルにてアドレス放電を行わせる場合には、特定 2種類 の蛍光体層のうち発光輝度の低い蛍光体層のセルもアドレス放電を行わせることを 特徴とする。  The plasma display panel driving method of the present invention includes a first substrate on which a plurality of first and second electrodes arranged in parallel are formed, and a direction substantially perpendicular to the first and second electrodes. A plurality of arranged third electrodes, a medial wall defining a discharge space corresponding to the third electrode, and at least three types of phosphor layers applied in the discharge space defined by the vertical partition are formed. The height of the vertical barrier rib arranged between two specific phosphor layers out of at least three phosphor layers is sealed with the second substrate thus formed through the discharge space. When address discharge is performed in a cell of a phosphor layer having a high emission luminance among two specific types of phosphor layers in a plasma display panel formed lower than the vertical barrier rib, the two specific types of phosphor layers Of the phosphor layer with low emission brightness should be addressed. It is characterized by.
[0007] 本発明によれば、特定 2種類の蛍光体層の間に配置された縦隔壁の高さを他の縦 隔壁よりも低くすることで、その一方の蛍光体層のセルでのアドレス放電の遅れを、隣 接する他方の蛍光体層のセルのプライミング効果を利用して緩和することができるよ うになる。  [0007] According to the present invention, the height of the vertical barrier rib arranged between two specific types of phosphor layers is made lower than the other vertical barrier ribs, so that the address of one phosphor layer in the cell It becomes possible to mitigate the discharge delay by utilizing the priming effect of the cell of the other phosphor layer adjacent to the discharge.
図面の簡単な説明  Brief Description of Drawings
[0008] [図 1]図 1は、本発明の一実施形態におけるプラズマディスプレイ装置の構成例を示 す図である。  [0008] FIG. 1 is a diagram showing a configuration example of a plasma display device according to an embodiment of the present invention.
[図 2]図 2は、本発明の実施形態におけるプラズマディスプレイパネルの構造例を示 す分解斜視図である。  FIG. 2 is an exploded perspective view showing a structural example of a plasma display panel in an embodiment of the present invention.
[図 3A]図 3Aは、本発明の実施形態におけるプラズマディスプレイパネルの平面図で ある。  FIG. 3A is a plan view of a plasma display panel according to an embodiment of the present invention.
[図 3B]図 3Bは、図 3Aに示した I I間を模式的に示した断面図である。  FIG. 3B is a cross-sectional view schematically showing between I and I shown in FIG. 3A.
[図 4]図 4は、本発明の他の実施形態におけるプラズマディスプレイパネルの平面図 である。  FIG. 4 is a plan view of a plasma display panel according to another embodiment of the present invention.
[図 5]図 5は、本発明のその他の実施形態におけるプラズマディスプレイパネルの断 面を模式的に示した図である。  FIG. 5 is a diagram schematically showing a cross section of a plasma display panel in another embodiment of the present invention.
[図 6]図 6は、本発明の実施形態における各フィールドの構成例を示す概念図である [図 7]図 7は、本発明の実施形態におけるプラズマディスプレイ装置の駆動波形の一 例を示す図である。 FIG. 6 is a conceptual diagram showing a configuration example of each field in the embodiment of the present invention. FIG. 7 is a diagram showing an example of a driving waveform of the plasma display device in the embodiment of the present invention.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0009] 以下、本発明の実施形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0010] 図 1は、本発明の一実施形態におけるプラズマディスプレイ装置の構成例を示す図 である。本実施形態におけるプラズマディスプレイ装置は、プラズマディスプレイパネ ル 1、維持駆動回路 2、走査駆動回路 3、アドレス駆動回路 4、制御回路 5、及び電源 回路 6を有する。  FIG. 1 is a diagram illustrating a configuration example of a plasma display device according to an embodiment of the present invention. The plasma display device in this embodiment includes a plasma display panel 1, a sustain drive circuit 2, a scan drive circuit 3, an address drive circuit 4, a control circuit 5, and a power supply circuit 6.
[0011] 維持駆動回路 2は、サスティン放電 (維持放電)を繰り返す回路力 なり、複数の X 電極 (維持電極) XI、 X2、 · ··、 Xnに所定の電圧を供給する。以下、 X電極 XI、 X2、 · ··、 Xnの各々を又はそれらの総称を、 X電極 Xiといい、 iは添え字を意味する。  The sustain drive circuit 2 has a circuit force that repeats sustain discharge (sustain discharge), and supplies a predetermined voltage to a plurality of X electrodes (sustain electrodes) XI, X2,..., Xn. Hereinafter, each of the X electrodes XI, X2,..., Xn or their generic name is referred to as an X electrode Xi, and i means a subscript.
[0012] 走査駆動回路 3は、線順次走査して表示すべき行を選択する回路とサスティン放 電を繰り返す回路とからなり、複数の Y電極 (走査電極) Yl、 Υ2、 · ··、 Υηに所定の電 圧を供給する。以下、 Υ電極 Yl、 Υ2、 · ··、 Υηの各々を又はそれらの総称を、 Υ電極 Yiといい、 iは添え字を意味する。  [0012] The scan driving circuit 3 includes a circuit that selects a row to be displayed by line-sequential scanning and a circuit that repeats sustain discharge, and includes a plurality of Y electrodes (scan electrodes) Yl, Υ2, ..., Υη Supply a predetermined voltage to Hereinafter, each of Υ electrode Yl, Υ2,..., Υη or their generic name is called Υ electrode Yi, and i means a subscript.
[0013] アドレス駆動回路 4は表示すべき列を選択する回路力 なり、複数のアドレス電極 A 1、 A2、…に所定の電圧を供給する。以下、アドレス電極 Al、 A2、…の各々を又は それらの総称を、アドレス電極 Ajといい、 jは添え字を意味する。  [0013] The address driving circuit 4 has a circuit power for selecting a column to be displayed, and supplies a predetermined voltage to the plurality of address electrodes A1, A2,. Hereinafter, each of the address electrodes Al, A2,... Or their generic name is referred to as an address electrode Aj, where j is a subscript.
上記 3駆動回路は、後述のリセット期間、壁電荷消去期間にも各電極に所定の電 圧を印加する。  The three drive circuits apply a predetermined voltage to each electrode during a reset period and a wall charge erasing period described later.
[0014] 制御回路 5は、装置の外部から入力される表示データ、クロック信号、水平同期信 号、及び垂直同期信号などに基づいて制御信号を生成する。制御回路 5は、生成し た制御信号を維持駆動回路 2、走査駆動回路 3、及びアドレス駆動回路 4に供給し、 これら駆動回路 2〜4を制御する。  [0014] The control circuit 5 generates a control signal based on display data, a clock signal, a horizontal synchronization signal, a vertical synchronization signal, and the like input from the outside of the apparatus. The control circuit 5 supplies the generated control signal to the sustain drive circuit 2, the scan drive circuit 3, and the address drive circuit 4, and controls these drive circuits 2-4.
[0015] 電源回路 6は、維持駆動回路 2、走査駆動回路 3、アドレス駆動回路 4、及び制御 回路 5に所定電圧を供給する。例えば、電源回路 6は、維持駆動回路 2、走査駆動 回路 3、及びアドレス駆動回路 4に、各電極 Xi、 Yi、 Ajに印加する駆動電圧を供給す る。 The power supply circuit 6 supplies a predetermined voltage to the sustain drive circuit 2, the scan drive circuit 3, the address drive circuit 4, and the control circuit 5. For example, the power supply circuit 6 supplies drive voltages to be applied to the electrodes Xi, Yi, and Aj to the sustain drive circuit 2, the scan drive circuit 3, and the address drive circuit 4. The
[0016] プラズマディスプレイパネル 1では、 Y電極 Yi及び X電極 Xiが水平方向に並列に延 びる行を形成し、アドレス電極 Ajが垂直方向に延びる列を形成する。 Y電極 Yi及び X電極 Xiは、垂直方向に交互に配置される。すなわち、 Y電極 Yi及び X電極 Xiは互 いに平行に配置され、アドレス電極 Ajは Y電極 Yi及び X電極 Xiに略垂直な方向に 配置される。 Y電極 Yi及びアドレス電極 Ajは、 i行 j列の 2次元行列を形成する。 なお、電極の配列は、電極 Xi、 Yi、 X(i + 1)、 Y(i+ 1)の組が垂直方向に繰返し配 置される場合もある。また、 Y電極 Yiが、 X電極 Xiだけではなく X電極 X(i+ 1)との間 でも行を形成する構造もある。  In the plasma display panel 1, the Y electrode Yi and the X electrode Xi form a row extending in parallel in the horizontal direction, and the address electrode Aj forms a column extending in the vertical direction. Y electrode Yi and X electrode Xi are alternately arranged in the vertical direction. That is, the Y electrode Yi and the X electrode Xi are arranged in parallel to each other, and the address electrode Aj is arranged in a direction substantially perpendicular to the Y electrode Yi and the X electrode Xi. Y electrode Yi and address electrode Aj form a two-dimensional matrix of i rows and j columns. Note that the electrodes may be arranged such that a set of electrodes Xi, Yi, X (i + 1), Y (i + 1) is repeatedly arranged in the vertical direction. There is also a structure in which the Y electrode Yi forms a row not only with the X electrode Xi but also with the X electrode X (i + 1).
[0017] セル Cijは、 Y電極 Yi及びアドレス電極 Ajの交点並びにそれに対応して隣接する X 電極 Xiにより形成される。このセル Cijが、例えば赤色 (R)、緑色(G)、青色(B)のサ ブピクセルに対応し、これら 3色のサブピクセルで 1画素が構成される。パネル 1は 2 次元配列された複数の画素の点灯により画像を表示する。走査駆動回路 3内の線順 次走査する回路とアドレス駆動回路 4とによりどこのセルを点灯させるかを決め、維持 駆動回路 2と走査駆動回路 3内のサスティン放電を繰り返す回路とにより繰り返し放 電を行うことによって、プラズマディスプレイ装置での表示動作が行われる。  The cell Cij is formed by the intersection of the Y electrode Yi and the address electrode Aj and the X electrode Xi adjacent thereto corresponding thereto. This cell Cij corresponds to, for example, red (R), green (G), and blue (B) sub-pixels, and one pixel is constituted by these three sub-pixels. Panel 1 displays an image by lighting a plurality of pixels arranged two-dimensionally. Line order in scan drive circuit 3 Determines which cell is lit by the next scan circuit and address drive circuit 4, and repeatedly discharges by sustain drive circuit 2 and the circuit that repeats sustain discharge in scan drive circuit 3 By performing the above, the display operation in the plasma display device is performed.
[0018] 図 2は、本実施形態におけるプラズマディスプレイパネル 1の構造例を示す分解斜 視図である。  FIG. 2 is an exploded perspective view showing a structural example of the plasma display panel 1 in the present embodiment.
X電極 11は図 1に示した X電極 Xiに対応し、 Y電極 12は図 1に示した Y電極 Yiに 対応する。 X電極 11及び Y電極 12は、前面ガラス基板 10上に互いに平行に配置さ れ形成されている。その上には、壁電荷を蓄積するための誘電体層 13が被着されて いる。さらにその上には、 MgO (酸ィ匕マグネシウム)保護層 14が被着されている。  The X electrode 11 corresponds to the X electrode Xi shown in FIG. 1, and the Y electrode 12 corresponds to the Y electrode Yi shown in FIG. The X electrode 11 and the Y electrode 12 are formed on the front glass substrate 10 so as to be parallel to each other. A dielectric layer 13 for accumulating wall charges is deposited thereon. Further thereon, an MgO (acid magnesium) protective layer 14 is deposited.
[0019] また、アドレス電極 15R、 15G、 15Bは図 1に示したアドレス電極 Ajに対応する。ァ ドレス電極 15R、 15G、 15Bは、前面ガラス基板 10と対向して配置された背面ガラス 基板 19上に、 X電極 11及び Y電極 12と直交する方向に(交差するように)形成され る。アドレス電極 15R、 15G、 15Bの上には、誘電体層 16が被着される。更にその上 には、赤、緑、青色の蛍光体 18R、 18G、 18Bが被着されている。また、アドレス電極 15R、 15G、 15Bに対応するようにして、その両側に放電空間を区画する縦隔壁(縦 リブ) 17が形成され、その内面には、蛍光体 18がストライプ状に各色毎に配列、塗付 されている。 Further, the address electrodes 15R, 15G, 15B correspond to the address electrode Aj shown in FIG. The address electrodes 15R, 15G, and 15B are formed on the rear glass substrate 19 disposed so as to face the front glass substrate 10 in a direction perpendicular to the X electrode 11 and the Y electrode 12 (so as to intersect). A dielectric layer 16 is deposited on the address electrodes 15R, 15G, 15B. Furthermore, red, green and blue phosphors 18R, 18G and 18B are deposited thereon. Also, vertical barrier ribs (vertical barriers) that divide the discharge space on both sides of the address electrodes 15R, 15G, and 15B. (Rib) 17 is formed, and phosphors 18 are arranged and applied in stripes for each color on the inner surface.
なお、横隔壁を設けて格子状のリブを形成する構造があり、この場合には蛍光体 1 8は格子の目の中に塗布される。  Note that there is a structure in which horizontal ribs are provided to form lattice-like ribs. In this case, the phosphor 18 is applied in the eyes of the lattice.
[0020] 詳細には、図 2に示すように、アドレス電極 15Rの上方に赤色の蛍光体層 18Rが形 成され、アドレス電極 15Gの上方に緑色の蛍光体層 18Gが形成され、アドレス電極 1 5Bの上方に青色の蛍光体層 18Bが形成されている。また、アドレス電極 15Rに対応 して形成された赤色の蛍光体層 18Rとアドレス電極 15Gに対応して形成された緑色 の蛍光体層 18Gとの間に縦隔壁 17RGが配置されている。同様に、緑色の蛍光体層 18Gとアドレス電極 15Bに対応して形成された青色の蛍光体層 18Bとの間に縦隔壁 17GBが配置され、青色の蛍光体層 18Bと赤色の蛍光体層 18Rとの間に縦隔壁 17 BRが配置されている。 Specifically, as shown in FIG. 2, a red phosphor layer 18R is formed above the address electrode 15R, a green phosphor layer 18G is formed above the address electrode 15G, and the address electrode 1 A blue phosphor layer 18B is formed above 5B. Further, a vertical partition wall 17RG is disposed between a red phosphor layer 18R formed corresponding to the address electrode 15R and a green phosphor layer 18G formed corresponding to the address electrode 15G. Similarly, a vertical partition 17GB is disposed between the green phosphor layer 18G and the blue phosphor layer 18B formed corresponding to the address electrode 15B, and the blue phosphor layer 18B and the red phosphor layer 18R. A vertical partition 17 BR is disposed between the two.
[0021] X電極 11及び Y電極 12の間の放電によって蛍光体 18R、 18G、 18Bを励起して各 色が発光する。前面ガラス基板 10と背面ガラス基板 19とは封着され、その内部 (前 面ガラス基板 10と背面ガラス基板 19との間の放電空間)に Ne+Xeぺユングガス等 が封入されている。  [0021] The discharge between the X electrode 11 and the Y electrode 12 excites the phosphors 18R, 18G, and 18B to emit each color. The front glass substrate 10 and the back glass substrate 19 are sealed, and Ne + Xe pegging gas or the like is sealed in the inside (the discharge space between the front glass substrate 10 and the back glass substrate 19).
[0022] ここで、蛍光体層 18Gのセルでのアドレス放電の遅れは、他の蛍光体層 18R、 18B のセルでのアドレス放電の遅れに比べて大きい。また、蛍光体層 18Gに隣接する蛍 光体層 18R、 18Bの発光輝度は、蛍光体層 18Bの方が小さい。そこで、本実施形態 では、蛍光体層 18Gと 18Bの間に配置される縦隔壁 17GBは、蛍光体層 18Rと 18G の間に配置される縦隔壁 17RG及び蛍光体層 18Bと 18Rの間に配置される縦隔壁 1 7BRよりも隔壁の高さを低くしている。  Here, the delay of the address discharge in the cells of the phosphor layer 18G is larger than the delay of the address discharge in the cells of the other phosphor layers 18R and 18B. In addition, the phosphor layers 18R and 18B adjacent to the phosphor layer 18G have lower emission luminance in the phosphor layer 18B. Therefore, in this embodiment, the vertical partition 17GB disposed between the phosphor layers 18G and 18B is disposed between the vertical partition 17RG and the phosphor layers 18B and 18R disposed between the phosphor layers 18R and 18G. The height of the partition wall is lower than the vertical partition wall 17 BR.
[0023] このように、縦隔壁 17GBの高さを縦隔壁 17RG及び 17BRよりも低くすることで、蛍 光体層 18Bのセルで行われるアドレス放電によるプライミング効果を蛍光体層 18Gの セルで利用可能にし、蛍光体層 18Gのセルでのアドレス放電の遅れを緩和すること ができる。なお、本実施形態におけるプラズマディスプレイパネル 1においては、上述 のように縦隔壁 17RG、 17GB、 17BRの高さが異なるため、塗布されている蛍光体 層 18R、 18G、 18Bの高さも異なっている。 [0024] 縦隔壁 17GBと、縦隔壁 17RG、 17BRとの高さを異ならせる方法としては、例えば 縦隔壁 17GBの隔壁焼成前の横幅を縦隔壁 17RG、 17BRのそれよりも広くすれば 良い。隔壁焼成前における縦隔壁 17GBの横幅を縦隔壁 17RG、 17BRよりも広く形 成することで、焼成後の熱収縮により縦隔壁 17GBの高さを縦隔壁 17RG、 17BRよ りち低くすることがでさる。 [0023] In this way, the priming effect by the address discharge performed in the phosphor layer 18B cell is utilized in the phosphor layer 18G cell by making the vertical partition wall 17GB lower than the vertical partition walls 17RG and 17BR. And delay of address discharge in the phosphor layer 18G cell can be mitigated. In the plasma display panel 1 according to the present embodiment, since the heights of the vertical partition walls 17RG, 17GB, and 17BR are different as described above, the heights of the applied phosphor layers 18R, 18G, and 18B are also different. [0024] As a method for making the vertical partition 17GB and the vertical partition 17RG, 17BR different in height, for example, the horizontal width of the vertical partition 17GB before firing the partition may be made wider than that of the vertical partition 17RG, 17BR. By forming the width of the vertical partition 17GB before firing the partition larger than that of the vertical partitions 17RG and 17BR, the vertical partition 17GB can be made lower than the vertical partition 17RG and 17BR by heat shrinkage after firing. Monkey.
[0025] 図 3Aは、本実施形態におけるプラズマディスプレイパネル 1の平面図である。この 図 3Aにおいて、図 2に示した構成要素と同一の構成要素には同一の符号を付して いる。  FIG. 3A is a plan view of the plasma display panel 1 in the present embodiment. In FIG. 3A, the same components as those shown in FIG. 2 are denoted by the same reference numerals.
[0026] 図 3Aにおいて、 11aは X電極における金属電極(バス電極)であり、 l ibは X電極 における透明電極である。この金属電極 (バス電極) 11aと透明電極 l ibにより図 2に 示した X電極 11が構成される。  In FIG. 3A, 11a is a metal electrode (bus electrode) in the X electrode, and l ib is a transparent electrode in the X electrode. The metal electrode (bus electrode) 11a and the transparent electrode l ib constitute the X electrode 11 shown in FIG.
同様に、 12aは Y電極における金属電極 (バス電極)、 12bは Y電極における透明 電極であり、金属電極(バス電極) 12aと透明電極 12bにより図 2に示した Y電極 12が 構成される。  Similarly, 12a is a metal electrode (bus electrode) in the Y electrode and 12b is a transparent electrode in the Y electrode. The metal electrode (bus electrode) 12a and the transparent electrode 12b constitute the Y electrode 12 shown in FIG.
[0027] ここで、図 3Aにおいては、 T字形の透明電極 l ib及び透明電極 12bを一例として 示している力 これに限定されるものではなぐ透明電極 l ib及び透明電極 12bの形 状としては、従来公知の任意の形状を適用することができる。  Here, in FIG. 3A, the T-shaped transparent electrode l ib and the transparent electrode 12b are shown as an example. The shape of the transparent electrode l ib and the transparent electrode 12b is not limited to this. Any conventionally known shape can be applied.
[0028] X電極における金属電極(バス電極) 11aと Y電極における金属電極(バス電極) 12 aは互いに平行に配置され、それと交差するようにアドレス電極 15R、 15G、 15Bが 配置される。アドレス電極 15R、 15G、 15Bの両側に、縦隔壁 17RG、 17GB、 17BR が配置されている。なお、図 3Aにおいては、縦隔壁 17GBの横幅を広くして、縦隔 壁 17GBの高さを縦隔壁 17RG、 17BRよりも低くした場合を示して 、る。  [0028] The metal electrode (bus electrode) 11a in the X electrode and the metal electrode (bus electrode) 12a in the Y electrode are arranged in parallel to each other, and the address electrodes 15R, 15G, and 15B are arranged so as to intersect with each other. Vertical partition walls 17RG, 17GB, and 17BR are arranged on both sides of the address electrodes 15R, 15G, and 15B. In FIG. 3A, the width of the vertical partition wall 17GB is widened, and the height of the vertical partition wall 17GB is lower than that of the vertical partition walls 17RG and 17BR.
[0029] 図 3Bは、図 3Aに示した I—I間の断面を模式的に示した図である。この図 3Bにお いて、図 2に示した構成要素と同一の構成要素には同一の符号を付している。図 3B にお 、ては、プラズマディスプレイパネル 1における背面ガラス基板 19側の断面のみ を示している。  FIG. 3B is a diagram schematically showing a cross section between I and I shown in FIG. 3A. In FIG. 3B, the same components as those shown in FIG. 2 are denoted by the same reference numerals. FIG. 3B shows only a cross section of the plasma display panel 1 on the rear glass substrate 19 side.
[0030] 上述したように背面ガラス基板 19には、アドレス電極 15R、 15G、 15Bが配置され ており、誘電体層 16で覆われている。アドレス電極 15Rと 15Gの間に縦隔壁 17RG が配置され、アドレス電極 15Gと 15Bの間に縦隔壁 17GBが配置され、アドレス電極 15Bと 15Rの間に縦隔壁 17BRが配置されている。アドレス電極 15R、 15G、 15B上 の誘電体層 16及び縦隔壁 17RG、 17GB、 17BRの側面には、蛍光体層 18R、 18G 、 18Bが塗り分けられている。 As described above, the back glass substrate 19 is provided with the address electrodes 15 R, 15 G, and 15 B and is covered with the dielectric layer 16. Vertical partition 17RG between address electrodes 15R and 15G The vertical barrier ribs 17GB are disposed between the address electrodes 15G and 15B, and the vertical barrier ribs 17BR are disposed between the address electrodes 15B and 15R. Phosphor layers 18R, 18G, and 18B are separately coated on the side surfaces of the dielectric layer 16 and the vertical barrier ribs 17RG, 17GB, and 17BR on the address electrodes 15R, 15G, and 15B.
[0031] 縦隔壁 17GBは、縦隔壁 17RG、 17BRの高さ HIよりも D1だけ低く形成されている 。通常、縦隔壁の高さは 130〜160 /ζ πιであり、縦隔壁 17RG、 17BRの高さ HIを 1 50 /z m程度とすると、縦隔壁 17GBの高さと縦隔壁 17RG、 17BRの高さとの差 D1 は、隔壁の高さが明確に異なるように 5 m以上、かつサスティン放電のクロストーク を受けないように 20 μ m以下であり、 5 /z πι〜10 /ζ mが望ましい。  [0031] The vertical partition wall 17GB is formed to be lower by D1 than the height HI of the vertical partition walls 17RG and 17BR. Normally, the height of the vertical partition walls is 130 to 160 / ζ πι. If the height HI of the vertical partition walls 17RG and 17BR is about 150 / zm, the height of the vertical partition walls 17GB and the height of the vertical partition walls 17RG and 17BR The difference D1 is 5 m or more so that the height of the partition walls is clearly different and 20 μm or less so as not to receive the sustain discharge crosstalk, and 5 / z πι to 10 / ζ m is desirable.
[0032] このような縦隔壁 17GBの高さと縦隔壁 17RG、 17BRの高さとの差 D1を実現する には、例えば、隔壁の上面、いわゆるリブトップでの縦隔壁 17RG、 17BRの幅 W 、  [0032] In order to realize the difference D1 between the height of the vertical partition 17GB and the height of the vertical partitions 17RG and 17BR, for example, the width W of the vertical partition 17RG and 17BR at the upper surface of the partition, so-called rib top,
RG  RG
W をおよそ 50 /z mとする場合、縦隔壁 17GBの幅 W を幅 W 、W より 30%大き When W is about 50 / z m, the width W of the vertical partition 17GB is 30% larger than W and W.
BR GB RG BR BR GB RG BR
くしおよそ 65 mとする。  The comb is approximately 65 m.
[0033] ここで、図 3Bに示すように、縦隔壁 17RG、 17BRの幅 W 、W と縦隔壁 17GBの [0033] Here, as shown in FIG. 3B, the widths W and W of the vertical partition walls 17RG and 17BR and the vertical partition wall 17GB
RG BR  RG BR
幅 W とは異なるが、隣接する縦隔壁 17BR、 17RG、 17GB, 17BRの間の距離 L Different from width W, but distance between adjacent vertical partition walls 17BR, 17RG, 17GB, 17BR
GB R GB R
、 L、 Lは、略等しくしている。仮に、縦隔壁 17GBの幅 W のみを単純に大きくした , L and L are substantially equal. Temporarily, only the width W of the vertical partition 17GB was increased.
G B GB G B GB
場合には、緑色の蛍光体層 18Gのセル及び青色の蛍光体層 18Bのセルにつ!、て 放電空間 (発光部)が狭くなつて開口率 (開口面積)が下がり色のバランスが崩れてし まつ。  In this case, the cell of the green phosphor layer 18G and the cell of the blue phosphor layer 18B! The discharge space (light emitting part) becomes narrow and the aperture ratio (opening area) decreases and the color balance is lost. Shimatsu.
[0034] しかし、本実施形態のように隣接する縦隔壁間の距離 L、 L、 Lを略等しくすること  However, as in this embodiment, the distances L, L, and L between adjacent vertical partition walls are made substantially equal.
R G B  R G B
で、幅 W を幅 W 、W より大きくしても、各蛍光体層 18R、 18G、 18Bのセルにつ Even if the width W is larger than the widths W and W, the cells of the phosphor layers 18R, 18G, and 18B are connected.
GB RG BR GB RG BR
V、て放電空間 (発光部)の大きさを略等しくし開口率 (開口面積)を揃えることができ、 色のバランスが崩れるのを防止できる。  V, the discharge space (light emitting part) can be made substantially the same size and the aperture ratio (opening area) can be made uniform, and the color balance can be prevented from being lost.
[0035] 上述した本実施形態では、縦隔壁 17GBの全体にわたって、縦隔壁 17RG、 17B Rよりも高さを低くするようにしている力 図 4に示すように縦隔壁 17GBの一部の高さ を低くするようにしても良い。  [0035] In the present embodiment described above, the force that lowers the height of the vertical partition walls 17RG and 17BR over the entire length of the vertical partition walls 17GB, as shown in Fig. 4, is a partial height of the vertical partition walls 17GB. May be lowered.
[0036] 図 4は、本発明の他の実施形態におけるプラズマディスプレイパネル 1の平面図で ある。この図 4において、図 3Aに示した構成要素と同一の構成要素には同一の符号 を付している。図 4においては、隣接するセルのプライミング効果を利用してアドレス 放電の遅れを緩和するために、アドレス電極との間でアドレス放電を行う Y電極 12a、 12bの近傍部分 41の高さを他の縦隔壁よりも低くするようにしている。 FIG. 4 is a plan view of a plasma display panel 1 according to another embodiment of the present invention. In FIG. 4, the same components as those shown in FIG. Is attached. In FIG. 4, in order to reduce the delay of the address discharge using the priming effect of the adjacent cell, the height of the vicinity 41 of the Y electrodes 12a and 12b that perform address discharge with the address electrode is set to other heights. It is designed to be lower than the vertical partition.
[0037] 図 4に示すプラズマディスプレイパネル 1にお!/、て、縦隔壁 17GBの横幅は、一部 分 41を除いて縦隔壁 17RG、 17BRの横幅と同じにしている。したがって、縦隔壁 17 GBの高さは、 Y電極 12a、 12bの近傍部分 41を除いて縦隔壁 17RG、 17BRの高さ と略等しくなる。 [0037] In the plasma display panel 1 shown in FIG. 4, the horizontal width of the vertical partition 17GB is the same as the horizontal partition 17RG and 17BR except for a part 41. Accordingly, the height of the vertical partition walls 17 GB is substantially equal to the height of the vertical partition walls 17RG and 17BR except for the vicinity 41 of the Y electrodes 12a and 12b.
一方、 Y電極 12a、 12bの近傍部分 41における縦隔壁 17GBの横幅は、他の縦隔 壁よりも幅を広くし、近傍部分 41における縦隔壁 17GBの高さを他の縦隔壁よりも低 くしている。  On the other hand, the width of the vertical partition 17GB in the vicinity 41 of the Y electrodes 12a and 12b is wider than the other medial walls, and the height of the vertical partition 17GB in the vicinity 41 is lower than the other vertical partitions. ing.
[0038] 図 5は、本発明のその他の実施形態におけるプラズマディスプレイパネル 1の断面 を模式的に示した図である。図 5においては、図 3Bと同様にプラズマディスプレイパ ネル 1における背面ガラス基板 19側の断面のみを示しており、図 3Bに示した構成要 素と同一の構成要素には同一の符号を付している。  FIG. 5 is a view schematically showing a cross section of the plasma display panel 1 in another embodiment of the present invention. FIG. 5 shows only the cross section of the plasma display panel 1 on the side of the rear glass substrate 19 as in FIG. 3B, and the same components as those shown in FIG. 3B are denoted by the same reference numerals. ing.
[0039] 図 5に示したプラズマディスプレイパネルにおいては、縦隔壁 17GBの幅 W を縦  [0039] In the plasma display panel shown in FIG.
GB  GB
隔壁 17RG、 17BRの幅 W 、 W より大きくした場合に、縦隔壁 17GBと、それに隣  Bulkheads 17RG and 17BR, when the width W and W are larger than the vertical partition 17GB and adjacent to it
RG BR  RG BR
接する縦隔壁 17RG、 17GBとの間の距離 L、Lを、他の縦隔壁 17BRと 17RGの間  Distance between adjacent vertical bulkheads 17RG, 17GB L, L, between other vertical bulkheads 17BR and 17RG
G B  G B
の距離 Lよりも大きくする。  The distance is larger than L.
R  R
[0040] このように距離 L、 Lを距離 Lよりも大きくすることで、緑色の蛍光体層 18Gのセル  [0040] By making the distances L and L larger than the distance L in this way, the cell of the green phosphor layer 18G
G B R  G B R
及び青色の蛍光体層 18Bのセルでの発光を増大させて縦隔壁 17GBの幅の広がり を目立たなくし、表示品位の低下を抑制することができる。なお、少なくとも輝度の高 い緑色の蛍光体層 18Gに対応する縦隔壁 17GBと 17RGとの間の距離 Lが縦隔壁  In addition, the light emission in the cell of the blue phosphor layer 18B can be increased to make the width of the vertical partition wall 17GB inconspicuous, and the deterioration of display quality can be suppressed. Note that the distance L between the vertical barrier ribs 17GB and 17RG corresponding to at least the green phosphor layer 18G with high brightness is the vertical barrier rib.
G  G
17BRと 17RGの間の距離 Lよりも大きければ良いが、縦隔壁 17GBと 17BRとの間  Distance between 17BR and 17RG should be larger than L, but between vertical partition walls 17GB and 17BR
R  R
の距離 Lも縦隔壁 17BRと 17RGの間の距離 Lよりも大きい方が望ましい。  The distance L is preferably larger than the distance L between the vertical partition walls 17BR and 17RG.
B R  B R
[0041] 次に、本発明の実施形態におけるプラズマディスプレイ装置の駆動方法について 説明する。  Next, a method for driving the plasma display device in the embodiment of the present invention will be described.
図 6は、本実施形態による各フィールドの構成例を示す概念図である。本実施形態 では、画像は、例えば 60フィールド Z秒で形成される。 1フィールドは、例えば、 10個 のサブフィールド(第 1のサブフィールド 21、第 2のサブフィールド 22、 ···、第 10のサ ブフィールド 30)により形成される。各サブフィールド 21〜30は、リセット期間 Tr、アド レス期間 Ta、及びサスティン (維持放電)期間 Tsにより構成される。サスティン期間 T sには、壁電荷を減らすための壁電荷消去期間 Teが含まれることもある。 FIG. 6 is a conceptual diagram showing a configuration example of each field according to the present embodiment. In the present embodiment, the image is formed in, for example, 60 fields Z seconds. One field, for example, 10 Subfields (first subfield 21, second subfield 22,..., Tenth subfield 30). Each subfield 21-30 includes a reset period Tr, an address period Ta, and a sustain (sustain discharge) period Ts. The sustain period T s may include a wall charge erasing period Te for reducing wall charges.
[0042] リセット期間 Trでは、 X電極 Xi及び Y電極 Yiに所定の電圧を印加して、セル Cijの 初期化を行う。この際、アドレス電極 Ajに所定の電圧を印加することもある。  In the reset period Tr, a predetermined voltage is applied to the X electrode Xi and the Y electrode Yi to initialize the cell Cij. At this time, a predetermined voltage may be applied to the address electrode Aj.
[0043] アドレス期間 Taでは、アドレス指定により各セル Cijの発光又は非発光の選択を行う 。アドレス期間 Taでは、 Y電極 Yl、 Υ2、 · ··、 Υηに対してスキャンパノレスを j噴次スキヤ ンして印加し、そのスキャンパルスに対応してアドレスパルスをアドレス電極 Ajに印カロ することによりセル Cijの発光を選択する。  In the address period Ta, light emission or non-light emission of each cell Cij is selected by address designation. In the address period Ta, a scan panel is applied to the Y electrodes Yl, Υ2,..., Η by applying j scans, and the address pulses are applied to the address electrodes Aj corresponding to the scan pulses. This selects the light emission of cell Cij.
[0044] Y電極 Yiのスキャンパルスに対応してアドレス電極 Ajのアドレスパルスが生成され れば、その Y電極 Yi及び X電極 Xiとアドレス電極 Ajとにより形成されるセル Cijの発 光が選択される。 Y電極 Yiのスキャンパルスに対応してアドレス電極 Ajのアドレスパ ルスが生成されなければ、その Y電極 Yi及び X電極 Xiとアドレス電極 Ajとにより形成 されるセル Cijの発光が選択されず、非発光が選択される。  [0044] If the address pulse of the address electrode Aj is generated corresponding to the scan pulse of the Y electrode Yi, the light emission of the cell Cij formed by the Y electrode Yi, the X electrode Xi, and the address electrode Aj is selected. The If the address pulse of the address electrode Aj is not generated corresponding to the scan pulse of the Y electrode Yi, the light emission of the cell Cij formed by the Y electrode Yi, the X electrode Xi, and the address electrode Aj is not selected and is not Light emission is selected.
[0045] スキャンパルスに対応してアドレスパルスが生成されると、アドレス電極 Aj及び Y電 極 Yi間のアドレス放電が起こり、それを種火として X電極 Xi及び Y電極 Yi間での放電 力 S起こる。これにより、 X電極 Xiに負電荷が蓄積されるとともに Y電極 Yiに正電荷が 蓄積され、次のサスティン期間 Tsにお 、て行うサスティン放電が可能な量の壁電荷 が蓄積される。  [0045] When an address pulse is generated in response to the scan pulse, an address discharge occurs between the address electrode Aj and the Y electrode Yi, and this is used as a spark to discharge between the X electrode Xi and the Y electrode Yi S Occur. As a result, negative charges are accumulated in the X electrode Xi, positive charges are accumulated in the Y electrode Yi, and wall charges of an amount capable of sustaining discharge are accumulated in the next sustain period Ts.
[0046] サスティン期間 Tsでは、 X電極 Xi及び Y電極 Yi間に互 ヽに逆相のサスティンパル スが印加され、アドレス期間 Taにお!/、て選択されたセルの X電極 Xi及び Y電極 Yi間 でサスティン放電を行い、発光を行う。図 6に示す各サブフィールド 21〜30では、 X 電極 Xi及び Y電極 Yiに印加されるサスティンパルス数(各サブフィールドにおける発 光回数)が異なる。なお、発光回数が等しいサブフィールドを複数設けることもある。 したがって、各セル Cijについて、サブフィールド 21〜30での発光又は非発光を適 宜選択することにより階調値を決めることができる。  [0046] In the sustain period Ts, opposite-phase sustain pulses are applied between the X electrode Xi and the Y electrode Yi, and the X electrode Xi and Y electrode of the cell selected in the address period Ta! / Sustain discharge occurs between Yi and emits light. In each of the subfields 21 to 30 shown in FIG. 6, the number of sustain pulses applied to the X electrode Xi and the Y electrode Yi (the number of times of light emission in each subfield) is different. A plurality of subfields having the same number of times of light emission may be provided. Therefore, for each cell Cij, the gradation value can be determined by appropriately selecting light emission or non-light emission in the subfields 21 to 30.
[0047] ここで、サスティン期間 Ts内の壁電荷消去期間 Teでは、通常のサスティンパルスよ りも低圧 (低電位)のサスティンノ ルスが X電極 Xi又は Y電極 Yiに印加され、当該サ ブフィールドにお 、て発光させるセル Cijで、サスティン放電による発光及び壁電荷 の消去がともに行われる。なお、壁電荷の消去は、他にも短パルスによるものなどが 知られている。また、消去には、サスティン放電が維持できない程度に壁電荷を減ら す場合も含み、完全に消去するという意味に限定されない。これにより、サブフィール ドにおいて発光させたセル Cijと非発光のセル Cijとのサスティン期間終了時における 壁電荷量の差を緩和して、次のサブフィールドのリセット期間での初期化動作 (リセッ トのための放電)を安定かつ確実に行うことができる。 [0047] Here, in the wall charge erasing period Te in the sustain period Ts, the normal sustain pulse is used. Sustain discharge at a lower pressure (low potential) is applied to the X electrode Xi or the Y electrode Yi, and light emission by the sustain discharge and wall charge erasure are performed in the cell Cij that emits light in the subfield. . It is also known that wall charges are erased by short pulses. In addition, erasing includes the case where wall charges are reduced to such an extent that sustain discharge cannot be maintained, and is not limited to the meaning of complete erasing. This alleviates the difference in wall charge at the end of the sustain period between the light-emitting cell Cij and the non-light-emitting cell Cij in the subfield, and the initialization operation (reset) in the reset period of the next subfield. Discharge) can be performed stably and reliably.
[0048] 図 7は、本実施形態におけるプラズマディスプレイ装置の動作例を示すタイミングチ ヤートである。図 7は、 1フレームを構成する複数のサブフィールドのうちの 1つのサブ フィールド分において、 X電極 Xi、 Y電極 Yi、アドレス電極 Ajに係る駆動波形の一例 を示している。  FIG. 7 is a timing chart showing an operation example of the plasma display device in the present embodiment. FIG. 7 shows an example of drive waveforms related to the X electrode Xi, the Y electrode Yi, and the address electrode Aj in one subfield of a plurality of subfields constituting one frame.
[0049] なお、図 7において、奇数行の X電極 Xi及び Y電極 Yiを X電極 Xo及び Y電極 Yoで 示し、偶数行の X電極 Xi及び Υ電極 Yiを X電極 Xe及び Υ電極 Yeで示している。また 、アドレス電極 Ajについては、上方に赤色、緑色、及び青色の蛍光体が被着されて V、るそれぞれのアドレス電極を A (R)、 A (G)、及び A (B)で示して!/、る。  In FIG. 7, odd-numbered rows of X electrodes Xi and Y electrodes Yi are indicated by X electrodes Xo and Y electrodes Yo, and even-numbered rows of X electrodes Xi and Y electrodes Yi are indicated by X electrodes Xe and Y electrodes Y. ing. As for the address electrode Aj, red, green, and blue phosphors are deposited on the upper side, and the address electrodes are denoted by A (R), A (G), and A (B). ! /
[0050] 上述したように 1つのサブフィールドは、全面書き込み期間及び全面消去期間から なるリセット期間 Trと、アドレス期間 Taと、壁電荷消去期間 Teを含むサスティン期間 Tsと〖こ区分される。  [0050] As described above, one subfield is divided into a reset period Tr including a full write period and a full erase period, an address period Ta, and a sustain period Ts including a wall charge erase period Te.
[0051] リセット期間 Trにおいては、 Y電極 Yo、 Yeに徐々に電圧が増加する正の傾斜電圧 パルス(書き込み鈍波) 60が印加され、 X電極 Xo、 Xeに所定の負電圧(書き込み電 圧) 50が印加される。そして、 Y電極 Yo、 Yeに印加する電圧がグランドレベルに戻さ れた後、 Y電極 Yo、 Yeに徐々に電圧が減少する負の傾斜電圧パルス (調整鈍波) 6 1が印加され、 X電極 Xo、 Xeに所定の正電圧 (調整電圧) 51が印加される。  [0051] In the reset period Tr, a positive ramp voltage pulse (write blunt wave) 60 in which the voltage gradually increases is applied to the Y electrodes Yo and Ye, and a predetermined negative voltage (write voltage) is applied to the X electrodes Xo and Xe. 50 is applied. After the voltage applied to the Y electrodes Yo and Ye returns to the ground level, a negative ramp voltage pulse (adjusted blunt wave) 61 that gradually decreases the voltage is applied to the Y electrodes Yo and Ye, and the X electrode A predetermined positive voltage (adjustment voltage) 51 is applied to Xo and Xe.
[0052] このようにして、リセット期間 Trでは、 Y電極 Yo、 Yeと X電極 Xo、 Xeとで放電が行わ れ、壁電荷の形成 (全面書き込み)及び壁電荷の消去 (全面消去)を行う。リセット期 間 Trでは、すべてのセル Cijの初期化(リセット)が行われる。  [0052] In this way, in the reset period Tr, discharge is performed by the Y electrodes Yo and Ye and the X electrodes Xo and Xe, and wall charge formation (entire writing) and wall charge erasing (full erase) are performed. . In the reset period Tr, all cells Cij are initialized (reset).
[0053] 次に、アドレス期間 Taにおいては、入力される表示データに応じて各セル Cijのォ ン Zオフを行うために、線順次でアドレス放電が行われる。本実施形態では、前半ァ ドレス期間 Talでは、奇数番目の行につ 、てアドレス放電 (アドレス選択)を行 ヽ、後 半アドレス期間 Ta2では、偶数番目の行につ 、てアドレス放電 (アドレス選択)を行う [0053] Next, in the address period Ta, the cell Cij is assigned in accordance with the input display data. In order to perform Z-off, address discharge is performed line-sequentially. In this embodiment, address discharge (address selection) is performed for odd-numbered rows in the first half address period Tal, and address discharge (address selection) is performed for even-numbered rows in the second half address period Ta2. )I do
[0054] 前半アドレス期間 Talでは、 X電極 Xoには、スキャン電圧 52が印加される。また、 ある奇数番目の表示ラインに相当する Y電極 Yoに電圧を印加するときには、線順次 により選択された Υ電極 Υοにはスキャンパルス 62が印加され、非選択の Υ電極 Yoに は所定の負電圧が印加される。なお、前半アドレス期間 Talにおいて、 X電極 Xe及 ひ Ύ電極 Yeにはグランドレベルの電圧が印加される。 In the first half address period Tal, the scan voltage 52 is applied to the X electrode Xo. In addition, when a voltage is applied to the Y electrode Yo corresponding to a certain odd-numbered display line, the scan pulse 62 is applied to the Υ electrode Υο selected by the line sequence, and a predetermined negative is applied to the non-selected Υ electrode Yo. A voltage is applied. In the first half address period Tal, a ground level voltage is applied to the X electrode Xe and the negative electrode Ye.
[0055] また、前半アドレス期間 Talでは、各アドレス電極 A (R)、 A (G)、 A(B)中のサステ イン放電を起こすセル、すなわち発光させるセルに対応するアドレス電極 A(R)、 A( G)、 A(B)には、各行のスキャンパルス 62に同期してアドレスパルス 71、 81、 91が 選択的に印加される。この結果、発光させるセルのアドレス電極 A (R)、 A(G)、 A(B )と線順次で選択された Y電極 Yoとの間で放電が起こり、これをプライミング (種火)と して X電極 Xo及び Y電極 Yoの上の MgO保護膜面に、次のサスティン放電が可能な 量の壁電荷が蓄積される。  [0055] In the first half address period Tal, the address electrode A (R) corresponding to the cell causing the sustain discharge in each address electrode A (R), A (G), A (B), that is, the cell to emit light. , A (G), A (B) are selectively applied with address pulses 71, 81, 91 in synchronization with the scan pulse 62 of each row. As a result, a discharge occurs between the address electrodes A (R), A (G), and A (B) of the cell that emits light and the Y electrode Yo selected in line order, and this is used as a priming. As a result, wall charges of an amount capable of the next sustain discharge are accumulated on the MgO protective film surface on the X electrode Xo and the Y electrode Yo.
[0056] 同様に、後半アドレス期間 Ta2では、 X電極 Xeには、スキャン電圧 53が印加される 。また、線順次により選択された Y電極 Yeにはスキャンパルス 63が印加され、非選択 の Y電極 Yeには所定の負電圧が印加される。なお、後半アドレス期間 Ta2において 、X電極 Xo及び Y電極 Yoにはグランドレベルの電圧が印加される。  Similarly, in the second half address period Ta2, the scan voltage 53 is applied to the X electrode Xe. Further, the scan pulse 63 is applied to the Y electrode Ye selected by line sequential, and a predetermined negative voltage is applied to the non-selected Y electrode Ye. In the second half address period Ta2, a ground level voltage is applied to the X electrode Xo and the Y electrode Yo.
[0057] また、後半アドレス期間 Ta2において、サスティン放電を起こす (発光させる)セル に対応するアドレス電極 A (R)、 A(G)、 A (B)には、各行のスキャンパルス 63に同期 してアドレスパルス 72、 82、 92が選択的に印加される。この結果、発光させるセルの アドレス電極 A (R)、 A(G)、 A(B)と線順次で選択された Y電極 Yeとの間で放電が 起こり、これをプライミング (種火)として X電極 Xe及び Y電極 Yeの上の MgO保護膜 面に、次のサスティン放電が可能な量の壁電荷が蓄積される。  [0057] Further, in the second half address period Ta2, the address electrodes A (R), A (G), and A (B) corresponding to the cells that generate (emit light) sustain discharge are synchronized with the scan pulse 63 of each row. Address pulses 72, 82 and 92 are selectively applied. As a result, a discharge occurs between the address electrodes A (R), A (G), and A (B) of the cell that emits light and the Y electrode Ye selected in line order, and this is used as the priming (seeker) X Wall charges of the amount that can be subjected to the next sustain discharge are accumulated on the MgO protective film surface on the electrodes Xe and Y.
[0058] サスティン期間 Tsでは、各表示ラインの X電極 Xo、 Xeと Y電極 Yo、 Yeとに互いに 極性の異なる電圧(サスティンパルス、維持パルス) 54, 55、 64, 65を交互に印加し て、発光するセルの X電極 Xo、 Xeと Y電極 Yo、 Ye間でサスティン放電を行い 1サブ フィールドの映像を表示する。 [0058] In the sustain period Ts, voltages having different polarities (sustain pulses, sustain pulses) 54, 55, 64, 65 are alternately applied to the X electrodes Xo, Xe and Y electrodes Yo, Ye of each display line. Then, a sustain discharge is performed between the X electrode Xo, Xe and the Y electrode Yo, Ye of the light emitting cell, and one subfield image is displayed.
[0059] なお、サスティン期間 Tsにおける壁電荷消去期間 Teでは、まず、 X電極 Xo、 Xeに 通常のサスティンパルス 54と同様のサスティンパルス(消去前パルス) 56が印加され 、 Y電極 Yo、 Yeに通常のサスティンパルス 64より高い電圧のサスティンパルス(消去 前高圧パルス) 66が印加される。これ〖こより、発光するセルの X電極 Xo、 Xeと Y電極 Yo、 Ye間で通常のサスティン放電よりも強い放電を起こし、発光するセルの X電極 X o、 Xeと Y電極 Yo、 Yeとに多くの壁電荷をもたせる。  [0059] In the wall charge erasing period Te in the sustain period Ts, first, a sustain pulse (pre-erase pulse) 56 similar to the normal sustain pulse 54 is applied to the X electrodes Xo and Xe, and the Y electrodes Yo and Ye are applied. A sustain pulse (high voltage pulse before erasure) 66 having a voltage higher than the normal sustain pulse 64 is applied. From this, the X electrodes Xo, Xe and Y electrodes Yo, Ye of the light emitting cell cause a stronger discharge than the normal sustain discharge between the X electrodes Xo, Xe and Y electrodes Yo, Ye of the light emitting cell. It has a lot of wall charges.
[0060] 壁電荷消去期間 Teでは、続いて、 X電極 Xo、 Xeに通常のサスティンパルス 55より も低い電圧のサスティンパルス(消去パルス) 57が印加され、 Y電極 Yo、 Yeに通常 のサスティンパルス 65と同様のサスティンパルス(消去パルス) 67が印加される。これ により、発光するセルの X電極 Xo、 Xeと Y電極 Yo、 Ye間で、消去前パルス 56と消去 前高圧パルス 66により形成された通常よりも多くの壁電荷を利用して、通常のサステ イン放電よりも低 、電圧を印加してサスティン放電を起こすことで、セルでの発光を行 いながらも X電極 Xo、 Xeと Y電極 Yo、 Yeとの壁電荷を消去または減少することが可 會 になる。  [0060] In the wall charge erasing period Te, a sustain pulse (erase pulse) 57 having a voltage lower than that of the normal sustain pulse 55 is applied to the X electrodes Xo and Xe, and a normal sustain pulse is applied to the Y electrodes Yo and Ye. A sustain pulse (erase pulse) 67 similar to 65 is applied. As a result, the normal sustain is achieved by using more wall charges than usual formed by the pre-erase pulse 56 and the pre-erase high-pressure pulse 66 between the X electrode Xo, Xe and the Y electrode Yo, Ye of the light emitting cell. It is possible to erase or reduce the wall charge between X electrode Xo, Xe and Y electrode Yo, Ye while emitting light in the cell by applying a voltage and causing sustain discharge, which is lower than in-discharge. Become 會.
[0061] なお、上述した説明では、アドレス期間 Taにおいては、入力される表示データに応 じて発光させるセルに対応するアドレス電極 A (R)、 A(G)、 A(B)には、各行のスキ ヤンパルスに同期してアドレスパルスを選択的に印加してアドレス電極 A (R)、 A(G) 、 A(B)と Y電極 Yiとの間でアドレス放電を行う。すなわち、入力される表示データに 忠実に従ってアドレス放電を行うようにして 、る。  In the above description, in the address period Ta, the address electrodes A (R), A (G), and A (B) corresponding to the cells that emit light according to the input display data are Address pulses are selectively applied in synchronization with the scan pulses of each row, and address discharge is performed between the address electrodes A (R), A (G), A (B) and the Y electrode Yi. In other words, the address discharge is performed in accordance with the input display data faithfully.
[0062] しかし、入力される表示データに応じて発光させるセルとして緑色の蛍光体層のセ ルが選択された場合には、入力データに関わらず、そのセルに隣接する青色のセル も発光させるセルとして選択するようにしても良い。すなわち、緑色の蛍光体層のセ ルでアドレス放電が行われる場合には、それに隣接する青色の蛍光体層のセルでも 同時にアドレス放電を行い、緑色の蛍光体層のセルにおけるアドレス放電遅れを隣 接する青色の蛍光体層のセルによるプライミング効果を利用して緩和するようにして も良い。 [0063] これにより、誤動作につながるような大きなアドレス放電遅れを緩和することができ、 確実に動作させることができる。なお、緑色のセルと青色のセルにおける輝度の比は 約 6 : 1であるので、緑色のセルを点灯させる際に、本来であれば点灯させない青色 のセルを点灯させたとしても目立ちにくぐ表示品位に対する影響は小さい。特に、 低階調に対応するサブフィールドでは、さらに目立ちにくく、かつ低階調に対応する サブフィールドでは一般に放電空間に存在するプライミング粒子が少ないため、高い 効果が期待できる。 [0062] However, when a cell of the green phosphor layer is selected as a cell to emit light in accordance with input display data, a blue cell adjacent to the cell is caused to emit light regardless of the input data. You may make it select as a cell. That is, when an address discharge is performed in a cell of the green phosphor layer, an address discharge is simultaneously performed in the cell of the blue phosphor layer adjacent to the cell, and the address discharge delay in the cell of the green phosphor layer is adjacent. You may make it ease using the priming effect by the cell of the blue fluorescent substance layer which touches. As a result, a large address discharge delay that may cause a malfunction can be mitigated, and the operation can be reliably performed. Note that the luminance ratio between the green cell and the blue cell is approximately 6: 1, so when the green cell is lit, even if a blue cell that is not normally lit is lit, the display is conspicuous. The impact on quality is small. In particular, a subfield corresponding to a low gradation is more inconspicuous, and a subfield corresponding to a low gradation generally has a small amount of priming particles present in the discharge space, so that a high effect can be expected.
[0064] なお、上述した実施形態では、隔壁焼成前における縦隔壁の横幅を他の縦隔壁の 横幅より広くすることで、縦隔壁の高さを他の縦隔壁よりも低くするようにしている。し かし、縦隔壁の高さを他の縦隔壁よりも低くする手法はこれに限定されるものではな い。  [0064] In the above-described embodiment, the height of the vertical barrier ribs is made lower than that of the other vertical barrier ribs by making the horizontal width of the vertical barrier ribs before firing the barrier ribs wider than the width of the other vertical barrier ribs. . However, the method of making the height of the vertical barrier ribs lower than other vertical barrier ribs is not limited to this.
[0065] また、上述した実施形態では、縦隔壁のみを有するプラズマディスプレイパネルを 一例として説明して 、るが、縦隔壁に力卩ぇ横隔壁を有するプラズマディスプレイパネ ルに対しても適用できることは言うまでもない。  In the above-described embodiment, a plasma display panel having only vertical barrier ribs is described as an example. However, the present invention can be applied to a plasma display panel having a horizontal barrier rib on the vertical barrier ribs. Needless to say.
[0066] また、上記実施形態は、何れも本発明を実施するにあたっての具体化のほんの一 例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈され てはならないものである。すなわち、本発明はその技術思想、またはその主要な特徴 力も逸脱することなぐ様々な形で実施することができる。  [0066] In addition, each of the above-described embodiments is merely an example of a specific example for carrying out the present invention, and the technical scope of the present invention should not be construed in a limited manner. Is. That is, the present invention can be implemented in various forms without departing from the technical idea or the main characteristic power thereof.
産業上の利用可能性  Industrial applicability
[0067] 以上のように、本発明によれば、特定 2種類の蛍光体層の間に配置された縦隔壁 の高さを他の縦隔壁よりも低くすることで、隣接するセルのプライミング効果を利用し てアドレス放電の遅れを緩和して駆動マージンを拡大することができ、プラズマデイス プレイパネルの安定した動作を実現することができる。 [0067] As described above, according to the present invention, the height of the vertical barrier ribs arranged between two specific types of phosphor layers is made lower than that of the other vertical barrier ribs, so that the priming effect of adjacent cells can be achieved. Can be used to reduce the delay of the address discharge and expand the drive margin, thereby realizing stable operation of the plasma display panel.

Claims

請求の範囲 The scope of the claims
[1] 平行に配置された第 1及び第 2の電極が複数形成された第 1の基板と、  [1] a first substrate on which a plurality of first and second electrodes arranged in parallel are formed;
前記第 1及び第 2の電極に略垂直な方向に配置された複数の第 3の電極、前記第 3の電極に対応して放電空間を区画する縦隔壁、及び前記縦隔壁で区画される放 電空間内に塗布された少なくとも 3種類の蛍光体層が形成された第 2の基板とを有し 、前記第 1の基板と前記第 2の基板が放電空間を介して封着されたプラズマディスプ レイパネルであって、  A plurality of third electrodes arranged in a direction substantially perpendicular to the first and second electrodes, a vertical barrier partitioning a discharge space corresponding to the third electrode, and a discharge defined by the vertical barrier ribs. A plasma display comprising: a second substrate on which at least three kinds of phosphor layers applied in an electric space are formed; and wherein the first substrate and the second substrate are sealed via a discharge space. Ray panel,
前記少なくとも 3種類の蛍光体層のうち、特定 2種類の蛍光体層の間に配置された 縦隔壁の高さを他の縦隔壁よりも低くしたことを特徴とするプラズマディスプレイパネ ル。  A plasma display panel characterized in that, among the at least three types of phosphor layers, the height of the vertical barrier ribs disposed between the two specific phosphor layers is lower than the other vertical barrier ribs.
[2] 前記特定 2種類の蛍光体層の間に配置された縦隔壁の一部の高さを前記他の縦 隔壁よりも低くしたことを特徴とする請求の範囲 1記載のプラズマディスプレイパネル。  [2] The plasma display panel according to claim 1, wherein a height of a part of the vertical barrier ribs arranged between the two specific types of phosphor layers is set lower than that of the other vertical barrier ribs.
[3] 前記特定 2種類の蛍光体層は、対象とする 1種類の蛍光体層と、それに隣接して配 置される蛍光体層のうち発光輝度が低い蛍光体層であることを特徴とする請求の範 囲 1記載のプラズマディスプレイパネル。 [3] The two specific types of phosphor layers are a phosphor layer having a low emission luminance among a target phosphor layer and a phosphor layer disposed adjacent thereto. The plasma display panel according to claim 1.
[4] 前記蛍光体層は、赤色、緑色、青色の 3種類の蛍光体層を含み、かつ前記緑色の 蛍光体層と前記青色の蛍光体層は隣接しており、 [4] The phosphor layer includes three kinds of phosphor layers of red, green, and blue, and the green phosphor layer and the blue phosphor layer are adjacent to each other,
前記緑色の蛍光体層と前記青色の蛍光体層との間に配置された縦隔壁の少なくと も一部の高さを他の縦隔壁よりも低くしたことを特徴とする請求の範囲 1記載のプラズ マディスプレイパネノレ。  2. The vertical barrier rib disposed between the green phosphor layer and the blue phosphor layer has at least a part of a height lower than that of other vertical barrier ribs. Plasma display panel.
[5] 前記特定 2種類の蛍光体層の間に配置された縦隔壁は、前記他の縦隔壁よりも高 さが低い部分が、前記他の縦隔壁よりも幅が広いことを特徴とする請求の範囲 1記載 のプラズマディスプレイパネノレ。  [5] The vertical barrier rib disposed between the two specific types of phosphor layers is characterized in that a portion whose height is lower than that of the other vertical barrier rib is wider than the other vertical barrier rib. The plasma display panel according to claim 1.
[6] 隣接する前記縦隔壁の間の距離が等しいことを特徴とする請求の範囲 5記載のプ ラズマディスプレイパネル。 6. The plasma display panel according to claim 5, wherein the distance between the adjacent vertical partition walls is equal.
[7] 前記他の縦隔壁よりも高さが低い縦隔壁と、当該縦隔壁に隣接する少なくとも一方 の縦隔壁との間の距離が、前記他の縦隔壁同士の間の距離よりも大きいことを特徴と する請求の範囲 5記載のプラズマディスプレイパネル。 [7] The distance between the vertical partition wall having a height lower than that of the other vertical partition wall and at least one vertical partition wall adjacent to the vertical partition wall is greater than the distance between the other vertical partition walls. The plasma display panel according to claim 5, characterized by the above.
[8] 前記少なくとも 3種類の蛍光体層の高さが異なることを特徴とする請求の範囲 1記 載のプラズマディスプレイパネノレ。 [8] The plasma display panel according to claim 1, wherein the at least three kinds of phosphor layers have different heights.
[9] 前記特定 2種類の蛍光体層の間に配置された縦隔壁にて、前記第 3の電極との間 でアドレス放電を行う前記第 2の電極の近傍部の高さを他の縦隔壁よりも低くしたこと を特徴とする請求の範囲 2記載のプラズマディスプレイパネル。  [9] In the vertical barrier rib arranged between the two specific types of phosphor layers, the height of the vicinity of the second electrode that performs address discharge with the third electrode is set to another vertical height. 3. The plasma display panel according to claim 2, wherein the plasma display panel is lower than the partition wall.
[10] 平行に配置された第 1及び第 2の電極が複数形成された第 1の基板と、前記第 1及 び第 2の電極に略垂直な方向に配置された複数の第 3の電極、前記第 3の電極に対 応して放電空間を区画する縦隔壁、及び前記縦隔壁で区画される放電空間内に塗 布された少なくとも 3種類の蛍光体層が形成された第 2の基板とが放電空間を介して 封着されたプラズマディスプレイパネルの駆動方法であって、  [10] A first substrate on which a plurality of first and second electrodes arranged in parallel are formed, and a plurality of third electrodes arranged in a direction substantially perpendicular to the first and second electrodes A second substrate on which at least three kinds of phosphor layers are formed, and vertical barrier ribs that divide a discharge space corresponding to the third electrode, and a discharge space that is divided by the vertical barrier ribs. Is a driving method of a plasma display panel sealed through a discharge space,
前記プラズマディスプレイパネルは、前記少なくとも 3種類の蛍光体層のうち、特定 2種類の蛍光体層の間に配置された縦隔壁の高さが他の縦隔壁よりも低く形成され ており、  The plasma display panel is formed such that, among the at least three types of phosphor layers, the height of the vertical barrier ribs disposed between the two specific phosphor layers is lower than the other vertical barrier ribs,
前記特定 2種類の蛍光体層のうち発光輝度の高い蛍光体層のセルにてアドレス放 電を行わせる場合には、前記特定 2種類の蛍光体層のうち発光輝度の低い蛍光体 層のセルもアドレス放電を行わせることを特徴とするプラズマディスプレイパネルの駆 動方法。  In the case where address discharge is performed in a cell of a phosphor layer having a high emission luminance among the two specific types of phosphor layers, a cell of a phosphor layer having a low emission luminance among the two types of specific phosphor layers. A method for driving a plasma display panel, characterized in that address discharge is also performed.
[11] 前記特定 2種類の蛍光体層は、緑色の蛍光体層と青色の蛍光体層であって、 前記緑色の蛍光体層のセルにてアドレス放電を行わせる場合には、前記青色の蛍 光体層のセルもアドレス放電を行わせることを特徴とする請求の範囲 10記載のブラ ズマディスプレイパネルの駆動方法。  [11] The two specific types of phosphor layers are a green phosphor layer and a blue phosphor layer, and when the address discharge is performed in the cells of the green phosphor layer, the blue phosphor layer 11. The method for driving a plasma display panel according to claim 10, wherein the cells of the phosphor layer are also caused to perform address discharge.
[12] 1フレームを構成する階調度の異なる複数のサブフィールドのうち、低階調のサブ フィールドにて、前記緑色の蛍光体層のセルにてアドレス放電を行わせる場合に、前 記青色の蛍光体層のセルもアドレス放電を行わせることを特徴とする請求の範囲 11 記載のプラズマディスプレイパネルの駆動方法。 [12] Among the plurality of subfields having different gradations constituting one frame, when address discharge is performed in the cells of the green phosphor layer in the low gradation subfield, 12. The method for driving a plasma display panel according to claim 11, wherein the cells of the phosphor layer are also subjected to address discharge.
PCT/JP2006/321550 2006-10-27 2006-10-27 Plasma display panel and its driving method WO2008050452A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/321550 WO2008050452A1 (en) 2006-10-27 2006-10-27 Plasma display panel and its driving method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/321550 WO2008050452A1 (en) 2006-10-27 2006-10-27 Plasma display panel and its driving method

Publications (1)

Publication Number Publication Date
WO2008050452A1 true WO2008050452A1 (en) 2008-05-02

Family

ID=39324265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321550 WO2008050452A1 (en) 2006-10-27 2006-10-27 Plasma display panel and its driving method

Country Status (1)

Country Link
WO (1) WO2008050452A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077002A (en) * 1998-08-28 2000-03-14 Fujitsu Ltd Plasma display panel and manufacture thereof
JP2000348625A (en) * 1999-05-14 2000-12-15 Lg Electronics Inc Plasma display panel
JP2001216901A (en) * 2000-01-31 2001-08-10 Pioneer Electronic Corp Plasma display panel
JP2002343259A (en) * 2001-05-17 2002-11-29 Hitachi Ltd Plasma display
JP2005302461A (en) * 2004-04-09 2005-10-27 Matsushita Electric Ind Co Ltd Plasma display panel and its driving method
JP2005322605A (en) * 2004-05-11 2005-11-17 Pioneer Electronic Corp Plasma display panel, manufacturing method therefor, and the plasma display device
JP2006120602A (en) * 2004-10-19 2006-05-11 Samsung Sdi Co Ltd Plasma display panel having improved electrode

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077002A (en) * 1998-08-28 2000-03-14 Fujitsu Ltd Plasma display panel and manufacture thereof
JP2000348625A (en) * 1999-05-14 2000-12-15 Lg Electronics Inc Plasma display panel
JP2001216901A (en) * 2000-01-31 2001-08-10 Pioneer Electronic Corp Plasma display panel
JP2002343259A (en) * 2001-05-17 2002-11-29 Hitachi Ltd Plasma display
JP2005302461A (en) * 2004-04-09 2005-10-27 Matsushita Electric Ind Co Ltd Plasma display panel and its driving method
JP2005322605A (en) * 2004-05-11 2005-11-17 Pioneer Electronic Corp Plasma display panel, manufacturing method therefor, and the plasma display device
JP2006120602A (en) * 2004-10-19 2006-05-11 Samsung Sdi Co Ltd Plasma display panel having improved electrode

Similar Documents

Publication Publication Date Title
JP3704813B2 (en) Method for driving plasma display panel and plasma display
JP5146410B2 (en) Driving method of plasma display device
WO2005114626A1 (en) Plasma display panel driving method
JP4541108B2 (en) Plasma display device
JP2006286250A (en) Plasma display panel and plasma display device
KR100807420B1 (en) Plasma display and method for driving the same
KR100348918B1 (en) Plasma display
WO2004086342A1 (en) Plasma display panel drive method
KR100749602B1 (en) Method for driving plasma display panel and plasma display device
JP3111949B2 (en) Surface discharge type plasma display panel and driving method thereof
WO2008050452A1 (en) Plasma display panel and its driving method
JP4569136B2 (en) Driving method of plasma display panel
JP4196054B2 (en) Driving method of plasma display
KR100775204B1 (en) Method for driving plasma display panel and plasma display device
US7847758B2 (en) Plasma display panel driving method
JP4239779B2 (en) Plasma display panel
JPWO2007029287A1 (en) Driving method of arc tube array
JP2007133291A (en) Driving method of plasma display panel
KR20060086775A (en) Driving method for plasma display panel
JP4302171B2 (en) Driving method of plasma display panel
EP1640947A2 (en) Method for driving plasma display panel and plasma display device
US20060113920A1 (en) Plasma display panel and drive method thereof
JP4461733B2 (en) Driving method of plasma display panel
JP2009175201A (en) Driving method of plasma display and plasma display device
KR100910288B1 (en) Method for driving plasma display panel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06822511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP