WO2008050420A1 - Motor - Google Patents

Motor Download PDF

Info

Publication number
WO2008050420A1
WO2008050420A1 PCT/JP2006/321278 JP2006321278W WO2008050420A1 WO 2008050420 A1 WO2008050420 A1 WO 2008050420A1 JP 2006321278 W JP2006321278 W JP 2006321278W WO 2008050420 A1 WO2008050420 A1 WO 2008050420A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
motor
outer rotor
bearing
direct drive
Prior art date
Application number
PCT/JP2006/321278
Other languages
French (fr)
Japanese (ja)
Inventor
Shigeru Endou
Shin Kumagai
Kazuo Nagatake
Licheng Dong
Atsushi Horikoshi
Toshimasa Wada
Original Assignee
Nsk Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nsk Ltd. filed Critical Nsk Ltd.
Priority to PCT/JP2006/321278 priority Critical patent/WO2008050420A1/en
Publication of WO2008050420A1 publication Critical patent/WO2008050420A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2786Outer rotors
    • H02K1/2787Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/2789Outer rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2791Surface mounted magnets; Inset magnets

Definitions

  • the present invention relates to a motor suitable for use in an atmosphere outside the atmosphere, for example, in a vacuum.
  • a workpiece is processed in an ultra-high vacuum atmosphere in a vacuum chamber in order to eliminate impurities as much as possible.
  • a lubricant containing a volatile component such as general grease for a drive shaft bearing. Because it is impossible, the lubricity is improved by plating soft metals such as gold and silver on the inner and outer rings of the bearing.
  • a stable material with excellent heat resistance and low emission gas is selected for the coil insulating material of the drive motor, the wiring coating material, and the adhesive of the laminated magnetic pole.
  • the rotor yoke is provided with two large-diameter portions having a diameter to which the thickness of the permanent magnet is added in the axial direction, and the permanent magnet is disposed between them to fill the curable resin.
  • the permanent magnet is fixed, and a thin tube with a length sufficient to cover the two large-diameter portions is covered, and the mouth is welded and sealed to the two large-diameter portions, respectively.
  • a motor having means for preventing the release of impurity molecules is described in Patent Document 1.
  • Patent Document 1 JP 2000-69696 A
  • low-carbon steel which is a ferromagnetic material but is a structural material
  • a nonmagnetic metal such as austenitic stainless steel for the thin tube that covers the large diameter part of the rotor yoke together with the hardened resin that fixes the permanent magnet, in order to avoid short circuit of the magnetic flux.
  • the ferromagnetic metal material used for the rotor yoke is very rusty, and it is necessary to carry out a fouling treatment such as nickel plating after welding in order to prevent dust generation in the vacuum chamber. There was a possibility that a pinhole was formed in the plating film applied to the welded part and the flaws proceeded from there immediately.
  • the present invention has been made in view of the problems of the prior art, and while avoiding atmospheric contamination caused by fixing of magnetic poles, the motor performance is high and the reliability is high in an atmosphere outside the atmosphere. It aims at providing the motor used.
  • the motor of the first aspect of the present invention is a motor having at least a main rotor and a stator, wherein the main rotor is an annular yoke having a magnetic force, and a plurality of magnetic poles made of permanent magnets arranged on the inner peripheral surface of the yoke. A spacer disposed between the adjacent magnetic poles and attached to the inner peripheral surface of the yoke,
  • the minimum distance in the circumferential direction between a pair of opposing surfaces of the adjacent magnetic poles is smaller than the maximum width in the circumferential direction of the spacer, and the minimum gap between the opposing surfaces of the magnetic poles is: It is characterized in that it is located radially outward from the maximum width portion of the spacer.
  • the plurality of magnetic poles also having permanent magnet force are fixed to the inner peripheral surface by magnetic force with respect to the annular yoke having magnetic force, so that gravity is easily displaced by torque caused by energization. There is nothing. However, there is a risk that it may fall off or be displaced in the circumferential direction due to unexpected vibration or impact. Therefore, in the present invention, a spacer is disposed between adjacent magnetic poles, and the minimum circumferential interval between a pair of opposing surfaces of the adjacent magnetic poles is greater than the maximum circumferential width of the spacer.
  • the motor of the present invention is not limited to use in a vacuum. In some cases, such as heat-resistant applications, it may be undesirable to use an adhesive.
  • radial direction and “axial direction” are based on the yoke.
  • the motor of the invention 2 is characterized in that, in the motor of the invention 1, a gap is formed between the facing surface of the magnetic pole and the spacer.
  • the motor of the invention 3 is the motor of the invention 1 or 2, characterized in that the yoke has a contact portion that contacts the magnetic pole when the magnetic pole is displaced in the axial direction.
  • the yoke can prevent the magnetic pole from being displaced in the axial direction. it can.
  • the motor of the invention 4 is the direct drive motor of the invention 1 or 2, characterized in that the spacer has a contact portion that contacts the magnetic pole when the magnetic pole is displaced in the axial direction. To do.
  • the spacer when the spacer has a contact portion that contacts the magnetic pole when the magnetic pole is displaced in the axial direction, the spacer prevents the magnetic pole from being displaced in the axial direction. be able to.
  • the motor according to a fifth aspect of the present invention is the motor according to any one of the first to fourth aspects, wherein the spacer is fixed to the yoke by a bolt that also has a non-magnetic force.
  • the spacer is fixed to the yoke by a bolt having a nonmagnetic force. If it is fixed, the motor performance can be secured while the spacer is securely fixed.
  • the motor of the invention 6 is the motor according to any one of the inventions 1 to 5, wherein the motor is a direct drive motor that directly drives the rotor without using a speed reducer or the like, and is used in an atmosphere outside the atmosphere. And a partition that extends the housing force and separates the atmosphere side from the atmosphere outside,
  • the main rotor is disposed outside the atmosphere with respect to the partition wall, and the stator is disposed on the atmosphere side with respect to the partition wall,
  • auxiliary port that is disposed on the atmosphere side with respect to the partition wall and rotates with the main rotor, and a detector that detects the rotation speed of the auxiliary rotor.
  • the direct drive motor of the invention 7 is a direct drive motor used in an atmosphere outside the atmosphere.
  • a partition wall extending the housing force and isolating the atmosphere side and the atmosphere outside;
  • a stator and an inner rotor disposed on the atmosphere side with respect to the partition;
  • the stator is characterized in that the outer rotor and the inner rotor are driven simultaneously.
  • the housing in a direct drive motor used in an atmosphere outside the atmosphere, the housing, the partition that extends the housing force and isolates the atmosphere side from the outside of the atmosphere, An outer rotor disposed outside the atmosphere with respect to the partition wall, a stator and an inner rotor disposed on the atmosphere side with respect to the partition wall, and a detector that detects a rotational speed of the inner rotor, Since the outer rotor and the inner rotor are driven at the same time, by placing the detector on the air side from the partition wall, the occluded impurity molecules of the wiring coating may contaminate the atmosphere outside the air from the partition wall.
  • the stator detects the rotation angle of the inner rotor with the detector by simultaneously driving the outer rotor and the inner rotor, so that the rotation angle of the outer rotor can be accurately obtained. Togashi.
  • the direct drive motor of invention 8 is the direct drive motor of invention 7, characterized in that the outer rotor and the inner rotor have the same number of magnetic poles.
  • the rotation angles of the outer rotor and the inner rotor become equal, so the rotation angle of the inner rotor is detected.
  • the rotation angle of the outer rotor can be obtained immediately.
  • the present invention is not limited to this.
  • the number of magnetic poles in the outer rotor and the number of magnetic poles in the inner rotor may be a multiple or a fraction of an integer.
  • the direct drive motor according to a ninth aspect is characterized in that in the direct drive motor according to the seventh or eighth aspect, an inner rotor is disposed radially inward of the stator.
  • the stator when the inner rotor is arranged on the inner side in the radial direction of the stator, the stator can be driven reliably, but it may be arranged so as to be shifted in the axial direction.
  • the direct drive motor of the invention 10 is a direct drive motor used in an atmosphere outside the atmosphere.
  • a partition wall extending the housing force and isolating the atmosphere side and the atmosphere outside;
  • An outer rotor disposed outside the atmosphere with respect to the partition wall, and a magnetic coupling rotor that rotates integrally with the outer rotor;
  • a stator that is arranged on the atmosphere side with respect to the partition and drives the outer rotor;
  • an inner rotor that is arranged on the atmosphere side with respect to the partition;
  • the magnetic coupling rotor and the inner rotor rotate in synchronization by a magnetic coupling action.
  • the housing in the direct drive motor used in an atmosphere outside the atmosphere, the housing, the partition extending the housing force and isolating the atmosphere side from the outside of the atmosphere, and the outside of the atmosphere with respect to the partition
  • An outer rotor disposed therein and a magnetic coupling rotor that rotates integrally with the outer rotor; a stator that is disposed on the atmosphere side with respect to the partition; and that drives the outer port; and an atmosphere side with respect to the partition
  • An inner rotor disposed on the inner rotor, and a detector that detects the rotational speed of the inner rotor, and the magnetic coupling rotor and the inner rotor rotate in synchronization by a magnetic coupling action.
  • the detector By placing the detector on the air side of the partition wall, it is possible to prevent the impurities stored in the wiring cover from contaminating the atmosphere outside the air from the partition wall, By detecting the rotation angle of the inner rotor that rotates in synchronization with the magnetic coupling rotor by the coupling action, the rotation angle of the outer rotor can be obtained with high accuracy.
  • a force in which the “outer rotor” and the “magnetic coupling rotor” are different members in form for example, when a driving magnet and a magnetic coupling magnet are provided on a single rotor, It can be said that the partial force of the rotor provided with the driving magnet ⁇ outer rotor "and the portion of the rotor provided with the magnet for magnetic force coupling is the" magnetic coupling rotor ". included.
  • the direct drive motor according to an eleventh aspect of the invention is characterized in that, unlike the direct drive motor according to the tenth aspect, the peak value of the resonance frequency gain in the magnetic coupling system is suppressed by the partition.
  • the partition between the atmosphere-side rotor and the atmosphere-side rotor makes it possible to perform positioning with less vibration due to the effect of suppressing the peak value of the resonance frequency gain in the magnetic coupling system.
  • the direct drive motor of the invention 12 is a direct drive motor used in an atmosphere outside the atmosphere.
  • a partition wall extending the housing force and isolating the atmosphere side from the atmosphere outside;
  • a stator disposed on the atmosphere side with respect to the partition; an inner rotor disposed on the atmosphere side with respect to the partition;
  • the partition has an attachment portion attached to the housing, the outer rotor, a cylindrical portion extending between the stator and the inner rotor, and a bottom portion, and the bottom portion is attached to the housing. On the other hand, it is restricted in the axial direction.
  • the housing in the direct drive motor used in an atmosphere outside the atmosphere, the housing, the partition extending the housing force, separating the atmosphere side from the outside of the atmosphere, and disposed outside the atmosphere with respect to the partition wall
  • the partition wall includes an attachment portion attached to the housing, the outer rotor, a cylindrical portion extending between the stator and the inner rotor, and a bottom portion, and the bottom portion is Since the housing is not restrained in the axial direction, the bottom portion is pressed against the housing even when a dimensional error or deformation occurs in the partition wall due to dimensional accuracy, mechanical accuracy, or temperature change. Since it is not pulled or pulled, the axial stress and bending stress of the partition wall can be relaxed, thereby preventing seal failure and breakage. Further, since it is not necessary to process the mounting portion of the partition wall and the housing to which the partition wall is mounted with high accuracy, a lower cost direct drive motor can be provided. (Invention 13)
  • the direct drive motor of the invention 13 is a direct drive motor used in an atmosphere outside the atmosphere.
  • a partition wall extending the housing force and isolating the atmosphere side from the atmosphere outside;
  • a stator disposed on the atmosphere side with respect to the partition; an inner rotor disposed on the atmosphere side with respect to the partition;
  • the partition wall connects the mounting portion attached to the housing, the outer rotor, a cylindrical portion extending between the stator and the inner rotor, and the mounting portion and the cylindrical portion. And a thickness of the connecting portion is thinner than a thickness of the mounting portion.
  • the partition wall includes an attachment portion attached to the housing, the outer rotor, and a cylindrical portion extending between the stator and the inner rotor.
  • the attachment portion and the tubular portion are connected to each other, and the thickness of the attachment portion is thicker than the thickness of the connection portion, and therefore, due to dimensional accuracy, mechanical accuracy, and temperature change.
  • the thin connecting portion is deformed first, so that axial stress and bending stress of the partition wall can be relieved, thereby preventing a seal failure or breakage. Can do. Accordingly, since it is not necessary to process the mounting portion of the partition wall and the housing to which the partition wall is mounted with high accuracy, a lower cost direct drive motor can be provided.
  • the direct drive motor according to a fourteenth aspect of the invention is characterized in that the connecting portion has a wave shape compared to the direct drive motor of the thirteenth aspect.
  • a motor system according to a fifteenth aspect of the present invention is a motor system in which a plurality of direct drive motors used in an atmosphere outside the atmosphere are coaxially coupled.
  • a partition wall extending the housing force and isolating the atmosphere side from the atmosphere outside;
  • a stator disposed on the atmosphere side with respect to the partition; an inner rotor disposed on the atmosphere side with respect to the partition;
  • the outer rotor force of at least one direct drive motor is supported by a bearing with respect to the outer rotor of another direct drive motor.
  • each direct drive motor force, udging, and the housing force are extended to isolate the atmosphere side from the atmosphere outside.
  • a partition wall that is disposed outside the atmosphere with respect to the partition wall, a stator and an inner rotor that are disposed on the atmosphere side with respect to the partition wall, and a detector that detects a rotational position of the inner rotor.
  • the stator drives the outer rotor, and the inner rotor is rotated together with the outer rotor.
  • the outer rotor force of at least one direct drive motor is supported by a bearing with respect to the outer rotor of another direct drive motor, so that the outer rotors of a plurality of direct drive motors are coaxial with each other.
  • the operation accuracy can be increased.
  • the bearing supporting the powerful outer rotor can be exposed, and the inspection and removal thereof can be easily performed, so that the maintainability is improved.
  • the motor system of the invention 16 is the motor system of the invention 15 characterized in that the partition wall force of one direct drive motor is common to the partition walls of other direct drive motors.
  • the partition wall force of one direct drive motor is the same as that of the partition wall of another direct drive motor, because the number of parts and the seal location can be reduced.
  • a motor system according to a seventeenth aspect of the present invention is the motor system according to the sixteenth aspect of the present invention, wherein the partition wall has a cup shape.
  • the partition wall be cup-shaped because the number of parts is reduced and the number of seals is reduced.
  • the partition wall is not limited to a cup shape, and it may be combined with a cylinder and a disk and welded together, or a combination of a truncated cone and a disk whose diameter is reduced in the direction of removing the outer rotor. Also good.
  • the motor system of the invention 18 is a motor system in which a plurality of direct drive motors used in an atmosphere outside the atmosphere are coaxially coupled.
  • a partition wall extending the housing force and isolating the atmosphere side from the atmosphere outside;
  • a stator disposed on the atmosphere side with respect to the partition; an inner rotor disposed on the atmosphere side with respect to the partition;
  • each direct drive motor force, udging, and the housing force extend, and the atmosphere side and the atmosphere
  • the stator drives the outer rotor and the inner rotor is rotated together with the outer rotor.
  • the wiring cover has an impure impurity. Molecules are prevented from contaminating the atmosphere outside the partition. Also, since the outer rotor of the direct drive motor is supported by bearings at both ends of the housing, the mechanical accuracy of each other is hardly affected. Therefore, it is possible to provide a motor system with a large load capacity and allowable moment V.
  • the motor system of the nineteenth aspect of the present invention is the motor system of the eighteenth aspect of the present invention, wherein the shape of one end of the V of the housing is made detachable in the axial direction of the outer rotor of all direct drive motors. It is characterized by that.
  • the motor system of the invention 20 is the motor system of the invention 18 characterized in that the partition wall force of one direct live motor is common to the partition walls of other direct drive motors.
  • the partition wall force of one direct live motor is the same as that of the partition wall of another direct drive motor, because the number of parts and the seal location can be reduced.
  • the motor system according to a twenty-first aspect is the motor system according to the eighteenth aspect, characterized in that the partition wall has a sealing mechanism with the housing at both ends.
  • the motor system of the invention 22 is a motor system in which four or more direct drive motors used in an atmosphere outside the atmosphere are coaxially coupled.
  • a partition wall extending the housing force and isolating the atmosphere side from the atmosphere outside;
  • a stator disposed on the atmosphere side with respect to the partition; an inner rotor disposed on the atmosphere side with respect to the partition;
  • the outer rotor force of one direct drive motor is supported by a bearing against one of the ends of the housing, and the outer rotor of the other direct drive motor is connected to the other end of the housing.
  • the outer rotor force of at least one direct drive motor is supported by a bearing with respect to each of the outer rotors of the two direct drive motors.
  • each direct drive motor force housing extends from the housing and is connected to the atmosphere side.
  • a partition that isolates the outside of the atmosphere, an outer rotor that is disposed outside the atmosphere with respect to the partition, a stator and an inner rotor that are disposed on the atmosphere side with respect to the partition, and a detection that detects a rotational position of the inner rotor
  • the stator drives the outer rotor, and the inner rotor together with the outer rotor Therefore, by placing the detector inside the partition, it is possible to prevent the impurities stored in the wiring cover from contaminating the atmosphere outside the partition.
  • the outer rotor of the direct drive motor is supported by bearings on both ends of the housing, and the outer rotor of each direct drive motor is connected to the outer side of another direct drive motor. Since the rotor is supported by the bearing, the same outer rotor connected by the bearing has a high degree of coaxiality with each other, and the outer rotor connected by the bearing is installed at the other housing end. It is possible to provide a motor system with small mutual interference of mechanical accuracy. Therefore, when applied to a 2-axis coaxial frog redder arm robot, it is possible to improve the operation accuracy and increase the load.
  • the motor system according to a twenty-third aspect of the present invention is the motor system according to the twenty-second aspect of the invention, wherein the shape of one end of the housing V is shifted so that the outer rotors of all the direct drive motors can be removed in the axial direction. It is characterized by being beaten!
  • one end shape of the housing supporting the partition wall structure is made detachable in the axial direction of the outer rotor of the direct drive motor. Since the outer rotor of the motor can also be removed, it can be easily inspected and removed, thus improving maintainability. Furthermore, it is only necessary to remove the outer rotor on the outside of the partition wall, so there is no need to remove the entire direct drive motor, so there is no need to check for leaks, etc., improving assembly.
  • a motor system according to a twenty-fourth aspect of the present invention is the motor system according to the twenty-second aspect, wherein the housing can be divided into units commonly used in two adjacent direct drive motors.
  • the housing can be divided into units commonly used in two adjacent direct drive motors, the housing is excellent in assemblability and adjustments such as phase alignment between the motor and the detector are possible. Easy to do, so preferred.
  • a motor system according to a twenty-fifth aspect of the present invention is the motor system according to the twenty-second aspect, characterized in that the partition wall force of one direct live motor is common to the partition walls of another direct drive motor.
  • the partition wall force of one direct drive motor is the same as that of the partition wall of another direct drive motor because the number of parts and seal locations can be reduced.
  • a motor system according to a twenty-sixth aspect of the present invention is the motor system according to the twenty-second aspect of the present invention, characterized in that both ends of the partition wall have a sealing mechanism with the housing.
  • the partition wall has a sealing mechanism (O-ring or the like) with the housing at both ends, the both ends of the housing can be disposed outside the atmosphere, so the direct drive motor
  • the outer rotor can be supported by bearings at both ends of the housing.
  • the motor system of the invention 27 is a motor system in which a first direct drive motor and a second direct drive motor used in an atmosphere outside the atmosphere are coaxially coupled.
  • a partition wall extending the housing force and isolating the atmosphere side from the atmosphere outside;
  • a stator disposed on the atmosphere side with respect to the partition; an inner rotor disposed on the atmosphere side with respect to the partition;
  • outer rotor of the second direct drive motor adjacent to the outer rotor of the first direct drive motor is supported via a second bearing
  • the outer rotor of the first direct drive motor is supported via a first bearing by a bearing holder removably attached to the housing. It is characterized by that.
  • each direct drive motor includes a housing and the housing cover.
  • a partition wall that separates the atmosphere side from the atmosphere outside, an outer rotor disposed outside the atmosphere with respect to the partition wall, a stator disposed on the atmosphere side with respect to the partition wall, and the atmosphere with respect to the partition wall
  • an inner rotor that rotates with the outer rotor, and a detector that detects the rotational position of the inner rotor.By placing the detector on the atmosphere side of the partition wall, It is possible to prevent the impure molecules of the wiring coating from contaminating the atmosphere outside the atmosphere of the partition wall.
  • the outer rotor of the second direct drive motor adjacent to the outer rotor of the first direct drive motor is supported via a second bearing, and the first rotor is supported by the first rotor. Since the outer rotor of the direct drive motor is supported via a first bearing by a bearing holder that is detachably attached to the housing, the first rotor can be removed by removing the bearing holder. The direct drive motor can be separated from the housing force, and maintenance work including inspection of the bearing attached to the bearing holder can be saved.
  • a motor system according to a twenty-eighth aspect is the motor system according to the twenty-seventh aspect, wherein the bearing holder is fixed to the housing by a bolt, and the bolt is disposed outside the outer rotor of the first direct drive motor. It is characterized by.
  • the bearing holder is fixed to the housing by a bolt, and when the bolt is arranged outside the outer rotor of the first direct drive motor, the outer rotor to be applied is This is preferable because the bolt can be loosened without being removed.
  • “arranged outside the outer rotor” means that the bolt or the tool and the outer rotor do not interfere with each other at least when the bolt is detached. Therefore, when the outer diameter of the outer rotor is non-circular, depending on the rotational phase of the outer rotor, even if the bolt is inside the outer periphery, the bolt is rotated by rotating the outer rotor. When going outside, the bolt is placed outside the outer rotor Let's do it.
  • the motor system of the invention 29 is the motor system of the invention 27 to 28, wherein the minimum inner diameter of the outer rotor of the first direct drive motor and the outer rotor of the second direct drive motor is the maximum outer diameter of the partition wall. It ’s getting bigger,
  • the outer ring rotor of the first direct drive motor and the outer ring rotor of the second direct drive motor can be pulled out along the partition wall in the axial direction. It is characterized by becoming.
  • the minimum inner diameter of the outer rotor of the first direct drive motor and the outer rotor of the second direct drive motor is larger than the maximum outer diameter of the partition wall
  • a motor system according to a thirty-third aspect of the invention is the motor system according to the twenty-ninth aspect, wherein a bolt for fixing the first bearing and the bearing holder is exposed when the bearing force is removed from the housing force.
  • the forceful bolt can be loosened, and thus the first This is preferable because the outer rotor of the direct drive motor can be easily disassembled.
  • “exposed” means that a space is created in which a tool can be engaged and a bolt can be loosened.
  • a motor system according to a thirty-first aspect is the motor system according to the twenty-seventh aspect, wherein the outer rotor of the second direct drive motor is formed by connecting a plurality of parts with bolts, and the outer rotor is in a state where the motor system is assembled. By loosening the bolts that connect multiple parts, you can remove some of the parts. In this state, the bolt that fixes the second bearing and the outer ring rotor of the first direct drive motor is exposed.
  • the outer rotor of the second direct drive motor is formed by connecting a plurality of parts (for example, a second outer rotor 21b ′ and a cylindrical member 23 ′ described later) with bolts, and the motor system is In the assembled state, by loosening the bolt that connects the plurality of parts of the outer rotor, it is possible to remove some of the parts (for example, the cylindrical member 23 '), and remove the part of the parts.
  • the bolt for fixing the second bearing and the outer ring rotor of the first direct drive motor is exposed, the powerful bolt can be loosened. Therefore, the outer rotor of the second direct drive motor can be This is preferable because it can be easily disassembled!
  • a motor system according to a thirty-second aspect of the present invention is the motor system according to the thirty-first aspect of the present invention, in which the bolt that fixes the second bearing and the outer ring rotor of the first direct drive motor is loosened, thereby The remaining parts of the outer rotor can be pulled out in the axial direction along the partition wall.
  • the remaining components for example, the outer rotor of the second direct drive motor (for example, If the second outer rotor 21b ′) can be pulled out along the partition wall in the axial direction, it is preferable because the outer rotor of the second direct drive motor can be easily disassembled.
  • the motor system according to a thirty-third aspect is the motor system according to any one of the twenty-seventh to thirty-second aspects, wherein the partition wall and the housing are common to each direct drive motor.
  • the partition and the housing are common, because the number of parts can be reduced and the number of seal members for sealing between the members can be reduced.
  • the motor system of the invention 34 is a motor system in which a plurality of direct drive motors used in an atmosphere outside the atmosphere are coaxially coupled.
  • a partition wall extending the housing force and isolating the atmosphere side from the atmosphere outside;
  • a stator disposed on the atmosphere side with respect to the partition; an inner rotor disposed on the atmosphere side with respect to the partition;
  • a magnetic shield is disposed between at least one of the stators.
  • the housing In a direct drive motor used in an atmosphere outside the atmosphere, the housing, the housing force extends, the partition that separates the atmosphere side and the outside of the atmosphere, and the outside of the partition wall are arranged outside the atmosphere.
  • the magnetic shield is arranged between at least one of the outer rotors, the inner rotors, and the stators in the adjacent direct drive motor, the rotor is affected by leakage magnetic flux generated by the stator force and electromagnetic noise.
  • the direct motor adjacent to the rotor can be prevented from reaching the stator. Therefore, the motor system can be made thin.
  • the motor system of the invention 35 is a motor system in which a plurality of direct drive motors used in an atmosphere outside the atmosphere are coaxially coupled.
  • a partition wall extending the housing force and isolating the atmosphere side from the atmosphere outside;
  • a stator disposed on the atmosphere side with respect to the partition; an inner rotor disposed on the atmosphere side with respect to the partition;
  • At least one of the stators has a different number of magnetic poles.
  • the housing In a direct drive motor used in an atmosphere outside the atmosphere, the housing, the housing force extends, the partition that separates the atmosphere side and the outside of the atmosphere, and the outside of the partition wall are arranged outside the atmosphere.
  • the motor system can be made thin.
  • a motor system according to a thirty-sixth aspect of the present invention is a motor system in which a plurality of direct drive motors used in an atmosphere outside the atmosphere are coaxially coupled.
  • a partition wall extending the housing force and isolating the atmosphere side from the atmosphere outside;
  • An outer rotor disposed outside the atmosphere with respect to the partition;
  • a stator disposed on the atmosphere side with respect to the partition;
  • an inner rotor disposed on the atmosphere side with respect to the partition;
  • a rotating wheel of a bearing device that rotatably supports the outer rotor is fitted into a rotor yoke.
  • the housing in the direct drive motor used in an atmosphere outside the atmosphere, the housing, the partition that extends the housing force and separates the atmosphere side from the outside of the atmosphere, and the outside of the atmosphere with respect to the partition wall.
  • An outer rotor disposed; a stator and an inner rotor disposed on the atmosphere side with respect to the partition; and a detector that detects a rotational position of the inner rotor, wherein the stator drives the outer rotor. Since the inner rotor is rotated together with the outer rotor, by placing the detector inside the partition wall, it is possible to prevent the impurity molecules stored in the wiring cover from contaminating the atmosphere outside the partition wall.
  • Rotational accuracy is achieved by fitting the rotating wheel of the bearing device that is rotatably supported with the outer rotor to a rotor yoke that is easy to obtain processing accuracy and has a linear expansion coefficient substantially the same as the driving wheel of the bearing device. And improvement of friction torque due to temperature change can be prevented.
  • FIG. 1 is a perspective view of a frog redder arm type transfer device using a motor that is powerful in the present embodiment.
  • FIG. 2 is a view of the configuration of FIG. 1 cut along the ⁇ - ⁇ line and viewed in the direction of the arrow.
  • Fig. 3 is a view of the configuration of Fig. 2 cut along the ⁇ - ⁇ line and viewed in the direction of the arrow.
  • FIG. 4 is an enlarged view showing an arrow IV part of FIG.
  • FIG. 5 is a view of the configuration of FIG. 4 taken along the line V-V and viewed in the direction of the arrow.
  • FIG. 6 is a diagram illustrating an example of a resolver control circuit.
  • FIG. 7 is a diagram showing an example of a motor control circuit.
  • FIG. 8 is a perspective view of a frog redder arm type transport device using a direct drive motor that works according to the present embodiment.
  • FIG. 9 is a view of the configuration of FIG. 8 cut along the ⁇ - ⁇ line and viewed in the direction of the arrow.
  • FIG. 10 is a view of the configuration of FIG.
  • FIG. 11 is a diagram illustrating an example of a resolver control circuit.
  • FIG. 12 is a diagram showing an example of a motor control circuit.
  • FIG. 13 is a diagram showing a modification of the present embodiment.
  • FIG. 14 is a cross-sectional view similar to FIG. 9 of a direct drive motor that can be used in the transport device shown in FIG.
  • FIG. 15 is a schematic diagram showing a state where eddy current loss occurs in the partition wall 113.
  • FIG. 16 is a schematic view similar to FIG. 15 showing three magnets arranged in a line.
  • FIG. 17 is a block diagram of a motor control system when there is no partition wall.
  • FIG. 18 is a block diagram of a motor control system when there is a partition wall.
  • FIG. 19 is a diagram showing frequency characteristics of a transfer function G.
  • FIG. 20 is a diagram showing frequency characteristics of a transfer function G.
  • FIG. 21 is a view showing the spring stiffness of the magnetic coupling.
  • FIG. 22 is a perspective view of a frog redder arm type transport device using a direct drive motor that works according to the present embodiment.
  • FIG. 23 is a view of the configuration of FIG. 22 cut along the ⁇ - ⁇ line and viewed in the direction of the arrow.
  • FIG. 24 is a diagram showing an example of a resolver control circuit.
  • FIG. 25 is a diagram showing an example of a motor control circuit.
  • FIG. 26 is a cross-sectional view showing a second embodiment.
  • FIG. 29 is a perspective view of a frog redder arm type conveyance device using a motor system including a direct drive motor that is effective in the present embodiment.
  • FIG. 30 is a view of the configuration of FIG. 29 taken along the line ⁇ - ⁇ and viewed in the direction of the arrow.
  • FIG. 31 is a diagram illustrating an example of a resolver control circuit.
  • FIG. 32 is a diagram showing an example of a motor control circuit.
  • ⁇ 33 A cross-sectional view showing a second embodiment.
  • FIG. 34 is a perspective view of a frog redder arm type transfer device using a direct drive motor that is effective in the present embodiment.
  • FIG. 35 is a view of the configuration of FIG. 34 taken along the line II-II and viewed in the direction of the arrow.
  • FIG. 36 is a diagram illustrating an example of a resolver control circuit.
  • FIG. 37 is a diagram showing an example of a motor control circuit.
  • FIG. 38 is a perspective view of a frog redder arm type conveyance device using a direct drive motor that works according to the present embodiment.
  • FIG. 39 is a view of the configuration of FIG. 38 taken along the line ⁇ - ⁇ and viewed in the direction of the arrow.
  • FIG. 40 is a diagram illustrating an example of a resolver control circuit.
  • FIG. 41 is a diagram showing an example of a motor control circuit.
  • FIG. 42 is a cross-sectional view showing an exploded process of the motor system according to the present embodiment.
  • FIG. 43 is a cross-sectional view showing an exploded process of the motor system according to the present embodiment.
  • FIG. 44 is a cross-sectional view showing an exploded process of the motor system according to the present embodiment.
  • FIG. 45 is a cross-sectional view showing an exploded process of the motor system according to the present embodiment.
  • FIG. 46 is a perspective view showing a disassembly process of the motor system according to the present embodiment.
  • FIG. 47 is a perspective view showing an exploded process of the motor system according to the present embodiment.
  • FIG. 48 is a perspective view showing a disassembly process of the motor system according to the present embodiment.
  • FIG. 49 is a perspective view showing an exploded process of the motor system according to the present embodiment.
  • FIG. 50 is a cross-sectional view showing a modification of the present embodiment.
  • FIG. 51 is a perspective view of a frog redder arm type transport device using a direct drive motor that is powerful in a modified example.
  • FIG. 52 is a perspective view of a frog redder arm type conveyance device using a direct drive motor that works according to the present embodiment.
  • FIG. 53 is a view of the configuration of FIG. 52 taken along the ⁇ - ⁇ line and viewed in the direction of the arrow.
  • FIG. 54 is a diagram showing an example of a resolver control circuit.
  • FIG. 55 is a diagram showing an example of a motor control circuit.
  • FIG. 1 is a perspective view of a frog redder arm type transfer device using a motor that works in this embodiment.
  • two motors Dl and D2 are connected in series.
  • the first arm A1 is connected to the rotor of the lower motor D1, and the first link L1 is pivotally connected to the tip of the first arm A1.
  • the second arm A2 is coupled to the rotor of the upper motor D2, and the second link L2 is pivotably coupled to the leading end of the second arm A2. Links LI and L2 place wafer W Each table is pivotably connected to the table T! Speak.
  • a wafer transfer arm placed in a vacuum chamber in a semiconductor manufacturing apparatus for example, a device having a plurality of arms such as a scalar type or a frog redder type shown in the figure, particularly requires a plurality of rotary motors. It becomes.
  • the contact surface area with the outside world should be minimized, and at the same time, the number of mounting holes for motors, etc. should be minimized to make effective use of space.
  • a plurality of motors Dl and D2 are connected coaxially at the housing part, and the connecting part is tightly joined with a seal (tightly joined by welding, O-ring, metal gasket, etc.), and the space where the motor rotor is arranged It is also necessary to separate the housing from the external space.
  • FIG. 2 is a view of the configuration of FIG. Fig. 3 is a view of the configuration of Fig. 2 taken along line ⁇ - ⁇ and viewed in the direction of the arrow.
  • the hollow cylindrical main body 10 in which the flange 10a is installed on the surface plate G has a small circular plate 11 connected to the upper end thereof by a bolt.
  • the large disk 12 is a bolt (not shown). It is more fixed.
  • the center of the main body 10 can be used to pass wiring to the stator.
  • the main body 10, small disk 11, and large disk 12 constitute the housing.
  • a lid member 50 covering the opening of the main body 10 is hermetically bolted to the upper surface of the large disk 12.
  • resolver wiring HI for D2 and the motor wiring H2 for D2 are drawn out in the central opening of the main body 10 of the motor D2, and further, the resolver wiring H3 for D1 and D1 are inserted in the central opening of the main body 10 of the motor D1.
  • the motor wiring H4 is drawn out, and these four wirings extend to the outside through the opening of the surface plate G.
  • the upper part of the partition wall 13 is thin, and the upper end is bent inward in the radial direction, and is attached so as to be sandwiched by the small disk 11 by the disk 12.
  • an O-ring OR is arranged between the members of the motor D1, as shown in the figure. Therefore, the internal space surrounded by the flange 10a of the main body 10, the partition wall 13, and the small disk 11 also has its external force. It is airtight.
  • the partition wall 13 is not necessarily made of a nonmagnetic material. Further, instead of using an O-ring OR to seal the air, the members may be sealed by electron beam welding or laser beam welding.
  • the inner ring of a four-point contact ball bearing 14 used in vacuum is fitted to the lower outer periphery of the partition wall 13, and is attached to the partition wall 13 by an inner ring holder 15 fixed to the partition wall 13 with bolts.
  • the outer ring of the bearing 14 is attached to the outer rotor 16 by an outer holder 17 that is fitted to the inner periphery of an outer rotor (also referred to as a main rotor) 16 and fixed to the outer rotor 16 with bolts. ing. That is, the outer rotor 16 is rotatably supported with respect to the partition wall 13.
  • Bearing 14 is a four-point contact ball bearing that uses soft metal such as gold or silver plated on the inner ring and outer ring, and does not release gas even in vacuum, and is a four-point contact ball bearing. Force that can receive the moment of tilting of the outer rotor 16 from the arm A1 Not limited to the four-point contact type, cross rollers, cross balls, and cross taper bearings can also be used and may be used in a preload state. In order to improve lubricity, fluorine film treatment (DFO) may be performed.
  • DFO fluorine film treatment
  • An outer rotor magnet 18 is attached to the inner peripheral surface of the outer rotor 16.
  • the outer rotor magnet 18 has a 24-pole configuration, and each of the 12 N-pole and S-pole magnets alternately has magnetic metal force. It is assembled to the knock yoke 19 with a gap through the wall 13.
  • FIG. 4 is an enlarged view of the arrow IV part of FIG. 3, and FIG. 5 is a view of the configuration of FIG.
  • the knock yoke 19 is configured by force with an annular rotor yoke (also simply referred to as a yoke) 19a made of a non-magnetic material and a yoke holder 19b fitted radially outward of the rotor yoke 19a.
  • the rotor yoke 19a and the yoke holder 19b are fixed to each other by a Bonole 19c.
  • the outer rotor magnets 18 are arranged so that the magnetic poles (N poles or S poles) are alternately directed inward in the radial direction, and a wedge-shaped spacer 19d is provided between the adjacent outer rotor magnets 18. Is arranged.
  • the spacer 19d has a screw hole 19f, and a non-magnetic bolt 19e through which the radially outer cover of the rotor yoke 19a is threaded is screwed into the forceful screw hole 19f. It is attached to the inner peripheral surface.
  • One outer rotor magnet 18 has a shape in which circumferential end faces (also referred to as facing faces) 18a, 18a gradually approach each other in the radial direction as seen in the direction of FIG. .
  • the interval between the opposing surfaces 18a, 18a of the adjacent outer rotor magnets 18, 18 increases inward in the radial direction as the force increases.
  • the spacer 19d interposed between them has a shape in which the side surfaces 19g and 19g facing the facing surfaces 18a and 18a of the outer rotor magnets 18 and 18 gradually separate as they go radially inward. ing.
  • the circumferential minimum distance C between the opposing surfaces 18a and 18a of the outer rotor magnets 18 and 18 is smaller than the maximum circumferential width W of the spacer 19d (W> C), and the outer rotor magnet 18
  • the parts forming the minimum circumferential interval C on the 18 opposing surfaces 18a, 18a are located radially outward from the part of the spacer 19d having the maximum width W. Further, gaps of ⁇ 2 are formed between the facing surfaces 18a and 18a and the side surfaces 19g and 19g, respectively.
  • the rotor yoke 19a may be magnetic stainless steel or nickel-plated iron.
  • the outer rotor magnet 18 is a segment type divided for each pole, and is made of a neodymium (Nd—Fe—B) type magnet having a high energy product.
  • This neodymium magnet has a very small coefficient of linear expansion compared to iron, and is also brittle have.
  • a nickel coating is applied to enhance corrosion resistance and to have high wear resistance. By applying such a surface treatment, it is difficult to occlude impure molecules, and sliding when fixing with the spacer 19d and generation of dust due to sliding wear when exposed to extreme high or low temperatures. Since it can prevent, it is suitable for a vacuum environment.
  • the shape of the outer rotor magnet 18 will be described in more detail.
  • the shape on the outer diameter side in contact with the inner peripheral surface of the rotor yoke 19a is an arc shape having the same radius as the inner peripheral surface of the rotor yoke 19a or a slightly larger radius.
  • the shape on the partition wall 13 side which is the air gap side, is an arc shape having a radius such that the arc center of each magnet is the same as the rotation center when arranged on the rotor yoke 19a.
  • the shapes of the circumferential end faces 18a and 18a are such that the flat force tangent intersection is close to the magnet.
  • the axial end faces are a pair of parallel planes and are perpendicular to the axis. Each side is chamfered to prevent fine cracks and chips.
  • the rotor yoke 19a is made of low-carbon steel having high magnetism, and after processing and molding, considers the case where fouling and corrosion resistance are increased and is supported directly by the bearing, so that wear during replacement is avoided. Nickel plating is applied to prevent it.
  • the shape of the outer rotor magnet 18 is slightly larger than the length of the axial end surface of the outer rotor magnet 18 and larger than the chamfering applied to the outer rotor magnet 18. Short flanges 19h and 19h are provided (see Fig. 5).
  • the gap between the outer rotor magnet 18 and the short flange portions 19h and 19h of the rotor yoke 19a is such a dimension that the gap remains even when exposed to the low temperature side of the use temperature and storage temperature of the motor.
  • the rotor yoke 19a has through holes 19j through which the bolts 19e for fastening the spacers 19d are passed in the radial direction with the same number and the same number of poles, and the bolt heads are sunk on the outer diameter surface.
  • a counterbore 19k is provided. Further, a portion for fitting and fixing the rotating side of the bearing device and the yoke holder may be formed on the outer diameter side of the rotor yoke 19a, so that the inner ring and the yoke holder of the bearing device can be fitted.
  • the inner ring which is a rotating ring
  • the outer ring which is a rotating ring
  • the outer ring is used frequently in aluminum or austenitic stainless steel in a vacuum environment.
  • the spacer 19d is made of austenitic stainless steel with less magnetism and is inserted between the magnetic poles to prevent the magnetic flux from short-circuiting and the interlinkage magnetic flux to the stator 29 from being reduced. It has a function of arranging the 18 on the rotor yoke 19a substantially equally. Further, since this material has high corrosion resistance, it is suitably used in a vacuum environment in which impure molecules are difficult to occlude.
  • the spacer 19d has a trapezoidal columnar shape, and the portion in contact with the rotor yoke 19a has an arc shape having the same radius as the inner peripheral surface of the rotor yoke 19a or a slightly larger radius, like the outer rotor magnet 18.
  • the spacer 19d has a screw hole 19f for fixing with the bolt 19e.
  • the surface of the spacer 19d facing the partition wall 13 on the air gap side is flat, and the width from the part in contact with the rotor yoke 19a is the depth from the outer diameter of the rotor yoke 19a to the bolt head sinking into the rotor yoke counterbore 19k. Even if the dimensions are counted, the dimensions are located outside the inner diameter contact circle of each outer rotor magnet 18! /.
  • the circumferential end surface of the spacer 19d is planar, but is substantially parallel to the circumferential end surface of the outer rotor magnet 18 that is equally distributed on the inner peripheral surface of the rotor yoke 19a and has a slight gap. Dimensions.
  • the tangential intersection angle between the outer rotor magnet 18 and the spacer 19d in the circumferential end face and the mutual clearance ⁇ 2 are based on the attractive force with the stator 29 even if the outer rotor magnet 18 floats in the air gap direction.
  • Bolt 19e is a dimension that retains the clearance ⁇ Z2 even when exposed to the low temperature side of the operating temperature and storage temperature of the motor, and the bolt 19e has the same corrosion resistance as the spacer 19d. It is made of high and low magnetism! /, Austenitic stainless steel, which prevents the magnetic flux from short-circuiting and reducing the interlinkage magnetic flux to the stator 29.
  • the yoke holder 19b is made of an aluminum alloy having a small specific gravity as the metal material for reducing inertia, and has a fitting portion between the fitting portion with the outer diameter portion of the rotor yoke 19a and the end surface of the rotor yoke 19a. .
  • the portion of the spacer 19d in contact with the inner peripheral surface of the rotor yoke 19a is slightly larger than the inner radius of the rotor yoke 19a and has a slightly larger V! It is possible to make line contact at the entire surface or at two places and fix it more firmly.
  • the outer rotor magnet 18 is fixed only by a magnetic attraction force. Since the outer rotor magnet 18 is not mechanically constrained even when exposed to extremely high temperatures, it can be finely displaced with respect to the rotor yoke 19a, and there is a gap even when exposed to extremely low temperatures. And it does not receive compressive stress from short flange part 19h, 19h. Therefore, there is little possibility that the outer rotor magnet 18 will be cracked or chipped.
  • the portion of the outer rotor magnet 18 in contact with the inner peripheral surface of the rotor yoke 19a has the same radius as the inner peripheral surface of the rotor yoke 19a, and is a slightly larger arc having a radius. Line contact at the entire surface or at two locations. Therefore, wobbling is suppressed even when torque in the rotational direction due to energization of the stator 29 is applied.
  • the outer rotor magnet cannot be displaced because the gap between the short flange portions 19h and 19h of the rotor yoke 19a cannot be displaced even if it receives a force greater than the attracting force with the rotor yoke 19a in the axial direction. 18 does not come off in the axial direction. Further, since the outer rotor type is used, the outer rotor magnet 18 is not detached due to the centrifugal force accompanying the motor rotation.
  • the short flange portions 19h and 19h of the rotor yoke 19a are slightly higher than the chamfering made on the permanent magnet, and are much smaller than the radial thickness of the outer rotor magnet 18, so that the magnetic flux is short-circuited. The degradation of the motor performance due to can be minimized.
  • a non-magnetic material is provided between the axial end surface of the outer rotor magnet and the shoulders of the short flange portions 19h and 19h of the rotor yoke 19a.
  • An annular member may be arranged.
  • the short flanges 19h, 19h can be set without considering the short circuit of the magnetic flux.
  • an outer rotor magnet is buried between them to obtain the effect of preventing magnetic pole breakage during motor assembly. Is possible.
  • a strong annular member is cut at one point in the normal direction, it can be easily attached to the rotor 19a.
  • the width between the inner diameter side of the spacer 19d and the portion in contact with the rotor yoke 19a is not limited to the inner diameter contact of each permanent magnet, even if the depth of the sinked bolt head from the outer diameter of the rotor yoke 19a is added.
  • the dimensions are located outside the circle. Therefore, in a state where the rotor yoke 19a is fitted to the yoke holder 19b, the spacer 19d is fixed! /, Even if the bolt 19e is loosened due to heat cycle or the like, it will not loosen more than the depth to the bolt head. Therefore, the spacer 19d can be prevented from interfering with the partition wall 13 to lock the motor.
  • the outer rotor magnet 18 of the present embodiment is a simple toroidal hexahedron similar to the case of fixing with an adhesive while having the above-described action, and uses unnecessary holes and holes related to magnetic pole fixing. There is no need to provide grooves, sides, and useless magnet volumes. Therefore, the motor performance and the component cost of the permanent magnet are equivalent to the case of fixing the magnetic pole with an adhesive. Conversely, since the attachment process can be omitted, the assembly cost can be reduced and the function can be easily guaranteed.
  • the outer rotor magnet 18 is fixed to the inner peripheral surface of the rotor yoke 19a having magnetic force by magnetic force, so that gravity is easily displaced by torque caused by energization. There is nothing.
  • the minimum circumferential distance C between the opposing surfaces 18a and 18a of the outer rotor magnets 18 and 18 is smaller than the maximum circumferential width W of the spacer 19d (W> C), and the outer rotor magnets
  • the part forming the minimum circumferential distance C on the opposite faces 18a, 18a of 18, 18 is located radially outward from the part of the spacer 19d with the maximum width W, so use an adhesive.
  • the outer rotor magnet 18 can be prevented from falling off or being displaced in the circumferential direction.Therefore, even when the motor D1 is placed in a vacuum, the released gas of the occluded impure molecules ( Outgas) It is possible to avoid atmospheric pollution.
  • the rotor yoke due to temperature change 1 Absorbs the difference in thermal expansion between the 9a and the outer rotor magnet 18 to avoid problems such as cracks and chipping.
  • the rotor yoke 19a has short flange portions 19h and 19h extending radially inward at both ends in the axial direction, and the short flange portions 19h and 19h acting as contact portions are included in the rotor yoke 19a. Since it protrudes from the peripheral surface, the outer rotor magnet 18 is prevented from being displaced in the axial direction.
  • a magnetic shield plate 30 is attached to the outer rotor 16 so as to cover the upper portion of the outer rotor magnet 18.
  • a stator 29 is arranged on the inner side in the radial direction of the partition wall 13 so as to face the inner peripheral surface of the outer rotor 16.
  • the stator 29 is attached to the flange 10a of the main body 10 by the stator holder 20, and as shown in FIG. 3, 12 coils of each phase are arranged in a cylindrical shape in the order of U phase, V phase, and W phase. Lined up, so it contains a total of 36 coils. This coil is molded by a molding material and integrated. Since the stator 29 is thus arranged on the inner side of the partition wall 13, forced cooling such as water cooling or air cooling can be performed against coil heat generation or the like.
  • An inner rotor (also referred to as a sub-rotor) 21 is disposed on the radially inner side of the stator 29.
  • the inner rotor 21 is rotatably supported by a ball bearing 23 with respect to a resolver holder 22 that is bolted to the outer peripheral surface of the main body 10.
  • An inner rotor magnet 24 is attached to the outer peripheral surface of the inner rotor 21 via a knock 25.
  • the inner rotor magnet 24 is composed of 24 poles, each consisting of 12 N poles and 12 S poles made of magnetic metal, and is assembled to the back yoke 25. Accordingly, the inner rotor 21 is rotationally driven by the stator 29 in synchronization with the outer rotor 16.
  • a detection rotor 26 for a detector for measuring a rotation angle is assembled on the inner periphery of the inner rotor 21, and resolvers 27 and 28 are attached to the outer periphery of the resolver holder 22 so as to face the rotor.
  • the high-resolution incremental resolver 27 and the absolute resolver 28 capable of detecting the position of the rotor in one rotation are arranged in two layers. Therefore, even when the power is turned on, the rotation angle of the detection rotor 26 can be determined and Since no return is required and the electrical phase angle of the magnet with respect to the coil is ineffective, rotation angle detection used for motor D1 drive current control is possible without using a pole detection sensor. .
  • the detection rotor 26 has a plurality of slot tooth rows having a constant pitch, and the outer circumference of the magnetic poles of the stators of the resolvers 27 and 28 The surface is provided with teeth that are shifted in phase with respect to the detection rotor 26 at each magnetic pole in parallel with the rotation axis, and a coil is wound around each magnetic pole.
  • the change in reluctance is detected, digitized by the resolver control circuit shown in FIG. 6 and used as a position signal, so that the rotation angle (or rotation) of the detection rotor 26, that is, the inner rotor 21 is detected.
  • Speed the rotation angle (or rotation) of the detection rotor 26, that is, the inner rotor 21 is detected.
  • the detection rotor 26 and the resolvers 27 and 28 constitute a detector.
  • the inner rotor 21 is driven to rotate in synchronization with the outer rotor 16 by the stator 29. Therefore, if the rotation angle of the inner rotor 21 can be detected, the inner rotor 21 is immediately started. The rotation angle of the outer rotor 16 can be obtained, whereby the drive control of the outer rotor 16 can be performed with high accuracy.
  • FIG. 7 is a block diagram showing a drive circuit of the motor D1.
  • the motor control circuit DMC When a motor rotation command is input from an external computer, the motor control circuit DMC outputs a drive signal from the CPU to the three-phase amplifier (AMP), and the drive current is supplied to the three-phase amplifier (AMP) force motor D1. Supplied.
  • AMP three-phase amplifier
  • the outer rotor 16 of the motor D1 rotates to move the arm A1.
  • resolver signals are output from the resolvers 27 and 28 that have detected the rotation angle as described above.
  • the CPU that is input after digital conversion of the signal by the resolver digital transformation ⁇ ⁇ (R DC) Determines whether the outer rotor 16 has reached the command position, and if it reaches the command position, stops the rotation of the outer rotor 16 by stopping the drive signal to the three-phase amplifier (AMP). Let As a result, servo control of the outer rotor 16 becomes possible.
  • the detection port The current flowing through the three-phase stator coil can be controlled according to the electrical angle of the motor 26 and the torque command.
  • a current is passed through the three-phase coils (U phase, V phase, W phase) of motor D1
  • the structure of the coreless motor is used. Torque can be generated.
  • the inner rotor 21 and the outer rotor 16 do not synchronize, each is supported by a rotatable bearing.
  • the outer rotor 16 and the inner rotor 21 rotate in synchronization with each other, so that a predetermined torque is generated by the displacement of the rotation angle. Therefore, torque is transmitted from the inner rotor 21 to the outer rotor 16 when the inner rotor 21 without a loading load advances a minute angle phase in the torque generation direction with respect to the outer rotor 16, and as a result, the inner rotor 21 and the outer rotor Torque is transmitted so that the acceleration with 16 is the same, and the torque generated by the coil is generated according to the inertia.
  • the motor D1 supports the moment force with the multipoint contact bearing 14, the wafer W is immediately transferred to the horizontal state even when the arm A1 having high rigidity is extended. it can. Also, since the inner ring of the bearing 14 is assembled to the thick member of the partition wall 13, the acting force hardly acts on the partition wall 13 and is directly applied to the main body 10, so that there is an extremely high risk that the partition wall 13 will be broken. Can be small.
  • the current arm A1 when driving multiple axes in a vacuum environment, the current arm A1 If the rotation position is not recognized, there is a possibility that the arm A1 etc. will hit the wall of the vacuum chamber or the shirt of the vacuum chamber. In this embodiment, however, the absolute position that detects the absolute position of one rotation of the rotating shaft is detected.
  • a variable reluctance resolver consisting of a resolver 28 and an incremental resolver 27 that detects a rotational position with finer resolution is adopted! .
  • a force detector that employs a resolver for detecting the rotation of the inner rotor 21 can be arranged on the atmosphere side inside the partition wall 13, so that a servo motor generally used for high-precision positioning is highly accurate and smooth.
  • An optical encoder adopted as a position detecting means for driving, a magnetic encoder using a magnetoresistive element, or the like can also be used. As described above, in the present embodiment, the same effect can be obtained even with the force inner rotor system described as an example of the motor of the rotor type.
  • the tangent intersection of the outer rotor magnet 18 and the spacer 19d should be an angle at which the clearance ⁇ 2 or more with the spacer 19d cannot be lifted as described above.
  • the outer rotor magnet 18 uses a neodymium (Nd-Fe-B) magnet, and the force described using the example of nickel coating as a coating for enhancing corrosion resistance. It is appropriately changed depending on the environment in which it is not limited, and for example, a Samar-Co magnet (Sm-Co) magnet that is difficult to demagnetize at high temperatures depending on the temperature conditions during beta-out. Should be used in ultra-vacuum, a titanium nitride coating with a high outgas barrier should be applied.
  • Nd-Fe-B neodymium
  • Sm-Co Samar-Co magnet
  • the rotor yoke 19b has been described using an example in which low-carbon steel is used as a material and nickel plating is performed.
  • the material is not limited to the surface treatment and the material is not limited to the surface treatment.
  • surface treatment if it is used in an ultra-vacuum, it should be subjected to force-zen plating, clean soldering, titanium nitride coating, etc. with few pinholes.
  • the bearing device is not limited to this type, material, and lubrication method. It can be changed as appropriate and may be a cross roller bearing. Deep groove ball bearings may be structured to apply preload as an anguilla bearing, and when used in ultra-vacuum, a metal that does not emit gas, such as gold or silver plated soft metal on the race ring. Even if a lubricated one is used. Further, the material of the spacer 19d and the bolt 19e is appropriately changed depending on the manufacturing cost and the environment in which it is used.
  • the present invention has been described above with reference to the embodiment. However, the present invention should not be construed as being limited to the above embodiment, and can be appropriately changed or improved.
  • the motor of this embodiment can be used not only in a vacuum atmosphere but also in an atmosphere outside the atmosphere. For example, in the case of a semiconductor manufacturing process, a reactive gas for etching may be introduced into the vacuum chamber after evacuation. In the motor of this embodiment, the inside and the outside are shielded by the partition wall. There is no risk of the motor coil or insulation material being etched! / ⁇ .
  • the present invention is also applicable to ordinary motors other than the direct drive type motors D1 and D2 in the above-described embodiment.
  • FIG. 8 is a perspective view of a frog redder arm type transport device using a direct drive motor that works in this embodiment.
  • two direct drive motors Dl and D2 are connected in series.
  • the first arm A1 is connected to the rotor of the lower direct drive motor D1, and the first link L1 is pivotally connected to the tip of the first arm A1.
  • the second arm A2 is connected to the rotor of the upper direct drive motor D2, and the second link L2 is pivotally connected to the tip of the second arm A2.
  • the links LI and L2 are pivotally connected to a table T on which the wafer W is placed.
  • a device having a plurality of arms such as a scalar type or a frog redder type shown in the figure requires a plurality of rotary motors.
  • the surface area of contact with the outside world should be minimized, and at the same time, the number of mounting holes for motors, etc., should be minimized to make effective use of space.
  • a plurality of direct drive motors Dl and D2 are connected coaxially at the housing part, and the connection part is tightly joined with a seal (tightly joined by welding, O-ring, metal gasket, etc.), and the motor rotor is arranged. It is necessary to separate the open space from the housing external space.
  • FIG. 9 is a view of the configuration of FIG. 8 cut along the ⁇ - ⁇ line and viewed in the direction of the arrow.
  • FIG. 10 is a view of the configuration of FIG. 9 cut along the ⁇ - ⁇ line and viewed in the direction of the arrow.
  • the internal structure of the direct drive motor will be described in detail with reference to FIGS. Since the direct drive motors D 1 and D 2 have the same basic configuration, only the direct drive motor D 1 will be described, and the description of the configuration of the direct drive motor D 2 will be omitted by attaching the same reference numerals.
  • the hollow cylindrical main body 10 in which the flange 10a is installed on the surface plate G has a small circular plate 11 connected to the upper end thereof by a bolt. On the upper surface of the small disk 11, a large disk 12 is fixed by a bolt (not shown). The center of the main body 10 can be used to pass wiring to the stator.
  • the main body 10, small disk 11, and large disk 12 constitute the housing.
  • a lid member 50 covering the opening of the main body 10 is hermetically bolted to the upper surface of the large disk 12.
  • a cylindrical partition wall 13 made of stainless steel (SUS304 or the like), which is a non-magnetic material, is coaxially attached to the main body 10 on the flange 10a of the main body 10.
  • the top of bulkhead 13 is thin Furthermore, the upper end is bent inward in the radial direction, and is attached in such a way that it is sandwiched by the small disk 11 by the disk 12.
  • an O-ring OR is arranged between the members of the direct drive motor D1 as shown in the figure, and therefore the internal space surrounded by the flange 10a, the partition wall 13 and the small disk 11 of the main body 10 is External force is also airtight.
  • the partition wall 13 is not necessarily made of a nonmagnetic material.
  • the members may be hermetically sealed by electron beam welding or laser beam welding.
  • the inner ring of a four-point contact ball bearing 14 used in vacuum is fitted to the lower outer periphery of the partition wall 13, and is attached to the partition wall 13 by an inner ring holder 15 fixed to the partition wall 13 with bolts. Yes.
  • the outer ring of the bearing 14 is attached to the outer rotor 16 by an outer holder 17 that fits to the inner periphery of the outer rotor 16 and is bolted to the outer rotor 16. That is, the outer rotor 16 is rotatably supported with respect to the partition wall 13.
  • the bearing 14 is a four-point contact ball bearing that uses a metal lubrication that is plated with a soft metal such as gold or silver on the inner ring and the outer ring to prevent outgassing even in a vacuum.
  • Force that can receive moment in the tilting direction of the outer rotor 16 from the arm A1 Not limited to the four-point contact type, cross rollers, cross balls, cross taper bearings can also be used, and they may be used in a preload state Fluorine-based coating (DFO) may be performed to improve lubricity.
  • DFO Fluorine-based coating
  • An outer rotor magnet 18 is attached to the inner peripheral surface of the outer rotor 16.
  • the outer rotor magnet 18 is composed of 24 poles and 12 magnets of N poles and S poles alternately with magnetic metal force and assembled to the back yoke 19.
  • the back yoke 19 may be made of magnetic stainless steel or iron-plated.
  • the outer rotor magnet 18 is a nickel-plated magnet made of neodymium iron boron. Further, the outer rotor magnet 18 is fastened to the outer rotor 16 with a nonmagnetic metal wedge. Therefore, no resin such as adhesive is disposed, and even when the direct drive motor D1 is disposed in a vacuum, the released gas of the occluded impure molecules can be extremely reduced.
  • a magnetic shield plate 30 is attached to the outer rotor 16 so as to cover the upper part of the outer rotor magnet 18.
  • stator 29 On the radially inner side of the partition wall 13, facing the inner peripheral surface of the outer rotor 16, A stator 29 is arranged.
  • the stator 29 is attached to the flange 10a of the main body 10 by the stator holder 20, and as shown in FIG. Lined up, so it contains a total of 36 coils. This coil is molded by a molding material and integrated. Since the stator 29 is thus arranged on the inner side of the partition wall 13, forced cooling such as water cooling or air cooling can be performed against coil heat generation or the like.
  • An inner rotor 21 is arranged on the inner side in the radial direction of the stator 29.
  • the inner rotor 21 is rotatably supported by ball bearings 23 with respect to a resolver holder 22 that is bolted to the outer peripheral surface of the main body 10.
  • An inner rotor magnet 24 is attached to the outer peripheral surface of the inner rotor 21 via a knock yoke 25.
  • the inner rotor magnet 24 has a 24-pole configuration similar to the outer rotor magnet 18, and 12 N-pole and 12-pole magnets alternately have magnetic metal force and are assembled to the back yoke 25. Accordingly, the inner rotor 21 is rotationally driven by the stator 29 in synchronization with the outer rotor 16.
  • a detection rotor 26 for a detector that measures a rotation angle is assembled on the inner periphery of the inner rotor 21, and resolvers 27 and 28 are attached to the outer periphery of the resolver holder 22 so as to face the rotor.
  • Force In this embodiment, a high-resolution incremental resolver 27 and an absolute resolver 28 capable of detecting the position of the rotor at one rotation are arranged in two layers. For this reason, even when the power is turned on, the rotation angle of the detection rotor 26 can be known, it is not necessary to return to the origin, and the electrical phase angle of the magnet with respect to the coil is ineffective. Rotation angle detection force to be used It is possible to use without using a pole detection sensor.
  • the detection rotor 26 has a plurality of slot tooth rows having a constant pitch, and the outer circumference of the magnetic poles of the stators of the resolvers 27 and 28 The surface is provided with teeth that are shifted in phase with respect to the detection rotor 26 at each magnetic pole in parallel with the rotation axis, and a coil is wound around each magnetic pole.
  • the detection rotor 26 rotates together with the inner rotor 21, the reluctance between the resolver 27 and 28 and the magnetic poles of the stator changes, and the fundamental wave component of the reluctance change becomes n periods in one rotation of the detection rotor 26 Thus, the reluctance change is detected and the resolver control circuit shown in FIG.
  • the rotation angle (or rotation speed) of the detection rotor 26, that is, the inner rotor 21, is detected by digitalizing and using it as a position signal.
  • the detection rotor 26 and the resolvers 27 and 28 constitute a detector.
  • the inner rotor 21 is rotationally driven by the stator 29 in synchronism with the outer rotor 16. Therefore, if the rotation angle of the inner rotor 21 can be detected, the inner rotor 21 is immediately started. The rotation angle of the outer rotor 16 can be obtained, whereby the drive control of the outer rotor 16 can be performed with high accuracy.
  • FIG. 12 is a block diagram showing a drive circuit of the direct drive motor D1.
  • the motor control circuit DMC outputs a drive signal from the CPU to the three-phase amplifier (AMP), and the three-phase amplifier (AMP) force is also applied to the direct drive motor D1.
  • a drive current is supplied.
  • the outer rotor 16 of the direct drive motor D1 rotates to move the arm A1.
  • resolver signals are output from the resolvers 27 and 28 that have detected the rotation angle as described above, and the CPU that has been input after digitally converting it with the resolver digital converter (RDC) It is determined whether or not the outer rotor 16 has reached the command position.
  • the rotation of the outer rotor 16 is stopped by stopping the drive signal to the three-phase amplifier (AMP). This enables servo control of the outer rotor 16.
  • the current flowing through the three-phase stator coil can be controlled according to the electrical angle of the detection port 26 and the torque command. If a current is passed through the three-phase coils (U phase, V phase, W phase) of the direct drive motor D1, the structure of the coreless motor is used. Therefore, according to Fleming's left-hand rule, the outer rotor 16 and the inner motor 21 are Each can generate substantially the same torque. Originally, if the inner rotor 21 and the outer rotor 16 are not synchronized, each is supported by a rotatable bearing.
  • the outer rotor 16 and the inner rotor 21 rotate in synchronization with each other, so that a predetermined torque is generated by the displacement of the rotation angle. Therefore, torque is transmitted from the inner rotor 21 to the outer rotor 16 when the inner rotor 21 without a loading load advances a minute angle phase in the torque generation direction with respect to the outer rotor 16, and as a result, the inner rotor 21 and the outer rotor Torque is transmitted so that the acceleration with 16 is the same, and the torque generated by the coil is generated according to the inertia.
  • the direct drive motor D1 supports the moment force with the multipoint contact bearing 14, the wafer W is straightened horizontally even when the arm A1 having high rigidity is extended. Can be transported. Since the inner ring of the bearing 14 is assembled to the thick member of the partition wall 13, the acting force hardly acts on the partition wall 13 and is directly applied to the main body 10, so that the risk of the partition wall 13 being broken is extremely high. Can be small.
  • the arm A1 or the like may hit the wall of the vacuum chamber or the shatter of the vacuum chamber.
  • a variable reluctance resolver consisting of an absolute resolver 28 that detects the absolute position of one rotation of the rotating shaft and an incremental resolver 27 that detects a more precise rotational position is adopted. Therefore, the rotational position of the outer rotor 16, that is, the arm A 1 can be controlled with high accuracy.
  • FIG. 13 is a diagram showing a modification of the present embodiment.
  • the direct drive motors Dl and D2 are arranged in series (2 units in total).
  • the direct drive motor has the same configuration as shown in Fig. 9 for the individual direct drive motors. The description will be omitted.
  • the direct drive motor of the present embodiment since the inner rotor is arranged inside the stator in the radial direction, the dimension in the axial direction can be reduced (thinned), so four pieces are conveyed in series as shown in FIG. Even if the device is configured, a compact configuration in the height direction can be provided.
  • the thin structure increases the rigidity and avoids the risk of resonance, etc., which is advantageous for multi-axis use and can reduce the difference in control constant between the outer rotors.
  • by using a stack of direct drive motors of the same shape it is possible to replace only the direct drive motor in the event of a failure, providing excellent maintainability and minimizing the inventory of replacement parts.
  • FIG. 14 is a cross-sectional view similar to FIG. 9, showing a direct drive motor that can be used in the transport device shown in FIG. Since the direct drive motors Dl and D2 have the same basic configuration, only the direct drive motor D1 will be described, and the configuration of the direct drive motor D2 will be denoted by the same reference numerals and the description thereof will be omitted.
  • a hollow cylindrical main body 110 in which a flange 110a is installed on a surface plate G has a small disk 111 connected to its upper end by a bolt.
  • a large circular plate 112 is fixed to the outer peripheral side of the upper surface of the small circular plate 111 with a bolt (not shown).
  • the center of the main body 110 can be used to pass wiring to the stator.
  • the main body 110, the small disk 111, and the large disk 112 constitute a housing.
  • the upper part of the partition wall 113 is thin, and the upper end is bent inward in the radial direction, and is attached to the small disk 111 together with the disk 112.
  • an O-ring OR is arranged between the members of the direct drive motor D1 as shown in the figure, and therefore the internal space surrounded by the flange 110a of the main body 110, the partition wall 113, and the small disk 111 is External force is also airtight.
  • the partition wall 113 is not necessarily made of a nonmagnetic material. Further, instead of using an O-ring OR, the members may be hermetically sealed by electron beam welding or laser beam welding.
  • the inner ring of a four-point contact ball bearing 114 used in vacuum is fitted to the lower outer periphery of the partition wall 113, and is attached to the partition wall 113 by an inner ring holder 115 fixed to the partition wall 113 with bolts. Yes.
  • the outer ring of the bearing 114 is attached to the outer rotor 116 by an outer holder 117 that fits to the inner periphery of the outer rotor 116 and is fixed to the outer rotor 116 with a bolt.
  • the bearing 114 is a four-point contact ball bearing that uses soft metal such as gold and silver plated on the inner ring and outer ring to release metal even in vacuum, and is a four-point contact ball bearing. Force that can receive moment in the tilting direction of the outer rotor 116 from the arm A1 Not limited to the four-point contact type, cross rollers, cross balls, and cross taper bearings can also be used and may be used in a preload state In order to improve lubricity, fluorine film treatment (DFO) may be performed.
  • DFO fluorine film treatment
  • An outer rotor magnet 108 for magnetic coupling is attached to the center of the inner peripheral surface of the outer rotor 116.
  • the outer rotor magnet 108 for magnetic coupling has a structure of 32 poles, and has a magnetic metal force in which 16 pieces of N pole and S pole magnets are alternately arranged, and is assembled to the knock yoke 109.
  • the back yoke 109 which is a magnetic coupling rotor fitted and fixed to the outer rotor 116, may be magnetic stainless steel or iron-plated nickel.
  • the outer rotor magnet 108 for magnetic coupling uses a nickel-plated magnet made of neodymium iron boron.
  • the outer rotor magnet 108 for magnetic coupling has a non-magnetic metal wedge fastened to the outer rotor 116 with a screw. Therefore, no grease such as adhesive is disposed, and even when the direct drive motor D1 is disposed in a vacuum, the released gas of the occluded impure molecules can be extremely reduced.
  • a magnetic shield plate 103 is attached to the outer motor 116 so as to cover the upper part of the outer rotor magnet 108 for magnetic coupling.
  • an outer rotor magnet 118 is attached to the upper part of the inner peripheral surface of the outer rotor 116.
  • the outer rotor magnet 118 is composed of a magnetic metal in which 16 poles of N poles and S poles are alternately arranged in a 32 pole configuration, and is assembled to the back yoke 119.
  • the back yoke 119 may be magnetic stainless steel or iron-nickel-plated.
  • the outer rotor magnet 118 is a nickel-plated magnet made of neodymium iron boron. Yes.
  • the outer rotor magnet 118 has a nonmagnetic metal wedge fastened to the outer rotor 116 with a screw.
  • a magnetic shield plate 130 is attached to the lower surface of the disc 112 so as to cover the upper portion of the outer rotor magnet 118.
  • a stateer 129 is arranged so as to face the outer rotor magnet 118.
  • the stator 129 is attached to the main body 110.
  • the stator 129 has a cylindrical shape with 3 slots for the U phase, 3 slots for the V phase, and 3 slots for the W phase. Slots are arranged.
  • a magnetic shield plate 102 is attached to the outer rotor 116 so as to cover the top of the stator 129.
  • This 32-pole, 36-slot motor has a slot configuration that is four times that of a known art motor with fewer 8-coil and 9-slot cogginadas.
  • the configuration is an even multiple of the 8-pole 9-slot motor, the in-phase and the same pole are arranged on the diagonal line of the outer rotor 116.
  • the magnetic attraction force is unbalanced. 1S Radial force is generated in the bearing that supports it, and vibration may occur due to the rigidity of the bearing 114. Since the unbalanced force is canceled out by the same homologous poles on the diagonal line, the bearing 114 that supports the outer rotor 116 has a feature that suppresses the occurrence of vibration without using the unbalanced force.
  • the magnetic coupling inner rotor magnet 101 is arranged on the radially inner side of the partition wall 113 so as to face the magnetic coupling outer rotor magnet 108.
  • the inner rotor magnet 101 for magnetic coupling is attached via a back yoke 125 to an inner rotor 121 that is rotatably supported via a bearing 123 with respect to a cylindrical mounting portion 110b of the flange 110a of the main body 110.
  • the inner rotor magnet 101 for magnetic coupling like the outer rotor magnet 108 for coupling, has a configuration of 32 poles and 16 magnets of N poles and S poles are alternately arranged.
  • the inner rotor magnet 101 for magnetic coupling and the outer rotor magnet 108 for magnetic coupling are fixed in relative rotation by the magnetic force attracting each other with the opposite poles facing each other with the partition wall 113 interposed therebetween, that is, between the two magnets.
  • the inner rotor 121 Based on the magnetic coupling force acting in a non-contact manner on the inner rotor 121, the inner rotor 121 It rotates in synchronization with the outer rotor 116.
  • a detection rotor 126 for a detector for measuring a rotation angle is assembled on the inner periphery of the inner rotor 121, and resolvers 127 and 128 are mounted on the outer periphery of the main body 110 so as to face the rotor.
  • the high-resolution incremental resolver 127 and the absolute resolver 128 that can detect the position of the rotor in one rotation are arranged in two layers.
  • the detection rotor 126 has a plurality of slot tooth rows having a constant pitch, and the outer peripheral surfaces of the magnetic poles of the stators of the resolvers 127 and 128 Are provided with teeth shifted in phase with respect to the detection rotor 126 at each magnetic pole parallel to the rotation axis, and a coil is wound around each magnetic pole.
  • the change in reluctance is detected, digitized by the resolver control circuit shown in FIG. 11 and used as a position signal, so that the rotation angle (or rotation speed) of the detection rotor 126, that is, the inner rotor 121 is determined. It comes to detect.
  • the detection rotor 126 and the resolvers 127 and 128 constitute a detector.
  • the inner rotor 121 is rotationally driven in synchronization with the outer rotor 116 via the magnetic coupling, so if the rotation angle of the inner rotor 121 can be detected, That force can also immediately determine the rotation angle of the outer rotor 116.
  • the direct drive motor D1 of the present embodiment is servo-controlled by a drive circuit as shown in FIG.
  • the magnetic shield plates 102 and 103 are configured so that the magnetic field generated between the stator 129 and the outer rotor magnet 118 is attracted between the magnetic coupling inner rotor magnet 101 and the magnetic coupling outer rotor magnet 108. It is provided to avoid disturbing the force and affecting the magnetic coupling action.
  • stator 129 and outer rotor magnet 1 Since 18 magnetic poles are 32 poles, and the magnetic coupling inner rotor magnet 101 and the magnetic coupling outer rotor magnet 108 are also 32 magnetic poles, each has the same number of magnetic poles. Even if is omitted, the attractive force between the magnetic coupling inner rotor magnet 101 and the magnetic coupling outer rotor magnet 108 is not particularly disturbed.
  • the magnetic shield plates 102 and 103 are particularly effective when the magnetic poles of the stator 129 and the outer rotor magnet 118 are different from the magnetic poles of the magnetic coupling inner rotor magnet 101 and the magnetic coupling outer rotor magnet 108. is there.
  • the resolver 127, 128 detects the angular position and controls the drive of the direct drive motor D1. Doing so may cause abnormal rotation of the outer rotor 116. This is called resonance of the magnetic coupling system.
  • the partition 113 is used to avoid an abnormal operation.
  • FIG. 15 is a schematic diagram showing a state in which eddy current loss occurs in the partition wall 113.
  • the outer rotor 116 is attached with the north pole of the outer magnet 108 for magnetic coupling
  • the inner rotor 121 is fitted with the south pole of the inner magnet 101 for magnetic coupling. It is assumed that a magnetic coupling is formed by being opposed to each other with the partition wall 113 therebetween.
  • FIG. 16 is a schematic diagram similar to FIG. 15 showing three magnets arranged in the direction, and shows a state in which a braking force against rotation is generated using eddy current.
  • a current is generated to generate a magnetic flux.
  • the magnetic flux generated by the eddy current generates a repulsive force with respect to the traveling direction of the magnet 108 mounted on the outer rotor 116.
  • This eddy current increases as the rate of change of magnetic flux increases. Therefore, the eddy current increases as the permeability (magnetic resistance) of the partition wall 113 and the magnetic flux density and frequency of the magnet 108 increase.
  • the partition wall 113 has a magnetic resistance value and an electrical resistance value specific to the material and shape force, and the product of the square of the electrical resistance value and the eddy current is the eddy current loss of the partition wall 113. Therefore, due to the eddy current loss of the partition wall 113 depending on the frequency, a damping resistance of the outer rotor 116 is generated at the time of magnetic coupling operation.
  • FIG. 17 is a block diagram of the motor control system when there is no partition wall
  • FIG. 18 is a block diagram of the motor control system when there is a partition wall.
  • the transfer function of the motor speed corm with respect to the motor torque Te is expressed by the equation (1), and the resonance frequency and the attenuation factor are expressed by the equations (2), (3), (4) (5)
  • Jm is the motor inertia
  • Jr is the resolver inertia
  • Kf is the spring force of the magnetic force coupling
  • Cf is the damping resistance of the magnetic coupling
  • ⁇ a is the resonance frequency
  • ⁇ ⁇ is the anti-resonance frequency
  • ⁇ and ⁇ are the damping rates is there.
  • the peak value can be made small by making it. Conventionally, oscillation could be prevented by using an angle signal using a notch filter for this resonance frequency in a motor control unit, etc. However, if the characteristic of the notch filter is too strong, the angle signal near the resonance frequency cannot be controlled. There is a risk of becoming. On the other hand, by using the eddy current loss of the partition wall, the resonance frequency peak value can be controlled by reducing the peak value of the resonance frequency.
  • the spring stiffness of the magnetic coupling is expressed as shown in Fig. 21.
  • the biaxial coaxial direct drive motor according to the present invention can reduce the gain peak of the resonance frequency of the magnetic coupling by utilizing the eddy current loss of the partition wall.
  • eddy current loss leads to heat generation of the partition, it is desirable to determine the material and shape of the partition in consideration of heat generation.
  • the damping resistance is determined along with the effect of a weak notch filter. Thus, control with less heat generation can be made possible.
  • the direct drive motor of the present embodiment can be used not only in a vacuum atmosphere but also in an atmosphere outside the atmosphere.
  • reactive gas for etching may be introduced into the vacuum chamber after evacuation, but in the direct drive motor of this embodiment, the inside and outside are shielded by the partition walls. Therefore, there is no possibility that the motor coil or the insulating material will be etched.
  • FIG. 22 is a perspective view of a frog redder arm type transport device using a direct drive motor that works in the present embodiment.
  • two direct drive motors Dl and D2 are connected in series.
  • the first arm A1 is connected to the rotor of the lower direct drive motor D1, and the first link L1 is pivotally connected to the tip of the first arm A1.
  • the second arm A2 is connected to the rotor of the upper direct drive motor D2, and the second link L2 is pivotally connected to the tip of the second arm A2.
  • the links LI and L2 are pivotally connected to a table T on which the wafer W is placed.
  • a wafer transfer arm placed in a vacuum chamber in a semiconductor manufacturing apparatus for example, an apparatus having a plurality of arms such as a scalar type or a frog redder type shown in the figure, particularly requires a plurality of rotary motors. It becomes.
  • the surface area of contact with the outside world should be minimized, and at the same time, the number of mounting holes for motors, etc., should be minimized to make effective use of space.
  • the moment acting on the tip of the arm is firmly held by the rotor support. It is necessary to have.
  • a plurality of direct drive motors Dl and D2 are connected coaxially at the housing part, and the connection part is tightly joined with a seal (tightly joined by welding, O-ring, metal gasket, etc.), and the motor rotor is arranged. It is necessary to separate the open space from the housing external space.
  • a surface magnet type 32-pole 36-slot outer rotor brushless type direct drive motor is used.
  • the slot combination of 32 poles and 36 slots is generally known to have a large magnetic attraction force in the radial direction and large vibration during rotation. is there . 2 n times (n is an integer) cancels out the magnetic attractive force in the radial direction. Therefore, vibration during rotation can be achieved without increasing the roundness and coaxiality of the stator and rotor and the rigidity of the mechanical parts. Can be made small and cogging is inherently small, so that a very smooth rotation can be obtained.
  • the electrical angle cycle is greater than the mechanical angle cycle, so positioning controllability is good.
  • the direct drive motor that drives a robot apparatus without using a speed reducer as in the present invention.
  • the direct drive motor having a thin and large diameter and narrow width as in the present invention is used. Is preferred.
  • FIG. 23 is a view of the configuration of FIG. 22 cut along the ⁇ - ⁇ line and viewed in the direction of the arrow.
  • the direct drive motor D1 will be described.
  • a hollow cylindrical main body 12 fitted into the central opening 10a of the disk 10 installed on the surface plate G and fixed to each other by bolts 11 has a cup-shaped partition wall 13 attached to the upper end thereof.
  • the center of the body 12 is used to pass the wiring to the stator. Can be used.
  • the main body 12 and the disc 10 constitute a housing.
  • the partition wall 13 is made of stainless steel, which is a non-magnetic material, and extends from the peripheral edge of the partition wall 13 through the direct drive motors Dl and D2 in the axial direction. It consists of a cylindrical part (tubular part) 13b that is thinner than the existing disk part 13a. Therefore, the partition wall 13 is commonly used for the direct drive motors Dl and D2. The lower end of the cylindrical portion 13b is joined to the holder 15 so that it can be sealed by TIG welding, and the holder 15 is fixed to the disc 10 with bolts 16.
  • the contact surface between the holder 15 and the disk 10 is provided with a groove force that fits the seal member. After the seal member is fitted into the groove, the holder 15 and the disk 10 are fastened by the bolt 16. , Atmospheric side force is separated from the fastening part.
  • the partition wall 13 is made of austenitic stainless steel SUS316, which has high corrosion resistance, and has a low magnetic property, and the holder 15 is made of SUS316 as well because of its weldability with the partition wall 13.
  • the main body 12 and the partition wall 13, and the partition wall 13 and the holder 15 are hermetically joined, and the holder 15 and the disk 10 and the disk 10 and the surface plate G are respectively O-ring OR. Is airtight. Therefore, the internal space surrounded by the disc 10, the main body 12, and the partition wall 13 is airtight from the outside.
  • the partition wall 13 is not necessarily made of a nonmagnetic material. Also, instead of using O-ring OR to seal the air, the parts may be sealed by electron beam welding or laser beam welding.
  • a bearing holder 17 is fixed with bolts 18.
  • the bearing holder 17 is fitted with an outer ring of a four-point contact ball bearing 19 that is used in a vacuum, and is fixed by bolts 20.
  • the inner ring of the bearing 19 is fitted to the outer periphery of the first outer rotor 21 and is fixed by bolts 22. That is, the first outer rotor 21 is rotatably supported with respect to the partition wall 13, and a cylindrical member 23 that supports the arm A1 (FIG. 22) is fixed by the bolt 24.
  • the bolt 24 fastens the magnetic shield plate 25 extending inward in the radial direction together with the cylindrical member 23.
  • the disc 10 and the bearing holder 17 are made of austenitic stainless steel having high corrosion resistance, and the disc 10 also serves as a fitting fixing and sealing device with the surface plate G that is a chamber.
  • a groove 10b for fitting the O-ring OR is provided on the lower surface thereof.
  • the magnetic shield plate 25 is subjected to nickel plating in order to enhance the anti-corrosion and corrosion resistance after press-forming the SPCC steel plate, which is a magnetic material.
  • the effect of the bearing 19, which will be described later, is a four-point contact ball bearing that can apply radial, axial, and moment loads with a single bearing. By using this type of bearing, only one bearing for the direct drive motor D1 is required, so the two-axis coaxial motor system of the present invention can be made thinner.
  • the bearing 19 is made of martensite stainless steel, which has high corrosion resistance for both the inner and outer rings and can be hardened by quenching.
  • the rolling elements are ceramic balls, and the lubricant is vacuum grease that does not solidify even under vacuum.
  • the bearing 19 may be made of metal lubricated by plating a soft metal such as gold or silver on the inner ring and the outer ring so that outgassing is not generated even in vacuum, or a four-point contact ball. Because it is a bearing, it can receive a moment in the direction in which the first outer rotor 21 tilts from the arm A1, but it is not limited to the four-point contact type, and cross rollers, cross balls, and cross taper bearings can also be used. Yes, it can be used under preload conditions, or fluorine film treatment (DFO) can be performed to improve lubricity! ⁇ .
  • DFO fluorine film treatment
  • the first outer rotor 21 includes a permanent magnet 21a, an annular yoke 21b made of a magnetic material to form a magnetic path, and a non-magnetic material for mechanically fastening the permanent magnet 21a and the yoke 21b. It consists of a wedge (not shown).
  • Permanent magnet 21a has a configuration of 32 poles, each of which has 16 poles of N poles and S poles alternately made of magnetic metal, and is divided into segments. Each of the permanent magnets 21a has a sector shape.
  • the permanent magnet 21a is a neodymium (Nd—Fe—B) based magnet having a high energy product, and has a nickel coating to enhance corrosion resistance.
  • the yoke 21b is made of a low-carbon steel having high magnetism, and is plated with nickel to improve wear resistance and corrosion resistance and prevent wear during bearing replacement after processing and molding.
  • the first outer rotor 21 has a surface for fitting and fixing the inner ring of the bearing 19 and the cylindrical member 23.
  • the four-point contact ball bearing 19 is a very thin bearing, and its rotational accuracy and friction torque are greatly affected by differences in accuracy and linear expansion coefficient of the parts to be assembled. Therefore, in the case of the present embodiment, the inner ring of the bearing 19 which is a rotating ring is an interference fit or an intermediate fit to the yoke 21b which is easy to obtain processing accuracy and whose linear expansion coefficient is substantially the same as the bearing ring material of the bearing.
  • the outer ring of the bearing 19, which is a fixed ring, is fitted to the austenitic stainless steel bearing holder or aluminum boss to prevent the bearing 19 from rotating and the friction torque from increasing due to temperature rise. ing.
  • a first stator 29 is disposed on the inner side in the radial direction of the partition wall 13 so as to face the inner peripheral surface of the first outer rotor 21.
  • the first stator 29 is attached to a cylindrically deformed lower portion of a flange portion 12a extending in the radial direction at the center of the main body 12.
  • the first stator 29 is formed of a laminated material of electromagnetic steel plates and is insulated from each salient pole. As a process, the motor coil is concentrated after the bobbin is fitted.
  • the outer diameter of the first stator 29 is approximately the same as or smaller than the inner diameter of the partition wall 13.
  • the first inner rotor 30 is disposed on the radially inner side of the first stator 29.
  • the first inner rotor 30 is rotatably supported by a ball bearing 33 with respect to a resolver holder 32 that is bolted to the outer peripheral surface of the main body 12.
  • a permanent magnet 30a is attached to the outer peripheral surface of the first inner rotor 30 via a knock 30b.
  • the permanent magnet 30a is composed of 32 poles in the same manner as the permanent magnet 21a of the first outer rotor 21, and 16 magnets of N poles and S poles are alternately made of magnetic metal. Accordingly, the first inner rotor 30 is rotated in synchronism with the first outer rotor 21 driven by the first stator 29.
  • the bearing 33 that rotatably supports the first inner rotor 30 is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing. By using this type of bearing, it is possible to reduce the thickness of the direct drive motor D1 because only one bearing is required. Since the interior of the partition wall 13 is an atmospheric environment, a bearing using grease lubrication based on general bearing steel and mineral oil can be applied.
  • Permanent magnet 30a Since the inside of the partition wall 13 is an atmospheric environment, the permanent magnet 30a is bonded and fixed to the back yoke 30b.
  • Permanent magnet 30a is a neodymium (Nd-Fe-B) magnet with high energy product. Yes, with nickel coating to prevent wrinkle demagnetization.
  • the yoke 30b is made of low-carbon steel with high magnetism, and is chromated to prevent fouling after machining.
  • Resolver rotors 34a and 34b are assembled on the inner periphery of the first inner rotor 30 as detectors for measuring the rotation angle, and the resolver stator 35 is disposed on the outer periphery of the resolver holder 32 so as to face it.
  • the high-resolution incremental resolver stator 35 and the absolute resolver stator 36 that can detect the position of the rotor in one rotation are arranged in two layers. /!
  • the resolver holder 32 and the first inner rotor 30 are made of carbon steel, which is a magnetic material, so that electromagnetic noise from the motor field and motor coil is not transmitted to the resolver stators 35, 36 that are angle detectors. In order to prevent fouling after processing and molding, it is chromated.
  • the high-resolution variable reluctance resolver used in the present embodiment has an incremental resolver rotor 34a having a plurality of slot teeth having a constant pitch, and the outer peripheral surface of the incremental resolver stator 35. Are provided with teeth shifted in phase with respect to the incremental resolver rotor 34a at each magnetic pole parallel to the rotation axis, and a coil is wound around each magnetic pole.
  • the incremental resolver rotor 34a rotates together with the first inner rotor 30, the reluctance between the incremental resolver stator 35 and the magnetic pole changes, and the fundamental wave component of the change in reluctance is n cycles in one revolution of the incremental resolver rotor 34a.
  • the change in reluctance is detected, digitalized by the resolver control circuit shown in FIG. 24, and used as a position signal, so that the rotational angle of the incremental resolving rotor 34a, that is, the first inner rotor 30 is obtained. (Or rotation speed) is detected.
  • the resolver rotors 34a and 34b and the resolver stators 35 and 36 constitute a detector.
  • the first inner rotor 30 rotates at the same speed by the magnetic coupling action with respect to the first outer rotor 21, that is, rotates with the first outer rotor 21, so that the rotation of the first outer rotor 21 rotates.
  • the corner can be detected through the bulkhead 13.
  • the resolver alone has the bearing 33 without using the parts forming the motor and the uzing. Therefore, the eccentricity adjustment with the resolver alone is performed before the resolver coil is assembled into the housing. Since accuracy adjustment such as position adjustment can be performed, there is no need to provide adjustment holes or notches on both flanges of the housing.
  • the main body 12 constitutes a housing.
  • the cylindrical member 23 of the direct drive motor D1 described above extends upward to a position where it is superimposed on the direct drive motor D2, and the inner peripheral surface thereof is a four-point contact ball bearing 19 'used in a vacuum.
  • the outer ring is fitted and fitted with bolts 20 '.
  • the inner ring of the bearing 19 ′ is fitted to the outer periphery of the second outer rotor 21 ′ and is fixed by the bolt 22 ′.
  • the bolt 22 'and the magnetic shield plate 41 extending inward in the radial direction are fastened together.
  • the second outer rotor 21 ′ is rotatably supported with respect to the partition wall 13, and a ring-shaped member 23 ′ that supports the arm A2 (FIG. 22) is fixed by a bolt 24 ′. Further, the bolt 24 'fastens the magnetic shield plate 25 extending inward in the radial direction together with the ring-shaped member 23'.
  • the magnetic shield plates 41 and 25 ' are subjected to nickel plating in order to improve the anti-corrosion and corrosion resistance after press molding the SPCC steel plate, which is a magnetic material.
  • the magnetic shield plates 41 and 25 are interposed between the first outer rotor 21 and the second outer rotor 21 to form a magnetic shield and prevent mutual rotation due to magnetic flux leakage from them. . That is, the magnetic shield plate 25 ′ is fastened to the yoke 21b ′ with the ring-shaped member 23 ′, which is a non-magnetic material, interposed therebetween, thereby preventing unnecessary magnetic circuits from being generated.
  • the magnetic shield plates 41 and 25 can prevent magnetic interference between the rotors, it is possible to achieve a configuration in which the overall shaft length is suppressed while being a biaxial coaxial motor system.
  • the magnetic shield plate 41 prevents foreign matter from being attracted from the outside.
  • the bearing 19 ' is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing.
  • direct drive motor D2 Since only one bearing is required, the biaxial coaxial motor of the present invention can be thinned.
  • the inner and outer rings are made of martensitic stainless steel, which has high corrosion resistance and can be hardened by quenching.
  • the rolling elements are ceramic balls, and the lubricant is vacuum grease that does not solidify even under vacuum.
  • the bearing 19 ' may be made of a metal lubrication that is plated with a soft metal such as gold or silver on the inner ring and the outer ring and does not release outgas even in vacuum, or a four-point contact ball bearing.
  • a four-point contact type but also a cross roller, a cross ball, and a cross taper bearing can be used. It can be used under preload conditions, or it can be treated with fluorine coating (DFO) to improve lubricity! ⁇ .
  • DFO fluorine coating
  • the second outer rotor 21 ' mechanically fastens the permanent magnet 21a', the annular yoke 21b 'made of a magnetic material to form a magnetic path, and the permanent magnet 21a' and the yoke 21b '. It is made up of a wedge (not shown).
  • Permanent magnet 21a ' is a segment type with a configuration of 32 poles, with 16 N-pole and S-pole magnets alternately made of magnetic metal and divided into poles, each of which has a sector shape.
  • the center of the arc of the inner and outer diameters is the same force.By making the tangent intersection of the circumferential end face closer to the permanent magnet 21a ', the wedge is tightened from the outer diameter side of the yoke 21b' by screwing the permanent magnet 21a ' It is fastened to the yoke 21b '. With this configuration, the permanent magnet can be fastened without using a fixing member that generates outgas, such as an adhesive.
  • Permanent magnet 21a ' is a high energy product neodymium (Nd-Fe-B) based magnet, which is coated with nickel to enhance corrosion resistance.
  • Yoke 21b ' is made of low-carbon steel with high magnetism and is plated with nickel in order to improve wear resistance and corrosion resistance and prevent wear during bearing replacement after processing and molding.
  • the second outer rotor 21 ' has a surface for fitting and fixing the inner ring of the bearing 19' and the ring-shaped member 23 '.
  • the four-point contact ball bearing 19 ' is a very thin bearing, and its rotational accuracy and friction torque are greatly affected by differences in the accuracy and linear expansion coefficient of the assembled parts. Therefore, in the case of the present embodiment, the inner ring of the bearing 19 ′ is tightly fitted or intermediately fitted to the yoke 21b, which is easy to obtain machining accuracy and has the same linear expansion coefficient as the bearing ring material of the bearing.
  • Outer ring of austenitic stainless steel bearing holder and aluminum By adopting a clearance fit to the made boss, the bearing 19 'is prevented from lowering the rotational accuracy and preventing the friction torque from increasing due to temperature rise.
  • a second stator 29 ' is disposed so as to face the inner peripheral surface of the second outer rotor 21'.
  • the second stator 29 ′ is attached to the upper part of the flange 12 a that extends in the radial direction in the center of the main body 12, and is formed of a laminated material of electromagnetic steel sheets, and each salient pole is insulated. As shown, the motor coil is concentrated after the bobbin is fitted.
  • the outer diameter of the second stator 29 ′ is approximately the same as or smaller than the inner diameter of the partition wall 13.
  • a second inner rotor 30 ' is arranged on the radially inner side of the second stator 29'.
  • the second inner rotor 30 ′ is rotatably supported by a ball bearing 33 ′ with respect to a resolver holder 32 ′ bolted to the outer peripheral surface of the main body 12.
  • a permanent magnet 30a ′ is attached to the outer peripheral surface of the second inner rotor 30 ′ via a back yoke 30b ′.
  • the permanent magnet 30a ′ has a configuration of 32 poles, like the permanent magnet 21a ′ of the second outer rotor 21 ′, and has 16 magnetic poles each having N poles and S poles alternately. Accordingly, the second inner rotor 30 ′ is rotationally driven by the second stator 29 ′ in synchronization with the second outer rotor 21 ′.
  • the bearing 33 ′ that rotatably supports the first inner rotor 30 ′ is a four-point contact ball bearing that can apply radial, axial, and moment loads with a single bearing. By using this type of bearing, only one bearing is required, so the direct drive motor D2 can be made thinner. Since the inside of the partition wall 13 is an atmospheric environment, a bearing using grease lubrication based on general bearing steel and mineral oil can be applied.
  • the permanent magnet 30a ′ Since the inside of the partition wall 13 is an atmospheric environment, the permanent magnet 30a ′ is bonded and fixed to the back yoke 30b ′.
  • the permanent magnet 30a ' is a neodymium (Nd-Fe-B) magnet with a high energy product and is coated with nickel to prevent demagnetization due to defects.
  • Yoke 30b ' is made of low-carbon steel with high magnetism, and is chromated to prevent fouling after machining.
  • Resolver rotors 34a 'and 34b are assembled on the inner periphery of the second inner rotor 30' as detectors for measuring the rotation angle, and are arranged on the outer periphery of the resolver holder 32 'so as to face each other.
  • the resorno stator 35 ′, 36 ′ Incremental resolver stator 35 with high performance and an absolute resolver stator 36 'that can detect the position of the rotor in one rotation are arranged in two layers. For this reason, even when the power is turned on, the rotational angle of the absolute resolver rotor 34b 'is known, no return to origin is required, and the electrical phase angle of the magnet with respect to the coil is different. This is possible without using a pole detection sensor.
  • the resolver holder 32 'and the second inner rotor 30' are magnetic bodies so that electromagnetic noise from the motor field and the motor coil is not transmitted to the resolver stators 35 'and 36' which are angle detectors. Carbon steel is used as a material, and chromate plating is applied after processing to prevent fouling.
  • the second inner rotor 30 ′ rotates at the same speed by the magnetic coupling action with respect to the second outer rotor 21 ′, that is, rotates with the rotation angle of the second outer rotor 21 ′.
  • the parts forming the motor, the bearing 33 is provided as a single resolver without using uzing, and therefore, the eccentricity adjustment with the single resolver is performed before being incorporated into the housing. Since it is possible to adjust the accuracy of the resolver coil position, etc., there is no need to provide separate adjustment holes or cutouts on both flanges of the housing.
  • the incremental resolver rotor 34a ′ has a plurality of slot tooth rows having a constant pitch, and the incremental stator resolver stator 35, On the outer peripheral surface, teeth whose phases are shifted with respect to the incremental resolver rotor 34a ′ by each magnetic pole in parallel with the rotation axis are provided, and a coil is wound around each magnetic pole.
  • the incremental resolver rotor rotor 34a rotates integrally with the second inner rotor 30 ', the reluctance between the magnetic poles of the incremental resolver stator 35 changes, and the fundamental wave component of the reluctance change is changed by one revolution of the incremental resolver rotor 34a'.
  • the change in reluctance is detected so that there are n cycles, digitalized by the resolver control circuit shown in FIG. 24 as an example, and used as a position signal, so that the incremental resolver rotor 34a ′, that is, the second inner rotor 30
  • the rotation angle (or rotation speed) of ' is detected.
  • the bottom 13a of the partition wall 13 is not restrained in the axial direction with respect to the main body 12, so that a dimensional error is caused in the partition wall 13 due to dimensional accuracy, mechanical accuracy, and temperature change. Even if a deformation occurs, the bottom 13a is not pressed against or pulled out of the main body 12, so the axial stress and bending stress of the partition wall 13 can be relieved, thereby preventing seal failure and breakage. Can do. In addition, since it is not necessary to process the depth of the bottom 13a and the length of the main body 12 with high precision, a lower cost direct drive motor can be provided.
  • the magnetic shield plates 25 and 41 are arranged between the first outer rotor 21 and the second outer rotor 21 ′, mutual magnetic interference is prevented. Suppresses and avoids malfunctions such as erroneous driving and surroundings.
  • the outer peripheral edge 12b of the flange portion 12a extending between the direct drive motors D1 and D2 in the main body 12 is made of carbon steel, which is a magnetic material, between the first stator 29 and the second stator 29 ′. So that the first outer rotor 21 or the second outer rotor 21 does not generate a thrust in the wrong rotation direction due to the influence of the leakage magnetic flux! / Functions as a magnetic shield.
  • first stator 29 and the second stator 29 ′ are arranged vertically with the flange portion 12 a as the center, and a resolver is arranged on the radially inner side.
  • the main body 12 has a hollow structure, and the flange portion 12a has at least one radial through hole 12d communicating with the center through which the motor wiring is drawn out to the center of the main body 12. It has a structure.
  • at least one notch 12e, 12e is provided at each end of the main body 12, and the resolver wiring is drawn out to the center of the main body 12 through these.
  • the angle of the stator and resolver can be adjusted. Therefore, if a facility for rotationally driving the reference outer rotor is prepared separately, the main body 12 incorporating the stator and resolver is set in the facility, so that the resolution with respect to the stator can be accurately achieved. Since the angle of the bar can be adjusted, it is possible to prevent the angle positioning accuracy from being lowered due to the deviation of the commutation, and to improve the compatibility of the drive control circuit with the two-axis coaxial motor of the present invention.
  • FIG. 25 is a block diagram showing a drive circuit for the direct drive motors Dl and D2.
  • the motor control circuit DMC1 for the direct drive motor D1 and the motor control circuit DMC2 for the direct drive motor D2 are each sent from the CPU to the three-layer amplifier (AMP).
  • the drive signal is output, and the drive current is supplied to the direct drive motors Dl and D2 with a three-layer amplifier (AMP) force.
  • AMP three-layer amplifier
  • the resolver signal is output from the resolver stator 35, 36, 35, 36, which has detected the rotation angle as described above, and is output to the resolver digital converter (RDC).
  • the CPU input after digital conversion judges whether or not the outer rotor 21, 21 'has reached the command position, and when it reaches the command position, it stops the drive signal to the 3-layer amplifier (AMP). Stop rotation of outer ports 21, 21 '. This enables servo control of the outer rotors 21, 21 '.
  • the arm A1 or the like is attached to the wall of the vacuum chamber or the shatter of the vacuum chamber.
  • the absolute resolver stators 36 and 36 'that detect the absolute position of one rotation of the rotating shaft, and the incremental resolver stator 35 and that detect a rotational position with finer resolution are used in this embodiment.
  • a variable reluctance resolver is used, so that the rotational position of the outer rotors 21 and 21, that is, the arms Al and A2, can be controlled with high accuracy.
  • FIG. 26 is a cross-sectional view similar to FIG. 23 that works on the second embodiment. In this embodiment Accordingly, different parts from the embodiment shown in FIGS. 23 to 25 will be described, and parts having similar functions will be denoted by the same reference numerals and description thereof will be omitted.
  • the inner rotor, the stator, and the resolver are shown as a simple integrated force. These are the same as the configuration shown in FIG.
  • bolts are used for the stepped portion 11Oa of the upper disc portion 110 attached to the upper surface of the cylindrical main body 112, and the annular portion 113a is hermetically sealed via the O-ring OR.
  • the lower portion of the annular portion 113a is a flange portion 113c that is thin and extends radially outward.
  • the upper end of the thin cylindrical portion 113b is TIG welded to the bent outer edge.
  • the thickness of the attachment portion of the annular portion 113a is thicker than the thickness of the flange portion 113c and the thin cylindrical portion 113b.
  • the lower end of the thin cylindrical portion 113b is TIG welded to the holder 15 in the same manner as in the above embodiment.
  • the annular portion 113a, the flange portion 113c, the thin cylindrical portion 113b, and the holder 15 constitute a partition wall 113.
  • the disc part 110, the main body 112 and the disc 10 constitute a nosing.
  • the upper surface of the upper disc portion 110 is closed by the lid member 101, and the bearing holder 107 attached to the outer periphery thereof supports the bearing 19 '. Therefore, the cylindrical member 123 of the direct drive motor D1 does not extend to the direct drive motor D2 side.
  • the bearing holder 117 of the direct drive motor D1 is integrated with the disc 10.
  • the upper disk part 110, the lid member 101, and the bearing holder 107 are made of V-austenitic stainless steel having high corrosion resistance.
  • the mounting outer peripheral surface of the upper disc portion 110 of the bearing holder 107 is located on the inner side in the radial direction from the thin cylindrical portion 113b. Therefore, if the bearing holder 107 is removed from the upper disc portion 110, 2 The two outer rotors 21 and 21 ′ can be removed upward without disassembling the upper disk part 110. Therefore, it is possible to facilitate work that does not require disassembly of the airtight structure during maintenance.
  • the thickness of the flange portion (connecting portion) 113c is thinner than the thickness of the annular portion (attachment portion) 113a of the partition wall 113, so that the dimensional accuracy, mechanical accuracy, and temperature change Even if an axial expansion / contraction stress is generated in the partition wall 113 due to the above, the flange portion 113c is deformed, so that the axial stress and bending stress of the partition wall 113 can be relaxed. Thus, it is possible to prevent a sealing failure or destruction. Further, since it is not necessary to process the annular portion 113a and the upper disk portion 110 and the main body 12 to which the annular portion 113a is attached with high precision, a lower cost direct drive motor can be provided.
  • FIG. 27 is a cross-sectional view similar to FIG. 23 that works on the third embodiment. With respect to the present embodiment, different parts from the embodiment of FIG. 26 will be described, and parts having similar functions will be denoted by the same reference numerals and description thereof will be omitted.
  • the inner rotor, the stator, and the resolver are shown as a simple integrated force. These are the same as the configuration shown in FIG.
  • the annular portion 213a is hermetically coupled to the step portion 11 Oa of the upper disc portion 110 attached to the upper surface of the cylindrical main body 112 through an O-ring OR using bolts. is doing.
  • the lower portion of the annular portion 213a is a thin plate-like flange portion 213c extending radially outward in a wave shape, and is formed by TIG welding the upper end of the thin cylindrical portion 213b to the bent outer edge.
  • the thickness of the attachment portion of the annular portion 213a is thicker than the thickness of the flange portion 213c and the thin cylindrical portion 213b.
  • the lower end of the thin-walled cylindrical portion 213b is TIG welded to the holder 15 as in the above-described embodiment.
  • the annular portion 213a, the flange portion 213c, the thin cylindrical portion 213b, and the holder 15 constitute a partition wall 213. Further, the disk part 110, the main body 112, and the disk 10 constitute a housing.
  • the thickness of the flange portion (connecting portion) 213c is thinner than the thickness of the annular portion (attachment portion) 213a of the partition wall 213, and further, the annular portion 213a
  • the flange portion 213c that connects the thin cylindrical portion 213b is corrugated, so even if axial expansion and contraction stress occurs in the partition wall 213 due to dimensional accuracy, mechanical accuracy, and temperature changes, the flange portion By deforming 213c, axial stress and bending stress of the partition wall 213 can be relieved, thereby preventing seal failure and breakage. Further, since it is not necessary to process the annular portion 213a and the upper disk portion 110 and the main body 12 to which the annular portion 213a is attached with high accuracy, a lower cost direct drive motor can be provided.
  • FIG. 28 is a cross-sectional view similar to FIG. 23 that works on the fourth embodiment.
  • different parts from the embodiment of FIG. 26 will be described, and parts having similar functions will be denoted by the same reference numerals and description thereof will be omitted.
  • the configuration shown in FIG. However, the inner rotor, the stator, and the resolver are shown as a simple integrated force. These are the same as the configuration shown in FIG.
  • the annular portion 313a is hermetically coupled to the step portion 11 Oa of the upper disk portion 110 attached to the upper surface of the cylindrical main body 112 through an O-ring OR using bolts. is doing.
  • the cylindrical portion 313e has a shape in which a small cylindrical portion 313c and a large cylindrical portion 313b having substantially the same thickness are connected by a flange portion 313d.
  • the upper portion of the cylindrical portion 313c is an inner peripheral surface of the annular portion 313a. TIG welded.
  • the thickness of the annular portion 313a is thicker than the thickness of the cylindrical portion 313e.
  • the lower end of the large cylindrical portion 313b is TIG welded to the holder 15 as in the above-described embodiment.
  • the annular portion 313a, the tubular portion 313e, and the holder 15 constitute a partition wall 313.
  • the disk portion 110, the main body 112, and the disk 10 constitute a housing.
  • the thickness of the tubular portion 313e is thinner than the thickness of the annular portion (attachment portion) 313a of the partition wall 313, which causes dimensional accuracy, mechanical accuracy, and temperature changes. Therefore, even when an axial expansion / contraction stress is generated in the partition wall 313, the flange portion 313d is deformed, so that the axial stress and bending stress of the partition wall 313 can be relaxed. Destruction can be prevented. Further, since it is not necessary to process the annular portion 313a and the upper disk portion 110 and the main body 12 to which the annular portion 313a is attached with high accuracy, a lower cost direct drive motor can be provided.
  • the force described using the example using the surface magnet type 32-pole 36-slot outer rotor brushless motor is not limited to this type of motor.
  • any brushless motor can be applied, and other magnetic pole types such as a permanent magnet embedded type, other slot combinations, or an inner rotor type may be used.
  • a configuration may be adopted in which the number of rotor poles and the number of slots of adjacent axes in the axial direction are different.
  • the first axis is 32 poles and 36 slots
  • the second axis is 24 poles and 27 slots
  • the first and third axes are 32 poles and 3 6 slots.
  • the permanent magnet of the rotor is a neodymium (Nd-Fe-B) -based magnet, and the example in which nickel coating is applied as a coating for improving corrosion resistance has been described.
  • This material is not limited to the surface treatment, but is changed as appropriate depending on the environment in which it is used.
  • samarium-cobalt (Sm'Co) is difficult to demagnetize at high temperatures depending on the temperature conditions during beta-out System magnets should be used, and if used in ultra-vacuum, a titanium nitride coating with a high outgas barrier should be applied.
  • the yoke is made of low-carbon steel and explained with an example of nickel plating.
  • This material is not limited to the surface treatment, and is appropriately changed depending on the environment used. Especially for surface treatment, if it is used in ultra-vacuum, it should be applied with force with few pinholes such as Zen plating, clean soldering, and titanium nitride coating.
  • the method for fastening the permanent magnet to the yoke has been described using an example in which a non-magnetic wedge is tightened from the outer diameter side of the yoke with a screw, but it may be changed as appropriate depending on the environment in which it is used. May be bonded or other fastening methods.
  • bearings 19 and 19 have been described using an example of grease lubricated four-point contact ball bearings for vacuum, but this is not limited to this type, material and lubrication method. It can be changed as appropriate depending on conditions, rotational speed, etc., and it can be a cross roller bearing. In the case of a 4-axis coaxial motor, it can be supported by another bearing to further increase mechanical rigidity. If a multi-point contact bearing cannot be used, such as when rotating at high speeds, a bearing that supports the rotor of each shaft and another bearing may be configured to apply preload as deep groove ball bearings or angular bearings. When used in an ultra-vacuum, it is possible to use a metal-lubricated material that does not emit gas, such as a metal ring plated with a soft metal such as gold or silver.
  • the inner rotor functioning as a magnetic coupling has been described in the form of using a permanent magnet and a back yoke.
  • the material and shape of the permanent magnet and the back yoke are not limited thereto.
  • the number of poles may not be the same as that of the rotor, or may not be the same.
  • a salient pole that does not use a permanent magnet may be used.
  • an example using a resolver as an angle detector has been described. Therefore, it is appropriately changed, and for example, an optical rotary encoder may be used.
  • the material, shape, and manufacturing method of the structural parts and partition walls arranged in and out of the other partition walls are appropriately changed depending on the manufacturing cost, the environment used, the load conditions, the configuration, and the like.
  • the direct drive motor of the present embodiment can be used not only in a vacuum atmosphere but also in an atmosphere outside the atmosphere.
  • reactive gas for etching may be introduced into the vacuum chamber after evacuation, but in the direct drive motor of this embodiment, the inside and outside are shielded by the partition walls. Therefore, there is no possibility that the motor coil or the insulating material will be etched.
  • FIG. 29 is a perspective view of a frog redder arm type transfer device using a motor system including a direct drive motor that works in the present embodiment.
  • two direct drive motors Dl and D2 are connected in series.
  • a first arm A1 is connected to the rotor of the lower direct drive motor D1, and a first link L1 is pivotally connected to the tip of the first arm A1.
  • the second arm A2 is connected to the rotor of the upper direct drive motor D2, and the second link L2 is pivotally connected to the tip of the second arm A2.
  • the links LI and L2 are pivotally connected to a table T on which the wafer W is placed.
  • a wafer transfer arm placed in a vacuum chamber in a semiconductor manufacturing apparatus for example, an apparatus having a plurality of arms such as a scalar type or a frog redder type shown in the figure, particularly requires a plurality of rotary motors. It becomes.
  • the contact surface area with the outside world should be minimized, and at the same time, the number of mounting holes for motors, etc. should be minimized to make effective use of space.
  • a plurality of direct drive motors Dl and D2 are connected coaxially at the housing part, and the connection part is tightly joined with a seal (tightly joined by welding, O-ring, metal gasket, etc.), and the motor rotor is arranged. It is necessary to separate the open space from the housing external space.
  • a surface magnet type 32-pole 36-slot outer rotor type brushless type direct drive motor is used.
  • the slot combination of 32 poles and 36 slots is generally known to have a large magnetic attraction force in the radial direction and large vibration during rotation. is there . 2 n times (n is an integer) cancels out the magnetic attractive force in the radial direction. Therefore, vibration during rotation can be achieved without increasing the roundness and coaxiality of the stator and rotor and the rigidity of the mechanical parts. Can be made small and cogging is inherently small, so that a very smooth rotation can be obtained.
  • the electrical angle cycle is greater than the mechanical angle cycle, so positioning controllability is good.
  • FIG. 30 is a view of the configuration of FIG. 29 taken along the ⁇ - ⁇ line and viewed in the direction of the arrow.
  • the internal structure of the two-axis motor system will be described in detail.
  • the direct drive motor D1 will be described.
  • a hollow cylindrical main body 12 joined coaxially to the central opening 10a of the disk 10 installed on the surface plate G and fixed to each other by bolts 11 has a cup-shaped partition wall 13 attached to the upper end thereof.
  • the center of the main body 12 can be used for wiring to the stator.
  • the main body 12 and the disk 10 constitute a housing.
  • the partition wall 13 is made of stainless steel, which is a non-magnetic material, and extends from the peripheral edge of the wall portion 13a fitted to the main body 12 to the direct drive motors Dl and D2 in the axial direction. It consists of a thin cylindrical portion 13b. Therefore, the partition wall 13 is commonly used for the direct drive motors Dl and D2.
  • the lower end of the cylindrical portion 13b is joined to a holder 15 so as to be sealed by TIG welding, and the holder 15 is fixed to the disc 10 with bolts 16.
  • TIG welding a holder 15
  • the contact surface between the holder 15 and the disk 10 is grooved so that the seal member is inserted into the groove. After the seal member OR is inserted into the groove, the holder 15 and the disk 10 are tightened with the bolts 16 to tighten them. The part is separated from the atmosphere side.
  • the partition wall 13 is made of austenitic stainless steel SUS316, which has high corrosion resistance, and is less magnetic.
  • the holder 15 is also made of SU S316 because of its weldability with the partition wall 13.
  • the partition wall 13 and the holder 15 are hermetically joined, and the holder 15 and the disk 10 and the disk 10 and the surface plate G are hermetically sealed by O-rings OR, respectively. Therefore, the internal space surrounded by the disk 10 and the partition wall 13 is also hermetically sealed.
  • the partition wall 13 is not necessarily made of a nonmagnetic material.
  • the members may be hermetically sealed by electron beam welding or laser beam welding.
  • a bearing holder 17 is formed on the outer peripheral upper surface of the disk 10 in a body-like manner.
  • Bearing holder 17 The outer ring of a four-point contact ball bearing 19 used in a vacuum is fitted in a fitting manner and fixed by a bolt 20.
  • the inner ring of the bearing 19 is fixed to a double cylindrical cylindrical member 23 fitted with the first outer rotor member 21 and fixed by a bolt 22 that fastens the first outer rotor member 21 together.
  • the first outer rotor member 21 is rotatably supported with respect to the partition wall 13 by the cylindrical member 23 that supports the arm A1 (FIG. 29).
  • the first outer rotor member 21 and the cylindrical member 23 constitute an outer rotor.
  • the disc 10 (including the bearing holder 17) is made of austenitic stainless steel with high corrosion resistance.
  • the disc 10 also serves as a fitting and fixing device with the surface plate G, which is a chamber, and a sealing device.
  • a groove 10b for inserting the O-ring OR is provided on the lower surface thereof.
  • Bearing 19 is a four-point contact ball bearing that can apply radial, axial, and moment loads with a single bearing. By using this type of bearing, only one bearing for the direct drive motor D1 is required, so the two-axis coaxial motor system of the present invention can be made thinner.
  • the bearing 19 is made of martensite stainless steel, which has high corrosion resistance for both the inner and outer rings and can be hardened by quenching.
  • the rolling elements are ceramic balls, and the lubricant is vacuum grease that does not solidify even under vacuum.
  • the bearing 19 may be made of metal lubricated by plating a soft metal such as gold or silver on the inner ring and the outer ring so as not to release outgas even in vacuum, or a four-point contact ball. Since it is a bearing, the force that can receive the moment in the direction in which the first outer rotor member 21 tilts from the arm A1 is not limited to a four-point contact type, and cross roller, cross ball, and cross taper bearings can also be used. It can be used in a preloaded state, or fluorine film treatment (DFO) can be performed to improve lubricity.
  • DFO fluorine film treatment
  • the cylindrical member 23 has a surface for fitting and fixing the inner ring of the bearing 19.
  • the four-point contact ball bearing 19 is a very thin bearing, and its rotational accuracy and friction torque are greatly affected by differences in the accuracy and linear expansion coefficient of the assembled parts. Therefore, in the case of the present embodiment, the inner ring of the bearing 19 which is a rotating ring is tightly fitted or intermediately fitted to the cylindrical member 23 which is easy to obtain machining accuracy and whose linear expansion coefficient is substantially the same as the bearing ring material of the bearing.
  • the rotational accuracy of the bearing 19 decreases or the temperature increases. It is configured to prevent an increase in friction torque due to ascent.
  • the first outer rotor member 21 is composed of a permanent magnet 21a, an annular yoke 21b made of a magnetic material to form a magnetic path, and a non-magnetic material for mechanically fastening the permanent magnet 21a and the yoke 21b. It is made up of a wedge (not shown) that also has power.
  • Permanent magnet 21a has a configuration of 32 poles, each of which has 16 poles of N poles and S poles, each of which is a magnetic metal cage, and is divided into segments, each of which has a fan shape. .
  • Permanent magnet 21a is a high energy product, neodymium (Nd-Fe-B) based magnet, which is nickel-coated to enhance corrosion resistance.
  • the yoke 21b is made of low-carbon steel with high magnetism, and is nickel-plated to improve wear resistance and corrosion resistance after machining and to prevent wear during bearing replacement.
  • the first stator 29 is arranged so as to face the inner peripheral surface of the first outer rotor member 21.
  • the first stator 29 is attached to a cylindrically deformed lower portion of a flange portion 12a extending in the radial direction at the center of the main body 12, and is formed of a laminated material of electromagnetic steel plates. After the bobbin is fitted, the motor coil is concentrated.
  • the outer diameter of the first stator 29 is approximately the same as or smaller than the inner diameter of the partition wall 13.
  • the first inner rotor 30 is disposed adjacent to and parallel to the first stator 29.
  • the first inner rotor 30 is rotatably supported by ball bearings 33 with respect to a resolver holder 32 bolted to the outer peripheral surface of the main body 12.
  • a permanent magnet 30a is attached to the outer peripheral surface of the first inner rotor 30 via a knock 30b.
  • the permanent magnet 30a has a 32-pole configuration, and each of the 16 N-pole and S-pole magnets alternately has a magnetic metal force. Accordingly, the first inner rotor 30 is rotated in synchronism with the first outer rotor member 21 driven by the first stator 29.
  • the bearing 33 that rotatably supports the first inner rotor 30 is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing. Use this type of bearing Therefore, the direct drive motor D1 can be made thinner because only one bearing is required. Since the inside of the partition wall 13 is an atmospheric environment, a bearing using grease lubrication based on general bearing steel and mineral oil can be applied.
  • Permanent magnet 30a Since the inside of the partition wall 13 is an atmospheric environment, the permanent magnet 30a is bonded and fixed to the back yoke 30b.
  • Permanent magnet 30a is a high energy product neodymium (Nd-Fe-B) magnet with nickel coating to prevent demagnetization due to defects.
  • the yoke 30b is made of low-carbon steel with high magnetism, and is chromated to prevent fouling after machining.
  • Resolver rotors 34a and 34b are assembled as detectors for measuring the rotation angle on the inner circumference of the first inner rotor 30, and the resolver stator 35 is disposed on the outer circumference of the resolver holder 32 so as to face it.
  • the high-resolution incremental resolver stator 35 and the absolute resolver stator 36 that can detect the position of the rotor in one rotation are arranged in two layers. /! For this reason, even when the power is turned on, the rotational angle of the absolute resolver rotor 34b is known, no return to origin is required, and the electrical phase angle of the magnet with respect to the coil increases, so the drive current of the direct drive motor D1
  • the rotation angle used for control can be detected without using a pole detection sensor.
  • the resolver holder 32 and the first inner rotor 30 are made of carbon steel, which is a magnetic material, so that electromagnetic noise from the motor field and motor coil is not transmitted to the resolver stators 35, 36 that are angle detectors. In order to prevent fouling after processing and molding, it is chromated.
  • the high-resolution variable reluctance resolver used in the present embodiment has an incremental resolver rotor 34a having a plurality of slot teeth having a constant pitch, and the outer peripheral surface of the incremental resolver stator 35. Are provided with teeth shifted in phase with respect to the incremental resolver rotor 34a at each magnetic pole parallel to the rotation axis, and a coil is wound around each magnetic pole.
  • the incremental resolver rotor 34a rotates integrally with the first inner rotor 30, the reluctance between the magnetic poles of the incremental resolver stator 35 changes, and the fundamental wave component of the reluctance change is changed by one rotation of the incremental resolver rotor 34a.
  • the change in reluctance is detected so that there are n cycles, digitalized by the resolver control circuit shown in FIG. 31 and used as a position signal, so that the incremental resolver rotor 34a, that is, the first inner rotor 30
  • the rotation angle (or rotation speed) is detected.
  • the resolver rotors 34a and 34b and the resolver stators 35 and 36 constitute a detector.
  • the first inner rotor 30 rotates at the same speed by the magnetic coupling action with respect to the first outer rotor member 21, that is, the first outer rotor member 21 rotates.
  • the resolver alone has the bearing 33 without using any part of the motor that forms the motor. Therefore, the eccentricity of the resolver alone can be adjusted before the resolver coil is assembled into the housing. Since accuracy adjustment such as position adjustment can be performed, it is not necessary to provide adjustment holes and notches on both flanges of the housing.
  • the main body 12 constitutes a housing.
  • the cylindrical member 23 of the direct drive motor D1 described above extends upward to a position where it is superimposed on the direct drive motor D2, and the inner peripheral surface thereof is a four-point contact ball bearing 19 'used in a vacuum.
  • the outer ring is fitted and fitted with bolts 20 '.
  • the inner ring of the bearing 19 ′ is fixed by a bolt 22 ′ that fits around the circumferential surface of a double cylindrical ring-shaped member 23 ′ and fastens the second outer rotor member 21 ′ together.
  • the second outer rotor member 21 ′ is rotatably supported with respect to the partition wall 13 by a ring-shaped member 23 ′ that supports the arm A 2 (FIG. 29).
  • the second outer rotor member 21 ′ and the ring-shaped member 23 ′ constitute an outer rotor.
  • Bearing 19 is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing.
  • the inner and outer rings are made of martensitic stainless steel, which has high corrosion resistance and can be hardened by quenching.
  • the rolling elements are ceramic balls, and the lubricant is vacuum grease that does not solidify even under vacuum.
  • the bearing 19 ' is plated with a soft metal such as gold or silver on the inner and outer rings, but it is possible to use a metal-lubricated one that does not release outgas, and since it is a four-point contact ball bearing, it can receive a moment in the direction in which the first outer rotor member 21 from the arm A1 tilts.
  • Force Not limited to the four-point contact type, cross rollers, cross balls, and cross taper bearings can also be used. They can be used under preload conditions, or fluorine film treatment (DFO) can be performed to improve lubricity. ! ⁇ .
  • the ring-shaped member 23 ' has a surface for fitting and fixing the inner ring of the bearing 19'.
  • the four-point contact ball bearing 19 ' is a very thin bearing, and its rotational accuracy and friction torque are greatly affected by differences in the accuracy of the assembled parts and the linear expansion coefficient. Therefore, in the case of the present embodiment, the inner ring of the bearing 19 ′ has an interference fit or an intermediate fit on the yoke 21b which is easy to obtain machining accuracy and whose linear expansion coefficient is substantially the same as the bearing ring material of the bearing.
  • the outer ring is fitted with an austenitic stainless steel bearing holder or aluminum boss to prevent a decrease in rotational accuracy of the bearing 19 'and an increase in friction torque due to temperature rise.
  • the second outer rotor member 21 ' mechanically fastens the permanent magnet 21a', the annular yoke 21b 'made of a magnetic material to form a magnetic path, and the permanent magnet 21a' and the yoke 21b '. It is made up of a wedge (not shown) that also has non-magnetic strength.
  • Permanent magnet 21a ' is a segment type with a configuration of 32 poles, each consisting of 16 magnets of N poles and S poles alternately made of magnetic metal, and each pole is segmented.
  • the inner and outer diameter arc centers are the same, but the tangential intersection of the circumferential end face is closer to the permanent magnet 21a ', so that the wedge is tightened from the outer diameter side of the yoke 2 lb' by tightening the screw with the permanent magnet 21a.
  • the permanent magnet 21a ' is a neodymium (Nd-Fe-B) magnet with a high energy product, and has a nickel coating to improve corrosion resistance.
  • Yoke 21b ' is made of low-carbon steel with high magnetism and is plated with nickel to improve wear resistance and corrosion resistance and prevent wear during bearing replacement after processing and molding.
  • the second stator 29 ' is disposed so as to face the inner peripheral surface of the second outer rotor member 21'.
  • the second stator 29 ' is located at the center of the main body 12. Attached to the cylindrically deformed upper portion of the flange portion 12a extending in the radial direction, it is made of a laminated material of electromagnetic steel plates, and a motor coil is concentrated around each salient pole after a bobbin is fitted as an insulation treatment Has been.
  • the outer diameter of the second stator 29 ′ is substantially the same as or smaller than the inner diameter of the partition wall 13.
  • a second inner rotor 30 ' is disposed adjacent to and parallel to the second stator 29'.
  • the second inner rotor 30 ′ is rotatably supported by a ball bearing 33 ′ with respect to a resolver holder 32 ′ that is bolted to the outer peripheral surface of the main body 12.
  • a permanent magnet 30a ′ is attached to the outer peripheral surface of the second inner rotor 30 ′ via a knock yoke 30b ′.
  • the permanent magnet 30a ′ has a configuration of 32 poles, like the permanent magnet 21a ′ of the second outer rotor member 21 ′, and 16 magnets of N poles and S poles are alternately made of magnetic metal. Accordingly, the second inner rotor 30 ′ is driven to rotate in synchronization with the second outer rotor member 21 ′ by the second stateer 29 ′.
  • the bearing 33 'that rotatably supports the first inner rotor 30' is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing. By using this type of bearing, only one bearing is required, so the direct drive motor D2 can be made thinner. Since the inside of the partition wall 13 is an atmospheric environment, a bearing using grease lubrication based on general bearing steel and mineral oil can be applied.
  • the permanent magnet 30a ′ Since the inside of the partition wall 13 is an atmospheric environment, the permanent magnet 30a ′ is bonded and fixed to the back yoke 30b ′.
  • the permanent magnet 30a ' is a neodymium (Nd-Fe-B) magnet with a high energy product and is coated with nickel to prevent demagnetization due to defects.
  • Yoke 30b ' is made of low-carbon steel with high magnetism, and is chromated to prevent fouling after machining.
  • Resolver rotors 34a 'and 34b' are assembled on the inner circumference of the second inner rotor 30 'as detectors for measuring the rotation angle, and the outer circumference of the resolver holder 32' is opposed to it.
  • a high resolution incremental resolver stator 35 and an absolute resolver stator 36 ′ that can detect which position of the rotor is in one rotation in this embodiment. are arranged in two layers. Therefore, even when the power is turned on, the rotation angle of the absolute resolver rotor 34b ' Since the electrical phase angle of the magnet with respect to the coil is ineffective, the relative rotational angle of the direct drive motor D2 can be achieved without using a pole detection sensor.
  • the resolver holder 32 and the second inner rotor 30 are magnetic bodies so that electromagnetic noise from the motor field and the motor coil is not transmitted to the resolver stators 35 'and 36' which are angle detectors. Carbon steel is used as a material, and chromate plating is applied after processing to prevent fouling.
  • the second inner rotor 30 ′ rotates at the same speed by the magnetic coupling action with respect to the second outer rotor member 21 ′. Can be detected through the partition wall 13.
  • the resolver alone has the bearing 33 ′ without using the parts forming the motor, and therefore the eccentricity adjustment with the resolver alone is not performed before the housing is assembled. Because it is possible to adjust the accuracy of the housing position, etc., it is not necessary to provide a separate adjustment hole or notch on both flanges of the housing.
  • the incremental resolver rotor 34a ′ has a plurality of slot tooth rows having a constant pitch, and the outer circumference of the incremental resolver stator 35.
  • the surface is provided with teeth that are shifted in phase with respect to the incremental resolver rotor 34a ′ at each magnetic pole parallel to the rotation axis, and a coil is wound around each magnetic pole.
  • the reluctance change is detected so that the wave component has n cycles, is digitalized by the resolver control circuit shown in FIG. 31 and used as a position signal, so that the incremental resolver rotor 34a ′, that is, the first 2The rotation angle (or rotation speed) of the inner rotor 30 'is detected.
  • the resolver rotors 34a, 34b and the resolver stators 35, 36 constitute a detector.
  • the outer rotor of the direct drive motor D2 (the second outer rotor 21 and the ring-shaped member 23), the outer rotor of the other direct drive motor D1 (the first outer Side rotor 21 and cylindrical member 23) are supported by bearing 19 ', so if the outer rotor of direct drive motor D2 is removed, the powerful outer rotor is supported! If the outer rotor of the direct drive motor D1 can be exposed and then removed, the bearing 19 supporting the powerful outer rotor can be exposed, and these can be easily inspected and removed, thus improving maintainability. Furthermore, since only the outer rotor outside the partition wall 13 has to be removed, a leak check or the like is not required at the time of reassembly without the need to remove the partition wall structure, thereby improving the assemblability.
  • the first stator 29 and the second stator 29 ' are vertically arranged around the flange portion 12a, and the resolver is arranged radially inward thereof.
  • the main body 12 has a hollow structure, and the flange portion 12a has at least one radial through hole 12d communicating with the center through which the motor wiring is drawn out to the center of the main body 12. It has a structure.
  • at least one notch 12e, 12e is provided at each end of the main body 12, and the resolver wiring is drawn out to the center of the main body 12 through these.
  • the angle of the stator and resolver can be adjusted. Therefore, if a separate facility for rotationally driving the reference outer rotor is prepared, the angle of the resolver relative to the stator can be adjusted with high accuracy by setting the main body 12 incorporating the stator and resolver in the facility. Therefore, it is possible to prevent the angle positioning accuracy from being lowered due to the deviation of the commutation, and to improve the compatibility of the drive control circuit with the two-axis coaxial motor of the present invention.
  • FIG. 32 is a block diagram showing a drive circuit for the direct drive motors Dl and D2.
  • the motor control circuit DMC1 for the direct drive motor D1 and the motor control circuit DMC2 for the direct drive motor D2 are each sent from the CPU to the three-layer amplifier (AMP).
  • the drive signal is output, and the drive current is supplied to the direct drive motors Dl and D2 with a three-layer amplifier (AMP) force.
  • AMP three-layer amplifier
  • the absolute resolver stators 36 and 36 ' that detect the absolute position of one rotation of the rotating shaft and the incremental resolver stators 35 and 35' that detect the rotational position with finer resolution are used in this embodiment. Since the variable reluctance resolver is used, the rotational position control of the outer rotor members 21 and 21, that is, the arms Al and A2, can be performed with high accuracy.
  • FIG. 33 is a cross-sectional view similar to FIG. 30 that is helpful for the second embodiment.
  • FIG. 33 different parts from those of the embodiments of FIGS. 30 to 32 will be described, and parts having similar functions will be denoted by the same reference numerals and description thereof will be omitted.
  • the annular portion 113a is airtightly bolted to the step portion 11Oa of the upper disc portion 110 attached to the upper surface of the cylindrical main body 112 via an O-ring OR. ing.
  • the lower portion of the annular portion 113a is a thin flange portion 113c extending radially outward, and the upper end of the thin cylindrical portion 113b is TIG welded to the bent outer edge.
  • the thickness of the attachment portion of the annular portion 113a is thicker than the thickness of the flange portion 113c and the thin cylindrical portion 113b.
  • the lower end of the thin cylindrical portion 113b is TIG welded to the holder 15 in the same manner as in the above-described embodiment.
  • the annular portion 113a, the flange portion 113c, the thin cylindrical portion 113b, and the holder 15 constitute a partition wall 113.
  • the disc 110, the main body 112, and the disc 10 are used for nosing. Constitute.
  • the upper surface of the upper disk part 110 is closed by the lid member 101, and the bearing holder 107 attached to the outer periphery thereof supports the bearing 19 ′. Therefore, the cylindrical member 123 of the direct drive motor D1 does not extend to the direct drive motor D2 side.
  • the upper disk part 110, the lid member 101, and the bearing holder 107 have high corrosion resistance and are made of austenitic stainless steel.
  • the outer diameter portion 110a of the mounting seat surface of the bearing holder 107 in the upper disc portion 110 is located radially inward from the thin cylindrical portion 113b. Therefore, if the bearing holder 107 is removed from the upper disc portion 110, 2
  • the two outer rotor members 21 and 21 ′ can be removed upward without disassembling the upper disk portion 110. Therefore, it is possible to facilitate work that does not require disassembly of the airtight structure during maintenance. That is, the maximum outer diameter portion of the housing (main body 12 and upper disc portion 110) supporting the partition wall structure is the outer rotor of the direct drive motors D1 and D2 (the outer rotor members 21 and 21 ′ and the ring-shaped member 23).
  • the outer rotor of the direct drive motors D1 and D2 can be removed from the bulkhead 13 by removing the bearing holder 107 from the housing, which facilitates inspection and removal. , Maintenance is also improved. Furthermore, since only the bearing holder 107 need be removed, there is no need to check for leaks when reassembling without the need to remove the bulkhead structure, and assemblability is improved.
  • the thickness of the flange portion 113c is thinner than the thickness of the annular portion 113a of the partition wall 113. Therefore, due to dimensional accuracy, mechanical accuracy, and temperature change, Even when the axial expansion and contraction stress is generated in the partition wall 113, the thin flange portion 113c is deformed, so that the axial stress and bending stress of the partition wall 113 can be relieved. Can be prevented. In addition, since it is not necessary to process the annular portion 113a and the upper disk portion 110 and the main body 12 to which the annular portion 113a is attached with high accuracy, a lower cost direct drive motor can be provided.
  • the force described using the example using the surface magnet type 32-pole 36-slot outer rotor type brushless motor is not limited to this type of motor.
  • a configuration may be adopted in which the number of rotor poles and the number of slots of adjacent axes in the axial direction are different.
  • the first axis is 32 poles and 36 slots
  • the second axis is 24 poles and 27 slots
  • the first axis and the third axis are 32 poles and 3 6 slots. If the two axes and the fourth axis are configured with 24 poles and 27 slots, mutual interference such as generation of thrust in the rotational direction to the rotor and magnetic coupling device due to the magnetic field of each axis can be prevented.
  • the rotor permanent magnet is a neodymium (Nd-Fe-B) -based magnet, and nickel coating is used as an example of coating to improve corrosion resistance.
  • This material is not limited to the surface treatment, but is changed as appropriate depending on the environment in which it is used.
  • samarium-cobalt (Sm'Co) is less susceptible to high-temperature demagnetization depending on the temperature conditions during beta-out.
  • System magnets should be used, and if used in ultra-vacuum, a titanium nitride coating with a high outgas barrier should be applied.
  • the yoke is made of low-carbon steel and explained with an example of nickel plating.
  • This material is not limited to the surface treatment, and is appropriately changed depending on the environment used. Especially for surface treatment, if it is used in ultra-vacuum, it should be applied with force with few pinholes such as Zen plating, clean soldering, and titanium nitride coating.
  • the method for fastening the permanent magnet to the yoke has been described using an example in which a non-magnetic wedge is tightened from the outer diameter side of the yoke with a screw, but it may be changed as appropriate depending on the environment in which it is used. May be bonded or other fastening methods.
  • bearings 19 and 19 have been described using an example of grease lubricated four-point contact ball bearings for vacuum. It can be changed as appropriate depending on conditions, rotational speed, etc., and it can be a cross roller bearing. In the case of a 4-axis coaxial motor, it can be supported by another bearing to further increase mechanical rigidity. If a multi-point contact bearing cannot be used, such as when rotating at high speeds, a bearing that supports the rotor of each axis and another bearing is a deep groove ball bearing. It may be a structure that applies preload as a receiver, and when used in ultra-vacuum, use a metal-lubricated one that does not release gas, such as plating a soft metal such as gold or silver on the race. May be.
  • the inner rotor functioning as a magnetic coupling has been described as using a permanent magnet and a back yoke.
  • the material and shape of the permanent magnet and the back yoke are not limited thereto.
  • the number of poles may not be the same as that of the rotor, or may not be the same.
  • a salient pole that does not use a permanent magnet may be used.
  • a resolver is used as an angle detector
  • it can be appropriately changed depending on manufacturing cost and resolution, and for example, an optical rotary encoder may be used.
  • the material, shape, and manufacturing method of the structural parts and partition walls arranged in and out of the other partition walls are appropriately changed depending on the manufacturing cost, the environment used, the load conditions, the configuration, and the like.
  • the motor system of the present embodiment can be used not only in a vacuum atmosphere but also in an atmosphere outside the atmosphere.
  • the reactive gas for etching may be introduced into the vacuum chamber after evacuation.
  • the inside and the outside are shielded by the partition walls. Also, there is no risk of the motor coil or insulation material being etched.
  • FIG. 34 is a perspective view of a frog redder arm type transport device using a direct drive motor that works in this embodiment. is there.
  • four direct drive motors Dl, D2, D3, and D4 are connected in series.
  • the first arm A1 is connected to the rotor of the lowermost direct drive motor D1, and the first link L1 is pivotally connected to the tip of the first arm A1.
  • the second arm A2 is connected to the rotor of the direct drive motor D2 thereon, and the second link L2 is pivotally connected to the tip of the second arm A2.
  • first arm A1 is connected to the rotor of the upper direct drive motor D3, and a first link L1 'is pivotally connected to the tip of the first arm A1.
  • second arm A2 is connected to the rotor of the uppermost direct drive motor D4, and the second link L2 ′ is pivotally connected to the tip of the second arm A2.
  • the links LI and L2 are pivotally connected to the table T on which the wafer W is placed, and the links Ll 'and L2' are pivoted to the table T 'on which another wafer W is placed. It is linked movably.
  • the table T ' also rotates in the same direction, and if the powerful rotor rotates in the opposite direction, the table T' becomes a direct drive motor. It approaches or separates from D3 and D4. Therefore, if the direct drive motors D3 and D4 are rotated at an arbitrary angle, the wafer W can be transferred to an arbitrary two-dimensional position within the range where the table T ′ can reach.
  • a plurality of rotations are particularly required.
  • a motor is required.
  • the surface area of contact with the outside world should be minimized, and at the same time, the number of mounting holes for motors, etc., should be minimized to make effective use of space.
  • a surface magnet type 32-pole 36-slot outer rotor brushless type direct drive motor is used.
  • the slot combination of 32 poles and 36 slots is generally known to have a large magnetic attraction force in the radial direction and large vibration during rotation. is there . 2 n times (n is an integer) cancels out the magnetic attractive force in the radial direction. Therefore, vibration during rotation can be achieved without increasing the roundness and coaxiality of the stator and rotor and the rigidity of the mechanical parts. Can be made small and cogging is inherently small, so that a very smooth rotation can be obtained.
  • the electrical angle cycle is greater than the mechanical angle cycle, so positioning controllability is good.
  • the direct drive motor that drives a robot apparatus without using a speed reducer as in the present invention.
  • the direct drive motor having a thin and large diameter and narrow width as in the present invention is used. Is preferred.
  • FIG. 35 is a diagram of the configuration of FIG. 34 cut along the ⁇ - ⁇ line and viewed in the direction of the arrow.
  • the internal structure of the 4-axis motor system will be described in detail with reference to FIG. First, the direct drive motor D1 will be described.
  • the hollow cylindrical first main bodies 12 are fixed to each other by bolts 11 fitted into the central opening 10a of the disc 10 installed on the surface plate G.
  • the first body 12 has a reduced diameter portion 12h on the outer periphery of its upper end.
  • the second main body 112 having a shape similar to that of the first main body 12 has a large-diameter portion 112h on the inner periphery of the lower end thereof.
  • the first main body 12 and the second main body 112 are coaxially connected by being fitted to the diameter portion 112h.
  • the center of the main bodies 12 and 112 can be used to pass wiring to the stator.
  • the first main body 12, the disk 10 and the second main body 112 constitute a housing.
  • a disc member 110 On the upper surface of the second main body 112, a disc member 110 whose center opening is closed by the lid member 101 is attached.
  • the disc member 110 is bolted to the lower surface of the upper end of the partition wall 13 and has a bearing holder 107 attached to the outer periphery.
  • the disc member 110, the lid member 101, and the bearing holder 107 are made of austenitic stainless steel having high corrosion resistance. The bearing holder 107 will be described later.
  • the partition wall 13 is made of stainless steel, which is a non-magnetic material, and passes through the direct-drive motors D4, D3, D2, and D1 in the axial direction from the periphery of the thick disk portion 13a attached to the disk member 110. And a thin cylindrical portion 13b extending. A flange 13c extending from the lower surface of the disk portion 13a is TIG welded to the upper end of the cylindrical portion 13b. That is, the partition wall 13 is commonly used for the direct drive motors D1 to D4.
  • the lower end of the cylindrical portion 13b is joined to the holder 15 so as to be sealed by TIG welding, and the holder 15 is fixed to the disc 10 with bolts 16.
  • the contact surface between the holder 15 and the disk 10 is provided with a groove force to fit the seal member. After the seal member OR is fitted into the groove, the holder 15 and the disk 10 are fastened by the bolt 16. , Atmospheric side force is also separated from the fastening part.
  • the partition wall 13 is made of austenitic stainless steel SUS316, which has high corrosion resistance and is particularly low in magnetism.
  • the holder 15 is also made of SUS316 because of its weldability with the partition wall 13.
  • the disk member 110 and the partition wall 13, and the partition wall 13 and the holder 15 are hermetically joined, and the holder 15 and the disk 10 and the disk 10 and the surface plate G are respectively O- Airtight by ring OR. Therefore, the external force of the internal space surrounded by the disk 10, the disk member 110, and the partition wall 13 is also airtight.
  • the partition wall 13 is not necessarily made of a nonmagnetic material. Further, instead of using an O-ring OR to seal the air, the members may be sealed by electron beam welding or laser beam welding.
  • a bearing holder 17 On the upper surface of the outer periphery of the disc 10, a bearing holder 17 is formed in a body-like manner. Bearing ho The outer ring of a four-point contact ball bearing 19 used in a vacuum is fitted to the rudder 17 in a fitting manner and fixed with bolts 20. On the other hand, the inner ring of the bearing 19 is fixed to a double cylindrical cylindrical member 23 including the first outer rotor member 21 and is fixed by a bolt 22 that fastens the first outer rotor member 21 together. Yes. That is, the first outer rotor member 21 is rotatably supported with respect to the partition wall 13 by the cylindrical member 23 that supports the arm A1 (FIG. 34).
  • the first outer rotor member 21 and the cylindrical member 23 constitute an outer rotor.
  • the disc 10 and the bearing holder 17 are made of austenitic stainless steel having high corrosion resistance.
  • the disc 10 also serves as a fitting and fixing device with the surface plate G that is a chamber, and has a lower surface.
  • a groove 10b is provided to fill the O-ring OR.
  • Bearing 19 is a four-point contact ball bearing that can apply radial, axial, and moment loads with a single bearing.
  • the direct drive motor D1 requires only one bearing, so the four-axis coaxial motor system of the present invention can be made thinner.
  • the bearing 19 is made of martensite stainless steel, which has high corrosion resistance for both the inner and outer rings and can be hardened by quenching.
  • the rolling elements are ceramic balls, and the lubricant is vacuum grease that does not solidify even under vacuum.
  • the bearing 19 may be made of metal lubricated by plating a soft metal such as gold or silver on the inner ring and the outer ring so as not to release outgas even in vacuum, or a four-point contact ball. Since it is a bearing, the force that can receive the moment in the direction in which the first outer rotor member 21 tilts from the arm A1 is not limited to a four-point contact type, and cross roller, cross ball, and cross taper bearings can also be used. It can be used in a preloaded state, or fluorine film treatment (DFO) can be performed to improve lubricity.
  • DFO fluorine film treatment
  • the first outer rotor member 21 includes a permanent magnet 21a, an annular yoke 21b made of a magnetic material to form a magnetic path, and a non-magnetic material for mechanically fastening the permanent magnet 21a and the yoke 21b. It is made up of a wedge (not shown) that also has power.
  • Permanent magnet 21a is a segment type divided into poles, each of which has a sector shape, consisting of 16 magnetic poles each consisting of 16 poles with N poles and S poles. .
  • the inner and outer diameter arc centers are the same, but by setting the tangent intersection of the circumferential end face closer to the permanent magnet 21a, the wedge is moved to the outer diameter of the yoke 21b.
  • the permanent magnet 21a is fastened to the yoke 21b by screwing up from the side. With this configuration, the permanent magnet can be fastened without using a fixing member that generates outgas, such as an adhesive.
  • Permanent magnet 21a is a high energy product, neodymium (Nd-Fe-B) based magnet, which is nickel coated to enhance corrosion resistance.
  • the yoke 21b is made of low-carbon steel with high magnetism, and is nickel-plated to improve wear resistance and corrosion resistance after processing and molding, and to prevent wear during bearing replacement.
  • the first stator 29 is arranged so as to face the inner peripheral surface of the first outer rotor member 21.
  • the first stator 29 is attached to a cylindrically deformed lower portion of a flange portion 12a extending in the radial direction at the center of the main body 12, and is formed of a laminated material of electromagnetic steel plates. After the bobbin is fitted, the motor coil is concentrated.
  • the outer diameter of the first stator 29 is approximately the same as or smaller than the inner diameter of the partition wall 13.
  • a first inner rotor 30 is disposed adjacent to and parallel to the first stator 29.
  • the first inner rotor 30 is rotatably supported by ball bearings 33 with respect to a resolver holder 32 bolted to the outer peripheral surface of the main body 12.
  • a permanent magnet 30a is attached to the outer peripheral surface of the first inner rotor 30 via a knock 30b.
  • the permanent magnet 30a has a 32-pole configuration, and each of the 16 N-pole and S-pole magnets alternately has a magnetic metal force. Accordingly, the first inner rotor 30 is rotated in synchronism with the first outer rotor member 21 driven by the first stator 29.
  • the bearing 33 that rotatably supports the first inner rotor 30 is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing. By using this type of bearing, it is possible to reduce the thickness of the direct drive motor D1 because only one bearing is required. Since the interior of the partition wall 13 is an atmospheric environment, a bearing using grease lubrication based on general bearing steel and mineral oil can be applied.
  • Permanent magnet 30a Since the inside of the partition wall 13 is an atmospheric environment, the permanent magnet 30a is bonded and fixed to the back yoke 30b.
  • Permanent magnet 30a is a high energy product neodymium (Nd-Fe-B) magnet with nickel coating to prevent demagnetization due to defects.
  • Yoke 30b is made of low-carbon steel with high magnetic properties, and is chromated to prevent fouling after machining. is doing.
  • the resolver rotors 34a and 34b are assembled as detectors for measuring the rotation angle on the inner periphery of the first inner rotor 30, and the resolver stator 35 is disposed on the outer periphery of the resolver holder 32 so as to face it.
  • the high-resolution incremental resolver stator 35 and the absolute resolver stator 36 that can detect the position of the rotor in one rotation are arranged in two layers. /!
  • the resolver holder 32 and the first inner rotor 30 are made of carbon steel, which is a magnetic material, so that electromagnetic noise from the motor field and motor coil is not transmitted to the resolver stators 35, 36 that are angle detectors. In order to prevent fouling after processing and molding, it is chromated.
  • the high-resolution variable reluctance resolver used in the present embodiment has an incremental resolver rotor 34a having a plurality of slot teeth having a constant pitch, and the outer peripheral surface of the incremental resolver stator 35. Are provided with teeth shifted in phase with respect to the incremental resolver rotor 34a at each magnetic pole parallel to the rotation axis, and a coil is wound around each magnetic pole.
  • the incremental resolver rotor 34a rotates together with the first inner rotor 30, the reluctance between the incremental resolver stator 35 and the magnetic pole changes, and the fundamental wave component of the change in reluctance becomes n cycles in one revolution of the incremental resolver rotor 34a.
  • the change in reluctance is detected, digitized by the resolver control circuit shown in FIG. 36, and used as a position signal, so that the rotational angle of the incremental resolver rotor 34a, that is, the first inner rotor 30 is (Or rotation speed) is detected.
  • the resolver rotors 34a and 34b and the resolver stators 35 and 36 constitute a detector.
  • the first outer rotor member 21 rotates at the same speed, that is, rotates with the first outer rotor member 21 by the magnetic coupling action.
  • the rotation angle of 21 can be detected through the partition wall 13.
  • the resolver alone has the bearing 33 without using the parts forming the motor, and therefore, the eccentricity adjustment with the resolver alone is performed before the resolver coil is assembled into the housing. Since accuracy adjustment such as position adjustment can be performed, there is no need to provide adjustment holes or notches on both flanges of the housing.
  • the first main body 12 constitutes housing.
  • the cylindrical member 23 of the direct drive motor D1 described above extends upward to a position where it overlaps with the direct drive motor D2, and the four-point contact ball bearing used in the vacuum on the inner peripheral surface 19
  • the outer ring of ' is fitted in and fitted with bolts 20'.
  • the inner ring of the bearing 19 ' is fixed by a bolt 22' that fits around the circumferential surface of a double cylindrical ring-shaped member 23 'and fastens the second outer rotor member 21' together.
  • the second outer rotor member 21 ′ is rotatably supported with respect to the partition wall 13 by the ring-shaped member 23 ′ that supports the arm A2 (FIG. 34).
  • the second outer rotor member 21 ′ and the ring-shaped member 23 ′ constitute an outer rotor.
  • Bearing 19 is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing.
  • the direct drive motor D2 requires only one bearing, so the four-axis coaxial motor of the present invention can be made thinner.
  • the inner and outer rings are made of martensitic stainless steel, which has high corrosion resistance and can be hardened by quenching.
  • the rolling elements are ceramic balls, and the lubricant is vacuum grease that does not solidify even under vacuum.
  • the bearing 19 ' may be made of a metal lubrication that is plated with a soft metal such as gold or silver on the inner ring and the outer ring and does not release outgas even in vacuum, or a four-point contact ball bearing. Therefore, the force that can receive the moment in the tilting direction of the second outer rotor member 21 from the arm A1 is not limited to the four-point contact type, and cross rollers, cross balls, and cross taper bearings can also be used. It can be used in the state, or fluorine coating (DFO) can be applied to improve lubricity.
  • DFO fluorine coating
  • the ring-shaped member 23 ' has a surface for fitting and fixing the inner ring of the bearing 19'.
  • Four-point contact ball bearing 19 ' is a very thin bearing, and the accuracy and linear expansion of the assembled parts Rotational accuracy and friction torque are greatly affected by the number difference. Therefore, in the case of the present embodiment, the inner ring of the bearing 19 ′, which is a rotating ring, is tightly fitted or intermediately fitted to a ring-shaped member 23 ′, which is easy to obtain machining accuracy and whose linear expansion coefficient is substantially the same as the bearing ring material of the bearing.
  • the second outer rotor member 21 ' mechanically fastens the permanent magnet 21a', the annular yoke 21b 'made of a magnetic material to form a magnetic path, and the permanent magnet 21a' and the yoke 21b '. It is made up of a wedge (not shown) that also has non-magnetic strength.
  • Permanent magnet 21a ' is a segment type with a configuration of 32 poles, each consisting of 16 magnets of N poles and S poles alternately made of magnetic metal, and each pole is segmented.
  • the permanent magnet 21a ' is a neodymium (Nd-Fe-B) magnet with a high energy product, and has a nickel coating to improve corrosion resistance.
  • Yoke 21b ' is made of low-carbon steel with high magnetism and is plated with nickel to improve wear resistance and corrosion resistance after machining and to prevent wear during bearing replacement.
  • the second stator 29 ' is disposed so as to face the inner peripheral surface of the second outer rotor member 21'.
  • the second stator 29 ′ is attached to a cylindrically deformed upper portion of the flange portion 12 a extending in the radial direction at the center of the first main body 12, and is formed of a laminated material of electromagnetic steel plates, and is attached to each salient pole.
  • the motor coil is concentrated after the bobbin is fitted as an insulation treatment.
  • the outer diameter of the second stator 29 is substantially the same as or smaller than the inner diameter of the partition wall 13.
  • a second inner rotor 30 ' is disposed radially inward of the second stator 29'.
  • the second inner rotor 30 ′ is rotatably supported by a ball bearing 33 ′ with respect to a resolver holder 32 ′ bolted to the outer peripheral surface of the first main body 12.
  • the permanent magnet 30a ′ is attached via the back yoke 30b ′.
  • the permanent magnet 30a ′ has a configuration of 32 poles, as in the case of the permanent magnet 21a ′ of the second outer rotor member 21 ′, and is composed of 16 N-pole and 16 S-pole magnets alternately made of magnetic metal. Accordingly, the second inner rotor 30 ′ is rotationally driven by the second stator 29 ′ in synchronization with the second outer rotor member 21 ′.
  • the bearing 33 'that rotatably supports the second inner rotor 30' is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing. By using this type of bearing, only one bearing is required, so the direct drive motor D2 can be made thinner. Since the inside of the partition wall 13 is an atmospheric environment, a bearing using grease lubrication based on general bearing steel and mineral oil can be applied.
  • the permanent magnet 30a ′ Since the inside of the partition wall 13 is an atmospheric environment, the permanent magnet 30a ′ is bonded and fixed to the back yoke 30b ′.
  • the permanent magnet 30a ' is a neodymium (Nd-Fe-B) magnet with a high energy product and is coated with nickel to prevent demagnetization due to defects.
  • Yoke 30b ' is made of low-carbon steel with high magnetism, and is chromated to prevent fouling after machining.
  • a resolver rotor 34b ' is assembled on the inner periphery of the second inner rotor 30' as a detector for measuring the rotation angle.
  • the resolver stator 32 ' is arranged on the outer periphery of the resolver holder 32' so as to face it.
  • a high-resolution incremental resolver stator 35, and an absolute resolver stator 36 ' that can detect the position of the rotor in one rotation are divided into two. Arranged in layers.
  • the resolver holder 32 'and the second inner rotor 30' are magnetic bodies so that electromagnetic noise from the motor field and the motor coil is not transmitted to the resolver stators 35 'and 36' that are angle detectors. Carbon steel is used as a material, and chromate plating is applied after processing to prevent fouling.
  • the magnetic coupling action is applied to the second outer rotor member 21 ′.
  • the second inner rotor 30 ′ rotates at the same speed, that is, rotates around, so that the rotation angle of the second outer rotor member 21 ′ can be detected through the partition wall 13.
  • the resolver itself has the bearing 33 ′ without using the parts forming the motor, and therefore, the eccentricity adjustment with the resolver alone is not performed before the housing is assembled.
  • the housing can be adjusted for accuracy, such as adjusting the position of the housing, so there is no need to provide additional adjustment holes or notches on both flanges.
  • the incremental resolver rotor 34a ′ has a plurality of slot tooth rows having a constant pitch, and the outer circumference of the incremental resolver stator 35.
  • the surface is provided with teeth that are shifted in phase with respect to the incremental resolver rotor 34a ′ at each magnetic pole parallel to the rotation axis, and a coil is wound around each magnetic pole.
  • the reluctance change is detected, digitalized by the resolver control circuit shown in FIG. 36, and used as a position signal, so that the incremental resolver rotor 34a ′, that is, the first inner The rotation angle (or rotation speed) of the rotor 30 is detected.
  • the resolver rotors 34a, 34b and the resolver stators 35, 36 constitute a detector.
  • the first body 12 has a hollow structure, and the flange portion 12a has at least one radial through hole 12d communicating with the center through which the motor wiring is routed.
  • the structure is drawn out to the center of
  • at least one notch 12e, 12e is provided at each end of the first main body 12, and the resolver wiring is drawn out to the center of the first main body 12 through these notches.
  • the housing side force can also be arranged in the order of the resolver of the direct motor D1, the stator 29, the stator 29 of the direct motor D2, and the resolver in this order.
  • the angle of the stator and resolver can be adjusted. So, if you prepare a separate equipment to drive the outer rotor as a reference, By setting the first main body 12 incorporating the stator and resolver into the equipment, the angle of the resolver relative to the stator can be adjusted with high accuracy, preventing a decrease in angular positioning accuracy due to misalignment, and The compatibility of the drive control circuit with the four-axis coaxial motor of the invention can be enhanced.
  • FIG. 37 is a block diagram showing drive circuits for the direct drive motors Dl and D2.
  • the motor control circuit DMC1 for the direct drive motor D1 and the motor control circuit DMC2 for the direct drive motor D2 are each sent from the CPU to the three-layer amplifier (AMP).
  • the drive signal is output, and the drive current is supplied to the direct drive motors Dl and D2 with a three-layer amplifier (AMP) force.
  • AMP three-layer amplifier
  • the absolute resolver stators 36 and 36 ' that detect the absolute position of one rotation of the rotating shaft and the incremental resolver stators 35 and 35' that detect the rotational position with finer resolution are used in this embodiment. Since the variable reluctance resolver is used, the rotational position control of the outer rotor members 21 and 21, that is, the arms Al and A2, can be performed with high accuracy.
  • a force detector that employs a resolver for detecting the rotation of the inner rotor 30 can be arranged on the atmosphere side inside the partition wall 13, in general, a servo motor used for high-accuracy positioning is highly accurate and smooth.
  • An optical encoder adopted as a position detecting means for driving, a magnetic encoder using a magnetoresistive element, or the like can also be used.
  • the direct drive motor D4 will be described.
  • a bearing holder 107 detachably bolted to the disc member 110 attached to the second main body 112 is fitted with an outer ring of a four-point contact ball bearing 119 used in a vacuum. It is attached and fixed with bolts 120.
  • the inner ring of the bearing 119 is fixed by a bolt 122 that is fitted into a double cylindrical cylindrical member 123 including the first outer rotor member 121 and is fastened together with the first outer rotor member 121. . That is, the first outer rotor member 121 is rotatably supported with respect to the partition wall 113 by the cylindrical member 123 that supports the arm A2 ′ (FIG. 34).
  • the first outer rotor member 121 and the cylindrical member 123 constitute an outer rotor.
  • the bearing holder 107 has high corrosion resistance and is made of austenitic stainless steel.
  • Bearing 119 is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing. By using this type of bearing, only one bearing of the direct drive motor D4 is required, so the four-axis coaxial motor system of the present invention can be made thinner.
  • Bearing 119 is made of martensitic stainless steel, which has high corrosion resistance for both the inner and outer rings and can be hardened by quenching.
  • the rolling elements are ceramic balls, and the lubricant is vacuum grease that does not solidify even under vacuum.
  • the bearing 119 may be made of a metal lubricated material in which a soft metal such as gold or silver is plated on the inner ring and the outer ring and no outgassing is released even in a vacuum, or a four-point contact ball. Because it is a bearing, the force that can receive the moment in the tilting direction of the arm A2 and the first outer rotor member 121 is not limited to the four-point contact type, and cross rollers, cross balls, and cross taper bearings can also be used. It can be used in a preloaded state, or it can be treated with fluorine film (DFO) to improve lubricity.
  • DFO fluorine film
  • the first outer rotor member 121 includes a permanent magnet 121a, an annular yoke 121b made of a magnetic material to form a magnetic path, and a nonmagnetic material for mechanically fastening the permanent magnet 121a and the yoke 121b. It is composed of a wedge (not shown) that also has physical strength.
  • the permanent magnet 121a is a segment type in which each of the 16 pole magnets is composed of 16 magnetic poles each having 32 poles and is alternately divided into magnetic poles, each of which has a sector shape. The center of the arc of the inner and outer diameters is the same, but the wedge is reduced by making the tangent intersection of the circumferential end face closer to the permanent magnet 121a.
  • the permanent magnet 121a is fastened to the yoke 121b by tightening with a screw from the outer diameter side of the yoke 121b. With such a configuration, the permanent magnet can be fastened without using a fixing member that generates outgas, such as an adhesive.
  • the permanent magnet 121a is a neodymium (Nd—Fe-B) magnet with a high energy product, and is nickel-coated to enhance corrosion resistance.
  • the yoke 12 lb is made of low-carbon steel with high magnetic properties, and is plated with nickel to improve wear resistance and corrosion resistance after machining and to prevent wear during bearing replacement.
  • the first stator 129 is disposed so as to face the inner peripheral surface of the first outer rotor member 121.
  • the first stator 129 is attached to a cylindrically deformed lower portion of a flange portion 112a extending in the radial direction at the center of the main body 112.
  • the first stator 129 is formed of a laminated material of electromagnetic steel plates, and each salient pole is insulated. After the bobbin is fitted, the motor coil is concentrated.
  • the outer diameter of the first stator 129 is substantially the same as or smaller than the inner diameter of the partition wall 13.
  • a first inner rotor 130 is disposed adjacent to and parallel to the first stator 129.
  • the first inner rotor 130 is rotatably supported by ball bearings 133 with respect to a resolver holder 132 that is bolted to the outer peripheral surface of the second main body 112.
  • a permanent magnet 130a is attached to the outer peripheral surface of the first inner rotor 130 via a knock yoke 130b.
  • the permanent magnet 130a has a configuration of 32 poles as in the case of the permanent magnet 121a of the first outer rotor member 121, and 16 magnets of N poles and S poles alternately have a magnetic metal force. Accordingly, the first inner rotor 130 is rotated along with the first outer rotor member 121 driven by the first stator 129.
  • the bearing 133 that rotatably supports the first inner rotor 130 is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing. By using this type of bearing, only one bearing is required, so the direct drive motor D4 can be made thinner. Since the inside of the partition wall 13 is an atmospheric environment, a bearing using grease lubrication based on general bearing steel and mineral oil can be applied.
  • Permanent magnet 130a Since the inside of the partition wall 13 is an atmospheric environment, the permanent magnet 130a is bonded and fixed to the back yoke 130b.
  • Permanent magnet 130a is a high energy product neodymium (Nd-Fe-B) magnet It has a nickel coating to prevent demagnetization due to wrinkles.
  • the yoke 130b is made of low-carbon steel with high magnetism, and is chromated to prevent fouling after machining.
  • Resolver rotors 134a and 134b are assembled as detectors for measuring the rotation angle on the inner circumference of the first inner rotor 130, and the resolver stator 135 is placed on the outer circumference of the resolver holder 132 so as to face it.
  • a high-resolution incremental resolver stator 135 and an absolute resolver stator 136 capable of detecting whether the rotor is in one rotation are arranged in two layers.
  • the resolver holder 132 and the first inner rotor 130 are made of carbon steel, which is a magnetic body, so that electromagnetic noise from the motor field and the motor coil is not transmitted to the resolver stators 135 and 136 that are angle detectors. As a material, it is chromate-plated to prevent fouling after processing and molding.
  • the high-resolution variable reluctance resolver used in the present embodiment has an incremental resolver rotor 134a having a plurality of slot tooth rows having a constant pitch, and the outer peripheral surface of the incremental resolver stator 135. Are provided with teeth that are shifted in phase with respect to the incremental resolver rotor 134a at each magnetic pole in parallel with the rotation axis, and a coil is wound around each magnetic pole.
  • the incremental resolver aperture 134a rotates integrally with the first inner rotor 130, the reluctance with the magnetic pole of the incremental resolver stator 135 changes. The change in the reluctance is detected so that there are n cycles, and the change is detected and digitized by the resolver control circuit shown in FIG.
  • the detector is composed of the Resonore rotors 134a and 134b and the Resonore stators 135 and 136.
  • the first inner rotor 130 rotates at the same speed by the magnetic coupling action with respect to the first outer rotor member 121, that is, rotates with the first outer rotor member 121.
  • the rotation angle can be detected through the partition wall 13.
  • the parts forming the motor have the bearing 133 as a single resolver without using the nosing, so the eccentricity adjustment with the resolver alone can be performed before the resolver is assembled. Since accuracy adjustment such as position adjustment can be performed, it is not necessary to provide a separate adjustment hole or notch on both flanges of the housing.
  • the second main body 112 constitutes the housing.
  • the cylindrical member 123 of the direct drive motor D4 described above extends downward to a position where it is superimposed on the direct drive motor D3, and the inner peripheral surface of the four-point contact ball bearing 119 'used in vacuum is used.
  • the outer ring is fitted and fixed by bolt 120 '.
  • the inner ring of the bearing 119 ′ is fixed by a bolt 122 ′ that fits to the circumferential surface of the double cylindrical ring-shaped member 123 ′ and fastens the second outer rotor member 121 ′ together. That is, the second outer rotor member 121 ′ is rotatably supported with respect to the partition wall 13 by the ring-shaped member 123 ′ that supports the arm A 1 ′ (FIG. 34).
  • the second outer rotor member 121 ′ and the ring-shaped member 123 ′ constitute an outer rotor.
  • Bearing 119 ' is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing.
  • the inner and outer rings are made of martensitic stainless steel, which has high corrosion resistance and can be hardened by quenching.
  • the rolling elements are ceramic balls, and the lubricant is vacuum grease that does not solidify even under vacuum.
  • the bearing 119 ' is a four-point contact ball bearing that can be made by using a metal lubrication that does not emit outgas even in a vacuum by plating a soft metal such as gold or silver on the inner and outer rings. Therefore, the force that can receive the moment in the tilting direction of the arm A1 and the second outer rotor member 121 ′ of force is not limited to the four-point contact type, and cross rollers, cross balls, and cross taper bearings can also be used. It can be used in a pre-loaded state, or fluorine-based film treatment (DFO) can be performed to improve lubricity.
  • DFO fluorine-based film treatment
  • the second outer rotor member 121 mechanically fastens the permanent magnet 121a', the annular yoke 121b 'made of a magnetic material to form a magnetic path, and the permanent magnet 121a' and the yoke 121b '. It is made up of a wedge (not shown) that also has a non-magnetic force.
  • Permanent magnet 121a ' is a segment type with 32 poles and 16 N pole and S pole magnets, each of which is divided into magnetic poles, each of which has a sector shape. is there.
  • the inner and outer diameter arc centers are the same, but the tangential intersection of the circumferential end face is closer to the permanent magnet 121a ', so that the wedge is tightened from the outer diameter side of the yoke 121b' with a screw.
  • 121a ' is fastened to yoke 1 21b'.
  • the permanent magnet can be fastened without using a fixing member that generates outgas, such as an adhesive.
  • Permanent magnet 121a ' is a neodymium (Nd-Fe-B) magnet with high energy accumulation, and has a nickel coating to enhance corrosion resistance.
  • Yoke 121b ' is made of low-carbon steel with high magnetism, and is subjected to nickel plating to improve wear resistance and corrosion resistance and to prevent wear during bearing replacement after molding.
  • the second stator 129 ' is arranged so as to face the inner peripheral surface of the second outer rotor member 121'.
  • the second stator 129 ′ is attached to the cylindrically deformed upper portion of the flange portion 112 a extending in the radial direction at the center of the second main body 112, and is formed of a laminated material of electromagnetic steel plates. After the bobbin is fitted into the salient pole as an insulation treatment, the motor coil is concentrated.
  • the outer diameter of the second stator 129 ' is approximately the same as or smaller than the inner diameter of the partition wall 13! /
  • a second inner rotor 130 ' is arranged on the radially inner side of the second stator 129'.
  • the second inner rotor 130 ′ is rotatably supported by a ball bearing 133 ′ with respect to a resolver holder 132 ′ bolted to the outer peripheral surface of the second main body 112.
  • a permanent magnet 130a ' is attached to the outer peripheral surface of the second inner rotor 130' via a knock yoke 130b '! /.
  • Permanent magnet 130a ' has a configuration of 32 poles as in the case of permanent magnet 121a' of second outer rotor member 121 ', and 16 magnets of N poles and S poles are alternately made of magnetic metal. Therefore, the second inner rotor 130 ′ is driven to rotate in synchronization with the second outer rotor member 121 ′ by the second stator 129 ′! / Speak.
  • the bearing 33 'that rotatably supports the second inner rotor 30' is a radial, axial, motor This is a four-point contact ball bearing that can load the load with a single bearing.
  • the direct drive motor D3 can be made thinner because only one bearing is required. Since the inside of the partition wall 13 is an atmospheric environment, it is possible to use a bearing using grease lubrication based on general bearing steel and mineral oil.
  • the permanent magnet 130a Since the inside of the partition wall 13 is an atmospheric environment, the permanent magnet 130a 'is fixedly bonded to the back yoke 130b'.
  • the permanent magnet 130a is a neodymium (Nd-Fe-B) magnet with a high energy product and is coated with nickel to prevent demagnetization due to defects.
  • Yoke 130b ' is made of low-carbon steel with high magnetism and is chromate-plated for protection after machining.
  • Resolver rotors 134a, 134b are assembled as detectors for measuring the rotation angle on the inner periphery of the second inner rotor 130 ', and are arranged on the outer periphery of the resolver holder 132 so as to face it.
  • the resolver stators 135 'and 136' are attached to a high-resolution incremental resolver stator 135, and an absolute resolver stator 136 'that can detect the position of the rotor in one rotation. Arranged in two layers.
  • the resolver holder 132 and the second inner rotor 130 are magnetic bodies so that electromagnetic noise generated by the motor field and motor coil force is not transmitted to the resolver stators 135 'and 136' that are angle detectors. Carbon steel is used as a material, and chromate plating is applied after processing to prevent fouling.
  • the second inner rotor 130 ′ rotates at the same speed by the magnetic coupling action with respect to the second outer rotor member 121 ′.
  • the rotation angle can be detected through the partition wall 13.
  • the resolver alone has the bearing 133 ′ without using the parts forming the motor, and therefore the eccentricity adjustment of the resolver alone before the assembly into the housing is performed. Since accuracy adjustment such as position adjustment can be performed, there is no need to separately provide adjustment holes or notches on both flanges of the housing.
  • the incremental resolver rotor 134a ′ has a plurality of slot teeth having a constant pitch, and the magnetic poles of the incremental resolver stator 135.
  • Incremental resolver rotor 134a that is, the second inner side is detected by detecting the change in reluctance so that the wave component has n cycles, digitizing it by the resolver control circuit shown in FIG. 36 and using it as a position signal.
  • the rotation angle (or rotation speed) of the rotor 130 ' is detected.
  • the resolver rotors 134a and 134b and the resolver stators 135 and 136 constitute a detector.
  • the second body 112 has a hollow structure, and the flange portion 112a has at least one radial through hole 112d communicating with the center, through which the motor wiring is connected to the second wire 112d. It is structured to be pulled out to the center of the main body 112.
  • at least one notch 112e, 112e force is provided at both ends of the second main body 112, and the resolver wiring is drawn out to the center of the second main body 112 via these.
  • FIG. 37 is a block diagram showing a drive circuit for the direct drive motors Dl and D2.
  • the direct drive motor D3 Motor control circuit DMC1 and direct drive motor D4 Motor control circuit DMC2 outputs a drive signal from its CPU to the three-layer amplifier (AMP), and direct drive from the three-layer amplifier (AMP) Drive current is supplied to motors D3 and D4.
  • AMP three-layer amplifier
  • the outer rotor members 121 and 121 of the direct drive motors D3 and D4 rotate independently to move the arms ⁇ ′ and A2 ′ (FIG. 34).
  • the resolver signal is output from the resolver stator 135, 136, 135', 136 'whose rotation angle has been detected as described above.
  • the CPU input after digital conversion at) determines whether or not the outer rotor member 121, 121 'has reached the command position, and if it reaches the command position, stops the drive signal to the 3-layer amplifier (AMP) As a result, the rotation of the outer rotor members 121 and 121 ′ is stopped. As a result, servo control of the outer rotor members 121 and 121 ′ becomes possible.
  • the arm A1' When driving multiple axes in a vacuum environment, if the current rotation positions of the arms A1 and A2 'are not recognized when the power is turned on, the arm A1'
  • the absolute resolver stators 136 and 136 that detect the absolute position of one rotation of the rotating shaft, and the incremental resolver stator that detects a rotational position with finer resolution are used in this embodiment. Since the variable reluctance resolver consisting of 135 and 135 is employed, the rotational position control of the outer rotor members 121 and 121, that is, the arms Al and A 2 'can be performed with high accuracy.
  • a resolver is used here to detect the rotation of the inner rotor 130
  • the detector can be placed on the atmosphere side inside the partition wall 13, so a servo motor generally used for high-accuracy positioning is highly accurate.
  • an optical encoder that is employed as a position detecting means for smooth and smooth driving, a magnetic encoder using a magnetoresistive element, or the like can be used.
  • the cylindrical member 123 that constitutes the outer rotor of the (first) direct drive motor D4 closest to the upper end of the motor system that works in this embodiment is detachably attached to the housing (here, the cylindrical member 110).
  • the outer diameter part 110a of the mounting seat surface of the bearing holder 107 in the cylindrical member 110 is positioned in the radial direction from the thin cylindrical part 13b. . Therefore, if the bearing holder 10 7 is removed, the cylindrical member 123 of the direct drive motor D4 and the bearing 119 ' The cylindrical member 123 of the supported direct drive motor D3 can be removed from the partition wall 13 integrally with the outer rotor members 121 and 121 ', and then the direct drive motors D2 and D1 can be removed. As a result, it can be easily inspected and removed, thus improving maintainability. Furthermore, since only the bearing holder 107 needs to be removed, a leak check or the like is not required at the time of reassembly without the need to remove the partition wall structure, and assemblability is improved.
  • the first main body 12 and the second main body 112 are connectable in an arbitrary phase in the axial direction, that is, two adjacent direct drive motors Dl, Each unit commonly used in D2, D3, and D4 is detachably bolted.
  • the first main body 12 includes, in order from the disk 10, the angle detector of the direct drive motor D1, the stator of the direct drive motor D1, the stator of the direct drive motor D2, and the angle of the direct drive motor D2.
  • the first main body 12 side force is also in order, the direct drive motor D3 axis angle detector, direct drive motor D3 axis stator, direct drive motor D4 stator
  • the angle detectors of the direct drive motor D4 can be arranged in this order, and the angle of the angle detector with respect to the stator can be easily adjusted for each axis.
  • the first main body or the second main body incorporating the motor stator and the rotation detector can be set in that equipment, so that the individual
  • the angle adjustment of the angle detector with respect to the motor stator can be performed with high accuracy, so that deterioration of the angle positioning accuracy due to misalignment is prevented, adjustment after assembly is easy or unnecessary, and the present invention 4-axis coaxial
  • the compatibility of the drive control circuit with the motor can be increased.
  • the force described with reference to the example using the surface magnet type 32-pole 36-slot outer rotor brushless motor is limited to this type of motor. Not something
  • Any brushless motor can be used, and other magnetic pole types such as a permanent magnet embedded type, other slot combinations, or an inner rotor type may be used.
  • a configuration may be adopted in which the number of rotor poles and the number of slots of adjacent axes in the axial direction are different.
  • the first axis is 32 poles 36 Lot
  • the second axis is 24 poles 27 slots
  • the 4-axis coaxial is the 4-axis coaxial
  • the first axis and the third axis 32 poles 3 6 slots
  • Mutual interference such as generation of thrust in the rotational direction on the rotor and magnetic coupling device due to the magnetic field of each axis can be prevented.
  • the rotor permanent magnet is a neodymium (Nd-Fe-B) magnet, and nickel coating is used as an example of coating to improve corrosion resistance.
  • This material is not limited to the surface treatment, but is changed as appropriate depending on the environment in which it is used.
  • samarium-cobalt (Sm'Co) is less susceptible to high temperature demagnetization depending on the temperature conditions during beta-out System magnets should be used, and if used in ultra-vacuum, a titanium nitride coating with a high outgas barrier should be applied.
  • the yoke is made of low-carbon steel and explained with an example of nickel plating.
  • This material is not limited to surface treatment, and is appropriately changed depending on the environment used. Especially for surface treatment, if it is used in ultra-vacuum, it should be applied with force with few pinholes such as Zen plating, clean soldering, and titanium nitride coating.
  • the method for fastening the permanent magnet to the yoke has been described using an example in which a non-magnetic wedge is tightened from the outer diameter side of the yoke with a screw, but it may be changed as appropriate depending on the environment in which it is used. May be bonded or other fastening methods.
  • bearings 19, 19 ', 119, and 119' have been described using examples of grease lubricated four-point contact ball bearings for vacuum lubrication, but they are not limited to this type, material, and lubrication method. It can be changed as appropriate according to the environment, load conditions, rotational speed, etc., and may be a cross roller bearing. In the case of a 4-axis coaxial motor, another bearing is used to further increase mechanical rigidity. If a multi-point contact bearing cannot be used, such as when rotating at high speeds, a bearing that supports the rotor of each shaft and another bearing can be preloaded as a deep groove ball bearing or an angular bearing. It is also possible to use a structure that hangs, or when used in ultra-vacuum, it is possible to use a metal lubrication that does not release gas, such as a metal ring plated with a soft metal such as gold or silver. .
  • a permanent magnet and a back yoke are provided as an inner rotor that functions as a magnetic coupling.
  • the material and shape of the permanent magnet and the back yoke are not limited to this.
  • the number of poles may not be the same as that of the outer rotor, or the width may not be the same.
  • a salient pole that does not use a permanent magnet is also acceptable.
  • a resolver is used as an angle detector
  • it can be appropriately changed depending on manufacturing cost and resolution, and for example, an optical rotary encoder may be used.
  • the magnetic force coupling used in each rotor and rotation detector generates a thrust in the rotational direction by the magnetic flux leaking the magnetic coupling force used in the rotor, stator, and resolver of each axis.
  • magnetic shields for shielding each other's magnetic field are arranged between the rotors of each shaft, and the rotor, stator, and resolver force of each shaft interfere with each other's resolver.
  • a multi-axis coaxial motor system such as 4-axis coaxial or 4-axis coaxial can be configured with a reduced overall axial length.
  • a multi-axis coaxial motor system such as 4-axis coaxial or 4-axis coaxial can be configured with a reduced overall axial length.
  • two frog redder arm robots that can be positioned with high accuracy without greatly changing the chamber structure can be installed. Performance and availability can be increased. It can also be used for motor systems with more than 4 axes. Needless to say, you can.
  • the present invention has been described above with reference to the embodiment. However, the present invention should not be construed as being limited to the above embodiment, and can be appropriately changed or improved.
  • the direct drive motor of the present embodiment can be used not only in a vacuum atmosphere but also in an atmosphere outside the atmosphere.
  • reactive gas for etching may be introduced into the vacuum chamber after evacuation, but in the direct drive motor of this embodiment, the inside and outside are shielded by the partition walls. Therefore, there is no possibility that the motor coil or the insulating material will be etched.
  • FIG. 38 is a perspective view of a frog redder arm type transport device using a direct drive motor that works in the present embodiment.
  • two direct drive motors Dl and D2 are connected in series.
  • a first arm A1 is connected to the rotor of the lower (first) direct drive motor D1, and a first link L1 is pivotally connected to the tip of the first arm A1.
  • the second arm A2 is connected to the rotor of the upper (second) direct drive motor D2, and the second link L2 is pivotally connected to the tip of the second arm A2.
  • the links LI and L2 are pivotally connected to a table T on which Ueno and W are placed.
  • a wafer transfer arm placed in a vacuum chamber in a semiconductor manufacturing apparatus for example, an apparatus having a plurality of arms such as a scalar type or a frog redder type shown in the figure, particularly requires a plurality of rotary motors. It becomes.
  • the surface area of contact with the outside world should be minimized, and at the same time, the number of mounting holes for motors, etc., should be minimized to make effective use of space.
  • the moment acting on the tip of the arm is firmly held by the rotor support. It is necessary to have.
  • a plurality of direct drive motors Dl and D2 are connected coaxially at the housing part, and the connection part is tightly joined with a seal (tightly joined by welding, O-ring, metal gasket, etc.), and the motor rotor is arranged. It is necessary to separate the open space from the housing external space.
  • a surface magnet type 32-pole 36-slot outer rotor brushless type direct drive motor is used.
  • the slot combination of 32 poles and 36 slots is generally known to have a large magnetic attraction force in the radial direction and large vibration during rotation. is there . 2 n times (n is an integer) cancels out the magnetic attractive force in the radial direction. Therefore, vibration during rotation can be achieved without increasing the roundness and coaxiality of the stator and rotor and the rigidity of the mechanical parts. Can be made small and cogging is inherently small, so that a very smooth rotation can be obtained.
  • the electrical angle cycle is greater than the mechanical angle cycle, so positioning controllability is good.
  • the direct drive motor that drives a robot apparatus without using a speed reducer as in the present invention.
  • the direct drive motor having a thin and large diameter and narrow width as in the present invention is used. Is preferred.
  • FIG. 39 is a view of the configuration of FIG. 38, taken along the ⁇ - ⁇ line and viewed in the direction of the arrow.
  • the direct drive motor D1 will be described.
  • a hollow cylindrical main body 12 fitted into the central opening 10a of the disk 10 installed on the surface plate G and fixed to each other by bolts 11 has a cup-shaped partition wall 13 attached to the upper end thereof.
  • the center of the body 12 is used to pass the wiring to the stator. Can be used.
  • the main body 12 and the disk 10 constitute a housing.
  • the partition wall 13 is made of stainless steel, which is a non-magnetic material.
  • the partition wall 13 extends from the peripheral edge of the wall portion 13a and the direct drive motors Dl and D2 in the axial direction. It consists of an existing thin cylindrical portion 13 b and a holder 15. Therefore, the partition wall 13 is commonly used for the direct drive motors Dl and D2.
  • the lower end of the cylindrical portion 13b is joined to a holder 15 so as to be sealed by TIG welding, and the holder 15 is fixed to the disc 10 with bolts 16.
  • TIG welding a holder 15
  • the contact surface between the holder 15 and the disc 10 is provided with a groove force that fits the seal member. After the seal member OR is fitted into the groove, the holder 15 and the disc 10 are fastened by the bolt 16. As a result, the fastening part is isolated from the atmospheric force.
  • the partition wall 13 is made of austenitic stainless steel SUS316, which has high corrosion resistance, and is particularly magnetic.
  • the holder 15 is also made of SUS316 because of its weldability with the partition wall 13.
  • the partition wall 13 and the holder 15 are hermetically joined, and the holder 15 and the disk 10 and the disk 10 and the surface plate G are hermetically sealed by O-rings OR, respectively. Therefore, the internal space surrounded by the disk 10 and the partition wall 13 is also hermetically sealed.
  • the partition wall 13 is not necessarily made of a nonmagnetic material.
  • the members may be hermetically sealed by electron beam welding or laser beam welding.
  • the bolt 18 is disposed outside the cylindrical member 23 and exposes its head.
  • An outer ring of a four-point contact ball bearing (first bearing) 19 used in a vacuum is fitted to the bearing holder 17 in a fitting manner, and is fixed by a bolt 20 via an annular bearing restraint BH.
  • the inner ring of the bearing 19 is fitted to the outer periphery of the first outer rotor 21 and is fixed by a bolt 22 via an annular bearing restraint BH.
  • the first outer rotor 21 is rotatably supported by the bearing 19 and the partition wall 13 by the bearing 19, and a cylindrical member 23 that supports the arm A1 (FIG. 38) is formed on the upper surface thereof. It is fixed by 24.
  • the bolt 24 can fasten a magnetic shield plate 25 (indicated by a dotted line) extending radially inward to the cylindrical member 23 together. 1st outer port
  • the rotor 21 and the cylindrical member 23 constitute an outer rotor.
  • the disc 10 and the bearing holder 17 are made of austenitic stainless steel having high corrosion resistance, and the disc 10 also serves as a fitting and fixing device with the surface plate G, which is a chamber, on its lower surface.
  • a groove 10b is provided to fill the O-ring OR.
  • the magnetic shield plate 25 is subjected to nickel plating in order to enhance the anti-corrosion and corrosion resistance after press-forming the SPCC steel plate, which is a magnetic material.
  • the effect of the bearing 19, which will be described later, is a four-point contact ball bearing that can apply radial, axial, and moment loads with a single bearing. By using this type of bearing, only one bearing for the direct drive motor D1 is required, so the two-axis coaxial motor system of the present invention can be made thinner.
  • the bearing 19 is made of martensite stainless steel, which has high corrosion resistance for both the inner and outer rings and can be hardened by quenching.
  • the rolling elements are ceramic balls, and the lubricant is vacuum grease that does not solidify even under vacuum.
  • the bearing 19 may be made of metal lubricated by plating a soft metal such as gold or silver on the inner ring and the outer ring so that no outgassing occurs even in vacuum, or a four-point contact ball. Because it is a bearing, it can receive a moment in the direction in which the first outer rotor 21 tilts from the arm A1, but it is not limited to the four-point contact type, and cross rollers, cross balls, and cross taper bearings can also be used. Yes, it can be used under preload conditions, or fluorine film treatment (DFO) can be performed to improve lubricity! ⁇ .
  • DFO fluorine film treatment
  • the first outer rotor 21 includes a permanent magnet 21a, an annular yoke 21b made of a magnetic material to form a magnetic path, and a non-magnetic material for mechanically fastening the permanent magnet 21a and the yoke 21b. It consists of a wedge (not shown).
  • Permanent magnet 21a has a configuration of 32 poles, each of which has 16 poles of N poles and S poles alternately made of magnetic metal, and is divided into segments. Each of the permanent magnets 21a has a sector shape.
  • Permanent magnet 21a is a high energy product of neodymium (Nd—Fe—B ) Series magnets with nickel coating to enhance corrosion resistance.
  • the yoke 21b is made of a low-carbon steel having high magnetism, and is plated with nickel to improve wear resistance and corrosion resistance and prevent wear during bearing replacement after processing and molding.
  • the first outer rotor 21 has a surface for fitting and fixing the inner ring of the bearing 19 and the cylindrical member 23.
  • the four-point contact ball bearing 19 is a very thin bearing, and its rotational accuracy and friction torque are greatly affected by differences in accuracy and linear expansion coefficient of the assembled parts. Therefore, in the case of the present embodiment, the inner ring of the bearing 19 which is a rotating ring is an interference fit or an intermediate fit to the yoke 21b which is easy to obtain processing accuracy and whose linear expansion coefficient is substantially the same as the bearing ring material of the bearing.
  • the outer ring of the bearing 19, which is a fixed ring is fitted to the austenitic stainless steel bearing holder or aluminum boss to prevent the bearing 19 from rotating and the friction torque from increasing due to temperature rise. ing.
  • a first stator 29 is disposed on the inner side in the radial direction of the partition wall 13 so as to face the inner peripheral surface of the first outer rotor 21.
  • the first stator 29 is attached to a cylindrically deformed lower portion of a flange portion 12a extending in the radial direction at the center of the main body 12.
  • the first stator 29 is formed of a laminated material of electromagnetic steel plates and is insulated from each salient pole. As a process, the motor coil is concentrated after the bobbin is fitted.
  • the outer diameter of the first stator 29 is approximately the same as or smaller than the inner diameter of the partition wall 13.
  • the first inner rotor 30 is disposed on the radially inner side of the first stator 29.
  • the first inner rotor 30 is rotatably supported by a ball bearing 33 with respect to a resolver holder 32 that is bolted to the outer peripheral surface of the main body 12.
  • a permanent magnet 30a is attached to the outer peripheral surface of the first inner rotor 30 via a knock 30b.
  • the permanent magnet 30a is composed of 32 poles in the same manner as the permanent magnet 21a of the first outer rotor 21, and 16 magnets of N poles and S poles are alternately made of magnetic metal. Accordingly, the first inner rotor 30 is rotated in synchronism with the first outer rotor 21 driven by the first stator 29.
  • the bearing 33 that rotatably supports the first inner rotor 30 is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing.
  • the direct drive motor D1 can be made thinner because only one bearing is required. Since the inside of the partition wall 13 is an atmospheric environment, grease lubrication based on general bearing steel and mineral oil is recommended. The used bearing can be applied.
  • Permanent magnet 30a Since the inside of the partition wall 13 is an atmospheric environment, the permanent magnet 30a is bonded and fixed to the back yoke 30b.
  • Permanent magnet 30a is a high energy product neodymium (Nd-Fe-B) magnet with nickel coating to prevent demagnetization due to defects.
  • the yoke 30b is made of low-carbon steel with high magnetism, and is chromated to prevent fouling after machining.
  • Resolver rotors 34a and 34b are assembled as detectors for measuring the rotation angle on the inner periphery of the first inner rotor 30, and the resolver stator 35 is disposed on the outer periphery of the resolver holder 32 so as to oppose it.
  • the high-resolution incremental resolver stator 35 and the absolute resolver stator 36 that can detect the position of the rotor in one rotation are arranged in two layers. /!
  • the resolver holder 32 and the first inner rotor 30 are made of carbon steel, which is a magnetic material, so that electromagnetic noise from the motor field and motor coil is not transmitted to the resolver stators 35, 36 that are angle detectors. In order to prevent fouling after processing and molding, chromate plating is applied.
  • the high-resolution variable reluctance resolver used in the present embodiment has an incremental resolver rotor 34a having a plurality of slot teeth having a constant pitch, and the outer peripheral surface of the incremental resolver stator 35. Are provided with teeth shifted in phase with respect to the incremental resolver rotor 34a at each magnetic pole parallel to the rotation axis, and a coil is wound around each magnetic pole.
  • the incremental resolver rotor 34a rotates together with the first inner rotor 30, the reluctance between the incremental resolver stator 35 and the magnetic pole changes, and the fundamental wave component of the change in reluctance becomes n cycles in one revolution of the incremental resolver rotor 34a.
  • the reluctance change is detected, digitalized by the resolver control circuit shown in FIG. 40, and used as a position signal, so that an incremental resolution is obtained.
  • the rotation angle (or rotation speed) of the rotor 34a, that is, the first inner rotor 30 is detected.
  • the resolver rotors 34a and 34b and the resolver stators 35 and 36 constitute a detector.
  • the first inner rotor 30 rotates at the same speed by the magnetic coupling action with respect to the first outer rotor 21, that is, rotates with the first outer rotor 21, so that the first outer rotor 21 rotates.
  • the corner can be detected through the bulkhead 13.
  • the resolver alone has the bearing 33 without using the parts forming the motor and the uzing, and therefore, the eccentricity adjustment with the resolver alone is performed before the resolver coil is assembled into the housing. Since accuracy adjustment such as position adjustment can be performed, there is no need to provide adjustment holes or notches on both flanges of the housing.
  • the rotating wheel of the bearing device 19 that is rotatably supported by the first outer rotor 21 is fitted into a rotor yoke 21b that is easy to obtain machining accuracy and has the same linear expansion coefficient as the driving wheel of the bearing device 19.
  • the rotation accuracy can be improved and the friction torque can be prevented from changing due to temperature changes.
  • the main body 12 constitutes a housing.
  • the above-described cylindrical member 23 of the direct drive motor D1 extends upward to a position where it overlaps with the direct drive motor D2, and has a four-point contact ball bearing (no. 2 bearing)
  • the outer ring of 19 ' is fitted in a fitting manner, and is fixed by a bolt 20' via an annular bearing restraint BH '.
  • the inner ring of the bearing 19 ′ is fitted to the outer periphery of the second outer rotor 21, and is fixed by bolts 22 via an annular bearing restraint BH.
  • the bolt 22 'and the magnetic shield plate 41 (indicated by a dotted line) extending radially inward can be fastened together.
  • the second outer rotor 21 ′ is rotatably supported by the bearing 19 ′ with respect to the cylindrical member 23 and the partition wall 13, and the ring-shaped member 23 ′ supporting the arm A 2 (FIG. 38) is It is fixed on the top surface with bolts 24 '.
  • the bolt 24 ' has a magnetic shield plate 25' extending radially inward and fastened together with the ring-shaped member 23 '.
  • the cylindrical member 23 ′ integrated with the second outer rotor 21 ′ covers the bolt 20 ′ with axial outward force and radial outward force.
  • the second outer rotor 21 ′ and the cylindrical member 23 ′ constitute an outer rotor.
  • the magnetic shield plates 41 and 25 ' can be subjected to nickel plating in order to improve the anti-corrosion and corrosion resistance after press molding the SPCC steel plate, which is a magnetic material.
  • the magnetic shield plates 4 1 and 25 are interposed between the first outer rotor 21 and the second outer rotor 21 to form a magnetic shield, and each other due to magnetic flux leakage from them! Has a function to prevent the bag from being carried around.
  • the magnetic shield plate 25 ′ can be fastened to the yoke 21b ′ with the ring-shaped member 23 ′, which is a nonmagnetic material, interposed therebetween, thereby preventing generation of an unnecessary magnetic circuit. Since the magnetic shield plates 41 and 25 can prevent magnetic interference between the rotors, the overall axial length can be reduced even though it is a two-axis coaxial motor system. The magnetic shield plate 41 can prevent external force from attracting foreign matter.
  • Bearing 19 is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing.
  • the inner and outer rings are made of martensitic stainless steel, which has high corrosion resistance and can be hardened by quenching.
  • the rolling elements are ceramic balls, and the lubricant is vacuum grease that does not solidify even under vacuum.
  • the bearing 19 ' may be made of a metal lubrication that is plated with a soft metal such as gold or silver on the inner ring and the outer ring and does not release outgas even in vacuum, or a four-point contact ball bearing.
  • a four-point contact type but also a cross roller, a cross ball, and a cross taper bearing can be used. It can be used under preload conditions, or it can be treated with fluorine coating (DFO) to improve lubricity! ⁇ .
  • DFO fluorine coating
  • the second outer rotor 21 ' mechanically fastens the permanent magnet 21a', the annular yoke 21b 'made of a magnetic material to form a magnetic path, and the permanent magnet 21a' and the yoke 21b '. It is made up of a wedge (not shown).
  • Permanent magnet 21a ' is a segment type with a configuration of 32 poles, with 16 N-pole and S-pole magnets alternately made of magnetic metal and divided into poles, each of which has a sector shape. The center of the arc of the inner and outer diameter is the same. It is fastened to the yoke 21b '. With such a configuration, the permanent magnet can be fastened without using a fixing member that generates outgas, such as an adhesive.
  • Permanent magnet 21a ' is a high energy product neodymium (Nd-Fe-B) based magnet, which is coated with nickel to enhance corrosion resistance.
  • Yoke 21b ' is made of low-carbon steel with high magnetic properties, and is plated with nickel to improve wear resistance and corrosion resistance after machining and to prevent wear during bearing replacement.
  • the second outer rotor 21 ' has a surface for fitting and fixing the inner ring of the bearing 19' and the ring-shaped member 23 '.
  • the four-point contact ball bearing 19 ' is a very thin bearing, and its rotational accuracy and friction torque are greatly affected by differences in the accuracy and linear expansion coefficient of the assembled parts. Therefore, in the case of the present embodiment, the inner ring of the bearing 19 ′ is tightly fitted or intermediately fitted to the yoke 21b, which is easy to obtain machining accuracy and has the same linear expansion coefficient as the bearing ring material of the bearing.
  • the outer ring is made into a clearance fit with an austenitic stainless steel bearing holder or an aluminum boss, thereby preventing a decrease in rotational accuracy of the bearing 19 ′ and an increase in friction torque due to a temperature rise.
  • a second stator 29 ' is disposed so as to face the inner peripheral surface of the second outer rotor 21'.
  • the second stator 29 ′ is attached to the upper part of the flange 12 a that extends in the radial direction in the center of the main body 12, and is formed of a laminated material of electromagnetic steel sheets, and each salient pole is insulated. As shown, the motor coil is concentrated after the bobbin is fitted.
  • the outer diameter of the second stator 29 ′ is approximately the same as or smaller than the inner diameter of the partition wall 13.
  • a second inner rotor 30 ' is arranged inside the second stator 29' in the radial direction.
  • the second inner rotor 30 ′ is rotatably supported by a ball bearing 33 ′ with respect to a resolver holder 32 ′ bolted to the outer peripheral surface of the main body 12.
  • a permanent magnet 30a ′ is attached to the outer peripheral surface of the second inner rotor 30 ′ via a back yoke 30b ′.
  • the permanent magnet 30a ′ has a configuration of 32 poles, like the permanent magnet 21a ′ of the second outer rotor 21 ′, and has 16 magnetic poles each having N poles and S poles alternately. Accordingly, the second inner rotor 30 ′ is rotationally driven by the second stator 29 ′ in synchronization with the second outer rotor 21 ′.
  • the bearing 33 'that rotatably supports the first inner rotor 30' is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing. Use this type of bearing Therefore, the direct drive motor D2 can be made thinner because only one bearing is required. Since the inside of the partition wall 13 is an atmospheric environment, it is possible to use a bearing using grease lubrication based on general bearing steel and mineral oil.
  • the permanent magnet 30a ′ Since the inside of the partition wall 13 is an atmospheric environment, the permanent magnet 30a ′ is bonded and fixed to the back yoke 30b ′.
  • the permanent magnet 30a ' is a neodymium (Nd-Fe-B) magnet with a high energy product and is coated with nickel to prevent demagnetization due to defects.
  • Yoke 30b ' is made of low-carbon steel with high magnetism, and is chromated to prevent fouling after machining.
  • the resolver rotors 34a 'and 34b' are assembled as detectors for measuring the rotation angle on the inner periphery of the second inner rotor 30 ', and the outer periphery of the resolver holder 32' is opposed to it.
  • the resolution of the resolver stator 35 ', 36' is high resolution incremental resolver stator 35, and the absolute resolver stator 36 'that can detect the position of the rotor in one rotation.
  • the resolver holder 32 'and the second inner rotor 30' are magnetic bodies so that electromagnetic noise from the motor field and the motor coil is not transmitted to the resolver stators 35 'and 36' that are angle detectors. Carbon steel is used as a material, and chromate plating is applied after processing to prevent fouling.
  • the second inner rotor 30 ′ rotates at the same speed by the magnetic coupling action with respect to the second outer rotor 21 ′, that is, rotates with the rotation angle of the second outer rotor 21 ′.
  • the parts constituting the motor, the bearing 33 is provided as a single resolver without using uzing. Since it is possible to adjust the accuracy of the resolver coil position, etc., there is no need to provide adjustment holes or notches on both flanges of the housing.
  • a bearing device that rotatably supports the second outer rotor 21 ′
  • the rotational accuracy is improved and the friction torque due to temperature changes is reduced. It is possible to prevent fluctuations.
  • the incremental resolver rotor 34a ′ has a plurality of slot tooth rows having a constant pitch, and the outer circumference of the incremental resolver stator 35.
  • the surface is provided with teeth that are shifted in phase with respect to the incremental resolver rotor 34a ′ at each magnetic pole parallel to the rotation axis, and a coil is wound around each magnetic pole.
  • the reluctance change is detected so that the wave component has n cycles, is digitalized by the resolver control circuit shown in FIG. 40, and is used as a position signal, so that the incremental resolver rotor 34a ' 2The rotation angle (or rotation speed) of the inner rotor 30 'is detected.
  • the resolver rotors 34a, 34b and the resolver stators 35, 36 constitute a detector.
  • the magnetic shield plates 25 and 41 are arranged between the first outer rotor 21 and the second outer rotor 21 'to suppress mutual magnetic interference. , Malfunctions such as erroneous driving and accompanying people can be avoided.
  • the outer peripheral edge 12b of the flange portion 12a extending between the direct drive motors Dl and D2 in the main body 12 is made of carbon steel, which is a magnetic material, between the first stator 29 and the second stator 29 ′.
  • the magnetic fields that shield each other's magnetic field are included. Functions as a shield.
  • the main body 12 has a hollow structure, and the flange portion 12a has at least one radial through hole 12d communicating with the center through which the motor wiring is drawn out to the center of the main body 12. It has a structure.
  • at least one notch 12e, 12e is provided at each end of the main body 12, and the resolver wiring is drawn out to the center of the main body 12 through these.
  • FIG. 41 is a block diagram showing a drive circuit for direct drive motors Dl and D2.
  • the motor control circuit DMC1 for the direct drive motor D1 and the motor control circuit DMC2 for the direct drive motor D2 are each sent from the CPU to the three-layer amplifier (AMP).
  • the drive signal is output, and the drive current is supplied to the direct drive motors Dl and D2 with a three-layer amplifier (AMP) force.
  • AMP three-layer amplifier
  • the resolver signal is output from the resolver stator 35, 36, 35, 36, which has detected the rotation angle as described above, and is output to the resolver digital converter (RDC).
  • the CPU input after digital conversion judges whether or not the outer rotor 21, 21 'has reached the command position, and when it reaches the command position, it stops the drive signal to the 3-layer amplifier (AMP). Stop rotation of outer ports 21, 21 '. This enables servo control of the outer rotors 21, 21 '.
  • a force detector that employs a resolver for detecting the rotation of the inner rotor 30 can be arranged on the atmosphere side inside the partition wall 13, so that a servo motor generally used for high-precision positioning is highly accurate and smooth.
  • An optical encoder adopted as a position detecting means for driving, a magnetic encoder using a magnetoresistive element, or the like can also be used.
  • FIGS. 46 to 49 are perspective views showing a disassembly process of the motor system that works according to the present embodiment. It is.
  • the cylindrical member 23' can be separated by removing the bolt 24 'from the yoke 21b' in FIG. At this time, since the bearing 19 'is visible, its lubrication state and the like can be inspected.
  • the minimum inner diameter force of the first outer rotor 21 of the direct drive motor D1 and the second outer rotor 21 'of the direct drive motor D2 is larger than the maximum outer diameter of the partition wall 13.
  • the yoke 21b of the direct drive motor D1 is attached to the disk 10 by the bolt 18 via the bearing holder 17, and further, the direct drive motor D1 is connected to the cylindrical member 23 of the direct drive motor D1 via the bearing 19 '. Since the yoke 21b 'of D2 is installed, the direct drive motor Dl and D2 can be separated from the disk 10 and the bulkhead 13 together with the bearing holder 17 by removing the bolt 18, and the airtight structure of the bulkhead 13 must be disassembled. hardly perform maintenance work on the direct drive motor D1
  • FIG. 50 is a cross-sectional view showing a four-axis coaxial motor system that works on a modification of the present embodiment.
  • the force formed by directly arranging two sets (four in total) of direct drive motors Dl and D2 The individual direct drive motors are the same as those shown in FIG.
  • the same reference numerals are given to the parts, and the description is omitted.
  • a partition wall holder 113a is hermetically coupled to the upper disk part 110 attached to the upper surface of the main body 12 connected in series via an O-ring OR, and a thin cylinder is formed on the outer peripheral surface thereof.
  • the upper end of 113b is TIG welded.
  • the lower end of the thin-walled cylinder 113b is TIG welded to the holder 15 as in the above-described embodiment.
  • the partition wall holder 113a, the thin cylinder 113b and the holder 15 constitute a partition wall. This is commonly used for the four direct drive motors.
  • the upper surface of the disc portion 110 is closed by the lid member 101, and the bearing is attached to the outer periphery thereof.
  • the holder 107 supports the bearing 19.
  • the disc portion 110, the lid member 101, and the bearing holder 107 are made of austenitic stainless steel having high corrosion resistance.
  • the main body 12, the disc 10, and the upper disc portion 110 constitute a housing.
  • a separate bearing holder 17 is fixed by bolts 18 on the outer peripheral upper surface of the disk 10 which is an atmospheric outer member.
  • the first outer rotor 21 is supported by the bearing 19 with respect to the bearing holder 17.
  • the second outer rotor 21 ′ is supported by the bearing 19 ′ with respect to the cylindrical member 23.
  • a bearing holder 107 is fixed by bolts 118 on the outer peripheral upper surface of the upper disc portion 110 that is an atmospheric outer member.
  • the first outer rotor 21 is supported by the bearing 19 with respect to the bearing holder 17.
  • the second outer port 21 ′ is supported by the bearing 19 ′ with respect to the first outer rotor 21.
  • the minimum inner diameter of the first outer rotor 21 of the direct drive motor D1 and the second outer rotor 21 'of the direct drive motor D2 is larger than the maximum outer diameter of the partition wall 13, and the upper disk part 110 is separated.
  • the mounting outer peripheral surface of the bearing holder 107 is located on the inner side in the radial direction from the thin cylinder 113b. Therefore, if the bearing holder 107 is removed from the upper disk part 110, the two outer rotors 21, 21 at the upper part are connected.
  • the upper disk part 110 can be extracted upward without disassembling, and if the bearing holder 17 is further removed from the disk 10, the lower two outer rotors 21, 21 ' Can be extracted upward without disassembling. Therefore, it is possible to facilitate the maintenance work without the need to disassemble the airtight structure by the partition wall 13 during maintenance such as inspection and replacement of the bearing.
  • the magnetic shield plates 25 'and 25' are arranged between the second outer rotors 21 and 21 at the center, so that mutual magnetic interference is suppressed. This avoids malfunctions such as erroneous driving and companionship.
  • a magnetic shield plate 125 whose outer peripheral force extends in the radial direction to the inside of the thin cylinder 113b is disposed.
  • the magnetic shield plate 125 is made of carbon steel, which is a magnetic material, and is interposed between the second stators 29 ′ and 29 ′, so that the adjacent second outer rotor 21 ′ is affected by the leakage magnetic flux.
  • FIG. 51 is a perspective view of a frog-leg-game transport apparatus using a four-axis coaxial motor system that is effective in the present embodiment.
  • the first arm A1 is connected to the port of each direct drive motor D1, and the first link L1 is pivotally connected to the tip of the first arm A1.
  • the second arm A2 is connected to the rotor of each direct drive motor D2, and the second link L2 is pivotally connected to the tip of the second arm A2.
  • the links LI and L2 are pivotally connected to a table T on which the wafer W is placed. Each table T moves independently.
  • the force described using the example using the surface magnet type 32-pole 36-slot outer rotor brushless motor is not limited to this type of motor.
  • any brushless motor can be used, and other magnetic pole types such as a permanent magnet embedded type, other slot combinations, or an inner rotor type may be used.
  • a configuration may be adopted in which the number of rotor poles and the number of slots of adjacent axes in the axial direction are different.
  • the first axis is 32 poles and 36 slots
  • the second axis is 24 poles and 27 slots
  • the first axis and the third axis are 32 poles and 3 6 slots. If the two axes and the fourth axis are configured with 24 poles and 27 slots, mutual interference such as generation of thrust in the rotational direction to the rotor and magnetic coupling device due to the magnetic field of each axis can be prevented.
  • the rotor permanent magnet is a neodymium (Nd-Fe-B) magnet, and nickel coating is used as an example of coating to improve corrosion resistance.
  • This material is not limited to the surface treatment, but is changed as appropriate depending on the environment in which it is used.
  • samarium-cobalt (Sm'Co) is less susceptible to high-temperature demagnetization depending on the temperature conditions during beta-out.
  • System magnets should be used, and if used in ultra-vacuum, a titanium nitride coating with a high outgas barrier should be applied.
  • the yoke is made of low-carbon steel and explained with an example of nickel plating.
  • This material is not limited to the surface treatment and is appropriately changed depending on the environment used. If it is used in ultra-vacuum, especially for surface treatment For example, force with few pinholes-Zen plating, clean soldering, titanium nitride coating, etc. should be applied.
  • the method for fastening the permanent magnet to the yoke has been described using an example in which a non-magnetic wedge is tightened from the outer diameter side of the yoke with a screw, but it may be changed as appropriate depending on the environment in which it is used. May be bonded or other fastening methods.
  • bearings 19 and 19 have been described using an example of grease grease lubrication for four-point contact ball bearings.
  • this is not limited to this type, material, and lubrication method. It can be changed as appropriate depending on conditions, rotational speed, etc., and it can be a cross roller bearing. In the case of a 4-axis coaxial motor, it can be supported by another bearing to further increase mechanical rigidity.
  • a bearing that supports the rotor of each shaft and another bearing may be configured to apply preload as deep groove ball bearings or angular bearings.
  • a metal-lubricated material that does not emit gas, such as a metal ring plated with a soft metal such as gold or silver.
  • the inner rotor functioning as a magnetic coupling has been described as a form using a permanent magnet and a back yoke
  • the material and shape of the permanent magnet and the back yoke are not limited thereto.
  • the number of poles may not be the same as that of the outer rotor, or the width may not be the same.
  • a salient pole that does not use a permanent magnet is also acceptable.
  • a resolver is used as an angle detector
  • it can be appropriately changed depending on manufacturing cost and resolution, and for example, an optical rotary encoder may be used.
  • the material, shape, and structure of the structural parts and bulkheads placed outside and inside the other bulkheads The manufacturing method is appropriately changed depending on the manufacturing cost, the environment in which it is used, the load conditions, the configuration, and the like.
  • the thrust in the rotational direction is applied to the magnetic force coupling used for each rotor and rotation detector by the magnetic flux that also leaks the magnetic coupling force used for the rotor, stator, and resolver of each axis.
  • magnetic shields for shielding each other's magnetic field are arranged between the rotors of each axis, or the electromagnetic fields generated by the rotor, stator and resolver force of each axis.
  • a magnetic shield is provided to shield each other's electromagnetic field, or the number of rotor poles and the number of stator slots in the axially adjacent axes are changed.
  • the present invention has been described above with reference to the embodiment. However, the present invention should not be construed as being limited to the above embodiment, and can be appropriately changed or improved.
  • the direct drive motor of the present embodiment can be used not only in a vacuum atmosphere but also in an atmosphere outside the atmosphere.
  • reactive gas for etching may be introduced into the vacuum chamber after evacuation, but in the direct drive motor of this embodiment, the inside and outside are shielded by the partition walls. Therefore, there is no possibility that the motor coil or the insulating material will be etched.
  • FIG. 52 is a perspective view of a frog redder arm type conveyance device using a direct drive motor that works in the present embodiment.
  • two direct drive motors Dl and D2 are connected in series.
  • the first arm A1 is connected to the rotor of the lower direct drive motor D1, and the first link L1 is pivotally connected to the tip of the first arm A1.
  • the upper direct The second arm A2 is connected to the rotor of the drive motor D2, and the second link L2 is pivotally connected to the tip of the second arm A2.
  • the links LI and L2 are pivotally connected to a table T on which the wafer W is placed.
  • a wafer transfer arm placed in a vacuum chamber in a semiconductor manufacturing apparatus for example, a device having a plurality of arms such as a scalar type or a frog redder type shown in the figure, particularly requires a plurality of rotary motors. It becomes.
  • the contact surface area with the outside world should be minimized, and at the same time, the number of mounting holes for motors, etc. should be minimized to make effective use of space.
  • a plurality of direct drive motors Dl and D2 are connected coaxially at the housing part, and the connection part is tightly joined with a seal (tightly joined by welding, O-ring, metal gasket, etc.), and the motor rotor is arranged. It is necessary to separate the open space from the housing external space.
  • This embodiment uses a surface magnet type 32-pole 36-slot outer rotor brushless type direct drive motor.
  • the slot combination of 32 poles and 36 slots is generally known to have a large magnetic attraction force in the radial direction and a large vibration during rotation, although the cogging is small. is there . 2 n times (n is an integer) cancels out the magnetic attractive force in the radial direction. Therefore, vibration during rotation can be achieved without increasing the roundness and coaxiality of the stator and rotor and the rigidity of the mechanical parts. Can be made small and cogging is inherently small, so that a very smooth rotation can be obtained.
  • the electrical angle cycle is greater than the mechanical angle cycle, so positioning controllability is good. Therefore, it is suitable for a direct drive motor that drives a robot apparatus without using a speed reducer as in the present invention.
  • the direct drive motor having a thin and large diameter and narrow width as in the present invention is used. Is preferred.
  • FIG. 53 is a view of the configuration of FIG. 52 taken along the ⁇ - ⁇ line and viewed in the direction of the arrow.
  • the direct drive motor D1 will be described.
  • a hollow cylindrical main body 12 fitted in the central opening 10a of the disk 10 installed on the surface plate G and fixed to each other by bolts 11 has a cup-shaped partition wall 13 attached to the upper end thereof.
  • the center of the main body 12 can be used to pass wiring to the stator.
  • the main body 12 and the disk 10 constitute a housing.
  • the partition wall 13 is made of stainless steel, which is a non-magnetic material.
  • the partition wall 13 extends from the peripheral edge of the wall 13 through the direct drive motors Dl and D2 in the axial direction. It consists of an existing thin cylindrical portion 13 b and a holder 15. Therefore, the partition wall 13 is commonly used for the direct drive motors Dl and D2.
  • the lower end of the cylindrical portion 13b is joined to a holder 15 so as to be sealed by TIG welding, and the holder 15 is fixed to the disc 10 with bolts 16.
  • TIG welding a holder 15
  • the contact surface between the holder 15 and the disc 10 is provided with a groove force that fits the seal member. After the seal member OR is fitted into the groove, the holder 15 and the disc 10 are fastened by the bolt 16. As a result, the fastening part is isolated from the atmospheric force.
  • the partition wall 13 is made of austenitic stainless steel SUS316, which has high corrosion resistance, and is particularly magnetic.
  • the holder 15 is also made of SUS316 because of its weldability with the partition wall 13.
  • the partition wall 13 and the holder 15 are hermetically bonded, and the holder 15, the disk 10, and the circle.
  • the plate 10 and the surface plate G are hermetically sealed by O-ring OR. Therefore, the internal space surrounded by the disk 10 and the partition wall 13 is hermetically sealed.
  • the partition wall 13 is not necessarily made of a nonmagnetic material. Further, instead of using an O-ring OR, the members may be hermetically sealed by electron beam welding or laser beam welding.
  • a bearing holder 17 is fixed with bolts 18 on the outer peripheral upper surface of the disk 10.
  • the bearing holder 17 is fitted with an outer ring of a four-point contact ball bearing 19 that is used in a vacuum, and is fixed by bolts 20.
  • the inner ring of the bearing 19 is fitted to the outer periphery of the first outer rotor 21 and is fixed by bolts 22. That is, the first outer rotor 21 is rotatably supported with respect to the partition wall 13, and a cylindrical member 23 that supports the arm A1 (FIG. 52) is fixed by the bolt 24.
  • the bolt 24 fastens the magnetic shield plate 25 extending inward in the radial direction together with the cylindrical member 23.
  • the disc 10 and the bearing holder 17 are made of austenitic stainless steel, which has high corrosion resistance.
  • the disc 10 also serves as a fitting and fixing device with the surface plate G, which is a chamber, on the bottom surface.
  • a groove 10b is provided to fill the O-ring OR.
  • the magnetic shield plate 25 is subjected to nickel plating in order to enhance the anti-corrosion and corrosion resistance after press-forming the SPCC steel plate, which is a magnetic material.
  • the effect of the bearing 19, which will be described later, is a four-point contact ball bearing that can apply radial, axial, and moment loads with a single bearing. By using this type of bearing, only one bearing for the direct drive motor D1 is required, so the two-axis coaxial motor system of the present invention can be made thinner.
  • the bearing 19 is made of martensite stainless steel, which has high corrosion resistance for both the inner and outer rings and can be hardened by quenching.
  • the rolling elements are ceramic balls, and the lubricant is vacuum grease that does not solidify even under vacuum.
  • the bearing 19 may be made of metal lubricated by plating a soft metal such as gold or silver on the inner ring and the outer ring so as not to release outgas even in vacuum, or a four-point contact ball. Because it is a bearing, it can receive a moment in the direction in which the first outer rotor 21 tilts from the arm A1, but it is not limited to the four-point contact type, and cross rollers, cross balls, and cross taper bearings can also be used. Yes, it can be used in a pre-loaded state, or a fluorine-based coating to improve lubricity Processing (DFO) may be performed! ⁇ .
  • DFO lubricity Processing
  • the first outer rotor 21 includes a permanent magnet 21a, an annular yoke 21b made of a magnetic material to form a magnetic path, and a non-magnetic material for mechanically fastening the permanent magnet 21a and the yoke 21b. It consists of a wedge (not shown).
  • Permanent magnet 21a has a configuration of 32 poles, each of which has 16 poles of N poles and S poles made of magnetic metal alternately, and is divided into segments. Each of the permanent magnets 21a has a sector shape.
  • the inner and outer diameter arc centers are the same, but the tangent intersection of the circumferential end face is closer to the permanent magnet 21a, so that the wedge is tightened from the outer diameter side of the yoke 21b by screwing the permanent magnet 21a to the yoke. Signed to 21b.
  • the permanent magnet can be fastened without using a fixing member that generates outgas, such as an adhesive.
  • the permanent magnet 21a is a neodymium (Nd—Fe—B) based magnet having a high energy product, and is coated with nickel to enhance corrosion resistance.
  • the yoke 21b is made of a low-carbon steel having high magnetism, and is plated with nickel to improve wear resistance and corrosion resistance and prevent wear during bearing replacement after processing and molding.
  • the first outer rotor 21 has a surface for fitting and fixing the inner ring of the bearing 19 and the cylindrical member 23.
  • the four-point contact ball bearing 19 is a very thin bearing, and its rotational accuracy and friction torque are greatly affected by differences in accuracy and linear expansion coefficient of the assembled parts. Therefore, in the case of the present embodiment, the inner ring of the bearing 19 which is a rotating ring is an interference fit or an intermediate fit to the yoke 21b which is easy to obtain processing accuracy and whose linear expansion coefficient is substantially the same as the bearing ring material of the bearing.
  • the outer ring of the bearing 19, which is a fixed ring, is fitted to the austenitic stainless steel bearing holder or aluminum boss to prevent the bearing 19 from rotating and the friction torque from increasing due to temperature rise. ing.
  • a first stator 29 is disposed on the inner side in the radial direction of the partition wall 13 so as to face the inner peripheral surface of the first outer rotor 21.
  • the first stator 29 is attached to a cylindrically deformed lower portion of a flange portion 12a extending in the radial direction at the center of the main body 12.
  • the first stator 29 is formed of a laminated material of electromagnetic steel plates and is insulated from each salient pole. As a process, the motor coil is concentrated after the bobbin is fitted.
  • the outer diameter of the first stator 29 is approximately the same as or smaller than the inner diameter of the partition wall 13.
  • the first inner rotor 30 is disposed on the radially inner side of the first stator 29. 1st inside The rotor 30 is rotatably supported by a ball bearing 33 with respect to a resolver holder 32 that is bolted to the outer peripheral surface of the main body 12.
  • a permanent magnet 30a is attached to the outer peripheral surface of the first inner rotor 30 via a knock 30b.
  • the permanent magnet 30a is composed of 32 poles in the same manner as the permanent magnet 21a of the first outer rotor 21, and 16 magnets of N poles and S poles are alternately made of magnetic metal. Accordingly, the first inner rotor 30 is rotated in synchronism with the first outer rotor 21 driven by the first stator 29.
  • the bearing 33 that rotatably supports the first inner rotor 30 is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing. By using this type of bearing, it is possible to reduce the thickness of the direct drive motor D1 because only one bearing is required. Since the interior of the partition wall 13 is an atmospheric environment, a bearing using grease lubrication based on general bearing steel and mineral oil can be applied.
  • Permanent magnet 30a Since the inside of the partition wall 13 is an atmospheric environment, the permanent magnet 30a is bonded and fixed to the back yoke 30b.
  • Permanent magnet 30a is a high energy product neodymium (Nd-Fe-B) magnet with nickel coating to prevent demagnetization due to defects.
  • the yoke 30b is made of low-carbon steel with high magnetism, and is chromated to prevent fouling after machining.
  • Resolver rotors 34a and 34b are assembled as detectors for measuring the rotation angle on the inner periphery of the first inner rotor 30, and the resolver stator 35 is disposed on the outer periphery of the resolver holder 32 so as to be opposed thereto.
  • the high-resolution incremental resolver stator 35 and the absolute resolver stator 36 that can detect the position of the rotor in one rotation are arranged in two layers. /!
  • the resolver holder 32 and the first inner rotor 30 are made of carbon steel, which is a magnetic material, so that electromagnetic noise from the motor field and motor coil is not transmitted to the resolver stators 35, 36 that are angle detectors. In addition, after processing and molding, it has been chromated to prevent fouling.
  • the high-resolution variable reluctance resolver used in the present embodiment has an incremental resolver rotor 34a having a plurality of slot teeth having a constant pitch, and the outer peripheral surface of the incremental resolver stator 35. Are provided with teeth shifted in phase with respect to the incremental resolver rotor 34a at each magnetic pole parallel to the rotation axis, and a coil is wound around each magnetic pole.
  • the incremental resolver rotor 34a rotates together with the first inner rotor 30, the reluctance between the incremental resolver stator 35 and the magnetic pole changes, and the fundamental wave component of the change in reluctance becomes n cycles in one revolution of the incremental resolver rotor 34a.
  • the change in reluctance is detected, digitalized by the resolver control circuit shown in FIG. 54, and used as a position signal, so that the rotational angle of the incremental resolver rotor 34a, that is, the first inner rotor 30 is (Or rotation speed) is detected.
  • the resolver rotors 34a and 34b and the resolver stators 35 and 36 constitute a detector.
  • the first inner rotor 30 rotates at the same speed by the magnetic coupling action with respect to the first outer rotor 21, that is, rotates with the first outer rotor 21, so that the first outer rotor 21 rotates.
  • the corner can be detected through the bulkhead 13.
  • the resolver alone has the bearing 33 without using the parts forming the motor and the uzing, and therefore, the eccentricity adjustment with the resolver alone is performed before the resolver coil is assembled into the housing. Since accuracy adjustment such as position adjustment can be performed, there is no need to provide adjustment holes or notches on both flanges of the housing.
  • the rotating wheel of the bearing device 19 that is rotatably supported by the first outer rotor 21 is fitted into a rotor yoke 21b that is easy to obtain machining accuracy and has the same linear expansion coefficient as the driving wheel of the bearing device 19.
  • the rotation accuracy can be improved and the friction torque can be prevented from changing due to temperature changes.
  • the main body 12 constitutes a housing.
  • the above-described cylindrical member 23 of the direct drive motor D1 extends upward to a position where it overlaps with the direct drive motor D2, and has a four-point contact ball bearing 19 ′ used in vacuum on its inner peripheral surface.
  • the outer ring is fitted and fitted with bolts 20 '.
  • the inner ring of the bearing 19 ′ is fitted to the outer periphery of the second outer rotor 21 ′, It is fixed by the bolt 22 '.
  • the bolt 22 'and the magnetic shield plate 41 extending inward in the radial direction are fastened together.
  • the second outer rotor 21 ′ is rotatably supported with respect to the partition wall 13, and a ring-shaped member 23 ′ that supports the arm A2 (FIG. 52) is fixed by a bolt 24 ′. Further, the bolt 24 'fastens the magnetic shield plate 25 extending inward in the radial direction together with the ring-shaped member 23'.
  • the magnetic shield plates 41 and 25 ' are subjected to nickel plating in order to enhance the anti-corrosion and corrosion resistance after press molding the SPCC steel plate, which is a magnetic material.
  • the magnetic shield plates 41 and 25 are interposed between the first outer rotor 21 and the second outer rotor 21 to form a magnetic shield and prevent mutual rotation due to magnetic flux leakage from them. . That is, the magnetic shield plate 25 ′ is fastened to the yoke 21b ′ with the ring-shaped member 23 ′, which is a non-magnetic material, interposed therebetween, thereby preventing unnecessary magnetic circuits from being generated.
  • the magnetic shield plates 41 and 25 can prevent magnetic interference between the rotors, it is possible to achieve a configuration in which the overall shaft length is suppressed while being a biaxial coaxial motor system.
  • the magnetic shield plate 41 prevents foreign matter from being attracted from the outside.
  • the bearing 19 ' is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing.
  • the biaxial coaxial motor of the present invention can be made thinner.
  • the inner and outer rings are made of martensitic stainless steel, which has high corrosion resistance and can be hardened by quenching.
  • the rolling elements are ceramic balls, and the lubricant is vacuum grease that does not solidify even under vacuum.
  • the bearing 19 ' may be made of a metal lubrication that is plated with a soft metal such as gold or silver on the inner ring and the outer ring and does not release outgas even in vacuum, or a four-point contact ball bearing.
  • a four-point contact type but also a cross roller, a cross ball, and a cross taper bearing can be used. It can be used under preload conditions, or it can be treated with fluorine coating (DFO) to improve lubricity! ⁇ .
  • DFO fluorine coating
  • the second outer rotor 21 ' mechanically fastens the permanent magnet 21a', the annular yoke 21b 'made of a magnetic material to form a magnetic path, and the permanent magnet 21a' and the yoke 21b '.
  • Non-magnetic for It is composed of a wedge (not shown) that is physically strong.
  • Permanent magnet 21a ' is a segment type with a configuration of 32 poles, with 16 N-pole and S-pole magnets alternately made of magnetic metal and divided into poles, each of which has a sector shape.
  • the center of the arc of the inner and outer diameters is the same force.By making the tangential intersection of the circumferential end faces closer to the permanent magnet 21a ', the wedge 21a' is tightened with a screw from the outer diameter side to tighten the permanent magnet 21a '. It is fastened to York 21b '. With such a configuration, the permanent magnet can be fastened without using a fixing member that generates outgas, such as an adhesive.
  • Permanent magnet 21a ' is a high energy product neodymium (Nd-Fe-B) based magnet, which is coated with nickel to enhance corrosion resistance.
  • Yoke 21b ' is made of low-carbon steel with high magnetic properties, and is plated with nickel to improve wear resistance and corrosion resistance after machining and to prevent wear during bearing replacement.
  • the second outer rotor 21 ' has a surface for fitting and fixing the inner ring of the bearing 19' and the ring-shaped member 23 '.
  • the four-point contact ball bearing 19 ' is a very thin bearing, and its rotational accuracy and friction torque are greatly affected by differences in the accuracy and linear expansion coefficient of the assembled parts. Therefore, in the case of the present embodiment, the inner ring of the bearing 19 ′ is tightly fitted or intermediately fitted to the yoke 21b, which is easy to obtain machining accuracy and has the same linear expansion coefficient as the bearing ring material of the bearing.
  • the outer ring is made into a clearance fit with an austenitic stainless steel bearing holder or an aluminum boss, thereby preventing a decrease in rotational accuracy of the bearing 19 ′ and an increase in friction torque due to a temperature rise.
  • a second stator 29 ' is disposed so as to face the inner peripheral surface of the second outer rotor 21'.
  • the second stator 29 ′ is attached to the upper part of the flange 12 a that extends in the radial direction in the center of the main body 12, and is formed of a laminated material of electromagnetic steel sheets, and each salient pole is insulated. As shown, the motor coil is concentrated after the bobbin is fitted.
  • the outer diameter of the second stator 29 ′ is approximately the same as or smaller than the inner diameter of the partition wall 13.
  • a second inner rotor 30 ' is arranged inside the second stator 29' in the radial direction.
  • the second inner rotor 30 ′ is rotatably supported by a ball bearing 33 ′ with respect to a resolver holder 32 ′ bolted to the outer peripheral surface of the main body 12.
  • a permanent magnet 30a ′ is attached to the outer peripheral surface of the second inner rotor 30 ′ via a back yoke 30b ′.
  • Permanent magnet 30a ' 2 As with the permanent magnet 21a 'of the outer rotor 21', it has a 32-pole configuration, and each of the 16 N-pole and S-pole magnets has a magnetic metal force alternately. Accordingly, the second inner rotor 30 ′ is rotationally driven by the second stator 29 ′ in synchronization with the second outer rotor 21 ′.
  • the bearing 33 'that rotatably supports the first inner rotor 30' is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing. By using this type of bearing, only one bearing is required, so the direct drive motor D2 can be made thinner. Since the inside of the partition wall 13 is an atmospheric environment, a bearing using grease lubrication based on general bearing steel and mineral oil can be applied.
  • the permanent magnet 30a ′ Since the inside of the partition wall 13 is an atmospheric environment, the permanent magnet 30a ′ is bonded and fixed to the back yoke 30b ′.
  • the permanent magnet 30a ' is a neodymium (Nd-Fe-B) magnet with a high energy product and is coated with nickel to prevent demagnetization due to defects.
  • Yoke 30b ' is made of low-carbon steel with high magnetism, and is chromated to prevent fouling after machining.
  • the resolver rotors 34a 'and 34b' are assembled as detectors for measuring the rotation angle on the inner periphery of the second inner rotor 30 ', and the outer periphery of the resolver holder 32' is opposed to it.
  • the resolution of the resolver stator 35 ', 36' is high resolution incremental resolver stator 35, and the absolute resolver stator 36 'that can detect the position of the rotor in one rotation.
  • the resolver holder 32 and the second inner rotor 30 are magnetic bodies so that electromagnetic noise from the motor field and the motor coil is not transmitted to the resolver stators 35 'and 36' that are angle detectors. Carbon steel is used as a material, and chromate plating is applied after processing to prevent fouling.
  • the second inner rotor 30 ' rotates at the same speed by the magnetic coupling action with respect to the second outer rotor 21'.
  • the rotation angle can be detected through the partition wall 13.
  • the parts constituting the motor, the bearing 33 is provided as a single resolver without using uzing. Since it is possible to adjust the accuracy of the resolver coil position, etc., there is no need to provide adjustment holes or notches on both flanges of the housing.
  • the rotating wheel of the bearing device 19 ′ that is rotatably supported by the second outer rotor 21 ′ is fitted to the rotor yoke 21 b ′, which is easy to obtain machining accuracy and whose linear expansion coefficient is substantially the same as the driving wheel of the bearing device 19 ′.
  • the incremental resolver rotor 34a ′ has a plurality of slot tooth rows having a constant pitch, and the outer circumference of the incremental resolver stator 35.
  • the surface is provided with teeth that are shifted in phase with respect to the incremental resolver rotor 34a ′ at each magnetic pole parallel to the rotation axis, and a coil is wound around each magnetic pole.
  • the reluctance change is detected so that the wave component has n cycles, is digitalized by the resolver control circuit shown in FIG. 54, and is used as a position signal, so that the incremental resolver rotor 34a ′, that is, the first 2The rotation angle (or rotation speed) of the inner rotor 30 'is detected.
  • the resolver rotors 34a, 34b and the resolver stators 35, 36 constitute a detector.
  • the magnetic shield plates 25 and 41 are arranged between the first outer rotor 21 and the second outer rotor 21 ', thereby suppressing mutual magnetic interference. However, it avoids malfunctions such as erroneous driving and rotation.
  • the outer peripheral edge 12b of the flange portion 12a extending between the direct drive motors Dl and D2 in the main body 12 is made of carbon steel, which is a magnetic material, between the first stator 29 and the second stator 29 ′.
  • the magnetic fields that shield each other's magnetic field are included. Functions as a shield.
  • the first stator 29 and the second stator 29 ' are vertically arranged around the flange portion 12a.
  • a resolver is arranged on the radially inner side.
  • the main body 12 has a hollow structure, and the flange portion 12a has at least one radial through hole 12d communicating with the center through which the motor wiring is drawn out to the center of the main body 12. It has a structure.
  • at least one notch 12e, 12e is provided at each end of the main body 12, and the resolver wiring is drawn out to the center of the main body 12 through these.
  • the angle of the stator and resolver can be adjusted. Therefore, if a separate facility for rotationally driving the reference outer rotor is prepared, the angle of the resolver relative to the stator can be adjusted with high accuracy by setting the main body 12 incorporating the stator and resolver in the facility. Therefore, it is possible to prevent the angle positioning accuracy from being lowered due to the deviation of the commutation, and to improve the compatibility of the drive control circuit with the two-axis coaxial motor of the present invention.
  • FIG. 55 is a block diagram showing a drive circuit for the direct drive motors Dl and D2.
  • the motor control circuit DMC1 for the direct drive motor D1 and the motor control circuit DMC2 for the direct drive motor D2 are each sent from the CPU to the three-layer amplifier (AMP).
  • the drive signal is output, and the drive current is supplied to the direct drive motors Dl and D2 with a three-layer amplifier (AMP) force.
  • AMP three-layer amplifier
  • the resolver signal is output from the resolver stator 35, 36, 35, 36, which has detected the rotation angle as described above, and is output to the resolver digital converter (RDC).
  • the CPU input after digital conversion judges whether or not the outer rotor 21, 21 'has reached the command position, and when it reaches the command position, it stops the drive signal to the 3-layer amplifier (AMP). Stop rotation of outer ports 21, 21 '. This enables servo control of the outer rotors 21, 21 '.
  • the arm A1 or the like is attached to the wall of the vacuum chamber or the shatter of the vacuum chamber.
  • the absolute resolver stators 36 and 36 'that detect the absolute position of one rotation of the rotating shaft, and the incremental resolver stator 35 and that detect a rotational position with finer resolution are used in this embodiment.
  • a variable reluctance resolver is used, so that the rotational position of the outer rotors 21 and 21, that is, the arms Al and A2, can be controlled with high accuracy.
  • FIG. 56 is a cross-sectional view showing a four-axis coaxial motor system that works on a modification of the present embodiment.
  • partition wall holder 113a is airtightly coupled to upper disk portion 110 attached to the upper surface of main body 12 connected in series via O-ring OR, and the outer peripheral surface thereof.
  • the upper end of thin cylinder 113b is TIG welded.
  • the lower end of the thin-walled cylinder 113b is TIG welded to the holder 15 as in the above-described embodiment.
  • the partition wall holder 113a, the thin cylinder 113b and the holder 15 constitute a partition wall. This is commonly used for the four direct drive motors.
  • the upper surface of the disc part 110 is closed by the lid member 101, and the bearing holder 107 attached to the outer periphery thereof supports the bearing 19.
  • the disk part 110, the lid member 101, and the bearing holder 107 have high corrosion resistance! Use austenitic stainless steel as the material! /
  • the outer peripheral surface of the upper disk part 110 where the bearing holder 107 is attached is located radially inward of the thin cylinder 113b. Therefore, if the bearing holder 107 is removed from the upper disk part 110, the four outer rotors 21, 21 ′ can be removed upward without disassembling the upper disk part 110. Therefore, it is possible to facilitate work that does not require disassembly of the airtight structure during maintenance.
  • the magnetic shield plates 25 'and 25' are arranged between the second outer rotors 21 and 21 at the center, so that mutual magnetic interference is suppressed. This avoids malfunctions such as erroneous driving and companionship.
  • a magnetic shield plate 125 whose outer peripheral force extends in the radial direction to the inside of the thin cylinder 113b is disposed.
  • the magnetic shield plate 125 is made of carbon steel, which is a magnetic material, and is interposed between the second stators 29 ′ and 29 ′, so that the adjacent second outer rotor 21 ′ is affected by the leakage magnetic flux.
  • 21 ' functions as a magnetic shield that shields the magnetic field of each other so as not to generate a thrust in the wrong rotation direction. In this way, coupled with the effects of the other magnetic shields 25, 41, and 12b, it is possible to achieve a configuration in which the overall axial length is suppressed while being 4-axis coaxial.
  • the force described using the example using the surface magnet type 32-pole 36-slot outer rotor brushless motor is not limited to this type of motor.
  • any brushless motor can be used, and other magnetic pole types such as a permanent magnet embedded type, other slot combinations, or an inner rotor type may be used.
  • a configuration may be adopted in which the number of rotor poles and the number of slots of adjacent axes in the axial direction are different.
  • the first axis is 32 poles and 36 slots
  • the second axis is 24 poles and 27 slots
  • the first axis and the third axis are 32 poles and 3 6 slots. If the two axes and the fourth axis are configured with 24 poles and 27 slots, mutual interference such as generation of thrust in the rotational direction to the rotor and magnetic coupling device due to the magnetic field of each axis can be prevented.
  • the rotor permanent magnet is a neodymium (Nd-Fe-B) -based magnet, and nickel coating is used as an example of coating to improve corrosion resistance.
  • This material is not limited to the surface treatment, and it is changed as appropriate depending on the environment in which it is used. System magnets should be used, and if used in ultra-vacuum, a titanium nitride coating with a high outgas barrier should be applied.
  • the yoke is made of low-carbon steel and has been explained using an example of nickel plating.
  • 1S This material is suitable depending on the environment in which the material is used and not limited to surface treatment. Especially for surface treatment, if it is used in ultra-vacuum, it should be subjected to force-less plating with a small number of pinholes, clean soldering, titanium nitride coating, etc.
  • the method for fastening the permanent magnet to the yoke has been described using an example in which a non-magnetic wedge is tightened from the outer diameter side of the yoke with a screw, but it may be changed as appropriate depending on the environment in which it is used. May be bonded or other fastening methods.
  • bearings 19 and 19 have been described using an example of grease lubricated four-point contact ball bearings for vacuum, but this is not limited to this type, material, and lubrication method. It can be changed as appropriate depending on conditions, rotational speed, etc., and it can be a cross roller bearing. In the case of a 4-axis coaxial motor, it can be supported by another bearing to further increase mechanical rigidity. If a multi-point contact bearing cannot be used, such as when rotating at high speeds, a bearing that supports the rotor of each shaft and another bearing may be configured to apply preload as deep groove ball bearings or angular bearings. When used in an ultra-vacuum, it is possible to use a metal-lubricated material that does not emit gas, such as a metal ring plated with a soft metal such as gold or silver.
  • the inner rotor functioning as a magnetic coupling has been described in the form of using a permanent magnet and a back yoke
  • the material and shape of the permanent magnet and the back yoke are not limited to this.
  • the number of poles may not be the same as that of the outer rotor, or the width may not be the same.
  • a salient pole that does not use a permanent magnet is also acceptable.
  • a resolver is used as an angle detector
  • it can be appropriately changed depending on manufacturing cost and resolution, and for example, an optical rotary encoder may be used.
  • the thrust in the rotational direction is applied to the magnetic force coupling used for each rotor and rotation detector by the magnetic flux that also leaks the magnetic coupling force used for the rotor, stator, and resolver of each axis.
  • magnetic shields for shielding each other's magnetic field are arranged between the rotors of each axis, or the electromagnetic fields generated by the rotor, stator and resolver force of each axis.
  • a magnetic shield is provided to shield each other's electromagnetic field, or the number of rotor poles and the number of stator slots in the axially adjacent axes are changed.
  • the direct drive motor of the present embodiment can be used not only in a vacuum atmosphere but also in an atmosphere outside the atmosphere.
  • reactive gas for etching may be introduced into the vacuum chamber after evacuation, but in the direct drive motor of this embodiment, the inside and outside are shielded by the partition walls. Therefore, there is no possibility that the motor coil or the insulating material will be etched.

Abstract

Provided is a motor for use in the atmosphere outside of the air, which is high in its performance and reliability while avoiding the atmosphere contamination, as might otherwise be caused by fixing magnetic poles. The motor is fixed by a magnetic force on the inner circumference of a rotor yoke (19a) made of a magnetic material and on outer rotor magnets (18), so that it is not easily displaced by the force of gravity or the torque at a power feeding time. In addition, the minimum clearance (C) in the circumferential direction between the confronting faces (18a and 18a) of the outer rotor magnets (18 and 18) is made smaller than the maximum width (W) of a spacer (19d) in the circumferential direction, and the portion to form the minimum clearance (C) in the circumferential direction between the confronting faces (18a and 18a) of the outer rotor magnets (18 and 18) is positioned radially outward of the portion of the maximum width (W) of the spacer (19d). Without using any adhesive, therefore, the drop or the circumferential displacement of the outer rotor magnets (18) can be suppressed even if an unexpected vibration or shock occurs. Even if the motor (D1) is arranged in vacuum, therefore, it is possible to avoid the atmosphere contamination which might otherwise be caused by the released gas (or the out gas) of occluded impurity molecules.

Description

明 細 書  Specification
モータ  motor
技術分野  Technical field
[0001] 本発明は、例えば大気外の雰囲気例えば真空中で用いられると好適なモータに関 する。  [0001] The present invention relates to a motor suitable for use in an atmosphere outside the atmosphere, for example, in a vacuum.
背景技術  Background art
[0002] 例えば半導体製造装置等においては、不純物を極力排除するために真空槽内の 超高真空雰囲気中で被加工物に対する加工作業が行われる。その場合に使用され るァクチユエータとして、例えば被力卩ェ物位置決め装置の駆動モータにあっては、駆 動軸の軸受に一般的なグリースなどのように揮発成分を含有する潤滑剤を用いること はできな!、から、金や銀などの軟質金属を軸受の内外輪にプレーティングすることで 潤滑性を高めている。また、駆動モータのコイル絶縁材、配線被覆材及び積層磁極 の接着剤なども、耐熱性に優れ放出ガスの少な 、安定した材料が選定されると 、う 実情がある。  [0002] For example, in a semiconductor manufacturing apparatus or the like, a workpiece is processed in an ultra-high vacuum atmosphere in a vacuum chamber in order to eliminate impurities as much as possible. As an actuator used in that case, for example, in a drive motor of a driven object positioning device, it is not possible to use a lubricant containing a volatile component such as general grease for a drive shaft bearing. Because it is impossible, the lubricity is improved by plating soft metals such as gold and silver on the inner and outer rings of the bearing. In addition, there is an actual situation when a stable material with excellent heat resistance and low emission gas is selected for the coil insulating material of the drive motor, the wiring coating material, and the adhesive of the laminated magnetic pole.
[0003] 特に近年、半導体の集積度が高まり、それに伴って同時に ICのパターン幅の微細 化による高密度化が進められている。この微細化に対応できるウェハを製造するため に、ウェハ品質に対する高度の均一性が要求されている。その要求に応えるために は、ウェハの低圧ガス処理室における不純物ガス濃度の一層の低減が重要である。 また、要求通りに微細加工を行うためには、極めて高精度の位置決め装置が必要で ある。こうした見地から上記従来のァクチユエータを検討すると、以下のような種々の 問題点が指摘される。  [0003] In particular, in recent years, the degree of integration of semiconductors has increased, and at the same time, higher density has been promoted by reducing the pattern width of ICs. In order to manufacture a wafer that can cope with this miniaturization, a high degree of uniformity in wafer quality is required. In order to meet this demand, it is important to further reduce the impurity gas concentration in the low-pressure gas processing chamber of the wafer. In addition, in order to perform microfabrication as required, a highly accurate positioning device is required. From this point of view, the following problems are pointed out when the above-mentioned conventional actuator is examined.
[0004] すなわち、超真空雰囲気を備えた真空槽内で用いる駆動モータの場合、たとえ駆 動モータのコイル絶縁材ゃ配線被覆等に、耐熱性に優れ放出ガスの少な 、安定し た材料が選定されても、それが有機系の絶縁材料である限り、ミクロ的には多孔質で あって表面には無数の穴を有している。これをー且大気にさらすと、その表面の穴に ガスや水分子等を取り込んで吸蔵してしまう。それらの吸蔵不純分子を真空排気で 除去する脱ガスに長時間を要してしまい、生産効率の低下は避けがたい。 [0005] よって、駆動モータの形式を周対向型の表面磁石型ブラシレスモータとすることで 回転子の電気配線を排除し、かつ固定子と回転子との狭間に円筒状の金属隔壁を 設けることで、コイル絶縁材ゃ配線被覆等、有機系の材料が多数用いられている固 定子側を超真空雰囲気から隔絶し、吸蔵不純分子の放出を防ぐ方策が多く用いられ てきた。 [0004] In other words, in the case of a drive motor used in a vacuum chamber equipped with an ultra-vacuum atmosphere, a stable material with excellent heat resistance and low emission gas is selected for the coil insulation of the drive motor and wiring coating, etc. However, as long as it is an organic insulating material, it is microscopically porous and has numerous holes on its surface. If this is exposed to the atmosphere, gas and water molecules will be taken in and occluded in the holes on the surface. It takes a long time for degassing to remove these occluded impure molecules by vacuum evacuation, and it is inevitable that the production efficiency will decline. [0005] Therefore, by using a circumferentially opposed surface magnet type brushless motor as the drive motor, the electrical wiring of the rotor is eliminated, and a cylindrical metal partition is provided between the stator and the rotor. On the other hand, many measures have been used to prevent the release of storage impurities by isolating the stator side, which uses many organic materials such as coil insulation and wiring coating, from the ultra-vacuum atmosphere.
一方、回転子には電気配線が存在しないものの、永久磁石とロータヨークとの固定 には接着剤を用いるのが一般的であり、超真空雰囲気ではこの接着剤からの吸蔵不 純分子の放出が無視できないという問題がある。ここで、接着剤が広く用いられてい る理由は、ロータヨークと永久磁石の線膨張係数の差による応力を接着剤の層にて 吸収し、極度の高温または低温時の永久磁石の割れや欠けを防ぐことができると 、う メリッ卜〖こよるものである。  On the other hand, although there is no electrical wiring in the rotor, it is common to use an adhesive to fix the permanent magnet and the rotor yoke, and in this ultra-vacuum atmosphere, the release of occluded impurity molecules from this adhesive is ignored. There is a problem that you can not. Here, the reason why the adhesive is widely used is that the stress due to the difference in linear expansion coefficient between the rotor yoke and the permanent magnet is absorbed by the adhesive layer, and the permanent magnet is cracked or chipped at extremely high or low temperatures. You can prevent it from being a good thing.
[0006] このような問題に対し、ロータヨークにおいて、永久磁石の厚みを付加した直径を有 する大径部を軸方向に 2ケ所設け、その間に永久磁石を配置して硬化性榭脂を充填 することで永久磁石を固定し、かつ 2ケ所の大径部を含めて被せられるだけの長さを 有する薄管を被せ、その口元を 2ケ所の大径部にそれぞれ溶接し密封することにより 、吸蔵不純分子の放出を防ぐ手段を有するモータが特許文献 1に記載されて 、る。 特許文献 1 :特開 2000— 69696号公報 ところで、ロータヨークは磁路を形成する部 品であるが、磁束の変化が非常に少なく渦電流損失がほとんど生じない。よって、構 造体用材料であるが強磁性体である低炭素鋼が広く用いられている。一方、永久磁 石を固定している硬化性榭脂と共にロータヨークの大径部に被せる薄管は、磁束の 短絡を避けるためにオーストナイト系のステンレスなどの非磁性金属を用いるのが望 ましい。 [0006] To solve such a problem, the rotor yoke is provided with two large-diameter portions having a diameter to which the thickness of the permanent magnet is added in the axial direction, and the permanent magnet is disposed between them to fill the curable resin. The permanent magnet is fixed, and a thin tube with a length sufficient to cover the two large-diameter portions is covered, and the mouth is welded and sealed to the two large-diameter portions, respectively. A motor having means for preventing the release of impurity molecules is described in Patent Document 1. Patent Document 1: JP 2000-69696 A By the way, the rotor yoke is a part that forms a magnetic path, but the change in magnetic flux is very small and eddy current loss hardly occurs. Therefore, low-carbon steel, which is a ferromagnetic material but is a structural material, is widely used. On the other hand, it is desirable to use a nonmagnetic metal such as austenitic stainless steel for the thin tube that covers the large diameter part of the rotor yoke together with the hardened resin that fixes the permanent magnet, in order to avoid short circuit of the magnetic flux. .
[0007] しかし、材料特性が大きく異なる前記 2つの材料を溶接で完全に封止することは困 難であり、高度な技術を要するためコスト増を招く。また、溶接部に硬化性榭脂が付 着していると、溶接不良を生じる原因となる。更に固定子への鎖交磁束の減少による モータ性能の低下を許容し、薄管をロータヨークと同様の材質を用いた場合でも、口 ータヨークは磁束を飽和することなく通すためにも、ある程度の体積を必要とする構 造体であって熱容量が大きいのに対し、一方の薄管はモータのエアギャップを狭め るためにも非常に薄くすることが望ましぐ熱容量が非常に小さいので、薄管にひず みや割れを生じやすぐ溶接で完全に封止することは難しい。 [0007] However, it is difficult to completely seal the two materials having greatly different material characteristics by welding, and an advanced technique is required, resulting in an increase in cost. In addition, if a curable resin is attached to the weld, it may cause poor welding. Furthermore, even if the thin tube is made of the same material as the rotor yoke, even if the thin tube uses the same material as the rotor yoke, the rotor yoke allows a certain amount of volume to pass through without saturating the magnetic flux. However, one thin tube narrows the air gap of the motor. Therefore, since the heat capacity that is desired to be very thin is very small, it is difficult to completely seal the tube by welding or cracking.
[0008] また、ロータヨークに用いられるような強磁性を有する金属材料は非常にさびやすく 、真空槽内での発塵を防ぐためにニッケルメツキなどの防鲭処理を溶接後に施す必 要があるが、溶接部に施されためっき膜にはピンホールを生じやすぐそこから鲭が 進行する恐れもあった。  [0008] In addition, the ferromagnetic metal material used for the rotor yoke is very rusty, and it is necessary to carry out a fouling treatment such as nickel plating after welding in order to prevent dust generation in the vacuum chamber. There was a possibility that a pinhole was formed in the plating film applied to the welded part and the flaws proceeded from there immediately.
本発明は、力かる従来技術の問題点に鑑みてなされたものであり、磁極の固定に 起因する雰囲気汚染を回避しながらもモータ性能が高ぐかつ信頼性の高い、大気 外の雰囲気中で用いられるモータを提供することを目的とする。  The present invention has been made in view of the problems of the prior art, and while avoiding atmospheric contamination caused by fixing of magnetic poles, the motor performance is high and the reliability is high in an atmosphere outside the atmosphere. It aims at providing the motor used.
発明の開示  Disclosure of the invention
[0009] 〔発明 1〕  [Invention 1]
発明 1のモータは、少なくとも主ロータとステータとを有するモータにおいて、 前記主ロータは、磁性体力 なる円環状のヨークと、前記ヨークの内周面に配列さ れ永久磁石からなる複数の磁極と、隣接する前記磁極間に配置され前記ヨークの内 周面に取り付けられるスぺーサとを含み、  The motor of the first aspect of the present invention is a motor having at least a main rotor and a stator, wherein the main rotor is an annular yoke having a magnetic force, and a plurality of magnetic poles made of permanent magnets arranged on the inner peripheral surface of the yoke. A spacer disposed between the adjacent magnetic poles and attached to the inner peripheral surface of the yoke,
隣接する前記磁極の対向する一対の対向面における周方向の最小間隔は、前記 スぺーサの周方向の最大幅より小さくなつており、且つ前記磁極の対向面の最小間 隔となる部位は、前記スぺーサの最大幅の部位よりも半径方向外方に位置することを 特徴とする。  The minimum distance in the circumferential direction between a pair of opposing surfaces of the adjacent magnetic poles is smaller than the maximum width in the circumferential direction of the spacer, and the minimum gap between the opposing surfaces of the magnetic poles is: It is characterized in that it is located radially outward from the maximum width portion of the spacer.
[0010] これにより、磁性体力もなる円環状のヨークに対して、永久磁石力もなる複数の磁極 は磁力により、その内周面に固着されるので、重力ゃ通電によるトルクなどによって 容易に変位することはない。し力しながら、不測の振動や衝撃などによって脱落した り周方向に変位する恐れは残る。そこで、本発明においては、隣接する磁極間にス ぺーサを配置し、隣接する前記磁極の対向する一対の対向面における周方向の最 小間隔を、前記スぺーサの周方向の最大幅より小さくし、且つ前記磁極の対向面の 最小間隔となる部位を、前記スぺーサの最大幅の部位よりも半径方向外方に位置さ せているので、接着剤を用いることなぐ不測の振動や衝撃などによって前記磁極が 脱落したり周方向に変位することを抑制でき、従って接着剤等を用いたときに発生す るアウトガスによる雰囲気汚染を回避することができる。ただし、本発明のモータは、 真空中で用いる場合に限らない。耐熱用途など、接着剤の使用が望ましくない場合 もある力らである。尚、ここで「半径方向」、「軸線方向」は、ヨークを基準とするものと する。 [0010] With this, the plurality of magnetic poles also having permanent magnet force are fixed to the inner peripheral surface by magnetic force with respect to the annular yoke having magnetic force, so that gravity is easily displaced by torque caused by energization. There is nothing. However, there is a risk that it may fall off or be displaced in the circumferential direction due to unexpected vibration or impact. Therefore, in the present invention, a spacer is disposed between adjacent magnetic poles, and the minimum circumferential interval between a pair of opposing surfaces of the adjacent magnetic poles is greater than the maximum circumferential width of the spacer. Since the portion that is small and has the smallest distance between the opposing surfaces of the magnetic poles is located radially outward from the portion having the maximum width of the spacer, unexpected vibration without using an adhesive or The magnetic poles can be prevented from falling off or displaced in the circumferential direction due to impact, etc. It is possible to avoid atmospheric pollution caused by outgas. However, the motor of the present invention is not limited to use in a vacuum. In some cases, such as heat-resistant applications, it may be undesirable to use an adhesive. Here, “radial direction” and “axial direction” are based on the yoke.
〔発明 2〕  (Invention 2)
発明 2のモータは、発明 1のモータにおいて、前記磁極の対向面と前記スぺーサと の間には、スキマが形成されていることを特徴とする。  The motor of the invention 2 is characterized in that, in the motor of the invention 1, a gap is formed between the facing surface of the magnetic pole and the spacer.
[0011] これにより、前記磁極の対向面と前記スぺーサとの間には、スキマが形成されてい ると、温度変化によるヨークと磁極との熱膨張の差を吸収して、割れや欠けなどの不 具合を回避できる。 [0011] With this, if a gap is formed between the opposing surface of the magnetic pole and the spacer, the difference in thermal expansion between the yoke and the magnetic pole due to temperature change is absorbed, and cracks and chips are lost. You can avoid problems such as.
〔発明 3〕  (Invention 3)
発明 3のモータは、発明 1又は 2のモータにおいて、前記ヨークは、前記磁極が軸 線方向に変位したときに、前記磁極に当接する当接部を有していることを特徴とする  The motor of the invention 3 is the motor of the invention 1 or 2, characterized in that the yoke has a contact portion that contacts the magnetic pole when the magnetic pole is displaced in the axial direction.
[0012] これにより、前記ヨークは、前記磁極が軸線方向に変位したときに、前記磁極に当 接する当接部を有していると、前記磁極が軸線方向に変位することを阻止することが できる。 [0012] Thereby, when the magnetic pole has a contact portion that comes into contact with the magnetic pole when the magnetic pole is displaced in the axial direction, the yoke can prevent the magnetic pole from being displaced in the axial direction. it can.
〔発明 4〕  (Invention 4)
発明 4のモータは、発明 1又は 2のダイレクトドライブモータにおいて、前記スぺーサ は、前記磁極が軸線方向に変位したときに、前記磁極に当接する当接部を有してい ることを特徴とする。  The motor of the invention 4 is the direct drive motor of the invention 1 or 2, characterized in that the spacer has a contact portion that contacts the magnetic pole when the magnetic pole is displaced in the axial direction. To do.
[0013] これにより、前記スぺーサは、前記磁極が軸線方向に変位したときに、前記磁極に 当接する当接部を有していると、前記磁極が軸線方向に変位することを阻止すること ができる。  Accordingly, when the spacer has a contact portion that contacts the magnetic pole when the magnetic pole is displaced in the axial direction, the spacer prevents the magnetic pole from being displaced in the axial direction. be able to.
〔発明 5〕  (Invention 5)
発明 5のモータは、発明 1〜4のいずれかのモータにおいて、前記スぺーサは、前 記ヨークに対して非磁性体力もなるボルトにより固定されていることを特徴とする。  The motor according to a fifth aspect of the present invention is the motor according to any one of the first to fourth aspects, wherein the spacer is fixed to the yoke by a bolt that also has a non-magnetic force.
[0014] これにより、前記スぺーサは、前記ヨークに対して非磁性体力 なるボルトにより固 定されていると、前記スぺーサの固定を確実に行いながら、モータ性能を確保できる [0014] Thereby, the spacer is fixed to the yoke by a bolt having a nonmagnetic force. If it is fixed, the motor performance can be secured while the spacer is securely fixed.
〔発明 6〕 (Invention 6)
発明 6のモータは、発明 1〜5のいずれかのモータにおいて、前記モータは、減速 機などを介さずにロータを直接駆動するダイレクトドライブモータであり、大気外の雰 囲気中で用いられ、ハウジングと、前記ハウジング力 延在し、大気側と大気外側とを 隔絶する隔壁とを有し、  The motor of the invention 6 is the motor according to any one of the inventions 1 to 5, wherein the motor is a direct drive motor that directly drives the rotor without using a speed reducer or the like, and is used in an atmosphere outside the atmosphere. And a partition that extends the housing force and separates the atmosphere side from the atmosphere outside,
前記主ロータは、前記隔壁に対して大気外側に配置され、前記ステータは、前記 隔壁に対して大気側に配置され、  The main rotor is disposed outside the atmosphere with respect to the partition wall, and the stator is disposed on the atmosphere side with respect to the partition wall,
更に前記隔壁に対して大気側に配置され、且つ前記主ロータと共に連れ回る副口 ータと、前記副ロータの回転速度を検出する検出器とを有することを特徴とする。  Furthermore, it has an auxiliary port that is disposed on the atmosphere side with respect to the partition wall and rotates with the main rotor, and a detector that detects the rotation speed of the auxiliary rotor.
[0015] これにより、前記検出器を前記隔壁より大気側に置くことで、その配線被覆の吸蔵 不純分子が前記隔壁より大気外側の雰囲気を汚染することが防止され、且つ前記ス テータが、前記主ロータと前記副ロータとを同時に駆動することにより、前記検出器に より前記副ロータの回転角を検出することで、前記主ロータの回転角を精度良く求め ることがでさる。 [0015] Thereby, by placing the detector on the atmosphere side from the partition wall, it is possible to prevent the impure molecules in the wiring coating from contaminating the atmosphere outside the atmosphere from the partition wall, and By simultaneously driving the main rotor and the sub-rotor, the rotation angle of the sub-rotor is detected by the detector, so that the rotation angle of the main rotor can be obtained with high accuracy.
〔発明 7〕  (Invention 7)
発明 7のダイレクトドライブモータは、大気外の雰囲気中で用いられるダイレクトドラ イブモータにおいて、  The direct drive motor of the invention 7 is a direct drive motor used in an atmosphere outside the atmosphere.
ノヽウジングと、  Knowing and
前記ハウジング力 延在し、大気側と大気外側とを隔絶する隔壁と、  A partition wall extending the housing force and isolating the atmosphere side and the atmosphere outside;
前記隔壁に対して大気外側に配置された外側ロータと、  An outer rotor disposed outside the atmosphere with respect to the partition;
前記隔壁に対して大気側に配置されたステータ及び内側ロータと、  A stator and an inner rotor disposed on the atmosphere side with respect to the partition;
前記内側ロータの回転速度を検出する検出器とを有し、  A detector for detecting the rotational speed of the inner rotor,
前記ステータは、前記外側ロータと前記内側ロータとを同時に駆動することを特徴と する。  The stator is characterized in that the outer rotor and the inner rotor are driven simultaneously.
[0016] これにより、大気外の雰囲気中で用いられるダイレクトドライブモータにおいて、ハウ ジングと、前記ハウジング力 延在し、大気側と大気外側とを隔絶する隔壁と、前記 隔壁に対して大気外側に配置された外側ロータと、前記隔壁に対して大気側に配置 されたステータ及び内側ロータと、前記内側ロータの回転速度を検出する検出器とを 有し、前記ステータは、前記外側ロータと前記内側ロータとを同時に駆動するので、 前記検出器を前記隔壁より大気側に置くことで、その配線被覆の吸蔵不純分子が前 記隔壁より大気外側の雰囲気を汚染することが防止され、且つ前記ステータが、前記 外側ロータと前記内側ロータとを同時に駆動することにより、前記検出器により前記 内側ロータの回転角を検出することで、前記外側ロータの回転角を精度良く求めるこ とがでさる。 [0016] Accordingly, in a direct drive motor used in an atmosphere outside the atmosphere, the housing, the partition that extends the housing force and isolates the atmosphere side from the outside of the atmosphere, An outer rotor disposed outside the atmosphere with respect to the partition wall, a stator and an inner rotor disposed on the atmosphere side with respect to the partition wall, and a detector that detects a rotational speed of the inner rotor, Since the outer rotor and the inner rotor are driven at the same time, by placing the detector on the air side from the partition wall, the occluded impurity molecules of the wiring coating may contaminate the atmosphere outside the air from the partition wall. The stator detects the rotation angle of the inner rotor with the detector by simultaneously driving the outer rotor and the inner rotor, so that the rotation angle of the outer rotor can be accurately obtained. Togashi.
〔発明 8〕  (Invention 8)
発明 8のダイレクトドライブモータは、発明 7のダイレクトドライブモータにおいて、前 記外側ロータと、前記内側ロータとは磁極数が同一であることを特徴とする。  The direct drive motor of invention 8 is the direct drive motor of invention 7, characterized in that the outer rotor and the inner rotor have the same number of magnetic poles.
[0017] これにより、前記外側ロータと、前記内側ロータとは磁極数が同一であると、前記外 側ロータと前記内側ロータの回転角が等しくなるので、前記内側ロータの回転角を検 出することで、前記外側ロータの回転角を直ちに求めることができる。但し、本発明は これに限られることはなぐ例えば前記外側ロータに磁極数と、前記内側ロータの磁 極数を、倍数或いは整数分の一としてもよい。 [0017] With this, when the outer rotor and the inner rotor have the same number of magnetic poles, the rotation angles of the outer rotor and the inner rotor become equal, so the rotation angle of the inner rotor is detected. Thus, the rotation angle of the outer rotor can be obtained immediately. However, the present invention is not limited to this. For example, the number of magnetic poles in the outer rotor and the number of magnetic poles in the inner rotor may be a multiple or a fraction of an integer.
〔発明 9〕  (Invention 9)
発明 9のダイレクトドライブモータは、発明 7又は 8のダイレクトドライブモータにおい て、前記ステータの半径方向内側に、内側ロータが配置されることを特徴とする。  The direct drive motor according to a ninth aspect is characterized in that in the direct drive motor according to the seventh or eighth aspect, an inner rotor is disposed radially inward of the stator.
[0018] これにより、前記ステータの半径方向内側に、内側ロータが配置されると、前記ステ ータの駆動を確実に行えるが、軸線方向にずれて配置しても良 、。 [0018] Thus, when the inner rotor is arranged on the inner side in the radial direction of the stator, the stator can be driven reliably, but it may be arranged so as to be shifted in the axial direction.
〔発明 10〕  (Invention 10)
発明 10のダイレクトドライブモータは、大気外の雰囲気中で用いられるダイレクトド ライブモータにおいて、  The direct drive motor of the invention 10 is a direct drive motor used in an atmosphere outside the atmosphere.
ノヽウジングと、  Knowing and
前記ハウジング力 延在し、大気側と大気外側とを隔絶する隔壁と、  A partition wall extending the housing force and isolating the atmosphere side and the atmosphere outside;
前記隔壁に対して大気外側に配置された外側ロータ及び前記外側ロータと一体で 回転する磁気カップリング用ロータと、 前記隔壁に対して大気側に配置され、前記外側ロータを駆動するステータと、 前記隔壁に対して大気側に配置された内側ロータと、 An outer rotor disposed outside the atmosphere with respect to the partition wall, and a magnetic coupling rotor that rotates integrally with the outer rotor; A stator that is arranged on the atmosphere side with respect to the partition and drives the outer rotor; an inner rotor that is arranged on the atmosphere side with respect to the partition;
前記内側ロータの回転速度を検出する検出器とを有し、  A detector for detecting the rotational speed of the inner rotor,
前記磁気カップリング用ロータと前記内側ロータとは、磁気カップリング作用により 同期して回転することを特徴とする。  The magnetic coupling rotor and the inner rotor rotate in synchronization by a magnetic coupling action.
[0019] これにより、大気外の雰囲気中で用いられるダイレクトドライブモータにおいて、ハウ ジングと、前記ハウジング力 延在し、大気側と大気外側とを隔絶する隔壁と、前記 隔壁に対して大気外側に配置された外側ロータ及び前記外側ロータと一体で回転 する磁気カップリング用ロータと、前記隔壁に対して大気側に配置され、前記外側口 ータを駆動するステータと、前記隔壁に対して大気側に配置された内側ロータと、前 記内側ロータの回転速度を検出する検出器とを有し、前記磁気カップリング用ロータ と前記内側ロータとは、磁気カップリング作用により同期して回転するので、前記検出 器を前記隔壁より大気側に置くことで、その配線被覆の吸蔵不純分子が前記隔壁よ り大気外側の雰囲気を汚染することが防止され、且つ磁気カップリング作用により前 記磁気カップリング用ロータと同期して回転する前記内側ロータの回転角を前記検 出器により検出することで、前記外側ロータの回転角を精度良く求めることができる。 尚、本発明において、「外側ロータ」と「磁気カップリング用ロータ」とを形式上異なる 部材としている力 例えば単一のロータに駆動用の磁石と磁気カップリング用の磁石 とを設けた場合、駆動用の磁石を設けたロータの部分力 ^外側ロータ」であり、磁気力 ップリング用の磁石を設けたロータの部分が「磁気カップリング用ロータ」であるといえ るので、それも本発明に含まれる。  Accordingly, in the direct drive motor used in an atmosphere outside the atmosphere, the housing, the partition extending the housing force and isolating the atmosphere side from the outside of the atmosphere, and the outside of the atmosphere with respect to the partition An outer rotor disposed therein and a magnetic coupling rotor that rotates integrally with the outer rotor; a stator that is disposed on the atmosphere side with respect to the partition; and that drives the outer port; and an atmosphere side with respect to the partition An inner rotor disposed on the inner rotor, and a detector that detects the rotational speed of the inner rotor, and the magnetic coupling rotor and the inner rotor rotate in synchronization by a magnetic coupling action. By placing the detector on the air side of the partition wall, it is possible to prevent the impurities stored in the wiring cover from contaminating the atmosphere outside the air from the partition wall, By detecting the rotation angle of the inner rotor that rotates in synchronization with the magnetic coupling rotor by the coupling action, the rotation angle of the outer rotor can be obtained with high accuracy. In the present invention, a force in which the “outer rotor” and the “magnetic coupling rotor” are different members in form, for example, when a driving magnet and a magnetic coupling magnet are provided on a single rotor, It can be said that the partial force of the rotor provided with the driving magnet ^ outer rotor "and the portion of the rotor provided with the magnet for magnetic force coupling is the" magnetic coupling rotor ". included.
〔発明 11〕  (Invention 11)
発明 11のダイレクトドライブモータは、発明 10のダイレクトドライブモータにぉ ヽて、 前記隔壁により、磁気カップリング系における共振周波数のゲインのピーク値を抑え たことを特徴とする。  The direct drive motor according to an eleventh aspect of the invention is characterized in that, unlike the direct drive motor according to the tenth aspect, the peak value of the resonance frequency gain in the magnetic coupling system is suppressed by the partition.
[0020] これにより、大気側ロータと大気外側ロータ間の前記隔壁により、磁気カップリング 系における共振周波数のゲインのピーク値を抑える効果により、振動少なく位置決め が可能となる。 〔発明 12〕 [0020] Accordingly, the partition between the atmosphere-side rotor and the atmosphere-side rotor makes it possible to perform positioning with less vibration due to the effect of suppressing the peak value of the resonance frequency gain in the magnetic coupling system. (Invention 12)
発明 12のダイレクトドライブモータは、大気外の雰囲気中で用いられるダイレクトド ライブモータにおいて、  The direct drive motor of the invention 12 is a direct drive motor used in an atmosphere outside the atmosphere.
ノヽウジングと、  Knowing and
前記ハウジング力 延在し、大気側と大気外側を隔絶する隔壁と、  A partition wall extending the housing force and isolating the atmosphere side from the atmosphere outside;
前記隔壁に対して大気外側に配置された外側ロータと、  An outer rotor disposed outside the atmosphere with respect to the partition;
前記隔壁に対して大気側に配置されたステータ及び前記隔壁に対して大気側に 配置され、前記外側ロータと共に連れ回る内側ロータと、  A stator disposed on the atmosphere side with respect to the partition; an inner rotor disposed on the atmosphere side with respect to the partition;
前記内側ロータの回転位置を検出する検出器と、を有しており、  A detector for detecting the rotational position of the inner rotor,
前記隔壁は、前記ハウジングに対して取り付けられる取り付け部と、前記外側ロータ と、前記ステータ及び前記内側ロータとの間を延在する筒状部、底部とを有し、前記 底部は、前記ハウジングに対して軸方向に拘束されて 、な 、ことを特徴とする。 これにより、大気外の雰囲気中で用いられるダイレクトドライブモータにおいて、ハウ ジングと、前記ハウジング力 延在し、大気側と大気外側を隔絶する隔壁と、前記隔 壁に対して大気外側に配置された外側ロータと、前記隔壁に対して大気側に配置さ れたステータ及び内側ロータと、前記内側ロータの回転位置を検出する検出器とを 有し、前記ステータは、前記外側ロータを駆動し、前記内側ロータは前記外側ロータ と共に連れ回るので、前記検出器を前記隔壁の内側に置くことで、その配線被覆の 吸蔵不純分子が前記隔壁外の雰囲気を汚染することが防止される。しかも、前記隔 壁は、前記ハウジングに対して取り付けられる取り付け部と、前記外側ロータと、前記 ステータ及び前記内側ロータとの間を延在する筒状部と、底部とを有し、前記底部は 、前記ハウジングに対して軸方向に拘束されていないので、寸法精度や機械精度お よび温度変化に起因して、前記隔壁に寸法誤差や変形が生じた場合でも、前記ハウ ジングに前記底部が押しつけられたり引っ張られたりしないので、前記隔壁の軸方向 応力や曲げ応力を緩和することができ、それによりシール不良や破壊などを防ぐこと ができる。また、前記隔壁の取り付け部およびそれが取り付けられる前記ハウジング を高精度に加工しなくて済むため、より低コストなダイレクトドライブモータを提供でき る。 〔発明 13〕 The partition has an attachment portion attached to the housing, the outer rotor, a cylindrical portion extending between the stator and the inner rotor, and a bottom portion, and the bottom portion is attached to the housing. On the other hand, it is restricted in the axial direction. Thus, in the direct drive motor used in an atmosphere outside the atmosphere, the housing, the partition extending the housing force, separating the atmosphere side from the outside of the atmosphere, and disposed outside the atmosphere with respect to the partition wall An outer rotor, a stator and an inner rotor arranged on the atmosphere side with respect to the partition wall, and a detector for detecting a rotational position of the inner rotor, the stator driving the outer rotor, Since the inner rotor is rotated together with the outer rotor, by placing the detector inside the partition wall, it is possible to prevent the impurities stored in the wiring cover from contaminating the atmosphere outside the partition wall. In addition, the partition wall includes an attachment portion attached to the housing, the outer rotor, a cylindrical portion extending between the stator and the inner rotor, and a bottom portion, and the bottom portion is Since the housing is not restrained in the axial direction, the bottom portion is pressed against the housing even when a dimensional error or deformation occurs in the partition wall due to dimensional accuracy, mechanical accuracy, or temperature change. Since it is not pulled or pulled, the axial stress and bending stress of the partition wall can be relaxed, thereby preventing seal failure and breakage. Further, since it is not necessary to process the mounting portion of the partition wall and the housing to which the partition wall is mounted with high accuracy, a lower cost direct drive motor can be provided. (Invention 13)
発明 13のダイレクトドライブモータは、大気外の雰囲気中で用いられるダイレクトド ライブモータにおいて、  The direct drive motor of the invention 13 is a direct drive motor used in an atmosphere outside the atmosphere.
ノヽウジングと、  Knowing and
前記ハウジング力 延在し、大気側と大気外側を隔絶する隔壁と、  A partition wall extending the housing force and isolating the atmosphere side from the atmosphere outside;
前記隔壁に対して大気外側に配置された外側ロータと、  An outer rotor disposed outside the atmosphere with respect to the partition;
前記隔壁に対して大気側に配置されたステータ及び前記隔壁に対して大気側に 配置され、前記外側ロータと共に連れ回る内側ロータと、  A stator disposed on the atmosphere side with respect to the partition; an inner rotor disposed on the atmosphere side with respect to the partition;
前記内側ロータの回転位置を検出する検出器と、を有しており、  A detector for detecting the rotational position of the inner rotor,
前記隔壁は、前記ハウジングに対して取り付けられる取り付け部と、前記外側ロータ と、前記ステータ及び前記内側ロータとの間を延在する筒状部と、前記取り付け部と 前記筒状部とを連結する連結部とを有し、前記連結部の肉厚は、前記取り付け部の 肉厚より薄 、ことを特徴とする。  The partition wall connects the mounting portion attached to the housing, the outer rotor, a cylindrical portion extending between the stator and the inner rotor, and the mounting portion and the cylindrical portion. And a thickness of the connecting portion is thinner than a thickness of the mounting portion.
[0022] これにより、発明 12の効果に対し、前記隔壁は、前記ハウジングに対して取り付け られる取り付け部と、前記外側ロータと、前記ステータ及び前記内側ロータとの間を 延在する筒状部と、前記取り付け部と前記筒状部とを連結する連結部とを有し、前記 取り付け部の肉厚は、前記連結部の肉厚より厚いので、寸法精度や機械精度および 温度変化に起因して、前記隔壁に変形が生じた場合でも、前記薄肉の連結部が先 に変形することで、前記隔壁の軸方向応力や曲げ応力を緩和することができ、それ によりシール不良や破壊などを防ぐことができる。従って、前記隔壁の取り付け部お よびそれが取り付けられる前記ハウジングを高精度に加工しなくて済むため、より低コ ストなダイレクトドライブモータを提供できる。 [0022] Thus, in contrast to the effect of the twelfth aspect, the partition wall includes an attachment portion attached to the housing, the outer rotor, and a cylindrical portion extending between the stator and the inner rotor. The attachment portion and the tubular portion are connected to each other, and the thickness of the attachment portion is thicker than the thickness of the connection portion, and therefore, due to dimensional accuracy, mechanical accuracy, and temperature change. Even when the partition wall is deformed, the thin connecting portion is deformed first, so that axial stress and bending stress of the partition wall can be relieved, thereby preventing a seal failure or breakage. Can do. Accordingly, since it is not necessary to process the mounting portion of the partition wall and the housing to which the partition wall is mounted with high accuracy, a lower cost direct drive motor can be provided.
〔発明 14〕  (Invention 14)
発明 14のダイレクトドライブモータは、発明 13のダイレクトドライブモータにぉ ヽて、 前記連結部は波状であることを特徴とする。  The direct drive motor according to a fourteenth aspect of the invention is characterized in that the connecting portion has a wave shape compared to the direct drive motor of the thirteenth aspect.
[0023] これにより、前記連結部は波状であると、力かる部位により、更に効果的に応力緩 和を図ることができる。 [0023] Thereby, if the connecting portion is wavy, stress relaxation can be achieved more effectively by the force applied portion.
〔発明 15〕 発明 15のモータシステムは、大気外の雰囲気中で用いられる複数のダイレクトドラ イブモータを同軸的に結合したモータシステムにおいて、 (Invention 15) A motor system according to a fifteenth aspect of the present invention is a motor system in which a plurality of direct drive motors used in an atmosphere outside the atmosphere are coaxially coupled.
各ダイレクトドライブモータが、  Each direct drive motor
ノヽウジングと、  Knowing and
前記ハウジング力 延在し、大気側と大気外側を隔絶する隔壁と、  A partition wall extending the housing force and isolating the atmosphere side from the atmosphere outside;
前記隔壁に対して大気外側に配置された外側ロータと、  An outer rotor disposed outside the atmosphere with respect to the partition;
前記隔壁に対して大気側に配置されたステータ及び前記隔壁に対して大気側に 配置され、前記外側ロータと共に連れ回る内側ロータと、  A stator disposed on the atmosphere side with respect to the partition; an inner rotor disposed on the atmosphere side with respect to the partition;
前記内側ロータの回転位置を検出する検出器と、を有しており、  A detector for detecting the rotational position of the inner rotor,
少なくとも一つのダイレクトドライブモータの前記外側ロータ力 他のダイレクトドライ ブモータの前記外側ロータに対して軸受により支持されていることを特徴とする。 これにより、大気外の雰囲気中で用いられる複数のダイレクトドライブモータを同軸 的に結合したモータシステムにおいて、各ダイレクトドライブモータ力 ノ、ウジングと、 前記ハウジング力 延在し、大気側と大気外側を隔絶する隔壁と、前記隔壁に対して 大気外側に配置された外側ロータと、前記隔壁に対して大気側に配置されたステー タ及び内側ロータと、前記内側ロータの回転位置を検出する検出器とを有し、前記ス テータは、前記外側ロータを駆動し、前記内側ロータは前記外側ロータと共に連れ回 るので、前記検出器を前記隔壁の内側に置くことで、その配線被覆の吸蔵不純分子 が前記隔壁外の雰囲気を汚染することが防止される。し力も、少なくとも一つのダイレ タトドライブモータの前記外側ロータ力 他のダイレクトドライブモータの前記外側ロー タに対して軸受により支持されているので、複数のダイレクトドライブモータの前記外 側ロータ同士の同軸度を高めることができ、フロッグレッダアームを駆動した際は、動 作精度を高めることができる。そして、前記一つのダイレクトドライブモータの前記外 側ロータを取り外せば、力かる外側ロータを支持していた軸受を露出でき、その点検 や取り外しを容易に行えるため、メンテナンス性も向上する。更に、前記隔壁の外側 にある前記外側ロータのみを取り外せばょ 、ので、ダイレクトドライブモータ全体を取 り外す必要がなぐ再組立の際にリークチェックなどが不要となり、組立性が向上する 〔発明 16〕 The outer rotor force of at least one direct drive motor is supported by a bearing with respect to the outer rotor of another direct drive motor. As a result, in a motor system in which a plurality of direct drive motors used in an atmosphere outside the atmosphere are coaxially coupled, each direct drive motor force, udging, and the housing force are extended to isolate the atmosphere side from the atmosphere outside. A partition wall that is disposed outside the atmosphere with respect to the partition wall, a stator and an inner rotor that are disposed on the atmosphere side with respect to the partition wall, and a detector that detects a rotational position of the inner rotor. The stator drives the outer rotor, and the inner rotor is rotated together with the outer rotor. Therefore, by placing the detector inside the partition wall, the occluded impurity molecules of the wiring cover are Contamination of the atmosphere outside the partition is prevented. Also, the outer rotor force of at least one direct drive motor is supported by a bearing with respect to the outer rotor of another direct drive motor, so that the outer rotors of a plurality of direct drive motors are coaxial with each other. When the frog redder arm is driven, the operation accuracy can be increased. Then, if the outer rotor of the one direct drive motor is removed, the bearing supporting the powerful outer rotor can be exposed, and the inspection and removal thereof can be easily performed, so that the maintainability is improved. Furthermore, since only the outer rotor outside the partition wall is removed, there is no need to remove the entire direct drive motor, so that a leak check or the like is not required at the time of reassembly, and the assemblability is improved. (Invention 16)
発明 16のモータシステムは、発明 15のモータシステムにおいて、一つのダイレクト ドライブモータの前記隔壁力 他のダイレクトドライブモータの前記隔壁と共通である ことを特徴とする。  The motor system of the invention 16 is the motor system of the invention 15 characterized in that the partition wall force of one direct drive motor is common to the partition walls of other direct drive motors.
[0025] これにより、一つのダイレクトドライブモータの前記隔壁力 他のダイレクトドライブモ ータの前記隔壁と共通であると、部品点数やシール箇所を減少させることができるの で好ましい。  [0025] Thus, it is preferable that the partition wall force of one direct drive motor is the same as that of the partition wall of another direct drive motor, because the number of parts and the seal location can be reduced.
〔発明 17〕  (Invention 17)
発明 17のモータシステムは、発明 16のモータシステムにおいて、前記隔壁はカツ プ状であることを特徴とする。  A motor system according to a seventeenth aspect of the present invention is the motor system according to the sixteenth aspect of the present invention, wherein the partition wall has a cup shape.
[0026] これにより、前記隔壁はカップ状であると、部品点数が少なくなり、シール箇所も減 少するので好ましい。但し、隔壁はカップ状に限らず、円筒と円板を組み合わせて溶 接などにより一体ィ匕しても良ぐ或いは外側ロータを取り外す方向に縮径した切頭円 錐と円板とを組み合わせても良 、。 [0026] Accordingly, it is preferable that the partition wall be cup-shaped because the number of parts is reduced and the number of seals is reduced. However, the partition wall is not limited to a cup shape, and it may be combined with a cylinder and a disk and welded together, or a combination of a truncated cone and a disk whose diameter is reduced in the direction of removing the outer rotor. Also good.
〔発明 18〕  (Invention 18)
発明 18のモータシステムは、大気外の雰囲気中で用いられる複数のダイレクトドラ イブモータを同軸的に結合したモータシステムにおいて、  The motor system of the invention 18 is a motor system in which a plurality of direct drive motors used in an atmosphere outside the atmosphere are coaxially coupled.
各ダイレクトドライブモータが、  Each direct drive motor
ノヽウジングと、  Knowing and
前記ハウジング力 延在し、大気側と大気外側を隔絶する隔壁と、  A partition wall extending the housing force and isolating the atmosphere side from the atmosphere outside;
前記隔壁に対して大気外側に配置された外側ロータと、  An outer rotor disposed outside the atmosphere with respect to the partition;
前記隔壁に対して大気側に配置されたステータ及び前記隔壁に対して大気側に 配置され、前記外側ロータと共に連れ回る内側ロータと、  A stator disposed on the atmosphere side with respect to the partition; an inner rotor disposed on the atmosphere side with respect to the partition;
前記内側ロータの回転位置を検出する検出器と、を有しており、  A detector for detecting the rotational position of the inner rotor,
一つのダイレクトドライブモータの前記外側ロータ力 前記ハウジングの 、ずれか一 方の端部に対して軸受により支持され、もう一つのダイレクトドライブモータの前記外 側ロータが、前記ハウジングのもう一方の端部に対して軸受により支持されていること を特徴とする。 [0027] これにより、大気外の雰囲気中で用いられる複数のダイレクトドライブモータを同軸 的に結合したモータシステムにおいて、各ダイレクトドライブモータ力 ノ、ウジングと、 前記ハウジング力 延在し、大気側と大気外側を隔絶する隔壁と、前記隔壁に対して 大気外側に配置された外側ロータと、前記隔壁に対して大気側に配置されたステー タ及び内側ロータと、前記内側ロータの回転位置を検出する検出器とを有し、前記ス テータは、前記外側ロータを駆動し、前記内側ロータは前記外側ロータと共に連れ回 るので、前記検出器を前記隔壁の内側に置くことで、その配線被覆の吸蔵不純分子 が前記隔壁外の雰囲気を汚染することが防止される。し力も、前記ダイレクトドライブ モータの外側ロータは、前記ハウジングの両端に対して軸受により支持されているの で、互いの機械的精度に影響しにくい。よって、積載荷重及び許容モーメントが大き V、モータシステムを提供できる。 The outer rotor force of one direct drive motor is supported by a bearing against one of the ends of the housing, and the outer rotor of the other direct drive motor is connected to the other end of the housing. Is supported by a bearing. [0027] Thus, in the motor system in which a plurality of direct drive motors used in an atmosphere outside the atmosphere are coaxially coupled, each direct drive motor force, udging, and the housing force extend, and the atmosphere side and the atmosphere A partition that isolates the outside, an outer rotor that is disposed outside the atmosphere with respect to the partition, a stator and an inner rotor that are disposed on the atmosphere side with respect to the partition, and a detection that detects the rotational position of the inner rotor And the stator drives the outer rotor and the inner rotor is rotated together with the outer rotor. Therefore, by placing the detector inside the partition wall, the wiring cover has an impure impurity. Molecules are prevented from contaminating the atmosphere outside the partition. Also, since the outer rotor of the direct drive motor is supported by bearings at both ends of the housing, the mechanical accuracy of each other is hardly affected. Therefore, it is possible to provide a motor system with a large load capacity and allowable moment V.
〔発明 19〕  (Invention 19)
発明 19のモータシステムは、発明 18のモータシステムにおいて、前記ハウジングの V、ずれか一方の端部形状が、すべてのダイレクトドライブモータの前記外側ロータを 軸方向に取り外し自在なようにされて 、ることを特徴とする。  The motor system of the nineteenth aspect of the present invention is the motor system of the eighteenth aspect of the present invention, wherein the shape of one end of the V of the housing is made detachable in the axial direction of the outer rotor of all direct drive motors. It is characterized by that.
[0028] これにより、隔壁構造を支持しているハウジングの一方の端部形状が、ダイレクトド ライブモータの前記外側ロータを軸方向に取り外し自在となるようにされて 、ると、全 ての外側ロータを隔壁力も抜き去ることができ、それにより点検や取り外しを容易に行 えるため、メンテナンス性も向上する。更に、前記隔壁の外側にある前記外側ロータ のみを取り外せばよいので、ダイレクトドライブモータ全体を取り外す必要がなぐ再 組立の際にリークチェックなどが不要となり、組立性が向上する。 [0028] With this, when one end shape of the housing supporting the partition wall structure is configured such that the outer rotor of the direct drive motor can be removed in the axial direction, The rotor can also remove the bulkhead force, which can be easily inspected and removed, improving maintainability. Furthermore, since it is only necessary to remove the outer rotor outside the partition wall, it is not necessary to remove the entire direct drive motor, so that a leak check or the like is not required at the time of reassembly, and assemblability is improved.
〔発明 20〕  (Invention 20)
発明 20のモータシステムは、発明 18のモータシステムにおいて、一つのダイレクト ライブモータの前記隔壁力 他のダイレクトドライブモータの前記隔壁と共通であるこ とを特徴とする。  The motor system of the invention 20 is the motor system of the invention 18 characterized in that the partition wall force of one direct live motor is common to the partition walls of other direct drive motors.
[0029] これにより、一つのダイレクトライブモータの前記隔壁力 他のダイレクトドライブモー タの前記隔壁と共通であると、部品点数やシール箇所を減少させることができるので 好ましい。 〔発明 21〕 [0029] Thus, it is preferable that the partition wall force of one direct live motor is the same as that of the partition wall of another direct drive motor, because the number of parts and the seal location can be reduced. (Invention 21)
発明 21のモータシステムは、発明 18のモータシステムにおいて、前記隔壁は両端 部に前記ハウジングとの封止機構を有して 、ることを特徴とする。  The motor system according to a twenty-first aspect is the motor system according to the eighteenth aspect, characterized in that the partition wall has a sealing mechanism with the housing at both ends.
[0030] これにより、前記隔壁は両端部に前記ハウジングとの封止機構 (O—リング等)を有し ていると、前記ハウジングの両端部を大気外側に配置できるので、前記ダイレクトドラ イブモータの外側ロータを前記ハウジングの両端に対して軸受により支持できる。 〔発明 22〕 [0030] With this configuration, if the partition wall has sealing mechanisms (O-rings or the like) with the housing at both ends, the both ends of the housing can be disposed outside the atmosphere, so that the direct drive motor The outer rotor can be supported by bearings on both ends of the housing. (Invention 22)
発明 22のモータシステムは、大気外の雰囲気中で用いられる 4つ以上のダイレクト ドライブモータを同軸的に結合したモータシステムにおいて、  The motor system of the invention 22 is a motor system in which four or more direct drive motors used in an atmosphere outside the atmosphere are coaxially coupled.
各ダイレクトドライブモータが、  Each direct drive motor
ノヽウジングと、  Knowing and
前記ハウジング力 延在し、大気側と大気外側を隔絶する隔壁と、  A partition wall extending the housing force and isolating the atmosphere side from the atmosphere outside;
前記隔壁に対して大気外側に配置された外側ロータと、  An outer rotor disposed outside the atmosphere with respect to the partition;
前記隔壁に対して大気側に配置されたステータ及び前記隔壁に対して大気側に 配置され、前記外側ロータと共に連れ回る内側ロータと、  A stator disposed on the atmosphere side with respect to the partition; an inner rotor disposed on the atmosphere side with respect to the partition;
前記内側ロータの回転位置を検出する検出器と、を有しており、  A detector for detecting the rotational position of the inner rotor,
1つのダイレクトドライブモータの前記外側ロータ力 前記ハウジングの 、ずれか一 方の端部に対して軸受により支持され、もう 1つのダイレクトドライブモータの前記外 側ロータが、前記ハウジングのもう一方の端部に対して軸受により支持され、 更に、少なくとも 1つのダイレクトドライブモータの前記外側ロータ力 前記 2つのダ ィレクトドライブモータの前記外側ロータ各々に対して軸受により支持されていること を特徴とする。  The outer rotor force of one direct drive motor is supported by a bearing against one of the ends of the housing, and the outer rotor of the other direct drive motor is connected to the other end of the housing. The outer rotor force of at least one direct drive motor is supported by a bearing with respect to each of the outer rotors of the two direct drive motors.
[0031] これにより、大気外の雰囲気中で用いられる 4つ以上のダイレクトドライブモータを 同軸的に結合したモータシステムにおいて、各ダイレクトドライブモータ力 ハウジン グと、前記ハウジングから延在し、大気側と大気外側を隔絶する隔壁と、前記隔壁に 対して大気外側に配置された外側ロータと、前記隔壁に対して大気側に配置された ステータ及び内側ロータと、前記内側ロータの回転位置を検出する検出器とを有し、 前記ステータは、前記外側ロータを駆動し、前記内側ロータは前記外側ロータと共に 連れ回るので、前記検出器を前記隔壁の内側に置くことで、その配線被覆の吸蔵不 純分子が前記隔壁外の雰囲気を汚染することが防止される。し力も、前記ダイレクトド ライブモータの前記外側ロータは、前記ハウジングの両端に対して軸受により支持さ れており、かつ各々の前記ダイレクトドライブモータの外側ロータに対して別のダイレ タトドライブモータの外側ロータが軸受により支持されているので、軸受で連結した同 士の外側ロータは互いの同軸度が高ぐかつ、もう一方のハウジング端部に設置され た、軸受で連結した同士の外側ロータとの機械的精度の相互干渉が小さ 、モータシ ステムを提供できる。よって 2軸同軸のフロッグレッダアームロボットに適用した場合、 動作精度を高め、かつ積載荷重を大きくすることができる。 [0031] Thus, in a motor system in which four or more direct drive motors used in an atmosphere outside the atmosphere are coaxially coupled, each direct drive motor force housing extends from the housing and is connected to the atmosphere side. A partition that isolates the outside of the atmosphere, an outer rotor that is disposed outside the atmosphere with respect to the partition, a stator and an inner rotor that are disposed on the atmosphere side with respect to the partition, and a detection that detects a rotational position of the inner rotor The stator drives the outer rotor, and the inner rotor together with the outer rotor Therefore, by placing the detector inside the partition, it is possible to prevent the impurities stored in the wiring cover from contaminating the atmosphere outside the partition. The outer rotor of the direct drive motor is supported by bearings on both ends of the housing, and the outer rotor of each direct drive motor is connected to the outer side of another direct drive motor. Since the rotor is supported by the bearing, the same outer rotor connected by the bearing has a high degree of coaxiality with each other, and the outer rotor connected by the bearing is installed at the other housing end. It is possible to provide a motor system with small mutual interference of mechanical accuracy. Therefore, when applied to a 2-axis coaxial frog redder arm robot, it is possible to improve the operation accuracy and increase the load.
〔発明 23〕  (Invention 23)
発明 23のモータシステムは、発明 22のモータシステムにおいて、前記ハウジングの V、ずれか一方の端部形状が、すべての前記ダイレクトドライブモータの前記外側ロー タを軸方向に取り外し自在となるようにされて!ヽることを特徴とする。  The motor system according to a twenty-third aspect of the present invention is the motor system according to the twenty-second aspect of the invention, wherein the shape of one end of the housing V is shifted so that the outer rotors of all the direct drive motors can be removed in the axial direction. It is characterized by being beaten!
[0032] これにより、隔壁構造を支持しているハウジングの一方の端部形状がダイレクトドラ イブモータの前記外側ロータを軸方向に取り外し自在となるようにされて 、るため、す ベてのダイレクトドライブモータの外側ロータを隔壁力も抜き去ることができ、それによ り点検や取り外しを容易に行えるため、メンテナンス性も向上する。更に、隔壁の外側 にある前記外側ロータのみを取り外せばょ 、ので、ダイレクトドライブモータ全体を取 り外す必要がなぐ再組立の際にリークチェックなどが不要となり、組立性が向上する [0032] Thereby, one end shape of the housing supporting the partition wall structure is made detachable in the axial direction of the outer rotor of the direct drive motor. Since the outer rotor of the motor can also be removed, it can be easily inspected and removed, thus improving maintainability. Furthermore, it is only necessary to remove the outer rotor on the outside of the partition wall, so there is no need to remove the entire direct drive motor, so there is no need to check for leaks, etc., improving assembly.
〔発明 24〕 (Invention 24)
発明 24のモータシステムは、発明 22のモータシステムにおいて、前記ハウジング は、隣接する 2つのダイレクトドライブモータにおいて共通に用いられる単位ごとに分 割可能となって 、ることを特徴とする。  A motor system according to a twenty-fourth aspect of the present invention is the motor system according to the twenty-second aspect, wherein the housing can be divided into units commonly used in two adjacent direct drive motors.
[0033] これにより、前記ハウジングは、隣接する 2つのダイレクトドライブモータにおいて共 通に用いられる単位ごとに分割可能となっていると、組立性に優れ、モータと検出器 の位相合わせ等の調整がやり易 、ので好まし 、。 [0033] Thus, if the housing can be divided into units commonly used in two adjacent direct drive motors, the housing is excellent in assemblability and adjustments such as phase alignment between the motor and the detector are possible. Easy to do, so preferred.
〔発明 25〕 発明 25のモータシステムは、発明 22のモータシステムにおいて、一つのダイレクト ライブモータの前記隔壁力 他のダイレクトドライブモータの前記隔壁と共通であるこ とを特徴とする。 (Invention 25) A motor system according to a twenty-fifth aspect of the present invention is the motor system according to the twenty-second aspect, characterized in that the partition wall force of one direct live motor is common to the partition walls of another direct drive motor.
[0034] これにより、一つのダイレクトドライブモータの前記隔壁力 他のダイレクトドライブモ ータの前記隔壁と共通であると、部品点数やシール箇所を減少させることができるの で好ましい。  [0034] Accordingly, it is preferable that the partition wall force of one direct drive motor is the same as that of the partition wall of another direct drive motor because the number of parts and seal locations can be reduced.
〔発明 26〕  (Invention 26)
発明 26のモータシステムは、発明 22のモータシステムにおいて、前記隔壁な両端 部に前記ハウジングとの封止機構を有して 、ることを特徴とする。  A motor system according to a twenty-sixth aspect of the present invention is the motor system according to the twenty-second aspect of the present invention, characterized in that both ends of the partition wall have a sealing mechanism with the housing.
[0035] これにより、前記隔壁は両端部に前記ハウジングとの封止機構 (O—リング等)を有 していると、前記ハウジングの両端部を大気外側に配置できるので、前記ダイレクトド ライブモータの外側ロータを前記ハウジングの両端に対して軸受により支持できる。 〔発明 27〕 [0035] Thus, if the partition wall has a sealing mechanism (O-ring or the like) with the housing at both ends, the both ends of the housing can be disposed outside the atmosphere, so the direct drive motor The outer rotor can be supported by bearings at both ends of the housing. (Invention 27)
発明 27のモータシステムは、大気外の雰囲気中で用いられる第 1のダイレクトドライ ブモータと第 2のダイレクトドライブモータとを同軸的に結合したモータシステムにお いて、  The motor system of the invention 27 is a motor system in which a first direct drive motor and a second direct drive motor used in an atmosphere outside the atmosphere are coaxially coupled.
各ダイレクトドライブモータが、  Each direct drive motor
ノヽウジングと、  Knowing and
前記ハウジング力 延在し、大気側と大気外側を隔絶する隔壁と、  A partition wall extending the housing force and isolating the atmosphere side from the atmosphere outside;
前記隔壁に対して大気外側に配置された外側ロータと、  An outer rotor disposed outside the atmosphere with respect to the partition;
前記隔壁に対して大気側に配置されたステータ及び前記隔壁に対して大気側に 配置され、前記外側ロータと共に連れ回る内側ロータと、  A stator disposed on the atmosphere side with respect to the partition; an inner rotor disposed on the atmosphere side with respect to the partition;
前記内側ロータの回転位置を検出する検出器と、を有しており、  A detector for detecting the rotational position of the inner rotor,
更に、前記第 1のダイレクトドライブモータの前記外側ロータに対して、それに隣接 する前記第 2のダイレクトドライブモータの前記外側ロータは、第 2の軸受を介して支 持されており、  Further, the outer rotor of the second direct drive motor adjacent to the outer rotor of the first direct drive motor is supported via a second bearing,
前記第 1のダイレクトドライブモータの前記外側ロータは、前記ハウジングに対して 取り外し可能に取り付けられた軸受ホルダにより、第 1の軸受を介して支持されている ことを特徴とする。 The outer rotor of the first direct drive motor is supported via a first bearing by a bearing holder removably attached to the housing. It is characterized by that.
[0036] これにより、大気外の雰囲気中で用いられる第 1のダイレクトドライブモータと第 2の ダイレクトドライブモータとを同軸的に結合したモータシステムにおいて、各ダイレクト ドライブモータが、ハウジングと、前記ハウジングカも延在し、大気側と大気外側を隔 絶する隔壁と、前記隔壁に対して大気外側に配置された外側ロータと、前記隔壁に 対して大気側に配置されたステータ及び前記隔壁に対して大気側に配置され、前記 外側ロータと共に連れ回る内側ロータと、前記内側ロータの回転位置を検出する検 出器と、を有しているので、前記検出器を前記隔壁の大気側に置くことで、その配線 被覆の吸蔵不純分子が前記隔壁の大気外側の雰囲気を汚染することが防止される 。更に、前記第 1のダイレクトドライブモータの前記外側ロータに対して、それに隣接 する前記第 2のダイレクトドライブモータの前記外側ロータは、第 2の軸受を介して支 持されており、前記第 1のダイレクトドライブモータの前記外側ロータは、前記ハウジ ングに対して取り外し可能に取り付けられた軸受ホルダにより、第 1の軸受を介して支 持されているので、前記軸受ホルダを取り外すことによって、前記第 1のダイレクトドラ イブモータを前記ハウジング力も分離することができ、前記軸受ホルダに取り付けら れた軸受の点検を含めたメンテナンスの手間が省ける。  Thus, in the motor system in which the first direct drive motor and the second direct drive motor used in an atmosphere outside the atmosphere are coaxially coupled, each direct drive motor includes a housing and the housing cover. A partition wall that separates the atmosphere side from the atmosphere outside, an outer rotor disposed outside the atmosphere with respect to the partition wall, a stator disposed on the atmosphere side with respect to the partition wall, and the atmosphere with respect to the partition wall And an inner rotor that rotates with the outer rotor, and a detector that detects the rotational position of the inner rotor.By placing the detector on the atmosphere side of the partition wall, It is possible to prevent the impure molecules of the wiring coating from contaminating the atmosphere outside the atmosphere of the partition wall. Further, the outer rotor of the second direct drive motor adjacent to the outer rotor of the first direct drive motor is supported via a second bearing, and the first rotor is supported by the first rotor. Since the outer rotor of the direct drive motor is supported via a first bearing by a bearing holder that is detachably attached to the housing, the first rotor can be removed by removing the bearing holder. The direct drive motor can be separated from the housing force, and maintenance work including inspection of the bearing attached to the bearing holder can be saved.
〔発明 28〕  (Invention 28)
発明 28のモータシステムは、発明 27のモータシステムにおいて、前記軸受ホルダ は前記ハウジングに対してボルトにより固定されており、前記ボルトは前記第 1のダイ レクトドライブモータの前記外側ロータより外側に配置されていることを特徴とする。  A motor system according to a twenty-eighth aspect is the motor system according to the twenty-seventh aspect, wherein the bearing holder is fixed to the housing by a bolt, and the bolt is disposed outside the outer rotor of the first direct drive motor. It is characterized by.
[0037] これにより、前記軸受ホルダは前記ハウジングに対してボルトにより固定されており 、前記ボルトは前記第 1のダイレクトドライブモータの前記外側ロータより外側に配置 されていると、力かる外側ロータを取り外すことなぐ前記ボルトをゆるめることができる ので好ましい。尚、「外側ロータより外側に配置されている」とは、少なくともボルト脱着 の際に、ボルト又は工具と外側ロータとが干渉しない状態にあることをいう。従って、 外側ロータの外径が非円形状である場合には、外側ロータの回転位相によっては、 ボルトがその外周より内側になったとしても、外側ロータを回転させることによって、ボ ルトがその外周より外側になるときには、ボルトは外側ロータより外側に配置されてい るちのとする。 [0037] Thereby, the bearing holder is fixed to the housing by a bolt, and when the bolt is arranged outside the outer rotor of the first direct drive motor, the outer rotor to be applied is This is preferable because the bolt can be loosened without being removed. Note that “arranged outside the outer rotor” means that the bolt or the tool and the outer rotor do not interfere with each other at least when the bolt is detached. Therefore, when the outer diameter of the outer rotor is non-circular, depending on the rotational phase of the outer rotor, even if the bolt is inside the outer periphery, the bolt is rotated by rotating the outer rotor. When going outside, the bolt is placed outside the outer rotor Let's do it.
〔発明 29〕  (Invention 29)
発明 29のモータシステムは、発明 27〜28のモータシステムにおいて、前記第 1の ダイレクトドライブモータの前記外側ロータ及び前記第 2のダイレクトドライブモータの 前記外側ロータの最小内径は、前記隔壁の最大外径より大きくなつており、  The motor system of the invention 29 is the motor system of the invention 27 to 28, wherein the minimum inner diameter of the outer rotor of the first direct drive motor and the outer rotor of the second direct drive motor is the maximum outer diameter of the partition wall. It ’s getting bigger,
前記軸受ホルダを前記ハウジングから取り外したときに、前記第 1のダイレクトドライ ブモータの外輪ロータと、前記第 2のダイレクトドライブモータの外輪ロータとは、一体 的に前記隔壁に沿って軸線方向に引き抜き可能となっていることを特徴とする。  When the bearing holder is removed from the housing, the outer ring rotor of the first direct drive motor and the outer ring rotor of the second direct drive motor can be pulled out along the partition wall in the axial direction. It is characterized by becoming.
[0038] これにより、前記第 1のダイレクトドライブモータの前記外側ロータ及び前記第 2のダ ィレクトドライブモータの前記外側ロータの最小内径は、前記隔壁の最大外径より大 きくなつており、前記軸受ホルダを前記ハウジングから取り外したときに、前記第 1の ダイレクトドライブモータの外輪ロータと、前記第 2のダイレクトドライブモータの外輪口 ータとは、一体的に前記隔壁に沿って軸線方向に引き抜き可能となっていると、メン テナンス時に両方の外輪ロータを一体的に分解できるので好ましい。 [0038] Thereby, the minimum inner diameter of the outer rotor of the first direct drive motor and the outer rotor of the second direct drive motor is larger than the maximum outer diameter of the partition wall, When the bearing holder is removed from the housing, the outer ring rotor of the first direct drive motor and the outer ring rotor of the second direct drive motor are integrally extracted along the partition in the axial direction. If possible, it is preferable because both outer rotors can be disassembled integrally during maintenance.
〔発明 30〕  (Invention 30)
発明 30のモータシステムは、発明 29のモータシステムにおいて、前記軸受ホルダ を前記ハウジング力 取り外したときに、前記第 1の軸受と前記軸受ホルダとを固定 するボルトが露出することを特徴とする。  A motor system according to a thirty-third aspect of the invention is the motor system according to the twenty-ninth aspect, wherein a bolt for fixing the first bearing and the bearing holder is exposed when the bearing force is removed from the housing force.
[0039] これにより、前記軸受ホルダを前記ハウジングから取り外したときに、前記第 1の軸 受と前記軸受ホルダとを固定するボルトが露出すると、力かるボルトをゆるめることが できるため、前記第 1のダイレクトドライブモータの前記外側ロータを容易に分解でき るようになるので好ましい。ここで、「露出する」とは、工具を係合でき且つボルトをゆる めることができる空間が生じることをいう。 [0039] Thus, when the bolt for fixing the first bearing and the bearing holder is exposed when the bearing holder is removed from the housing, the forceful bolt can be loosened, and thus the first This is preferable because the outer rotor of the direct drive motor can be easily disassembled. Here, “exposed” means that a space is created in which a tool can be engaged and a bolt can be loosened.
〔発明 31〕  (Invention 31)
発明 31のモータシステムは、発明 27のモータシステムにおいて、前記第 2のダイレ タトドライブモータの前記外側ロータは複数部品をボルトにより連結してなり、前記モ ータシステムが組み付けられた状態で、前記外側ロータの複数部品を連結するボル トをゆるめることで、その一部の部品を取り外すことができ、前記一部の部品を取り外 した状態で、前記第 2の軸受と前記第 1のダイレクトドライブモータの外輪ロータとを 固定するボルトが露出することを特徴とする。 A motor system according to a thirty-first aspect is the motor system according to the twenty-seventh aspect, wherein the outer rotor of the second direct drive motor is formed by connecting a plurality of parts with bolts, and the outer rotor is in a state where the motor system is assembled. By loosening the bolts that connect multiple parts, you can remove some of the parts. In this state, the bolt that fixes the second bearing and the outer ring rotor of the first direct drive motor is exposed.
[0040] これにより、前記第 2のダイレクトドライブモータの前記外側ロータは複数部品(例え ば後述する第 2外側ロータ 21b'と円筒状部材 23' )をボルトにより連結してなり、前記 モータシステムが組み付けられた状態で、前記外側ロータの複数部品を連結するボ ルトをゆるめることで、その一部の部品(例えば円筒状部材 23 ' )を取り外すことがで き、前記一部の部品を取り外した状態で、前記第 2の軸受と前記第 1のダイレクトドラ イブモータの外輪ロータとを固定するボルトが露出すると、力かるボルトをゆるめること ができるため、前記第 2のダイレクトドライブモータの前記外側ロータを容易に分解で きるようになるので好まし!/、。 Accordingly, the outer rotor of the second direct drive motor is formed by connecting a plurality of parts (for example, a second outer rotor 21b ′ and a cylindrical member 23 ′ described later) with bolts, and the motor system is In the assembled state, by loosening the bolt that connects the plurality of parts of the outer rotor, it is possible to remove some of the parts (for example, the cylindrical member 23 '), and remove the part of the parts. In this state, when the bolt for fixing the second bearing and the outer ring rotor of the first direct drive motor is exposed, the powerful bolt can be loosened. Therefore, the outer rotor of the second direct drive motor can be This is preferable because it can be easily disassembled!
〔発明 32〕  (Invention 32)
発明 32のモータシステムは、発明 31のモータシステムにおいて、前記第 2の軸受と 前記第 1のダイレクトドライブモータの外輪ロータとを固定するボルトをゆるめることに よって、前記第 2のダイレクトドライブモータの前記外側ロータにおける残りの部品を、 前記隔壁に沿って軸線方向に引き抜き可能となっていることを特徴とする。  A motor system according to a thirty-second aspect of the present invention is the motor system according to the thirty-first aspect of the present invention, in which the bolt that fixes the second bearing and the outer ring rotor of the first direct drive motor is loosened, thereby The remaining parts of the outer rotor can be pulled out in the axial direction along the partition wall.
[0041] これにより、前記第 2の軸受と前記第 1のダイレクトドライブモータの外輪ロータとを 固定するボルトをゆるめることによって、前記第 2のダイレクトドライブモータの前記外 側ロータにおける残りの部品(例えば第 2外側ロータ 21b' )を、前記隔壁に沿って軸 線方向に引き抜き可能となっていると、前記第 2のダイレクトドライブモータの前記外 側ロータを容易に分解できるので好ま 、。 [0041] Thus, by loosening a bolt that fixes the second bearing and the outer ring rotor of the first direct drive motor, the remaining components (for example, the outer rotor of the second direct drive motor (for example, If the second outer rotor 21b ′) can be pulled out along the partition wall in the axial direction, it is preferable because the outer rotor of the second direct drive motor can be easily disassembled.
〔発明 33〕  (Invention 33)
発明 33のモータシステムは、発明 27乃至 32のいずれかのモータシステムにおい て、各ダイレクトドライブモータにおいて、前記隔壁と前記ハウジングとは共通である ことを特徴とする。  The motor system according to a thirty-third aspect is the motor system according to any one of the twenty-seventh to thirty-second aspects, wherein the partition wall and the housing are common to each direct drive motor.
[0042] これにより、各ダイレクトドライブモータにおいて、前記隔壁と前記ハウジングとは共 通であると、部品点数の削減を図ることができ、部材間をシールするシール部材の数 も減少するので好ましい。  [0042] Thus, in each direct drive motor, it is preferable that the partition and the housing are common, because the number of parts can be reduced and the number of seal members for sealing between the members can be reduced.
〔発明 34〕 発明 34のモータシステムは、大気外の雰囲気中で用いられる複数のダイレクトドラ イブモータを同軸的に結合したモータシステムにおいて、 (Invention 34) The motor system of the invention 34 is a motor system in which a plurality of direct drive motors used in an atmosphere outside the atmosphere are coaxially coupled.
各ダイレクトドライブモータが、  Each direct drive motor
ノヽウジングと、  Knowing and
前記ハウジング力 延在し、大気側と大気外側を隔絶する隔壁と、  A partition wall extending the housing force and isolating the atmosphere side from the atmosphere outside;
前記隔壁に対して大気外側に配置された外側ロータと、  An outer rotor disposed outside the atmosphere with respect to the partition;
前記隔壁に対して大気側に配置されたステータ及び前記隔壁に対して大気側に 配置され、前記外側ロータと共に連れ回る内側ロータと、  A stator disposed on the atmosphere side with respect to the partition; an inner rotor disposed on the atmosphere side with respect to the partition;
前記内側ロータの回転位置を検出する検出器と、を有しており、  A detector for detecting the rotational position of the inner rotor,
更に、隣接するダイレクトドライブモータにおける外側ロータ同士、内側ロータ同士 Further, the outer rotors and inner rotors of adjacent direct drive motors
、及びステータ同士の少なくともいずれかの間に、磁気シールドを配置したことを特 徴とする。 And a magnetic shield is disposed between at least one of the stators.
これにより、大気外の雰囲気中で用いられるダイレクトドライブモータにおいて、ハウ ジングと、前記ハウジング力 延在し、大気側と大気外側を隔絶する隔壁と、前記隔 壁に対して大気外側に配置された外側ロータと、前記隔壁に対して大気側に配置さ れたステータ及び内側ロータと、前記内側ロータの回転位置を検出する検出器とを 有し、前記ステータは、前記外側ロータを駆動し、前記内側ロータは前記外側ロータ と共に連れ回るので、前記検出器を前記隔壁の内側に置くことで、その配線被覆の 吸蔵不純分子が前記隔壁外の雰囲気を汚染することが防止される。しかも、隣接す るダイレクトドライブモータにおける外側ロータ同士、内側ロータ同士、及びステータ 同士の少なくともいずれかの間に、磁気シールドを配置したので、ロータゃステータ 力 発生する漏れ磁束や電磁ノイズなどの影響が、それに隣接するダイレクトモータ におけるロータゃステータに及ぶことを抑制できる。従って、モータシステムの薄形ィ匕 を図ることができる。  As a result, in a direct drive motor used in an atmosphere outside the atmosphere, the housing, the housing force extends, the partition that separates the atmosphere side and the outside of the atmosphere, and the outside of the partition wall are arranged outside the atmosphere. An outer rotor, a stator and an inner rotor arranged on the atmosphere side with respect to the partition wall, and a detector for detecting a rotational position of the inner rotor, the stator driving the outer rotor, Since the inner rotor is rotated together with the outer rotor, by placing the detector inside the partition wall, it is possible to prevent the impurities stored in the wiring cover from contaminating the atmosphere outside the partition wall. In addition, since the magnetic shield is arranged between at least one of the outer rotors, the inner rotors, and the stators in the adjacent direct drive motor, the rotor is affected by leakage magnetic flux generated by the stator force and electromagnetic noise. In addition, the direct motor adjacent to the rotor can be prevented from reaching the stator. Therefore, the motor system can be made thin.
〔発明 35〕 (Invention 35)
発明 35のモータシステムは、大気外の雰囲気中で用いられる複数のダイレクトドラ イブモータを同軸的に結合したモータシステムにおいて、  The motor system of the invention 35 is a motor system in which a plurality of direct drive motors used in an atmosphere outside the atmosphere are coaxially coupled.
各ダイレクトドライブモータが、 ノヽウジングと、 Each direct drive motor Knowing and
前記ハウジング力 延在し、大気側と大気外側を隔絶する隔壁と、  A partition wall extending the housing force and isolating the atmosphere side from the atmosphere outside;
前記隔壁に対して大気外側に配置された外側ロータと、  An outer rotor disposed outside the atmosphere with respect to the partition;
前記隔壁に対して大気側に配置されたステータ及び前記隔壁に対して大気側に 配置され、前記外側ロータと共に連れ回る内側ロータと、  A stator disposed on the atmosphere side with respect to the partition; an inner rotor disposed on the atmosphere side with respect to the partition;
前記内側ロータの回転位置を検出する検出器と、を有しており、  A detector for detecting the rotational position of the inner rotor,
更に、隣接するダイレクトドライブモータにおける外側ロータ同士、内側ロータ同士 Further, the outer rotors and inner rotors of adjacent direct drive motors
、及びステータ同士の少なくともいずれかにおいて、相互に磁極数を異ならせている ことを特徴とする。 And at least one of the stators has a different number of magnetic poles.
これにより、大気外の雰囲気中で用いられるダイレクトドライブモータにおいて、ハウ ジングと、前記ハウジング力 延在し、大気側と大気外側を隔絶する隔壁と、前記隔 壁に対して大気外側に配置された外側ロータと、前記隔壁に対して大気側に配置さ れたステータ及び内側ロータと、前記内側ロータの回転位置を検出する検出器とを 有し、前記ステータは、前記外側ロータを駆動し、前記内側ロータは前記外側ロータ と共に連れ回るので、前記検出器を前記隔壁の内側に置くことで、その配線被覆の 吸蔵不純分子が前記隔壁外の雰囲気を汚染することが防止される。しかも、隣接す るダイレクトドライブモータにおける外側ロータ同士、内側ロータ同士、及びステータ 同士の少なくともいずれかにおいて、相互に磁極数を異ならせているので、ロータや ステータカゝら発生する漏れ磁束や電磁ノイズなどが、それに隣接するダイレクトモータ におけるロータゃステータを駆動してしまうという不具合を抑制できる。従って、モータ システムの薄形ィ匕を図ることができる。  As a result, in a direct drive motor used in an atmosphere outside the atmosphere, the housing, the housing force extends, the partition that separates the atmosphere side and the outside of the atmosphere, and the outside of the partition wall are arranged outside the atmosphere. An outer rotor, a stator and an inner rotor arranged on the atmosphere side with respect to the partition wall, and a detector for detecting a rotational position of the inner rotor, the stator driving the outer rotor, Since the inner rotor is rotated together with the outer rotor, by placing the detector inside the partition wall, it is possible to prevent the impurities stored in the wiring cover from contaminating the atmosphere outside the partition wall. In addition, since the number of magnetic poles is different between at least one of the outer rotors, the inner rotors, and the stators in adjacent direct drive motors, leakage magnetic flux, electromagnetic noise, etc. generated from the rotor and stator However, it is possible to suppress the problem that the rotor in the direct motor adjacent to it drives the stator. Therefore, the motor system can be made thin.
〔発明 36〕  (Invention 36)
発明 36のモータシステムは、大気外の雰囲気中で用いられる複数のダイレクトドラ イブモータを同軸的に結合したモータシステムにおいて、  A motor system according to a thirty-sixth aspect of the present invention is a motor system in which a plurality of direct drive motors used in an atmosphere outside the atmosphere are coaxially coupled.
各ダイレクトドライブモータが、  Each direct drive motor
ノヽウジングと、  Knowing and
前記ハウジング力 延在し、大気側と大気外側を隔絶する隔壁と、  A partition wall extending the housing force and isolating the atmosphere side from the atmosphere outside;
前記隔壁に対して大気外側に配置された外側ロータと、 前記隔壁に対して大気側に配置されたステータ及び前記隔壁に対して大気側に 配置され、前記外側ロータと共に連れ回る内側ロータと、 An outer rotor disposed outside the atmosphere with respect to the partition; A stator disposed on the atmosphere side with respect to the partition; an inner rotor disposed on the atmosphere side with respect to the partition;
前記内側ロータの回転位置を検出する検出器と、を有しており、  A detector for detecting the rotational position of the inner rotor,
更に、前記外側ロータを回転自在に支持する軸受装置の回転輪が、ロータヨーク に嵌合して 、ることを特徴とする。  Furthermore, a rotating wheel of a bearing device that rotatably supports the outer rotor is fitted into a rotor yoke.
[0045] これにより、大気外の雰囲気中で用いられるダイレクトドライブモータにおいて、ハウ ジングと、前記ハウジング力 延在し、大気側と大気外側を隔絶する隔壁と、前記隔 壁に対して大気外側に配置された外側ロータと、前記隔壁に対して大気側に配置さ れたステータ及び内側ロータと、前記内側ロータの回転位置を検出する検出器とを 有し、前記ステータは、前記外側ロータを駆動し、前記内側ロータは前記外側ロータ と共に連れ回るので、前記検出器を前記隔壁の内側に置くことで、その配線被覆の 吸蔵不純分子が前記隔壁外の雰囲気を汚染することが防止される。し力も、前記外 側ロータと回転自在に支持する軸受装置の回転輪を、加工精度が出しやすくかつ線 膨張係数が軸受装置の駆動輪と略同一であるロータヨークに嵌合することで、回転 精度の向上と温度変化による摩擦トルクの変動防止を図ることができる。  [0045] Accordingly, in the direct drive motor used in an atmosphere outside the atmosphere, the housing, the partition that extends the housing force and separates the atmosphere side from the outside of the atmosphere, and the outside of the atmosphere with respect to the partition wall. An outer rotor disposed; a stator and an inner rotor disposed on the atmosphere side with respect to the partition; and a detector that detects a rotational position of the inner rotor, wherein the stator drives the outer rotor. Since the inner rotor is rotated together with the outer rotor, by placing the detector inside the partition wall, it is possible to prevent the impurity molecules stored in the wiring cover from contaminating the atmosphere outside the partition wall. Rotational accuracy is achieved by fitting the rotating wheel of the bearing device that is rotatably supported with the outer rotor to a rotor yoke that is easy to obtain processing accuracy and has a linear expansion coefficient substantially the same as the driving wheel of the bearing device. And improvement of friction torque due to temperature change can be prevented.
図面の簡単な説明  Brief Description of Drawings
[0046] [図 1]本実施の形態に力かるモータを用いたフロッグレッダアーム式搬送装置の斜視 図である。  FIG. 1 is a perspective view of a frog redder arm type transfer device using a motor that is powerful in the present embodiment.
[図 2]図 1の構成を Π-Π線で切断して矢印方向に見た図である。  FIG. 2 is a view of the configuration of FIG. 1 cut along the Π-Π line and viewed in the direction of the arrow.
[図 3]図 2の構成を ΠΙ-ΠΙ線で切断して矢印方向に見た図である。  [Fig. 3] Fig. 3 is a view of the configuration of Fig. 2 cut along the ΠΙ-ΠΙ line and viewed in the direction of the arrow.
[図 4]図 3の矢印 IV部を拡大して示す図である。  FIG. 4 is an enlarged view showing an arrow IV part of FIG.
[図 5]図 4の構成を V-V線で切断して矢印方向に見た図である。  FIG. 5 is a view of the configuration of FIG. 4 taken along the line V-V and viewed in the direction of the arrow.
[図 6]レゾルバ制御回路の例を示す図である。  FIG. 6 is a diagram illustrating an example of a resolver control circuit.
[図 7]モータ制御回路の例を示す図である。  FIG. 7 is a diagram showing an example of a motor control circuit.
[図 8]本実施の形態に力かるダイレクトドライブモータを用いたフロッグレッダアーム式 搬送装置の斜視図である。  FIG. 8 is a perspective view of a frog redder arm type transport device using a direct drive motor that works according to the present embodiment.
[図 9]図 8の構成を Π-Π線で切断して矢印方向に見た図である。  FIG. 9 is a view of the configuration of FIG. 8 cut along the Π- で line and viewed in the direction of the arrow.
[図 10]図 9の構成を ΠΙ-ΠΙ線で切断して矢印方向に見た図である。 [図 11]レゾルバ制御回路の例を示す図である。 FIG. 10 is a view of the configuration of FIG. FIG. 11 is a diagram illustrating an example of a resolver control circuit.
[図 12]モータ制御回路の例を示す図である。 FIG. 12 is a diagram showing an example of a motor control circuit.
圆 13]本実施の形態の変形例を示す図である。 [13] FIG. 13 is a diagram showing a modification of the present embodiment.
[図 14]図 8に示す搬送装置に用いることができる第 2の実施の形態に力かるダイレクト ドライブモータの図 9と同様な断面図である。  14 is a cross-sectional view similar to FIG. 9 of a direct drive motor that can be used in the transport device shown in FIG.
圆 15]隔壁 113に渦電流損が発生する状態を示す模式図である。 [15] FIG. 15 is a schematic diagram showing a state where eddy current loss occurs in the partition wall 113.
[図 16]3つの磁石を並び方向に示した図 15と同様な模式図である。  FIG. 16 is a schematic view similar to FIG. 15 showing three magnets arranged in a line.
[図 17]隔壁がない場合におけるモータの制御系ブロック図である。  FIG. 17 is a block diagram of a motor control system when there is no partition wall.
[図 18]隔壁がある場合におけるモータの制御系ブロック図である。  FIG. 18 is a block diagram of a motor control system when there is a partition wall.
[図 19]伝達関数 Gの周波数特性を示す図である。  FIG. 19 is a diagram showing frequency characteristics of a transfer function G.
[図 20]伝達関数 Gの周波数特性を示す図である。  FIG. 20 is a diagram showing frequency characteristics of a transfer function G.
[図 21]磁気カップリングのばね剛性を示す図である。  FIG. 21 is a view showing the spring stiffness of the magnetic coupling.
[図 22]本実施の形態に力かるダイレクトドライブモータを用いたフロッグレッダアーム 式搬送装置の斜視図である。  FIG. 22 is a perspective view of a frog redder arm type transport device using a direct drive motor that works according to the present embodiment.
[図 23]図 22の構成を Π-Π線で切断して矢印方向に見た図である。  FIG. 23 is a view of the configuration of FIG. 22 cut along the Π-Π line and viewed in the direction of the arrow.
[図 24]レゾルバ制御回路の例を示す図である。  FIG. 24 is a diagram showing an example of a resolver control circuit.
[図 25]モータ制御回路の例を示す図である。  FIG. 25 is a diagram showing an example of a motor control circuit.
圆 26]第 2の実施の形態を示す断面図である。 FIG. 26 is a cross-sectional view showing a second embodiment.
圆 27]第 3の実施の形態を示す断面図である。 圆 27] It is a cross-sectional view showing a third embodiment.
圆 28]第 4の実施の形態を示す断面図である。 圆 28] It is a sectional view showing a fourth embodiment.
[図 29]本実施の形態に力かるダイレクトドライブモータを含むモータシステムを用いた フロッグレッダアーム式搬送装置の斜視図である。  FIG. 29 is a perspective view of a frog redder arm type conveyance device using a motor system including a direct drive motor that is effective in the present embodiment.
[図 30]図 29の構成を Π-Π線で切断して矢印方向に見た図である。  FIG. 30 is a view of the configuration of FIG. 29 taken along the line Π-Π and viewed in the direction of the arrow.
[図 31]レゾルバ制御回路の例を示す図である。 FIG. 31 is a diagram illustrating an example of a resolver control circuit.
[図 32]モータ制御回路の例を示す図である。 FIG. 32 is a diagram showing an example of a motor control circuit.
圆 33]第 2の実施の形態を示す断面図である。 圆 33] A cross-sectional view showing a second embodiment.
[図 34]本実施の形態に力かるダイレクトドライブモータを用いたフロッグレッダアーム 式搬送装置の斜視図である。 [図 35]図 34の構成を II-II線で切断して矢印方向に見た図である。 FIG. 34 is a perspective view of a frog redder arm type transfer device using a direct drive motor that is effective in the present embodiment. FIG. 35 is a view of the configuration of FIG. 34 taken along the line II-II and viewed in the direction of the arrow.
[図 36]レゾルバ制御回路の例を示す図である。 FIG. 36 is a diagram illustrating an example of a resolver control circuit.
[図 37]モータ制御回路の例を示す図である。 FIG. 37 is a diagram showing an example of a motor control circuit.
[図 38]本実施の形態に力かるダイレクトドライブモータを用いたフロッグレッダアーム 式搬送装置の斜視図である。  FIG. 38 is a perspective view of a frog redder arm type conveyance device using a direct drive motor that works according to the present embodiment.
[図 39]図 38の構成を Π-Π線で切断して矢印方向に見た図である。  FIG. 39 is a view of the configuration of FIG. 38 taken along the line Π-Π and viewed in the direction of the arrow.
[図 40]レゾルバ制御回路の例を示す図である。 FIG. 40 is a diagram illustrating an example of a resolver control circuit.
[図 41]モータ制御回路の例を示す図である。 FIG. 41 is a diagram showing an example of a motor control circuit.
[図 42]本実施の形態にカゝかるモータシステムの分解工程を示す断面図である。  FIG. 42 is a cross-sectional view showing an exploded process of the motor system according to the present embodiment.
[図 43]本実施の形態にカゝかるモータシステムの分解工程を示す断面図である。 FIG. 43 is a cross-sectional view showing an exploded process of the motor system according to the present embodiment.
[図 44]本実施の形態にカゝかるモータシステムの分解工程を示す断面図である。 FIG. 44 is a cross-sectional view showing an exploded process of the motor system according to the present embodiment.
[図 45]本実施の形態にカゝかるモータシステムの分解工程を示す断面図である。 FIG. 45 is a cross-sectional view showing an exploded process of the motor system according to the present embodiment.
[図 46]本実施の形態にカゝかるモータシステムの分解工程を示す斜視図である。 FIG. 46 is a perspective view showing a disassembly process of the motor system according to the present embodiment.
[図 47]本実施の形態にカゝかるモータシステムの分解工程を示す斜視図である。 FIG. 47 is a perspective view showing an exploded process of the motor system according to the present embodiment.
[図 48]本実施の形態にカゝかるモータシステムの分解工程を示す斜視図である。 FIG. 48 is a perspective view showing a disassembly process of the motor system according to the present embodiment.
[図 49]本実施の形態にカゝかるモータシステムの分解工程を示す斜視図である。 圆 50]本実施の形態の変形例を示す断面図である。 FIG. 49 is a perspective view showing an exploded process of the motor system according to the present embodiment. FIG. 50 is a cross-sectional view showing a modification of the present embodiment.
[図 51]変形例に力かるダイレクトドライブモータを用いたフロッグレッダアーム式搬送 装置の斜視図である。  FIG. 51 is a perspective view of a frog redder arm type transport device using a direct drive motor that is powerful in a modified example.
[図 52]本実施の形態に力かるダイレクトドライブモータを用いたフロッグレッダアーム 式搬送装置の斜視図である。  FIG. 52 is a perspective view of a frog redder arm type conveyance device using a direct drive motor that works according to the present embodiment.
[図 53]図 52の構成を Π-Π線で切断して矢印方向に見た図である。  FIG. 53 is a view of the configuration of FIG. 52 taken along the Π-Π line and viewed in the direction of the arrow.
[図 54]レゾルバ制御回路の例を示す図である。  FIG. 54 is a diagram showing an example of a resolver control circuit.
[図 55]モータ制御回路の例を示す図である。  FIG. 55 is a diagram showing an example of a motor control circuit.
圆 56]本実施の形態の変形例を示す断面図である。 圆 56] A sectional view showing a modification of the present embodiment.
符号の説明 Explanation of symbols
10 本体 10 Body
10 円板 本体10 disc Body
1 蓋部材1 Lid member
1 磁気カップリング用内側ロータ磁石2 磁気シールド板1 Inner rotor magnet for magnetic coupling 2 Magnetic shield plate
3 磁気シールド板3 Magnetic shield plate
7 軸受ホルダ7 Bearing holder
8 カップリング用外側ロータ磁石9 ノくックヨーク8 Coupling outer rotor magnet 9 Knock yoke
a フランジ a Flange
小円板  Small disk
ボノレト  Bonoleto
、 111 ボル卜, 111 Vol
0 円板部材0 Disc member
0 上部円板部0 Upper disc
0 本体0 Body
0a フランジ0a Flange
0b 円筒状取り付け部0b Cylindrical mounting part
1 小円板1 small disk
2 大円板2 Large disc
3 隔壁3 Bulkhead
3a 隔壁ホノレダ3a Bulkhead Honoreda
3b 薄肉円筒 3b Thin cylinder
4点接触式玉軸受 4-point contact ball bearing
5 内側ホルダ 5 Inner holder
外側ロータ  Outer rotor
外側ホルダ  Outer holder
外側ロータ磁石  Outer rotor magnet
ノ ックヨーク 大円板 Knock yoke Large disc
隔壁  Bulkhead
本体  Body
、 112 本体112 body
1 内側ロータ1 Inner rotor
3 軸受3 Bearing
5 バックヨーク5 Back yoke
5 磁気シールド板6 検出ロータ5 Magnetic shield plate 6 Detection rotor
7 インクリメンタルレゾルバ8 アブソリュートレゾルバ9 ステータ7 Incremental resolver 8 Absolute resolver 9 Stator
a フランジき ^a Flange
a, 112a フランジ咅b 外周縁a, 112a Flange 咅 b Outer peripheral edge
d 穴d hole
e 欠き e missing
隔壁  Bulkhead
、 113 隔壁 , 113 Bulkhead
、 113、 213、 313 隔壁0 磁気シールド板a 円板部113, 213, 313 Bulkhead 0 Magnetic shield plate a Disk part
b 円筒部 b Cylindrical part
4点接触式玉軸受 内輪ホルダ  4-point contact ball bearing Inner ring holder
ホノレダ  Honoreda
外側ロータ  Outer rotor
ボルト 外側ホルダ bolt Outer holder
、 107 軸受ホルダ  107 Bearing holder
、 17, 軸受ホルダ  , 17, bearing holder
外側ロータ磁石  Outer rotor magnet
、 18, ボノレ卜, 18, Bonore 卜
a 対向面 a Opposing surface
/ ックヨーク  / Cook York
、 19' 4点接触玉軸受 19 '4 point contact ball bearing
、 19'、 119、 119' 4点接触玉軸受a ロータヨーク19 ', 119, 119' 4 point contact ball bearing a Rotor yoke
b ヨークホルダb Yoke holder
c ボル卜c Bol
d スぺーサd Spacer
e ボル卜e Vol
f ねじ孔f Screw hole
g 側面g side
h 短フランジき h Short flange
ステータホルダ  Stator holder
、 20' ボル卜 , 20 'Vol
内側ロータ  Inner rotor
、 21' 外側ロータ The 21 'outer rotor
、 21, 外側ロータ部材 , 21, Outer rotor member
、 21'、 121、 121' 外側ロータ部材a, 21a' 永久磁石, 21 ', 121, 121' Outer rotor member a, 21a 'Permanent magnet
b, 21b' ヨーク b, 21b 'York
レゾルバホルダ  Resolver holder
、 22' ボル卜 , 22 'Vol
玉軸受 円筒状部材 Ball bearing Cylindrical member
、 123 円筒状部材 123 Cylindrical member
' リング状部材 '' Ring-shaped member
'、 123, リング状部材  ', 123, ring-shaped member
内側ロータ磁石  Inner rotor magnet
、 24' ボル卜  , 24 'Vol
ノくックヨーク  Knock York
、 25' 磁気シールド板 , 25 'Magnetic shield plate
検出ロータ アブソリ:  Detection rotor Absolute:
ステータ  Stator
、 29' ステータ 29 'stator
、 29'、 129、 129' ステータ 磁気シールド板 29 ', 129, 129' stator Magnetic shield plate
、 30, 内側ロータ , 30, inner rotor
、 30'、 130、 130' 内側ロータa, 30a' 永久磁石30 ', 130, 130' Inner rotor a, 30a 'Permanent magnet
b、 30b' ノ ックヨーク b, 30b 'knock yoke
、 32, レゾルバホノレダ 32, Resolver Honoreda
、 32'、 132、 132' レゾルノ ホルダ 、 33' 軸受 , 32 ', 132, 132' resorno holder, 33 'bearing
、 33'、 133、 133' 軸受 、 34' 検出ロータ , 33 ', 133, 133' bearing, 34 'detection rotor
、 34,、 134、 134' 検出ロータa, 34a'34, 134, 134 'Detection rotor a, 34a'
a、 34a \ 134a, 134a'b、 34b, アブソリュー卜レゾルパロ 34b、 34b \ 134b, 134b' アブソリュー卜レゾルバロータ a, 34a \ 134a, 134a'b, 34b, Absolute Resol Paro 34b, 34b \ 134b, 134b 'Absolute resolver rotor
35、 35'、 135、 135' インクジメンタルレゾルバステータ 35, 35 ', 135, 135' Incremental resolver stator
36、 36, アブソリュートレゾルバステータ  36, 36, absolute resolver stator
36、 36'、 136、 136' アブソジユー卜レゾルバステータ  36, 36 ', 136, 136' Absolute resolver stator
41 磁気シールド板  41 Magnetic shield plate
A1、 A2 アーム  A1, A2 arm
Al、 A2、 Al,、 A2, アーム  Al, A2, Al, A2, Arm
D1、 D2 モータ  D1, D2 motor
D1、 D2 ダイレクトドライブモータ  D1, D2 Direct drive motor
Dl、 D2、 D3、 D4 ダイレクトドライブモータ  Dl, D2, D3, D4 direct drive motor
DMC1 モータ制御回路  DMC1 motor control circuit
DMC2 モータ制御回路  DMC2 motor control circuit
G 定盤  G Surface plate
L1、 L2 リンク  L1, L2 link
LI, L2, Ll \ L2' リンク  LI, L2, Ll \ L2 'link
OR O—リング  OR O—Ring
T テーブル  T table
Tゝ T' テーブル  T ゝ T 'table
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
〔第 1の実施の形態〕 [First embodiment]
以下、本発明の実施の形態を図面を参照して説明する。図 1は、本実施の形態に 力かるモータを用いたフロッグレッダアーム式搬送装置の斜視図である。図 1にお ヽ て、 2つのモータ Dl、 D2を直列に連結している。下方のモータ D1のロータには、第 1アーム A1が連結され、第 1アーム A1の先端には第 1リンク L1が枢動可能に連結さ れている。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a perspective view of a frog redder arm type transfer device using a motor that works in this embodiment. In Fig. 1, two motors Dl and D2 are connected in series. The first arm A1 is connected to the rotor of the lower motor D1, and the first link L1 is pivotally connected to the tip of the first arm A1.
一方、上方のモータ D2のロータには、第 2アーム A2が連結され、第 2アーム A2の先 端には第 2リンク L2が枢動可能に連結されている。リンク LI, L2は、ウェハ Wを載置 するテーブル Tに、それぞれ枢動可能に連結されて!ヽる。 On the other hand, the second arm A2 is coupled to the rotor of the upper motor D2, and the second link L2 is pivotably coupled to the leading end of the second arm A2. Links LI and L2 place wafer W Each table is pivotably connected to the table T! Speak.
[0049] 図 1より明らかである力 モータ Dl、 D2のロータがそれぞれ同方向に回転すれば、 テーブル Tも同方向に回転し、力かるロータが逆方向に回転すれば、テーブル Tは、 モータ Dl、 D2に接近もしくは離隔するようになっている。従って、モータ Dl、 D2を 任意の角度で回転させれば、テーブル Tが届く範囲内で、任意の 2次元位置にゥェ ハ Wを搬送させることができる。 [0049] The force apparent from Fig. 1 If the rotors of the motors Dl and D2 rotate in the same direction, the table T also rotates in the same direction. If the powerful rotor rotates in the opposite direction, the table T becomes a motor It approaches or separates from Dl and D2. Therefore, if the motors Dl and D2 are rotated at an arbitrary angle, the wafer W can be transported to an arbitrary two-dimensional position within the range where the table T can reach.
このように例えば半導体製造装置における真空槽内に配置されるウェハ搬送ァー ム、例えばスカラ型や図に示すフロッグレッダ型のように複数のアームを備えた装置 では、特に複数の回転モータが必要となる。真空環境では外界との接触表面積を極 力小さくすると同時に、スペースを有効に活用するためにモータ等の取付穴はなるベ く少なくする必要がある。また、ウェハ Wを水平にまっすぐに、振動を極力少なくして 搬送するためには、アームの先端に作用するモーメントをロータ支持部で強固に保 持する必要がある。そこで、モータ Dl、 D2を複数、ハウジング部分で同軸に連結し、 連結部分はシールで密に接合 (溶接、 Oリング、金属ガスケット、等による密な接合) して、モータロータの配設された空間とハウジング外部空間とを離隔することも必要と なる。  Thus, for example, a wafer transfer arm placed in a vacuum chamber in a semiconductor manufacturing apparatus, for example, a device having a plurality of arms such as a scalar type or a frog redder type shown in the figure, particularly requires a plurality of rotary motors. It becomes. In a vacuum environment, the contact surface area with the outside world should be minimized, and at the same time, the number of mounting holes for motors, etc. should be minimized to make effective use of space. In addition, in order to transport the wafer W horizontally and with minimal vibration, it is necessary to firmly hold the moment acting on the tip of the arm with the rotor support. Therefore, a plurality of motors Dl and D2 are connected coaxially at the housing part, and the connecting part is tightly joined with a seal (tightly joined by welding, O-ring, metal gasket, etc.), and the space where the motor rotor is arranged It is also necessary to separate the housing from the external space.
[0050] また、ウェハ Wを水平にまっすぐ、振動を少なく搬送するためにはアーム Al、 A2の 先端に作用するモーメントを、ロータ支持部で強固に保持する必要がある。更に、又 、真空環境での複数軸のアーム駆動の際には、電源投入時に現在のアームの回転 位置を認識しないと真空槽の壁や、真空槽のシャツタにアーム Al, A2等をぶつけて しまう可能性がある。このような要求に応じることができるモータについて説明する。 図 2は、図 1の構成を Π-Π線で切断して矢印方向に見た図である。図 3は、図 2の構 成を ΠΙ-ΠΙ線で切断して矢印方向に見た図である。図 2、 3を参照して、モータの内部 構造について詳細に説明する。尚、モータ Dl, D2は基本的な構成が同一であるた め、モータ D1のみ説明し、モータ D2の構成については同じ符号を付すことで説明を 省略する。  [0050] In addition, in order to convey the wafer W horizontally and with little vibration, it is necessary to firmly hold the moment acting on the tips of the arms Al and A2 by the rotor support portion. In addition, when driving multiple axes in a vacuum environment, if the current rotation position of the arm is not recognized when the power is turned on, the arm Al, A2, etc. will be hit against the wall of the vacuum chamber or the shatter of the vacuum chamber. There is a possibility. A motor capable of meeting such a request will be described. FIG. 2 is a view of the configuration of FIG. Fig. 3 is a view of the configuration of Fig. 2 taken along line ΠΙ-ΠΙ and viewed in the direction of the arrow. The internal structure of the motor will be described in detail with reference to Figs. Since the basic configurations of the motors Dl and D2 are the same, only the motor D1 will be described, and the description of the configuration of the motor D2 will be omitted by giving the same reference numerals.
[0051] 定盤 Gにフランジ 10aを据え付けた中空円筒状の本体 10は、その上端に小円板 1 1をボルトにより連結している。小円板 11の上面には、大円板 12が不図示のボルトに より固定されている。本体 10の中央は、ステータへの配線などを通すために用いるこ とができる。本体 10,小円板 11,大円板 12によりハウジングを構成する。大円板 12 の上面には、本体 10の開口を覆う蓋部材 50が密封的にボルト止めされている。なお 、モータ D2の本体 10の中央開口内に、 D2用レゾルバ配線 HIと、 D2用モータ配線 H2とが引き出され、更にモータ D1の本体 10の中央開口内に、 D1用レゾルバ配線 H3と、 D1用モータ配線 H4とが引き出され、これら 4本の配線は、定盤 Gの開口を通 つて外部へと延在している。 [0051] The hollow cylindrical main body 10 in which the flange 10a is installed on the surface plate G has a small circular plate 11 connected to the upper end thereof by a bolt. On the upper surface of the small disk 11, the large disk 12 is a bolt (not shown). It is more fixed. The center of the main body 10 can be used to pass wiring to the stator. The main body 10, small disk 11, and large disk 12 constitute the housing. A lid member 50 covering the opening of the main body 10 is hermetically bolted to the upper surface of the large disk 12. In addition, the resolver wiring HI for D2 and the motor wiring H2 for D2 are drawn out in the central opening of the main body 10 of the motor D2, and further, the resolver wiring H3 for D1 and D1 are inserted in the central opening of the main body 10 of the motor D1. The motor wiring H4 is drawn out, and these four wirings extend to the outside through the opening of the surface plate G.
[0052] 本体 10のフランジ 10a上に、非磁性体であるステンレス製(SUS304等)の円筒状 の隔壁 13が本体 10に対して同軸に取り付けられて 、る。隔壁 13の上部は薄くなつ ており、更に上端は半径方向内方に折れ曲がつていて、円板 12により小円板 11に 挟持される形で取り付けられている。尚、モータ D1の各部材間には、図示のように O —リング ORが配置され、従って本体 10のフランジ 10aと、隔壁 13と、小円板 11とで 囲われる内部空間は、その外部力も気密されている。尚、隔壁 13は必ずしも非磁性 体である必要はない。又、 O—リング ORを用いて気密する代わりに、電子ビーム溶接 やレーザビーム溶接などで部材間を気密してもも良い。 [0052] On the flange 10a of the main body 10, a cylindrical partition wall 13 made of stainless steel (SUS304 or the like), which is a non-magnetic material, is attached coaxially to the main body 10. The upper part of the partition wall 13 is thin, and the upper end is bent inward in the radial direction, and is attached so as to be sandwiched by the small disk 11 by the disk 12. In addition, an O-ring OR is arranged between the members of the motor D1, as shown in the figure. Therefore, the internal space surrounded by the flange 10a of the main body 10, the partition wall 13, and the small disk 11 also has its external force. It is airtight. The partition wall 13 is not necessarily made of a nonmagnetic material. Further, instead of using an O-ring OR to seal the air, the members may be sealed by electron beam welding or laser beam welding.
[0053] 隔壁 13の下部外周に、真空中で用いられる 4点接触式玉軸受 14の内輪が嵌合し 、隔壁 13にボルトで固定される内輪ホルダ 15により、隔壁 13に対して取り付けられて いる。一方、軸受 14の外輪は、外側ロータ(主ロータともいう) 16の内周に嵌合し、外 側ロータ 16にボルトで固定される外側ホルダ 17により、外側ロータ 16に対して取り付 けられている。すなわち、外側ロータ 16は、隔壁 13に対して回転自在に支持されて いる。軸受 14は、内輪と外輪に金や銀などの軟質金属をプレーティングして、真空中 でもアウトガス放出のな 、金属潤滑としたものを用いており、また 4点接触式玉軸受で あるので、アーム A1からの外側ロータ 16がチルトする方向のモーメントを受けること ができる力 4点接触式に限らず、クロスローラ、クロスボール、クロステーパ軸受も用 いることができ、予圧状態で用いても良いし、潤滑性向上のためフッ素系被膜処理( DFO)を行っても良い。  [0053] The inner ring of a four-point contact ball bearing 14 used in vacuum is fitted to the lower outer periphery of the partition wall 13, and is attached to the partition wall 13 by an inner ring holder 15 fixed to the partition wall 13 with bolts. Yes. On the other hand, the outer ring of the bearing 14 is attached to the outer rotor 16 by an outer holder 17 that is fitted to the inner periphery of an outer rotor (also referred to as a main rotor) 16 and fixed to the outer rotor 16 with bolts. ing. That is, the outer rotor 16 is rotatably supported with respect to the partition wall 13. Bearing 14 is a four-point contact ball bearing that uses soft metal such as gold or silver plated on the inner ring and outer ring, and does not release gas even in vacuum, and is a four-point contact ball bearing. Force that can receive the moment of tilting of the outer rotor 16 from the arm A1 Not limited to the four-point contact type, cross rollers, cross balls, and cross taper bearings can also be used and may be used in a preload state. In order to improve lubricity, fluorine film treatment (DFO) may be performed.
[0054] 外側ロータ 16の内周面には、外側ロータ磁石 18が取り付けられている。外側ロータ 磁石 18は、 24極の構成で N極、 S極の磁石が各 12個交互に磁性金属力もなり、隔 壁 13に対しギャップを介した状態で、ノ ックヨーク 19に組みつけられている。 An outer rotor magnet 18 is attached to the inner peripheral surface of the outer rotor 16. The outer rotor magnet 18 has a 24-pole configuration, and each of the 12 N-pole and S-pole magnets alternately has magnetic metal force. It is assembled to the knock yoke 19 with a gap through the wall 13.
図 4は、図 3の矢印 IV部を拡大して示す図であり、図 5は、図 4の構成を V-V線で切 断して矢印方向に見た図である。図において、ノ ックヨーク 19は、非磁性体からなる 円環状のロータヨーク(単にヨークともいう) 19aと、ロータヨーク 19aの半径方向外方 に嵌合されるヨークホルダ 19bと力 構成されている。ロータヨーク 19aとヨークホルダ 19bとは、ボノレ卜 19cにより互!ヽに固定されて!ヽる。  FIG. 4 is an enlarged view of the arrow IV part of FIG. 3, and FIG. 5 is a view of the configuration of FIG. In the figure, the knock yoke 19 is configured by force with an annular rotor yoke (also simply referred to as a yoke) 19a made of a non-magnetic material and a yoke holder 19b fitted radially outward of the rotor yoke 19a. The rotor yoke 19a and the yoke holder 19b are fixed to each other by a Bonole 19c.
[0055] ロータヨーク 19aの内周面には、複数の永久磁石である外側ロータ磁石(磁極とも いう) 18が周方向に沿って間隔をあけながら配列されている。外側ロータ磁石 18は、 半径方向内方に向 、た磁極 (N極又は S極)が交互になるように配列されており、隣 接する外側ロータ磁石 18間には、くさび状のスぺーサ 19dが配置されている。スぺー サ 19dは、ねじ孔 19fを有し、ロータヨーク 19aの半径方向外方カも揷通された非磁 性体のボルト 19eを、力かるねじ孔 19fに螺合させることによって、ロータヨーク 19aの 内周面に取り付けられている。  [0055] On the inner circumferential surface of the rotor yoke 19a, a plurality of outer rotor magnets (also referred to as magnetic poles) 18, which are permanent magnets, are arranged at intervals along the circumferential direction. The outer rotor magnets 18 are arranged so that the magnetic poles (N poles or S poles) are alternately directed inward in the radial direction, and a wedge-shaped spacer 19d is provided between the adjacent outer rotor magnets 18. Is arranged. The spacer 19d has a screw hole 19f, and a non-magnetic bolt 19e through which the radially outer cover of the rotor yoke 19a is threaded is screwed into the forceful screw hole 19f. It is attached to the inner peripheral surface.
[0056] 一つの外側ロータ磁石 18は、図 4の方向に見て、その周方向端面(対向面ともいう ) 18a、 18aが、半径方向内方に向力 につれて漸次近接する形状となっている。こ れを言い換えると、隣接する外側ロータ磁石 18、 18の対向面 18a、 18aの間隔は、 半径方向内方に向力 につれて広がっている。これに対し、それらの間に介在するス ぺーサ 19dは、外側ロータ磁石 18、 18の対向面 18a、 18aに対向した側面 19g、 19 gが半径方向内方に向かうにつれて漸次離隔する形状となっている。外側ロータ磁 石 18、 18の対向面 18a、 18aにおける周方向の最小間隔 Cは、スぺーサ 19dの周方 向の最大幅 Wより小さくなつており(W>C)、且つ外側ロータ磁石 18、 18の対向面 1 8a、 18aにおける周方向の最小間隔 Cを形成する部位は、スぺーサ 19dの最大幅 W の部位よりも半径方向外方に位置している。又、対向面 18a、 18aと、側面 19g、 19g との間には、それぞれ ΔΖ2のスキマが形成されている。  [0056] One outer rotor magnet 18 has a shape in which circumferential end faces (also referred to as facing faces) 18a, 18a gradually approach each other in the radial direction as seen in the direction of FIG. . In other words, the interval between the opposing surfaces 18a, 18a of the adjacent outer rotor magnets 18, 18 increases inward in the radial direction as the force increases. On the other hand, the spacer 19d interposed between them has a shape in which the side surfaces 19g and 19g facing the facing surfaces 18a and 18a of the outer rotor magnets 18 and 18 gradually separate as they go radially inward. ing. The circumferential minimum distance C between the opposing surfaces 18a and 18a of the outer rotor magnets 18 and 18 is smaller than the maximum circumferential width W of the spacer 19d (W> C), and the outer rotor magnet 18 The parts forming the minimum circumferential interval C on the 18 opposing surfaces 18a, 18a are located radially outward from the part of the spacer 19d having the maximum width W. Further, gaps of ΔΖ2 are formed between the facing surfaces 18a and 18a and the side surfaces 19g and 19g, respectively.
[0057] ロータヨーク 19aは、磁性ステンレスでも、鉄にニッケルメツキした物でも良い。本実 施の形態においては、外側ロータ磁石 18は、極ごとに分割されたセグメント形式であ り、エネルギー積の高いネオジゥム(Nd— Fe— B)系磁石を材料としている。このネオ ジゥム系磁石は鉄と比較して線膨張係数が非常に小さい上にもろく割れやすい性質 を持つ。本実施の形態においては、耐食性を高め、かつ、耐磨耗性の高いニッケル コーティングを施してある。このような表面処理を施すことにより、不純分子を吸蔵しに くぐかつ、スぺーサ 19dで固定する際のすべりや、極度の高温または低温時にさら された際の、摺動磨耗による発塵を防げるので真空環境に好適である。 [0057] The rotor yoke 19a may be magnetic stainless steel or nickel-plated iron. In this embodiment, the outer rotor magnet 18 is a segment type divided for each pole, and is made of a neodymium (Nd—Fe—B) type magnet having a high energy product. This neodymium magnet has a very small coefficient of linear expansion compared to iron, and is also brittle have. In the present embodiment, a nickel coating is applied to enhance corrosion resistance and to have high wear resistance. By applying such a surface treatment, it is difficult to occlude impure molecules, and sliding when fixing with the spacer 19d and generation of dust due to sliding wear when exposed to extreme high or low temperatures. Since it can prevent, it is suitable for a vacuum environment.
[0058] より詳細に外側ロータ磁石 18の形状を説明すると、ロータヨーク 19aの内周面と接 する外径側の形状は、ロータヨーク 19aの内周面と同一半径ないし若干大きい半径 を有する円弧状であり、エアギャップ側である隔壁 13側の形状は、ロータヨーク 19a に配置された際に各々の磁石の円弧中心が回転中心と同一となるような半径を有す る円弧状である。周方向端面 18a、 18aの形状は平面状である力 接線交点を磁石 寄りとなるような形状である。軸方向端面は平行な一対の面状であり、軸線に対して 直角である。各辺は面取りが施してあり、微細な割れや欠けを防いでいる。  The shape of the outer rotor magnet 18 will be described in more detail. The shape on the outer diameter side in contact with the inner peripheral surface of the rotor yoke 19a is an arc shape having the same radius as the inner peripheral surface of the rotor yoke 19a or a slightly larger radius. In addition, the shape on the partition wall 13 side, which is the air gap side, is an arc shape having a radius such that the arc center of each magnet is the same as the rotation center when arranged on the rotor yoke 19a. The shapes of the circumferential end faces 18a and 18a are such that the flat force tangent intersection is close to the magnet. The axial end faces are a pair of parallel planes and are perpendicular to the axis. Each side is chamfered to prevent fine cracks and chips.
[0059] 一方、ロータヨーク 19aは高い磁性を有する低炭素鋼を材料とし、加工成型後に、 防鲭および耐食性を高め、かつ直接軸受で支持されるような場合を考慮し、交換時 等の磨耗を防ぐためにニッケルめっきを施している。その形状は円環状であり、外側 ロータ磁石 18を配置する内周部には、外側ロータ磁石 18の軸方向端面の長さよりも 若干幅広で、かつ外側ロータ磁石 18に施された面取りよりも大きな短フランジ部 19h 、 19hが設けてある(図 5参照)。  [0059] On the other hand, the rotor yoke 19a is made of low-carbon steel having high magnetism, and after processing and molding, considers the case where fouling and corrosion resistance are increased and is supported directly by the bearing, so that wear during replacement is avoided. Nickel plating is applied to prevent it. The shape of the outer rotor magnet 18 is slightly larger than the length of the axial end surface of the outer rotor magnet 18 and larger than the chamfering applied to the outer rotor magnet 18. Short flanges 19h and 19h are provided (see Fig. 5).
[0060] 外側ロータ磁石 18と、ロータヨーク 19aの短フランジ部 19h、 19hとの互いの隙間は 、モータの使用温度および保存温度の低温側にさらされた際でも隙間が残留する寸 法である。  [0060] The gap between the outer rotor magnet 18 and the short flange portions 19h and 19h of the rotor yoke 19a is such a dimension that the gap remains even when exposed to the low temperature side of the use temperature and storage temperature of the motor.
ロータヨーク 19aには、スぺーサ 19dを締結するためのボルト 19eを通す通し穴 19j が極数と同数かつ等配に半径方向にあけられており、外径面にはボルト頭を沈頭す るための座ぐり 19kが設けられている。更に、ロータヨーク 19aの外径側には、軸受装 置の回転側とヨークホルダを勘合固定する部位を形成しても良ぐそれにより軸受装 置の内輪とヨークホルダを嵌めることができる。かかる場合、真空用グリース潤滑の 4 点接触玉軸受を用いて、回転輪である内輪を、加工精度を出しやすぐかつ線膨張 係数が軸受の軌道輪材質と略同一であるヨークに締まり嵌めあるいは中間嵌めとし、 回転輪である外輪を真空環境で頻繁に用いられるアルミニウムやオーステナイト系ス テンレス製の軸受ホルダにすきま嵌めとすることで、軸受装置の回転精度の低下や 温度上昇による摩擦トルクの上昇を防ぐことができる。 The rotor yoke 19a has through holes 19j through which the bolts 19e for fastening the spacers 19d are passed in the radial direction with the same number and the same number of poles, and the bolt heads are sunk on the outer diameter surface. A counterbore 19k is provided. Further, a portion for fitting and fixing the rotating side of the bearing device and the yoke holder may be formed on the outer diameter side of the rotor yoke 19a, so that the inner ring and the yoke holder of the bearing device can be fitted. In such a case, using a grease grease lubricated four-point contact ball bearing, the inner ring, which is a rotating ring, can be tightly fitted to a yoke with high machining accuracy and a linear expansion coefficient that is almost the same as the bearing ring material of the bearing. With an intermediate fit, the outer ring, which is a rotating ring, is used frequently in aluminum or austenitic stainless steel in a vacuum environment. By making a clearance fit in the Tenres bearing holder, it is possible to prevent a decrease in the rotation accuracy of the bearing device and an increase in friction torque due to an increase in temperature.
[0061] スぺーサ 19dは、磁束が短絡してステータ 29への鎖交磁束が低減することを防ぐ ため、磁性の少ないオーステナイト系ステンレスを材料とし、磁極間毎に挿入され、外 側ロータ磁石 18をロータヨーク 19a上に略等配に配置する機能を有する。またこの材 料は耐食性が高いので不純分子を吸蔵しにくぐ真空環境に好適に使用されている 。スぺーサ 19dの形状は台形柱状であり、ロータヨーク 19aと接する部位は、外側口 ータ磁石 18と同様にロータヨーク 19aの内周面と同一半径ないし若干大きい半径を 有する円弧状である。スぺーサ 19dには、ボルト 19eによる固定を行うためのねじ孔 1 9fがあけられている。エアギャップ側である隔壁 13に対向するスぺーサ 19dの面は 平面状であり、ロータヨーク 19aと接する部位からの幅は、ロータヨーク 19a外径から ロータヨーク座ぐり 19kに沈頭したボルト頭に対する深さ寸法をカ卩えても、各々の外側 ロータ磁石 18の内径接円よりも外側に位置する寸法として!/、る。スぺーサ 19dの円 周方向端面は平面状であるが、ロータヨーク 19aの内周面上に等配された外側ロー タ磁石 18の円周方向端面と略平行であり、かつ若干の隙間を有する寸法である。  [0061] The spacer 19d is made of austenitic stainless steel with less magnetism and is inserted between the magnetic poles to prevent the magnetic flux from short-circuiting and the interlinkage magnetic flux to the stator 29 from being reduced. It has a function of arranging the 18 on the rotor yoke 19a substantially equally. Further, since this material has high corrosion resistance, it is suitably used in a vacuum environment in which impure molecules are difficult to occlude. The spacer 19d has a trapezoidal columnar shape, and the portion in contact with the rotor yoke 19a has an arc shape having the same radius as the inner peripheral surface of the rotor yoke 19a or a slightly larger radius, like the outer rotor magnet 18. The spacer 19d has a screw hole 19f for fixing with the bolt 19e. The surface of the spacer 19d facing the partition wall 13 on the air gap side is flat, and the width from the part in contact with the rotor yoke 19a is the depth from the outer diameter of the rotor yoke 19a to the bolt head sinking into the rotor yoke counterbore 19k. Even if the dimensions are counted, the dimensions are located outside the inner diameter contact circle of each outer rotor magnet 18! /. The circumferential end surface of the spacer 19d is planar, but is substantially parallel to the circumferential end surface of the outer rotor magnet 18 that is equally distributed on the inner peripheral surface of the rotor yoke 19a and has a slight gap. Dimensions.
[0062] 外側ロータ磁石 18とスぺーサ 19dの円周方向端面における接線交点角度と互い のスキマ Δ Ζ2は、外側ロータ磁石 18がエアギャップ方向に浮いたとしても、ステータ 29との吸着力よりロータヨーク 19aとの吸着力の方が強ぐかつ、モータの使用温度 および保存温度の低温側にさらされた際でもスキマ Δ Z2が残留する寸法である ボルト 19eはスぺーサ 19dと同様に耐食性が高く磁性の少な!/、オーステナイト系ス テンレスを材料とし、磁束が短絡してステータ 29への鎖交磁束が低減することを防 ヽ でいる。  [0062] The tangential intersection angle between the outer rotor magnet 18 and the spacer 19d in the circumferential end face and the mutual clearance ΔΖ2 are based on the attractive force with the stator 29 even if the outer rotor magnet 18 floats in the air gap direction. Bolt 19e is a dimension that retains the clearance ΔZ2 even when exposed to the low temperature side of the operating temperature and storage temperature of the motor, and the bolt 19e has the same corrosion resistance as the spacer 19d. It is made of high and low magnetism! /, Austenitic stainless steel, which prevents the magnetic flux from short-circuiting and reducing the interlinkage magnetic flux to the stator 29.
[0063] ヨークホルダ 19bは慣性低減のため、金属材料としては比重が小さいアルミニウム 合金を材料とし、ロータヨーク 19aの外径部とのはめあい部と、ロータヨーク 19aの端 面との締結部を有している。  [0063] The yoke holder 19b is made of an aluminum alloy having a small specific gravity as the metal material for reducing inertia, and has a fitting portion between the fitting portion with the outer diameter portion of the rotor yoke 19a and the end surface of the rotor yoke 19a. .
このような構成とすることにより、外側ロータ磁石 18をロータヨーク 19aの内周面に 吸着させたのちに、スぺーサ 19dをボルト 19eで外径側力も締め上げることにより、外 側ロータ磁石 18を簡単に等配置できる。 [0064] すべての外側ロータ磁石 18とスぺーサ 19dが配置された状態であっても、互いの 周方向端面にはスキマ ΔΖ2があるので、スぺーサ 19dはロータヨーク 19aの内周面 力も浮き上がることなく確実にボルト 19eで固定できる。更に、スぺーサ 19dにおける ロータヨーク 19aの内周面と接する部位は、ロータヨーク 19aの内周面と同一半径な Vヽし若干大き!/、半径を有する円弧状なので、ボルト 19eで締め上げた際に全面もしく は 2ケ所で線接触し、さらに強固に固定できる。 With such a configuration, after the outer rotor magnet 18 is attracted to the inner peripheral surface of the rotor yoke 19a, the outer rotor magnet 18 is removed by tightening the outer diameter side force of the spacer 19d with the bolt 19e. It can be easily arranged. [0064] Even when all the outer rotor magnets 18 and the spacers 19d are arranged, there is a clearance ΔΖ2 at the circumferential end faces of each other, so that the spacer 19d also lifts the inner circumferential surface force of the rotor yoke 19a. It can be securely fixed with bolts 19e without any problems. Furthermore, the portion of the spacer 19d in contact with the inner peripheral surface of the rotor yoke 19a is slightly larger than the inner radius of the rotor yoke 19a and has a slightly larger V! It is possible to make line contact at the entire surface or at two places and fix it more firmly.
[0065] 一方、外側ロータ磁石 18の周方向端面だけでなく軸方向端面にも、ロータヨーク 1 9aに対してスキマがあるので、外側ロータ磁石 18は磁気的な吸着力のみで固定され ており、極度の高温にさらされた際でも外側ロータ磁石 18は機械的に拘束されてい ないのでロータヨーク 19aに対して微細に変位でき、極度の低温にさらされた際でも 隙間があるので、スぺーサ 19dと短フランジ部 19h、 19hからの圧縮応力を受けない 。よって、外側ロータ磁石 18に割れや欠けを生じる恐れが少ない。  [0065] On the other hand, since not only the circumferential end face of the outer rotor magnet 18 but also the axial end face has a clearance with respect to the rotor yoke 19a, the outer rotor magnet 18 is fixed only by a magnetic attraction force. Since the outer rotor magnet 18 is not mechanically constrained even when exposed to extremely high temperatures, it can be finely displaced with respect to the rotor yoke 19a, and there is a gap even when exposed to extremely low temperatures. And it does not receive compressive stress from short flange part 19h, 19h. Therefore, there is little possibility that the outer rotor magnet 18 will be cracked or chipped.
[0066] そして、外側ロータ磁石 18におけるロータヨーク 19aの内周面と接する部位は、口 ータヨーク 19aの内周面と同一半径な 、し若干大き 、半径を有する円弧状なので、口 ータヨークとの吸着力により全面もしくは 2ケ所で線接触する。よって、ステータ 29の 通電による回転方向のトルクが加わってもぐらつくことが抑制される。  [0066] The portion of the outer rotor magnet 18 in contact with the inner peripheral surface of the rotor yoke 19a has the same radius as the inner peripheral surface of the rotor yoke 19a, and is a slightly larger arc having a radius. Line contact at the entire surface or at two locations. Therefore, wobbling is suppressed even when torque in the rotational direction due to energization of the stator 29 is applied.
スぺーサ 29が固定された状態では、ロータヨーク 19aとの吸着力以上の引張力が 加わったとしても、外側ロータ磁石 18とスぺーサ 19dの円周方向端面は、その接線 交点が回転中心よりも永久磁石寄りとなるような形状なので、スぺーサ 19dとのスキマ ΔΖ2以上は浮くことができず、外側ロータ磁石 18がギャップ側(隔壁 13側)に外れ ることがない。また、スぺーサ 19dが固定された状態では、軸方向にロータヨーク 19a との吸着力以上の力を受けてもロータヨーク 19aの短フランジ部 19h、 19hとの隙間 以上は変位できないので、外側ロータ磁石 18が軸方向に外れることがない。また、外 側ロータ形式であるので、モータ回転にともなう遠心力により外側ロータ磁石 18が外 れることがない。  In the state where the spacer 29 is fixed, even if a tensile force greater than the attractive force with the rotor yoke 19a is applied, the circumferential end surfaces of the outer rotor magnet 18 and the spacer 19d Since the shape is closer to the permanent magnet, the clearance ΔΖ2 or more with the spacer 19d cannot float, and the outer rotor magnet 18 does not come off to the gap side (partition wall 13 side). Further, in the state where the spacer 19d is fixed, the outer rotor magnet cannot be displaced because the gap between the short flange portions 19h and 19h of the rotor yoke 19a cannot be displaced even if it receives a force greater than the attracting force with the rotor yoke 19a in the axial direction. 18 does not come off in the axial direction. Further, since the outer rotor type is used, the outer rotor magnet 18 is not detached due to the centrifugal force accompanying the motor rotation.
[0067] ロータヨーク 19aの短フランジ部 19h、 19hは、永久磁石に施された面取りよりも若 干高い程度であり、外側ロータ磁石 18の半径方向厚さに比べて遥かに小さいので、 磁束の短絡によるモータの性能の低下を最小限に抑えることができる。図示して!/ヽな いが、薄い外側ロータ磁石を用いる場合や、磁束の短絡を更に少なくしたい場合は、 外側ロータ磁石の軸方向端面とロータヨーク 19aの短フランジ部 19h、 19hの肩部と の間に、非磁性体の円環状部材を配置しても良い。その場合は磁束の短絡を配慮 することなく短フランジ部 19h、 19hを設定できるので、例えばそれらの間に外側ロー タ磁石を埋没させ、モータ組立時の磁極破損を防止する等の効果を得ることができる 。また、力かる円環状部材はその法線方向に一ヶ所切れ目を入れておくとロータョー ク 19aに装着しやすくなる。 [0067] The short flange portions 19h and 19h of the rotor yoke 19a are slightly higher than the chamfering made on the permanent magnet, and are much smaller than the radial thickness of the outer rotor magnet 18, so that the magnetic flux is short-circuited. The degradation of the motor performance due to can be minimized. Show me! However, when a thin outer rotor magnet is used or when it is desired to further reduce the short circuit of the magnetic flux, a non-magnetic material is provided between the axial end surface of the outer rotor magnet and the shoulders of the short flange portions 19h and 19h of the rotor yoke 19a. An annular member may be arranged. In that case, the short flanges 19h, 19h can be set without considering the short circuit of the magnetic flux.For example, an outer rotor magnet is buried between them to obtain the effect of preventing magnetic pole breakage during motor assembly. Is possible. In addition, if a strong annular member is cut at one point in the normal direction, it can be easily attached to the rotor 19a.
[0068] スぺーサ 19dの内径側とロータヨーク 19aと接する部位との幅は、ロータヨーク 19a の外径からの沈頭したボルト頭に対する深さ寸法を加えても、各々の永久磁石の内 径接円よりも外側に位置する寸法としている。よって、ロータヨーク 19aがヨークホルダ 19bにはめられた状態では、スぺーサ 19dを固定して!/、るボルト 19eがヒートサイクル などにより緩んだとしてもボルト頭までの深さ寸法以上は緩むことは無 、ので、スぺー サ 19dが隔壁 13と干渉してモータがロックすることを防止できる。  [0068] The width between the inner diameter side of the spacer 19d and the portion in contact with the rotor yoke 19a is not limited to the inner diameter contact of each permanent magnet, even if the depth of the sinked bolt head from the outer diameter of the rotor yoke 19a is added. The dimensions are located outside the circle. Therefore, in a state where the rotor yoke 19a is fitted to the yoke holder 19b, the spacer 19d is fixed! /, Even if the bolt 19e is loosened due to heat cycle or the like, it will not loosen more than the depth to the bolt head. Therefore, the spacer 19d can be prevented from interfering with the partition wall 13 to lock the motor.
[0069] 本実施の形態の外側ロータ磁石 18は、上述の作用を有しながらも、接着剤による 固定を行う場合と同様の略円環状の単純な六面体であり、磁極固定にまつわる無用 な穴や溝や辺、および無駄な磁石体積を設ける必要が無い。よって、モータ性能お よび永久磁石の部品コストは接着剤による磁極固定を行う場合と同等である。逆に接 着工程を省けるので、組立コストが抑えられ、かつ機能保証が行いやすい。  [0069] The outer rotor magnet 18 of the present embodiment is a simple toroidal hexahedron similar to the case of fixing with an adhesive while having the above-described action, and uses unnecessary holes and holes related to magnetic pole fixing. There is no need to provide grooves, sides, and useless magnet volumes. Therefore, the motor performance and the component cost of the permanent magnet are equivalent to the case of fixing the magnetic pole with an adhesive. Conversely, since the attachment process can be omitted, the assembly cost can be reduced and the function can be easily guaranteed.
以上述べたように、本実施の形態によれば、磁性体力 なるロータヨーク 19aの内 周面に対し、外側ロータ磁石 18は磁力により固着されるので、重力ゃ通電によるトル クなどによって容易に変位することはない。カロえて、外側ロータ磁石 18、 18の対向面 18a、 18aにおける周方向の最小間隔 Cは、スぺーサ 19dの周方向の最大幅 Wより 小さくなつており(W>C)、且つ外側ロータ磁石 18、 18の対向面 18a、 18aにおける 周方向の最小間隔 Cを形成する部位は、スぺーサ 19dの最大幅 Wの部位よりも半径 方向外方に位置しているので、接着剤を用いることなぐ不測の振動や衝撃などが生 じても外側ロータ磁石 18が脱落したり周方向に変位することを抑制でき、従ってモー タ D1を真空中に配置した場合でも、吸蔵不純分子の放出ガス (アウトガス)〖こよる雰 囲気汚染を回避することができる。 [0070] 更に、外側ロータ磁石 18、 18の対向面 18a、 18aと、スぺーサ 19dの側面 19g、 19 gとの間に、それぞれスキマ Δ /2が形成されていると、温度変化によるロータヨーク 1 9aと外側ロータ磁石 18との熱膨張の差を吸収して、割れや欠けなどの不具合を回避 できる。 As described above, according to the present embodiment, the outer rotor magnet 18 is fixed to the inner peripheral surface of the rotor yoke 19a having magnetic force by magnetic force, so that gravity is easily displaced by torque caused by energization. There is nothing. The minimum circumferential distance C between the opposing surfaces 18a and 18a of the outer rotor magnets 18 and 18 is smaller than the maximum circumferential width W of the spacer 19d (W> C), and the outer rotor magnets The part forming the minimum circumferential distance C on the opposite faces 18a, 18a of 18, 18 is located radially outward from the part of the spacer 19d with the maximum width W, so use an adhesive. Even if unexpected vibrations or shocks occur, the outer rotor magnet 18 can be prevented from falling off or being displaced in the circumferential direction.Therefore, even when the motor D1 is placed in a vacuum, the released gas of the occluded impure molecules ( Outgas) It is possible to avoid atmospheric pollution. [0070] Further, when a clearance Δ / 2 is formed between the opposing surfaces 18a, 18a of the outer rotor magnets 18, 18 and the side surfaces 19g, 19g of the spacer 19d, the rotor yoke due to temperature change 1 Absorbs the difference in thermal expansion between the 9a and the outer rotor magnet 18 to avoid problems such as cracks and chipping.
また図 5において、ロータヨーク 19aは、軸線方向両端において、半径方向内方に 延在する短フランジ部 19h、 19hを有しており、当接部となる短フランジ部 19h、 19h 力 ロータヨーク 19aの内周面から突き出しているので、外側ロータ磁石 18が軸線方 向に変位することを阻止するようになっている。尚、外側ロータ磁石 18の上部を覆うよ うにして磁気シールド板 30が外側ロータ 16に取り付けられている。  Further, in FIG. 5, the rotor yoke 19a has short flange portions 19h and 19h extending radially inward at both ends in the axial direction, and the short flange portions 19h and 19h acting as contact portions are included in the rotor yoke 19a. Since it protrudes from the peripheral surface, the outer rotor magnet 18 is prevented from being displaced in the axial direction. A magnetic shield plate 30 is attached to the outer rotor 16 so as to cover the upper portion of the outer rotor magnet 18.
[0071] 隔壁 13の半径方向内側において、外側ロータ 16の内周面に対向するようにして、 ステータ 29が配置されている。ステータ 29は、ステータホルダ 20により、本体 10のフ ランジ 10aに取り付けられており、図 3に示すように、円筒状に U相、 V相、 W相の順 序で各相 12個のコイルが並べられ、従って合計 36個のコイルを含んでいる。このコ ィルは、モールド材で成型して一体化している。このようにステータ 29を隔壁 13の内 側に配置して 、るので、コイル発熱などに対して水冷や空冷などの強制冷却を行うこ とがでさる。 [0071] A stator 29 is arranged on the inner side in the radial direction of the partition wall 13 so as to face the inner peripheral surface of the outer rotor 16. The stator 29 is attached to the flange 10a of the main body 10 by the stator holder 20, and as shown in FIG. 3, 12 coils of each phase are arranged in a cylindrical shape in the order of U phase, V phase, and W phase. Lined up, so it contains a total of 36 coils. This coil is molded by a molding material and integrated. Since the stator 29 is thus arranged on the inner side of the partition wall 13, forced cooling such as water cooling or air cooling can be performed against coil heat generation or the like.
[0072] ステータ 29の半径方向内側に、内側ロータ(副ロータともいう) 21が配置されている 。内側ロータ 21は、本体 10の外周面にボルト固定されたレゾルバホルダ 22に対して 、玉軸受 23により回転自在に支持されている。内側ロータ 21の外周面には、ノ ックョ ーク 25を介して内側ロータ磁石 24が取り付けられている。内側ロータ磁石 24は、外 側ロータ磁石 18と同様に 24極の構成で N極、 S極の磁石が各 12個交互に磁性金属 からなり、バックヨーク 25に組みつけられている。従って、内側ロータ 21は、ステータ 29によって外側ロータ 16に同期して回転駆動されるようになっている。  [0072] An inner rotor (also referred to as a sub-rotor) 21 is disposed on the radially inner side of the stator 29. The inner rotor 21 is rotatably supported by a ball bearing 23 with respect to a resolver holder 22 that is bolted to the outer peripheral surface of the main body 10. An inner rotor magnet 24 is attached to the outer peripheral surface of the inner rotor 21 via a knock 25. Like the outer rotor magnet 18, the inner rotor magnet 24 is composed of 24 poles, each consisting of 12 N poles and 12 S poles made of magnetic metal, and is assembled to the back yoke 25. Accordingly, the inner rotor 21 is rotationally driven by the stator 29 in synchronization with the outer rotor 16.
[0073] 内側ロータ 21の内周には、回転角度を計測する検出器用の検出ロータ 26を組み つけており、それに対向する形で、レゾルバホルダ 22の外周に、レゾルバ 27, 28を 取り付けている力 本実施の形態では、高分解能のインクリメンタルレゾルバ 27と、 1 回転のいずれの位置にロータがあるかを検出できるアブソリュートレゾルバ 28とを 2層 に配置している。このため電源投入時にも、検出ロータ 26の回転角度がわかり、原点 復帰が不要であり、また、コイルに対する磁石の電気的位相角度がわ力るため、モー タ D1の駆動電流制御に使用する回転角度検出が、極検出センサを用いることなく可 能となっている。 [0073] A detection rotor 26 for a detector for measuring a rotation angle is assembled on the inner periphery of the inner rotor 21, and resolvers 27 and 28 are attached to the outer periphery of the resolver holder 22 so as to face the rotor. Force In this embodiment, the high-resolution incremental resolver 27 and the absolute resolver 28 capable of detecting the position of the rotor in one rotation are arranged in two layers. Therefore, even when the power is turned on, the rotation angle of the detection rotor 26 can be determined and Since no return is required and the electrical phase angle of the magnet with respect to the coil is ineffective, rotation angle detection used for motor D1 drive current control is possible without using a pole detection sensor. .
[0074] 本実施の形態に用いている高分解能の可変リラクタンス形レゾルバにおいて、検出 ロータ 26は、一定のピッチを有する複数のスロット歯列を有し、レゾルバ 27, 28のス テータの磁極の外周面には、回転軸と平行に各磁極で検出ロータ 26に対して位相 をずらした歯が設けられており、コイルが各磁極に卷回されている。内側ロータ 21と 一体で検出ロータ 26が回転すると、レゾルバ 27, 28のステータの磁極との間のリラク タンスが変化し、検出ロータ 26の 1回転でリラクタンス変化の基本波成分が n周期とな るようにして、そのリラクタンス変化を検出して、図 6に例を示すレゾルバ制御回路によ りデジタルィ匕し、位置信号として利用することで検出ロータ 26即ち内側ロータ 21の回 転角度 (又は回転速度)を検出するようになっている。検出ロータ 26と、レゾルバ 27, 28とで検出器を構成する。  [0074] In the high-resolution variable reluctance resolver used in the present embodiment, the detection rotor 26 has a plurality of slot tooth rows having a constant pitch, and the outer circumference of the magnetic poles of the stators of the resolvers 27 and 28 The surface is provided with teeth that are shifted in phase with respect to the detection rotor 26 at each magnetic pole in parallel with the rotation axis, and a coil is wound around each magnetic pole. When the detection rotor 26 rotates together with the inner rotor 21, the reluctance between the resolver 27 and 28 and the magnetic pole of the stator changes, and the fundamental component of the reluctance change becomes n periods in one rotation of the detection rotor 26. In this way, the change in reluctance is detected, digitized by the resolver control circuit shown in FIG. 6 and used as a position signal, so that the rotation angle (or rotation) of the detection rotor 26, that is, the inner rotor 21 is detected. Speed). The detection rotor 26 and the resolvers 27 and 28 constitute a detector.
[0075] 本実施の形態においては、内側ロータ 21は、ステータ 29によって外側ロータ 16に 同期して回転駆動されるようになっているので、内側ロータ 21の回転角度を検出でき れば、それから直ちに外側ロータ 16の回転角度を求めることができ、それにより外側 ロータ 16の駆動制御を高精度に行うことができる。  In the present embodiment, the inner rotor 21 is driven to rotate in synchronization with the outer rotor 16 by the stator 29. Therefore, if the rotation angle of the inner rotor 21 can be detected, the inner rotor 21 is immediately started. The rotation angle of the outer rotor 16 can be obtained, whereby the drive control of the outer rotor 16 can be performed with high accuracy.
図 7は、モータ D1の駆動回路を示すブロック図である。外部のコンピュータからモ ータ回転指令が入力されたとき、モータ制御回路 DMCは、その CPUから 3相アンプ (AMP)に駆動信号を出力し、 3相アンプ (AMP)力 モータ D1に駆動電流が供給 される。それによりモータ D1の外側ロータ 16が回転し、アーム A1を移動させるように なっている。外側ロータ 16が回転すると、上述のようにして回転角度を検出したレゾ ルバ 27, 28からレゾルバ信号が出力されるので、それをレゾルバデジタル変^ ^ (R DC)でデジタル変換した後に入力した CPUは、外側ロータ 16が指令位置に到達し たカゝ否かを判断し、指令位置に到達すれば、 3相アンプ (AMP)への駆動信号を停 止することで外側ロータ 16の回転を停止させる。これにより外側ロータ 16のサーボ制 御が可能となる。  FIG. 7 is a block diagram showing a drive circuit of the motor D1. When a motor rotation command is input from an external computer, the motor control circuit DMC outputs a drive signal from the CPU to the three-phase amplifier (AMP), and the drive current is supplied to the three-phase amplifier (AMP) force motor D1. Supplied. As a result, the outer rotor 16 of the motor D1 rotates to move the arm A1. When the outer rotor 16 rotates, resolver signals are output from the resolvers 27 and 28 that have detected the rotation angle as described above. The CPU that is input after digital conversion of the signal by the resolver digital transformation ^ ^ (R DC) Determines whether the outer rotor 16 has reached the command position, and if it reaches the command position, stops the rotation of the outer rotor 16 by stopping the drive signal to the three-phase amplifier (AMP). Let As a result, servo control of the outer rotor 16 becomes possible.
[0076] 本実施の形態においては、アブソリュートレゾルバ 28を使用しているので、検出口 ータ 26の電気角とトルク指令に応じて 3相のステータコイルに流す電流を制御できる 。モータ D1の 3相コイル(U相、 V相、 W相)に電流を流すとコアレスモータの構造で あるので、フレミングの左手の法則に従って、外側ロータ 16、内側ロータ 21に、各々 それぞれ、ほぼ同じトルクを発生させられる。本来、内側ロータ 21と外側ロータ 16が 同期しなければ、各々回転自在の軸受で支持されているため [0076] In the present embodiment, since the absolute resolver 28 is used, the detection port The current flowing through the three-phase stator coil can be controlled according to the electrical angle of the motor 26 and the torque command. When a current is passed through the three-phase coils (U phase, V phase, W phase) of motor D1, the structure of the coreless motor is used. Torque can be generated. Originally, if the inner rotor 21 and the outer rotor 16 do not synchronize, each is supported by a rotatable bearing.
T :外側ロータ 16への発生トルク  T: Torque generated on the outer rotor 16
o  o
I :外側ロータ 16側の負荷も含めたイナーシャ  I: Inertia including load on outer rotor 16 side
o  o
a :外側ロータ 16の加速度  a: Acceleration of outer rotor 16
o  o
T:内側ロータ 21への発生トルク  T: Torque generated to the inner rotor 21
I:内側ロータ 21のイナーシャ  I: Inner rotor 21 inertia
a:内側ロータ 21の加速度  a: Acceleration of inner rotor 21
とすると、外側ロータ 16にアーム A1を取り付けているため、 Io :外側ロータ 16側の負 荷も含めたイナ一シャは大きくなつていることから、  Since the arm A1 is attached to the outer rotor 16, Io: Since the inertia including the load on the outer rotor 16 side is large,
T =1 X α  T = 1 X α
ο ο ο  ο ο ο
Τ =Ι X α  Τ = Ι X α
のように別々の加速度で回転しょうとする。  Try to rotate at different accelerations.
[0077] し力しながら、外側ロータ 16と内側ロータ 21とは同期して回転するので、回転角度 の変位により所定のトルクを発生する。そのため、積載負荷のない内側ロータ 21が外 側ロータ 16に対して、トルクの発生方向に微小角度位相が進むことにより内側ロータ 21から外側ロータ 16にトルクが伝達され、結果内側ロータ 21と外側ロータ 16との加 速度が同一となるようにトルクが伝達されることになり、コイルが発生するトルクはイナ 一シャに応じたトルクが発生される。  [0077] The outer rotor 16 and the inner rotor 21 rotate in synchronization with each other, so that a predetermined torque is generated by the displacement of the rotation angle. Therefore, torque is transmitted from the inner rotor 21 to the outer rotor 16 when the inner rotor 21 without a loading load advances a minute angle phase in the torque generation direction with respect to the outer rotor 16, and as a result, the inner rotor 21 and the outer rotor Torque is transmitted so that the acceleration with 16 is the same, and the torque generated by the coil is generated according to the inertia.
[0078] 以上述べた本実施の形態では、モータ D1が、モーメント力を多点接触軸受 14で 支持しているので、剛性が高ぐアーム A1を伸ばした状態でもウェハ Wを水平にまつ すぐ搬送できる。また軸受 14の内輪は隔壁 13の肉厚の部材に組みつけているので 、作用する力は隔壁 13に殆ど作用せず、本体 10に直接力かるため、隔壁 13が破れ てしまう危険性を極めて小さくすることができる。  [0078] In the present embodiment described above, since the motor D1 supports the moment force with the multipoint contact bearing 14, the wafer W is immediately transferred to the horizontal state even when the arm A1 having high rigidity is extended. it can. Also, since the inner ring of the bearing 14 is assembled to the thick member of the partition wall 13, the acting force hardly acts on the partition wall 13 and is directly applied to the main body 10, so that there is an extremely high risk that the partition wall 13 will be broken. Can be small.
又、真空環境での複数軸のアーム駆動の際には、電源投入時に現在のアーム A1 の回転位置を認識しないと真空槽の壁や、真空槽のシャツタにアーム A1等をぶつけ てしまう可能性があるが、本実施の形態では、回転軸の 1回転の絶対位置を検出す るアブソリュートレゾルバ 28と、より分解能の細かい回転位置を検出するインクリメンタ ルレゾルバ 27からなる可変リラクタンス型レゾルバを採用して!/、るので、外側ロータ 1 6即ちアーム A 1の回転位置制御を高精度に行える。 Also, when driving multiple axes in a vacuum environment, the current arm A1 If the rotation position is not recognized, there is a possibility that the arm A1 etc. will hit the wall of the vacuum chamber or the shirt of the vacuum chamber. In this embodiment, however, the absolute position that detects the absolute position of one rotation of the rotating shaft is detected. A variable reluctance resolver consisting of a resolver 28 and an incremental resolver 27 that detects a rotational position with finer resolution is adopted! .
[0079] 尚、ここでは内側ロータ 21の回転検出にレゾルバを採用した力 検出器を隔壁 13 の内部の大気側に配置できるため、一般に高精度位置決めに使用するサーボモー タにおいては高精度で滑らかに駆動するための位置検出手段として採用されている 光学式ェンコーダや、磁気抵抗素子を使用した磁気式ェンコ一ダ等も使用できる。 以上、本実施例においては、ァウタロータ方式のモータを例として説明した力 イン ナロータ方式でも同様の効果が得られる。その場合、外側ロータ磁石 18とスぺーサ 1 9dの接線交点は、上述した如くスぺーサ 19dとのスキマ ΔΖ2以上は浮くことができ ない角度にすべきである。また、ボルト 19eの脱落防止と外側ロータ磁石 18の飛散防 止のために、ロータヨークに非磁性の薄管を被せると良 、。  [0079] It should be noted that here, a force detector that employs a resolver for detecting the rotation of the inner rotor 21 can be arranged on the atmosphere side inside the partition wall 13, so that a servo motor generally used for high-precision positioning is highly accurate and smooth. An optical encoder adopted as a position detecting means for driving, a magnetic encoder using a magnetoresistive element, or the like can also be used. As described above, in the present embodiment, the same effect can be obtained even with the force inner rotor system described as an example of the motor of the rotor type. In that case, the tangent intersection of the outer rotor magnet 18 and the spacer 19d should be an angle at which the clearance ΔΖ2 or more with the spacer 19d cannot be lifted as described above. In addition, in order to prevent the bolt 19e from falling off and the outer rotor magnet 18 from being scattered, it is good to cover the rotor yoke with a non-magnetic thin tube.
[0080] 外側ロータ磁石 18は、ネオジゥム (Nd— Fe— B)系磁石を用い、耐食性を高めるた めのコーティングとして、ニッケルコーティングを施した例を用いて説明した力 この材 質、表面処理に限定されるものではなぐ使用される環境などによって適宜変更され るものであり、例えばベータアウト時の温度条件によっては高温減磁しにくいサマリゥ ム ·コノ レト(Sm— Co)系の磁石を用 、るべきであり、超真空中で使用されるのであ ればアウトガス遮断性の高い窒化チタンコーティングを施すべきである。  [0080] The outer rotor magnet 18 uses a neodymium (Nd-Fe-B) magnet, and the force described using the example of nickel coating as a coating for enhancing corrosion resistance. It is appropriately changed depending on the environment in which it is not limited, and for example, a Samar-Co magnet (Sm-Co) magnet that is difficult to demagnetize at high temperatures depending on the temperature conditions during beta-out. Should be used in ultra-vacuum, a titanium nitride coating with a high outgas barrier should be applied.
[0081] また、ロータヨーク 19bは、低炭素鋼を材料とし、ニッケルめっきを施した例を用いて 説明したが、この材質、表面処理に限定されるものではなぐ使用される環境などに よって適宜変更されるものであり、特に表面処理に関しては、超真空中で使用される のであればピンホールの少な 、力-ゼンめっきやクリーンエスめつき、窒化チタンコ 一ティング等を施すべきである。 [0081] Further, the rotor yoke 19b has been described using an example in which low-carbon steel is used as a material and nickel plating is performed. However, the material is not limited to the surface treatment and the material is not limited to the surface treatment. Especially for surface treatment, if it is used in an ultra-vacuum, it should be subjected to force-zen plating, clean soldering, titanium nitride coating, etc. with few pinholes.
また、軸受装置は真空用グリース潤滑の 4点接触玉軸受を用いた例を説明したが、 この形式、材質、潤滑方法に限定されるものではなぐ使用される環境、荷重条件、 回転速度などによって適宜変更されるものであり、クロスローラ軸受であっても良いし 、深溝玉軸受ゃアンギユラ軸受として予圧をかける構造としても良いし、超真空中で 使用される場合は、軌道輪に金や銀などの軟質金属をプレーティングしたような、ガ ス放出のない金属潤滑としたものを用いても長い。また、スぺーサ 19dやボルト 19e の材質は、製造コストや使用される環境などによって適宜変更されるものである。 In addition, the example of using a grease grease four-point contact ball bearing as the bearing device has been explained. However, the bearing device is not limited to this type, material, and lubrication method. It can be changed as appropriate and may be a cross roller bearing. Deep groove ball bearings may be structured to apply preload as an anguilla bearing, and when used in ultra-vacuum, a metal that does not emit gas, such as gold or silver plated soft metal on the race ring. Even if a lubricated one is used. Further, the material of the spacer 19d and the bolt 19e is appropriately changed depending on the manufacturing cost and the environment in which it is used.
[0082] 以上、本発明を実施の形態を参照して説明してきたが、本発明は上記実施の形態 に限定して解釈されるべきではなぐ適宜変更 ·改良が可能であることはもちろんであ る。例えば、本実施の形態のモータは、真空雰囲気に限らず、大気外の雰囲気で使 用することができる。例えば、半導体製造工程の場合、真空排気後に真空槽内部に エッチング用の反応性ガスが導入されることがある力 本実施の形態のモータでは、 隔壁により内部と外部とが遮蔽されているため、モータコイルや絶縁材等がエツチン グされてしまうおそれもな!/ヽ。 The present invention has been described above with reference to the embodiment. However, the present invention should not be construed as being limited to the above embodiment, and can be appropriately changed or improved. The For example, the motor of this embodiment can be used not only in a vacuum atmosphere but also in an atmosphere outside the atmosphere. For example, in the case of a semiconductor manufacturing process, a reactive gas for etching may be introduced into the vacuum chamber after evacuation. In the motor of this embodiment, the inside and the outside are shielded by the partition wall. There is no risk of the motor coil or insulation material being etched! / ヽ.
更に、本発明は、上述した実施の形態におけるダイレクトドライブタイプのモータ D1, D2以外の通常のモータにも適用可能である。  Furthermore, the present invention is also applicable to ordinary motors other than the direct drive type motors D1 and D2 in the above-described embodiment.
〔第 2の実施の形態〕  [Second Embodiment]
次に、本発明の実施の形態を図面を参照して説明する。図 8は、本実施の形態に 力かるダイレクトドライブモータを用いたフロッグレッダアーム式搬送装置の斜視図で ある。図 8において、 2つのダイレクトドライブモータ Dl、 D2を直列に連結している。 下方のダイレクトドライブモータ D1のロータには、第 1アーム A1が連結され、第 1ァー ム A1の先端には第 1リンク L1が枢動可能に連結されている。一方、上方のダイレクト ドライブモータ D2のロータには、第 2アーム A2が連結され、第 2アーム A2の先端に は第 2リンク L2が枢動可能に連結されている。リンク LI, L2は、ウェハ Wを載置する テーブル Tに、それぞれ枢動可能に連結されている。  Next, embodiments of the present invention will be described with reference to the drawings. FIG. 8 is a perspective view of a frog redder arm type transport device using a direct drive motor that works in this embodiment. In FIG. 8, two direct drive motors Dl and D2 are connected in series. The first arm A1 is connected to the rotor of the lower direct drive motor D1, and the first link L1 is pivotally connected to the tip of the first arm A1. On the other hand, the second arm A2 is connected to the rotor of the upper direct drive motor D2, and the second link L2 is pivotally connected to the tip of the second arm A2. The links LI and L2 are pivotally connected to a table T on which the wafer W is placed.
[0083] 図 8より明らかである力 ダイレクトドライブモータ Dl、 D2のロータがそれぞれ同方 向に回転すれば、テーブル Tも同方向に回転し、力かるロータが逆方向に回転すれ ば、テーブル Tは、ダイレクトドライブモータ Dl、 D2に接近もしくは離隔するようにな つている。従って、ダイレクトドライブモータ Dl、 D2を任意の角度で回転させれば、テ 一ブル Tが届く範囲内で、任意の 2次元位置にウェハ Wを搬送させることができる。 このように例えば半導体製造装置における真空槽内に配置されるウェハ搬送ァー ム、例えばスカラ型や図に示すフロッグレッダ型のように複数のアームを備えた装置 では、特に複数の回転モータが必要となる。真空環境では外界との接触表面積を極 力小さくすると同時に、スペースを有効に活用するためにモータ等の取付穴はなるベ く少なくする必要がある。また、ウェハ Wを水平にまっすぐに、振動を極力少なくして 搬送するためには、アームの先端に作用するモーメントをロータ支持部で強固に保 持する必要がある。そこで、ダイレクトドライブモータ Dl、 D2を複数、ハウジング部分 で同軸に連結し、連結部分はシールで密に接合 (溶接、 Oリング、金属ガスケット、等 による密な接合)して、モータロータの配設された空間とハウジング外部空間とを離隔 することち必要となる。 [0083] The force apparent from Fig. 8 If the rotors of the direct drive motors Dl and D2 rotate in the same direction, the table T also rotates in the same direction. If the powerful rotor rotates in the opposite direction, the table T The direct drive motors Dl and D2 are approaching or separating from each other. Therefore, if the direct drive motors Dl and D2 are rotated at an arbitrary angle, the wafer W can be transferred to an arbitrary two-dimensional position within a range where the table T can reach. Thus, for example, a wafer transporter disposed in a vacuum chamber in a semiconductor manufacturing apparatus. For example, a device having a plurality of arms such as a scalar type or a frog redder type shown in the figure requires a plurality of rotary motors. In a vacuum environment, the surface area of contact with the outside world should be minimized, and at the same time, the number of mounting holes for motors, etc., should be minimized to make effective use of space. Also, in order to transport the wafer W horizontally and with minimal vibration, it is necessary to hold the moment acting on the tip of the arm firmly at the rotor support. Therefore, a plurality of direct drive motors Dl and D2 are connected coaxially at the housing part, and the connection part is tightly joined with a seal (tightly joined by welding, O-ring, metal gasket, etc.), and the motor rotor is arranged. It is necessary to separate the open space from the housing external space.
[0084] また、ウェハ Wを水平にまっすぐ、振動を少なく搬送するためにはアーム Al、 A2の 先端に作用するモーメントを、ロータ支持部で強固に保持する必要がある。更に、又 、真空環境での複数軸のアーム駆動の際には、電源投入時に現在のアームの回転 位置を認識しないと真空槽の壁や、真空槽のシャツタにアーム Al, A2等をぶつけて しまう可能性がある。このような要求に応じることができるダイレクトドライブモータにつ いて説明する。  [0084] In addition, in order to convey the wafer W horizontally and with little vibration, it is necessary to firmly hold the moment acting on the tips of the arms Al and A2 by the rotor support portion. In addition, when driving multiple axes in a vacuum environment, if the current rotation position of the arm is not recognized when the power is turned on, the arm Al, A2, etc. will be hit against the wall of the vacuum chamber or the shatter of the vacuum chamber. There is a possibility. A direct drive motor that can meet these requirements will be described.
[0085] 図 9は、図 8の構成を Π-Π線で切断して矢印方向に見た図である。図 10は、図 9の 構成を ΠΙ-ΠΙ線で切断して矢印方向に見た図である。図 9、図 10を参照して、ダイレク トドライブモータの内部構造について詳細に説明する。尚、ダイレクトドライブモータ D 1, D2は基本的な構成が同一であるため、ダイレクトドライブモータ D1のみ説明し、 ダイレクトドライブモータ D2の構成については同じ符号を付すことで説明を省略する  FIG. 9 is a view of the configuration of FIG. 8 cut along the で -Π line and viewed in the direction of the arrow. FIG. 10 is a view of the configuration of FIG. 9 cut along the ΠΙ-ΠΙ line and viewed in the direction of the arrow. The internal structure of the direct drive motor will be described in detail with reference to FIGS. Since the direct drive motors D 1 and D 2 have the same basic configuration, only the direct drive motor D 1 will be described, and the description of the configuration of the direct drive motor D 2 will be omitted by attaching the same reference numerals.
[0086] 定盤 Gにフランジ 10aを据え付けた中空円筒状の本体 10は、その上端に小円板 1 1をボルトにより連結している。小円板 11の上面には、大円板 12が不図示のボルトに より固定されている。本体 10の中央は、ステータへの配線などを通すために用いるこ とができる。本体 10,小円板 11,大円板 12によりハウジングを構成する。大円板 12 の上面には、本体 10の開口を覆う蓋部材 50が密封的にボルト止めされている。 本体 10のフランジ 10a上に、非磁性体であるステンレス製(SUS304等)の円筒状 の隔壁 13が本体 10に対して同軸に取り付けられて 、る。隔壁 13の上部は薄くなつ ており、更に上端は半径方向内方に折れ曲がつていて、円板 12により小円板 11に 挟持される形で取り付けられている。尚、ダイレクトドライブモータ D1の各部材間には 、図示のように O—リング ORが配置され、従って本体 10のフランジ 10aと、隔壁 13と 、小円板 11とで囲われる内部空間は、その外部力も気密されている。尚、隔壁 13は 必ずしも非磁性体である必要はない。又、 O—リング ORを用いて気密する代わりに、 電子ビーム溶接やレーザビーム溶接などで部材間を気密してもも良い。 [0086] The hollow cylindrical main body 10 in which the flange 10a is installed on the surface plate G has a small circular plate 11 connected to the upper end thereof by a bolt. On the upper surface of the small disk 11, a large disk 12 is fixed by a bolt (not shown). The center of the main body 10 can be used to pass wiring to the stator. The main body 10, small disk 11, and large disk 12 constitute the housing. A lid member 50 covering the opening of the main body 10 is hermetically bolted to the upper surface of the large disk 12. A cylindrical partition wall 13 made of stainless steel (SUS304 or the like), which is a non-magnetic material, is coaxially attached to the main body 10 on the flange 10a of the main body 10. The top of bulkhead 13 is thin Furthermore, the upper end is bent inward in the radial direction, and is attached in such a way that it is sandwiched by the small disk 11 by the disk 12. Incidentally, an O-ring OR is arranged between the members of the direct drive motor D1 as shown in the figure, and therefore the internal space surrounded by the flange 10a, the partition wall 13 and the small disk 11 of the main body 10 is External force is also airtight. The partition wall 13 is not necessarily made of a nonmagnetic material. Further, instead of using an O-ring OR, the members may be hermetically sealed by electron beam welding or laser beam welding.
[0087] 隔壁 13の下部外周に、真空中で用いられる 4点接触式玉軸受 14の内輪が嵌合し 、隔壁 13にボルトで固定される内輪ホルダ 15により、隔壁 13に対して取り付けられて いる。一方、軸受 14の外輪は、外側ロータ 16の内周に嵌合し、外側ロータ 16にボル トで固定される外側ホルダ 17により、外側ロータ 16に対して取り付けられている。す なわち、外側ロータ 16は、隔壁 13に対して回転自在に支持されている。軸受 14は、 内輪と外輪に金や銀などの軟質金属をプレーティングして、真空中でもアウトガス放 出のない金属潤滑としたものを用いており、また 4点接触式玉軸受であるので、ァー ム A1からの外側ロータ 16がチルトする方向のモーメントを受けることができる力 4点 接触式に限らず、クロスローラ、クロスボール、クロステーパ軸受も用いることができ、 予圧状態で用いても良いし、潤滑性向上のためフッ素系被膜処理 (DFO)を行って も良い。 [0087] The inner ring of a four-point contact ball bearing 14 used in vacuum is fitted to the lower outer periphery of the partition wall 13, and is attached to the partition wall 13 by an inner ring holder 15 fixed to the partition wall 13 with bolts. Yes. On the other hand, the outer ring of the bearing 14 is attached to the outer rotor 16 by an outer holder 17 that fits to the inner periphery of the outer rotor 16 and is bolted to the outer rotor 16. That is, the outer rotor 16 is rotatably supported with respect to the partition wall 13. The bearing 14 is a four-point contact ball bearing that uses a metal lubrication that is plated with a soft metal such as gold or silver on the inner ring and the outer ring to prevent outgassing even in a vacuum. Force that can receive moment in the tilting direction of the outer rotor 16 from the arm A1 Not limited to the four-point contact type, cross rollers, cross balls, cross taper bearings can also be used, and they may be used in a preload state Fluorine-based coating (DFO) may be performed to improve lubricity.
[0088] 外側ロータ 16の内周面には、外側ロータ磁石 18が取り付けられている。外側ロータ 磁石 18は、 24極の構成で N極、 S極の磁石が各 12個交互に磁性金属力 なり、バッ クヨーク 19に組みつけられている。バックヨーク 19は、磁性ステンレスでも、鉄に-ッ ケルメツキした物でも良い。本実施の形態においては、外側ロータ磁石 18は、ネオジ ゥム鉄ボロンの磁石にニッケルメツキした物を用いている。また、この外側ロータ磁石 18は外側ロータ 16に対して、非磁性金属のクサビをねじで締め付けている。そのた め接着剤などの榭脂は配置されておらず、ダイレクトドライブモータ D1を真空中に配 置した場合でも、吸蔵不純分子の放出ガスを極めて少なくできる。尚、外側ロータ磁 石 18の上部を覆うようにして磁気シールド板 30が外側ロータ 16に取り付けられてい る。  An outer rotor magnet 18 is attached to the inner peripheral surface of the outer rotor 16. The outer rotor magnet 18 is composed of 24 poles and 12 magnets of N poles and S poles alternately with magnetic metal force and assembled to the back yoke 19. The back yoke 19 may be made of magnetic stainless steel or iron-plated. In the present embodiment, the outer rotor magnet 18 is a nickel-plated magnet made of neodymium iron boron. Further, the outer rotor magnet 18 is fastened to the outer rotor 16 with a nonmagnetic metal wedge. Therefore, no resin such as adhesive is disposed, and even when the direct drive motor D1 is disposed in a vacuum, the released gas of the occluded impure molecules can be extremely reduced. A magnetic shield plate 30 is attached to the outer rotor 16 so as to cover the upper part of the outer rotor magnet 18.
[0089] 隔壁 13の半径方向内側において、外側ロータ 16の内周面に対向するようにして、 ステータ 29が配置されている。ステータ 29は、ステータホルダ 20により、本体 10のフ ランジ 10aに取り付けられており、図 10に示すように、円筒状に U相、 V相、 W相の順 序で各相 12個のコイルが並べられ、従って合計 36個のコイルを含んでいる。このコ ィルは、モールド材で成型して一体化している。このようにステータ 29を隔壁 13の内 側に配置して 、るので、コイル発熱などに対して水冷や空冷などの強制冷却を行うこ とがでさる。 [0089] On the radially inner side of the partition wall 13, facing the inner peripheral surface of the outer rotor 16, A stator 29 is arranged. The stator 29 is attached to the flange 10a of the main body 10 by the stator holder 20, and as shown in FIG. Lined up, so it contains a total of 36 coils. This coil is molded by a molding material and integrated. Since the stator 29 is thus arranged on the inner side of the partition wall 13, forced cooling such as water cooling or air cooling can be performed against coil heat generation or the like.
[0090] ステータ 29の半径方向内側に、内側ロータ 21が配置されている。内側ロータ 21は 、本体 10の外周面にボルト固定されたレゾルバホルダ 22に対して、玉軸受 23により 回転自在に支持されている。内側ロータ 21の外周面には、ノックヨーク 25を介して 内側ロータ磁石 24が取り付けられている。内側ロータ磁石 24は、外側ロータ磁石 18 と同様に 24極の構成で N極、 S極の磁石が各 12個交互に磁性金属力もなり、バック ヨーク 25に組みつけられている。従って、内側ロータ 21は、ステータ 29によって外側 ロータ 16に同期して回転駆動されるようになっている。  An inner rotor 21 is arranged on the inner side in the radial direction of the stator 29. The inner rotor 21 is rotatably supported by ball bearings 23 with respect to a resolver holder 22 that is bolted to the outer peripheral surface of the main body 10. An inner rotor magnet 24 is attached to the outer peripheral surface of the inner rotor 21 via a knock yoke 25. The inner rotor magnet 24 has a 24-pole configuration similar to the outer rotor magnet 18, and 12 N-pole and 12-pole magnets alternately have magnetic metal force and are assembled to the back yoke 25. Accordingly, the inner rotor 21 is rotationally driven by the stator 29 in synchronization with the outer rotor 16.
[0091] 内側ロータ 21の内周には、回転角度を計測する検出器用の検出ロータ 26を組み つけており、それに対向する形で、レゾルバホルダ 22の外周に、レゾルバ 27, 28を 取り付けている力 本実施の形態では、高分解能のインクリメンタルレゾルバ 27と、 1 回転のいずれの位置にロータがあるかを検出できるアブソリュートレゾルバ 28とを 2層 に配置している。このため電源投入時にも、検出ロータ 26の回転角度がわかり、原点 復帰が不要であり、また、コイルに対する磁石の電気的位相角度がわ力るため、ダイ レクトドライブモータ D 1の駆動電流制御に使用する回転角度検出力 極検出センサ を用いることなく可會 となつて 、る。  [0091] A detection rotor 26 for a detector that measures a rotation angle is assembled on the inner periphery of the inner rotor 21, and resolvers 27 and 28 are attached to the outer periphery of the resolver holder 22 so as to face the rotor. Force In this embodiment, a high-resolution incremental resolver 27 and an absolute resolver 28 capable of detecting the position of the rotor at one rotation are arranged in two layers. For this reason, even when the power is turned on, the rotation angle of the detection rotor 26 can be known, it is not necessary to return to the origin, and the electrical phase angle of the magnet with respect to the coil is ineffective. Rotation angle detection force to be used It is possible to use without using a pole detection sensor.
[0092] 本実施の形態に用いている高分解能の可変リラクタンス形レゾルバにおいて、検出 ロータ 26は、一定のピッチを有する複数のスロット歯列を有し、レゾルバ 27, 28のス テータの磁極の外周面には、回転軸と平行に各磁極で検出ロータ 26に対して位相 をずらした歯が設けられており、コイルが各磁極に卷回されている。内側ロータ 21と 一体で検出ロータ 26が回転すると、レゾルバ 27, 28のステータの磁極との間のリラク タンスが変化し、検出ロータ 26の 1回転でリラクタンス変化の基本波成分が n周期とな るようにして、そのリラクタンス変化を検出して、図 11に例を示すレゾルバ制御回路に よりデジタルィ匕し、位置信号として利用することで検出ロータ 26即ち内側ロータ 21の 回転角度 (又は回転速度)を検出するようになっている。検出ロータ 26と、レゾルバ 2 7, 28とで検出器を構成する。 In the high-resolution variable reluctance resolver used in the present embodiment, the detection rotor 26 has a plurality of slot tooth rows having a constant pitch, and the outer circumference of the magnetic poles of the stators of the resolvers 27 and 28 The surface is provided with teeth that are shifted in phase with respect to the detection rotor 26 at each magnetic pole in parallel with the rotation axis, and a coil is wound around each magnetic pole. When the detection rotor 26 rotates together with the inner rotor 21, the reluctance between the resolver 27 and 28 and the magnetic poles of the stator changes, and the fundamental wave component of the reluctance change becomes n periods in one rotation of the detection rotor 26 Thus, the reluctance change is detected and the resolver control circuit shown in FIG. The rotation angle (or rotation speed) of the detection rotor 26, that is, the inner rotor 21, is detected by digitalizing and using it as a position signal. The detection rotor 26 and the resolvers 27 and 28 constitute a detector.
[0093] 本実施の形態においては、内側ロータ 21は、ステータ 29によって外側ロータ 16に 同期して回転駆動されるようになっているので、内側ロータ 21の回転角度を検出でき れば、それから直ちに外側ロータ 16の回転角度を求めることができ、それにより外側 ロータ 16の駆動制御を高精度に行うことができる。  In the present embodiment, the inner rotor 21 is rotationally driven by the stator 29 in synchronism with the outer rotor 16. Therefore, if the rotation angle of the inner rotor 21 can be detected, the inner rotor 21 is immediately started. The rotation angle of the outer rotor 16 can be obtained, whereby the drive control of the outer rotor 16 can be performed with high accuracy.
図 12は、ダイレクトドライブモータ D1の駆動回路を示すブロック図である。外部のコ ンピュータカもモータ回転指令が入力されたとき、モータ制御回路 DMCは、その CP Uから 3相アンプ (AMP)に駆動信号を出力し、 3相アンプ (AMP)力もダイレクトドラ イブモータ D1に駆動電流が供給される。それによりダイレクトドライブモータ D1の外 側ロータ 16が回転し、アーム A1を移動させるようになつている。外側ロータ 16が回転 すると、上述のようにして回転角度を検出したレゾルバ 27, 28からレゾルバ信号が出 力されるので、それをレゾルバデジタル変換器 (RDC)でデジタル変換した後に入力 した CPUは、外側ロータ 16が指令位置に到達した力否かを判断し、指令位置に到 達すれば、 3相アンプ (AMP)への駆動信号を停止することで外側ロータ 16の回転 を停止させる。これにより外側ロータ 16のサーボ制御が可能となる。  FIG. 12 is a block diagram showing a drive circuit of the direct drive motor D1. When a motor rotation command is also input to an external computer, the motor control circuit DMC outputs a drive signal from the CPU to the three-phase amplifier (AMP), and the three-phase amplifier (AMP) force is also applied to the direct drive motor D1. A drive current is supplied. As a result, the outer rotor 16 of the direct drive motor D1 rotates to move the arm A1. When the outer rotor 16 rotates, resolver signals are output from the resolvers 27 and 28 that have detected the rotation angle as described above, and the CPU that has been input after digitally converting it with the resolver digital converter (RDC) It is determined whether or not the outer rotor 16 has reached the command position. When the command position is reached, the rotation of the outer rotor 16 is stopped by stopping the drive signal to the three-phase amplifier (AMP). This enables servo control of the outer rotor 16.
[0094] 本実施の形態においては、アブソリュートレゾルバ 28を使用しているので、検出口 ータ 26の電気角とトルク指令に応じて 3相のステータコイルに流す電流を制御できる 。ダイレクトドライブモータ D1の 3相コイル(U相、 V相、 W相)に電流を流すとコアレス モータの構造であるので、フレミングの左手の法則に従って、外側ロータ 16、内側口 ータ 21に、各々それぞれ、ほぼ同じトルクを発生させられる。本来、内側ロータ 21と 外側ロータ 16が同期しなければ、各々回転自在の軸受で支持されているため  In the present embodiment, since the absolute resolver 28 is used, the current flowing through the three-phase stator coil can be controlled according to the electrical angle of the detection port 26 and the torque command. If a current is passed through the three-phase coils (U phase, V phase, W phase) of the direct drive motor D1, the structure of the coreless motor is used. Therefore, according to Fleming's left-hand rule, the outer rotor 16 and the inner motor 21 are Each can generate substantially the same torque. Originally, if the inner rotor 21 and the outer rotor 16 are not synchronized, each is supported by a rotatable bearing.
T :外側ロータ 16への発生トルク  T: Torque generated on the outer rotor 16
o  o
I :外側ロータ 16側の負荷も含めたイナーシャ  I: Inertia including load on outer rotor 16 side
o  o
a :外側ロータ 16の加速度  a: Acceleration of outer rotor 16
o  o
T:内側ロータ 21への発生トルク  T: Torque generated to the inner rotor 21
I:内側ロータ 21のイナーシャ a:内側ロータ 21の加速度 I: Inner rotor 21 inertia a: Acceleration of inner rotor 21
とすると、外側ロータ 16にアーム A1を取り付けているため、 Io :外側ロータ 16側の負 荷も含めたイナ一シャは大きくなつていることから、  Since the arm A1 is attached to the outer rotor 16, Io: Since the inertia including the load on the outer rotor 16 side is large,
T =1 X α  T = 1 X α
ο ο ο  ο ο ο
Τ =Ι X α  Τ = Ι X α
のように別々の加速度で回転しょうとする。  Try to rotate at different accelerations.
[0095] し力しながら、外側ロータ 16と内側ロータ 21とは同期して回転するので、回転角度 の変位により所定のトルクを発生する。そのため、積載負荷のない内側ロータ 21が外 側ロータ 16に対して、トルクの発生方向に微小角度位相が進むことにより内側ロータ 21から外側ロータ 16にトルクが伝達され、結果内側ロータ 21と外側ロータ 16との加 速度が同一となるようにトルクが伝達されることになり、コイルが発生するトルクはイナ 一シャに応じたトルクが発生される。  [0095] The outer rotor 16 and the inner rotor 21 rotate in synchronization with each other, so that a predetermined torque is generated by the displacement of the rotation angle. Therefore, torque is transmitted from the inner rotor 21 to the outer rotor 16 when the inner rotor 21 without a loading load advances a minute angle phase in the torque generation direction with respect to the outer rotor 16, and as a result, the inner rotor 21 and the outer rotor Torque is transmitted so that the acceleration with 16 is the same, and the torque generated by the coil is generated according to the inertia.
[0096] 以上述べた本実施の形態では、ダイレクトドライブモータ D1が、モーメント力を多点 接触軸受 14で支持しているので、剛性が高ぐアーム A1を伸ばした状態でもウェハ Wを水平にまっすぐ搬送できる。また軸受 14の内輪は隔壁 13の肉厚の部材に組み つけているので、作用する力は隔壁 13に殆ど作用せず、本体 10に直接力かるため 、隔壁 13が破れてしまう危険性を極めて小さくすることができる。  In the present embodiment described above, since the direct drive motor D1 supports the moment force with the multipoint contact bearing 14, the wafer W is straightened horizontally even when the arm A1 having high rigidity is extended. Can be transported. Since the inner ring of the bearing 14 is assembled to the thick member of the partition wall 13, the acting force hardly acts on the partition wall 13 and is directly applied to the main body 10, so that the risk of the partition wall 13 being broken is extremely high. Can be small.
又、真空環境での複数軸のアーム駆動の際には、電源投入時に現在のアーム A1 の回転位置を認識しないと真空槽の壁や、真空槽のシャツタにアーム A1等をぶつけ てしまう可能性があるが、本実施の形態では、回転軸の 1回転の絶対位置を検出す るアブソリュートレゾルバ 28と、より分解能の細かい回転位置を検出するインクリメンタ ルレゾルバ 27からなる可変リラクタンス型レゾルバを採用して!/、るので、外側ロータ 1 6即ちアーム A 1の回転位置制御を高精度に行える。  Also, when driving multiple axes in a vacuum environment, if the current rotation position of the arm A1 is not recognized when the power is turned on, the arm A1 or the like may hit the wall of the vacuum chamber or the shatter of the vacuum chamber. However, in this embodiment, a variable reluctance resolver consisting of an absolute resolver 28 that detects the absolute position of one rotation of the rotating shaft and an incremental resolver 27 that detects a more precise rotational position is adopted. Therefore, the rotational position of the outer rotor 16, that is, the arm A 1 can be controlled with high accuracy.
[0097] 尚、ここでは内側ロータ 21の回転検出にレゾルバを採用した力 検出器を隔壁 13 の内部の大気側に配置できるため、一般に高精度位置決めに使用するサーボモー タにおいては高精度で滑らかに駆動するための位置検出手段として採用されている 光学式ェンコーダや、磁気抵抗素子を使用した磁気式ェンコ一ダ等も使用できる。 図 13は、本実施の形態の変形例を示す図である。図 13に示す変形例においては 、ダイレクトドライブモータ Dl, D2を 2組 (合計 4個)直列に配置してなる力 個々のダ ィレクトドライブモータに関しては、図 9に示す構成と同様であるので、主要な部品に 同じ符号を付して説明を省略する。 [0097] Here, since a force detector that employs a resolver for detecting the rotation of the inner rotor 21 can be arranged on the atmosphere side inside the partition wall 13, a servo motor generally used for high-precision positioning is highly accurate and smooth. An optical encoder adopted as a position detecting means for driving, a magnetic encoder using a magnetoresistive element, or the like can also be used. FIG. 13 is a diagram showing a modification of the present embodiment. In the variation shown in FIG. The direct drive motors Dl and D2 are arranged in series (2 units in total). The direct drive motor has the same configuration as shown in Fig. 9 for the individual direct drive motors. The description will be omitted.
[0098] 本実施の形態のダイレクトドライブモータは、ステータの半径方向内側に内側ロータ を配置しているので、軸線方向寸法を小さく(薄く)できるため、図 13に示すように 4個 直列として搬送装置を構成しても、高さ方向にコンパクトな構成を提供できる。また薄 い構成であるので剛性が高まり共振などの恐れを回避でき、多軸化に有利であり各 外側ロータの制御定数の差異を小さくできる。更に、同形状のダイレクトドライブモー タを積層して用いることで、故障時にはそのダイレクトドライブモータのみを交換すれ ば良ぐメンテナンス性に優れると共に、交換部品の在庫を最小限にできる。 In the direct drive motor of the present embodiment, since the inner rotor is arranged inside the stator in the radial direction, the dimension in the axial direction can be reduced (thinned), so four pieces are conveyed in series as shown in FIG. Even if the device is configured, a compact configuration in the height direction can be provided. In addition, the thin structure increases the rigidity and avoids the risk of resonance, etc., which is advantageous for multi-axis use and can reduce the difference in control constant between the outer rotors. Furthermore, by using a stack of direct drive motors of the same shape, it is possible to replace only the direct drive motor in the event of a failure, providing excellent maintainability and minimizing the inventory of replacement parts.
[0099] 図 14は、図 8に示す搬送装置に用いることができる第 2の実施の形態に力かるダイ レクトドライブモータの図 9と同様な断面図である。尚、ダイレクトドライブモータ Dl, D 2は基本的な構成が同一であるため、ダイレクトドライブモータ D1のみ説明し、ダイレ タトドライブモータ D2の構成については同じ符号を付すことで説明を省略する。 図 14において、定盤 Gにフランジ 110aを据え付けた中空円筒状の本体 110は、そ の上端に小円板 111をボルトにより連結している。小円板 111の上面外周側には、 大円板 112が不図示のボルトにより固定されている。本体 110の中央は、ステータへ の配線などを通すために用いることができる。本体 110,小円板 111,大円板 112に よりハウジングを構成する。  FIG. 14 is a cross-sectional view similar to FIG. 9, showing a direct drive motor that can be used in the transport device shown in FIG. Since the direct drive motors Dl and D2 have the same basic configuration, only the direct drive motor D1 will be described, and the configuration of the direct drive motor D2 will be denoted by the same reference numerals and the description thereof will be omitted. In FIG. 14, a hollow cylindrical main body 110 in which a flange 110a is installed on a surface plate G has a small disk 111 connected to its upper end by a bolt. A large circular plate 112 is fixed to the outer peripheral side of the upper surface of the small circular plate 111 with a bolt (not shown). The center of the main body 110 can be used to pass wiring to the stator. The main body 110, the small disk 111, and the large disk 112 constitute a housing.
[0100] 本体 110のフランジ 110a上に形成された円筒取り付け部 110bに下端を圧入嵌合 させて、非磁性体であるステンレス製(SUS316L等)の円筒状の隔壁 113が本体 11 0に対して同軸に取り付けられている。隔壁 113の上部は薄くなつており、更に上端 は半径方向内方に折れ曲がつていて、円板 112により小円板 111に共締めされる形 で取り付けられている。尚、ダイレクトドライブモータ D1の各部材間には、図示のよう に O—リング ORが配置され、従って本体 110のフランジ 110aと、隔壁 113と、小円 板 111とで囲われる内部空間は、その外部力も気密されている。尚、隔壁 113は必 ずしも非磁性体である必要はない。又、 O—リング ORを用いて気密する代わりに、電 子ビーム溶接やレーザビーム溶接などで部材間を気密してもも良い。 [0101] 隔壁 113の下部外周に、真空中で用いられる 4点接触式玉軸受 114の内輪が嵌合 し、隔壁 113にボルトで固定される内輪ホルダ 115により、隔壁 113に対して取り付け られている。一方、軸受 114の外輪は、外側ロータ 116の内周に嵌合し、外側ロータ 116にボルトで固定される外側ホルダ 117により、外側ロータ 116に対して取り付けら れている。すなわち、外側ロータ 116は、隔壁 113に対して回転自在に支持されてい る。軸受 114は、内輪と外輪に金や銀などの軟質金属をプレーティングして、真空中 でもアウトガス放出のな 、金属潤滑としたものを用いており、また 4点接触式玉軸受で あるので、アーム A1からの外側ロータ 116がチルトする方向のモーメントを受けること ができる力 4点接触式に限らず、クロスローラ、クロスボール、クロステーパ軸受も用 いることができ、予圧状態で用いても良いし、潤滑性向上のためフッ素系被膜処理( DFO)を行っても良い。 [0100] A cylindrical partition wall 113 made of stainless steel (SUS316L, etc.), which is a non-magnetic material, is inserted into the cylindrical mounting portion 110b formed on the flange 110a of the main body 110, so that the non-magnetic material is made of stainless steel. It is attached coaxially. The upper part of the partition wall 113 is thin, and the upper end is bent inward in the radial direction, and is attached to the small disk 111 together with the disk 112. Incidentally, an O-ring OR is arranged between the members of the direct drive motor D1 as shown in the figure, and therefore the internal space surrounded by the flange 110a of the main body 110, the partition wall 113, and the small disk 111 is External force is also airtight. Note that the partition wall 113 is not necessarily made of a nonmagnetic material. Further, instead of using an O-ring OR, the members may be hermetically sealed by electron beam welding or laser beam welding. [0101] The inner ring of a four-point contact ball bearing 114 used in vacuum is fitted to the lower outer periphery of the partition wall 113, and is attached to the partition wall 113 by an inner ring holder 115 fixed to the partition wall 113 with bolts. Yes. On the other hand, the outer ring of the bearing 114 is attached to the outer rotor 116 by an outer holder 117 that fits to the inner periphery of the outer rotor 116 and is fixed to the outer rotor 116 with a bolt. That is, the outer rotor 116 is supported rotatably with respect to the partition wall 113. The bearing 114 is a four-point contact ball bearing that uses soft metal such as gold and silver plated on the inner ring and outer ring to release metal even in vacuum, and is a four-point contact ball bearing. Force that can receive moment in the tilting direction of the outer rotor 116 from the arm A1 Not limited to the four-point contact type, cross rollers, cross balls, and cross taper bearings can also be used and may be used in a preload state In order to improve lubricity, fluorine film treatment (DFO) may be performed.
[0102] 外側ロータ 116の内周面中央には、磁気カップリング用外側ロータ磁石 108が取り 付けられている。磁気カップリング用外側ロータ磁石 108は、 32極の構成で N極、 S 極の磁石が各 16個交互に配置された磁性金属力もなり、ノ ックヨーク 109に組みつ けられている。外側ロータ 116に嵌合固定される磁気カップリング用ロータであるバッ クヨーク 109は、磁性ステンレスでも、鉄にニッケルメツキした物でも良い。本実施の 形態においては、磁気カップリング用外側ロータ磁石 108は、ネオジゥム鉄ボロンの 磁石にニッケルメツキした物を用いている。また、この磁気カップリング用外側ロータ 磁石 108は外側ロータ 116に対して、非磁性金属のクサビをねじで締め付けている。 そのため接着剤などの榭脂は配置されておらず、ダイレクトドライブモータ D1を真空 中に配置した場合でも、吸蔵不純分子の放出ガスを極めて少なくできる。磁気カップ リング用外側ロータ磁石 108の上部を覆うようにして、磁気シールド板 103が外側口 ータ 116に取り付けられている。  [0102] An outer rotor magnet 108 for magnetic coupling is attached to the center of the inner peripheral surface of the outer rotor 116. The outer rotor magnet 108 for magnetic coupling has a structure of 32 poles, and has a magnetic metal force in which 16 pieces of N pole and S pole magnets are alternately arranged, and is assembled to the knock yoke 109. The back yoke 109, which is a magnetic coupling rotor fitted and fixed to the outer rotor 116, may be magnetic stainless steel or iron-plated nickel. In the present embodiment, the outer rotor magnet 108 for magnetic coupling uses a nickel-plated magnet made of neodymium iron boron. Further, the outer rotor magnet 108 for magnetic coupling has a non-magnetic metal wedge fastened to the outer rotor 116 with a screw. Therefore, no grease such as adhesive is disposed, and even when the direct drive motor D1 is disposed in a vacuum, the released gas of the occluded impure molecules can be extremely reduced. A magnetic shield plate 103 is attached to the outer motor 116 so as to cover the upper part of the outer rotor magnet 108 for magnetic coupling.
[0103] 更に、外側ロータ 116の内周面上部には、外側ロータ磁石 118が取り付けられてい る。外側ロータ磁石 118は、 32極の構成で N極、 S極の磁石が各 16個交互に配置さ れた磁性金属からなり、バックヨーク 119に組みつけられている。バックヨーク 119は、 磁性ステンレスでも、鉄にニッケルメツキした物でも良い。本実施の形態においては、 外側ロータ磁石 118は、ネオジゥム鉄ボロンの磁石にニッケルメツキした物を用いて いる。また、この外側ロータ磁石 118は外側ロータ 116に対して、非磁性金属のクサ ビをねじで締め付けている。そのため接着剤などの榭脂は配置されておらず、ダイレ タトドライブモータ D1を真空中に配置した場合でも、吸蔵不純分子の放出ガスを極 めて少なくできる。外側ロータ磁石 118の上部を覆うようにして、磁気シールド板 130 が円板 112の下面に取り付けられて 、る。 Further, an outer rotor magnet 118 is attached to the upper part of the inner peripheral surface of the outer rotor 116. The outer rotor magnet 118 is composed of a magnetic metal in which 16 poles of N poles and S poles are alternately arranged in a 32 pole configuration, and is assembled to the back yoke 119. The back yoke 119 may be magnetic stainless steel or iron-nickel-plated. In the present embodiment, the outer rotor magnet 118 is a nickel-plated magnet made of neodymium iron boron. Yes. Further, the outer rotor magnet 118 has a nonmagnetic metal wedge fastened to the outer rotor 116 with a screw. Therefore, no resin such as adhesive is disposed, and even when the direct drive motor D1 is disposed in a vacuum, the released gas of the occluded impure molecules can be extremely reduced. A magnetic shield plate 130 is attached to the lower surface of the disc 112 so as to cover the upper portion of the outer rotor magnet 118.
[0104] 隔壁 113の半径方向内側において、外側ロータ磁石 118に対向するようにして、ス テータ 129が配置されている。ステータ 129は、本体 110に取り付けられており、図示 しないが、円筒状に U相が 3スロット、 V相が 3スロット、 W相が 3スロットで合計 9スロッ トの卷線を 4組すなわち合計 36スロットが並べられてなる。ステータ 129の上部を覆う ようにして、磁気シールド板 102が外側ロータ 116に取り付けられて 、る。  [0104] On the radially inner side of the partition wall 113, a stateer 129 is arranged so as to face the outer rotor magnet 118. The stator 129 is attached to the main body 110. Although not shown, the stator 129 has a cylindrical shape with 3 slots for the U phase, 3 slots for the V phase, and 3 slots for the W phase. Slots are arranged. A magnetic shield plate 102 is attached to the outer rotor 116 so as to cover the top of the stator 129.
[0105] この 32極 36スロットのモータは、 8極 9スロットというコギンダカが少ない公知の技術 のモータの 4倍のスロット構成であるので、同様に少ないコギンダカを実現できる。 また、 8極 9スロットモータの偶数倍の構成であるので、外側ロータ 116の対角線に同 相、同極が配置されている。 8極 9スロットモータでは、磁石の吸引力のアンバランス 1S 支持する軸受にラジアル力を発生させ、軸受 114の剛性等により振動が発生す ることがあるが、偶数倍の構成であるので、このアンバランス力が対角線上の同相同 極で相殺されるため、外側ロータ 116を支持する軸受 114には、アンバランス力は作 用せずに、振動発生を抑えた特徴がある。  [0105] This 32-pole, 36-slot motor has a slot configuration that is four times that of a known art motor with fewer 8-coil and 9-slot cogginadas. In addition, since the configuration is an even multiple of the 8-pole 9-slot motor, the in-phase and the same pole are arranged on the diagonal line of the outer rotor 116. In the 8-pole 9-slot motor, the magnetic attraction force is unbalanced. 1S Radial force is generated in the bearing that supports it, and vibration may occur due to the rigidity of the bearing 114. Since the unbalanced force is canceled out by the same homologous poles on the diagonal line, the bearing 114 that supports the outer rotor 116 has a feature that suppresses the occurrence of vibration without using the unbalanced force.
[0106] 更に、隔壁 113の半径方向内側において、磁気カップリング用外側ロータ磁石 108 に対向するようにして、磁気カップリング用内側ロータ磁石 101が配置されている。磁 気カップリング用内側ロータ磁石 101は、本体 110のフランジ 110aの円筒取り付け 部 110bに対して、軸受 123を介して回転自在に支持された内側ロータ 121に、バッ クヨーク 125を介して取り付けられている。磁気カップリング用内側ロータ磁石 101は 、カップリング用外側ロータ磁石 108と同様に 32極の構成で N極、 S極の磁石が各 1 6個交互に配置されている。従って、磁気カップリング用内側ロータ磁石 101と磁気 カップリング用外側ロータ磁石 108とは、隔壁 113を介在させつつ異極を対向させた 状態で互いに引き合う磁力により相対回転が固定され、すなわち両磁石間に非接触 で作用する磁気カップリング力に基づいて、内側ロータ 121は、ノックヨーク 119即ち 外側ロータ 116と同期して回転するようになっている。 Furthermore, the magnetic coupling inner rotor magnet 101 is arranged on the radially inner side of the partition wall 113 so as to face the magnetic coupling outer rotor magnet 108. The inner rotor magnet 101 for magnetic coupling is attached via a back yoke 125 to an inner rotor 121 that is rotatably supported via a bearing 123 with respect to a cylindrical mounting portion 110b of the flange 110a of the main body 110. Yes. The inner rotor magnet 101 for magnetic coupling, like the outer rotor magnet 108 for coupling, has a configuration of 32 poles and 16 magnets of N poles and S poles are alternately arranged. Therefore, the inner rotor magnet 101 for magnetic coupling and the outer rotor magnet 108 for magnetic coupling are fixed in relative rotation by the magnetic force attracting each other with the opposite poles facing each other with the partition wall 113 interposed therebetween, that is, between the two magnets. Based on the magnetic coupling force acting in a non-contact manner on the inner rotor 121, the inner rotor 121 It rotates in synchronization with the outer rotor 116.
[0107] 内側ロータ 121の内周には、回転角度を計測する検出器用の検出ロータ 126を組 みつけており、それに対向する形で、本体 110の外周に、レゾルバ 127, 128を取り 付けているが、本実施の形態では、高分解能のインクリメンタルレゾルバ 127と、 1回 転のいずれの位置にロータがあるかを検出できるアブソリュートレゾルバ 128とを 2層 に配置している。このため電源投入時にも、検出ロータ 126の回転角度がわかり、原 点復帰が不要であり、また、コイルに対する磁石の電気的位相角度がわ力るため、ダ ィレクトドライブモータ D1の駆動電流制御に使用する回転角度検出力 極検出セン サを用いることなく可能となって 、る。  [0107] A detection rotor 126 for a detector for measuring a rotation angle is assembled on the inner periphery of the inner rotor 121, and resolvers 127 and 128 are mounted on the outer periphery of the main body 110 so as to face the rotor. However, in the present embodiment, the high-resolution incremental resolver 127 and the absolute resolver 128 that can detect the position of the rotor in one rotation are arranged in two layers. For this reason, even when the power is turned on, the rotation angle of the detection rotor 126 can be known, the return to origin is unnecessary, and the electrical phase angle of the magnet with respect to the coil is ineffective, so the drive current control of the direct drive motor D1 This is possible without using the rotation angle detection force pole detection sensor used in the above.
[0108] 本実施の形態で用いている高分解能の可変リラクタンス形レゾルバにおいて、検出 ロータ 126は、一定のピッチを有する複数のスロット歯列を有し、レゾルバ 127, 128 のステータの磁極の外周面には、回転軸と平行に各磁極で検出ロータ 126に対して 位相をずらした歯が設けられており、コイルが各磁極に卷回されている。内側ロータ 1 21と一体で検出ロータ 126が回転すると、レゾルバ 127, 128のステータの磁極との 間のリラクタンスが変化し、検出ロータ 126の 1回転でリラクタンス変化の基本波成分 が n周期となるようにして、そのリラクタンス変化を検出して、図 11に例を示すレゾル バ制御回路によりデジタルィ匕し、位置信号として利用することで検出ロータ 126即ち 内側ロータ 121の回転角度 (又は回転速度)を検出するようになっている。検出ロー タ 126と、レゾルバ 127, 128とで検出器を構成する。  In the high-resolution variable reluctance resolver used in the present embodiment, the detection rotor 126 has a plurality of slot tooth rows having a constant pitch, and the outer peripheral surfaces of the magnetic poles of the stators of the resolvers 127 and 128 Are provided with teeth shifted in phase with respect to the detection rotor 126 at each magnetic pole parallel to the rotation axis, and a coil is wound around each magnetic pole. When the detection rotor 126 rotates together with the inner rotor 121, the reluctance between the resolver 127 and 128 and the magnetic pole of the stator changes, and the fundamental wave component of the change in reluctance becomes n periods in one rotation of the detection rotor 126. Then, the change in reluctance is detected, digitized by the resolver control circuit shown in FIG. 11 and used as a position signal, so that the rotation angle (or rotation speed) of the detection rotor 126, that is, the inner rotor 121 is determined. It comes to detect. The detection rotor 126 and the resolvers 127 and 128 constitute a detector.
[0109] 本実施の形態においては、内側ロータ 121は、磁気カップリングを介して外側ロー タ 116に同期して回転駆動されるようになっているので、内側ロータ 121の回転角度 を検出できれば、それ力も直ちに外側ロータ 116の回転角度を求めることができる。 又、本実施の形態のダイレクトドライブモータ D1は、図 12に示すような駆動回路によ つてサーボ制御される。  [0109] In the present embodiment, the inner rotor 121 is rotationally driven in synchronization with the outer rotor 116 via the magnetic coupling, so if the rotation angle of the inner rotor 121 can be detected, That force can also immediately determine the rotation angle of the outer rotor 116. Further, the direct drive motor D1 of the present embodiment is servo-controlled by a drive circuit as shown in FIG.
本実施の形態においては、磁気シールド板 102, 103は、ステータ 129と外側ロー タ磁石 118との間に発生する磁界が、磁気カツプリング用内側ロータ磁石 101と磁気 カツプリング用外側ロータ磁石 108間の吸引力を乱し磁気カツプリング作用に影響を 与えないようにするために設けられている。但し、ステータ 129及び外側ロータ磁石 1 18の磁極が 32極で、磁気カップリング用内側ロータ磁石 101と磁気カップリング用外 側ロータ磁石 108の磁極も 32極であるため、各々同磁極数であるから、磁気シール ド板 102, 103を省略しても、磁気カップリング用内側ロータ磁石 101と磁気カツプリ ング用外側ロータ磁石 108間の吸引力が特に乱れることはない。従って、磁気シー ルド板 102, 103は、ステータ 129及び外側ロータ磁石 118の磁極と、磁気カップリン グ用内側ロータ磁石 101と磁気カップリング用外側ロータ磁石 108の磁極とが異なる 場合に特に有効である。 In the present embodiment, the magnetic shield plates 102 and 103 are configured so that the magnetic field generated between the stator 129 and the outer rotor magnet 118 is attracted between the magnetic coupling inner rotor magnet 101 and the magnetic coupling outer rotor magnet 108. It is provided to avoid disturbing the force and affecting the magnetic coupling action. However, stator 129 and outer rotor magnet 1 Since 18 magnetic poles are 32 poles, and the magnetic coupling inner rotor magnet 101 and the magnetic coupling outer rotor magnet 108 are also 32 magnetic poles, each has the same number of magnetic poles. Even if is omitted, the attractive force between the magnetic coupling inner rotor magnet 101 and the magnetic coupling outer rotor magnet 108 is not particularly disturbed. Therefore, the magnetic shield plates 102 and 103 are particularly effective when the magnetic poles of the stator 129 and the outer rotor magnet 118 are different from the magnetic poles of the magnetic coupling inner rotor magnet 101 and the magnetic coupling outer rotor magnet 108. is there.
[0110] ところで、磁気カップリングの作用により、外側ロータ 116が振動すると、内側ロータ 121も連られて振動し、それに基づきレゾルバ 127, 128が角度位置を検出してダイ レクトドライブモータ D1の駆動制御を行うと、外側ロータ 116の回転動作が異常とな る恐れがある。これを磁気カップリング系の共振という。本実施の形態では、隔壁 113 を用いて、力かる動作異常を回避している。  [0110] By the way, when the outer rotor 116 vibrates due to the action of the magnetic coupling, the inner rotor 121 also vibrates and vibrates. Based on this, the resolver 127, 128 detects the angular position and controls the drive of the direct drive motor D1. Doing so may cause abnormal rotation of the outer rotor 116. This is called resonance of the magnetic coupling system. In this embodiment, the partition 113 is used to avoid an abnormal operation.
以下に、隔壁 113の渦電流損を利用した磁気カップリング系の共振周波数のゲイ ンピーク値を小さくする原理を示す。図 15は、隔壁 113に渦電流損が発生する状態 を示す模式図である。図 15において、外側ロータ 116には磁気カップリング用外側口 ータ磁石 108の N極が取り付けられ、内側ロータ 121には磁気カップリング用内側口 ータ磁石 101の S極が取り付けられ、それらは隔壁 113を挟んで対向配置されて磁 気カップリングを形成して!/、るものとする。  The principle of reducing the gain peak value of the resonance frequency of the magnetic coupling system using the eddy current loss of the partition wall 113 is shown below. FIG. 15 is a schematic diagram showing a state in which eddy current loss occurs in the partition wall 113. In FIG. 15, the outer rotor 116 is attached with the north pole of the outer magnet 108 for magnetic coupling, and the inner rotor 121 is fitted with the south pole of the inner magnet 101 for magnetic coupling. It is assumed that a magnetic coupling is formed by being opposed to each other with the partition wall 113 therebetween.
[0111] ここで、図 15では不図示のステータに所定の電力を供給すると、外側ロータ 116が 図で矢印方向へと回転するが、隔壁 113を貫通する磁力に基づく磁気カップリング 作用によって、内側ロータ 121も同方向に連れ回り回転する。この時、隔壁 113の a 側 (磁束密度が増大する側)には、磁束を弱める方向に渦電流 Aが発生する。また、 隔壁 113の b側 (磁束密度が減少する側)には、磁束を強める方向に、逆回りの渦電 流 Bが発生する。これが、磁束の変化を妨げるように電流が発生する渦電流の原理 である。  Here, when a predetermined electric power is supplied to a stator (not shown) in FIG. 15, the outer rotor 116 rotates in the direction of the arrow in the figure, but the inner coupling is performed by the magnetic coupling action based on the magnetic force penetrating the partition wall 113. The rotor 121 also rotates in the same direction. At this time, an eddy current A is generated on the a side (the side on which the magnetic flux density increases) of the partition wall 113 in the direction of weakening the magnetic flux. On the b side (the side where the magnetic flux density decreases) of the partition wall 113, a reverse eddy current B is generated in the direction of increasing the magnetic flux. This is the principle of eddy current, in which current is generated so as to prevent changes in magnetic flux.
[0112] 図 16は、 3つの磁石を並び方向に示した図 15と同様な模式図であり、渦電流を用 いて回転に対するブレーキ力が発生する状態を示している。外側ロータ 116が、図 1 6に矢印で示す方向に相対回転すると、図 15に示す原理により隔壁 113には渦電 流が発生し磁束を発生する。渦電流により発生した磁束は、外側ロータ 116に備え 付けられた磁石 108の進行方向に対し反発力を発生する。この渦電流は、磁束の変 化率が高 ヽほど大きくなるので、隔壁 113の透磁率 (磁気抵抗)と磁石 108の磁束密 度、周波数が高いほど大きくなる。隔壁 113は、その材質と形状力 固有の磁気抵抗 値と電気抵抗値を持っており、電気抵抗値と渦電流の 2乗の積が隔壁 113の渦電流 損となる。よって、周波数に依存する隔壁 113の渦電流損により、磁気カップリング作 用時には、外側ロータ 116のダンピング抵抗が生じ、例えば外側ロータ 116が振動し ている場合、これを減衰させる効果を有する。 FIG. 16 is a schematic diagram similar to FIG. 15 showing three magnets arranged in the direction, and shows a state in which a braking force against rotation is generated using eddy current. When the outer rotor 116 rotates relative to the direction indicated by the arrow in FIG. A current is generated to generate a magnetic flux. The magnetic flux generated by the eddy current generates a repulsive force with respect to the traveling direction of the magnet 108 mounted on the outer rotor 116. This eddy current increases as the rate of change of magnetic flux increases. Therefore, the eddy current increases as the permeability (magnetic resistance) of the partition wall 113 and the magnetic flux density and frequency of the magnet 108 increase. The partition wall 113 has a magnetic resistance value and an electrical resistance value specific to the material and shape force, and the product of the square of the electrical resistance value and the eddy current is the eddy current loss of the partition wall 113. Therefore, due to the eddy current loss of the partition wall 113 depending on the frequency, a damping resistance of the outer rotor 116 is generated at the time of magnetic coupling operation.
[0113] 図 17は、隔壁がない場合におけるモータの制御系ブロック図であり、図 18は、隔壁 がある場合におけるモータの制御系ブロック図である。隔壁 113が無い時は、図 17 に示すように、磁気カップリングのばね剛性 Kfのみにより、外側ロータ 116は反力を 受け、隔壁 113が有る時は、図 18に示すように、磁気カップリングのばね剛性 Kfと、 隔壁のダンピング抵抗 Cfに基づく反力を受けることがわかる。 FIG. 17 is a block diagram of the motor control system when there is no partition wall, and FIG. 18 is a block diagram of the motor control system when there is a partition wall. When there is no partition wall 113, as shown in Fig. 17, the outer rotor 116 receives a reaction force only by the spring stiffness Kf of the magnetic coupling, and when there is the partition wall 113, as shown in Fig. 18, the magnetic coupling It can be seen that it receives a reaction force based on the spring stiffness Kf and the damping resistance Cf of the bulkhead.
ここで、図 18に示す制御系において、モータトルク Teに対するモータ速度 cormの 伝達関数は式(1)のようになり、その共振周波数、減衰率は式 (2)、(3)、(4)、 (5) のようになる。ただし、 Jmはモータイナーシャ、 Jrはレゾルバイナーシャ、 Kfは磁気力 ップリングのばね係数、 Cfは磁気カップリングのダンピング抵抗、 ω aは共振周波数、 ω ζは反共振周波数、 ζ 、 ζ は減衰率である。  Here, in the control system shown in FIG. 18, the transfer function of the motor speed corm with respect to the motor torque Te is expressed by the equation (1), and the resonance frequency and the attenuation factor are expressed by the equations (2), (3), (4) (5) Where Jm is the motor inertia, Jr is the resolver inertia, Kf is the spring force of the magnetic force coupling, Cf is the damping resistance of the magnetic coupling, ω a is the resonance frequency, ω ζ is the anti-resonance frequency, ζ and ζ are the damping rates is there.
a z  a z
[0114] [数 1] [0114] [Equation 1]
ω, _J__ 1 + 2( . / )J + (1 / )2 j2 ω, _J__ 1 + 2 (. /) J + (1 /) 2 j 2
G 式 (1)  G equation (1)
Jm + Jr l + 2( 。 +  Jm + Jr l + 2 (. +
Kf{— + ~) 式 ) Kf {— + ~) expression)
Jm Jr 式 (3)  Jm Jr equation (3)
式 (4) Formula (4)
式 (5)Formula (5)
Figure imgf000054_0001
Figure imgf000054_0001
[0115] この伝達関数 Gの周波数特性を図 19、図 20に示す。ゲインは共振点 ω aにて大き なピーク値を持つ力 これは減衰率 ζ (または Cf :渦電流損によるダンピング抵抗) [0115] The frequency characteristics of this transfer function G are shown in Figs. The gain is a force with a large peak value at the resonance point ω a. This is the damping factor ζ (or Cf: damping resistance due to eddy current loss)
a  a
力 、さくなれば、小さくなるほど大きくなる。つまり、周波数に対する渦電流損が小さ ければ、小さいほど共振のゲインピーク値は大きくなることがわかる。この共振が大き いと、レゾルバの角度検出信号の位相と外側ロータの位相が逆位相になり、それによ りダイレクトドライブモータは発振してしまう恐れがある。これを回避するためには、減 衰率 ζ を大きくすればよぐこの場合、隔壁の渦電流損力 なるダンピング抵抗を大 a  As the power gets smaller, it gets bigger as it gets smaller. In other words, it can be seen that the smaller the eddy current loss with respect to the frequency, the greater the resonance gain peak value. If this resonance is large, the phase of the resolver angle detection signal and the phase of the outer rotor will be in opposite phases, which may cause the direct drive motor to oscillate. In order to avoid this, it is only necessary to increase the attenuation rate ζ. In this case, the damping resistance, which is the eddy current loss of the bulkhead, is increased.
きくすることでピーク値を小さくすることができる。従来では、モータ制御部などでこの 共振周波数にノッチフィルタを用いた角度信号を用いることで発振を防いできたが、 ノッチフィルタの特性が強すぎると、その共振周波数近傍の角度信号を制御できなく なってしまう恐れがある。これに対し、隔壁の渦電流損を用いることで共振周波数の ピーク値を小さくすることで、共振周波数近傍も制御できるようになる。なお、磁気カツ プリングのばね剛性は、図 21のように表される。  The peak value can be made small by making it. Conventionally, oscillation could be prevented by using an angle signal using a notch filter for this resonance frequency in a motor control unit, etc. However, if the characteristic of the notch filter is too strong, the angle signal near the resonance frequency cannot be controlled. There is a risk of becoming. On the other hand, by using the eddy current loss of the partition wall, the resonance frequency peak value can be controlled by reducing the peak value of the resonance frequency. The spring stiffness of the magnetic coupling is expressed as shown in Fig. 21.
[0116] この発明による 2軸同軸ダイレクトドライブモータは、隔壁の渦電流損を利用するこ とで、磁気カップリングの共振周波数のゲインのピークを小さくすることができる。ただ し、渦電流損は、隔壁の発熱につながるので、発熱を考慮して、隔壁の材質、形状を 決めるのが望ましい。また、弱めのノッチフィルタの効果と共にダンピング抵抗を決め ることで、発熱が少なぐ制御を可能にすることもできる。 The biaxial coaxial direct drive motor according to the present invention can reduce the gain peak of the resonance frequency of the magnetic coupling by utilizing the eddy current loss of the partition wall. However, since eddy current loss leads to heat generation of the partition, it is desirable to determine the material and shape of the partition in consideration of heat generation. In addition, the damping resistance is determined along with the effect of a weak notch filter. Thus, control with less heat generation can be made possible.
以上、本発明を実施の形態を参照して説明してきたが、本発明は上記実施の形態 に限定して解釈されるべきではなぐ適宜変更 ·改良が可能であることはもちろんであ る。例えば、本実施の形態のダイレクトドライブモータは、真空雰囲気に限らず、大気 外の雰囲気で使用することができる。例えば、半導体製造工程の場合、真空排気後 に真空槽内部にエッチング用の反応性ガスが導入されることがあるが、本実施の形 態のダイレクトドライブモータでは、隔壁により内部と外部とが遮蔽されているため、モ ータコイルや絶縁材等がエッチングされてしまうおそれもない。  The present invention has been described above with reference to the embodiments. However, the present invention should not be construed as being limited to the above-described embodiments, and can be modified or improved as appropriate. For example, the direct drive motor of the present embodiment can be used not only in a vacuum atmosphere but also in an atmosphere outside the atmosphere. For example, in the case of a semiconductor manufacturing process, reactive gas for etching may be introduced into the vacuum chamber after evacuation, but in the direct drive motor of this embodiment, the inside and outside are shielded by the partition walls. Therefore, there is no possibility that the motor coil or the insulating material will be etched.
〔第 3の実施の形態〕  [Third embodiment]
次に、本発明の実施の形態を図面を参照して説明する。図 22は、本実施の形態に 力かるダイレクトドライブモータを用いたフロッグレッダアーム式搬送装置の斜視図で ある。図 22において、 2つのダイレクトドライブモータ Dl、 D2を直列に連結している。 下方のダイレクトドライブモータ D1のロータには、第 1アーム A1が連結され、第 1ァー ム A1の先端には第 1リンク L1が枢動可能に連結されている。一方、上方のダイレクト ドライブモータ D2のロータには、第 2アーム A2が連結され、第 2アーム A2の先端に は第 2リンク L2が枢動可能に連結されている。リンク LI, L2は、ウェハ Wを載置する テーブル Tに、それぞれ枢動可能に連結されている。  Next, embodiments of the present invention will be described with reference to the drawings. FIG. 22 is a perspective view of a frog redder arm type transport device using a direct drive motor that works in the present embodiment. In FIG. 22, two direct drive motors Dl and D2 are connected in series. The first arm A1 is connected to the rotor of the lower direct drive motor D1, and the first link L1 is pivotally connected to the tip of the first arm A1. On the other hand, the second arm A2 is connected to the rotor of the upper direct drive motor D2, and the second link L2 is pivotally connected to the tip of the second arm A2. The links LI and L2 are pivotally connected to a table T on which the wafer W is placed.
図 22より明らかである力 ダイレクトドライブモータ Dl、 D2のロータがそれぞれ同方 向に回転すれば、テーブル Tも同方向に回転し、力かるロータが逆方向に回転すれ ば、テーブル Tは、ダイレクトドライブモータ Dl、 D2に接近もしくは離隔するようにな つている。従って、ダイレクトドライブモータ Dl、 D2を任意の角度で回転させれば、テ 一ブル Tが届く範囲内で、任意の 2次元位置にウェハ Wを搬送させることができる。 このように例えば半導体製造装置における真空槽内に配置されるウェハ搬送ァー ム、例えばスカラ型や図に示すフロッグレッダ型のように複数のアームを備えた装置 では、特に複数の回転モータが必要となる。真空環境では外界との接触表面積を極 力小さくすると同時に、スペースを有効に活用するためにモータ等の取付穴はなるベ く少なくする必要がある。また、ウェハ Wを水平にまっすぐに、振動を極力少なくして 搬送するためには、アームの先端に作用するモーメントをロータ支持部で強固に保 持する必要がある。そこで、ダイレクトドライブモータ Dl、 D2を複数、ハウジング部分 で同軸に連結し、連結部分はシールで密に接合 (溶接、 Oリング、金属ガスケット、等 による密な接合)して、モータロータの配設された空間とハウジング外部空間とを離隔 することち必要となる。 The force apparent from Fig. 22 If the rotors of the direct drive motors Dl and D2 rotate in the same direction, the table T will also rotate in the same direction, and if the powerful rotor rotates in the opposite direction, the table T will become a direct drive It approaches or moves away from motors Dl and D2. Therefore, if the direct drive motors Dl and D2 are rotated at an arbitrary angle, the wafer W can be transferred to an arbitrary two-dimensional position within a range where the table T can reach. Thus, for example, a wafer transfer arm placed in a vacuum chamber in a semiconductor manufacturing apparatus, for example, an apparatus having a plurality of arms such as a scalar type or a frog redder type shown in the figure, particularly requires a plurality of rotary motors. It becomes. In a vacuum environment, the surface area of contact with the outside world should be minimized, and at the same time, the number of mounting holes for motors, etc., should be minimized to make effective use of space. Also, in order to transport wafer W horizontally and with minimal vibration, the moment acting on the tip of the arm is firmly held by the rotor support. It is necessary to have. Therefore, a plurality of direct drive motors Dl and D2 are connected coaxially at the housing part, and the connection part is tightly joined with a seal (tightly joined by welding, O-ring, metal gasket, etc.), and the motor rotor is arranged. It is necessary to separate the open space from the housing external space.
[0118] また、ウェハ Wを水平にまっすぐ、振動を少なく搬送するためにはアーム Al、 A2の 先端に作用するモーメントを、ロータ支持部で強固に保持する必要がある。更に、又 、真空環境での複数軸のアーム駆動の際には、電源投入時に現在のアームの回転 位置を認識しないと真空槽の壁や、真空槽のシャツタにアーム Al, A2等をぶつけて しまう可能性がある。このような要求に応じることができるダイレクトドライブモータを同 軸に連結したモータシステムについて説明する。  [0118] In addition, in order to transport wafer W horizontally and with less vibration, the moment acting on the tips of arms Al and A2 must be firmly held by the rotor support. In addition, when driving multiple axes in a vacuum environment, if the current rotation position of the arm is not recognized when the power is turned on, the arm Al, A2, etc. will be hit against the wall of the vacuum chamber or the shatter of the vacuum chamber. There is a possibility. A motor system in which a direct drive motor capable of meeting such requirements is connected to the same shaft will be described.
[0119] 本実施の形態は、表面磁石型の 32極 36スロットアウターロータ式ブラシレスタイプ のダイレクトドライブモータを用いる。 32極 36スロットというスロットコンビネーションは 、コギンダカは小さいが径方向に磁気吸引力が発生し回転時の振動は大きいことが 一般的に知られている 8極 9スロットというスロットコンビネーションの 4倍の構成である 。 2n倍 (nは整数)にしたことにより、径方向の磁気吸引力は相殺されるので、固定子 と回転子の真円度や同軸度および機構部品の剛性を高めることなく回転時の振動を 小さくでき、かつ、本来的にコギングが小さい構成であるので、非常に滑らかな回転 が得られる。一方、このような非常に多極なモータとすることにより、機械角の周期に 対する電気角の周期が多いので、位置決め制御性が良い。よって、本発明の如ぐ 減速器を用いずにロボット装置を駆動するようなダイレクトドライブモータには好適で ある。また、総磁束量を下げることなく固定子連結部の肉厚と突極幅、および回転子 のヨーク肉厚を狭くできるので、本発明の如ぐ薄型かつ大径幅狭のダイレクトドライ ブモータには好適である。 In the present embodiment, a surface magnet type 32-pole 36-slot outer rotor brushless type direct drive motor is used. The slot combination of 32 poles and 36 slots is generally known to have a large magnetic attraction force in the radial direction and large vibration during rotation. is there . 2 n times (n is an integer) cancels out the magnetic attractive force in the radial direction. Therefore, vibration during rotation can be achieved without increasing the roundness and coaxiality of the stator and rotor and the rigidity of the mechanical parts. Can be made small and cogging is inherently small, so that a very smooth rotation can be obtained. On the other hand, by using such a very multi-pole motor, the electrical angle cycle is greater than the mechanical angle cycle, so positioning controllability is good. Therefore, it is suitable for a direct drive motor that drives a robot apparatus without using a speed reducer as in the present invention. In addition, since the thickness and salient pole width of the stator connecting portion and the yoke thickness of the rotor can be reduced without lowering the total magnetic flux, the direct drive motor having a thin and large diameter and narrow width as in the present invention is used. Is preferred.
[0120] 図 23は、図 22の構成を Π-Π線で切断して矢印方向に見た図である。図 23を参照し て、 2軸のモータシステムの内部構造について詳細に説明する。まず、ダイレクトドラ イブモータ D1について説明する。定盤 Gに据え付けた円板 10の中央開口 10aに嵌 合しボルト 11により相互に固定された中空円筒状の本体 12は、その上端にカップ状 の隔壁 13を取り付けている。本体 12の中央は、ステータへの配線などを通すために 用いることができる。本体 12,円板 10によりハウジングを構成する。 FIG. 23 is a view of the configuration of FIG. 22 cut along the Π-Π line and viewed in the direction of the arrow. With reference to FIG. 23, the internal structure of the two-axis motor system will be described in detail. First, the direct drive motor D1 will be described. A hollow cylindrical main body 12 fitted into the central opening 10a of the disk 10 installed on the surface plate G and fixed to each other by bolts 11 has a cup-shaped partition wall 13 attached to the upper end thereof. The center of the body 12 is used to pass the wiring to the stator. Can be used. The main body 12 and the disc 10 constitute a housing.
[0121] 隔壁 13は、非磁性体であるステンレス製であり、本体 12に嵌合される肉厚の底部 1 3aと、その周縁から軸線方向にダイレクトドライブモータ Dl、 D2を貫くようにして延在 する円板部 13aより薄肉の円筒部 (筒状部) 13bとからなる。従って、隔壁 13は、ダイ レクトドライブモータ Dl、 D2に共通に用いられる。円筒部 13bの下端は、 TIG溶接に て封止可能にホルダ 15に接合され、ホルダ 15は、円板 10にボルト 16により固定され ている。ここで、円筒部 13bとホルダ 15との溶接部を略同一厚さとすることにより、片 側への部品にのみ熱が逃げることを抑制し、嵌合部を均一に溶接できる構造となつ ている。ホルダ 15と円板 10の接触面には、シール部材を填め込む溝力卩ェが施して あり、シール部材を溝に填め込んだ後にホルダ 15と円板 10をボルト 16により締結す ることにより、締結部分を大気側力 分離隔絶している。隔壁 13は耐食性が高ぐ特 に磁性の少ないオーステナイト系ステンレスの SUS316を材料としており、ホルダ 15 は隔壁 13との溶接性から同じく SUS 316を材料として 、る。  [0121] The partition wall 13 is made of stainless steel, which is a non-magnetic material, and extends from the peripheral edge of the partition wall 13 through the direct drive motors Dl and D2 in the axial direction. It consists of a cylindrical part (tubular part) 13b that is thinner than the existing disk part 13a. Therefore, the partition wall 13 is commonly used for the direct drive motors Dl and D2. The lower end of the cylindrical portion 13b is joined to the holder 15 so that it can be sealed by TIG welding, and the holder 15 is fixed to the disc 10 with bolts 16. Here, by making the welded portion of the cylindrical portion 13b and the holder 15 substantially the same thickness, it is possible to suppress heat from escaping only to the component on one side and to weld the fitting portion uniformly. . The contact surface between the holder 15 and the disk 10 is provided with a groove force that fits the seal member. After the seal member is fitted into the groove, the holder 15 and the disk 10 are fastened by the bolt 16. , Atmospheric side force is separated from the fastening part. The partition wall 13 is made of austenitic stainless steel SUS316, which has high corrosion resistance, and has a low magnetic property, and the holder 15 is made of SUS316 as well because of its weldability with the partition wall 13.
[0122] 更に、本体 12と隔壁 13,及び隔壁 13とホルダ 15とは気密的に接合され、且つホ ルダ 15と円板 10、及び円板 10と定盤 Gとは、それぞれ O—リング ORによって気密さ れている。従って、円板 10と、本体 12と、隔壁 13とで囲われる内部空間は、その外 部から気密されている。尚、隔壁 13は必ずしも非磁性体である必要はない。又、 O— リング ORを用いて気密する代わりに、電子ビーム溶接やレーザビーム溶接などで部 材間を気密しても良い。  [0122] Further, the main body 12 and the partition wall 13, and the partition wall 13 and the holder 15 are hermetically joined, and the holder 15 and the disk 10 and the disk 10 and the surface plate G are respectively O-ring OR. Is airtight. Therefore, the internal space surrounded by the disc 10, the main body 12, and the partition wall 13 is airtight from the outside. The partition wall 13 is not necessarily made of a nonmagnetic material. Also, instead of using O-ring OR to seal the air, the parts may be sealed by electron beam welding or laser beam welding.
[0123] 円板 10の外周上面において、軸受ホルダ 17がボルト 18により固定されている。軸 受ホルダ 17には、真空中で用 、られる 4点接触式玉軸受 19の外輪が嵌合的に取り 付けられ、ボルト 20により固定されている。一方、軸受 19の内輪は、第 1外側ロータ 2 1の外周に嵌合し、ボルト 22により固定されている。すなわち、第 1外側ロータ 21は、 隔壁 13に対して回転自在に支持されており、またアーム A1 (図 22)を支持する円筒 状部材 23を、ボルト 24によって固定している。ここで、ボルト 24は、半径方向内方に 延在する磁気シールド板 25を、円筒状部材 23に共締めしている。  [0123] On the outer peripheral upper surface of the disc 10, a bearing holder 17 is fixed with bolts 18. The bearing holder 17 is fitted with an outer ring of a four-point contact ball bearing 19 that is used in a vacuum, and is fixed by bolts 20. On the other hand, the inner ring of the bearing 19 is fitted to the outer periphery of the first outer rotor 21 and is fixed by bolts 22. That is, the first outer rotor 21 is rotatably supported with respect to the partition wall 13, and a cylindrical member 23 that supports the arm A1 (FIG. 22) is fixed by the bolt 24. Here, the bolt 24 fastens the magnetic shield plate 25 extending inward in the radial direction together with the cylindrical member 23.
[0124] 円板 10および軸受ホルダ 17は、耐食性が高いオーステナイト系ステンレスを材料 としており、円板 10は、チャンバである定盤 Gとの嵌合固定およびシール装置を兼ね ており、その下面に、 O—リング ORを填め込む溝 10bが設けられている。 [0124] The disc 10 and the bearing holder 17 are made of austenitic stainless steel having high corrosion resistance, and the disc 10 also serves as a fitting fixing and sealing device with the surface plate G that is a chamber. A groove 10b for fitting the O-ring OR is provided on the lower surface thereof.
磁気シールド板 25は、磁性体である SPCC鋼板をプレス成型加工後に、防鲭およ び耐食性を高めるためにニッケルめっきを施している。その効果については後述する 軸受 19は、ラジアル、アキシアル、モーメント荷重を 1個の軸受で負荷できる 4点接 触玉軸受である。この形式の軸受を用いることにより、ダイレクトドライブモータ D1の 軸受は 1個で済むため、本発明の 2軸同軸モータシステムを薄型化できる。軸受 19 は、内外輪とも耐食性が高くかつ焼入れによる硬化が得られるマルテンサイト系ステ ンレスを材料とし。転動体はセラミックボール、潤滑剤は真空であっても固化しない真 空用のグリスを用いている。  The magnetic shield plate 25 is subjected to nickel plating in order to enhance the anti-corrosion and corrosion resistance after press-forming the SPCC steel plate, which is a magnetic material. The effect of the bearing 19, which will be described later, is a four-point contact ball bearing that can apply radial, axial, and moment loads with a single bearing. By using this type of bearing, only one bearing for the direct drive motor D1 is required, so the two-axis coaxial motor system of the present invention can be made thinner. The bearing 19 is made of martensite stainless steel, which has high corrosion resistance for both the inner and outer rings and can be hardened by quenching. The rolling elements are ceramic balls, and the lubricant is vacuum grease that does not solidify even under vacuum.
[0125] 尚、軸受 19は内輪と外輪に金や銀などの軟質金属をプレーティングして、真空中 でもアウトガス放出のな 、金属潤滑としたものを用いてもよく、また 4点接触式玉軸受 であるので、アーム A1からの第 1外側ロータ 21がチルトする方向のモーメントを受け ることができるが、 4点接触式に限らず、クロスローラ、クロスボール、クロステーパ軸 受も用いることができ、予圧状態で用いても良いし、潤滑性向上のためフッ素系被膜 処理(DFO)を行っても良!ヽ。  [0125] The bearing 19 may be made of metal lubricated by plating a soft metal such as gold or silver on the inner ring and the outer ring so that outgassing is not generated even in vacuum, or a four-point contact ball. Because it is a bearing, it can receive a moment in the direction in which the first outer rotor 21 tilts from the arm A1, but it is not limited to the four-point contact type, and cross rollers, cross balls, and cross taper bearings can also be used. Yes, it can be used under preload conditions, or fluorine film treatment (DFO) can be performed to improve lubricity!ヽ.
[0126] 第 1外側ロータ 21は、永久磁石 21aと、磁路を形成するため磁性体から成る円環状 のヨーク 21bと、永久磁石 21aとヨーク 21bを機械的に締結するための非磁性体から なるくさび (不図示)によって構成されている。永久磁石 21aは、 32極の構成で N極、 S極の磁石が各 16個交互に磁性金属からなり、極ごとに分割されたセグメント形式で あり、その個々の形状は扇形である。内径と外径の円弧中心は同一であるが、円周 方向端面の接線交点を永久磁石 21a寄りとすることで、くさびをヨーク 21b外径側か らねじで締め上げることにより永久磁石 21aをヨーク 21bに締結している。このような 構成とすることにより、接着剤など、アウトガスを発生する固定部材を用いることなく永 久磁石を締結できる。永久磁石 21aはエネルギー積の高いネオジゥム(Nd—Fe— B )系磁石であり、耐食性を高めるためにニッケルコーティングを施してある。ヨーク 21b は高い磁性を有する低炭素鋼を材料とし、加工成型後に、防鲭および耐食性を高め 、かつ軸受交換時の磨耗を防ぐためにニッケルめっきを施している。 [0127] また、第 1外側ロータ 21は、軸受 19の内輪と円筒状部材 23を嵌合固定する面を有 している。 4点接触玉軸受 19は非常に薄肉の軸受であり、組みつけられる部材の精 度や線膨張係数の差異により回転精度や摩擦トルクが大きな影響を受ける。よって 本実施の形態の場合は、回転輪である軸受 19の内輪を、加工精度を出しやすくか つ線膨張係数が軸受の軌道輪材質と略同一であるヨーク 21bに締まり嵌めあるいは 中間嵌めとし、固定輪である軸受 19の外輪を、オーステナイト系ステンレス製の軸受 ホルダやアルミニウム製のボスにすきま嵌めとすることで、軸受 19の回転精度の低下 や温度上昇による摩擦トルクの上昇を防ぐ構成となっている。 [0126] The first outer rotor 21 includes a permanent magnet 21a, an annular yoke 21b made of a magnetic material to form a magnetic path, and a non-magnetic material for mechanically fastening the permanent magnet 21a and the yoke 21b. It consists of a wedge (not shown). Permanent magnet 21a has a configuration of 32 poles, each of which has 16 poles of N poles and S poles alternately made of magnetic metal, and is divided into segments. Each of the permanent magnets 21a has a sector shape. Although the inner and outer diameter arc centers are the same, the tangential intersection of the circumferential end faces is closer to the permanent magnet 21a, and the wedge is tightened from the outer diameter side of the yoke 21b with a screw to tighten the permanent magnet 21a to the yoke. Signed to 21b. With this configuration, the permanent magnet can be fastened without using a fixing member that generates outgas, such as an adhesive. The permanent magnet 21a is a neodymium (Nd—Fe—B) based magnet having a high energy product, and has a nickel coating to enhance corrosion resistance. The yoke 21b is made of a low-carbon steel having high magnetism, and is plated with nickel to improve wear resistance and corrosion resistance and prevent wear during bearing replacement after processing and molding. In addition, the first outer rotor 21 has a surface for fitting and fixing the inner ring of the bearing 19 and the cylindrical member 23. The four-point contact ball bearing 19 is a very thin bearing, and its rotational accuracy and friction torque are greatly affected by differences in accuracy and linear expansion coefficient of the parts to be assembled. Therefore, in the case of the present embodiment, the inner ring of the bearing 19 which is a rotating ring is an interference fit or an intermediate fit to the yoke 21b which is easy to obtain processing accuracy and whose linear expansion coefficient is substantially the same as the bearing ring material of the bearing. The outer ring of the bearing 19, which is a fixed ring, is fitted to the austenitic stainless steel bearing holder or aluminum boss to prevent the bearing 19 from rotating and the friction torque from increasing due to temperature rise. ing.
[0128] 隔壁 13の半径方向内側において、第 1外側ロータ 21の内周面に対向するようにし て、第 1ステータ 29が配置されている。第 1ステータ 29は、本体 12の中央で半径方 向に延在したフランジ部 12aの円筒状に変形した下部に取り付けられており、電磁鋼 板の積層材で形成され、各突極には絶縁処理としてボビンを嵌め込んだ後にモータ コイルが集中巻されている。第 1ステータ 29の外径は隔壁 13の内径と略同一もしくは 小さい寸法としている。  A first stator 29 is disposed on the inner side in the radial direction of the partition wall 13 so as to face the inner peripheral surface of the first outer rotor 21. The first stator 29 is attached to a cylindrically deformed lower portion of a flange portion 12a extending in the radial direction at the center of the main body 12. The first stator 29 is formed of a laminated material of electromagnetic steel plates and is insulated from each salient pole. As a process, the motor coil is concentrated after the bobbin is fitted. The outer diameter of the first stator 29 is approximately the same as or smaller than the inner diameter of the partition wall 13.
[0129] 第 1ステータ 29の半径方向内側に、第 1内側ロータ 30が配置されている。第 1内側 ロータ 30は、本体 12の外周面にボルト固定されたレゾルバホルダ 32に対して、玉軸 受 33により回転自在に支持されている。第 1内側ロータ 30の外周面には、ノ ックョー ク 30bを介して永久磁石 30aが取り付けられている。永久磁石 30aは、第 1外側ロー タ 21の永久磁石 21aと同様に 32極の構成で N極、 S極の磁石が各 16個交互に磁性 金属からなっている。従って、第 1内側ロータ 30は、第 1ステータ 29によって駆動され る第 1外側ロータ 21に同期して連れ回されるようになつている。  The first inner rotor 30 is disposed on the radially inner side of the first stator 29. The first inner rotor 30 is rotatably supported by a ball bearing 33 with respect to a resolver holder 32 that is bolted to the outer peripheral surface of the main body 12. A permanent magnet 30a is attached to the outer peripheral surface of the first inner rotor 30 via a knock 30b. The permanent magnet 30a is composed of 32 poles in the same manner as the permanent magnet 21a of the first outer rotor 21, and 16 magnets of N poles and S poles are alternately made of magnetic metal. Accordingly, the first inner rotor 30 is rotated in synchronism with the first outer rotor 21 driven by the first stator 29.
[0130] 第 1内側ロータ 30を回転自在に支持する軸受 33は、ラジアル、アキシアル、モーメ ント荷重を 1個の軸受で負荷できる 4点接触玉軸受である。この形式の軸受を用いる ことにより、 1個の軸受で済むため、ダイレクトドライブモータ D1を薄型化できる。隔壁 13の内部は大気環境であるため、一般的な軸受鋼と鉱油を基油としたグリス潤滑を 用いた軸受を適用できる。  [0130] The bearing 33 that rotatably supports the first inner rotor 30 is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing. By using this type of bearing, it is possible to reduce the thickness of the direct drive motor D1 because only one bearing is required. Since the interior of the partition wall 13 is an atmospheric environment, a bearing using grease lubrication based on general bearing steel and mineral oil can be applied.
隔壁 13内部は大気環境であるため、永久磁石 30aはバックヨーク 30bに接着固定 してある。永久磁石 30aはエネルギー積の高いネオジゥム(Nd— Fe— B)系磁石で あり、鲭による減磁を防ぐためにニッケルコーティングを施してある。ヨーク 30bは高い 磁性を有する低炭素鋼を材料とし、加工成形後に防鲭のためにクロメートめつきを施 している。 Since the inside of the partition wall 13 is an atmospheric environment, the permanent magnet 30a is bonded and fixed to the back yoke 30b. Permanent magnet 30a is a neodymium (Nd-Fe-B) magnet with high energy product. Yes, with nickel coating to prevent wrinkle demagnetization. The yoke 30b is made of low-carbon steel with high magnetism, and is chromated to prevent fouling after machining.
[0131] 第 1内側ロータ 30の内周には、回転角度を計測する検出器として、レゾルバロータ 34a及び 34bを組みつけており、それに対向する形で、レゾルバホルダ 32の外周に 、レゾルバステータ 35, 36を取り付けている力 本実施の形態では、高分解能のイン タリメンタルレゾルバステータ 35と、 1回転のいずれの位置にロータがあるかを検出で きるアブソリュートレゾルバステータ 36とを 2層に配置して!/、る。このため電源投入時 にも、アブソリュートレゾルバロータ 34bの回転角度がわかり、原点復帰が不要であり 、また、コイルに対する磁石の電気的位相角度がゎカゝるため、ダイレクトドライブモー タ D1の駆動電流制御に使用する回転角度検出が、極検出センサを用いることなく可 能となっている。  [0131] Resolver rotors 34a and 34b are assembled on the inner periphery of the first inner rotor 30 as detectors for measuring the rotation angle, and the resolver stator 35 is disposed on the outer periphery of the resolver holder 32 so as to face it. In this embodiment, the high-resolution incremental resolver stator 35 and the absolute resolver stator 36 that can detect the position of the rotor in one rotation are arranged in two layers. /! For this reason, even when the power is turned on, the rotational angle of the absolute resolver rotor 34b is known, no return to origin is required, and the electrical phase angle of the magnet with respect to the coil increases, so the drive current of the direct drive motor D1 The rotation angle used for control can be detected without using a pole detection sensor.
[0132] レゾルバホルダ 32と第 1内側ロータ 30は、モータの界磁およびモータコイルからの 電磁ノイズが角度検出器であるレゾルバステータ 35, 36に伝達されないように、磁性 体である炭素鋼を材料とし、加工成型後に防鲭のためにクロメートめつきを施してい る。  [0132] The resolver holder 32 and the first inner rotor 30 are made of carbon steel, which is a magnetic material, so that electromagnetic noise from the motor field and motor coil is not transmitted to the resolver stators 35, 36 that are angle detectors. In order to prevent fouling after processing and molding, it is chromated.
本実施の形態に用いて 、る高分解能の可変リラクタンス形レゾルバにぉ 、て、イン タリメンタルレゾルバロータ 34aは、一定のピッチを有する複数のスロット歯列を有し、 インクリメンタルレゾルバステータ 35の外周面には、回転軸と平行に各磁極でインクリ メンタルレゾルバロータ 34aに対して位相をずらした歯が設けられており、コイルが各 磁極に卷回されている。第 1内側ロータ 30と一体でインクリメンタルレゾルバロータ 34 aが回転すると、インクリメンタルレゾルバステータ 35の磁極との間のリラクタンスが変 化し、インクリメンタルレゾルバロータ 34aの 1回転でリラクタンス変化の基本波成分が n周期となるようにして、そのリラクタンス変化を検出して、図 24に例を示すレゾルバ 制御回路によりデジタルィ匕し、位置信号として利用することでインクリメンタルレゾル ノ ロータ 34a即ち第 1内側ロータ 30の回転角度 (又は回転速度)を検出するようにな つている。レゾルバロータ 34a、 34bと、レゾルバステータ 35, 36とで検出器を構成す る。 [0133] 本実施の形態によれば、第 1外側ロータ 21に対して、磁気カップリング作用により 第 1内側ロータ 30が同速で回転し、すなわち連れ回るので、第 1外側ロータ 21の回 転角を隔壁 13越しに検出することができる。また、本実施の形態では、モータを形成 する部品ゃノ、ウジングを用いることなくレゾルバ単体で軸受 33を有しており、従って ハウジングに組み込む前に、レゾルバ単体での偏芯調整ゃレゾルバコイルの位置調 整などの精度調整が行えるので、ハウジングゃ両フランジに調整用の穴や切り欠きを 別途設ける必要がない。 The high-resolution variable reluctance resolver used in the present embodiment has an incremental resolver rotor 34a having a plurality of slot teeth having a constant pitch, and the outer peripheral surface of the incremental resolver stator 35. Are provided with teeth shifted in phase with respect to the incremental resolver rotor 34a at each magnetic pole parallel to the rotation axis, and a coil is wound around each magnetic pole. When the incremental resolver rotor 34a rotates together with the first inner rotor 30, the reluctance between the incremental resolver stator 35 and the magnetic pole changes, and the fundamental wave component of the change in reluctance is n cycles in one revolution of the incremental resolver rotor 34a. Thus, the change in reluctance is detected, digitalized by the resolver control circuit shown in FIG. 24, and used as a position signal, so that the rotational angle of the incremental resolving rotor 34a, that is, the first inner rotor 30 is obtained. (Or rotation speed) is detected. The resolver rotors 34a and 34b and the resolver stators 35 and 36 constitute a detector. [0133] According to the present embodiment, the first inner rotor 30 rotates at the same speed by the magnetic coupling action with respect to the first outer rotor 21, that is, rotates with the first outer rotor 21, so that the rotation of the first outer rotor 21 rotates. The corner can be detected through the bulkhead 13. Further, in the present embodiment, the resolver alone has the bearing 33 without using the parts forming the motor and the uzing. Therefore, the eccentricity adjustment with the resolver alone is performed before the resolver coil is assembled into the housing. Since accuracy adjustment such as position adjustment can be performed, there is no need to provide adjustment holes or notches on both flanges of the housing.
[0134] 次に、ダイレクトドライブモータ D2について説明する力 ここでは本体 12がハウジン グを構成する。上述したダイレクトドライブモータ D1の円筒状部材 23は、ダイレクトド ライブモータ D2に重合する位置まで上方に延在しており、その内周面に、真空中で 用いられる 4点接触式玉軸受 19'の外輪が嵌合的に取り付けられ、ボルト 20'により 固定されている。一方、軸受 19'の内輪は、第 2外側ロータ 21 'の外周に嵌合し、ボ ルト 22'により固定されている。ここで、ボルト 22'、半径方向内方に延在する磁気シ 一ルド板 41を共締めしている。第 2外側ロータ 21 'は、隔壁 13に対して回転自在に 支持されており、またアーム A2 (図 22)を支持するリング状部材 23'を、ボルト 24'に よって固定している。更に、ボルト 24'は、半径方向内方に延在する磁気シールド板 25,を、リング状部材 23'に共締めしている。  Next, the force for explaining the direct drive motor D2 Here, the main body 12 constitutes a housing. The cylindrical member 23 of the direct drive motor D1 described above extends upward to a position where it is superimposed on the direct drive motor D2, and the inner peripheral surface thereof is a four-point contact ball bearing 19 'used in a vacuum. The outer ring is fitted and fitted with bolts 20 '. On the other hand, the inner ring of the bearing 19 ′ is fitted to the outer periphery of the second outer rotor 21 ′ and is fixed by the bolt 22 ′. Here, the bolt 22 'and the magnetic shield plate 41 extending inward in the radial direction are fastened together. The second outer rotor 21 ′ is rotatably supported with respect to the partition wall 13, and a ring-shaped member 23 ′ that supports the arm A2 (FIG. 22) is fixed by a bolt 24 ′. Further, the bolt 24 'fastens the magnetic shield plate 25 extending inward in the radial direction together with the ring-shaped member 23'.
[0135] 磁気シールド板 41, 25 'は、磁性体である SPCC鋼板をプレス成型カ卩ェ後に、防 鲭および耐食性を高めるためにニッケルめっきを施している。磁気シールド板 41, 2 5,は、第 1外側ロータ 21及び第 2外側ロータ 21,の間に介在して磁気的シールドを 形成し、それらからの磁束漏れによるお互いの連れ回しを防止している。即ち、磁気 シールド板 25'は、非磁性体であるリング状部材 23'挟んでヨーク 21b'に締結してお り、それにより不要な磁気回路を生成することを防いでいる。この磁気シールド板 41, 25,により、ロータ相互の磁気干渉を防ぐことができるので、 2軸同軸モータシステム でありながら全体の軸長を抑えた構成が可能である。磁気シールド板 41は外部から の異物吸引を防止している。  [0135] The magnetic shield plates 41 and 25 'are subjected to nickel plating in order to improve the anti-corrosion and corrosion resistance after press molding the SPCC steel plate, which is a magnetic material. The magnetic shield plates 41 and 25 are interposed between the first outer rotor 21 and the second outer rotor 21 to form a magnetic shield and prevent mutual rotation due to magnetic flux leakage from them. . That is, the magnetic shield plate 25 ′ is fastened to the yoke 21b ′ with the ring-shaped member 23 ′, which is a non-magnetic material, interposed therebetween, thereby preventing unnecessary magnetic circuits from being generated. Since the magnetic shield plates 41 and 25 can prevent magnetic interference between the rotors, it is possible to achieve a configuration in which the overall shaft length is suppressed while being a biaxial coaxial motor system. The magnetic shield plate 41 prevents foreign matter from being attracted from the outside.
[0136] 軸受 19'は、ラジアル、アキシアル、モーメント荷重を 1個の軸受で負荷できる 4点 接触玉軸受である。この形式の軸受を用いることにより、ダイレクトドライブモータ D2 の軸受は 1個で済むため、本発明の 2軸同軸モータを薄型化できる。内外輪とも耐食 性が高くかつ焼入れによる硬化が得られるマルテンサイト系ステンレスを材料とし。転 動体はセラミックボール、潤滑剤は真空であっても固化しない真空用のグリスを用い ている。 [0136] The bearing 19 'is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing. By using this type of bearing, direct drive motor D2 Since only one bearing is required, the biaxial coaxial motor of the present invention can be thinned. The inner and outer rings are made of martensitic stainless steel, which has high corrosion resistance and can be hardened by quenching. The rolling elements are ceramic balls, and the lubricant is vacuum grease that does not solidify even under vacuum.
尚、軸受 19'は内輪と外輪に金や銀などの軟質金属をプレーティングして、真空中 でもアウトガス放出のな 、金属潤滑としたものを用いてもよく、また 4点接触式玉軸受 であるので、アーム A1からの第 1外側ロータ 21,がチルトする方向のモーメントを受 けることができるが、 4点接触式に限らず、クロスローラ、クロスボール、クロステーパ軸 受も用いることができ、予圧状態で用いても良いし、潤滑性向上のためフッ素系被膜 処理(DFO)を行っても良!ヽ。  The bearing 19 'may be made of a metal lubrication that is plated with a soft metal such as gold or silver on the inner ring and the outer ring and does not release outgas even in vacuum, or a four-point contact ball bearing. As a result, it is possible to receive a moment in the direction in which the first outer rotor 21 from the arm A1 tilts. However, not only a four-point contact type, but also a cross roller, a cross ball, and a cross taper bearing can be used. It can be used under preload conditions, or it can be treated with fluorine coating (DFO) to improve lubricity!ヽ.
[0137] 第 2外側ロータ 21 'は、永久磁石 21a'と、磁路を形成するため磁性体から成る円環 状のヨーク 21b'と、永久磁石 21a'とヨーク 21b'を機械的に締結するための非磁性 体力ゝらなるくさび (不図示)によって構成されている。永久磁石 21a'は、 32極の構成 で N極、 S極の磁石が各 16個交互に磁性金属からなり、極ごとに分割されたセグメン ト形式であり、その個々の形状は扇形である。内径と外径の円弧中心は同一である 力 円周方向端面の接線交点を永久磁石 21a'寄りとすることで、くさびをヨーク 21b' 外径側からねじで締め上げることにより永久磁石 21a'をヨーク 21b'に締結している。 このような構成とすることにより、接着剤など、アウトガスを発生する固定部材を用いる ことなく永久磁石を締結できる。永久磁石 21a'はエネルギー積の高いネオジゥム(N d-Fe-B)系磁石であり、耐食性を高めるためにニッケルコーティングを施してある 。ヨーク 21b'は高い磁性を有する低炭素鋼を材料とし、加工成型後に、防鲭および 耐食性を高め、かつ軸受交換時の磨耗を防ぐためにニッケルめっきを施して ヽる。  [0137] The second outer rotor 21 'mechanically fastens the permanent magnet 21a', the annular yoke 21b 'made of a magnetic material to form a magnetic path, and the permanent magnet 21a' and the yoke 21b '. It is made up of a wedge (not shown). Permanent magnet 21a 'is a segment type with a configuration of 32 poles, with 16 N-pole and S-pole magnets alternately made of magnetic metal and divided into poles, each of which has a sector shape. The center of the arc of the inner and outer diameters is the same force.By making the tangent intersection of the circumferential end face closer to the permanent magnet 21a ', the wedge is tightened from the outer diameter side of the yoke 21b' by screwing the permanent magnet 21a ' It is fastened to the yoke 21b '. With this configuration, the permanent magnet can be fastened without using a fixing member that generates outgas, such as an adhesive. Permanent magnet 21a 'is a high energy product neodymium (Nd-Fe-B) based magnet, which is coated with nickel to enhance corrosion resistance. Yoke 21b 'is made of low-carbon steel with high magnetism and is plated with nickel in order to improve wear resistance and corrosion resistance and prevent wear during bearing replacement after processing and molding.
[0138] また、第 2外側ロータ 21 'は、軸受 19'の内輪とリング状部材 23'を嵌合固定する面 を有している。 4点接触玉軸受 19'は非常に薄肉の軸受であり、組みつけられる部材 の精度や線膨張係数の差異により回転精度や摩擦トルクが大きな影響を受ける。よ つて本実施の形態の場合は、軸受 19'の内輪を、加工精度を出しやすくかつ線膨張 係数が軸受の軌道輪材質と略同一であるヨーク 21bに締まり嵌めあるいは中間嵌め とし、軸受 19,の外輪を、オーステナイト系ステンレス製の軸受ホルダやアルミニウム 製のボスにすきま嵌めとすることで、軸受 19 'の回転精度の低下や温度上昇による摩 擦トルクの上昇を防ぐ構成となって 、る。 [0138] Further, the second outer rotor 21 'has a surface for fitting and fixing the inner ring of the bearing 19' and the ring-shaped member 23 '. The four-point contact ball bearing 19 'is a very thin bearing, and its rotational accuracy and friction torque are greatly affected by differences in the accuracy and linear expansion coefficient of the assembled parts. Therefore, in the case of the present embodiment, the inner ring of the bearing 19 ′ is tightly fitted or intermediately fitted to the yoke 21b, which is easy to obtain machining accuracy and has the same linear expansion coefficient as the bearing ring material of the bearing. Outer ring of austenitic stainless steel bearing holder and aluminum By adopting a clearance fit to the made boss, the bearing 19 'is prevented from lowering the rotational accuracy and preventing the friction torque from increasing due to temperature rise.
[0139] 隔壁 13の半径方向内側において、第 2外側ロータ 21 'の内周面に対向するように して、第 2ステータ 29 'が配置されている。第 2ステータ 29 'は、本体 12の中央で半径 方向に延在したフランジ部 12aの円筒状に変形した上部に取り付けられており、電磁 鋼板の積層材で形成され、各突極には絶縁処理としてボビンを嵌め込んだ後にモー タコイルが集中巻されている。第 2ステータ 29 'の外径は隔壁 13の内径と略同一もし くは小さい寸法としている。  [0139] On the radially inner side of the partition wall 13, a second stator 29 'is disposed so as to face the inner peripheral surface of the second outer rotor 21'. The second stator 29 ′ is attached to the upper part of the flange 12 a that extends in the radial direction in the center of the main body 12, and is formed of a laminated material of electromagnetic steel sheets, and each salient pole is insulated. As shown, the motor coil is concentrated after the bobbin is fitted. The outer diameter of the second stator 29 ′ is approximately the same as or smaller than the inner diameter of the partition wall 13.
[0140] 第 2ステータ 29 'の半径方向内側に、第 2内側ロータ 30'が配置されている。第 2内 側ロータ 30'は、本体 12の外周面にボルト固定されたレゾルバホルダ 32'に対して、 玉軸受 33 'により回転自在に支持されている。第 2内側ロータ 30'の外周面には、バ ックヨーク 30b 'を介して永久磁石 30a'が取り付けられている。永久磁石 30a'は、第 2外側ロータ 21 'の永久磁石 21a'と同様に 32極の構成で N極、 S極の磁石が各 16 個交互に磁性金属力もなつている。従って、第 2内側ロータ 30'は、第 2ステータ 29 ' によって第 2外側ロータ 21 'に同期して回転駆動されるようになっている。  [0140] A second inner rotor 30 'is arranged on the radially inner side of the second stator 29'. The second inner rotor 30 ′ is rotatably supported by a ball bearing 33 ′ with respect to a resolver holder 32 ′ bolted to the outer peripheral surface of the main body 12. A permanent magnet 30a ′ is attached to the outer peripheral surface of the second inner rotor 30 ′ via a back yoke 30b ′. The permanent magnet 30a ′ has a configuration of 32 poles, like the permanent magnet 21a ′ of the second outer rotor 21 ′, and has 16 magnetic poles each having N poles and S poles alternately. Accordingly, the second inner rotor 30 ′ is rotationally driven by the second stator 29 ′ in synchronization with the second outer rotor 21 ′.
[0141] 第 1内側ロータ 30'を回転自在に支持する軸受 33 'は、ラジアル、アキシアル、モー メント荷重を 1個の軸受で負荷できる 4点接触玉軸受である。この形式の軸受を用い ることにより、 1個の軸受で済むため、ダイレクトドライブモータ D2を薄型化できる。隔 壁 13の内部は大気環境であるため、一般的な軸受鋼と鉱油を基油としたグリス潤滑 を用 、た軸受を適用できる。  [0141] The bearing 33 ′ that rotatably supports the first inner rotor 30 ′ is a four-point contact ball bearing that can apply radial, axial, and moment loads with a single bearing. By using this type of bearing, only one bearing is required, so the direct drive motor D2 can be made thinner. Since the inside of the partition wall 13 is an atmospheric environment, a bearing using grease lubrication based on general bearing steel and mineral oil can be applied.
隔壁 13内部は大気環境であるため、永久磁石 30a'はバックヨーク 30b'に接着固 定してある。永久磁石 30a'はエネルギー積の高いネオジゥム(Nd— Fe— B)系磁石 であり、鲭による減磁を防ぐためにニッケルコーティングを施してある。ヨーク 30b 'は 高い磁性を有する低炭素鋼を材料とし、加工成形後に防鲭のためにクロメートめつき を施している。  Since the inside of the partition wall 13 is an atmospheric environment, the permanent magnet 30a ′ is bonded and fixed to the back yoke 30b ′. The permanent magnet 30a 'is a neodymium (Nd-Fe-B) magnet with a high energy product and is coated with nickel to prevent demagnetization due to defects. Yoke 30b 'is made of low-carbon steel with high magnetism, and is chromated to prevent fouling after machining.
[0142] 第 2内側ロータ 30'の内周には、回転角度を計測する検出器として、レゾルバロー タ 34a'及び 34bを組みつけており、それに対向する形で、レゾルバホルダ 32'の外 周に、レゾルノ ステータ 35 ' , 36 'を取り付けている力 本実施の形態では、高分解 能のインクリメンタルレゾルバステータ 35,と、 1回転のいずれの位置にロータがある かを検出できるアブソリュートレゾルバステータ 36 'とを 2層に配置している。このため 電源投入時にも、アブソリュートレゾルバロータ 34b 'の回転角度がわかり、原点復帰 が不要であり、また、コイルに対する磁石の電気的位相角度がわ力るため、ダイレクト ドライブモータ D2の相対回転角度を、極検出センサを用いることなく可能となってい る。 [0142] Resolver rotors 34a 'and 34b are assembled on the inner periphery of the second inner rotor 30' as detectors for measuring the rotation angle, and are arranged on the outer periphery of the resolver holder 32 'so as to face each other. The resorno stator 35 ′, 36 ′ Incremental resolver stator 35 with high performance and an absolute resolver stator 36 'that can detect the position of the rotor in one rotation are arranged in two layers. For this reason, even when the power is turned on, the rotational angle of the absolute resolver rotor 34b 'is known, no return to origin is required, and the electrical phase angle of the magnet with respect to the coil is different. This is possible without using a pole detection sensor.
[0143] レゾルバホルダ 32'と第 2内側ロータ 30'は、モータの界磁およびモータコイルから の電磁ノイズが角度検出器であるレゾルバステータ 35 ' , 36 'に伝達されないように、 磁性体である炭素鋼を材料とし、加工成型後に防鲭のためにクロメートめつきを施し ている。  [0143] The resolver holder 32 'and the second inner rotor 30' are magnetic bodies so that electromagnetic noise from the motor field and the motor coil is not transmitted to the resolver stators 35 'and 36' which are angle detectors. Carbon steel is used as a material, and chromate plating is applied after processing to prevent fouling.
本実施の形態によれば、第 2外側ロータ 21 'に対して、磁気カップリング作用により 第 2内側ロータ 30'が同速で回転し、すなわち連れ回るので、第 2外側ロータ 21 'の 回転角を隔壁 13越しに検出することができる。また、本実施の形態では、モータを形 成する部品ゃノ、ウジングを用いることなくレゾルバ単体で軸受 33を有しており、従つ てハウジングに組み込む前に、レゾルバ単体での偏芯調整ゃレゾルバコイルの位置 調整などの精度調整が行えるので、ハウジングゃ両フランジに調整用の穴や切り欠 きを別途設ける必要がない。  According to the present embodiment, the second inner rotor 30 ′ rotates at the same speed by the magnetic coupling action with respect to the second outer rotor 21 ′, that is, rotates with the rotation angle of the second outer rotor 21 ′. Can be detected through the partition wall 13. Further, in this embodiment, the parts forming the motor, the bearing 33 is provided as a single resolver without using uzing, and therefore, the eccentricity adjustment with the single resolver is performed before being incorporated into the housing. Since it is possible to adjust the accuracy of the resolver coil position, etc., there is no need to provide separate adjustment holes or cutouts on both flanges of the housing.
[0144] 本実施の形態に用いている高分解能の可変リラクタンス形レゾルバにおいて、イン タリメンタルレゾルバロータ 34a'は、一定のピッチを有する複数のスロット歯列を有し 、インクリメンタルステータレゾルバステータ 35,の外周面には、回転軸と平行に各磁 極でインクリメンタルレゾルバロータ 34a'に対して位相をずらした歯が設けられており 、コイルが各磁極に卷回されている。第 2内側ロータ 30'と一体でインクリメンタルレゾ ルバロータ 34a,が回転すると、インクリメンタルレゾルバステータ 35,の磁極との間の リラクタンスが変化し、インクリメンタルレゾルバロータ 34a'の 1回転でリラクタンス変化 の基本波成分が n周期となるようにして、そのリラクタンス変化を検出して、図 24に例 を示すレゾルバ制御回路によりデジタルィ匕し、位置信号として利用することでインクリ メンタルレゾルバロータ 34a'即ち第 2内側ロータ 30'の回転角度 (又は回転速度)を 検出するようになっている。レゾルバロータ 34a,、 34b,と、レゾルバステータ 35,, 36 'とで検出器を構成する。 In the high resolution variable reluctance resolver used in the present embodiment, the incremental resolver rotor 34a ′ has a plurality of slot tooth rows having a constant pitch, and the incremental stator resolver stator 35, On the outer peripheral surface, teeth whose phases are shifted with respect to the incremental resolver rotor 34a ′ by each magnetic pole in parallel with the rotation axis are provided, and a coil is wound around each magnetic pole. When the incremental resolver rotor rotor 34a rotates integrally with the second inner rotor 30 ', the reluctance between the magnetic poles of the incremental resolver stator 35 changes, and the fundamental wave component of the reluctance change is changed by one revolution of the incremental resolver rotor 34a'. The change in reluctance is detected so that there are n cycles, digitalized by the resolver control circuit shown in FIG. 24 as an example, and used as a position signal, so that the incremental resolver rotor 34a ′, that is, the second inner rotor 30 The rotation angle (or rotation speed) of 'is detected. Resolver rotors 34a, 34b, and resolver stators 35, 36 'And configure the detector.
[0145] 本実施の形態においては、隔壁 13の底部 13aが、本体 12に対して軸方向に拘束 されていないので、寸法精度や機械精度および温度変化に起因して、隔壁 13に寸 法誤差や変形が生じた場合でも、本体 12に底部 13aが押しつけられたり引っ張られ 出したりしないので、隔壁 13の軸方向応力や曲げ応力を緩和することができ、それ によりシール不良や破壊などを防ぐことができる。また、底部 13aの深さ及び本体 12 の長さ寸法を高精度に加工しなくて済むため、より低コストなダイレクトドライブモータ を提供できる。  [0145] In the present embodiment, the bottom 13a of the partition wall 13 is not restrained in the axial direction with respect to the main body 12, so that a dimensional error is caused in the partition wall 13 due to dimensional accuracy, mechanical accuracy, and temperature change. Even if a deformation occurs, the bottom 13a is not pressed against or pulled out of the main body 12, so the axial stress and bending stress of the partition wall 13 can be relieved, thereby preventing seal failure and breakage. Can do. In addition, since it is not necessary to process the depth of the bottom 13a and the length of the main body 12 with high precision, a lower cost direct drive motor can be provided.
又、円筒部 13bを薄肉とすることで、ロータとステータ間の磁束密度量を確保すること が容易となっている。  Further, by making the cylindrical portion 13b thin, it is easy to ensure the amount of magnetic flux density between the rotor and the stator.
[0146] 更に、本実施の形態によれば、第 1外側ロータ 21と第 2外側ロータ 21 'との間に、磁 気シールド板 25, 41を配置しているので、相互の磁気的干渉を抑制し、誤駆動や連 れ周りなどの不具合を回避している。又、本体 12においてダイレクトドライブモータ D 1, D2の間を延在するフランジ部 12aの外周縁 12bは、磁性体である炭素鋼を材料 とし、第 1ステータ 29と第 2ステータ 29 'との間に介在し、それらが洩れ磁束の影響を 受けることで第 1外側ロータ 21又は第 2外側ロータ 21,に誤った回転方向の推力を発 生させな!/、ように、互 、の磁界を遮蔽する磁気シールドとして機能する。  Furthermore, according to the present embodiment, since the magnetic shield plates 25 and 41 are arranged between the first outer rotor 21 and the second outer rotor 21 ′, mutual magnetic interference is prevented. Suppresses and avoids malfunctions such as erroneous driving and surroundings. Further, the outer peripheral edge 12b of the flange portion 12a extending between the direct drive motors D1 and D2 in the main body 12 is made of carbon steel, which is a magnetic material, between the first stator 29 and the second stator 29 ′. So that the first outer rotor 21 or the second outer rotor 21 does not generate a thrust in the wrong rotation direction due to the influence of the leakage magnetic flux! / Functions as a magnetic shield.
[0147] 尚、フランジ部 12aを中心として第 1ステータ 29と第 2ステータ 29 'を上下に配置し、 その半径方向内側にレゾルバを配置している。また、本体 12は中空構造となってお り、フランジ部 12aには中央に連通する径方向の通し穴 12dが少なくとも 1つ設けてあ り、ここを介してモータ配線を本体 12の中央に引き出す構造となっている。一方、本 体 12の両端部にはそれぞれ少なくとも 1つの切り欠き 12e、 12eが設けてあり、これら を介してレゾルバの配線を本体 12の中央に引き出す構造となっている。このような構 造とすることで、ハウジング側から順に、ダイレクトモータ D1のレゾルノ 、ステータ 29 、ダイレクトモータ D2のステータ 29,、そのレゾルバの順で配置することが可能となり 、 2軸でありながら容易にステータとレゾルバの角度調整が行える。そこで、基準とな る外側ロータを回転駆動する設備を別に用意しておけば、その設備にステータとレゾ ルバを組み込んだ本体 12をセットすることにより、高精度にステータに対するレゾル バの角度調整ができるので、コンミテーシヨンずれによる角度位置決め精度の低下を 防ぎ、かつ、本発明の 2軸同軸モータに対する駆動制御回路の互換性を高めること ができる。 Note that the first stator 29 and the second stator 29 ′ are arranged vertically with the flange portion 12 a as the center, and a resolver is arranged on the radially inner side. The main body 12 has a hollow structure, and the flange portion 12a has at least one radial through hole 12d communicating with the center through which the motor wiring is drawn out to the center of the main body 12. It has a structure. On the other hand, at least one notch 12e, 12e is provided at each end of the main body 12, and the resolver wiring is drawn out to the center of the main body 12 through these. With this structure, the direct motor D1 resolver, the stator 29, the direct motor D2 stator 29, and the resolver can be arranged in this order from the housing side. In addition, the angle of the stator and resolver can be adjusted. Therefore, if a facility for rotationally driving the reference outer rotor is prepared separately, the main body 12 incorporating the stator and resolver is set in the facility, so that the resolution with respect to the stator can be accurately achieved. Since the angle of the bar can be adjusted, it is possible to prevent the angle positioning accuracy from being lowered due to the deviation of the commutation, and to improve the compatibility of the drive control circuit with the two-axis coaxial motor of the present invention.
[0148] 図 25は、ダイレクトドライブモータ Dl、 D2の駆動回路を示すブロック図である。外 部のコンピュータ力もモータ回転指令が入力されたとき、ダイレクトドライブモータ D1 用のモータ制御回路 DMC1及びダイレクトドライブモータ D2用のモータ制御回路 D MC2は、それぞれ、その CPUから 3層アンプ (AMP)に駆動信号を出力し、 3層アン プ (AMP)力もダイレクトドライブモータ Dl、 D2に駆動電流が供給される。それにより ダイレクトドライブモータ Dl、 D1の外側ロータ 21, 21 'が独立して回転し、アーム A1 , A2 (図 22)を移動させるようになつている。外側ロータ 21, 21 'が回転すると、上述 のようにして回転角度を検出したレゾルバステータ 35, 36, 35,、 36,からレゾルバ 信号が出力されるので、それをレゾルバデジタル変換器 (RDC)でデジタル変換した 後に入力した CPUは、外側ロータ 21, 21 'が指令位置に到達した力否かを判断し、 指令位置に到達すれば、 3層アンプ (AMP)への駆動信号を停止することで外側口 ータ 21, 21 'の回転を停止させる。これにより外側ロータ 21, 21 'のサーボ制御が可 能となる。  FIG. 25 is a block diagram showing a drive circuit for the direct drive motors Dl and D2. When a motor rotation command is also input to the external computer force, the motor control circuit DMC1 for the direct drive motor D1 and the motor control circuit DMC2 for the direct drive motor D2 are each sent from the CPU to the three-layer amplifier (AMP). The drive signal is output, and the drive current is supplied to the direct drive motors Dl and D2 with a three-layer amplifier (AMP) force. As a result, the outer rotors 21 and 21 ′ of the direct drive motors Dl and D1 rotate independently to move the arms A1 and A2 (FIG. 22). When the outer rotor 21, 21 'rotates, the resolver signal is output from the resolver stator 35, 36, 35, 36, which has detected the rotation angle as described above, and is output to the resolver digital converter (RDC). The CPU input after digital conversion judges whether or not the outer rotor 21, 21 'has reached the command position, and when it reaches the command position, it stops the drive signal to the 3-layer amplifier (AMP). Stop rotation of outer ports 21, 21 '. This enables servo control of the outer rotors 21, 21 '.
[0149] 真空環境での複数軸のアーム駆動の際には、電源投入時に現在のアーム A1およ び A2の回転位置を認識しないと真空槽の壁や、真空槽のシャツタにアーム A1等を ぶっけてしまう可能性がある力 本実施の形態では、回転軸の 1回転の絶対位置を 検出するアブソリュートレゾルバステータ 36および 36'と、より分解能の細かい回転位 置を検出するインクリメンタルレゾルバステータ 35および 35,からなる可変リラクタンス 型レゾルバを採用しているので、外側ロータ 21、 21,即ちアーム Al, A2の回転位置 制御を高精度に行える。  [0149] When driving multiple axes in a vacuum environment, if the current rotation position of arms A1 and A2 is not recognized when the power is turned on, the arm A1 or the like is attached to the wall of the vacuum chamber or the shatter of the vacuum chamber. In this embodiment, the absolute resolver stators 36 and 36 'that detect the absolute position of one rotation of the rotating shaft, and the incremental resolver stator 35 and that detect a rotational position with finer resolution are used in this embodiment. 35, a variable reluctance resolver is used, so that the rotational position of the outer rotors 21 and 21, that is, the arms Al and A2, can be controlled with high accuracy.
[0150] 尚、ここでは内側ロータ 30の回転検出にレゾルバを採用した力 検出器を隔壁 13 の内部の大気側に配置できるため、一般に高精度位置決めに使用するサーボモー タにおいては高精度で滑らかに駆動するための位置検出手段として採用されている 光学式ェンコーダや、磁気抵抗素子を使用した磁気式ェンコ一ダ等も使用できる。 図 26は、第 2の実施の形態に力かる図 23と同様な断面図である。本実施の形態に ついては、図 23〜図 25の実施の形態に対して異なる部位について説明し、同様な 機能を有する部位については同じ符号を付すことで説明を省略する。尚、図 26の構 成においては、内側ロータ、ステータ、レゾルバは簡略一体ィ匕して示している力 これ らは図 23に示す構成と同様である。 [0150] It should be noted that here, a force detector that employs a resolver for detecting the rotation of the inner rotor 30 can be placed on the atmosphere side inside the partition wall 13, so a servo motor generally used for high-precision positioning is highly accurate and smooth. An optical encoder adopted as a position detecting means for driving, a magnetic encoder using a magnetoresistive element, or the like can also be used. FIG. 26 is a cross-sectional view similar to FIG. 23 that works on the second embodiment. In this embodiment Accordingly, different parts from the embodiment shown in FIGS. 23 to 25 will be described, and parts having similar functions will be denoted by the same reference numerals and description thereof will be omitted. In the configuration of FIG. 26, the inner rotor, the stator, and the resolver are shown as a simple integrated force. These are the same as the configuration shown in FIG.
[0151] 本実施の形態においては、円筒状の本体 112の上面に取り付けられた上部円板 部 110の段部 11 Oaに、ボルトを用 、て環状部 113aを O―リング ORを介して気密的 に結合している。環状部 113aの下部は、薄く半径方向外方に延在したフランジ部 11 3cとなっており、その折り曲げられた外縁に薄肉円筒部 113bの上端を TIG溶接して なる。環状部 113aの取り付け部の肉厚は、フランジ部 113c及び薄肉円筒部 113b の肉厚より厚くなつている。薄肉円筒部 113bの下端は、上述の実施の形態と同様に ホルダ 15に TIG溶接されて 、る。環状部 113aとフランジ部 113cと薄肉円筒部 113b とホルダ 15とで隔壁 113を構成する。又、円板部 110と本体 112と円板 10でノヽウジ ングを構成する。 [0151] In the present embodiment, bolts are used for the stepped portion 11Oa of the upper disc portion 110 attached to the upper surface of the cylindrical main body 112, and the annular portion 113a is hermetically sealed via the O-ring OR. Are connected. The lower portion of the annular portion 113a is a flange portion 113c that is thin and extends radially outward. The upper end of the thin cylindrical portion 113b is TIG welded to the bent outer edge. The thickness of the attachment portion of the annular portion 113a is thicker than the thickness of the flange portion 113c and the thin cylindrical portion 113b. The lower end of the thin cylindrical portion 113b is TIG welded to the holder 15 in the same manner as in the above embodiment. The annular portion 113a, the flange portion 113c, the thin cylindrical portion 113b, and the holder 15 constitute a partition wall 113. Further, the disc part 110, the main body 112 and the disc 10 constitute a nosing.
[0152] 本実施の形態では、上部円板部 110の上面は、蓋部材 101により閉止され、その 外周に取り付けられた軸受ホルダ 107は、軸受 19'を支持するようになっている。従 つて、ダイレクトドライブモータ D1の円筒状部材 123は、ダイレクトドライブモータ D2 側まで延在していない。ダイレクトドライブモータ D1の軸受ホルダ 117は、円板 10と 一体になつている。上部円板部 110,蓋部材 101,軸受ホルダ 107は、耐食性が高 Vヽオーステナイト系ステンレスを材料として 、る。  [0152] In the present embodiment, the upper surface of the upper disc portion 110 is closed by the lid member 101, and the bearing holder 107 attached to the outer periphery thereof supports the bearing 19 '. Therefore, the cylindrical member 123 of the direct drive motor D1 does not extend to the direct drive motor D2 side. The bearing holder 117 of the direct drive motor D1 is integrated with the disc 10. The upper disk part 110, the lid member 101, and the bearing holder 107 are made of V-austenitic stainless steel having high corrosion resistance.
[0153] 上部円板部 110の、軸受ホルダ 107の取り付け外周面は、薄肉円筒部 113bより半 径方向内側に位置しており、従って、軸受ホルダ 107を上部円板部 110より取り外せ ば、 2つの外側ロータ 21, 21 'は、上部円板部 110を分解することなく上方に取り外 し可能となっている。従って、メンテナンス時などに気密構造を分解する必要はなぐ 作業を容易にすることができる。  [0153] The mounting outer peripheral surface of the upper disc portion 110 of the bearing holder 107 is located on the inner side in the radial direction from the thin cylindrical portion 113b. Therefore, if the bearing holder 107 is removed from the upper disc portion 110, 2 The two outer rotors 21 and 21 ′ can be removed upward without disassembling the upper disk part 110. Therefore, it is possible to facilitate work that does not require disassembly of the airtight structure during maintenance.
本実施の形態においては、隔壁 113の環状部(取り付け部) 113aの肉厚に対し、 フランジ部 (連結部) 113cの肉厚は薄くなつているので、寸法精度や機械精度およ び温度変化に起因して、隔壁 113に軸方向の伸縮応力が生じた場合でも、フランジ 部 113cが変形することで、隔壁 113の軸方向応力や曲げ応力を緩和することができ 、それによりシール不良や破壊などを防ぐことができる。また、環状部 113aおよびそ れが取り付けられる上部円板部 110や本体 12を高精度に加工しなくて済むため、よ り低コストなダイレクトドライブモータを提供できる。 In the present embodiment, the thickness of the flange portion (connecting portion) 113c is thinner than the thickness of the annular portion (attachment portion) 113a of the partition wall 113, so that the dimensional accuracy, mechanical accuracy, and temperature change Even if an axial expansion / contraction stress is generated in the partition wall 113 due to the above, the flange portion 113c is deformed, so that the axial stress and bending stress of the partition wall 113 can be relaxed. Thus, it is possible to prevent a sealing failure or destruction. Further, since it is not necessary to process the annular portion 113a and the upper disk portion 110 and the main body 12 to which the annular portion 113a is attached with high precision, a lower cost direct drive motor can be provided.
[0154] 図 27は、第 3の実施の形態に力かる図 23と同様な断面図である。本実施の形態に ついては、図 26の実施の形態に対して異なる部位について説明し、同様な機能を有 する部位については同じ符号を付すことで説明を省略する。尚、図 27の構成におい ても、内側ロータ、ステータ、レゾルバは簡略一体ィ匕して示している力 これらは図 23 に示す構成と同様である。  FIG. 27 is a cross-sectional view similar to FIG. 23 that works on the third embodiment. With respect to the present embodiment, different parts from the embodiment of FIG. 26 will be described, and parts having similar functions will be denoted by the same reference numerals and description thereof will be omitted. In the configuration of FIG. 27, the inner rotor, the stator, and the resolver are shown as a simple integrated force. These are the same as the configuration shown in FIG.
本実施の形態においては、円筒状の本体 112の上面に取り付けられた上部円板 部 110の段部 11 Oaに、ボルトを用 、て環状部 213aを O―リング ORを介して気密的 に結合している。環状部 213aの下部は、薄板状であって波形に半径方向外方に延 在したフランジ部 213cとなっており、その折り曲げられた外縁に薄肉円筒部 213bの 上端を TIG溶接してなる。環状部 213aの取り付け部の肉厚は、フランジ部 213c及 び薄肉円筒部 213bの肉厚より厚くなつている。薄肉円筒部 213bの下端は、上述の 実施の形態と同様にホルダ 15に TIG溶接されている。環状部 213aとフランジ部 213 cと薄肉円筒部 213bとホルダ 15とで隔壁 213を構成する。又、円板部 110と本体 11 2と円板 10とでハウジングを構成する。  In the present embodiment, the annular portion 213a is hermetically coupled to the step portion 11 Oa of the upper disc portion 110 attached to the upper surface of the cylindrical main body 112 through an O-ring OR using bolts. is doing. The lower portion of the annular portion 213a is a thin plate-like flange portion 213c extending radially outward in a wave shape, and is formed by TIG welding the upper end of the thin cylindrical portion 213b to the bent outer edge. The thickness of the attachment portion of the annular portion 213a is thicker than the thickness of the flange portion 213c and the thin cylindrical portion 213b. The lower end of the thin-walled cylindrical portion 213b is TIG welded to the holder 15 as in the above-described embodiment. The annular portion 213a, the flange portion 213c, the thin cylindrical portion 213b, and the holder 15 constitute a partition wall 213. Further, the disk part 110, the main body 112, and the disk 10 constitute a housing.
[0155] 本実施の形態においても、隔壁 213の環状部(取り付け部) 213aの肉厚に対し、フ ランジ部 (連結部) 213cの肉厚は薄くなつており、更には、環状部 213aと薄肉円筒 部 213bとを連結するフランジ部 213cが波形となっているので、寸法精度や機械精 度および温度変化に起因して、隔壁 213に軸方向の伸縮応力が生じた場合でも、フ ランジ部 213cが変形することで、隔壁 213の軸方向応力や曲げ応力を緩和すること ができ、それによりシール不良や破壊などを防ぐことができる。また、環状部 213aお よびそれが取り付けられる上部円板部 110や本体 12を高精度に加工しなくて済むた め、より低コストなダイレクトドライブモータを提供できる。  Also in the present embodiment, the thickness of the flange portion (connecting portion) 213c is thinner than the thickness of the annular portion (attachment portion) 213a of the partition wall 213, and further, the annular portion 213a The flange portion 213c that connects the thin cylindrical portion 213b is corrugated, so even if axial expansion and contraction stress occurs in the partition wall 213 due to dimensional accuracy, mechanical accuracy, and temperature changes, the flange portion By deforming 213c, axial stress and bending stress of the partition wall 213 can be relieved, thereby preventing seal failure and breakage. Further, since it is not necessary to process the annular portion 213a and the upper disk portion 110 and the main body 12 to which the annular portion 213a is attached with high accuracy, a lower cost direct drive motor can be provided.
[0156] 図 28は、第 4の実施の形態に力かる図 23と同様な断面図である。本実施の形態に ついては、図 26の実施の形態に対して異なる部位について説明し、同様な機能を有 する部位については同じ符号を付すことで説明を省略する。尚、図 25の構成におい ても、内側ロータ、ステータ、レゾルバは簡略一体ィ匕して示している力 これらは図 23 に示す構成と同様である。 FIG. 28 is a cross-sectional view similar to FIG. 23 that works on the fourth embodiment. With respect to the present embodiment, different parts from the embodiment of FIG. 26 will be described, and parts having similar functions will be denoted by the same reference numerals and description thereof will be omitted. Note that the configuration shown in FIG. However, the inner rotor, the stator, and the resolver are shown as a simple integrated force. These are the same as the configuration shown in FIG.
本実施の形態においては、円筒状の本体 112の上面に取り付けられた上部円板 部 110の段部 11 Oaに、ボルトを用 、て環状部 313aを O―リング ORを介して気密的 に結合している。筒状部 313eは、ほぼ同一肉厚の小円筒部 313cと大円筒部 313b とをフランジ部 313dにより連結した形状を有しており、円筒部 313cの上部は、環状 部 313aにの内周面に TIG溶接されている。環状部 313aの肉厚は、筒状部 313eの 肉厚より厚くなつている。大円筒部 313bの下端は、上述の実施の形態と同様にホル ダ 15に TIG溶接されている。環状部 313aと筒状部 313eとホルダ 15とで隔壁 313を 構成する。又、円板部 110と本体 112と円板 10とでハウジングを構成する。  In the present embodiment, the annular portion 313a is hermetically coupled to the step portion 11 Oa of the upper disk portion 110 attached to the upper surface of the cylindrical main body 112 through an O-ring OR using bolts. is doing. The cylindrical portion 313e has a shape in which a small cylindrical portion 313c and a large cylindrical portion 313b having substantially the same thickness are connected by a flange portion 313d. The upper portion of the cylindrical portion 313c is an inner peripheral surface of the annular portion 313a. TIG welded. The thickness of the annular portion 313a is thicker than the thickness of the cylindrical portion 313e. The lower end of the large cylindrical portion 313b is TIG welded to the holder 15 as in the above-described embodiment. The annular portion 313a, the tubular portion 313e, and the holder 15 constitute a partition wall 313. The disk portion 110, the main body 112, and the disk 10 constitute a housing.
[0157] 本実施の形態においても、隔壁 313の環状部(取り付け部) 313aの肉厚に対し、筒 状部 313eの肉厚は薄くなつているので、寸法精度や機械精度および温度変化に起 因して、隔壁 313に軸方向の伸縮応力が生じた場合でも、フランジ部 313dが変形す ることで、隔壁 313の軸方向応力や曲げ応力を緩和することができ、それによりシー ル不良や破壊などを防ぐことができる。また、環状部 313aおよびそれが取り付けられ る上部円板部 110や本体 12を高精度に加工しなくて済むため、より低コストなダイレ タトドライブモータを提供できる。  [0157] Also in the present embodiment, the thickness of the tubular portion 313e is thinner than the thickness of the annular portion (attachment portion) 313a of the partition wall 313, which causes dimensional accuracy, mechanical accuracy, and temperature changes. Therefore, even when an axial expansion / contraction stress is generated in the partition wall 313, the flange portion 313d is deformed, so that the axial stress and bending stress of the partition wall 313 can be relaxed. Destruction can be prevented. Further, since it is not necessary to process the annular portion 313a and the upper disk portion 110 and the main body 12 to which the annular portion 313a is attached with high accuracy, a lower cost direct drive motor can be provided.
[0158] 以上の実施の形態では、表面磁石型の 32極 36スロットアウターロータ式ブラシレス モータを用いた例を用いて説明した力 この形式のモータに限定されるものではなく In the above embodiment, the force described using the example using the surface magnet type 32-pole 36-slot outer rotor brushless motor is not limited to this type of motor.
、ブラシレスモータであれば適用できるものであり、他の磁極形式、例えば永久磁石 埋め込み型であっても良いし、他のスロットコンビネーションでも良いし、あるいはイン ナロータ型であっても良い。 また、各軸の干渉対策として、軸方向に隣接する軸同士の回転子の極数およびス ロット数が異なる構成としても良い。例えば、 2軸同軸の場合は、第一軸が 32極 36ス ロット、第二軸が 24極 27スロット、 4軸同軸の場合は、第一軸および第三軸が 32極 3 6スロット、第二軸および第四軸が 24極 27スロットといった構成にすれば、各軸の磁 界による回転子および磁気カップリング装置への回転方向の推力発生といった相互 干渉を防ぐことができる。 [0159] また、ロータの永久磁石は、ネオジゥム (Nd— Fe— B)系磁石を用い、耐食性を高 めるためのコ一ティングとして、ニッケルコ一ティングを施した例を用 、て説明したが、 この材質、表面処理に限定されるものではなぐ使用される環境などによって適宜変 更されるものであり、例えばベータアウト時の温度条件によっては高温減磁しにくい サマリウム ·コバルト(Sm'Co)系の磁石を用いるべきであり、超真空中で使用される のであればアウトガス遮断性の高い窒化チタンコーティングを施すべきである。 Any brushless motor can be applied, and other magnetic pole types such as a permanent magnet embedded type, other slot combinations, or an inner rotor type may be used. Further, as a countermeasure against interference of each axis, a configuration may be adopted in which the number of rotor poles and the number of slots of adjacent axes in the axial direction are different. For example, in the case of 2-axis coaxial, the first axis is 32 poles and 36 slots, the second axis is 24 poles and 27 slots, and in the case of 4-axis coaxial, the first and third axes are 32 poles and 3 6 slots. If the two axes and the fourth axis are configured to have 24 poles and 27 slots, mutual interference such as generation of thrust in the rotational direction to the rotor and magnetic coupling device due to the magnetic field of each axis can be prevented. [0159] Also, the permanent magnet of the rotor is a neodymium (Nd-Fe-B) -based magnet, and the example in which nickel coating is applied as a coating for improving corrosion resistance has been described. This material is not limited to the surface treatment, but is changed as appropriate depending on the environment in which it is used. For example, samarium-cobalt (Sm'Co) is difficult to demagnetize at high temperatures depending on the temperature conditions during beta-out System magnets should be used, and if used in ultra-vacuum, a titanium nitride coating with a high outgas barrier should be applied.
[0160] また、ヨークは、低炭素鋼を材料とし、ニッケルめっきを施した例を用いて説明した 力 この材質、表面処理に限定されるものではなぐ使用される環境などによって適 宜変更されるものであり、特に表面処理に関しては、超真空中で使用されるのであれ ばピンホールの少ない力-ゼンめっきやクリーンエスめつき、窒化チタンコーティング 等を施すべきである。  [0160] Also, the yoke is made of low-carbon steel and explained with an example of nickel plating. This material is not limited to the surface treatment, and is appropriately changed depending on the environment used. Especially for surface treatment, if it is used in ultra-vacuum, it should be applied with force with few pinholes such as Zen plating, clean soldering, and titanium nitride coating.
また、永久磁石をヨークに締結する方法は、非磁性のくさびをヨーク外径側からねじ で締め上げる例を用いて説明したが、使用される環境などによって適宜変更されるも のであり、環境によっては接着でも良いし、他の締結方法でも良い。  The method for fastening the permanent magnet to the yoke has been described using an example in which a non-magnetic wedge is tightened from the outer diameter side of the yoke with a screw, but it may be changed as appropriate depending on the environment in which it is used. May be bonded or other fastening methods.
[0161] また、軸受 19, 19'は真空用グリス潤滑の 4点接触玉軸受を用いた例を説明したが 、この形式、材質、潤滑方法に限定されるものではなぐ使用される環境、荷重条件、 回転速度などによって適宜変更されるものであり、クロスローラ軸受であっても良いし 、 4軸同軸モータの場合、さらに機械的な剛性を高めるために、別な軸受で支持する 構造としても良いし、高速回転する場合など、多点接触軸受を用いることができない 場合は各軸の回転子を支持する軸受および別な軸受を深溝玉軸受ゃアンギユラ軸 受として予圧をかける構造としても良いし、超真空中で使用される場合は、軌道輪に 金や銀などの軟質金属をプレーティングしたような、ガス放出のな 、金属潤滑とした ものを用いても良い。  [0161] Also, bearings 19 and 19 'have been described using an example of grease lubricated four-point contact ball bearings for vacuum, but this is not limited to this type, material and lubrication method. It can be changed as appropriate depending on conditions, rotational speed, etc., and it can be a cross roller bearing. In the case of a 4-axis coaxial motor, it can be supported by another bearing to further increase mechanical rigidity. If a multi-point contact bearing cannot be used, such as when rotating at high speeds, a bearing that supports the rotor of each shaft and another bearing may be configured to apply preload as deep groove ball bearings or angular bearings. When used in an ultra-vacuum, it is possible to use a metal-lubricated material that does not emit gas, such as a metal ring plated with a soft metal such as gold or silver.
[0162] また、磁気カップリングとして機能する内側ロータとして、永久磁石とバックヨークを 用いた形式で説明したが、永久磁石とバックヨークの材質および形状はこれに限定さ れるものではない。例えば、レゾルバの質量と軸受の摩擦トルクによっては、ロータと 同極数でなくても良いし、同幅でなくても良い。永久磁石を用いない突極でも良い。 また、角度検出器としてレゾルバを用いた例で説明したが、製造コストや分解能に よって適宜変更されるものであり、例えば光学式のロータリエンコーダでも良い。 [0162] The inner rotor functioning as a magnetic coupling has been described in the form of using a permanent magnet and a back yoke. However, the material and shape of the permanent magnet and the back yoke are not limited thereto. For example, depending on the mass of the resolver and the frictional torque of the bearing, the number of poles may not be the same as that of the rotor, or may not be the same. A salient pole that does not use a permanent magnet may be used. In addition, an example using a resolver as an angle detector has been described. Therefore, it is appropriately changed, and for example, an optical rotary encoder may be used.
[0163] また、角度検出器の回転側を回転自在に支持する軸受 33, 33'として、グリス潤滑 の 4点接触玉軸受を用いた例を説明したが、この形式、潤滑方法に限定されるもので はなぐ設置スペースや摩擦トルク、回転速度などによって適宜変更されるものであり 、高速回転や摩擦トルクの低減など、多点接触軸受を用いることができない場合は、 アンギユラ軸受ゃ深溝玉軸受を各軸ごとに 2個配置して、予圧をかける構造としても 良い。  [0163] In addition, an example in which grease lubricated four-point contact ball bearings are used as the bearings 33 and 33 'that rotatably support the rotation side of the angle detector has been described, but this type and the lubrication method are limited. However, if the multi-point contact bearing cannot be used, such as high-speed rotation or reduction of friction torque, an anguilla bearing is a deep groove ball bearing. A structure may be used in which two are arranged for each axis to apply preload.
また、その他の隔壁の外、中に配置される構造部品および隔壁の材質、形状、製 造方法は、製造コストや使用される環境、荷重条件、構成などによって適宜変更され るものである。  In addition, the material, shape, and manufacturing method of the structural parts and partition walls arranged in and out of the other partition walls are appropriately changed depending on the manufacturing cost, the environment used, the load conditions, the configuration, and the like.
[0164] 以上、本発明を実施の形態を参照して説明してきたが、本発明は上記実施の形態 に限定して解釈されるべきではなぐ適宜変更 ·改良が可能であることはもちろんであ る。例えば、本実施の形態のダイレクトドライブモータは、真空雰囲気に限らず、大気 外の雰囲気で使用することができる。例えば、半導体製造工程の場合、真空排気後 に真空槽内部にエッチング用の反応性ガスが導入されることがあるが、本実施の形 態のダイレクトドライブモータでは、隔壁により内部と外部とが遮蔽されているため、モ ータコイルや絶縁材等がエッチングされてしまうおそれもない。  [0164] Although the present invention has been described above with reference to the embodiments, it should be understood that the present invention should not be construed as being limited to the above-described embodiments but can be modified or improved as appropriate. The For example, the direct drive motor of the present embodiment can be used not only in a vacuum atmosphere but also in an atmosphere outside the atmosphere. For example, in the case of a semiconductor manufacturing process, reactive gas for etching may be introduced into the vacuum chamber after evacuation, but in the direct drive motor of this embodiment, the inside and outside are shielded by the partition walls. Therefore, there is no possibility that the motor coil or the insulating material will be etched.
〔第 4の実施の形態〕  [Fourth embodiment]
次に、本発明の実施の形態を図面を参照して説明する。図 29は、本実施の形態に 力かるダイレクトドライブモータからなるモータシステムを用いたフロッグレッダアーム 式搬送装置の斜視図である。図 29において、 2つのダイレクトドライブモータ Dl、 D2 を直列に連結している。下方のダイレクトドライブモータ D1のロータには、第 1アーム A1が連結され、第 1アーム A1の先端には第 1リンク L1が枢動可能に連結されている 。一方、上方のダイレクトドライブモータ D2のロータには、第 2アーム A2が連結され、 第 2アーム A2の先端には第 2リンク L2が枢動可能に連結されている。リンク LI, L2 は、ウェハ Wを載置するテーブル Tに、それぞれ枢動可能に連結されている。  Next, embodiments of the present invention will be described with reference to the drawings. FIG. 29 is a perspective view of a frog redder arm type transfer device using a motor system including a direct drive motor that works in the present embodiment. In Fig. 29, two direct drive motors Dl and D2 are connected in series. A first arm A1 is connected to the rotor of the lower direct drive motor D1, and a first link L1 is pivotally connected to the tip of the first arm A1. On the other hand, the second arm A2 is connected to the rotor of the upper direct drive motor D2, and the second link L2 is pivotally connected to the tip of the second arm A2. The links LI and L2 are pivotally connected to a table T on which the wafer W is placed.
[0165] 図 29より明らかである力 ダイレクトドライブモータ Dl、 D2のロータがそれぞれ同方 向に回転すれば、テーブル Tも同方向に回転し、力かるロータが逆方向に回転すれ ば、テーブル Tは、ダイレクトドライブモータ Dl、 D2に接近もしくは離隔するようにな つている。従って、ダイレクトドライブモータ Dl、 D2を任意の角度で回転させれば、テ 一ブル Tが届く範囲内で、任意の 2次元位置にウェハ Wを搬送させることができる。 このように例えば半導体製造装置における真空槽内に配置されるウェハ搬送ァー ム、例えばスカラ型や図に示すフロッグレッダ型のように複数のアームを備えた装置 では、特に複数の回転モータが必要となる。真空環境では外界との接触表面積を極 力小さくすると同時に、スペースを有効に活用するためにモータ等の取付穴はなるベ く少なくする必要がある。また、ウェハ Wを水平にまっすぐに、振動を極力少なくして 搬送するためには、アームの先端に作用するモーメントをロータ支持部で強固に保 持する必要がある。そこで、ダイレクトドライブモータ Dl、 D2を複数、ハウジング部分 で同軸に連結し、連結部分はシールで密に接合 (溶接、 Oリング、金属ガスケット、等 による密な接合)して、モータロータの配設された空間とハウジング外部空間とを離隔 することち必要となる。 [0165] The force apparent from Fig. 29 If the rotors of the direct drive motors Dl and D2 rotate in the same direction, the table T also rotates in the same direction, and the powerful rotor rotates in the opposite direction. For example, the table T approaches or moves away from the direct drive motors Dl and D2. Therefore, if the direct drive motors Dl and D2 are rotated at an arbitrary angle, the wafer W can be transferred to an arbitrary two-dimensional position within a range where the table T can reach. Thus, for example, a wafer transfer arm placed in a vacuum chamber in a semiconductor manufacturing apparatus, for example, an apparatus having a plurality of arms such as a scalar type or a frog redder type shown in the figure, particularly requires a plurality of rotary motors. It becomes. In a vacuum environment, the contact surface area with the outside world should be minimized, and at the same time, the number of mounting holes for motors, etc. should be minimized to make effective use of space. Also, in order to transport the wafer W horizontally and with minimal vibration, it is necessary to hold the moment acting on the tip of the arm firmly at the rotor support. Therefore, a plurality of direct drive motors Dl and D2 are connected coaxially at the housing part, and the connection part is tightly joined with a seal (tightly joined by welding, O-ring, metal gasket, etc.), and the motor rotor is arranged. It is necessary to separate the open space from the housing external space.
[0166] また、ウェハ Wを水平にまっすぐ、振動を少なく搬送するためにはアーム Al、 A2の 先端に作用するモーメントを、ロータ支持部で強固に保持する必要がある。更に、又 、真空環境での複数軸のアーム駆動の際には、電源投入時に現在のアームの回転 位置を認識しないと真空槽の壁や、真空槽のシャツタにアーム Al, A2等をぶつけて しまう可能性がある。このような要求に応じることができるダイレクトドライブモータを同 軸に連結したモータシステムについて説明する。  [0166] In addition, in order to transport wafer W straight horizontally and with less vibration, the moment acting on the tips of arms Al and A2 must be firmly held by the rotor support. In addition, when driving multiple axes in a vacuum environment, if the current rotation position of the arm is not recognized when the power is turned on, the arm Al, A2, etc. will be hit against the wall of the vacuum chamber or the shatter of the vacuum chamber. There is a possibility. A motor system in which a direct drive motor capable of meeting such requirements is connected to the same shaft will be described.
[0167] 本実施の形態は、表面磁石型の 32極 36スロットアウターロータ式ブラシレスタイプ のダイレクトドライブモータを用いる。 32極 36スロットというスロットコンビネーションは 、コギンダカは小さいが径方向に磁気吸引力が発生し回転時の振動は大きいことが 一般的に知られている 8極 9スロットというスロットコンビネーションの 4倍の構成である 。 2n倍 (nは整数)にしたことにより、径方向の磁気吸引力は相殺されるので、固定子 と回転子の真円度や同軸度および機構部品の剛性を高めることなく回転時の振動を 小さくでき、かつ、本来的にコギングが小さい構成であるので、非常に滑らかな回転 が得られる。一方、このような非常に多極なモータとすることにより、機械角の周期に 対する電気角の周期が多いので、位置決め制御性が良い。よって、本発明の如ぐ 減速器を用いずにロボット装置を駆動するようなダイレクトドライブモータには好適で ある。また、総磁束量を下げることなく固定子連結部の肉厚と突極幅、および回転子 のヨーク肉厚を狭くできるので、本発明の如ぐ薄型かつ大径幅狭のダイレクトドライ ブモータには好適である。 In this embodiment, a surface magnet type 32-pole 36-slot outer rotor type brushless type direct drive motor is used. The slot combination of 32 poles and 36 slots is generally known to have a large magnetic attraction force in the radial direction and large vibration during rotation. is there . 2 n times (n is an integer) cancels out the magnetic attractive force in the radial direction. Therefore, vibration during rotation can be achieved without increasing the roundness and coaxiality of the stator and rotor and the rigidity of the mechanical parts. Can be made small and cogging is inherently small, so that a very smooth rotation can be obtained. On the other hand, by using such a very multi-pole motor, the electrical angle cycle is greater than the mechanical angle cycle, so positioning controllability is good. Thus, as in the present invention This is suitable for a direct drive motor that drives a robot apparatus without using a speed reducer. In addition, since the thickness and salient pole width of the stator connecting portion and the yoke thickness of the rotor can be reduced without lowering the total magnetic flux, the direct drive motor having a thin and large diameter and narrow width as in the present invention is used. Is preferred.
[0168] 図 30は、図 29の構成を Π-Π線で切断して矢印方向に見た図である。図 30を参照し て、 2軸のモータシステムの内部構造について詳細に説明する。まず、ダイレクトドラ イブモータ D1について説明する。定盤 Gに据え付けた円板 10の中央開口 10aに同 軸に接合されボルト 11により相互に固定された中空円筒状の本体 12は、その上端 にカップ状の隔壁 13を取り付けている。本体 12の中央は、ステータへの配線などを 通すために用いることができる。本体 12, 円板 10によりハウジングを構成する。  FIG. 30 is a view of the configuration of FIG. 29 taken along the Π-Π line and viewed in the direction of the arrow. With reference to FIG. 30, the internal structure of the two-axis motor system will be described in detail. First, the direct drive motor D1 will be described. A hollow cylindrical main body 12 joined coaxially to the central opening 10a of the disk 10 installed on the surface plate G and fixed to each other by bolts 11 has a cup-shaped partition wall 13 attached to the upper end thereof. The center of the main body 12 can be used for wiring to the stator. The main body 12 and the disk 10 constitute a housing.
[0169] 隔壁 13は、非磁性体であるステンレス製であり、本体 12に嵌合される肉厚の底部 1 3aと、その周縁から軸線方向にダイレクトドライブモータ Dl、 D2を貫くようにして延在 する薄肉の円筒部 13bとからなる。従って、隔壁 13は、ダイレクトドライブモータ Dl、 D2に共通に用いられる。円筒部 13bの下端は、 TIG溶接にて封止可能にホルダ 15 に接合され、ホルダ 15は、円板 10にボルト 16により固定されている。ここで、円筒部 13bの溶接部を略同一厚さとすることにより、片側への部品にのみ熱が逃げることを 抑制し、嵌合部を均一に溶接できる構造となっている。ホルダ 15と円板 10の接触面 には、シール部材を填め込む溝加工が施してあり、シール部材 ORを溝に填め込ん だ後にホルダ 15と円板 10をボルト 16により締結することにより、締結部分を大気側か ら分離隔絶している。隔壁 13は耐食性が高ぐ特に磁性の少ないオーステナイト系ス テンレスの SUS316を材料としており、ホルダ 15は隔壁 13との溶接性から同じく SU S316を材料としている。  [0169] The partition wall 13 is made of stainless steel, which is a non-magnetic material, and extends from the peripheral edge of the wall portion 13a fitted to the main body 12 to the direct drive motors Dl and D2 in the axial direction. It consists of a thin cylindrical portion 13b. Therefore, the partition wall 13 is commonly used for the direct drive motors Dl and D2. The lower end of the cylindrical portion 13b is joined to a holder 15 so as to be sealed by TIG welding, and the holder 15 is fixed to the disc 10 with bolts 16. Here, by setting the welded portion of the cylindrical portion 13b to substantially the same thickness, it is possible to prevent heat from escaping only to the component on one side and to weld the fitting portion uniformly. The contact surface between the holder 15 and the disk 10 is grooved so that the seal member is inserted into the groove. After the seal member OR is inserted into the groove, the holder 15 and the disk 10 are tightened with the bolts 16 to tighten them. The part is separated from the atmosphere side. The partition wall 13 is made of austenitic stainless steel SUS316, which has high corrosion resistance, and is less magnetic. The holder 15 is also made of SU S316 because of its weldability with the partition wall 13.
[0170] 更に、隔壁 13とホルダ 15とは気密的に接合され、且つホルダ 15と円板 10、及び円 板 10と定盤 Gとは、それぞれ O—リング ORによって気密されている。従って、円板 10 と、隔壁 13とで囲われる内部空間は、その外部力も気密されている。尚、隔壁 13は 必ずしも非磁性体である必要はない。又、 O—リング ORを用いて気密する代わりに、 電子ビーム溶接やレーザビーム溶接などで部材間を気密しても良い。  [0170] Further, the partition wall 13 and the holder 15 are hermetically joined, and the holder 15 and the disk 10 and the disk 10 and the surface plate G are hermetically sealed by O-rings OR, respectively. Therefore, the internal space surrounded by the disk 10 and the partition wall 13 is also hermetically sealed. The partition wall 13 is not necessarily made of a nonmagnetic material. Further, instead of using an O-ring OR, the members may be hermetically sealed by electron beam welding or laser beam welding.
円板 10の外周上面に、軸受ホルダ 17がー体的に形成されている。軸受ホルダ 17 には、真空中で用いられる 4点接触式玉軸受 19の外輪が嵌合的に取り付けられ、ボ ルト 20により固定されている。一方、軸受 19の内輪は、第 1外側ロータ部材 21を嵌 合した 2重円筒状の円筒状部材 23に嵌合し、第 1外側ロータ部材 21を共締めするボ ルト 22により固定されている。すなわち、第 1外側ロータ部材 21は、アーム A1 (図 29 )を支持する円筒状部材 23により、隔壁 13に対して回転自在に支持されている。尚、 第 1外側ロータ部材 21と円筒状部材 23とで、外側ロータを構成する。 A bearing holder 17 is formed on the outer peripheral upper surface of the disk 10 in a body-like manner. Bearing holder 17 The outer ring of a four-point contact ball bearing 19 used in a vacuum is fitted in a fitting manner and fixed by a bolt 20. On the other hand, the inner ring of the bearing 19 is fixed to a double cylindrical cylindrical member 23 fitted with the first outer rotor member 21 and fixed by a bolt 22 that fastens the first outer rotor member 21 together. . That is, the first outer rotor member 21 is rotatably supported with respect to the partition wall 13 by the cylindrical member 23 that supports the arm A1 (FIG. 29). The first outer rotor member 21 and the cylindrical member 23 constitute an outer rotor.
[0171] 円板 10 (軸受ホルダ 17を含む)は、耐食性が高いオーステナイト系ステンレスを材 料としており、円板 10は、チャンバである定盤 Gとの嵌合固定およびシール装置を兼 ねており、その下面に、 O—リング ORを填め込む溝 10bが設けられている。  [0171] The disc 10 (including the bearing holder 17) is made of austenitic stainless steel with high corrosion resistance. The disc 10 also serves as a fitting and fixing device with the surface plate G, which is a chamber, and a sealing device. A groove 10b for inserting the O-ring OR is provided on the lower surface thereof.
軸受 19は、ラジアル、アキシアル、モーメント荷重を 1個の軸受で負荷できる 4点接 触玉軸受である。この形式の軸受を用いることにより、ダイレクトドライブモータ D1の 軸受は 1個で済むため、本発明の 2軸同軸モータシステムを薄型化できる。軸受 19 は、内外輪とも耐食性が高くかつ焼入れによる硬化が得られるマルテンサイト系ステ ンレスを材料とし。転動体はセラミックボール、潤滑剤は真空であっても固化しない真 空用のグリスを用いている。  Bearing 19 is a four-point contact ball bearing that can apply radial, axial, and moment loads with a single bearing. By using this type of bearing, only one bearing for the direct drive motor D1 is required, so the two-axis coaxial motor system of the present invention can be made thinner. The bearing 19 is made of martensite stainless steel, which has high corrosion resistance for both the inner and outer rings and can be hardened by quenching. The rolling elements are ceramic balls, and the lubricant is vacuum grease that does not solidify even under vacuum.
[0172] 尚、軸受 19は内輪と外輪に金や銀などの軟質金属をプレーティングして、真空中 でもアウトガス放出のな 、金属潤滑としたものを用いてもよく、また 4点接触式玉軸受 であるので、アーム A1からの第 1外側ロータ部材 21がチルトする方向のモーメントを 受けることができる力 4点接触式に限らず、クロスローラ、クロスボール、クロステーパ 軸受も用いることができ、予圧状態で用いても良いし、潤滑性向上のためフッ素系被 膜処理 (DFO)を行っても良!ヽ。  [0172] The bearing 19 may be made of metal lubricated by plating a soft metal such as gold or silver on the inner ring and the outer ring so as not to release outgas even in vacuum, or a four-point contact ball. Since it is a bearing, the force that can receive the moment in the direction in which the first outer rotor member 21 tilts from the arm A1 is not limited to a four-point contact type, and cross roller, cross ball, and cross taper bearings can also be used. It can be used in a preloaded state, or fluorine film treatment (DFO) can be performed to improve lubricity.
[0173] また、円筒状部材 23は、軸受 19の内輪を嵌合固定する面を有している。 4点接触 玉軸受 19は非常に薄肉の軸受であり、組みつけられる部材の精度や線膨張係数の 差異により回転精度や摩擦トルクが大きな影響を受ける。よって本実施の形態の場 合は、回転輪である軸受 19の内輪を、加工精度を出しやすくかつ線膨張係数が軸 受の軌道輪材質と略同一である円筒状部材 23に締まり嵌めあるいは中間嵌めとし、 固定輪である軸受 19の外輪を、オーステナイト系ステンレス製の軸受ホルダやアルミ ニゥム製のホルダ 17にすきま嵌めとすることで、軸受 19の回転精度の低下や温度上 昇による摩擦トルクの上昇を防ぐ構成となっている。 Further, the cylindrical member 23 has a surface for fitting and fixing the inner ring of the bearing 19. The four-point contact ball bearing 19 is a very thin bearing, and its rotational accuracy and friction torque are greatly affected by differences in the accuracy and linear expansion coefficient of the assembled parts. Therefore, in the case of the present embodiment, the inner ring of the bearing 19 which is a rotating ring is tightly fitted or intermediately fitted to the cylindrical member 23 which is easy to obtain machining accuracy and whose linear expansion coefficient is substantially the same as the bearing ring material of the bearing. By fitting the outer ring of the bearing 19 that is a fixed ring into the austenitic stainless steel bearing holder or the aluminum holder 17 with a clearance fit, the rotational accuracy of the bearing 19 decreases or the temperature increases. It is configured to prevent an increase in friction torque due to ascent.
[0174] 第 1外側ロータ部材 21は、永久磁石 21aと、磁路を形成するため磁性体から成る円 環状のヨーク 21bと、永久磁石 21aとヨーク 21bを機械的に締結するための非磁性体 力もなるくさび (不図示)によって構成されている。永久磁石 21aは、 32極の構成で N 極、 S極の磁石が各 16個交互に磁性金属カゝらなり、極ごとに分割されたセグメント形 式であり、その個々の形状は扇形である。内径と外径の円弧中心は同一であるが、 円周方向端面の接線交点を永久磁石 21a寄りとすることで、くさびをヨーク 21b外径 側からねじで締め上げることにより永久磁石 21aをヨーク 21bに締結している。このよ うな構成とすることにより、接着剤など、アウトガスを発生する固定部材を用いることな く永久磁石を締結できる。永久磁石 21 aはエネルギー積の高!、ネオジゥム(Nd - Fe —B)系磁石であり、耐食性を高めるためにニッケルコーティングを施してある。ヨーク 21bは高い磁性を有する低炭素鋼を材料とし、加工成型後に、防鲭および耐食性を 高め、かつ軸受交換時の磨耗を防ぐためにニッケルめっきを施している。  [0174] The first outer rotor member 21 is composed of a permanent magnet 21a, an annular yoke 21b made of a magnetic material to form a magnetic path, and a non-magnetic material for mechanically fastening the permanent magnet 21a and the yoke 21b. It is made up of a wedge (not shown) that also has power. Permanent magnet 21a has a configuration of 32 poles, each of which has 16 poles of N poles and S poles, each of which is a magnetic metal cage, and is divided into segments, each of which has a fan shape. . Although the inner and outer diameter arc centers are the same, the tangential intersection of the circumferential end face is closer to the permanent magnet 21a, so that the wedge is tightened with a screw from the outer diameter side of the yoke 21b, thereby fixing the permanent magnet 21a to the yoke 21b. It is concluded to. With this configuration, the permanent magnet can be fastened without using a fixing member that generates outgas, such as an adhesive. Permanent magnet 21a is a high energy product, neodymium (Nd-Fe-B) based magnet, which is nickel-coated to enhance corrosion resistance. The yoke 21b is made of low-carbon steel with high magnetism, and is nickel-plated to improve wear resistance and corrosion resistance after machining and to prevent wear during bearing replacement.
[0175] 隔壁 13の半径方向内側において、第 1外側ロータ部材 21の内周面に対向するよう にして、第 1ステータ 29が配置されている。第 1ステータ 29は、本体 12の中央で半径 方向に延在したフランジ部 12aの円筒状に変形した下部に取り付けられており、電磁 鋼板の積層材で形成され、各突極には絶縁処理としてボビンを嵌め込んだ後にモー タコイルが集中巻されている。第 1ステータ 29の外径は隔壁 13の内径と略同一もしく は小さい寸法としている。  [0175] On the radially inner side of the partition wall 13, the first stator 29 is arranged so as to face the inner peripheral surface of the first outer rotor member 21. The first stator 29 is attached to a cylindrically deformed lower portion of a flange portion 12a extending in the radial direction at the center of the main body 12, and is formed of a laminated material of electromagnetic steel plates. After the bobbin is fitted, the motor coil is concentrated. The outer diameter of the first stator 29 is approximately the same as or smaller than the inner diameter of the partition wall 13.
[0176] 第 1ステータ 29に隣接且つ平行して、第 1内側ロータ 30が配置されている。第 1内 側ロータ 30は、本体 12の外周面にボルト固定されたレゾルバホルダ 32に対して、玉 軸受 33により回転自在に支持されている。第 1内側ロータ 30の外周面には、ノックョ ーク 30bを介して永久磁石 30aが取り付けられている。永久磁石 30aは、第 1外側口 一タ部材 21の永久磁石 21aと同様に 32極の構成で N極、 S極の磁石が各 16個交互 に磁性金属力もなつている。従って、第 1内側ロータ 30は、第 1ステータ 29によって 駆動される第 1外側ロータ部材 21に同期して連れ回されるようになつている。  [0176] The first inner rotor 30 is disposed adjacent to and parallel to the first stator 29. The first inner rotor 30 is rotatably supported by ball bearings 33 with respect to a resolver holder 32 bolted to the outer peripheral surface of the main body 12. A permanent magnet 30a is attached to the outer peripheral surface of the first inner rotor 30 via a knock 30b. As with the permanent magnet 21a of the first outer opening member 21, the permanent magnet 30a has a 32-pole configuration, and each of the 16 N-pole and S-pole magnets alternately has a magnetic metal force. Accordingly, the first inner rotor 30 is rotated in synchronism with the first outer rotor member 21 driven by the first stator 29.
[0177] 第 1内側ロータ 30を回転自在に支持する軸受 33は、ラジアル、アキシアル、モーメ ント荷重を 1個の軸受で負荷できる 4点接触玉軸受である。この形式の軸受を用いる ことにより、 1個の軸受で済むため、ダイレクトドライブモータ D1を薄型化できる。隔壁 13の内部は大気環境であるため、一般的な軸受鋼と鉱油を基油としたグリス潤滑を 用いた軸受を適用できる。 [0177] The bearing 33 that rotatably supports the first inner rotor 30 is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing. Use this type of bearing Therefore, the direct drive motor D1 can be made thinner because only one bearing is required. Since the inside of the partition wall 13 is an atmospheric environment, a bearing using grease lubrication based on general bearing steel and mineral oil can be applied.
隔壁 13内部は大気環境であるため、永久磁石 30aはバックヨーク 30bに接着固定 してある。永久磁石 30aはエネルギー積の高いネオジゥム(Nd— Fe— B)系磁石で あり、鲭による減磁を防ぐためにニッケルコーティングを施してある。ヨーク 30bは高い 磁性を有する低炭素鋼を材料とし、加工成形後に防鲭のためにクロメートめつきを施 している。  Since the inside of the partition wall 13 is an atmospheric environment, the permanent magnet 30a is bonded and fixed to the back yoke 30b. Permanent magnet 30a is a high energy product neodymium (Nd-Fe-B) magnet with nickel coating to prevent demagnetization due to defects. The yoke 30b is made of low-carbon steel with high magnetism, and is chromated to prevent fouling after machining.
[0178] 第 1内側ロータ 30の内周には、回転角度を計測する検出器として、レゾルバロータ 34a及び 34bを組みつけており、それに対向する形で、レゾルバホルダ 32の外周に 、レゾルバステータ 35, 36を取り付けている力 本実施の形態では、高分解能のイン タリメンタルレゾルバステータ 35と、 1回転のいずれの位置にロータがあるかを検出で きるアブソリュートレゾルバステータ 36とを 2層に配置して!/、る。このため電源投入時 にも、アブソリュートレゾルバロータ 34bの回転角度がわかり、原点復帰が不要であり 、また、コイルに対する磁石の電気的位相角度がゎカゝるため、ダイレクトドライブモー タ D1の駆動電流制御に使用する回転角度検出が、極検出センサを用いることなく可 能となっている。  [0178] Resolver rotors 34a and 34b are assembled as detectors for measuring the rotation angle on the inner circumference of the first inner rotor 30, and the resolver stator 35 is disposed on the outer circumference of the resolver holder 32 so as to face it. In this embodiment, the high-resolution incremental resolver stator 35 and the absolute resolver stator 36 that can detect the position of the rotor in one rotation are arranged in two layers. /! For this reason, even when the power is turned on, the rotational angle of the absolute resolver rotor 34b is known, no return to origin is required, and the electrical phase angle of the magnet with respect to the coil increases, so the drive current of the direct drive motor D1 The rotation angle used for control can be detected without using a pole detection sensor.
[0179] レゾルバホルダ 32と第 1内側ロータ 30は、モータの界磁およびモータコイルからの 電磁ノイズが角度検出器であるレゾルバステータ 35, 36に伝達されないように、磁性 体である炭素鋼を材料とし、加工成型後に防鲭のためにクロメートめつきを施してい る。  [0179] The resolver holder 32 and the first inner rotor 30 are made of carbon steel, which is a magnetic material, so that electromagnetic noise from the motor field and motor coil is not transmitted to the resolver stators 35, 36 that are angle detectors. In order to prevent fouling after processing and molding, it is chromated.
本実施の形態に用いて 、る高分解能の可変リラクタンス形レゾルバにぉ 、て、イン タリメンタルレゾルバロータ 34aは、一定のピッチを有する複数のスロット歯列を有し、 インクリメンタルレゾルバステータ 35の外周面には、回転軸と平行に各磁極でインクリ メンタルレゾルバロータ 34aに対して位相をずらした歯が設けられており、コイルが各 磁極に卷回されている。第 1内側ロータ 30と一体でインクリメンタルレゾルバロータ 34 aが回転すると、インクリメンタルレゾルバステータ 35の磁極との間のリラクタンスが変 化し、インクリメンタルレゾルバロータ 34aの 1回転でリラクタンス変化の基本波成分が n周期となるようにして、そのリラクタンス変化を検出して、図 31に例を示すレゾルバ 制御回路によりデジタルィ匕し、位置信号として利用することでインクリメンタルレゾル ノ ロータ 34a即ち第 1内側ロータ 30の回転角度 (又は回転速度)を検出するようにな つている。レゾルバロータ 34a、 34bと、レゾルバステータ 35, 36とで検出器を構成す る。 The high-resolution variable reluctance resolver used in the present embodiment has an incremental resolver rotor 34a having a plurality of slot teeth having a constant pitch, and the outer peripheral surface of the incremental resolver stator 35. Are provided with teeth shifted in phase with respect to the incremental resolver rotor 34a at each magnetic pole parallel to the rotation axis, and a coil is wound around each magnetic pole. When the incremental resolver rotor 34a rotates integrally with the first inner rotor 30, the reluctance between the magnetic poles of the incremental resolver stator 35 changes, and the fundamental wave component of the reluctance change is changed by one rotation of the incremental resolver rotor 34a. The change in reluctance is detected so that there are n cycles, digitalized by the resolver control circuit shown in FIG. 31 and used as a position signal, so that the incremental resolver rotor 34a, that is, the first inner rotor 30 The rotation angle (or rotation speed) is detected. The resolver rotors 34a and 34b and the resolver stators 35 and 36 constitute a detector.
[0180] 本実施の形態によれば、第 1外側ロータ部材 21に対して、磁気カップリング作用に より第 1内側ロータ 30が同速で回転し、すなわち連れ回るので、第 1外側ロータ部材 21の回転角を隔壁 13越しに検出することができる。また、本実施の形態では、モー タを形成する部品ゃノヽウジングを用いることなくレゾルバ単体で軸受 33を有しており 、従ってハウジングに組み込む前に、レゾルバ単体での偏芯調整ゃレゾルバコイル の位置調整などの精度調整が行えるので、ハウジングゃ両フランジに調整用の穴や 切り欠きを別途設ける必要がな 、。  [0180] According to the present embodiment, the first inner rotor 30 rotates at the same speed by the magnetic coupling action with respect to the first outer rotor member 21, that is, the first outer rotor member 21 rotates. Can be detected through the partition wall 13. Further, in the present embodiment, the resolver alone has the bearing 33 without using any part of the motor that forms the motor. Therefore, the eccentricity of the resolver alone can be adjusted before the resolver coil is assembled into the housing. Since accuracy adjustment such as position adjustment can be performed, it is not necessary to provide adjustment holes and notches on both flanges of the housing.
[0181] 次に、ダイレクトドライブモータ D2について説明する力 ここでは本体 12がハウジン グを構成する。上述したダイレクトドライブモータ D1の円筒状部材 23は、ダイレクトド ライブモータ D2に重合する位置まで上方に延在しており、その内周面に、真空中で 用いられる 4点接触式玉軸受 19'の外輪が嵌合的に取り付けられ、ボルト 20'により 固定されている。一方、軸受 19'の内輪は、二重円筒状のリング状部材 23'の周面 に嵌合し、第 2外側ロータ部材 21 'を共締めするボルト 22'により固定されている。す なわち、第 2外側ロータ部材 21 'は、アーム A2 (図 29)を支持するリング状部材 23' により、隔壁 13に対して回転自在に支持されている。尚、第 2外側ロータ部材 21 'とリ ング状部材 23'とで、外側ロータを構成する。  [0181] Next, the force for explaining the direct drive motor D2 Here, the main body 12 constitutes a housing. The cylindrical member 23 of the direct drive motor D1 described above extends upward to a position where it is superimposed on the direct drive motor D2, and the inner peripheral surface thereof is a four-point contact ball bearing 19 'used in a vacuum. The outer ring is fitted and fitted with bolts 20 '. On the other hand, the inner ring of the bearing 19 ′ is fixed by a bolt 22 ′ that fits around the circumferential surface of a double cylindrical ring-shaped member 23 ′ and fastens the second outer rotor member 21 ′ together. That is, the second outer rotor member 21 ′ is rotatably supported with respect to the partition wall 13 by a ring-shaped member 23 ′ that supports the arm A 2 (FIG. 29). The second outer rotor member 21 ′ and the ring-shaped member 23 ′ constitute an outer rotor.
[0182] 軸受 19'は、ラジアル、アキシアル、モーメント荷重を 1個の軸受で負荷できる 4点 接触玉軸受である。この形式の軸受を用いることにより、ダイレクトドライブモータ D2 の軸受は 1個で済むため、本発明の 2軸同軸モータを薄型化できる。内外輪とも耐食 性が高くかつ焼入れによる硬化が得られるマルテンサイト系ステンレスを材料とし。転 動体はセラミックボール、潤滑剤は真空であっても固化しない真空用のグリスを用い ている。  [0182] Bearing 19 'is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing. By using this type of bearing, since the direct drive motor D2 requires only one bearing, the biaxial coaxial motor of the present invention can be made thinner. The inner and outer rings are made of martensitic stainless steel, which has high corrosion resistance and can be hardened by quenching. The rolling elements are ceramic balls, and the lubricant is vacuum grease that does not solidify even under vacuum.
尚、軸受 19'は内輪と外輪に金や銀などの軟質金属をプレーティングして、真空中 でもアウトガス放出のな 、金属潤滑としたものを用いてもよく、また 4点接触式玉軸受 であるので、アーム A1からの第 1外側ロータ部材 21,がチルトする方向のモーメント を受けることができる力 4点接触式に限らず、クロスローラ、クロスボール、クロステー パ軸受も用いることができ、予圧状態で用いても良いし、潤滑性向上のためフッ素系 被膜処理 (DFO)を行っても良!ヽ。 The bearing 19 'is plated with a soft metal such as gold or silver on the inner and outer rings, However, it is possible to use a metal-lubricated one that does not release outgas, and since it is a four-point contact ball bearing, it can receive a moment in the direction in which the first outer rotor member 21 from the arm A1 tilts. Force Not limited to the four-point contact type, cross rollers, cross balls, and cross taper bearings can also be used. They can be used under preload conditions, or fluorine film treatment (DFO) can be performed to improve lubricity. ! ヽ.
[0183] また、リング状部材 23'は、軸受 19'の内輪を嵌合固定する面を有している。 4点接 触玉軸受 19 'は非常に薄肉の軸受であり、組みつけられる部材の精度や線膨張係 数の差異により回転精度や摩擦トルクが大きな影響を受ける。よって本実施の形態の 場合は、軸受 19'の内輪を、加工精度を出しやすくかつ線膨張係数が軸受の軌道 輪材質と略同一であるヨーク 21bに締まり嵌めあるいは中間嵌めとし、軸受 19'の外 輪を、オーステナイト系ステンレス製の軸受ホルダやアルミニウム製のボスにすきま嵌 めとすることで、軸受 19 'の回転精度の低下や温度上昇による摩擦トルクの上昇を防 ぐ構成となっている。 [0183] Further, the ring-shaped member 23 'has a surface for fitting and fixing the inner ring of the bearing 19'. The four-point contact ball bearing 19 'is a very thin bearing, and its rotational accuracy and friction torque are greatly affected by differences in the accuracy of the assembled parts and the linear expansion coefficient. Therefore, in the case of the present embodiment, the inner ring of the bearing 19 ′ has an interference fit or an intermediate fit on the yoke 21b which is easy to obtain machining accuracy and whose linear expansion coefficient is substantially the same as the bearing ring material of the bearing. The outer ring is fitted with an austenitic stainless steel bearing holder or aluminum boss to prevent a decrease in rotational accuracy of the bearing 19 'and an increase in friction torque due to temperature rise.
[0184] 第 2外側ロータ部材 21 'は、永久磁石 21a'と、磁路を形成するため磁性体から成る 円環状のヨーク 21b'と、永久磁石 21a'とヨーク 21b'を機械的に締結するための非 磁性体力もなるくさび (不図示)によって構成されている。永久磁石 21a'は、 32極の 構成で N極、 S極の磁石が各 16個交互に磁性金属からなり、極ごとに分割されたセ グメント形式であり、その個々の形状は扇形である。内径と外径の円弧中心は同一で あるが、円周方向端面の接線交点を永久磁石 21a'寄りとすることで、くさびをヨーク 2 lb'外径側からねじで締め上げることにより永久磁石 21a'をヨーク 21b'に締結して いる。このような構成とすることにより、接着剤など、アウトガスを発生する固定部材を 用いることなく永久磁石を締結できる。永久磁石 21a'はエネルギー積の高いネオジ ゥム(Nd— Fe— B)系磁石であり、耐食性を高めるためにニッケルコーティングを施し てある。ヨーク 21b'は高い磁性を有する低炭素鋼を材料とし、加工成型後に、防鲭 および耐食性を高め、かつ軸受交換時の磨耗を防ぐためにニッケルめっきを施して いる。  [0184] The second outer rotor member 21 'mechanically fastens the permanent magnet 21a', the annular yoke 21b 'made of a magnetic material to form a magnetic path, and the permanent magnet 21a' and the yoke 21b '. It is made up of a wedge (not shown) that also has non-magnetic strength. Permanent magnet 21a 'is a segment type with a configuration of 32 poles, each consisting of 16 magnets of N poles and S poles alternately made of magnetic metal, and each pole is segmented. The inner and outer diameter arc centers are the same, but the tangential intersection of the circumferential end face is closer to the permanent magnet 21a ', so that the wedge is tightened from the outer diameter side of the yoke 2 lb' by tightening the screw with the permanent magnet 21a. 'Is fastened to York 21b. With such a configuration, the permanent magnet can be fastened without using a fixing member that generates outgas, such as an adhesive. The permanent magnet 21a 'is a neodymium (Nd-Fe-B) magnet with a high energy product, and has a nickel coating to improve corrosion resistance. Yoke 21b 'is made of low-carbon steel with high magnetism and is plated with nickel to improve wear resistance and corrosion resistance and prevent wear during bearing replacement after processing and molding.
[0185] 隔壁 13の半径方向内側において、第 2外側ロータ部材 21 'の内周面に対向するよ うにして、第 2ステータ 29 'が配置されている。第 2ステータ 29'は、本体 12の中央で 半径方向に延在したフランジ部 12aの円筒状に変形した上部に取り付けられており、 電磁鋼板の積層材で形成され、各突極には絶縁処理としてボビンを嵌め込んだ後に モータコイルが集中巻されている。第 2ステータ 29 'の外径は隔壁 13の内径と略同一 もしくは小さ 、寸法として 、る。 [0185] On the radially inner side of the partition wall 13, the second stator 29 'is disposed so as to face the inner peripheral surface of the second outer rotor member 21'. The second stator 29 'is located at the center of the main body 12. Attached to the cylindrically deformed upper portion of the flange portion 12a extending in the radial direction, it is made of a laminated material of electromagnetic steel plates, and a motor coil is concentrated around each salient pole after a bobbin is fitted as an insulation treatment Has been. The outer diameter of the second stator 29 ′ is substantially the same as or smaller than the inner diameter of the partition wall 13.
[0186] 第 2ステータ 29 'に隣接且つ平行して、第 2内側ロータ 30 'が配置されている。第 2 内側ロータ 30'は、本体 12の外周面にボルト固定されたレゾルバホルダ 32'に対し て、玉軸受 33 'により回転自在に支持されている。第 2内側ロータ 30'の外周面には 、 ノ ックヨーク 30b 'を介して永久磁石 30a'が取り付けられている。永久磁石 30a'は 、第 2外側ロータ部材 21 'の永久磁石 21a'と同様に 32極の構成で N極、 S極の磁石 が各 16個交互に磁性金属からなっている。従って、第 2内側ロータ 30'は、第 2ステ ータ 29 'によって第 2外側ロータ部材 21 'に同期して回転駆動されるようになっている [0186] A second inner rotor 30 'is disposed adjacent to and parallel to the second stator 29'. The second inner rotor 30 ′ is rotatably supported by a ball bearing 33 ′ with respect to a resolver holder 32 ′ that is bolted to the outer peripheral surface of the main body 12. A permanent magnet 30a ′ is attached to the outer peripheral surface of the second inner rotor 30 ′ via a knock yoke 30b ′. The permanent magnet 30a ′ has a configuration of 32 poles, like the permanent magnet 21a ′ of the second outer rotor member 21 ′, and 16 magnets of N poles and S poles are alternately made of magnetic metal. Accordingly, the second inner rotor 30 ′ is driven to rotate in synchronization with the second outer rotor member 21 ′ by the second stateer 29 ′.
[0187] 第 1内側ロータ 30'を回転自在に支持する軸受 33 'は、ラジアル、アキシアル、モー メント荷重を 1個の軸受で負荷できる 4点接触玉軸受である。この形式の軸受を用い ることにより、 1個の軸受で済むため、ダイレクトドライブモータ D2を薄型化できる。隔 壁 13の内部は大気環境であるため、一般的な軸受鋼と鉱油を基油としたグリス潤滑 を用 、た軸受を適用できる。 [0187] The bearing 33 'that rotatably supports the first inner rotor 30' is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing. By using this type of bearing, only one bearing is required, so the direct drive motor D2 can be made thinner. Since the inside of the partition wall 13 is an atmospheric environment, a bearing using grease lubrication based on general bearing steel and mineral oil can be applied.
隔壁 13内部は大気環境であるため、永久磁石 30a'はバックヨーク 30b'に接着固 定してある。永久磁石 30a'はエネルギー積の高いネオジゥム(Nd— Fe— B)系磁石 であり、鲭による減磁を防ぐためにニッケルコーティングを施してある。ヨーク 30b 'は 高い磁性を有する低炭素鋼を材料とし、加工成形後に防鲭のためにクロメートめつき を施している。  Since the inside of the partition wall 13 is an atmospheric environment, the permanent magnet 30a ′ is bonded and fixed to the back yoke 30b ′. The permanent magnet 30a 'is a neodymium (Nd-Fe-B) magnet with a high energy product and is coated with nickel to prevent demagnetization due to defects. Yoke 30b 'is made of low-carbon steel with high magnetism, and is chromated to prevent fouling after machining.
[0188] 第 2内側ロータ 30'の内周には、回転角度を計測する検出器として、レゾルバロー タ 34a'及び 34b 'を組みつけており、それに対向する形で、レゾルバホルダ 32'の外 周に、レゾルノ ステータ 35 ' , 36 'を取り付けている力 本実施の形態では、高分解 能のインクリメンタルレゾルバステータ 35,と、 1回転のいずれの位置にロータがある かを検出できるアブソリュートレゾルバステータ 36 'とを 2層に配置している。このため 電源投入時にも、アブソリュートレゾルバロータ 34b 'の回転角度がわかり、原点復帰 が不要であり、また、コイルに対する磁石の電気的位相角度がわ力るため、ダイレクト ドライブモータ D2の相対回転角度を、極検出センサを用いることなく可能となってい る。 [0188] Resolver rotors 34a 'and 34b' are assembled on the inner circumference of the second inner rotor 30 'as detectors for measuring the rotation angle, and the outer circumference of the resolver holder 32' is opposed to it. In addition, in this embodiment, a high resolution incremental resolver stator 35 and an absolute resolver stator 36 ′ that can detect which position of the rotor is in one rotation in this embodiment. Are arranged in two layers. Therefore, even when the power is turned on, the rotation angle of the absolute resolver rotor 34b ' Since the electrical phase angle of the magnet with respect to the coil is ineffective, the relative rotational angle of the direct drive motor D2 can be achieved without using a pole detection sensor.
[0189] レゾルバホルダ 32,と第 2内側ロータ 30,は、モータの界磁およびモータコイルから の電磁ノイズが角度検出器であるレゾルバステータ 35 ' , 36 'に伝達されないように、 磁性体である炭素鋼を材料とし、加工成型後に防鲭のためにクロメートめつきを施し ている。  [0189] The resolver holder 32 and the second inner rotor 30 are magnetic bodies so that electromagnetic noise from the motor field and the motor coil is not transmitted to the resolver stators 35 'and 36' which are angle detectors. Carbon steel is used as a material, and chromate plating is applied after processing to prevent fouling.
本実施の形態によれば、第 2外側ロータ部材 21 'に対して、磁気カップリング作用 により第 2内側ロータ 30'が同速で回転し、すなわち連れ回るので、第 2外側ロータ部 材 21 'の回転角を隔壁 13越しに検出することができる。また、本実施の形態では、モ ータを形成する部品ゃノヽウジングを用いることなくレゾルバ単体で軸受 33 'を有して おり、従ってハウジングに組み込む前に、レゾルバ単体での偏芯調整ゃレゾルバコィ ルの位置調整などの精度調整が行えるので、ハウジングゃ両フランジに調整用の穴 や切り欠きを別途設ける必要がな 、。  According to the present embodiment, the second inner rotor 30 ′ rotates at the same speed by the magnetic coupling action with respect to the second outer rotor member 21 ′. Can be detected through the partition wall 13. Further, in the present embodiment, the resolver alone has the bearing 33 ′ without using the parts forming the motor, and therefore the eccentricity adjustment with the resolver alone is not performed before the housing is assembled. Because it is possible to adjust the accuracy of the housing position, etc., it is not necessary to provide a separate adjustment hole or notch on both flanges of the housing.
[0190] 本実施の形態に用いている高分解能の可変リラクタンス形レゾルバにおいて、イン タリメンタルレゾルバロータ 34a'は、一定のピッチを有する複数のスロット歯列を有し 、インクリメンタルレゾルバステータ 35,の外周面には、回転軸と平行に各磁極でイン タリメンタルレゾルバロータ 34a'に対して位相をずらした歯が設けられており、コイル が各磁極に卷回されている。第 2内側ロータ 30'と一体でインクリメンタルレゾルバ口 ータ 34a,が回転すると、インクリメンタルレゾルバステータ 35,の磁極との間のリラクタ ンスが変化し、インクリメンタルレゾルバロータ 34a,の 1回転でリラクタンス変化の基本 波成分が n周期となるようにして、そのリラクタンス変化を検出して、図 31に例を示す レゾルバ制御回路によりデジタルィ匕し、位置信号として利用することでインクリメンタ ルレゾルバロータ 34a'即ち第 2内側ロータ 30'の回転角度 (又は回転速度)を検出 するようになつている。レゾルバロータ 34a,、 34bと、レゾルバステータ 35,, 36,とで 検出器を構成する。 In the high resolution variable reluctance resolver used in the present embodiment, the incremental resolver rotor 34a ′ has a plurality of slot tooth rows having a constant pitch, and the outer circumference of the incremental resolver stator 35. The surface is provided with teeth that are shifted in phase with respect to the incremental resolver rotor 34a ′ at each magnetic pole parallel to the rotation axis, and a coil is wound around each magnetic pole. When the incremental resolver port 34a rotates integrally with the second inner rotor 30 ', the reluctance between the magnetic poles of the incremental resolver stator 35 changes, and the basic reluctance change occurs with one rotation of the incremental resolver rotor 34a. The reluctance change is detected so that the wave component has n cycles, is digitalized by the resolver control circuit shown in FIG. 31 and used as a position signal, so that the incremental resolver rotor 34a ′, that is, the first 2The rotation angle (or rotation speed) of the inner rotor 30 'is detected. The resolver rotors 34a, 34b and the resolver stators 35, 36 constitute a detector.
[0191] 本実施の形態によれば、ダイレクトドライブモータ D2の外側ロータ (第 2外側ロータ 21,及びリング状部材 23,)力 他のダイレクトドライブモータ D1の外側ロータ (第 1外 側ロータ 21及び円筒状部材 23)に対して軸受 19'により支持されているので、ダイレ タトドライブモータ D2の外側ロータを取り外せば、力かる外側ロータを支持して!/ヽた 軸受 19,を露出でき、次にダイレクトドライブモータ D1の外側ロータを取り外せば、か 力る外側ロータを支持していた軸受 19を露出でき、それらの点検や取り外しを容易 に行えるため、メンテナンス性も向上する。更に、隔壁 13の外側にある外側ロータの みを取り外せばよいので、隔壁構造を取り外す必要がなぐ再組立の際にリークチェ ックなどが不要となり、組立性が向上する。 [0191] According to the present embodiment, the outer rotor of the direct drive motor D2 (the second outer rotor 21 and the ring-shaped member 23), the outer rotor of the other direct drive motor D1 (the first outer Side rotor 21 and cylindrical member 23) are supported by bearing 19 ', so if the outer rotor of direct drive motor D2 is removed, the powerful outer rotor is supported! If the outer rotor of the direct drive motor D1 can be exposed and then removed, the bearing 19 supporting the powerful outer rotor can be exposed, and these can be easily inspected and removed, thus improving maintainability. Furthermore, since only the outer rotor outside the partition wall 13 has to be removed, a leak check or the like is not required at the time of reassembly without the need to remove the partition wall structure, thereby improving the assemblability.
[0192] 尚、フランジ部 12aを中心として第 1ステータ 29と第 2ステータ 29'を上下に配置し、 その半径方向内側にレゾルバを配置している。また、本体 12は中空構造となってお り、フランジ部 12aには中央に連通する径方向の通し穴 12dが少なくとも 1つ設けてあ り、ここを介してモータ配線を本体 12の中央に引き出す構造となっている。一方、本 体 12の両端部にはそれぞれ少なくとも 1つの切り欠き 12e、 12eが設けてあり、これら を介してレゾルバの配線を本体 12の中央に引き出す構造となっている。このような構 造とすることで、ハウジング側から順に、ダイレクトモータ D1のレゾルノ 、ステータ 29 、ダイレクトモータ D2のステータ 29,、そのレゾルバの順で配置することが可能となり 、 2軸でありながら容易にステータとレゾルバの角度調整が行える。そこで、基準とな る外側ロータを回転駆動する設備を別に用意しておけば、その設備にステータとレゾ ルバを組み込んだ本体 12をセットすることにより、高精度にステータに対するレゾル バの角度調整ができるので、コンミテーシヨンずれによる角度位置決め精度の低下を 防ぎ、かつ、本発明の 2軸同軸モータに対する駆動制御回路の互換性を高めること ができる。 [0192] The first stator 29 and the second stator 29 'are vertically arranged around the flange portion 12a, and the resolver is arranged radially inward thereof. The main body 12 has a hollow structure, and the flange portion 12a has at least one radial through hole 12d communicating with the center through which the motor wiring is drawn out to the center of the main body 12. It has a structure. On the other hand, at least one notch 12e, 12e is provided at each end of the main body 12, and the resolver wiring is drawn out to the center of the main body 12 through these. With this structure, the direct motor D1 resolver, the stator 29, the direct motor D2 stator 29, and the resolver can be arranged in this order from the housing side. In addition, the angle of the stator and resolver can be adjusted. Therefore, if a separate facility for rotationally driving the reference outer rotor is prepared, the angle of the resolver relative to the stator can be adjusted with high accuracy by setting the main body 12 incorporating the stator and resolver in the facility. Therefore, it is possible to prevent the angle positioning accuracy from being lowered due to the deviation of the commutation, and to improve the compatibility of the drive control circuit with the two-axis coaxial motor of the present invention.
[0193] 図 32は、ダイレクトドライブモータ Dl、 D2の駆動回路を示すブロック図である。外 部のコンピュータ力もモータ回転指令が入力されたとき、ダイレクトドライブモータ D1 用のモータ制御回路 DMC1及びダイレクトドライブモータ D2用のモータ制御回路 D MC2は、それぞれ、その CPUから 3層アンプ (AMP)に駆動信号を出力し、 3層アン プ (AMP)力もダイレクトドライブモータ Dl、 D2に駆動電流が供給される。それにより ダイレクトドライブモータ Dl、 D1の外側ロータ部材 21, 21,が独立して回転し、ァー ム Al, A2 (図 29)を移動させるようになつている。外側ロータ部材 21, 21 'が回転す ると、上述のようにして回転角度を検出したレゾルバステータ 35, 36, 35'、 36'から レゾルバ信号が出力されるので、それをレゾルバデジタル変換器 (RDC)でデジタル 変換した後に入力した CPUは、外側ロータ部材 21, 21 'が指令位置に到達したか 否かを判断し、指令位置に到達すれば、 3層アンプ (AMP)への駆動信号を停止す ることで外側ロータ部材 21, 21 'の回転を停止させる。これにより外側ロータ部材 21 , 21 'のサーボ制御が可能となる。 FIG. 32 is a block diagram showing a drive circuit for the direct drive motors Dl and D2. When a motor rotation command is also input to the external computer force, the motor control circuit DMC1 for the direct drive motor D1 and the motor control circuit DMC2 for the direct drive motor D2 are each sent from the CPU to the three-layer amplifier (AMP). The drive signal is output, and the drive current is supplied to the direct drive motors Dl and D2 with a three-layer amplifier (AMP) force. As a result, the outer rotor members 21, 21 of the direct drive motors Dl, D1 rotate independently to move the arms Al, A2 (Fig. 29). Outer rotor member 21, 21 'rotates Then, resolver signals are output from the resolver stators 35, 36, 35 'and 36' that have detected the rotation angle as described above. Determines whether or not the outer rotor member 21, 21 'has reached the command position. 21 'Stop rotation. Thus, servo control of the outer rotor members 21 and 21 ′ becomes possible.
[0194] 真空環境での複数軸のアーム駆動の際には、電源投入時に現在のアーム A1及び A2の回転位置を認識しないと真空槽の壁や、真空槽のシャツタにアーム A1等をぶ つけてしまう可能性がある力 本実施の形態では、回転軸の 1回転の絶対位置を検 出するアブソリュートレゾルバステータ 36及び 36'と、より分解能の細かい回転位置 を検出するインクリメンタルレゾルバステータ 35及び 35'からなる可変リラクタンス型レ ゾルバを採用しているので、外側ロータ部材 21、 21,即ちアーム Al, A2の回転位 置制御を高精度に行える。  [0194] When driving multiple axes in a vacuum environment, if the current rotation position of the arms A1 and A2 is not recognized when the power is turned on, the arm A1 etc. is hit against the wall of the vacuum chamber or the shatter of the vacuum chamber. In this embodiment, the absolute resolver stators 36 and 36 'that detect the absolute position of one rotation of the rotating shaft and the incremental resolver stators 35 and 35' that detect the rotational position with finer resolution are used in this embodiment. Since the variable reluctance resolver is used, the rotational position control of the outer rotor members 21 and 21, that is, the arms Al and A2, can be performed with high accuracy.
[0195] 尚、ここでは内側ロータ 30の回転検出にレゾルバを採用した力 検出器を隔壁 13 の内部の大気側に配置できるため、一般に高精度位置決めに使用するサーボモー タにおいては高精度で滑らかに駆動するための位置検出手段として採用されている 光学式ェンコーダや、磁気抵抗素子を使用した磁気式ェンコ一ダ等も使用できる。 図 33は、第 2の実施の形態に力かる図 30と同様な断面図である。本実施の形態に ついては、図 30〜図 32の実施の形態に対して異なる部位について説明し、同様な 機能を有する部位については同じ符号を付すことで説明を省略する。  [0195] Here, since a force detector that employs a resolver for detecting the rotation of the inner rotor 30 can be arranged on the atmosphere side inside the partition wall 13, in general, a servo motor used for high-precision positioning is highly accurate and smooth. An optical encoder adopted as a position detecting means for driving, a magnetic encoder using a magnetoresistive element, or the like can also be used. FIG. 33 is a cross-sectional view similar to FIG. 30 that is helpful for the second embodiment. With respect to the present embodiment, different parts from those of the embodiments of FIGS. 30 to 32 will be described, and parts having similar functions will be denoted by the same reference numerals and description thereof will be omitted.
[0196] 本実施の形態においては、円筒状の本体 112の上面に取り付けられた上部円板 部 110の段部 11 Oaに、環状部 113aを O―リング ORを介して気密的にボルト結合し ている。環状部 113aの下部は、薄く半径方向外方に延在したフランジ部 113cとなつ ており、その折り曲げられた外縁に薄肉円筒部 113bの上端を TIG溶接してなる。環 状部 113aの取り付け部の肉厚は、フランジ部 113c及び薄肉円筒部 113bの肉厚よ り厚くなつている。薄肉円筒部 113bの下端は、上述の実施の形態と同様にホルダ 15 に TIG溶接されて 、る。環状部 113aとフランジ部 113cと薄肉円筒部 113bとホルダ 15とで隔壁 113を構成する。又、円板部 110と本体 112と円板 10とでノヽウジングを 構成する。 [0196] In the present embodiment, the annular portion 113a is airtightly bolted to the step portion 11Oa of the upper disc portion 110 attached to the upper surface of the cylindrical main body 112 via an O-ring OR. ing. The lower portion of the annular portion 113a is a thin flange portion 113c extending radially outward, and the upper end of the thin cylindrical portion 113b is TIG welded to the bent outer edge. The thickness of the attachment portion of the annular portion 113a is thicker than the thickness of the flange portion 113c and the thin cylindrical portion 113b. The lower end of the thin cylindrical portion 113b is TIG welded to the holder 15 in the same manner as in the above-described embodiment. The annular portion 113a, the flange portion 113c, the thin cylindrical portion 113b, and the holder 15 constitute a partition wall 113. In addition, the disc 110, the main body 112, and the disc 10 are used for nosing. Constitute.
[0197] 本実施の形態では、上部円板部 110の上面は、蓋部材 101により閉止され、その 外周に取り付けられた軸受ホルダ 107は、軸受 19'を支持するようになっている。従 つて、ダイレクトドライブモータ D1の円筒状部材 123は、ダイレクトドライブモータ D2 側まで延在していない。上部円板部 110,蓋部材 101,軸受ホルダ 107は、耐食性 が高 、オーステナイト系ステンレスを材料として 、る。  In the present embodiment, the upper surface of the upper disk part 110 is closed by the lid member 101, and the bearing holder 107 attached to the outer periphery thereof supports the bearing 19 ′. Therefore, the cylindrical member 123 of the direct drive motor D1 does not extend to the direct drive motor D2 side. The upper disk part 110, the lid member 101, and the bearing holder 107 have high corrosion resistance and are made of austenitic stainless steel.
上部円板部 110における軸受ホルダ 107の取り付け座面の外径部 110aは、薄肉 円筒部 113bより半径方向内側に位置しており、従って、軸受ホルダ 107を上部円板 部 110より取り外せば、 2つの外側ロータ部材 21, 21 'は、上部円板部 110を分解す ることなく上方に取り外し可能となっている。従って、メンテナンス時などに気密構造 を分解する必要はなぐ作業を容易にすることができる。すなわち、隔壁構造を支持 しているハウジング (本体 12と上部円板部 110)の最大外径部がダイレクトドライブモ ータ D1及び D2の外側ロータ(外側ロータ部材 21及び 21 'とリング状部材 23及び 23 ,)の内径よりも小さいので、軸受ホルダ 107をハウジングから取り外せば、ダイレクトド ライブモータ D1及び D2の外側ロータを隔壁 13から抜き去ることができ、それにより 点検や取り外しを容易に行えるため、メンテナンス性も向上する。更に、軸受ホルダ 1 07のみを取り外せばよいので、隔壁構造を取り外す必要がなぐ再組立の際にリーク チェックなどが不要となり、組立性が向上する。  The outer diameter portion 110a of the mounting seat surface of the bearing holder 107 in the upper disc portion 110 is located radially inward from the thin cylindrical portion 113b. Therefore, if the bearing holder 107 is removed from the upper disc portion 110, 2 The two outer rotor members 21 and 21 ′ can be removed upward without disassembling the upper disk portion 110. Therefore, it is possible to facilitate work that does not require disassembly of the airtight structure during maintenance. That is, the maximum outer diameter portion of the housing (main body 12 and upper disc portion 110) supporting the partition wall structure is the outer rotor of the direct drive motors D1 and D2 (the outer rotor members 21 and 21 ′ and the ring-shaped member 23). And 23)), the outer rotor of the direct drive motors D1 and D2 can be removed from the bulkhead 13 by removing the bearing holder 107 from the housing, which facilitates inspection and removal. , Maintenance is also improved. Furthermore, since only the bearing holder 107 need be removed, there is no need to check for leaks when reassembling without the need to remove the bulkhead structure, and assemblability is improved.
[0198] 更に、本実施の形態においては、隔壁 113の環状部 113aの肉厚に対し、フランジ 部 113cの肉厚は薄くなつているので、寸法精度や機械精度および温度変化に起因 して、隔壁 113に軸方向の伸縮応力が生じた場合でも、薄肉のフランジ部 113cが変 形することで、隔壁 113の軸方向応力や曲げ応力を緩和することができ、それにより シール不良や破壊などを防ぐことができる。また、環状部 113aおよびそれが取り付け られる上部円板部 110や本体 12を高精度に加工しなくて済むため、より低コストなダ ィレクトドライブモータを提供できる。  [0198] Furthermore, in the present embodiment, the thickness of the flange portion 113c is thinner than the thickness of the annular portion 113a of the partition wall 113. Therefore, due to dimensional accuracy, mechanical accuracy, and temperature change, Even when the axial expansion and contraction stress is generated in the partition wall 113, the thin flange portion 113c is deformed, so that the axial stress and bending stress of the partition wall 113 can be relieved. Can be prevented. In addition, since it is not necessary to process the annular portion 113a and the upper disk portion 110 and the main body 12 to which the annular portion 113a is attached with high accuracy, a lower cost direct drive motor can be provided.
[0199] 以上の実施の形態では、表面磁石型の 32極 36スロットアウターロータ式ブラシレス モータを用いた例を用いて説明した力 この形式のモータに限定されるものではなく 、ブラシレスモータであれば適用できるものであり、他の磁極形式、例えば永久磁石 埋め込み型であっても良いし、他のスロットコンビネーションでも良いし、あるいはイン ナロータ型であっても良い。 [0199] In the above embodiment, the force described using the example using the surface magnet type 32-pole 36-slot outer rotor type brushless motor is not limited to this type of motor. Applicable, other magnetic pole types, eg permanent magnets It may be an embedded type, another slot combination, or an inner rotor type.
また、各軸の干渉対策として、軸方向に隣接する軸同士の回転子の極数およびス ロット数が異なる構成としても良い。例えば、 2軸同軸の場合は、第一軸が 32極 36ス ロット、第二軸が 24極 27スロット、 4軸同軸の場合は、第一軸および第三軸が 32極 3 6スロット、第二軸および第四軸が 24極 27スロットといった構成にすれば、各軸の磁 界による回転子および磁気カップリング装置への回転方向の推力発生といった相互 干渉を防ぐことができる。  Further, as a countermeasure against interference of each axis, a configuration may be adopted in which the number of rotor poles and the number of slots of adjacent axes in the axial direction are different. For example, in the case of 2-axis coaxial, the first axis is 32 poles and 36 slots, the second axis is 24 poles and 27 slots, and in the case of 4-axis coaxial, the first axis and the third axis are 32 poles and 3 6 slots. If the two axes and the fourth axis are configured with 24 poles and 27 slots, mutual interference such as generation of thrust in the rotational direction to the rotor and magnetic coupling device due to the magnetic field of each axis can be prevented.
[0200] また、ロータの永久磁石は、ネオジゥム (Nd— Fe— B)系磁石を用い、耐食性を高 めるためのコ一ティングとして、ニッケルコ一ティングを施した例を用 、て説明したが、 この材質、表面処理に限定されるものではなぐ使用される環境などによって適宜変 更されるものであり、例えばベータアウト時の温度条件によっては高温減磁しにくい サマリウム ·コバルト(Sm'Co)系の磁石を用いるべきであり、超真空中で使用される のであればアウトガス遮断性の高い窒化チタンコーティングを施すべきである。  [0200] The rotor permanent magnet is a neodymium (Nd-Fe-B) -based magnet, and nickel coating is used as an example of coating to improve corrosion resistance. This material is not limited to the surface treatment, but is changed as appropriate depending on the environment in which it is used. For example, samarium-cobalt (Sm'Co) is less susceptible to high-temperature demagnetization depending on the temperature conditions during beta-out. System magnets should be used, and if used in ultra-vacuum, a titanium nitride coating with a high outgas barrier should be applied.
[0201] また、ヨークは、低炭素鋼を材料とし、ニッケルめっきを施した例を用いて説明した 力 この材質、表面処理に限定されるものではなぐ使用される環境などによって適 宜変更されるものであり、特に表面処理に関しては、超真空中で使用されるのであれ ばピンホールの少ない力-ゼンめっきやクリーンエスめつき、窒化チタンコーティング 等を施すべきである。  [0201] Also, the yoke is made of low-carbon steel and explained with an example of nickel plating. This material is not limited to the surface treatment, and is appropriately changed depending on the environment used. Especially for surface treatment, if it is used in ultra-vacuum, it should be applied with force with few pinholes such as Zen plating, clean soldering, and titanium nitride coating.
また、永久磁石をヨークに締結する方法は、非磁性のくさびをヨーク外径側からねじ で締め上げる例を用いて説明したが、使用される環境などによって適宜変更されるも のであり、環境によっては接着でも良いし、他の締結方法でも良い。  The method for fastening the permanent magnet to the yoke has been described using an example in which a non-magnetic wedge is tightened from the outer diameter side of the yoke with a screw, but it may be changed as appropriate depending on the environment in which it is used. May be bonded or other fastening methods.
[0202] また、軸受 19, 19'は真空用グリス潤滑の 4点接触玉軸受を用いた例を説明したが 、この形式、材質、潤滑方法に限定されるものではなぐ使用される環境、荷重条件、 回転速度などによって適宜変更されるものであり、クロスローラ軸受であっても良いし 、 4軸同軸モータの場合、さらに機械的な剛性を高めるために、別な軸受で支持する 構造としても良いし、高速回転する場合など、多点接触軸受を用いることができない 場合は各軸の回転子を支持する軸受および別な軸受を深溝玉軸受ゃアンギユラ軸 受として予圧をかける構造としても良いし、超真空中で使用される場合は、軌道輪に 金や銀などの軟質金属をプレーティングしたような、ガス放出のな 、金属潤滑とした ものを用いても良い。 [0202] In addition, bearings 19 and 19 'have been described using an example of grease lubricated four-point contact ball bearings for vacuum. It can be changed as appropriate depending on conditions, rotational speed, etc., and it can be a cross roller bearing. In the case of a 4-axis coaxial motor, it can be supported by another bearing to further increase mechanical rigidity. If a multi-point contact bearing cannot be used, such as when rotating at high speeds, a bearing that supports the rotor of each axis and another bearing is a deep groove ball bearing. It may be a structure that applies preload as a receiver, and when used in ultra-vacuum, use a metal-lubricated one that does not release gas, such as plating a soft metal such as gold or silver on the race. May be.
[0203] また、磁気カップリングとして機能する内側ロータとして、永久磁石とバックヨークを 用いた形式で説明したが、永久磁石とバックヨークの材質および形状はこれに限定さ れるものではない。例えば、レゾルバの質量と軸受の摩擦トルクによっては、ロータと 同極数でなくても良いし、同幅でなくても良い。永久磁石を用いない突極でも良い。 また、角度検出器としてレゾルバを用いた例で説明したが、製造コストや分解能に よって適宜変更されるものであり、例えば光学式のロータリエンコーダでも良い。  [0203] In addition, the inner rotor functioning as a magnetic coupling has been described as using a permanent magnet and a back yoke. However, the material and shape of the permanent magnet and the back yoke are not limited thereto. For example, depending on the mass of the resolver and the frictional torque of the bearing, the number of poles may not be the same as that of the rotor, or may not be the same. A salient pole that does not use a permanent magnet may be used. Further, although an example in which a resolver is used as an angle detector has been described, it can be appropriately changed depending on manufacturing cost and resolution, and for example, an optical rotary encoder may be used.
[0204] また、角度検出器の回転側を回転自在に支持する軸受 33, 33'として、グリス潤滑 の 4点接触玉軸受を用いた例を説明したが、この形式、潤滑方法に限定されるもので はなぐ設置スペースや摩擦トルク、回転速度などによって適宜変更されるものであり 、高速回転や摩擦トルクの低減など、多点接触軸受を用いることができない場合は、 アンギユラ軸受ゃ深溝玉軸受を各軸ごとに 2個配置して、予圧をかける構造としても 良い。  [0204] In addition, an example in which grease lubrication four-point contact ball bearings are used as the bearings 33 and 33 'that rotatably support the rotation side of the angle detector has been described, but this type and the lubrication method are limited. However, if the multi-point contact bearing cannot be used, such as high-speed rotation or reduction of friction torque, an anguilla bearing is a deep groove ball bearing. A structure may be used in which two are arranged for each axis to apply preload.
また、その他の隔壁の外、中に配置される構造部品および隔壁の材質、形状、製 造方法は、製造コストや使用される環境、荷重条件、構成などによって適宜変更され るものである。  In addition, the material, shape, and manufacturing method of the structural parts and partition walls arranged in and out of the other partition walls are appropriately changed depending on the manufacturing cost, the environment used, the load conditions, the configuration, and the like.
[0205] 以上、本発明を実施の形態を参照して説明してきたが、本発明は上記実施の形態 に限定して解釈されるべきではなぐ適宜変更 ·改良が可能であることはもちろんであ る。例えば、本実施の形態のモータシステムは、真空雰囲気に限らず、大気外の雰 囲気で使用することができる。例えば、半導体製造工程の場合、真空排気後に真空 槽内部にエッチング用の反応性ガスが導入されることがある力 本実施の形態のモ ータシステムでは、隔壁により内部と外部とが遮蔽されているため、モータコイルや絶 縁材等がエッチングされてしまうおそれもな 、。  [0205] Although the present invention has been described above with reference to the embodiments, it should be understood that the present invention should not be construed as being limited to the above-described embodiments but may be modified or improved as appropriate. The For example, the motor system of the present embodiment can be used not only in a vacuum atmosphere but also in an atmosphere outside the atmosphere. For example, in the case of a semiconductor manufacturing process, the reactive gas for etching may be introduced into the vacuum chamber after evacuation. In the motor system of this embodiment, the inside and the outside are shielded by the partition walls. Also, there is no risk of the motor coil or insulation material being etched.
〔第 5の実施の形態〕  [Fifth embodiment]
次に、本発明の実施の形態を図面を参照して説明する。図 34は、本実施の形態に 力かるダイレクトドライブモータを用いたフロッグレッダアーム式搬送装置の斜視図で ある。図 34において、 4つのダイレクトドライブモータ Dl、 D2、 D3, D4を直列に連結 している。一番下のダイレクトドライブモータ D1のロータには、第 1アーム A1が連結さ れ、第 1アーム A1の先端には第 1リンク L1が枢動可能に連結されている。一方、その 上のダイレクトドライブモータ D2のロータには、第 2アーム A2が連結され、第 2アーム A2の先端には第 2リンク L2が枢動可能に連結されて 、る。更に上のダイレクトドライ ブモータ D3のロータには、第 1アーム A1,が連結され、第 1アーム A1,の先端には 第 1リンク L1 'が枢動可能に連結されている。更に、一番上のダイレクトドライブモータ D4のロータには、第 2アーム A2,が連結され、第 2アーム A2,の先端には第 2リンク L 2'が枢動可能に連結されている。リンク LI, L2は、ウェハ Wを載置するテーブル T に、それぞれ枢動可能に連結されており、リンク Ll ', L2'は、別なウェハ Wを載置す るテーブル T'に、それぞれ枢動可能に連結されている。 Next, embodiments of the present invention will be described with reference to the drawings. FIG. 34 is a perspective view of a frog redder arm type transport device using a direct drive motor that works in this embodiment. is there. In FIG. 34, four direct drive motors Dl, D2, D3, and D4 are connected in series. The first arm A1 is connected to the rotor of the lowermost direct drive motor D1, and the first link L1 is pivotally connected to the tip of the first arm A1. On the other hand, the second arm A2 is connected to the rotor of the direct drive motor D2 thereon, and the second link L2 is pivotally connected to the tip of the second arm A2. Further, a first arm A1 is connected to the rotor of the upper direct drive motor D3, and a first link L1 'is pivotally connected to the tip of the first arm A1. Further, the second arm A2 is connected to the rotor of the uppermost direct drive motor D4, and the second link L2 ′ is pivotally connected to the tip of the second arm A2. The links LI and L2 are pivotally connected to the table T on which the wafer W is placed, and the links Ll 'and L2' are pivoted to the table T 'on which another wafer W is placed. It is linked movably.
[0206] 図 34より明らかである力 ダイレクトドライブモータ Dl、 D2のロータがそれぞれ同方 向に回転すれば、テーブル Tも同方向に回転し、力かるロータが逆方向に回転すれ ば、テーブル Tは、ダイレクトドライブモータ Dl、 D2に接近もしくは離隔するようにな つている。従って、ダイレクトドライブモータ Dl、 D2を任意の角度で回転させれば、テ 一ブル Tが届く範囲内で、任意の 2次元位置にウェハ Wを搬送させることができる。 一方、ダイレクトドライブモータ D3、 D4のロータがそれぞれ同方向に回転すれば、テ 一ブル T'も同方向に回転し、力かるロータが逆方向に回転すれば、テーブル T'は、 ダイレクトドライブモータ D3、 D4に接近もしくは離隔するようになっている。従って、ダ ィレクトドライブモータ D3、 D4を任意の角度で回転させれば、テーブル T'が届く範 囲内で、任意の 2次元位置にウェハ Wを搬送させることができる。  [0206] The force apparent from Fig. 34 If the rotors of the direct drive motors Dl and D2 rotate in the same direction, the table T also rotates in the same direction, and if the powerful rotor rotates in the opposite direction, the table T becomes The direct drive motors Dl and D2 are approaching or separating from each other. Therefore, if the direct drive motors Dl and D2 are rotated at an arbitrary angle, the wafer W can be transferred to an arbitrary two-dimensional position within a range where the table T can reach. On the other hand, if the rotors of the direct drive motors D3 and D4 rotate in the same direction, the table T 'also rotates in the same direction, and if the powerful rotor rotates in the opposite direction, the table T' becomes a direct drive motor. It approaches or separates from D3 and D4. Therefore, if the direct drive motors D3 and D4 are rotated at an arbitrary angle, the wafer W can be transferred to an arbitrary two-dimensional position within the range where the table T ′ can reach.
[0207] このように例えば半導体製造装置における真空槽内に配置されるウェハ搬送ァー ム、例えばスカラ型や図に示すフロッグレッダ型のように複数のアームを備えた装置 では、特に複数の回転モータが必要となる。真空環境では外界との接触表面積を極 力小さくすると同時に、スペースを有効に活用するためにモータ等の取付穴はなるベ く少なくする必要がある。また、ウェハ Wを水平にまっすぐに、振動を極力少なくして 搬送するためには、アームの先端に作用するモーメントをロータ支持部で強固に保 持する必要がある。そこで、ダイレクトドライブモータ Dl、 D2、 D3, D4を複数、ハウ ジング部分で同軸に連結し、連結部分はシールで密に接合 (溶接、 oリング、金属ガ スケット、等による密な接合)して、モータロータの配設された空間とハウジング外部 空間とを離隔することも必要となる。 [0207] As described above, for example, in a wafer transfer arm arranged in a vacuum chamber in a semiconductor manufacturing apparatus, for example, an apparatus having a plurality of arms such as a scalar type or a frog redder type shown in the drawing, a plurality of rotations are particularly required. A motor is required. In a vacuum environment, the surface area of contact with the outside world should be minimized, and at the same time, the number of mounting holes for motors, etc., should be minimized to make effective use of space. Also, in order to transport the wafer W horizontally and with minimal vibration, it is necessary to hold the moment acting on the tip of the arm firmly at the rotor support. Therefore, several direct drive motors Dl, D2, D3, D4 Connected coaxially at the jing part, and the connection part is tightly joined with a seal (tightly joined by welding, o-ring, metal gasket, etc.) to separate the space where the motor rotor is located from the space outside the housing It is also necessary.
[0208] また、ウェハ Wを水平にまっすぐ、振動を少なく搬送するためにはアーム Al、 A2、 Al '、 A2'の先端に作用するモーメントを、ロータ支持部で強固に保持する必要があ る。更に、又、真空環境での複数軸のアーム駆動の際には、電源投入時に現在のァ ームの回転位置を認識しないと真空槽の壁や、真空槽のシャツタにアーム Al, A2、 Al '、 A2'等をぶつけてしまう可能性がある。このような要求に応じることができるダイ レクトドライブモータを同軸に連結したモータシステムについて説明する。  [0208] In addition, in order to transport wafer W horizontally and with less vibration, the moment acting on the tips of arms Al, A2, Al ', A2' must be held firmly by the rotor support. . In addition, when driving multiple axes in a vacuum environment, if the current arm rotation position is not recognized when the power is turned on, the arm Al, A2, Al There is a possibility of hitting ', A2', etc. A motor system in which direct drive motors that can meet such demands are coaxially connected will be described.
[0209] 本実施の形態は、表面磁石型の 32極 36スロットアウターロータ式ブラシレスタイプ のダイレクトドライブモータを用いる。 32極 36スロットというスロットコンビネーションは 、コギンダカは小さいが径方向に磁気吸引力が発生し回転時の振動は大きいことが 一般的に知られている 8極 9スロットというスロットコンビネーションの 4倍の構成である 。 2n倍 (nは整数)にしたことにより、径方向の磁気吸引力は相殺されるので、固定子 と回転子の真円度や同軸度および機構部品の剛性を高めることなく回転時の振動を 小さくでき、かつ、本来的にコギングが小さい構成であるので、非常に滑らかな回転 が得られる。一方、このような非常に多極なモータとすることにより、機械角の周期に 対する電気角の周期が多いので、位置決め制御性が良い。よって、本発明の如ぐ 減速器を用いずにロボット装置を駆動するようなダイレクトドライブモータには好適で ある。また、総磁束量を下げることなく固定子連結部の肉厚と突極幅、および回転子 のヨーク肉厚を狭くできるので、本発明の如ぐ薄型かつ大径幅狭のダイレクトドライ ブモータには好適である。 In this embodiment, a surface magnet type 32-pole 36-slot outer rotor brushless type direct drive motor is used. The slot combination of 32 poles and 36 slots is generally known to have a large magnetic attraction force in the radial direction and large vibration during rotation. is there . 2 n times (n is an integer) cancels out the magnetic attractive force in the radial direction. Therefore, vibration during rotation can be achieved without increasing the roundness and coaxiality of the stator and rotor and the rigidity of the mechanical parts. Can be made small and cogging is inherently small, so that a very smooth rotation can be obtained. On the other hand, by using such a very multi-pole motor, the electrical angle cycle is greater than the mechanical angle cycle, so positioning controllability is good. Therefore, it is suitable for a direct drive motor that drives a robot apparatus without using a speed reducer as in the present invention. In addition, since the thickness and salient pole width of the stator connecting portion and the yoke thickness of the rotor can be reduced without lowering the total magnetic flux, the direct drive motor having a thin and large diameter and narrow width as in the present invention is used. Is preferred.
[0210] 図 35は、図 34の構成を Π-Π線で切断して矢印方向に見た図である。図 35を参照し て、 4軸のモータシステムの内部構造について詳細に説明する。まず、ダイレクトドラ イブモータ D1について説明する。定盤 Gに据え付けた円板 10の中央開口 10aに嵌 合しボルト 11により、中空円筒状の第 1の本体 12が相互に固定されている。第 1の本 体 12は、その上端外周に縮径部 12hを形成している。第 1の本体 12と類似の形状の 第 2の本体 112は、その下端内周に大径部 112hを形成している。縮径部 12hを、大 径部 112hに嵌合することによって、第 1の本体 12と第 2の本体 112とは同軸に連結 されている。本体 12、 112の中央は、ステータへの配線などを通すために用いること ができる。第 1の本体 12, 円板 10及び第 2の本体 112によりハウジングを構成する。 [0210] FIG. 35 is a diagram of the configuration of FIG. 34 cut along the Π-Π line and viewed in the direction of the arrow. The internal structure of the 4-axis motor system will be described in detail with reference to FIG. First, the direct drive motor D1 will be described. The hollow cylindrical first main bodies 12 are fixed to each other by bolts 11 fitted into the central opening 10a of the disc 10 installed on the surface plate G. The first body 12 has a reduced diameter portion 12h on the outer periphery of its upper end. The second main body 112 having a shape similar to that of the first main body 12 has a large-diameter portion 112h on the inner periphery of the lower end thereof. Reduced diameter section 12h, large The first main body 12 and the second main body 112 are coaxially connected by being fitted to the diameter portion 112h. The center of the main bodies 12 and 112 can be used to pass wiring to the stator. The first main body 12, the disk 10 and the second main body 112 constitute a housing.
[0211] 第 2の本体 112の上面には、蓋部材 101により中央開口を閉止された円板部材 11 0が取り付けられている。円板部材 110は、下面に隔壁 13の上端をボルト止めしてお り、また外周に軸受ホルダ 107を取り付けている。円板部材 110,蓋部材 101,軸受 ホルダ 107は、耐食性が高いオーステナイト系ステンレスを材料としている。軸受ホル ダ 107については後述する。  [0211] On the upper surface of the second main body 112, a disc member 110 whose center opening is closed by the lid member 101 is attached. The disc member 110 is bolted to the lower surface of the upper end of the partition wall 13 and has a bearing holder 107 attached to the outer periphery. The disc member 110, the lid member 101, and the bearing holder 107 are made of austenitic stainless steel having high corrosion resistance. The bearing holder 107 will be described later.
隔壁 13は、非磁性体であるステンレス製であり、円板部材 110に取り付けられた肉 厚の円板部 13aと、その周縁から軸線方向にダイレクトドライブモータ D4、 D3、 D2, D1を貫くようにして延在する薄肉の円筒部 13bとからなる。円板部 13aの下面から延 在するフランジ 13cが、円筒部 13bの上端に TIG溶接されている。すなわち、隔壁 13 は、ダイレクトドライブモータ D 1〜D4に共通に用いられる。  The partition wall 13 is made of stainless steel, which is a non-magnetic material, and passes through the direct-drive motors D4, D3, D2, and D1 in the axial direction from the periphery of the thick disk portion 13a attached to the disk member 110. And a thin cylindrical portion 13b extending. A flange 13c extending from the lower surface of the disk portion 13a is TIG welded to the upper end of the cylindrical portion 13b. That is, the partition wall 13 is commonly used for the direct drive motors D1 to D4.
[0212] 円筒部 13bの下端は、 TIG溶接にて封止可能にホルダ 15に接合され、ホルダ 15 は、円板 10にボルト 16により固定されている。ここで、円筒部 13bの溶接部を略同一 厚さとすることにより、片側への部品にのみ熱が逃げることを抑制し、嵌合部を均一に 溶接できる構造となっている。ホルダ 15と円板 10の接触面には、シール部材を填め 込む溝力卩ェが施してあり、シール部材 ORを溝に填め込んだ後にホルダ 15と円板 10 をボルト 16により締結することにより、締結部分を大気側力も分離隔絶している。隔壁 13は耐食性が高く、特に磁性の少な 、オーステナイト系ステンレスの SUS 316を材 料としており、ホルダ 15は隔壁 13との溶接性から同じく SUS316を材料としている。  [0212] The lower end of the cylindrical portion 13b is joined to the holder 15 so as to be sealed by TIG welding, and the holder 15 is fixed to the disc 10 with bolts 16. Here, by setting the welded portion of the cylindrical portion 13b to substantially the same thickness, it is possible to prevent heat from escaping only to the component on one side and to weld the fitting portion uniformly. The contact surface between the holder 15 and the disk 10 is provided with a groove force to fit the seal member. After the seal member OR is fitted into the groove, the holder 15 and the disk 10 are fastened by the bolt 16. , Atmospheric side force is also separated from the fastening part. The partition wall 13 is made of austenitic stainless steel SUS316, which has high corrosion resistance and is particularly low in magnetism. The holder 15 is also made of SUS316 because of its weldability with the partition wall 13.
[0213] 更に、円板部材 110と隔壁 13,及び隔壁 13とホルダ 15とは気密的に接合され、且 つホルダ 15と円板 10、及び円板 10と定盤 Gとは、それぞれ O—リング ORによって気 密されている。従って、円板 10と、円板部材 110と、隔壁 13とで囲われる内部空間は 、その外部力も気密されている。尚、隔壁 13は必ずしも非磁性体である必要はない。 又、 O—リング ORを用いて気密する代わりに、電子ビーム溶接やレーザビーム溶接 などで部材間を気密してもも良い。  [0213] Further, the disk member 110 and the partition wall 13, and the partition wall 13 and the holder 15 are hermetically joined, and the holder 15 and the disk 10 and the disk 10 and the surface plate G are respectively O- Airtight by ring OR. Therefore, the external force of the internal space surrounded by the disk 10, the disk member 110, and the partition wall 13 is also airtight. The partition wall 13 is not necessarily made of a nonmagnetic material. Further, instead of using an O-ring OR to seal the air, the members may be sealed by electron beam welding or laser beam welding.
[0214] 円板 10の外周上面において、軸受ホルダ 17がー体的に形成されている。軸受ホ ルダ 17には、真空中で用 ヽられる 4点接触式玉軸受 19の外輪が嵌合的に取り付け られ、ボルト 20により固定されている。一方、軸受 19の内輪は、第 1外側ロータ部材 2 1を内包嵌合した 2重円筒状の円筒状部材 23に嵌合し、第 1外側ロータ部材 21を共 締めするボルト 22により固定されている。すなわち、第 1外側ロータ部材 21は、ァー ム A1 (図 34)を支持する円筒状部材 23により、隔壁 13に対して回転自在に支持さ れている。 [0214] On the upper surface of the outer periphery of the disc 10, a bearing holder 17 is formed in a body-like manner. Bearing ho The outer ring of a four-point contact ball bearing 19 used in a vacuum is fitted to the rudder 17 in a fitting manner and fixed with bolts 20. On the other hand, the inner ring of the bearing 19 is fixed to a double cylindrical cylindrical member 23 including the first outer rotor member 21 and is fixed by a bolt 22 that fastens the first outer rotor member 21 together. Yes. That is, the first outer rotor member 21 is rotatably supported with respect to the partition wall 13 by the cylindrical member 23 that supports the arm A1 (FIG. 34).
尚、第 1外側ロータ部材 21と円筒状部材 23とで、外側ロータを構成する。  The first outer rotor member 21 and the cylindrical member 23 constitute an outer rotor.
[0215] 円板 10および軸受ホルダ 17は、耐食性が高いオーステナイト系ステンレスを材料 としており、円板 10は、チャンバである定盤 Gとの嵌合固定およびシール装置を兼ね ており、その下面に、 O—リング ORを填め込む溝 10bが設けられている。 [0215] The disc 10 and the bearing holder 17 are made of austenitic stainless steel having high corrosion resistance. The disc 10 also serves as a fitting and fixing device with the surface plate G that is a chamber, and has a lower surface. A groove 10b is provided to fill the O-ring OR.
軸受 19は、ラジアル、アキシアル、モーメント荷重を 1個の軸受で負荷できる 4点接 触玉軸受である。この形式の軸受を用いることにより、ダイレクトドライブモータ D1の 軸受は 1個で済むため、本発明の 4軸同軸モータシステムを薄型化できる。軸受 19 は、内外輪とも耐食性が高くかつ焼入れによる硬化が得られるマルテンサイト系ステ ンレスを材料とし。転動体はセラミックボール、潤滑剤は真空であっても固化しない真 空用のグリスを用いている。  Bearing 19 is a four-point contact ball bearing that can apply radial, axial, and moment loads with a single bearing. By using this type of bearing, the direct drive motor D1 requires only one bearing, so the four-axis coaxial motor system of the present invention can be made thinner. The bearing 19 is made of martensite stainless steel, which has high corrosion resistance for both the inner and outer rings and can be hardened by quenching. The rolling elements are ceramic balls, and the lubricant is vacuum grease that does not solidify even under vacuum.
[0216] 尚、軸受 19は内輪と外輪に金や銀などの軟質金属をプレーティングして、真空中 でもアウトガス放出のな 、金属潤滑としたものを用いてもよく、また 4点接触式玉軸受 であるので、アーム A1からの第 1外側ロータ部材 21がチルトする方向のモーメントを 受けることができる力 4点接触式に限らず、クロスローラ、クロスボール、クロステーパ 軸受も用いることができ、予圧状態で用いても良いし、潤滑性向上のためフッ素系被 膜処理 (DFO)を行っても良!ヽ。 [0216] The bearing 19 may be made of metal lubricated by plating a soft metal such as gold or silver on the inner ring and the outer ring so as not to release outgas even in vacuum, or a four-point contact ball. Since it is a bearing, the force that can receive the moment in the direction in which the first outer rotor member 21 tilts from the arm A1 is not limited to a four-point contact type, and cross roller, cross ball, and cross taper bearings can also be used. It can be used in a preloaded state, or fluorine film treatment (DFO) can be performed to improve lubricity.
[0217] 第 1外側ロータ部材 21は、永久磁石 21aと、磁路を形成するため磁性体から成る円 環状のヨーク 21bと、永久磁石 21aとヨーク 21bを機械的に締結するための非磁性体 力もなるくさび (不図示)によって構成されている。永久磁石 21aは、 32極の構成で N 極、 S極の磁石が各 16個交互に磁性金属カゝらなり、極ごとに分割されたセグメント形 式であり、その個々の形状は扇形である。内径と外径の円弧中心は同一であるが、 円周方向端面の接線交点を永久磁石 21a寄りとすることで、くさびをヨーク 21b外径 側からねじで締め上げることにより永久磁石 21aをヨーク 21bに締結している。このよ うな構成とすることにより、接着剤など、アウトガスを発生する固定部材を用いることな く永久磁石を締結できる。永久磁石 21 aはエネルギー積の高!、ネオジゥム(Nd - Fe —B)系磁石であり、耐食性を高めるためにニッケルコーティングを施してある。ヨーク 21bは高い磁性を有する低炭素鋼を材料とし、加工成型後に、防鲭および耐食性を 高め、かつ軸受交換時の磨耗を防ぐためにニッケルめっきを施している。 [0217] The first outer rotor member 21 includes a permanent magnet 21a, an annular yoke 21b made of a magnetic material to form a magnetic path, and a non-magnetic material for mechanically fastening the permanent magnet 21a and the yoke 21b. It is made up of a wedge (not shown) that also has power. Permanent magnet 21a is a segment type divided into poles, each of which has a sector shape, consisting of 16 magnetic poles each consisting of 16 poles with N poles and S poles. . The inner and outer diameter arc centers are the same, but by setting the tangent intersection of the circumferential end face closer to the permanent magnet 21a, the wedge is moved to the outer diameter of the yoke 21b. The permanent magnet 21a is fastened to the yoke 21b by screwing up from the side. With this configuration, the permanent magnet can be fastened without using a fixing member that generates outgas, such as an adhesive. Permanent magnet 21a is a high energy product, neodymium (Nd-Fe-B) based magnet, which is nickel coated to enhance corrosion resistance. The yoke 21b is made of low-carbon steel with high magnetism, and is nickel-plated to improve wear resistance and corrosion resistance after processing and molding, and to prevent wear during bearing replacement.
[0218] 隔壁 13の半径方向内側において、第 1外側ロータ部材 21の内周面に対向するよう にして、第 1ステータ 29が配置されている。第 1ステータ 29は、本体 12の中央で半径 方向に延在したフランジ部 12aの円筒状に変形した下部に取り付けられており、電磁 鋼板の積層材で形成され、各突極には絶縁処理としてボビンを嵌め込んだ後にモー タコイルが集中巻されている。第 1ステータ 29の外径は隔壁 13の内径と略同一もしく は小さい寸法としている。  [0218] On the radially inner side of the partition wall 13, the first stator 29 is arranged so as to face the inner peripheral surface of the first outer rotor member 21. The first stator 29 is attached to a cylindrically deformed lower portion of a flange portion 12a extending in the radial direction at the center of the main body 12, and is formed of a laminated material of electromagnetic steel plates. After the bobbin is fitted, the motor coil is concentrated. The outer diameter of the first stator 29 is approximately the same as or smaller than the inner diameter of the partition wall 13.
[0219] 第 1ステータ 29に隣接且つ平行して、第 1内側ロータ 30が配置されている。第 1内 側ロータ 30は、本体 12の外周面にボルト固定されたレゾルバホルダ 32に対して、玉 軸受 33により回転自在に支持されている。第 1内側ロータ 30の外周面には、ノックョ ーク 30bを介して永久磁石 30aが取り付けられている。永久磁石 30aは、第 1外側口 一タ部材 21の永久磁石 21aと同様に 32極の構成で N極、 S極の磁石が各 16個交互 に磁性金属力もなつている。従って、第 1内側ロータ 30は、第 1ステータ 29によって 駆動される第 1外側ロータ部材 21に同期して連れ回されるようになつている。  [0219] A first inner rotor 30 is disposed adjacent to and parallel to the first stator 29. The first inner rotor 30 is rotatably supported by ball bearings 33 with respect to a resolver holder 32 bolted to the outer peripheral surface of the main body 12. A permanent magnet 30a is attached to the outer peripheral surface of the first inner rotor 30 via a knock 30b. As with the permanent magnet 21a of the first outer opening member 21, the permanent magnet 30a has a 32-pole configuration, and each of the 16 N-pole and S-pole magnets alternately has a magnetic metal force. Accordingly, the first inner rotor 30 is rotated in synchronism with the first outer rotor member 21 driven by the first stator 29.
[0220] 第 1内側ロータ 30を回転自在に支持する軸受 33は、ラジアル、アキシアル、モーメ ント荷重を 1個の軸受で負荷できる 4点接触玉軸受である。この形式の軸受を用いる ことにより、 1個の軸受で済むため、ダイレクトドライブモータ D1を薄型化できる。隔壁 13の内部は大気環境であるため、一般的な軸受鋼と鉱油を基油としたグリス潤滑を 用いた軸受を適用できる。  [0220] The bearing 33 that rotatably supports the first inner rotor 30 is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing. By using this type of bearing, it is possible to reduce the thickness of the direct drive motor D1 because only one bearing is required. Since the interior of the partition wall 13 is an atmospheric environment, a bearing using grease lubrication based on general bearing steel and mineral oil can be applied.
隔壁 13内部は大気環境であるため、永久磁石 30aはバックヨーク 30bに接着固定 してある。永久磁石 30aはエネルギー積の高いネオジゥム(Nd— Fe— B)系磁石で あり、鲭による減磁を防ぐためにニッケルコーティングを施してある。ヨーク 30bは高い 磁性を有する低炭素鋼を材料とし、加工成形後に防鲭のためにクロメートめつきを施 している。 Since the inside of the partition wall 13 is an atmospheric environment, the permanent magnet 30a is bonded and fixed to the back yoke 30b. Permanent magnet 30a is a high energy product neodymium (Nd-Fe-B) magnet with nickel coating to prevent demagnetization due to defects. Yoke 30b is made of low-carbon steel with high magnetic properties, and is chromated to prevent fouling after machining. is doing.
[0221] 第 1内側ロータ 30の内周には、回転角度を計測する検出器として、レゾルバロータ 34a及び 34bを組みつけており、それに対向する形で、レゾルバホルダ 32の外周に 、レゾルバステータ 35, 36を取り付けている力 本実施の形態では、高分解能のイン タリメンタルレゾルバステータ 35と、 1回転のいずれの位置にロータがあるかを検出で きるアブソリュートレゾルバステータ 36とを 2層に配置して!/、る。このため電源投入時 にも、アブソリュートレゾルバロータ 34bの回転角度がわかり、原点復帰が不要であり 、また、コイルに対する磁石の電気的位相角度がゎカゝるため、ダイレクトドライブモー タ D1の駆動電流制御に使用する回転角度検出が、極検出センサを用いることなく可 能となっている。  [0221] The resolver rotors 34a and 34b are assembled as detectors for measuring the rotation angle on the inner periphery of the first inner rotor 30, and the resolver stator 35 is disposed on the outer periphery of the resolver holder 32 so as to face it. In this embodiment, the high-resolution incremental resolver stator 35 and the absolute resolver stator 36 that can detect the position of the rotor in one rotation are arranged in two layers. /! For this reason, even when the power is turned on, the rotational angle of the absolute resolver rotor 34b is known, no return to origin is required, and the electrical phase angle of the magnet with respect to the coil increases, so the drive current of the direct drive motor D1 The rotation angle used for control can be detected without using a pole detection sensor.
[0222] レゾルバホルダ 32と第 1内側ロータ 30は、モータの界磁およびモータコイルからの 電磁ノイズが角度検出器であるレゾルバステータ 35, 36に伝達されないように、磁性 体である炭素鋼を材料とし、加工成型後に防鲭のためにクロメートめつきを施してい る。  [0222] The resolver holder 32 and the first inner rotor 30 are made of carbon steel, which is a magnetic material, so that electromagnetic noise from the motor field and motor coil is not transmitted to the resolver stators 35, 36 that are angle detectors. In order to prevent fouling after processing and molding, it is chromated.
本実施の形態に用いて 、る高分解能の可変リラクタンス形レゾルバにぉ 、て、イン タリメンタルレゾルバロータ 34aは、一定のピッチを有する複数のスロット歯列を有し、 インクリメンタルレゾルバステータ 35の外周面には、回転軸と平行に各磁極でインクリ メンタルレゾルバロータ 34aに対して位相をずらした歯が設けられており、コイルが各 磁極に卷回されている。第 1内側ロータ 30と一体でインクリメンタルレゾルバロータ 34 aが回転すると、インクリメンタルレゾルバステータ 35の磁極との間のリラクタンスが変 化し、インクリメンタルレゾルバロータ 34aの 1回転でリラクタンス変化の基本波成分が n周期となるようにして、そのリラクタンス変化を検出して、図 36に例を示すレゾルバ 制御回路によりデジタルィ匕し、位置信号として利用することでインクリメンタルレゾル ノ ロータ 34a即ち第 1内側ロータ 30の回転角度 (又は回転速度)を検出するようにな つている。レゾルバロータ 34a、 34bと、レゾルバステータ 35, 36とで検出器を構成す る。  The high-resolution variable reluctance resolver used in the present embodiment has an incremental resolver rotor 34a having a plurality of slot teeth having a constant pitch, and the outer peripheral surface of the incremental resolver stator 35. Are provided with teeth shifted in phase with respect to the incremental resolver rotor 34a at each magnetic pole parallel to the rotation axis, and a coil is wound around each magnetic pole. When the incremental resolver rotor 34a rotates together with the first inner rotor 30, the reluctance between the incremental resolver stator 35 and the magnetic pole changes, and the fundamental wave component of the change in reluctance becomes n cycles in one revolution of the incremental resolver rotor 34a. Thus, the change in reluctance is detected, digitized by the resolver control circuit shown in FIG. 36, and used as a position signal, so that the rotational angle of the incremental resolver rotor 34a, that is, the first inner rotor 30 is (Or rotation speed) is detected. The resolver rotors 34a and 34b and the resolver stators 35 and 36 constitute a detector.
[0223] 本実施の形態によれば、第 1外側ロータ部材 21に対して、磁気カップリング作用に より第 1内側ロータ 30が同速で回転し、すなわち連れ回るので、第 1外側ロータ部材 21の回転角を隔壁 13越しに検出することができる。また、本実施の形態では、モー タを形成する部品ゃノヽウジングを用いることなくレゾルバ単体で軸受 33を有しており 、従ってハウジングに組み込む前に、レゾルバ単体での偏芯調整ゃレゾルバコイル の位置調整などの精度調整が行えるので、ハウジングゃ両フランジに調整用の穴や 切り欠きを別途設ける必要がな 、。 [0223] According to this embodiment, the first outer rotor member 21 rotates at the same speed, that is, rotates with the first outer rotor member 21 by the magnetic coupling action. The rotation angle of 21 can be detected through the partition wall 13. Further, in the present embodiment, the resolver alone has the bearing 33 without using the parts forming the motor, and therefore, the eccentricity adjustment with the resolver alone is performed before the resolver coil is assembled into the housing. Since accuracy adjustment such as position adjustment can be performed, there is no need to provide adjustment holes or notches on both flanges of the housing.
[0224] 次に、ダイレクトドライブモータ D2について説明する力 ここでは第 1の本体 12がハ ウジングを構成する。上述したダイレクトドライブモータ D1の円筒状部材 23は、ダイ レクトドライブモータ D2に重合する位置まで上方に延在しており、その内周面に、真 空中で用 、られる 4点接触式玉軸受 19 'の外輪が嵌合的に取り付けられ、ボルト 20 ' により固定されている。一方、軸受 19'の内輪は、二重円筒状のリング状部材 23 'の 周面に嵌合し、第 2外側ロータ部材 21 'を共締めするボルト 22'により固定されている 。すなわち、第 2外側ロータ部材 21 'は、アーム A2 (図 34)を支持するリング状部材 2 3'により、隔壁 13に対して回転自在に支持されている。尚、第 2外側ロータ部材 21 ' とリング状部材 23'とで、外側ロータを構成する。  Next, the force for explaining the direct drive motor D2 Here, the first main body 12 constitutes housing. The cylindrical member 23 of the direct drive motor D1 described above extends upward to a position where it overlaps with the direct drive motor D2, and the four-point contact ball bearing used in the vacuum on the inner peripheral surface 19 The outer ring of 'is fitted in and fitted with bolts 20'. On the other hand, the inner ring of the bearing 19 'is fixed by a bolt 22' that fits around the circumferential surface of a double cylindrical ring-shaped member 23 'and fastens the second outer rotor member 21' together. That is, the second outer rotor member 21 ′ is rotatably supported with respect to the partition wall 13 by the ring-shaped member 23 ′ that supports the arm A2 (FIG. 34). The second outer rotor member 21 ′ and the ring-shaped member 23 ′ constitute an outer rotor.
[0225] 軸受 19'は、ラジアル、アキシアル、モーメント荷重を 1個の軸受で負荷できる 4点 接触玉軸受である。この形式の軸受を用いることにより、ダイレクトドライブモータ D2 の軸受は 1個で済むため、本発明の 4軸同軸モータを薄型化できる。内外輪とも耐食 性が高くかつ焼入れによる硬化が得られるマルテンサイト系ステンレスを材料とし。転 動体はセラミックボール、潤滑剤は真空であっても固化しない真空用のグリスを用い ている。  [0225] Bearing 19 'is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing. By using this type of bearing, the direct drive motor D2 requires only one bearing, so the four-axis coaxial motor of the present invention can be made thinner. The inner and outer rings are made of martensitic stainless steel, which has high corrosion resistance and can be hardened by quenching. The rolling elements are ceramic balls, and the lubricant is vacuum grease that does not solidify even under vacuum.
尚、軸受 19'は内輪と外輪に金や銀などの軟質金属をプレーティングして、真空中 でもアウトガス放出のな 、金属潤滑としたものを用いてもよく、また 4点接触式玉軸受 であるので、アーム A1からの第 2外側ロータ部材 21,がチルトする方向のモーメント を受けることができる力 4点接触式に限らず、クロスローラ、クロスボール、クロステー パ軸受も用いることができ、予圧状態で用いても良いし、潤滑性向上のためフッ素系 被膜処理 (DFO)を行っても良!ヽ。  The bearing 19 'may be made of a metal lubrication that is plated with a soft metal such as gold or silver on the inner ring and the outer ring and does not release outgas even in vacuum, or a four-point contact ball bearing. Therefore, the force that can receive the moment in the tilting direction of the second outer rotor member 21 from the arm A1 is not limited to the four-point contact type, and cross rollers, cross balls, and cross taper bearings can also be used. It can be used in the state, or fluorine coating (DFO) can be applied to improve lubricity.
[0226] また、リング状部材 23'は、軸受 19'の内輪を嵌合固定する面を有している。 4点接 触玉軸受 19 'は非常に薄肉の軸受であり、組みつけられる部材の精度や線膨張係 数の差異により回転精度や摩擦トルクが大きな影響を受ける。よって本実施の形態の 場合は、回転輪である軸受 19 'の内輪を、加工精度を出しやすくかつ線膨張係数が 軸受の軌道輪材質と略同一であるリング状部材 23 'に締まり嵌めあるいは中間嵌め とし、固定輪である軸受 19 'の外輪を、円筒状部材 23の内周にすきま嵌めとすること で、軸受 19 'の回転精度の低下や温度上昇による摩擦トルクの上昇を防ぐ構成とな つている。 [0226] Further, the ring-shaped member 23 'has a surface for fitting and fixing the inner ring of the bearing 19'. Four-point contact ball bearing 19 'is a very thin bearing, and the accuracy and linear expansion of the assembled parts Rotational accuracy and friction torque are greatly affected by the number difference. Therefore, in the case of the present embodiment, the inner ring of the bearing 19 ′, which is a rotating ring, is tightly fitted or intermediately fitted to a ring-shaped member 23 ′, which is easy to obtain machining accuracy and whose linear expansion coefficient is substantially the same as the bearing ring material of the bearing. By fitting the outer ring of the bearing 19 ', which is a fixed ring, with a clearance fit on the inner periphery of the cylindrical member 23, it is possible to prevent a decrease in rotational accuracy of the bearing 19' and an increase in friction torque due to a temperature rise. It is.
[0227] 第 2外側ロータ部材 21 'は、永久磁石 21a'と、磁路を形成するため磁性体から成る 円環状のヨーク 21b 'と、永久磁石 21a'とヨーク 21b 'を機械的に締結するための非 磁性体力もなるくさび (不図示)によって構成されている。永久磁石 21a'は、 32極の 構成で N極、 S極の磁石が各 16個交互に磁性金属からなり、極ごとに分割されたセ グメント形式であり、その個々の形状は扇形である。内径と外径の円弧中心は同一で あるが、円周方向端面の接線交点を永久磁石 21a'寄りとすることで、くさびをヨーク 2 lb '外径側からねじで締め上げることにより永久磁石 21a'をヨーク 21b'に締結して いる。このような構成とすることにより、接着剤など、アウトガスを発生する固定部材を 用いることなく永久磁石を締結できる。永久磁石 21a'はエネルギー積の高いネオジ ゥム(Nd— Fe— B)系磁石であり、耐食性を高めるためにニッケルコーティングを施し てある。ヨーク 21b 'は高い磁性を有する低炭素鋼を材料とし、加工成型後に、防鲭 および耐食性を高め、かつ軸受交換時の磨耗を防ぐためにニッケルめっきを施して いる。  [0227] The second outer rotor member 21 'mechanically fastens the permanent magnet 21a', the annular yoke 21b 'made of a magnetic material to form a magnetic path, and the permanent magnet 21a' and the yoke 21b '. It is made up of a wedge (not shown) that also has non-magnetic strength. Permanent magnet 21a 'is a segment type with a configuration of 32 poles, each consisting of 16 magnets of N poles and S poles alternately made of magnetic metal, and each pole is segmented. Although the inner and outer diameter arc centers are the same, the tangential intersection of the circumferential end face is closer to the permanent magnet 21a ', so that the wedge is tightened with a screw from the outer side of the yoke 2 lb' permanent magnet 21a 'Is fastened to York 21b. With such a configuration, the permanent magnet can be fastened without using a fixing member that generates outgas, such as an adhesive. The permanent magnet 21a 'is a neodymium (Nd-Fe-B) magnet with a high energy product, and has a nickel coating to improve corrosion resistance. Yoke 21b 'is made of low-carbon steel with high magnetism and is plated with nickel to improve wear resistance and corrosion resistance after machining and to prevent wear during bearing replacement.
[0228] 隔壁 13の半径方向内側において、第 2外側ロータ部材 21 'の内周面に対向するよ うにして、第 2ステータ 29 'が配置されている。第 2ステータ 29 'は、第 1の本体 12の 中央で半径方向に延在したフランジ部 12aの円筒状に変形した上部に取り付けられ ており、電磁鋼板の積層材で形成され、各突極には絶縁処理としてボビンを嵌め込 んだ後にモータコイルが集中卷されて 、る。第 2ステータ 29,の外径は隔壁 13の内 径と略同一もしくは小さ 、寸法として 、る。  [0228] On the radially inner side of the partition wall 13, the second stator 29 'is disposed so as to face the inner peripheral surface of the second outer rotor member 21'. The second stator 29 ′ is attached to a cylindrically deformed upper portion of the flange portion 12 a extending in the radial direction at the center of the first main body 12, and is formed of a laminated material of electromagnetic steel plates, and is attached to each salient pole. In this case, the motor coil is concentrated after the bobbin is fitted as an insulation treatment. The outer diameter of the second stator 29 is substantially the same as or smaller than the inner diameter of the partition wall 13.
[0229] 第 2ステータ 29 'の半径方向内側に、第 2内側ロータ 30'が配置されている。第 2内 側ロータ 30'は、第 1の本体 12の外周面にボルト固定されたレゾルバホルダ 32'に対 して、玉軸受 33 'により回転自在に支持されている。第 2内側ロータ 30'の外周面に は、バックヨーク 30b'を介して永久磁石 30a'が取り付けられている。永久磁石 30a' は、第 2外側ロータ部材 21 'の永久磁石 21a'と同様に 32極の構成で N極、 S極の磁 石が各 16個交互に磁性金属からなっている。従って、第 2内側ロータ 30'は、第 2ス テータ 29'によって第 2外側ロータ部材 21 'に同期して回転駆動されるようになって いる。 [0229] A second inner rotor 30 'is disposed radially inward of the second stator 29'. The second inner rotor 30 ′ is rotatably supported by a ball bearing 33 ′ with respect to a resolver holder 32 ′ bolted to the outer peripheral surface of the first main body 12. On the outer peripheral surface of the second inner rotor 30 ' The permanent magnet 30a ′ is attached via the back yoke 30b ′. The permanent magnet 30a ′ has a configuration of 32 poles, as in the case of the permanent magnet 21a ′ of the second outer rotor member 21 ′, and is composed of 16 N-pole and 16 S-pole magnets alternately made of magnetic metal. Accordingly, the second inner rotor 30 ′ is rotationally driven by the second stator 29 ′ in synchronization with the second outer rotor member 21 ′.
[0230] 第 2内側ロータ 30'を回転自在に支持する軸受 33'は、ラジアル、アキシアル、モー メント荷重を 1個の軸受で負荷できる 4点接触玉軸受である。この形式の軸受を用い ることにより、 1個の軸受で済むため、ダイレクトドライブモータ D2を薄型化できる。隔 壁 13の内部は大気環境であるため、一般的な軸受鋼と鉱油を基油としたグリス潤滑 を用 、た軸受を適用できる。  [0230] The bearing 33 'that rotatably supports the second inner rotor 30' is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing. By using this type of bearing, only one bearing is required, so the direct drive motor D2 can be made thinner. Since the inside of the partition wall 13 is an atmospheric environment, a bearing using grease lubrication based on general bearing steel and mineral oil can be applied.
隔壁 13内部は大気環境であるため、永久磁石 30a'はバックヨーク 30b'に接着固 定してある。永久磁石 30a'はエネルギー積の高いネオジゥム(Nd— Fe— B)系磁石 であり、鲭による減磁を防ぐためにニッケルコーティングを施してある。ヨーク 30b'は 高い磁性を有する低炭素鋼を材料とし、加工成形後に防鲭のためにクロメートめつき を施している。  Since the inside of the partition wall 13 is an atmospheric environment, the permanent magnet 30a ′ is bonded and fixed to the back yoke 30b ′. The permanent magnet 30a 'is a neodymium (Nd-Fe-B) magnet with a high energy product and is coated with nickel to prevent demagnetization due to defects. Yoke 30b 'is made of low-carbon steel with high magnetism, and is chromated to prevent fouling after machining.
[0231] 第 2内側ロータ 30'の内周には、回転角度を計測する検出器として、レゾルバロー タ 34b'を組みつけており、それに対向する形で、レゾルバホルダ 32'の外周に、レゾ ルバステータ 35' , 36'を取り付けている力 本実施の形態では、高分解能のインクリ メンタルレゾルバステータ 35,と、 1回転のいずれの位置にロータがあるかを検出でき るアブソリュートレゾルバステータ 36'とを 2層に配置している。このため電源投入時 にも、アブソリュートレゾルバロータ 34'の回転角度がわかり、原点復帰が不要であり 、また、コイルに対する磁石の電気的位相角度がゎカゝるため、ダイレクトドライブモー タ D2の相対回転角度を、極検出センサを用いることなく可能となって!/、る。  [0231] A resolver rotor 34b 'is assembled on the inner periphery of the second inner rotor 30' as a detector for measuring the rotation angle. The resolver stator 32 'is arranged on the outer periphery of the resolver holder 32' so as to face it. In this embodiment, a high-resolution incremental resolver stator 35, and an absolute resolver stator 36 'that can detect the position of the rotor in one rotation are divided into two. Arranged in layers. For this reason, even when the power is turned on, the rotational angle of the absolute resolver rotor 34 'is known, no return to origin is required, and the electrical phase angle of the magnet with respect to the coil increases, so the relative position of the direct drive motor D2 Rotation angle is possible without using a pole detection sensor! /
[0232] レゾルバホルダ 32'と第 2内側ロータ 30'は、モータの界磁およびモータコイルから の電磁ノイズが角度検出器であるレゾルバステータ 35' , 36'に伝達されないように、 磁性体である炭素鋼を材料とし、加工成型後に防鲭のためにクロメートめつきを施し ている。  [0232] The resolver holder 32 'and the second inner rotor 30' are magnetic bodies so that electromagnetic noise from the motor field and the motor coil is not transmitted to the resolver stators 35 'and 36' that are angle detectors. Carbon steel is used as a material, and chromate plating is applied after processing to prevent fouling.
本実施の形態によれば、第 2外側ロータ部材 21 'に対して、磁気カップリング作用 により第 2内側ロータ 30'が同速で回転し、すなわち連れ回るので、第 2外側ロータ部 材 21 'の回転角を隔壁 13越しに検出することができる。また、本実施の形態では、モ ータを形成する部品ゃノヽウジングを用いることなくレゾルバ単体で軸受 33 'を有して おり、従ってハウジングに組み込む前に、レゾルバ単体での偏芯調整ゃレゾルバコィ ルの位置調整などの精度調整が行えるので、ハウジングゃ両フランジに調整用の穴 や切り欠きを別途設ける必要がな 、。 According to the present embodiment, the magnetic coupling action is applied to the second outer rotor member 21 ′. As a result, the second inner rotor 30 ′ rotates at the same speed, that is, rotates around, so that the rotation angle of the second outer rotor member 21 ′ can be detected through the partition wall 13. Further, in the present embodiment, the resolver itself has the bearing 33 ′ without using the parts forming the motor, and therefore, the eccentricity adjustment with the resolver alone is not performed before the housing is assembled. The housing can be adjusted for accuracy, such as adjusting the position of the housing, so there is no need to provide additional adjustment holes or notches on both flanges.
[0233] 本実施の形態に用いている高分解能の可変リラクタンス形レゾルバにおいて、イン タリメンタルレゾルバロータ 34a'は、一定のピッチを有する複数のスロット歯列を有し 、インクリメンタルレゾルバステータ 35,の外周面には、回転軸と平行に各磁極でイン タリメンタルレゾルバロータ 34a'に対して位相をずらした歯が設けられており、コイル が各磁極に卷回されている。第 1内側ロータ 30と一体でインクリメンタルレゾルバロー タ 34a,が回転すると、インクリメンタルレゾルバステータ 35,の磁極との間のリラクタン スが変化し、インクリメンタルレゾルバロータ 34a,の 1回転でリラクタンス変化の基本 波成分が n周期となるようにして、そのリラクタンス変化を検出して、図 36に例を示す レゾルバ制御回路によりデジタルィ匕し、位置信号として利用することでインクリメンタ ルレゾルバロータ 34a'即ち第 1内側ロータ 30の回転角度 (又は回転速度)を検出す るようになっている。レゾルバロータ 34a,、 34b,と、レゾルバステータ 35,, 36,とで 検出器を構成する。 In the high resolution variable reluctance resolver used in the present embodiment, the incremental resolver rotor 34a ′ has a plurality of slot tooth rows having a constant pitch, and the outer circumference of the incremental resolver stator 35. The surface is provided with teeth that are shifted in phase with respect to the incremental resolver rotor 34a ′ at each magnetic pole parallel to the rotation axis, and a coil is wound around each magnetic pole. When the incremental resolver rotor 34a rotates together with the first inner rotor 30, the reluctance between the magnetic poles of the incremental resolver stator 35 changes, and the fundamental wave component of the change in reluctance with one revolution of the incremental resolver rotor 34a. 36, the reluctance change is detected, digitalized by the resolver control circuit shown in FIG. 36, and used as a position signal, so that the incremental resolver rotor 34a ′, that is, the first inner The rotation angle (or rotation speed) of the rotor 30 is detected. The resolver rotors 34a, 34b and the resolver stators 35, 36 constitute a detector.
[0234] 尚、フランジ部 12aを中心として第 1ステータ 29と第 2ステータ 29 'を上下に配置し、 その半径方向内側にレゾルバを配置している。また、第 1の本体 12は中空構造とな つており、フランジ部 12aには中央に連通する径方向の通し穴 12dが少なくとも 1つ 設けてあり、ここを介してモータ配線を第 1の本体 12の中央に引き出す構造となって いる。一方、第 1の本体 12の両端部にはそれぞれ少なくとも 1つの切り欠き 12e、 12e が設けてあり、これらを介してレゾルバの配線を第 1の本体 12の中央に引き出す構造 となっている。このような構造とすることで、ハウジング側力も順に、ダイレクトモータ D 1のレゾルノ 、ステータ 29、ダイレクトモータ D2のステータ 29,、そのレゾルバの順で 配置することが可能となり、 2軸でありながら容易にステータとレゾルバの角度調整が 行える。そこで、基準となる外側ロータを回転駆動する設備を別に用意しておけば、 その設備にステータとレゾルバを組み込んだ第 1の本体 12をセットすることにより、高 精度にステータに対するレゾルバの角度調整ができるので、コンミテーシヨンずれに よる角度位置決め精度の低下を防ぎ、かつ、本発明の 4軸同軸モータに対する駆動 制御回路の互換性を高めることができる。 [0234] The first stator 29 and the second stator 29 'are arranged vertically with the flange portion 12a as the center, and the resolver is arranged radially inward. The first body 12 has a hollow structure, and the flange portion 12a has at least one radial through hole 12d communicating with the center through which the motor wiring is routed. The structure is drawn out to the center of On the other hand, at least one notch 12e, 12e is provided at each end of the first main body 12, and the resolver wiring is drawn out to the center of the first main body 12 through these notches. With this structure, the housing side force can also be arranged in the order of the resolver of the direct motor D1, the stator 29, the stator 29 of the direct motor D2, and the resolver in this order. In addition, the angle of the stator and resolver can be adjusted. So, if you prepare a separate equipment to drive the outer rotor as a reference, By setting the first main body 12 incorporating the stator and resolver into the equipment, the angle of the resolver relative to the stator can be adjusted with high accuracy, preventing a decrease in angular positioning accuracy due to misalignment, and The compatibility of the drive control circuit with the four-axis coaxial motor of the invention can be enhanced.
[0235] 図 37は、ダイレクトドライブモータ Dl、 D2の駆動回路を示すブロック図である。外 部のコンピュータ力もモータ回転指令が入力されたとき、ダイレクトドライブモータ D1 用のモータ制御回路 DMC1及びダイレクトドライブモータ D2用のモータ制御回路 D MC2は、それぞれ、その CPUから 3層アンプ (AMP)に駆動信号を出力し、 3層アン プ (AMP)力もダイレクトドライブモータ Dl、 D2に駆動電流が供給される。それにより ダイレクトドライブモータ Dl、 D1の外側ロータ部材 21, 21,が独立して回転し、ァー ム Al, A2 (図 34)を移動させるようになつている。外側ロータ部材 21, 21 'が回転す ると、上述のようにして回転角度を検出したレゾルバステータ 35, 36, 35'、 36'から レゾルバ信号が出力されるので、それをレゾルバデジタル変換器 (RDC)でデジタル 変換した後に入力した CPUは、外側ロータ部材 21, 21 'が指令位置に到達したか 否かを判断し、指令位置に到達すれば、 3層アンプ (AMP)への駆動信号を停止す ることで外側ロータ部材 21, 21 'の回転を停止させる。これにより外側ロータ部材 21 , 21 'のサーボ制御が可能となる。  FIG. 37 is a block diagram showing drive circuits for the direct drive motors Dl and D2. When a motor rotation command is also input to the external computer force, the motor control circuit DMC1 for the direct drive motor D1 and the motor control circuit DMC2 for the direct drive motor D2 are each sent from the CPU to the three-layer amplifier (AMP). The drive signal is output, and the drive current is supplied to the direct drive motors Dl and D2 with a three-layer amplifier (AMP) force. As a result, the outer rotor members 21 and 21 of the direct drive motors Dl and D1 rotate independently to move the arms Al and A2 (Fig. 34). When the outer rotor members 21, 21 ′ rotate, resolver signals are output from the resolver stators 35, 36, 35 ′, 36 ′ that have detected the rotation angles as described above. The CPU input after digital conversion by RDC) determines whether or not the outer rotor members 21, 21 'have reached the command position.If the CPU reaches the command position, it sends a drive signal to the 3-layer amplifier (AMP). Stopping stops the rotation of the outer rotor members 21, 21 '. Thus, servo control of the outer rotor members 21 and 21 ′ becomes possible.
[0236] 真空環境での複数軸のアーム駆動の際には、電源投入時に現在のアーム A1及び A2の回転位置を認識しないと真空槽の壁や、真空槽のシャツタにアーム A1等をぶ つけてしまう可能性がある力 本実施の形態では、回転軸の 1回転の絶対位置を検 出するアブソリュートレゾルバステータ 36及び 36'と、より分解能の細かい回転位置 を検出するインクリメンタルレゾルバステータ 35及び 35'からなる可変リラクタンス型レ ゾルバを採用しているので、外側ロータ部材 21、 21,即ちアーム Al, A2の回転位 置制御を高精度に行える。  [0236] When driving multiple axes in a vacuum environment, if the current rotation position of the arms A1 and A2 is not recognized when the power is turned on, the arm A1 etc. will be hit against the wall of the vacuum chamber or the shatter of the vacuum chamber. In this embodiment, the absolute resolver stators 36 and 36 'that detect the absolute position of one rotation of the rotating shaft and the incremental resolver stators 35 and 35' that detect the rotational position with finer resolution are used in this embodiment. Since the variable reluctance resolver is used, the rotational position control of the outer rotor members 21 and 21, that is, the arms Al and A2, can be performed with high accuracy.
[0237] 尚、ここでは内側ロータ 30の回転検出にレゾルバを採用した力 検出器を隔壁 13 の内部の大気側に配置できるため、一般に高精度位置決めに使用するサーボモー タにおいては高精度で滑らかに駆動するための位置検出手段として採用されている 光学式ェンコーダや、磁気抵抗素子を使用した磁気式ェンコ一ダ等も使用できる。 次に、ダイレクトドライブモータ D4について説明する。第 2の本体 112に取り付けら れた円板部材 110に対し、取り外し可能にボルト止めされた軸受ホルダ 107には、真 空中で用 、られる 4点接触式玉軸受 119の外輪が嵌合的に取り付けられ、ボルト 12 0により固定されている。一方、軸受 119の内輪は、第 1外側ロータ部材 121を内包 嵌合した 2重円筒状の円筒状部材 123に嵌合し、第 1外側ロータ部材 121を共締め するボルト 122により固定されている。すなわち、第 1外側ロータ部材 121は、アーム A2' (図 34)を支持する円筒状部材 123により、隔壁 113に対して回転自在に支持さ れている。尚、第 1外側ロータ部材 121と円筒状部材 123とで、外側ロータを構成す る。 [0237] Here, since a force detector that employs a resolver for detecting the rotation of the inner rotor 30 can be arranged on the atmosphere side inside the partition wall 13, in general, a servo motor used for high-accuracy positioning is highly accurate and smooth. An optical encoder adopted as a position detecting means for driving, a magnetic encoder using a magnetoresistive element, or the like can also be used. Next, the direct drive motor D4 will be described. A bearing holder 107 detachably bolted to the disc member 110 attached to the second main body 112 is fitted with an outer ring of a four-point contact ball bearing 119 used in a vacuum. It is attached and fixed with bolts 120. On the other hand, the inner ring of the bearing 119 is fixed by a bolt 122 that is fitted into a double cylindrical cylindrical member 123 including the first outer rotor member 121 and is fastened together with the first outer rotor member 121. . That is, the first outer rotor member 121 is rotatably supported with respect to the partition wall 113 by the cylindrical member 123 that supports the arm A2 ′ (FIG. 34). The first outer rotor member 121 and the cylindrical member 123 constitute an outer rotor.
[0238] 軸受ホルダ 107は、耐食性が高!、オーステナイト系ステンレスを材料として ヽる。軸 受 119は、ラジアル、アキシアル、モーメント荷重を 1個の軸受で負荷できる 4点接触 玉軸受である。この形式の軸受を用いることにより、ダイレクトドライブモータ D4の軸 受は 1個で済むため、本発明の 4軸同軸モータシステムを薄型化できる。軸受 119は 、内外輪とも耐食性が高くかつ焼入れによる硬化が得られるマルテンサイト系ステン レスを材料とし。転動体はセラミックボール、潤滑剤は真空であっても固化しない真空 用のグリスを用いている。  [0238] The bearing holder 107 has high corrosion resistance and is made of austenitic stainless steel. Bearing 119 is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing. By using this type of bearing, only one bearing of the direct drive motor D4 is required, so the four-axis coaxial motor system of the present invention can be made thinner. Bearing 119 is made of martensitic stainless steel, which has high corrosion resistance for both the inner and outer rings and can be hardened by quenching. The rolling elements are ceramic balls, and the lubricant is vacuum grease that does not solidify even under vacuum.
[0239] 尚、軸受 119は内輪と外輪に金や銀などの軟質金属をプレーティングして、真空中 でもアウトガス放出のな 、金属潤滑としたものを用いてもよく、また 4点接触式玉軸受 であるので、アーム A2,力もの第 1外側ロータ部材 121がチルトする方向のモーメント を受けることができる力 4点接触式に限らず、クロスローラ、クロスボール、クロステー パ軸受も用いることができ、予圧状態で用いても良いし、潤滑性向上のためフッ素系 被膜処理 (DFO)を行っても良!ヽ。  [0239] Incidentally, the bearing 119 may be made of a metal lubricated material in which a soft metal such as gold or silver is plated on the inner ring and the outer ring and no outgassing is released even in a vacuum, or a four-point contact ball. Because it is a bearing, the force that can receive the moment in the tilting direction of the arm A2 and the first outer rotor member 121 is not limited to the four-point contact type, and cross rollers, cross balls, and cross taper bearings can also be used. It can be used in a preloaded state, or it can be treated with fluorine film (DFO) to improve lubricity.
[0240] 第 1外側ロータ部材 121は、永久磁石 121aと、磁路を形成するため磁性体から成 る円環状のヨーク 121bと、永久磁石 121aとヨーク 121bを機械的に締結するための 非磁性体力もなるくさび (不図示)によって構成されている。永久磁石 121aは、 32極 の構成で N極、 S極の磁石が各 16個交互に磁性金属カゝらなり、極ごとに分割された セグメント形式であり、その個々の形状は扇形である。内径と外径の円弧中心は同一 であるが、円周方向端面の接線交点を永久磁石 121a寄りとすることで、くさびをョー ク 121b外径側からねじで締め上げることにより永久磁石 121aをヨーク 121bに締結 している。このような構成とすることにより、接着剤など、アウトガスを発生する固定部 材を用いることなく永久磁石を締結できる。永久磁石 121aはエネルギー積の高いネ ォジゥム (Nd— Fe - B)系磁石であり、耐食性を高めるためにニッケルコ一ティングを 施してある。ヨーク 12 lbは高い磁性を有する低炭素鋼を材料とし、加工成型後に、 防鲭および耐食性を高め、かつ軸受交換時の磨耗を防ぐためにニッケルめっきを施 している。 [0240] The first outer rotor member 121 includes a permanent magnet 121a, an annular yoke 121b made of a magnetic material to form a magnetic path, and a nonmagnetic material for mechanically fastening the permanent magnet 121a and the yoke 121b. It is composed of a wedge (not shown) that also has physical strength. The permanent magnet 121a is a segment type in which each of the 16 pole magnets is composed of 16 magnetic poles each having 32 poles and is alternately divided into magnetic poles, each of which has a sector shape. The center of the arc of the inner and outer diameters is the same, but the wedge is reduced by making the tangent intersection of the circumferential end face closer to the permanent magnet 121a. The permanent magnet 121a is fastened to the yoke 121b by tightening with a screw from the outer diameter side of the yoke 121b. With such a configuration, the permanent magnet can be fastened without using a fixing member that generates outgas, such as an adhesive. The permanent magnet 121a is a neodymium (Nd—Fe-B) magnet with a high energy product, and is nickel-coated to enhance corrosion resistance. The yoke 12 lb is made of low-carbon steel with high magnetic properties, and is plated with nickel to improve wear resistance and corrosion resistance after machining and to prevent wear during bearing replacement.
[0241] 隔壁 113の半径方向内側において、第 1外側ロータ部材 121の内周面に対向する ようにして、第 1ステータ 129が配置されている。第 1ステータ 129は、本体 112の中 央で半径方向に延在したフランジ部 112aの円筒状に変形した下部に取り付けられ ており、電磁鋼板の積層材で形成され、各突極には絶縁処理としてボビンを嵌め込 んだ後にモータコイルが集中巻されている。第 1ステータ 129の外径は隔壁 13の内 径と略同一もしくは小さ 、寸法として 、る。  [0241] On the radially inner side of the partition wall 113, the first stator 129 is disposed so as to face the inner peripheral surface of the first outer rotor member 121. The first stator 129 is attached to a cylindrically deformed lower portion of a flange portion 112a extending in the radial direction at the center of the main body 112. The first stator 129 is formed of a laminated material of electromagnetic steel plates, and each salient pole is insulated. After the bobbin is fitted, the motor coil is concentrated. The outer diameter of the first stator 129 is substantially the same as or smaller than the inner diameter of the partition wall 13.
[0242] 第 1ステータ 129に隣接且つ平行して、第 1内側ロータ 130が配置されている。第 1 内側ロータ 130は、第 2の本体 112の外周面にボルト固定されたレゾルバホルダ 132 に対して、玉軸受 133により回転自在に支持されている。第 1内側ロータ 130の外周 面には、ノ ックヨーク 130bを介して永久磁石 130aが取り付けられている。永久磁石 130aは、第 1外側ロータ部材 121の永久磁石 121aと同様に 32極の構成で N極、 S 極の磁石が各 16個交互に磁性金属力もなつている。従って、第 1内側ロータ 130は 、第 1ステータ 129によって駆動される第 1外側ロータ部材 121に同期して連れ回さ れるようになっている。  [0242] A first inner rotor 130 is disposed adjacent to and parallel to the first stator 129. The first inner rotor 130 is rotatably supported by ball bearings 133 with respect to a resolver holder 132 that is bolted to the outer peripheral surface of the second main body 112. A permanent magnet 130a is attached to the outer peripheral surface of the first inner rotor 130 via a knock yoke 130b. The permanent magnet 130a has a configuration of 32 poles as in the case of the permanent magnet 121a of the first outer rotor member 121, and 16 magnets of N poles and S poles alternately have a magnetic metal force. Accordingly, the first inner rotor 130 is rotated along with the first outer rotor member 121 driven by the first stator 129.
[0243] 第 1内側ロータ 130を回転自在に支持する軸受 133は、ラジアル、アキシアル、モ 一メント荷重を 1個の軸受で負荷できる 4点接触玉軸受である。この形式の軸受を用 いることにより、 1個の軸受で済むため、ダイレクトドライブモータ D4を薄型化できる。 隔壁 13の内部は大気環境であるため、一般的な軸受鋼と鉱油を基油としたグリス潤 滑を用 、た軸受を適用できる。  [0243] The bearing 133 that rotatably supports the first inner rotor 130 is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing. By using this type of bearing, only one bearing is required, so the direct drive motor D4 can be made thinner. Since the inside of the partition wall 13 is an atmospheric environment, a bearing using grease lubrication based on general bearing steel and mineral oil can be applied.
隔壁 13内部は大気環境であるため、永久磁石 130aはバックヨーク 130bに接着固 定してある。永久磁石 130aはエネルギー積の高いネオジゥム(Nd— Fe— B)系磁石 であり、鲭による減磁を防ぐためにニッケルコーティングを施してある。ヨーク 130bは 高い磁性を有する低炭素鋼を材料とし、加工成形後に防鲭のためにクロメートめつき を施している。 Since the inside of the partition wall 13 is an atmospheric environment, the permanent magnet 130a is bonded and fixed to the back yoke 130b. Permanent magnet 130a is a high energy product neodymium (Nd-Fe-B) magnet It has a nickel coating to prevent demagnetization due to wrinkles. The yoke 130b is made of low-carbon steel with high magnetism, and is chromated to prevent fouling after machining.
[0244] 第 1内側ロータ 130の内周には、回転角度を計測する検出器として、レゾルバロー タ 134a、 134bを組みつけており、それに対向する形で、レゾルバホルダ 132の外周 に、レゾルバステータ 135, 136を取り付けている力 本実施の形態では、高分解能 のインクリメンタルレゾルバステータ 135と、 1回転のいずれの位置にロータがあるか を検出できるアブソリュートレゾルバステータ 136とを 2層に配置している。このため電 源投入時にも、アブソリュートレゾルバロータ 134bの回転角度がわかり、原点復帰が 不要であり、また、コイルに対する磁石の電気的位相角度がゎカゝるため、ダイレクトド ライブモータ D4の駆動電流制御に使用する回転角度検出力 極検出センサを用い ることなく可能となっている。  [0244] Resolver rotors 134a and 134b are assembled as detectors for measuring the rotation angle on the inner circumference of the first inner rotor 130, and the resolver stator 135 is placed on the outer circumference of the resolver holder 132 so as to face it. In this embodiment, a high-resolution incremental resolver stator 135 and an absolute resolver stator 136 capable of detecting whether the rotor is in one rotation are arranged in two layers. Therefore, even when the power is turned on, the rotational angle of the absolute resolver rotor 134b is known, no return to origin is required, and the electrical phase angle of the magnet with respect to the coil increases, so the drive current of the direct drive motor D4 This is possible without using the rotation angle detection force pole sensor used for control.
[0245] レゾルバホルダ 132と第 1内側ロータ 130は、モータの界磁およびモータコイルから の電磁ノイズが角度検出器であるレゾルバステータ 135, 136に伝達されな 、ように 、磁性体である炭素鋼を材料とし、加工成型後に防鲭のためにクロメートめつきを施 している。  [0245] The resolver holder 132 and the first inner rotor 130 are made of carbon steel, which is a magnetic body, so that electromagnetic noise from the motor field and the motor coil is not transmitted to the resolver stators 135 and 136 that are angle detectors. As a material, it is chromate-plated to prevent fouling after processing and molding.
本実施の形態に用いて 、る高分解能の可変リラクタンス形レゾルバにぉ 、て、イン タリメンタルレゾルバロータ 134aは、一定のピッチを有する複数のスロット歯列を有し 、インクリメンタルレゾルバステータ 135の外周面には、回転軸と平行に各磁極でイン タリメンタルレゾルバロータ 134aに対して位相をずらした歯が設けられており、コイル が各磁極に卷回されている。第 1内側ロータ 130と一体でインクリメンタルレゾルバ口 ータ 134aが回転すると、インクリメンタルレゾルバステータ 135の磁極との間のリラク タンスが変化し、インクリメンタルレゾルバロータ 134aの 1回転でリラクタンス変化の基 本波成分が n周期となるようにして、そのリラクタンス変化を検出して、図 36に例を示 すレゾルバ制御回路によりデジタルィ匕し、位置信号として利用することでインクリメン タルレゾルバロータ 134a即ち第 1内側ロータ 130の回転角度 (又は回転速度)を検 出するようになって ヽる。レゾノレノ ロータ 134a、 134bと、レゾノレノ ステータ 135, 136 とで検出器を構成する。 [0246] 本実施の形態によれば、第 1外側ロータ部材 121に対して、磁気カップリング作用 により第 1内側ロータ 130が同速で回転し、すなわち連れ回るので、第 1外側ロータ 部材 121の回転角を隔壁 13越しに検出することができる。また、本実施の形態では、 モータを形成する部品ゃノヽウジングを用いることなくレゾルバ単体で軸受 133を有し ており、従ってハウジングに組み込む前に、レゾルバ単体での偏芯調整ゃレゾルバコ ィルの位置調整などの精度調整が行えるので、ハウジングゃ両フランジに調整用の 穴や切り欠きを別途設ける必要がな ヽ。 The high-resolution variable reluctance resolver used in the present embodiment has an incremental resolver rotor 134a having a plurality of slot tooth rows having a constant pitch, and the outer peripheral surface of the incremental resolver stator 135. Are provided with teeth that are shifted in phase with respect to the incremental resolver rotor 134a at each magnetic pole in parallel with the rotation axis, and a coil is wound around each magnetic pole. When the incremental resolver aperture 134a rotates integrally with the first inner rotor 130, the reluctance with the magnetic pole of the incremental resolver stator 135 changes. The change in the reluctance is detected so that there are n cycles, and the change is detected and digitized by the resolver control circuit shown in FIG. 36, and used as a position signal. Rotation angle (or rotation speed) is detected. The detector is composed of the Resonore rotors 134a and 134b and the Resonore stators 135 and 136. [0246] According to the present embodiment, the first inner rotor 130 rotates at the same speed by the magnetic coupling action with respect to the first outer rotor member 121, that is, rotates with the first outer rotor member 121. The rotation angle can be detected through the partition wall 13. Also, in this embodiment, the parts forming the motor have the bearing 133 as a single resolver without using the nosing, so the eccentricity adjustment with the resolver alone can be performed before the resolver is assembled. Since accuracy adjustment such as position adjustment can be performed, it is not necessary to provide a separate adjustment hole or notch on both flanges of the housing.
[0247] 次に、ダイレクトドライブモータ D3について説明する力 ここでは第 2の本体 112が ハウジングを構成する。上述したダイレクトドライブモータ D4の円筒状部材 123は、 ダイレクトドライブモータ D3に重合する位置まで下方に延在しており、その内周面に 、真空中で用いられる 4点接触式玉軸受 119'の外輪が嵌合的に取り付けられ、ボル ト 120'により固定されている。一方、軸受 119'の内輪は、二重円筒状のリング状部 材 123'の周面に嵌合し、第 2外側ロータ部材 121 'を共締めするボルト 122'により 固定されている。すなわち、第 2外側ロータ部材 121 'は、アーム A1 ' (図 34)を支持 するリング状部材 123 'により、隔壁 13に対して回転自在に支持されて 、る。  [0247] Next, the force for explaining the direct drive motor D3. Here, the second main body 112 constitutes the housing. The cylindrical member 123 of the direct drive motor D4 described above extends downward to a position where it is superimposed on the direct drive motor D3, and the inner peripheral surface of the four-point contact ball bearing 119 'used in vacuum is used. The outer ring is fitted and fixed by bolt 120 '. On the other hand, the inner ring of the bearing 119 ′ is fixed by a bolt 122 ′ that fits to the circumferential surface of the double cylindrical ring-shaped member 123 ′ and fastens the second outer rotor member 121 ′ together. That is, the second outer rotor member 121 ′ is rotatably supported with respect to the partition wall 13 by the ring-shaped member 123 ′ that supports the arm A 1 ′ (FIG. 34).
尚、第 2外側ロータ部材 121 'とリング状部材 123'とで、外側ロータを構成する。  The second outer rotor member 121 ′ and the ring-shaped member 123 ′ constitute an outer rotor.
[0248] 軸受 119'は、ラジアル、アキシアル、モーメント荷重を 1個の軸受で負荷できる 4点 接触玉軸受である。この形式の軸受を用いることにより、ダイレクトドライブモータ D3 の軸受は 1個で済むため、本発明の 4軸同軸モータを薄型化できる。内外輪とも耐食 性が高くかつ焼入れによる硬化が得られるマルテンサイト系ステンレスを材料とし。転 動体はセラミックボール、潤滑剤は真空であっても固化しない真空用のグリスを用い ている。  [0248] Bearing 119 'is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing. By using this type of bearing, only one bearing for the direct drive motor D3 is required, so the four-axis coaxial motor of the present invention can be made thinner. The inner and outer rings are made of martensitic stainless steel, which has high corrosion resistance and can be hardened by quenching. The rolling elements are ceramic balls, and the lubricant is vacuum grease that does not solidify even under vacuum.
尚、軸受 119'は内輪と外輪に金や銀などの軟質金属をプレーティングして、真空 中でもアウトガス放出のない金属潤滑としたものを用いてもよぐまた 4点接触式玉軸 受であるので、アーム A1,力もの第 2外側ロータ部材 121 'がチルトする方向のモーメ ントを受けることができる力 4点接触式に限らず、クロスローラ、クロスボール、クロス テーパ軸受も用いることができ、予圧状態で用いても良いし、潤滑性向上のためフッ 素系被膜処理 (DFO)を行っても良!ヽ。 [0249] 第 2外側ロータ部材 121 'は、永久磁石 121a'と、磁路を形成するため磁性体から 成る円環状のヨーク 121b 'と、永久磁石 121a'とヨーク 121b'を機械的に締結する ための非磁性体力もなるくさび (不図示)によって構成されている。永久磁石 121a' は、 32極の構成で N極、 S極の磁石が各 16個交互に磁性金属カゝらなり、極ごとに分 割されたセグメント形式であり、その個々の形状は扇形である。内径と外径の円弧中 心は同一であるが、円周方向端面の接線交点を永久磁石 121a'寄りとすることで、く さびをヨーク 121b'外径側からねじで締め上げることにより永久磁石 121a'をヨーク 1 21b'に締結している。このような構成とすることにより、接着剤など、アウトガスを発生 する固定部材を用いることなく永久磁石を締結できる。永久磁石 121a'はエネルギ 一積の高いネオジゥム (Nd— Fe— B)系磁石であり、耐食性を高めるためにニッケル コーティングを施してある。ヨーク 121b 'は高い磁性を有する低炭素鋼を材料とし、加 ェ成型後に、防鲭および耐食性を高め、かつ軸受交換時の磨耗を防ぐために-ッケ ルめっきを施している。 Note that the bearing 119 'is a four-point contact ball bearing that can be made by using a metal lubrication that does not emit outgas even in a vacuum by plating a soft metal such as gold or silver on the inner and outer rings. Therefore, the force that can receive the moment in the tilting direction of the arm A1 and the second outer rotor member 121 ′ of force is not limited to the four-point contact type, and cross rollers, cross balls, and cross taper bearings can also be used. It can be used in a pre-loaded state, or fluorine-based film treatment (DFO) can be performed to improve lubricity. [0249] The second outer rotor member 121 'mechanically fastens the permanent magnet 121a', the annular yoke 121b 'made of a magnetic material to form a magnetic path, and the permanent magnet 121a' and the yoke 121b '. It is made up of a wedge (not shown) that also has a non-magnetic force. Permanent magnet 121a 'is a segment type with 32 poles and 16 N pole and S pole magnets, each of which is divided into magnetic poles, each of which has a sector shape. is there. The inner and outer diameter arc centers are the same, but the tangential intersection of the circumferential end face is closer to the permanent magnet 121a ', so that the wedge is tightened from the outer diameter side of the yoke 121b' with a screw. 121a 'is fastened to yoke 1 21b'. With this configuration, the permanent magnet can be fastened without using a fixing member that generates outgas, such as an adhesive. Permanent magnet 121a 'is a neodymium (Nd-Fe-B) magnet with high energy accumulation, and has a nickel coating to enhance corrosion resistance. Yoke 121b 'is made of low-carbon steel with high magnetism, and is subjected to nickel plating to improve wear resistance and corrosion resistance and to prevent wear during bearing replacement after molding.
[0250] 隔壁 13の半径方向内側において、第 2外側ロータ部材 121 'の内周面に対向する ようにして、第 2ステータ 129 'が配置されている。第 2ステータ 129 'は、第 2の本体 1 12の中央で半径方向に延在したフランジ部 112aの円筒状に変形した上部に取り付 けられており、電磁鋼板の積層材で形成され、各突極には絶縁処理としてボビンを嵌 め込んだ後にモータコイルが集中卷されて 、る。第 2ステータ 129 'の外径は隔壁 13 の内径と略同一もしくは小さ 、寸法として!/、る。  [0250] On the radially inner side of the partition wall 13, the second stator 129 'is arranged so as to face the inner peripheral surface of the second outer rotor member 121'. The second stator 129 ′ is attached to the cylindrically deformed upper portion of the flange portion 112 a extending in the radial direction at the center of the second main body 112, and is formed of a laminated material of electromagnetic steel plates. After the bobbin is fitted into the salient pole as an insulation treatment, the motor coil is concentrated. The outer diameter of the second stator 129 'is approximately the same as or smaller than the inner diameter of the partition wall 13! /
[0251] 第 2ステータ 129 'の半径方向内側に、第 2内側ロータ 130'が配置されている。  [0251] A second inner rotor 130 'is arranged on the radially inner side of the second stator 129'.
第 2内側ロータ 130'は、第 2の本体 112の外周面にボルト固定されたレゾルバホル ダ 132'に対して、玉軸受 133 'により回転自在に支持されている。第 2内側ロータ 13 0 'の外周面には、ノ ックヨーク 130b 'を介して永久磁石 130a 'が取り付けられて!/、る 。永久磁石 130a'は、第 2外側ロータ部材 121 'の永久磁石 121a'と同様に 32極の 構成で N極、 S極の磁石が各 16個交互に磁性金属からなっている。従って、第 2内 側ロータ 130'は、第 2ステータ 129 'によって第 2外側ロータ部材 121 'に同期して回 転駆動されるようになって!/ヽる。  The second inner rotor 130 ′ is rotatably supported by a ball bearing 133 ′ with respect to a resolver holder 132 ′ bolted to the outer peripheral surface of the second main body 112. A permanent magnet 130a 'is attached to the outer peripheral surface of the second inner rotor 130' via a knock yoke 130b '! /. Permanent magnet 130a 'has a configuration of 32 poles as in the case of permanent magnet 121a' of second outer rotor member 121 ', and 16 magnets of N poles and S poles are alternately made of magnetic metal. Therefore, the second inner rotor 130 ′ is driven to rotate in synchronization with the second outer rotor member 121 ′ by the second stator 129 ′! / Speak.
[0252] 第 2内側ロータ 30'を回転自在に支持する軸受 33 'は、ラジアル、アキシアル、モー メント荷重を 1個の軸受で負荷できる 4点接触玉軸受である。この形式の軸受を用い ることにより、 1個の軸受で済むため、ダイレクトドライブモータ D3を薄型化できる。隔 壁 13の内部は大気環境であるため、一般的な軸受鋼と鉱油を基油としたグリス潤滑 を用 、た軸受を適用できる。 [0252] The bearing 33 'that rotatably supports the second inner rotor 30' is a radial, axial, motor This is a four-point contact ball bearing that can load the load with a single bearing. By using this type of bearing, the direct drive motor D3 can be made thinner because only one bearing is required. Since the inside of the partition wall 13 is an atmospheric environment, it is possible to use a bearing using grease lubrication based on general bearing steel and mineral oil.
隔壁 13内部は大気環境であるため、永久磁石 130a'はバックヨーク 130b'に接着 固定してある。永久磁石 130a,はエネルギー積の高いネオジゥム(Nd— Fe— B)系 磁石であり、鲭による減磁を防ぐためにニッケルコーティングを施してある。ヨーク 130 b'は高い磁性を有する低炭素鋼を材料とし、加工成形後に防鲭のためにクロメート めっきを施している。  Since the inside of the partition wall 13 is an atmospheric environment, the permanent magnet 130a 'is fixedly bonded to the back yoke 130b'. The permanent magnet 130a is a neodymium (Nd-Fe-B) magnet with a high energy product and is coated with nickel to prevent demagnetization due to defects. Yoke 130b 'is made of low-carbon steel with high magnetism and is chromate-plated for protection after machining.
[0253] 第 2内側ロータ 130'の内周には、回転角度を計測する検出器として、レゾルバロー タ 134a,、 134b,を組みつけており、それに対向する形で、レゾルバホルダ 132,の 外周に、レゾルバステータ 135' , 136'を取り付けている力 本実施の形態では、高 分解能のインクリメンタルレゾルバステータ 135,と、 1回転のいずれの位置にロータ があるかを検出できるアブソリュートレゾルバステータ 136'とを 2層に配置している。 このため電源投入時にも、検出ロータ 134'の回転角度がわかり、原点復帰が不要で あり、また、コイルに対する磁石の電気的位相角度がゎカゝるため、ダイレクトドライブ モータ D3の相対回転角度を、極検出センサを用いることなく可能となって!/、る。  [0253] Resolver rotors 134a, 134b are assembled as detectors for measuring the rotation angle on the inner periphery of the second inner rotor 130 ', and are arranged on the outer periphery of the resolver holder 132 so as to face it. In this embodiment, the resolver stators 135 'and 136' are attached to a high-resolution incremental resolver stator 135, and an absolute resolver stator 136 'that can detect the position of the rotor in one rotation. Arranged in two layers. For this reason, even when the power is turned on, the rotation angle of the detection rotor 134 'is known, no return to origin is required, and the electrical phase angle of the magnet with respect to the coil increases, so the relative rotation angle of the direct drive motor D3 can be reduced. It becomes possible without using the pole detection sensor! /
[0254] レゾルバホルダ 132,と第 2内側ロータ 130,は、モータの界磁およびモータコイル 力もの電磁ノイズが角度検出器であるレゾルバステータ 135' , 136'に伝達されない ように、磁性体である炭素鋼を材料とし、加工成型後に防鲭のためにクロメートめつき を施している。  [0254] The resolver holder 132 and the second inner rotor 130 are magnetic bodies so that electromagnetic noise generated by the motor field and motor coil force is not transmitted to the resolver stators 135 'and 136' that are angle detectors. Carbon steel is used as a material, and chromate plating is applied after processing to prevent fouling.
本実施の形態によれば、第 2外側ロータ部材 121 'に対して、磁気カップリング作用 により第 2内側ロータ 130'が同速で回転し、すなわち連れ回るので、第 2外側ロータ 部材 121 'の回転角を隔壁 13越しに検出することができる。また、本実施の形態では 、モータを形成する部品ゃノヽウジングを用いることなくレゾルバ単体で軸受 133'を有 しており、従ってハウジングに組み込む前に、レゾルバ単体での偏芯調整ゃレゾルバ コイルの位置調整などの精度調整が行えるので、ハウジングゃ両フランジに調整用 の穴や切り欠きを別途設ける必要がない。 [0255] 本実施の形態に用いている高分解能の可変リラクタンス形レゾルバにおいて、イン タリメンタルレゾルバロータ 134a'は、一定のピッチを有する複数のスロット歯列を有 し、インクリメンタルレゾルバステータ 135,の磁極の外周面には、回転軸と平行に各 磁極でインクリメンタルレゾルバロータ 134a 'に対して位相をずらした歯が設けられて おり、コイルが各磁極に卷回されている。第 2内側ロータ 130'と一体でインクリメンタ ルレゾルバロータ 134a,が回転すると、インクリメンタルレゾルバステータ 135,の磁極 との間のリラクタンスが変化し、インクリメンタルレゾルバロータ 134a,の 1回転でリラク タンス変化の基本波成分が n周期となるようにして、そのリラクタンス変化を検出して、 図 36に例を示すレゾルバ制御回路によりデジタルィ匕し、位置信号として利用すること でインクリメンタルレゾルバロータ 134a,即ち第 2内側ロータ 130 'の回転角度 (又は 回転速度)を検出するようになっている。レゾルバロータ 134a,、 134b,と、レゾルバ ステータ 135,, 136,とで検出器を構成する。 According to the present embodiment, the second inner rotor 130 ′ rotates at the same speed by the magnetic coupling action with respect to the second outer rotor member 121 ′. The rotation angle can be detected through the partition wall 13. Further, in this embodiment, the resolver alone has the bearing 133 ′ without using the parts forming the motor, and therefore the eccentricity adjustment of the resolver alone before the assembly into the housing is performed. Since accuracy adjustment such as position adjustment can be performed, there is no need to separately provide adjustment holes or notches on both flanges of the housing. In the high resolution variable reluctance resolver used in the present embodiment, the incremental resolver rotor 134a ′ has a plurality of slot teeth having a constant pitch, and the magnetic poles of the incremental resolver stator 135. On the outer peripheral surface, teeth that are shifted in phase with respect to the incremental resolver rotor 134a ′ at each magnetic pole in parallel with the rotation axis are provided, and a coil is wound around each magnetic pole. When the incremental resolver rotor 134a rotates integrally with the second inner rotor 130 ', the reluctance with the magnetic pole of the incremental resolver stator 135 changes, and the basic change in reluctance with one revolution of the incremental resolver rotor 134a. Incremental resolver rotor 134a, that is, the second inner side is detected by detecting the change in reluctance so that the wave component has n cycles, digitizing it by the resolver control circuit shown in FIG. 36 and using it as a position signal. The rotation angle (or rotation speed) of the rotor 130 'is detected. The resolver rotors 134a and 134b and the resolver stators 135 and 136 constitute a detector.
[0256] 尚、フランジ部 112aを中心として第 1ステータ 129と第 2ステータ 129 'を上下に配 置し、その半径方向内側にレゾルバを配置している。また、第 2の本体 112は中空構 造となっており、フランジ部 112aには中央に連通する径方向の通し穴 112dが少なく とも 1つ設けてあり、ここを介してモータ配線を第 2の本体 112の中央に引き出す構造 となっている。一方、第 2の本体 112の両端部にはそれぞれ少なくとも 1つの切り欠き 112e、 112e力設けてあり、これらを介してレゾルバの配線を第 2の本体 112の中央 に引き出す構造となっている。このような構造とすることで、ノ、ウジング側力も順に、ダ ィレクトモータ D4のレゾルノ 、ステータ 129、ダイレクトモータ D3のステータ 129,、そ のレゾルバの順で配置することが可能となり、 2軸でありながら容易にステータとレゾ ルバの角度調整が行える。そこで、基準となる外側ロータを回転駆動する設備を別に 用意しておけば、その設備にステータとレゾルバを組み込んだ第 2の本体 112をセッ トすることにより、高精度にステータに対するレゾルバの角度調整ができるので、コンミ テーシヨンずれによる角度位置決め精度の低下を防ぎ、かつ、本発明の 4軸同軸モ ータに対する駆動制御回路の互換性を高めることができる。  [0256] The first stator 129 and the second stator 129 'are arranged vertically with the flange portion 112a as the center, and the resolver is arranged radially inside. The second body 112 has a hollow structure, and the flange portion 112a has at least one radial through hole 112d communicating with the center, through which the motor wiring is connected to the second wire 112d. It is structured to be pulled out to the center of the main body 112. On the other hand, at least one notch 112e, 112e force is provided at both ends of the second main body 112, and the resolver wiring is drawn out to the center of the second main body 112 via these. By adopting such a structure, it is possible to arrange the force on the side and the oozing side force in order of the resolver of the direct motor D4, the stator 129, the stator 129 of the direct motor D3, and the resolver in this order. The angle between the stator and resolver can be adjusted easily. Therefore, if a separate facility for rotationally driving the reference outer rotor is prepared, the angle of the resolver with respect to the stator can be adjusted with high accuracy by setting the second body 112 incorporating the stator and resolver into the facility. Therefore, it is possible to prevent the angle positioning accuracy from being lowered due to the deviation of the com- mission, and to improve the compatibility of the drive control circuit with the four-axis coaxial motor of the present invention.
[0257] 図 37は、ダイレクトドライブモータ Dl、 D2の駆動回路を示すブロック図である。外 部のコンピュータ力もモータ回転指令が入力されたとき、ダイレクトドライブモータ D3 用のモータ制御回路 DMC1及びダイレクトドライブモータ D4用のモータ制御回路 D MC2は、それぞれ、その CPUから 3層アンプ (AMP)に駆動信号を出力し、 3層アン プ (AMP)カゝらダイレクトドライブモータ D3、 D4に駆動電流が供給される。それにより ダイレクトドライブモータ D3、 D4の外側ロータ部材 121, 121,が独立して回転し、ァ ーム ΑΙ ' , A2' (図 34)を移動させるようになつている。外側ロータ部材 121, 121 'が 回転すると、上述のようにして回転角度を検出したレゾルバステータ 135, 136, 135 '、 136'からレゾルバ信号が出力されるので、それをレゾルバデジタル変^ ^ (RDC )でデジタル変換した後に入力した CPUは、外側ロータ部材 121, 121 'が指令位置 に到達した力否かを判断し、指令位置に到達すれば、 3層アンプ (AMP)への駆動 信号を停止することで外側ロータ部材 121, 121 'の回転を停止させる。これにより外 側ロータ部材 121, 121 'のサーボ制御が可能となる。 FIG. 37 is a block diagram showing a drive circuit for the direct drive motors Dl and D2. When a motor rotation command is input to the external computer force, the direct drive motor D3 Motor control circuit DMC1 and direct drive motor D4 Motor control circuit DMC2 outputs a drive signal from its CPU to the three-layer amplifier (AMP), and direct drive from the three-layer amplifier (AMP) Drive current is supplied to motors D3 and D4. As a result, the outer rotor members 121 and 121 of the direct drive motors D3 and D4 rotate independently to move the arms ΑΙ ′ and A2 ′ (FIG. 34). When the outer rotor member 121, 121 'rotates, the resolver signal is output from the resolver stator 135, 136, 135', 136 'whose rotation angle has been detected as described above. The CPU input after digital conversion at) determines whether or not the outer rotor member 121, 121 'has reached the command position, and if it reaches the command position, stops the drive signal to the 3-layer amplifier (AMP) As a result, the rotation of the outer rotor members 121 and 121 ′ is stopped. As a result, servo control of the outer rotor members 121 and 121 ′ becomes possible.
[0258] 真空環境での複数軸のアーム駆動の際には、電源投入時に現在のアーム A1,及 び A2'の回転位置を認識しないと真空槽の壁や、真空槽のシャツタにアーム A1 '等 をぶつけてしまう可能性があるが、本実施の形態では、回転軸の 1回転の絶対位置 を検出するアブソリュートレゾルバステータ 136及び 136,と、より分解能の細かい回 転位置を検出するインクリメンタルレゾルバステータ 135、 135,からなる可変リラクタ ンス型レゾルバを採用しているので、外側ロータ部材 121、 121,即ちアーム Al,, A 2'の回転位置制御を高精度に行える。  [0258] When driving multiple axes in a vacuum environment, if the current rotation positions of the arms A1 and A2 'are not recognized when the power is turned on, the arm A1' In this embodiment, the absolute resolver stators 136 and 136 that detect the absolute position of one rotation of the rotating shaft, and the incremental resolver stator that detects a rotational position with finer resolution are used in this embodiment. Since the variable reluctance resolver consisting of 135 and 135 is employed, the rotational position control of the outer rotor members 121 and 121, that is, the arms Al and A 2 'can be performed with high accuracy.
[0259] 尚、ここでは内側ロータ 130の回転検出にレゾルバを採用したが、検出器を隔壁 1 3の内部の大気側に配置できるため、一般に高精度位置決めに使用するサーボモ ータにおいては高精度で滑らかに駆動するための位置検出手段として採用されてい る光学式ェンコーダや、磁気抵抗素子を使用した磁気式ェンコ一ダ等も使用できる。 本実施の形態に力かるモータシステムの上端部に最も近い(第 1の)ダイレクトドライ ブモータ D4の外側ロータを構成する円筒状部材 123は、ハウジング (ここでは円筒 部材 110)に取り外し可能に取り付けられて 、る軸受ホルダ 107に対して軸受 119に より支持されており、かつ円筒部材 110における軸受ホルダ 107の取付座面の外径 部 110aは、薄肉円筒部 13bより半径方向内に位置している。従って、軸受ホルダ 10 7を取り外せば、ダイレクトドライブモータ D4の円筒状部材 123と共に、軸受 119'に より支持されているダイレクトドライブモータ D3の円筒状部材 123,を、外側ロータ部 材 121及び 121 'と一体的に隔壁 13から抜き去ることができ、次いでダイレクトドライ ブモータ D2及び D1を抜き去ることができるので、それにより点検や取り外しを容易に 行えるため、メンテナンス性も向上する。更に、軸受ホルダ 107のみを取り外せばよい ので、隔壁構造を取り外す必要がなぐ再組立の際にリークチェックなどが不要となり 、組立性が向上する。 [0259] Although a resolver is used here to detect the rotation of the inner rotor 130, the detector can be placed on the atmosphere side inside the partition wall 13, so a servo motor generally used for high-accuracy positioning is highly accurate. Also, an optical encoder that is employed as a position detecting means for smooth and smooth driving, a magnetic encoder using a magnetoresistive element, or the like can be used. The cylindrical member 123 that constitutes the outer rotor of the (first) direct drive motor D4 closest to the upper end of the motor system that works in this embodiment is detachably attached to the housing (here, the cylindrical member 110). Thus, the outer diameter part 110a of the mounting seat surface of the bearing holder 107 in the cylindrical member 110 is positioned in the radial direction from the thin cylindrical part 13b. . Therefore, if the bearing holder 10 7 is removed, the cylindrical member 123 of the direct drive motor D4 and the bearing 119 ' The cylindrical member 123 of the supported direct drive motor D3 can be removed from the partition wall 13 integrally with the outer rotor members 121 and 121 ', and then the direct drive motors D2 and D1 can be removed. As a result, it can be easily inspected and removed, thus improving maintainability. Furthermore, since only the bearing holder 107 needs to be removed, a leak check or the like is not required at the time of reassembly without the need to remove the partition wall structure, and assemblability is improved.
[0260] 本実施の形態のハウジングは、第 1の本体 12と第 2の本体 112とが軸線方向に、任 意の位相で連結可能とされており、すなわち隣接する 2つのダイレクトドライブモータ Dl, D2及び D3, D4において共通に用いられる単位ごとに取り外し可能にボルトで 固定されている。第 1の本体 12は、円板 10側から順に、ダイレクトドライブモータ D1 の角度検出器、ダイレクトドライブモータ D1の固定子 (ステータ)、ダイレクトドライブモ ータ D2の固定子、ダイレクトドライブモータ D2の角度検出器の順で、及び第 2の本 体 112は、第 1の本体 12側力も順に、ダイレクトドライブモータ D3軸の角度検出器、 ダイレクトドライブモータ D3軸の固定子、ダイレクトドライブモータ D4の固定子、ダイ レクトドライブモータ D4の角度検出器の順で配置することが可能となり、各軸とも容易 に固定子に対する角度検出器の角度調整が行える。そこで、基準となるモータ回転 子を回転駆動する設備を別に用意しておけば、その設備にモータ固定子と回転検出 器を組み込んだ第 1の本体又は第 2の本体をセットすることにより、個別にモータ固定 子に対する角度検出器の角度調整が高精度にできるので、コンミテーシヨンずれによ る角度位置決め精度の低下を防ぎ、組み付け後の調整が容易もしくは不要であり、 かつ本発明 4軸同軸モータに対する駆動制御回路の互換性を高めることができる 以上の実施の形態では、表面磁石型の 32極 36スロットアウターロータ式ブラシレス モータを用いた例を用いて説明した力 この形式のモータに限定されるものではなく [0260] In the housing of the present embodiment, the first main body 12 and the second main body 112 are connectable in an arbitrary phase in the axial direction, that is, two adjacent direct drive motors Dl, Each unit commonly used in D2, D3, and D4 is detachably bolted. The first main body 12 includes, in order from the disk 10, the angle detector of the direct drive motor D1, the stator of the direct drive motor D1, the stator of the direct drive motor D2, and the angle of the direct drive motor D2. In the order of the detector and the second body 112, the first main body 12 side force is also in order, the direct drive motor D3 axis angle detector, direct drive motor D3 axis stator, direct drive motor D4 stator In addition, the angle detectors of the direct drive motor D4 can be arranged in this order, and the angle of the angle detector with respect to the stator can be easily adjusted for each axis. Therefore, if a facility for rotating the reference motor rotor is prepared separately, the first main body or the second main body incorporating the motor stator and the rotation detector can be set in that equipment, so that the individual In addition, the angle adjustment of the angle detector with respect to the motor stator can be performed with high accuracy, so that deterioration of the angle positioning accuracy due to misalignment is prevented, adjustment after assembly is easy or unnecessary, and the present invention 4-axis coaxial The compatibility of the drive control circuit with the motor can be increased. In the above embodiment, the force described with reference to the example using the surface magnet type 32-pole 36-slot outer rotor brushless motor is limited to this type of motor. Not something
、ブラシレスモータであれば適用できるものであり、他の磁極形式、例えば永久磁石 埋め込み型であっても良いし、他のスロットコンビネーションでも良いし、あるいはイン ナロータ型であっても良い。 Any brushless motor can be used, and other magnetic pole types such as a permanent magnet embedded type, other slot combinations, or an inner rotor type may be used.
[0261] また、各軸の干渉対策として、軸方向に隣接する軸同士の回転子の極数およびス ロット数が異なる構成としても良い。例えば、 4軸同軸の場合は、第一軸が 32極 36ス ロット、第二軸が 24極 27スロット、 4軸同軸の場合は、第一軸および第三軸が 32極 3 6スロット、第二軸および第四軸が 24極 27スロットといった構成にすれば、各軸の磁 界による回転子および磁気カップリング装置への回転方向の推力発生といった相互 干渉を防ぐことができる。 [0261] Further, as a countermeasure against interference of each axis, a configuration may be adopted in which the number of rotor poles and the number of slots of adjacent axes in the axial direction are different. For example, in the case of 4-axis coaxial, the first axis is 32 poles 36 Lot, the second axis is 24 poles 27 slots, the 4-axis coaxial, the first axis and the third axis 32 poles 3 6 slots, the second axis and the fourth axis 24 poles 27 slots, Mutual interference such as generation of thrust in the rotational direction on the rotor and magnetic coupling device due to the magnetic field of each axis can be prevented.
[0262] また、ロータの永久磁石は、ネオジゥム (Nd— Fe— B)系磁石を用い、耐食性を高 めるためのコ一ティングとして、ニッケルコ一ティングを施した例を用 、て説明したが、 この材質、表面処理に限定されるものではなぐ使用される環境などによって適宜変 更されるものであり、例えばベータアウト時の温度条件によっては高温減磁しにくい サマリウム ·コバルト(Sm'Co)系の磁石を用いるべきであり、超真空中で使用される のであればアウトガス遮断性の高い窒化チタンコーティングを施すべきである。  [0262] The rotor permanent magnet is a neodymium (Nd-Fe-B) magnet, and nickel coating is used as an example of coating to improve corrosion resistance. This material is not limited to the surface treatment, but is changed as appropriate depending on the environment in which it is used. For example, samarium-cobalt (Sm'Co) is less susceptible to high temperature demagnetization depending on the temperature conditions during beta-out System magnets should be used, and if used in ultra-vacuum, a titanium nitride coating with a high outgas barrier should be applied.
[0263] また、ヨークは、低炭素鋼を材料とし、ニッケルめっきを施した例を用いて説明した 力 この材質、表面処理に限定されるものではなぐ使用される環境などによって適 宜変更されるものであり、特に表面処理に関しては、超真空中で使用されるのであれ ばピンホールの少ない力-ゼンめっきやクリーンエスめつき、窒化チタンコーティング 等を施すべきである。  [0263] In addition, the yoke is made of low-carbon steel and explained with an example of nickel plating. This material is not limited to surface treatment, and is appropriately changed depending on the environment used. Especially for surface treatment, if it is used in ultra-vacuum, it should be applied with force with few pinholes such as Zen plating, clean soldering, and titanium nitride coating.
また、永久磁石をヨークに締結する方法は、非磁性のくさびをヨーク外径側からねじ で締め上げる例を用いて説明したが、使用される環境などによって適宜変更されるも のであり、環境によっては接着でも良いし、他の締結方法でも良い。  The method for fastening the permanent magnet to the yoke has been described using an example in which a non-magnetic wedge is tightened from the outer diameter side of the yoke with a screw, but it may be changed as appropriate depending on the environment in which it is used. May be bonded or other fastening methods.
[0264] また、軸受 19, 19'、 119, 119 'は真空用グリス潤滑の 4点接触玉軸受を用いた例 を説明したが、この形式、材質、潤滑方法に限定されるものではなぐ使用される環 境、荷重条件、回転速度などによって適宜変更されるものであり、クロスローラ軸受で あっても良いし、 4軸同軸モータの場合、さらに機械的な剛性を高めるために、別な 軸受で支持する構造としても良いし、高速回転する場合など、多点接触軸受を用い ることができない場合は各軸の回転子を支持する軸受および別な軸受を深溝玉軸受 やアンギユラ軸受として予圧をかける構造としても良いし、超真空中で使用される場 合は、軌道輪に金や銀などの軟質金属をプレーティングしたような、ガス放出のない 金属潤滑としたものを用いても良 、。  [0264] Also, bearings 19, 19 ', 119, and 119' have been described using examples of grease lubricated four-point contact ball bearings for vacuum lubrication, but they are not limited to this type, material, and lubrication method. It can be changed as appropriate according to the environment, load conditions, rotational speed, etc., and may be a cross roller bearing. In the case of a 4-axis coaxial motor, another bearing is used to further increase mechanical rigidity. If a multi-point contact bearing cannot be used, such as when rotating at high speeds, a bearing that supports the rotor of each shaft and another bearing can be preloaded as a deep groove ball bearing or an angular bearing. It is also possible to use a structure that hangs, or when used in ultra-vacuum, it is possible to use a metal lubrication that does not release gas, such as a metal ring plated with a soft metal such as gold or silver. .
[0265] また、磁気カップリングとして機能する内側ロータとして、永久磁石とバックヨークを 用いた形式で説明したが、永久磁石とバックヨークの材質および形状はこれに限定さ れるものではない。例えば、レゾルバの質量と軸受の摩擦トルクによっては、外側ロー タと同極数でなくても良いし、同幅でなくても良い。永久磁石を用いない突極でも良 い。 [0265] As an inner rotor that functions as a magnetic coupling, a permanent magnet and a back yoke are provided. Although described in the format used, the material and shape of the permanent magnet and the back yoke are not limited to this. For example, depending on the mass of the resolver and the frictional torque of the bearing, the number of poles may not be the same as that of the outer rotor, or the width may not be the same. A salient pole that does not use a permanent magnet is also acceptable.
また、角度検出器としてレゾルバを用いた例で説明したが、製造コストや分解能に よって適宜変更されるものであり、例えば光学式のロータリエンコーダでも良い。  Further, although an example in which a resolver is used as an angle detector has been described, it can be appropriately changed depending on manufacturing cost and resolution, and for example, an optical rotary encoder may be used.
[0266] また、角度検出器の回転側を回転自在に支持する軸受 33, 33'、 133, 133'とし て、グリス潤滑の 4点接触玉軸受を用いた例を説明したが、この形式、潤滑方法に限 定されるものではなぐ設置スペースや摩擦トルク、回転速度などによって適宜変更 されるものであり、高速回転や摩擦トルクの低減など、多点接触軸受を用いることが できない場合は、アンギユラ軸受ゃ深溝玉軸受を各軸ごとに 2個配置して、予圧をか ける構造としても良い。  [0266] Further, although examples in which grease lubricated four-point contact ball bearings are used as the bearings 33, 33 ', 133, 133' that rotatably support the rotation side of the angle detector have been described, If the multi-point contact bearing cannot be used, such as high-speed rotation or reduction of friction torque, it can be changed appropriately depending on the installation space, friction torque, rotation speed, etc., which is not limited to the lubrication method. For bearings, two deep groove ball bearings may be arranged for each shaft to apply preload.
[0267] また、その他の隔壁の外、中に配置される構造部品および隔壁の材質、形状、製 造方法は、製造コストや使用される環境、荷重条件、構成などによって適宜変更され るものである。  [0267] In addition, the material, shape, and manufacturing method of the structural components and partition walls arranged outside and in the other partition walls are appropriately changed depending on the manufacturing cost, the environment used, the load conditions, the configuration, and the like. is there.
以上述べたモータシステムは、各軸のロータや、ステータや、レゾルバに用いた磁 気カップリング力も漏れる磁束によって、互いのロータや回転検出器に用いた磁気力 ップリングに回転方向の推力を発生させな 、ように、互 、の磁界を遮蔽するための磁 気シールドを各軸のロータ間に配設したり、各軸のロータ、ステータ、レゾルバ力 発 生する電磁界によって互 、のレゾルバに干渉しな 、ように、互 、の電磁界を遮蔽す るための磁気シールドを配設したり、軸方向に隣接する軸同士のロータの極数ゃス テータのスロット数を変えたりすることによって、各軸相互に発生する磁気的干渉を防 止しているので、各軸の軸方向長さと、各軸の軸方向距離を短くすることができる。よ つて、 4軸同軸、 4軸同軸といった多軸同軸モータシステムでありながら、全体の軸長 を抑えた構成が可能である。特に、 4軸同軸といった多軸構成のダイレクトドライブモ ータを用いたシステムにおいては、チャンバ構造を大きく変えることなく高精度な位置 決めが出来るフロッグレッダアーム式ロボットを 2台設置できるので、装置全体の性能 および稼働率を高めることができる。尚、 4軸以上のモータシステムにも用いることが できることは言うまでもな 、。 In the motor system described above, the magnetic force coupling used in each rotor and rotation detector generates a thrust in the rotational direction by the magnetic flux leaking the magnetic coupling force used in the rotor, stator, and resolver of each axis. In this way, magnetic shields for shielding each other's magnetic field are arranged between the rotors of each shaft, and the rotor, stator, and resolver force of each shaft interfere with each other's resolver. However, by arranging magnetic shields to shield each other's electromagnetic fields, or by changing the number of rotor slots and the number of stator slots between adjacent shafts in the axial direction, Since magnetic interference generated between the axes is prevented, the axial length of each axis and the axial distance of each axis can be shortened. Therefore, a multi-axis coaxial motor system such as 4-axis coaxial or 4-axis coaxial can be configured with a reduced overall axial length. In particular, in a system using a multi-axis direct drive motor such as a 4-axis coaxial system, two frog redder arm robots that can be positioned with high accuracy without greatly changing the chamber structure can be installed. Performance and availability can be increased. It can also be used for motor systems with more than 4 axes. Needless to say, you can.
[0268] 以上、本発明を実施の形態を参照して説明してきたが、本発明は上記実施の形態 に限定して解釈されるべきではなぐ適宜変更 ·改良が可能であることはもちろんであ る。例えば、本実施の形態のダイレクトドライブモータは、真空雰囲気に限らず、大気 外の雰囲気で使用することができる。例えば、半導体製造工程の場合、真空排気後 に真空槽内部にエッチング用の反応性ガスが導入されることがあるが、本実施の形 態のダイレクトドライブモータでは、隔壁により内部と外部とが遮蔽されているため、モ ータコイルや絶縁材等がエッチングされてしまうおそれもない。  [0268] The present invention has been described above with reference to the embodiment. However, the present invention should not be construed as being limited to the above embodiment, and can be appropriately changed or improved. The For example, the direct drive motor of the present embodiment can be used not only in a vacuum atmosphere but also in an atmosphere outside the atmosphere. For example, in the case of a semiconductor manufacturing process, reactive gas for etching may be introduced into the vacuum chamber after evacuation, but in the direct drive motor of this embodiment, the inside and outside are shielded by the partition walls. Therefore, there is no possibility that the motor coil or the insulating material will be etched.
〔第 6の実施の形態〕  [Sixth embodiment]
次に、本発明の実施の形態を図面を参照して説明する。図 38は、本実施の形態に 力かるダイレクトドライブモータを用いたフロッグレッダアーム式搬送装置の斜視図で ある。図 38において、 2つのダイレクトドライブモータ Dl、 D2を直列に連結している。 下方の(第 1の)ダイレクトドライブモータ D1のロータには、第 1アーム A1が連結され 、第 1アーム A1の先端には第 1リンク L1が枢動可能に連結されている。一方、上方 の(第 2の)ダイレクトドライブモータ D2のロータには、第 2アーム A2が連結され、第 2 アーム A2の先端には第 2リンク L2が枢動可能に連結されている。リンク LI, L2は、 ウエノ、 Wを載置するテーブル Tに、それぞれ枢動可能に連結されて 、る。  Next, embodiments of the present invention will be described with reference to the drawings. FIG. 38 is a perspective view of a frog redder arm type transport device using a direct drive motor that works in the present embodiment. In FIG. 38, two direct drive motors Dl and D2 are connected in series. A first arm A1 is connected to the rotor of the lower (first) direct drive motor D1, and a first link L1 is pivotally connected to the tip of the first arm A1. On the other hand, the second arm A2 is connected to the rotor of the upper (second) direct drive motor D2, and the second link L2 is pivotally connected to the tip of the second arm A2. The links LI and L2 are pivotally connected to a table T on which Ueno and W are placed.
[0269] 図 38より明らかである力 ダイレクトドライブモータ Dl、 D2のロータがそれぞれ同方 向に回転すれば、テーブル Tも同方向に回転し、力かるロータが逆方向に回転すれ ば、テーブル Tは、ダイレクトドライブモータ Dl、 D2に接近もしくは離隔するようにな つている。従って、ダイレクトドライブモータ Dl、 D2を任意の角度で回転させれば、テ 一ブル Tが届く範囲内で、任意の 2次元位置にウェハ Wを搬送させることができる。 このように例えば半導体製造装置における真空槽内に配置されるウェハ搬送ァー ム、例えばスカラ型や図に示すフロッグレッダ型のように複数のアームを備えた装置 では、特に複数の回転モータが必要となる。真空環境では外界との接触表面積を極 力小さくすると同時に、スペースを有効に活用するためにモータ等の取付穴はなるベ く少なくする必要がある。また、ウェハ Wを水平にまっすぐに、振動を極力少なくして 搬送するためには、アームの先端に作用するモーメントをロータ支持部で強固に保 持する必要がある。そこで、ダイレクトドライブモータ Dl、 D2を複数、ハウジング部分 で同軸に連結し、連結部分はシールで密に接合 (溶接、 Oリング、金属ガスケット、等 による密な接合)して、モータロータの配設された空間とハウジング外部空間とを離隔 することち必要となる。 [0269] The force apparent from Fig. 38 If the rotors of the direct drive motors Dl and D2 rotate in the same direction, the table T also rotates in the same direction. If the powerful rotor rotates in the opposite direction, the table T The direct drive motors Dl and D2 are approaching or separating from each other. Therefore, if the direct drive motors Dl and D2 are rotated at an arbitrary angle, the wafer W can be transferred to an arbitrary two-dimensional position within a range where the table T can reach. Thus, for example, a wafer transfer arm placed in a vacuum chamber in a semiconductor manufacturing apparatus, for example, an apparatus having a plurality of arms such as a scalar type or a frog redder type shown in the figure, particularly requires a plurality of rotary motors. It becomes. In a vacuum environment, the surface area of contact with the outside world should be minimized, and at the same time, the number of mounting holes for motors, etc., should be minimized to make effective use of space. Also, in order to transport wafer W horizontally and with minimal vibration, the moment acting on the tip of the arm is firmly held by the rotor support. It is necessary to have. Therefore, a plurality of direct drive motors Dl and D2 are connected coaxially at the housing part, and the connection part is tightly joined with a seal (tightly joined by welding, O-ring, metal gasket, etc.), and the motor rotor is arranged. It is necessary to separate the open space from the housing external space.
[0270] また、ウェハ Wを水平にまっすぐ、振動を少なく搬送するためにはアーム Al、 A2の 先端に作用するモーメントを、ロータ支持部で強固に保持する必要がある。更に、又 、真空環境での複数軸のアーム駆動の際には、電源投入時に現在のアームの回転 位置を認識しないと真空槽の壁や、真空槽のシャツタにアーム Al, A2等をぶつけて しまう可能性がある。このような要求に応じることができるダイレクトドライブモータを同 軸に連結したモータシステムについて説明する。  [0270] In addition, in order to convey wafer W straight horizontally and with less vibration, the moment acting on the tips of arms Al and A2 must be firmly held by the rotor support. In addition, when driving multiple axes in a vacuum environment, if the current rotation position of the arm is not recognized when the power is turned on, the arm Al, A2, etc. will be hit against the wall of the vacuum chamber or the shatter of the vacuum chamber. There is a possibility. A motor system in which a direct drive motor capable of meeting such requirements is connected to the same shaft will be described.
[0271] 本実施の形態は、表面磁石型の 32極 36スロットアウターロータ式ブラシレスタイプ のダイレクトドライブモータを用いる。 32極 36スロットというスロットコンビネーションは 、コギンダカは小さいが径方向に磁気吸引力が発生し回転時の振動は大きいことが 一般的に知られている 8極 9スロットというスロットコンビネーションの 4倍の構成である 。 2n倍 (nは整数)にしたことにより、径方向の磁気吸引力は相殺されるので、固定子 と回転子の真円度や同軸度および機構部品の剛性を高めることなく回転時の振動を 小さくでき、かつ、本来的にコギングが小さい構成であるので、非常に滑らかな回転 が得られる。一方、このような非常に多極なモータとすることにより、機械角の周期に 対する電気角の周期が多いので、位置決め制御性が良い。よって、本発明の如ぐ 減速器を用いずにロボット装置を駆動するようなダイレクトドライブモータには好適で ある。また、総磁束量を下げることなく固定子連結部の肉厚と突極幅、および回転子 のヨーク肉厚を狭くできるので、本発明の如ぐ薄型かつ大径幅狭のダイレクトドライ ブモータには好適である。 In this embodiment, a surface magnet type 32-pole 36-slot outer rotor brushless type direct drive motor is used. The slot combination of 32 poles and 36 slots is generally known to have a large magnetic attraction force in the radial direction and large vibration during rotation. is there . 2 n times (n is an integer) cancels out the magnetic attractive force in the radial direction. Therefore, vibration during rotation can be achieved without increasing the roundness and coaxiality of the stator and rotor and the rigidity of the mechanical parts. Can be made small and cogging is inherently small, so that a very smooth rotation can be obtained. On the other hand, by using such a very multi-pole motor, the electrical angle cycle is greater than the mechanical angle cycle, so positioning controllability is good. Therefore, it is suitable for a direct drive motor that drives a robot apparatus without using a speed reducer as in the present invention. In addition, since the thickness and salient pole width of the stator connecting portion and the yoke thickness of the rotor can be reduced without lowering the total magnetic flux, the direct drive motor having a thin and large diameter and narrow width as in the present invention is used. Is preferred.
[0272] 図 39は、図 38の構成を Π-Π線で切断して矢印方向に見た図である。図 39を参照し て、 2軸のモータシステムの内部構造について詳細に説明する。まず、ダイレクトドラ イブモータ D1について説明する。定盤 Gに据え付けた円板 10の中央開口 10aに嵌 合しボルト 11により相互に固定された中空円筒状の本体 12は、その上端にカップ状 の隔壁 13を取り付けている。本体 12の中央は、ステータへの配線などを通すために 用いることができる。本体 12, 円板 10によりハウジングを構成する。 FIG. 39 is a view of the configuration of FIG. 38, taken along the Π-Π line and viewed in the direction of the arrow. With reference to FIG. 39, the internal structure of the two-axis motor system will be described in detail. First, the direct drive motor D1 will be described. A hollow cylindrical main body 12 fitted into the central opening 10a of the disk 10 installed on the surface plate G and fixed to each other by bolts 11 has a cup-shaped partition wall 13 attached to the upper end thereof. The center of the body 12 is used to pass the wiring to the stator. Can be used. The main body 12 and the disk 10 constitute a housing.
[0273] 隔壁 13は、非磁性体であるステンレス製であり、本体 12に嵌合される肉厚の底部 1 3aと、その周縁から軸線方向にダイレクトドライブモータ Dl、 D2を貫くようにして延在 する薄肉の円筒部 13bと、ホルダ 15とからなる。従って、隔壁 13は、ダイレクトドライ ブモータ Dl、 D2に共通に用いられる。円筒部 13bの下端は、 TIG溶接にて封止可 能にホルダ 15に接合され、ホルダ 15は、円板 10にボルト 16により固定されている。 ここで、円筒部 13bとホルダ 15の溶接部を略同一厚さとすることにより、片側への部 品にのみ熱が逃げることを抑制し、嵌合部を均一に溶接できる構造となっている。ホ ルダ 15と円板 10の接触面には、シール部材を填め込む溝力卩ェが施してあり、シー ル部材 ORを溝に填め込んだ後にホルダ 15と円板 10をボルト 16により締結すること により、締結部分を大気側力 分離隔絶している。隔壁 13は耐食性が高ぐ特に磁 性の少ないオーステナイト系ステンレスの SUS316を材料としており、ホルダ 15は隔 壁 13との溶接性から同じく SUS316を材料としている。 [0273] The partition wall 13 is made of stainless steel, which is a non-magnetic material. The partition wall 13 extends from the peripheral edge of the wall portion 13a and the direct drive motors Dl and D2 in the axial direction. It consists of an existing thin cylindrical portion 13 b and a holder 15. Therefore, the partition wall 13 is commonly used for the direct drive motors Dl and D2. The lower end of the cylindrical portion 13b is joined to a holder 15 so as to be sealed by TIG welding, and the holder 15 is fixed to the disc 10 with bolts 16. Here, by setting the welded portion of the cylindrical portion 13b and the holder 15 to substantially the same thickness, it is possible to suppress heat from escaping only to the component on one side and to weld the fitting portion uniformly. The contact surface between the holder 15 and the disc 10 is provided with a groove force that fits the seal member. After the seal member OR is fitted into the groove, the holder 15 and the disc 10 are fastened by the bolt 16. As a result, the fastening part is isolated from the atmospheric force. The partition wall 13 is made of austenitic stainless steel SUS316, which has high corrosion resistance, and is particularly magnetic. The holder 15 is also made of SUS316 because of its weldability with the partition wall 13.
[0274] 更に、隔壁 13とホルダ 15とは気密的に接合され、且つホルダ 15と円板 10、及び円 板 10と定盤 Gとは、それぞれ O—リング ORによって気密されている。従って、円板 10 と、隔壁 13とで囲われる内部空間は、その外部力も気密されている。尚、隔壁 13は 必ずしも非磁性体である必要はない。又、 O—リング ORを用いて気密する代わりに、 電子ビーム溶接やレーザビーム溶接などで部材間を気密してもも良い。 [0274] Further, the partition wall 13 and the holder 15 are hermetically joined, and the holder 15 and the disk 10 and the disk 10 and the surface plate G are hermetically sealed by O-rings OR, respectively. Therefore, the internal space surrounded by the disk 10 and the partition wall 13 is also hermetically sealed. The partition wall 13 is not necessarily made of a nonmagnetic material. Further, instead of using an O-ring OR, the members may be hermetically sealed by electron beam welding or laser beam welding.
大気外側部材である円板 10の外周上面において、それと別体である軸受ホルダ 1 7がボルト 18により固定されている。ボルト 18は、円筒状部材 23の外側に配置され、 その頭部を露出させている。軸受ホルダ 17には、真空中で用いられる 4点接触式玉 軸受 (第 1の軸受) 19の外輪が嵌合的に取り付けられ、環状の軸受抑え BHを介して ボルト 20により固定されている。一方、軸受 19の内輪は、第 1外側ロータ 21の外周 に嵌合し、環状の軸受抑え BHを介してボルト 22により固定されている。すなわち、第 1外側ロータ 21は、軸受ホルダ 17及び隔壁 13に対して、軸受 19により回転自在に 支持されており、またアーム A1 (図 38)を支持する円筒状部材 23を、その上面にボ ルト 24によって固定している。ここで、ボルト 24は、半径方向内方に延在する磁気シ 一ルド板 25 (点線で示す)を、円筒状部材 23に共締めすることができる。第 1外側口 ータ 21と円筒状部材 23とで、外側ロータを構成する。 A bearing holder 17, which is a separate body, is fixed by bolts 18 on the outer peripheral upper surface of the disk 10 that is an atmospheric outer member. The bolt 18 is disposed outside the cylindrical member 23 and exposes its head. An outer ring of a four-point contact ball bearing (first bearing) 19 used in a vacuum is fitted to the bearing holder 17 in a fitting manner, and is fixed by a bolt 20 via an annular bearing restraint BH. On the other hand, the inner ring of the bearing 19 is fitted to the outer periphery of the first outer rotor 21 and is fixed by a bolt 22 via an annular bearing restraint BH. That is, the first outer rotor 21 is rotatably supported by the bearing 19 and the partition wall 13 by the bearing 19, and a cylindrical member 23 that supports the arm A1 (FIG. 38) is formed on the upper surface thereof. It is fixed by 24. Here, the bolt 24 can fasten a magnetic shield plate 25 (indicated by a dotted line) extending radially inward to the cylindrical member 23 together. 1st outer port The rotor 21 and the cylindrical member 23 constitute an outer rotor.
[0275] 円板 10および軸受ホルダ 17は、耐食性が高いオーステナイト系ステンレスを材料 としており、円板 10は、チャンバである定盤 Gとの嵌合固定およびシール装置を兼ね ており、その下面に、 O—リング ORを填め込む溝 10bが設けられている。 [0275] The disc 10 and the bearing holder 17 are made of austenitic stainless steel having high corrosion resistance, and the disc 10 also serves as a fitting and fixing device with the surface plate G, which is a chamber, on its lower surface. A groove 10b is provided to fill the O-ring OR.
磁気シールド板 25は、磁性体である SPCC鋼板をプレス成型加工後に、防鲭およ び耐食性を高めるためにニッケルめっきを施している。その効果については後述する 軸受 19は、ラジアル、アキシアル、モーメント荷重を 1個の軸受で負荷できる 4点接 触玉軸受である。この形式の軸受を用いることにより、ダイレクトドライブモータ D1の 軸受は 1個で済むため、本発明の 2軸同軸モータシステムを薄型化できる。軸受 19 は、内外輪とも耐食性が高くかつ焼入れによる硬化が得られるマルテンサイト系ステ ンレスを材料とし。転動体はセラミックボール、潤滑剤は真空であっても固化しない真 空用のグリスを用いている。  The magnetic shield plate 25 is subjected to nickel plating in order to enhance the anti-corrosion and corrosion resistance after press-forming the SPCC steel plate, which is a magnetic material. The effect of the bearing 19, which will be described later, is a four-point contact ball bearing that can apply radial, axial, and moment loads with a single bearing. By using this type of bearing, only one bearing for the direct drive motor D1 is required, so the two-axis coaxial motor system of the present invention can be made thinner. The bearing 19 is made of martensite stainless steel, which has high corrosion resistance for both the inner and outer rings and can be hardened by quenching. The rolling elements are ceramic balls, and the lubricant is vacuum grease that does not solidify even under vacuum.
[0276] 尚、軸受 19は内輪と外輪に金や銀などの軟質金属をプレーティングして、真空中 でもアウトガス放出のな 、金属潤滑としたものを用いてもよく、また 4点接触式玉軸受 であるので、アーム A1からの第 1外側ロータ 21がチルトする方向のモーメントを受け ることができるが、 4点接触式に限らず、クロスローラ、クロスボール、クロステーパ軸 受も用いることができ、予圧状態で用いても良いし、潤滑性向上のためフッ素系被膜 処理(DFO)を行っても良!ヽ。  [0276] The bearing 19 may be made of metal lubricated by plating a soft metal such as gold or silver on the inner ring and the outer ring so that no outgassing occurs even in vacuum, or a four-point contact ball. Because it is a bearing, it can receive a moment in the direction in which the first outer rotor 21 tilts from the arm A1, but it is not limited to the four-point contact type, and cross rollers, cross balls, and cross taper bearings can also be used. Yes, it can be used under preload conditions, or fluorine film treatment (DFO) can be performed to improve lubricity!ヽ.
[0277] 第 1外側ロータ 21は、永久磁石 21aと、磁路を形成するため磁性体から成る円環状 のヨーク 21bと、永久磁石 21aとヨーク 21bを機械的に締結するための非磁性体から なるくさび (不図示)によって構成されている。永久磁石 21aは、 32極の構成で N極、 S極の磁石が各 16個交互に磁性金属からなり、極ごとに分割されたセグメント形式で あり、その個々の形状は扇形である。内径と外径の円弧中心は同一であるが、円周 方向端面の接線交点を永久磁石 21a寄りとすることで、くさびをヨーク 21b外径側か らねじで締め上げることにより永久磁石 21aをヨーク 21bに締結している。このような 構成とすることにより、接着剤など、アウトガスを発生する固定部材を用いることなく永 久磁石を締結できる。永久磁石 21aはエネルギー積の高いネオジゥム(Nd—Fe— B )系磁石であり、耐食性を高めるためにニッケルコーティングを施してある。ヨーク 21b は高い磁性を有する低炭素鋼を材料とし、加工成型後に、防鲭および耐食性を高め 、かつ軸受交換時の磨耗を防ぐためにニッケルめっきを施している。 [0277] The first outer rotor 21 includes a permanent magnet 21a, an annular yoke 21b made of a magnetic material to form a magnetic path, and a non-magnetic material for mechanically fastening the permanent magnet 21a and the yoke 21b. It consists of a wedge (not shown). Permanent magnet 21a has a configuration of 32 poles, each of which has 16 poles of N poles and S poles alternately made of magnetic metal, and is divided into segments. Each of the permanent magnets 21a has a sector shape. Although the inner and outer diameter arc centers are the same, the tangential intersection of the circumferential end faces is closer to the permanent magnet 21a, and the wedge is tightened from the outer diameter side of the yoke 21b with a screw to tighten the permanent magnet 21a to the yoke. Signed to 21b. With this configuration, the permanent magnet can be fastened without using a fixing member that generates outgas, such as an adhesive. Permanent magnet 21a is a high energy product of neodymium (Nd—Fe—B ) Series magnets with nickel coating to enhance corrosion resistance. The yoke 21b is made of a low-carbon steel having high magnetism, and is plated with nickel to improve wear resistance and corrosion resistance and prevent wear during bearing replacement after processing and molding.
[0278] また、第 1外側ロータ 21は、軸受 19の内輪と円筒状部材 23を嵌合固定する面を有 している。 4点接触玉軸受 19は非常に薄肉の軸受であり、組みつけられる部材の精 度や線膨張係数の差異により回転精度や摩擦トルクが大きな影響を受ける。よって 本実施の形態の場合は、回転輪である軸受 19の内輪を、加工精度を出しやすくか つ線膨張係数が軸受の軌道輪材質と略同一であるヨーク 21bに締まり嵌めあるいは 中間嵌めとし、固定輪である軸受 19の外輪を、オーステナイト系ステンレス製の軸受 ホルダやアルミニウム製のボスにすきま嵌めとすることで、軸受 19の回転精度の低下 や温度上昇による摩擦トルクの上昇を防ぐ構成となっている。  [0278] The first outer rotor 21 has a surface for fitting and fixing the inner ring of the bearing 19 and the cylindrical member 23. The four-point contact ball bearing 19 is a very thin bearing, and its rotational accuracy and friction torque are greatly affected by differences in accuracy and linear expansion coefficient of the assembled parts. Therefore, in the case of the present embodiment, the inner ring of the bearing 19 which is a rotating ring is an interference fit or an intermediate fit to the yoke 21b which is easy to obtain processing accuracy and whose linear expansion coefficient is substantially the same as the bearing ring material of the bearing. The outer ring of the bearing 19, which is a fixed ring, is fitted to the austenitic stainless steel bearing holder or aluminum boss to prevent the bearing 19 from rotating and the friction torque from increasing due to temperature rise. ing.
[0279] 隔壁 13の半径方向内側において、第 1外側ロータ 21の内周面に対向するようにし て、第 1ステータ 29が配置されている。第 1ステータ 29は、本体 12の中央で半径方 向に延在したフランジ部 12aの円筒状に変形した下部に取り付けられており、電磁鋼 板の積層材で形成され、各突極には絶縁処理としてボビンを嵌め込んだ後にモータ コイルが集中巻されている。第 1ステータ 29の外径は隔壁 13の内径と略同一もしくは 小さい寸法としている。  [0279] A first stator 29 is disposed on the inner side in the radial direction of the partition wall 13 so as to face the inner peripheral surface of the first outer rotor 21. The first stator 29 is attached to a cylindrically deformed lower portion of a flange portion 12a extending in the radial direction at the center of the main body 12. The first stator 29 is formed of a laminated material of electromagnetic steel plates and is insulated from each salient pole. As a process, the motor coil is concentrated after the bobbin is fitted. The outer diameter of the first stator 29 is approximately the same as or smaller than the inner diameter of the partition wall 13.
[0280] 第 1ステータ 29の半径方向内側に、第 1内側ロータ 30が配置されている。第 1内側 ロータ 30は、本体 12の外周面にボルト固定されたレゾルバホルダ 32に対して、玉軸 受 33により回転自在に支持されている。第 1内側ロータ 30の外周面には、ノ ックョー ク 30bを介して永久磁石 30aが取り付けられている。永久磁石 30aは、第 1外側ロー タ 21の永久磁石 21aと同様に 32極の構成で N極、 S極の磁石が各 16個交互に磁性 金属からなっている。従って、第 1内側ロータ 30は、第 1ステータ 29によって駆動され る第 1外側ロータ 21に同期して連れ回されるようになつている。  [0280] The first inner rotor 30 is disposed on the radially inner side of the first stator 29. The first inner rotor 30 is rotatably supported by a ball bearing 33 with respect to a resolver holder 32 that is bolted to the outer peripheral surface of the main body 12. A permanent magnet 30a is attached to the outer peripheral surface of the first inner rotor 30 via a knock 30b. The permanent magnet 30a is composed of 32 poles in the same manner as the permanent magnet 21a of the first outer rotor 21, and 16 magnets of N poles and S poles are alternately made of magnetic metal. Accordingly, the first inner rotor 30 is rotated in synchronism with the first outer rotor 21 driven by the first stator 29.
[0281] 第 1内側ロータ 30を回転自在に支持する軸受 33は、ラジアル、アキシアル、モーメ ント荷重を 1個の軸受で負荷できる 4点接触玉軸受である。この形式の軸受を用いる ことにより、 1個の軸受で済むため、ダイレクトドライブモータ D1を薄型化できる。隔壁 13の内部は大気環境であるため、一般的な軸受鋼と鉱油を基油としたグリス潤滑を 用いた軸受を適用できる。 [0281] The bearing 33 that rotatably supports the first inner rotor 30 is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing. By using this type of bearing, the direct drive motor D1 can be made thinner because only one bearing is required. Since the inside of the partition wall 13 is an atmospheric environment, grease lubrication based on general bearing steel and mineral oil is recommended. The used bearing can be applied.
隔壁 13内部は大気環境であるため、永久磁石 30aはバックヨーク 30bに接着固定 してある。永久磁石 30aはエネルギー積の高いネオジゥム(Nd— Fe— B)系磁石で あり、鲭による減磁を防ぐためにニッケルコーティングを施してある。ヨーク 30bは高い 磁性を有する低炭素鋼を材料とし、加工成形後に防鲭のためにクロメートめつきを施 している。  Since the inside of the partition wall 13 is an atmospheric environment, the permanent magnet 30a is bonded and fixed to the back yoke 30b. Permanent magnet 30a is a high energy product neodymium (Nd-Fe-B) magnet with nickel coating to prevent demagnetization due to defects. The yoke 30b is made of low-carbon steel with high magnetism, and is chromated to prevent fouling after machining.
[0282] 第 1内側ロータ 30の内周には、回転角度を計測する検出器として、レゾルバロータ 34a及び 34bを組みつけており、それに対向する形で、レゾルバホルダ 32の外周に 、レゾルバステータ 35, 36を取り付けている力 本実施の形態では、高分解能のイン タリメンタルレゾルバステータ 35と、 1回転のいずれの位置にロータがあるかを検出で きるアブソリュートレゾルバステータ 36とを 2層に配置して!/、る。このため電源投入時 にも、アブソリュートレゾルバロータ 34bの回転角度がわかり、原点復帰が不要であり 、また、コイルに対する磁石の電気的位相角度がゎカゝるため、ダイレクトドライブモー タ D1の駆動電流制御に使用する回転角度検出が、極検出センサを用いることなく可 能となっている。  [0282] Resolver rotors 34a and 34b are assembled as detectors for measuring the rotation angle on the inner periphery of the first inner rotor 30, and the resolver stator 35 is disposed on the outer periphery of the resolver holder 32 so as to oppose it. In this embodiment, the high-resolution incremental resolver stator 35 and the absolute resolver stator 36 that can detect the position of the rotor in one rotation are arranged in two layers. /! For this reason, even when the power is turned on, the rotational angle of the absolute resolver rotor 34b is known, no return to origin is required, and the electrical phase angle of the magnet with respect to the coil increases, so the drive current of the direct drive motor D1 The rotation angle used for control can be detected without using a pole detection sensor.
[0283] レゾルバホルダ 32と第 1内側ロータ 30は、モータの界磁およびモータコイルからの 電磁ノイズが角度検出器であるレゾルバステータ 35, 36に伝達されないように、磁性 体である炭素鋼を材料とし、加工成形後に防鲭のためにクロメートめつきを施してい る。  [0283] The resolver holder 32 and the first inner rotor 30 are made of carbon steel, which is a magnetic material, so that electromagnetic noise from the motor field and motor coil is not transmitted to the resolver stators 35, 36 that are angle detectors. In order to prevent fouling after processing and molding, chromate plating is applied.
本実施の形態に用いて 、る高分解能の可変リラクタンス形レゾルバにぉ 、て、イン タリメンタルレゾルバロータ 34aは、一定のピッチを有する複数のスロット歯列を有し、 インクリメンタルレゾルバステータ 35の外周面には、回転軸と平行に各磁極でインクリ メンタルレゾルバロータ 34aに対して位相をずらした歯が設けられており、コイルが各 磁極に卷回されている。第 1内側ロータ 30と一体でインクリメンタルレゾルバロータ 34 aが回転すると、インクリメンタルレゾルバステータ 35の磁極との間のリラクタンスが変 化し、インクリメンタルレゾルバロータ 34aの 1回転でリラクタンス変化の基本波成分が n周期となるようにして、そのリラクタンス変化を検出して、図 40に例を示すレゾルバ 制御回路によりデジタルィ匕し、位置信号として利用することでインクリメンタルレゾル ノ ロータ 34a即ち第 1内側ロータ 30の回転角度 (又は回転速度)を検出するようにな つている。レゾルバロータ 34a、 34bと、レゾルバステータ 35, 36とで検出器を構成す る。 The high-resolution variable reluctance resolver used in the present embodiment has an incremental resolver rotor 34a having a plurality of slot teeth having a constant pitch, and the outer peripheral surface of the incremental resolver stator 35. Are provided with teeth shifted in phase with respect to the incremental resolver rotor 34a at each magnetic pole parallel to the rotation axis, and a coil is wound around each magnetic pole. When the incremental resolver rotor 34a rotates together with the first inner rotor 30, the reluctance between the incremental resolver stator 35 and the magnetic pole changes, and the fundamental wave component of the change in reluctance becomes n cycles in one revolution of the incremental resolver rotor 34a. In this way, the reluctance change is detected, digitalized by the resolver control circuit shown in FIG. 40, and used as a position signal, so that an incremental resolution is obtained. The rotation angle (or rotation speed) of the rotor 34a, that is, the first inner rotor 30 is detected. The resolver rotors 34a and 34b and the resolver stators 35 and 36 constitute a detector.
[0284] 本実施の形態によれば、第 1外側ロータ 21に対して、磁気カップリング作用により 第 1内側ロータ 30が同速で回転し、すなわち連れ回るので、第 1外側ロータ 21の回 転角を隔壁 13越しに検出することができる。また、本実施の形態では、モータを形成 する部品ゃノ、ウジングを用いることなくレゾルバ単体で軸受 33を有しており、従って ハウジングに組み込む前に、レゾルバ単体での偏芯調整ゃレゾルバコイルの位置調 整などの精度調整が行えるので、ハウジングゃ両フランジに調整用の穴や切り欠きを 別途設ける必要がない。又、第 1外側ロータ 21と回転自在に支持する軸受装置 19の 回転輪を、加工精度が出しやすくかつ線膨張係数が軸受装置 19の駆動輪と略同一 であるロータヨーク 21bに嵌合することで、回転精度の向上と温度変化による摩擦ト ルクの変動防止を図ることができる。  [0284] According to the present embodiment, the first inner rotor 30 rotates at the same speed by the magnetic coupling action with respect to the first outer rotor 21, that is, rotates with the first outer rotor 21, so that the first outer rotor 21 rotates. The corner can be detected through the bulkhead 13. Further, in the present embodiment, the resolver alone has the bearing 33 without using the parts forming the motor and the uzing, and therefore, the eccentricity adjustment with the resolver alone is performed before the resolver coil is assembled into the housing. Since accuracy adjustment such as position adjustment can be performed, there is no need to provide adjustment holes or notches on both flanges of the housing. In addition, the rotating wheel of the bearing device 19 that is rotatably supported by the first outer rotor 21 is fitted into a rotor yoke 21b that is easy to obtain machining accuracy and has the same linear expansion coefficient as the driving wheel of the bearing device 19. In addition, the rotation accuracy can be improved and the friction torque can be prevented from changing due to temperature changes.
[0285] 次に、ダイレクトドライブモータ D2について説明する力 ここでは本体 12がハウジン グを構成する。上述したダイレクトドライブモータ D1の円筒状部材 23は、ダイレクトド ライブモータ D2に重合する位置まで上方に延在しており、その内周面に、真空中で 用いられる 4点接触式玉軸受 (第 2の軸受) 19'の外輪が嵌合的に取り付けられ、環 状の軸受抑え BH'を介してボルト 20'により固定されている。一方、軸受 19'の内輪 は、第 2外側ロータ 21,の外周に嵌合し、環状の軸受抑え BH,を介してボルト 22,に より固定されている。  [0285] Next, the force for explaining the direct drive motor D2 Here, the main body 12 constitutes a housing. The above-described cylindrical member 23 of the direct drive motor D1 extends upward to a position where it overlaps with the direct drive motor D2, and has a four-point contact ball bearing (no. 2 bearing) The outer ring of 19 'is fitted in a fitting manner, and is fixed by a bolt 20' via an annular bearing restraint BH '. On the other hand, the inner ring of the bearing 19 ′ is fitted to the outer periphery of the second outer rotor 21, and is fixed by bolts 22 via an annular bearing restraint BH.
[0286] ここで、ボルト 22'、半径方向内方に延在する磁気シールド板 41 (点線で示す)を 共締めすることができる。第 2外側ロータ 21 'は、円筒状部材 23及び隔壁 13に対し て、軸受 19'により回転自在に支持されており、またアーム A2 (図 38)を支持するリン グ状部材 23'を、その上面にボルト 24'によって固定している。更に、ボルト 24'は、 半径方向内方に延在する磁気シールド板 25'を、リング状部材 23'に共締めしてい る。力かる組み付け状態では、第 2外側ロータ 21 'と一体化された円筒状部材 23'が 、ボルト 20'を軸線方向外方及び半径方向外方力も覆っている。第 2外側ロータ 21 ' と円筒状部材 23'とで、外側ロータを構成する。 [0287] 磁気シールド板 41, 25 'は、磁性体である SPCC鋼板をプレス成型カ卩ェ後に、防 鲭および耐食性を高めるためにニッケルめっきを施すことができる。磁気シールド板 4 1, 25,は、第 1外側ロータ 21及び第 2外側ロータ 21,の間に介在して磁気的シール ドを形成し、それらからの磁束漏れによるお互!ヽの連れ回しを防止する機能を有する 。即ち、磁気シールド板 25'は、非磁性体であるリング状部材 23'挟んでヨーク 21b' に締結し、それにより不要な磁気回路を生成することを防ぐことができる。この磁気シ 一ルド板 41, 25,により、ロータ相互の磁気干渉を防ぐことができるので、 2軸同軸モ ータシステムでありながら全体の軸長を抑えた構成が可能である。磁気シールド板 4 1は外部力 の異物吸引を防止できる。 [0286] Here, the bolt 22 'and the magnetic shield plate 41 (indicated by a dotted line) extending radially inward can be fastened together. The second outer rotor 21 ′ is rotatably supported by the bearing 19 ′ with respect to the cylindrical member 23 and the partition wall 13, and the ring-shaped member 23 ′ supporting the arm A 2 (FIG. 38) is It is fixed on the top surface with bolts 24 '. Further, the bolt 24 'has a magnetic shield plate 25' extending radially inward and fastened together with the ring-shaped member 23 '. In the forcefully assembled state, the cylindrical member 23 ′ integrated with the second outer rotor 21 ′ covers the bolt 20 ′ with axial outward force and radial outward force. The second outer rotor 21 ′ and the cylindrical member 23 ′ constitute an outer rotor. [0287] The magnetic shield plates 41 and 25 'can be subjected to nickel plating in order to improve the anti-corrosion and corrosion resistance after press molding the SPCC steel plate, which is a magnetic material. The magnetic shield plates 4 1 and 25 are interposed between the first outer rotor 21 and the second outer rotor 21 to form a magnetic shield, and each other due to magnetic flux leakage from them! Has a function to prevent the bag from being carried around. That is, the magnetic shield plate 25 ′ can be fastened to the yoke 21b ′ with the ring-shaped member 23 ′, which is a nonmagnetic material, interposed therebetween, thereby preventing generation of an unnecessary magnetic circuit. Since the magnetic shield plates 41 and 25 can prevent magnetic interference between the rotors, the overall axial length can be reduced even though it is a two-axis coaxial motor system. The magnetic shield plate 41 can prevent external force from attracting foreign matter.
[0288] 軸受 19'は、ラジアル、アキシアル、モーメント荷重を 1個の軸受で負荷できる 4点 接触玉軸受である。この形式の軸受を用いることにより、ダイレクトドライブモータ D2 の軸受は 1個で済むため、本発明の 2軸同軸モータを薄型化できる。内外輪とも耐食 性が高くかつ焼入れによる硬化が得られるマルテンサイト系ステンレスを材料とし。転 動体はセラミックボール、潤滑剤は真空であっても固化しない真空用のグリスを用い ている。  [0288] Bearing 19 'is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing. By using this type of bearing, since the direct drive motor D2 requires only one bearing, the biaxial coaxial motor of the present invention can be made thinner. The inner and outer rings are made of martensitic stainless steel, which has high corrosion resistance and can be hardened by quenching. The rolling elements are ceramic balls, and the lubricant is vacuum grease that does not solidify even under vacuum.
尚、軸受 19'は内輪と外輪に金や銀などの軟質金属をプレーティングして、真空中 でもアウトガス放出のな 、金属潤滑としたものを用いてもよく、また 4点接触式玉軸受 であるので、アーム A1からの第 1外側ロータ 21,がチルトする方向のモーメントを受 けることができるが、 4点接触式に限らず、クロスローラ、クロスボール、クロステーパ軸 受も用いることができ、予圧状態で用いても良いし、潤滑性向上のためフッ素系被膜 処理(DFO)を行っても良!ヽ。  The bearing 19 'may be made of a metal lubrication that is plated with a soft metal such as gold or silver on the inner ring and the outer ring and does not release outgas even in vacuum, or a four-point contact ball bearing. As a result, it is possible to receive a moment in the direction in which the first outer rotor 21 from the arm A1 tilts. However, not only a four-point contact type, but also a cross roller, a cross ball, and a cross taper bearing can be used. It can be used under preload conditions, or it can be treated with fluorine coating (DFO) to improve lubricity!ヽ.
[0289] 第 2外側ロータ 21 'は、永久磁石 21a'と、磁路を形成するため磁性体から成る円環 状のヨーク 21b'と、永久磁石 21a'とヨーク 21b'を機械的に締結するための非磁性 体力ゝらなるくさび (不図示)によって構成されている。永久磁石 21a'は、 32極の構成 で N極、 S極の磁石が各 16個交互に磁性金属からなり、極ごとに分割されたセグメン ト形式であり、その個々の形状は扇形である。内径と外径の円弧中心は同一である 力 円周方向端面の接線交点を永久磁石 21a'寄りとすることで、くさびをヨーク 21b' 外径側からねじで締め上げることにより永久磁石 21a'をヨーク 21b'に締結している。 このような構成とすることにより、接着剤など、アウトガスを発生する固定部材を用いる ことなく永久磁石を締結できる。永久磁石 21a'はエネルギー積の高いネオジゥム(N d-Fe-B)系磁石であり、耐食性を高めるためにニッケルコーティングを施してある 。ヨーク 21b 'は高い磁性を有する低炭素鋼を材料とし、加工成型後に、防鲭および 耐食性を高め、かつ軸受交換時の磨耗を防ぐためにニッケルめっきを施して ヽる。 [0289] The second outer rotor 21 'mechanically fastens the permanent magnet 21a', the annular yoke 21b 'made of a magnetic material to form a magnetic path, and the permanent magnet 21a' and the yoke 21b '. It is made up of a wedge (not shown). Permanent magnet 21a 'is a segment type with a configuration of 32 poles, with 16 N-pole and S-pole magnets alternately made of magnetic metal and divided into poles, each of which has a sector shape. The center of the arc of the inner and outer diameter is the same. It is fastened to the yoke 21b '. With such a configuration, the permanent magnet can be fastened without using a fixing member that generates outgas, such as an adhesive. Permanent magnet 21a 'is a high energy product neodymium (Nd-Fe-B) based magnet, which is coated with nickel to enhance corrosion resistance. Yoke 21b 'is made of low-carbon steel with high magnetic properties, and is plated with nickel to improve wear resistance and corrosion resistance after machining and to prevent wear during bearing replacement.
[0290] また、第 2外側ロータ 21 'は、軸受 19 'の内輪とリング状部材 23 'を嵌合固定する面 を有している。 4点接触玉軸受 19 'は非常に薄肉の軸受であり、組みつけられる部材 の精度や線膨張係数の差異により回転精度や摩擦トルクが大きな影響を受ける。よ つて本実施の形態の場合は、軸受 19 'の内輪を、加工精度を出しやすくかつ線膨張 係数が軸受の軌道輪材質と略同一であるヨーク 21bに締まり嵌めあるいは中間嵌め とし、軸受 19,の外輪を、オーステナイト系ステンレス製の軸受ホルダやアルミニウム 製のボスにすきま嵌めとすることで、軸受 19 'の回転精度の低下や温度上昇による摩 擦トルクの上昇を防ぐ構成となって 、る。  [0290] Further, the second outer rotor 21 'has a surface for fitting and fixing the inner ring of the bearing 19' and the ring-shaped member 23 '. The four-point contact ball bearing 19 'is a very thin bearing, and its rotational accuracy and friction torque are greatly affected by differences in the accuracy and linear expansion coefficient of the assembled parts. Therefore, in the case of the present embodiment, the inner ring of the bearing 19 ′ is tightly fitted or intermediately fitted to the yoke 21b, which is easy to obtain machining accuracy and has the same linear expansion coefficient as the bearing ring material of the bearing. The outer ring is made into a clearance fit with an austenitic stainless steel bearing holder or an aluminum boss, thereby preventing a decrease in rotational accuracy of the bearing 19 ′ and an increase in friction torque due to a temperature rise.
[0291] 隔壁 13の半径方向内側において、第 2外側ロータ 21 'の内周面に対向するように して、第 2ステータ 29 'が配置されている。第 2ステータ 29 'は、本体 12の中央で半径 方向に延在したフランジ部 12aの円筒状に変形した上部に取り付けられており、電磁 鋼板の積層材で形成され、各突極には絶縁処理としてボビンを嵌め込んだ後にモー タコイルが集中巻されている。第 2ステータ 29 'の外径は隔壁 13の内径と略同一もし くは小さい寸法としている。  [0291] On the radially inner side of the partition wall 13, a second stator 29 'is disposed so as to face the inner peripheral surface of the second outer rotor 21'. The second stator 29 ′ is attached to the upper part of the flange 12 a that extends in the radial direction in the center of the main body 12, and is formed of a laminated material of electromagnetic steel sheets, and each salient pole is insulated. As shown, the motor coil is concentrated after the bobbin is fitted. The outer diameter of the second stator 29 ′ is approximately the same as or smaller than the inner diameter of the partition wall 13.
[0292] 第 2ステータ 29 'の半径方向内側に、第 2内側ロータ 30'が配置されている。第 2内 側ロータ 30'は、本体 12の外周面にボルト固定されたレゾルバホルダ 32'に対して、 玉軸受 33 'により回転自在に支持されている。第 2内側ロータ 30'の外周面には、バ ックヨーク 30b 'を介して永久磁石 30a'が取り付けられている。永久磁石 30a'は、第 2外側ロータ 21 'の永久磁石 21a'と同様に 32極の構成で N極、 S極の磁石が各 16 個交互に磁性金属力もなつている。従って、第 2内側ロータ 30'は、第 2ステータ 29 ' によって第 2外側ロータ 21 'に同期して回転駆動されるようになっている。  [0292] A second inner rotor 30 'is arranged inside the second stator 29' in the radial direction. The second inner rotor 30 ′ is rotatably supported by a ball bearing 33 ′ with respect to a resolver holder 32 ′ bolted to the outer peripheral surface of the main body 12. A permanent magnet 30a ′ is attached to the outer peripheral surface of the second inner rotor 30 ′ via a back yoke 30b ′. The permanent magnet 30a ′ has a configuration of 32 poles, like the permanent magnet 21a ′ of the second outer rotor 21 ′, and has 16 magnetic poles each having N poles and S poles alternately. Accordingly, the second inner rotor 30 ′ is rotationally driven by the second stator 29 ′ in synchronization with the second outer rotor 21 ′.
[0293] 第 1内側ロータ 30'を回転自在に支持する軸受 33 'は、ラジアル、アキシアル、モー メント荷重を 1個の軸受で負荷できる 4点接触玉軸受である。この形式の軸受を用い ることにより、 1個の軸受で済むため、ダイレクトドライブモータ D2を薄型化できる。隔 壁 13の内部は大気環境であるため、一般的な軸受鋼と鉱油を基油としたグリス潤滑 を用 、た軸受を適用できる。 [0293] The bearing 33 'that rotatably supports the first inner rotor 30' is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing. Use this type of bearing Therefore, the direct drive motor D2 can be made thinner because only one bearing is required. Since the inside of the partition wall 13 is an atmospheric environment, it is possible to use a bearing using grease lubrication based on general bearing steel and mineral oil.
隔壁 13内部は大気環境であるため、永久磁石 30a'はバックヨーク 30b'に接着固 定してある。永久磁石 30a'はエネルギー積の高いネオジゥム(Nd— Fe— B)系磁石 であり、鲭による減磁を防ぐためにニッケルコーティングを施してある。ヨーク 30b'は 高い磁性を有する低炭素鋼を材料とし、加工成形後に防鲭のためにクロメートめつき を施している。  Since the inside of the partition wall 13 is an atmospheric environment, the permanent magnet 30a ′ is bonded and fixed to the back yoke 30b ′. The permanent magnet 30a 'is a neodymium (Nd-Fe-B) magnet with a high energy product and is coated with nickel to prevent demagnetization due to defects. Yoke 30b 'is made of low-carbon steel with high magnetism, and is chromated to prevent fouling after machining.
[0294] 第 2内側ロータ 30'の内周には、回転角度を計測する検出器として、レゾルバロー タ 34a'及び 34b'を組みつけており、それに対向する形で、レゾルバホルダ 32'の外 周に、レゾルノ ステータ 35' , 36'を取り付けている力 本実施の形態では、高分解 能のインクリメンタルレゾルバステータ 35,と、 1回転のいずれの位置にロータがある かを検出できるアブソリュートレゾルバステータ 36'とを 2層に配置している。このため 電源投入時にも、アブソリュートレゾルバロータ 34b'の回転角度がわかり、原点復帰 が不要であり、また、コイルに対する磁石の電気的位相角度がわ力るため、ダイレクト ドライブモータ D2の相対回転角度を、極検出センサを用いることなく可能となってい る。  [0294] The resolver rotors 34a 'and 34b' are assembled as detectors for measuring the rotation angle on the inner periphery of the second inner rotor 30 ', and the outer periphery of the resolver holder 32' is opposed to it. In this embodiment, the resolution of the resolver stator 35 ', 36' is high resolution incremental resolver stator 35, and the absolute resolver stator 36 'that can detect the position of the rotor in one rotation. Are arranged in two layers. For this reason, even when the power is turned on, the rotational angle of the absolute resolver rotor 34b 'can be known, no return to origin is required, and the electrical phase angle of the magnet with respect to the coil is different, so the relative rotational angle of the direct drive motor D2 is This is possible without using a pole detection sensor.
[0295] レゾルバホルダ 32'と第 2内側ロータ 30'は、モータの界磁およびモータコイルから の電磁ノイズが角度検出器であるレゾルバステータ 35' , 36'に伝達されないように、 磁性体である炭素鋼を材料とし、加工成型後に防鲭のためにクロメートめつきを施し ている。  [0295] The resolver holder 32 'and the second inner rotor 30' are magnetic bodies so that electromagnetic noise from the motor field and the motor coil is not transmitted to the resolver stators 35 'and 36' that are angle detectors. Carbon steel is used as a material, and chromate plating is applied after processing to prevent fouling.
本実施の形態によれば、第 2外側ロータ 21 'に対して、磁気カップリング作用により 第 2内側ロータ 30'が同速で回転し、すなわち連れ回るので、第 2外側ロータ 21 'の 回転角を隔壁 13越しに検出することができる。また、本実施の形態では、モータを形 成する部品ゃノ、ウジングを用いることなくレゾルバ単体で軸受 33を有しており、従つ てハウジングに組み込む前に、レゾルバ単体での偏芯調整ゃレゾルバコイルの位置 調整などの精度調整が行えるので、ハウジングゃ両フランジに調整用の穴や切り欠 きを別途設ける必要がない。又、第 2外側ロータ 21 'と回転自在に支持する軸受装置 19 'の回転輪を、加工精度が出しやすくかつ線膨張係数が軸受装置 19 'の駆動輪と 略同一であるロータヨーク 21b 'に嵌合することで、回転精度の向上と温度変化による 摩擦トルクの変動防止を図ることができる。 According to the present embodiment, the second inner rotor 30 ′ rotates at the same speed by the magnetic coupling action with respect to the second outer rotor 21 ′, that is, rotates with the rotation angle of the second outer rotor 21 ′. Can be detected through the partition wall 13. Further, in the present embodiment, the parts constituting the motor, the bearing 33 is provided as a single resolver without using uzing. Since it is possible to adjust the accuracy of the resolver coil position, etc., there is no need to provide adjustment holes or notches on both flanges of the housing. Also, a bearing device that rotatably supports the second outer rotor 21 ′ By fitting the 19 'rotating wheel to the rotor yoke 21b', which is easy to achieve machining accuracy and has the same linear expansion coefficient as the drive wheel of the bearing device 19 ', the rotational accuracy is improved and the friction torque due to temperature changes is reduced. It is possible to prevent fluctuations.
[0296] 本実施の形態に用いている高分解能の可変リラクタンス形レゾルバにおいて、イン タリメンタルレゾルバロータ 34a'は、一定のピッチを有する複数のスロット歯列を有し 、インクリメンタルレゾルバステータ 35,の外周面には、回転軸と平行に各磁極でイン タリメンタルレゾルバロータ 34a'に対して位相をずらした歯が設けられており、コイル が各磁極に卷回されている。第 2内側ロータ 30'と一体でインクリメンタルレゾルバ口 ータ 34a,が回転すると、インクリメンタルレゾルバステータ 35,の磁極との間のリラクタ ンスが変化し、インクリメンタルレゾルバロータ 34a,の 1回転でリラクタンス変化の基本 波成分が n周期となるようにして、そのリラクタンス変化を検出して、図 40に例を示す レゾルバ制御回路によりデジタルィ匕し、位置信号として利用することでインクリメンタ ルレゾルバロータ 34a'即ち第 2内側ロータ 30'の回転角度 (又は回転速度)を検出 するようになつている。レゾルバロータ 34a,、 34b,と、レゾルバステータ 35,, 36,と で検出器を構成する。 In the high-resolution variable reluctance resolver used in the present embodiment, the incremental resolver rotor 34a ′ has a plurality of slot tooth rows having a constant pitch, and the outer circumference of the incremental resolver stator 35. The surface is provided with teeth that are shifted in phase with respect to the incremental resolver rotor 34a ′ at each magnetic pole parallel to the rotation axis, and a coil is wound around each magnetic pole. When the incremental resolver port 34a rotates together with the second inner rotor 30 ', the reluctance between the magnetic poles of the incremental resolver stator 35 changes, and the basic reluctance change occurs with one rotation of the incremental resolver rotor 34a. The reluctance change is detected so that the wave component has n cycles, is digitalized by the resolver control circuit shown in FIG. 40, and is used as a position signal, so that the incremental resolver rotor 34a ' 2The rotation angle (or rotation speed) of the inner rotor 30 'is detected. The resolver rotors 34a, 34b and the resolver stators 35, 36 constitute a detector.
[0297] 本実施の形態によれば、第 1外側ロータ 21と第 2外側ロータ 21 'との間に、磁気シ 一ルド板 25, 41を配置することにより、相互の磁気的干渉を抑制し、誤駆動や連れ 周りなどの不具合を回避できる。又、本体 12においてダイレクトドライブモータ Dl, D 2の間を延在するフランジ部 12aの外周縁 12bは、磁性体である炭素鋼を材料とし、 第 1ステータ 29と第 2ステータ 29 'との間に介在し、それらが洩れ磁束の影響を受け ることで第 1外側ロータ 21又は第 2外側ロータ 21 'に誤った回転方向の推力を発生さ せな 、ように、互 、の磁界を遮蔽する磁気シールドとして機能する。  [0297] According to the present embodiment, the magnetic shield plates 25 and 41 are arranged between the first outer rotor 21 and the second outer rotor 21 'to suppress mutual magnetic interference. , Malfunctions such as erroneous driving and accompanying people can be avoided. In addition, the outer peripheral edge 12b of the flange portion 12a extending between the direct drive motors Dl and D2 in the main body 12 is made of carbon steel, which is a magnetic material, between the first stator 29 and the second stator 29 ′. In order to prevent the first outer rotor 21 or the second outer rotor 21 ′ from generating a thrust in the wrong rotation direction due to the influence of the leakage magnetic flux, the magnetic fields that shield each other's magnetic field are included. Functions as a shield.
[0298] 尚、フランジ部 12aを中心として第 1ステータ 29と第 2ステータ 29 'を上下に配置し、 その半径方向内側にレゾルバを配置している。また、本体 12は中空構造となってお り、フランジ部 12aには中央に連通する径方向の通し穴 12dが少なくとも 1つ設けてあ り、ここを介してモータ配線を本体 12の中央に引き出す構造となっている。一方、本 体 12の両端部にはそれぞれ少なくとも 1つの切り欠き 12e、 12eが設けてあり、これら を介してレゾルバの配線を本体 12の中央に引き出す構造となっている。このような構 造とすることで、ハウジング側から順に、ダイレクトモータ D1のレゾルノ 、ステータ 29 、ダイレクトモータ D2のステータ 29,、そのレゾルバの順で配置することが可能となり 、 2軸でありながら容易にステータとレゾルバの角度調整が行える。そこで、基準とな る外側ロータを回転駆動する設備を別に用意しておけば、その設備にステータとレゾ ルバを組み込んだ本体 12をセットすることにより、高精度にステータに対するレゾル バの角度調整ができるので、コンミテーシヨンずれによる角度位置決め精度の低下を 防ぎ、かつ、本発明の 2軸同軸モータに対する駆動制御回路の互換性を高めること ができる。 [0298] The first stator 29 and the second stator 29 'are arranged vertically with the flange portion 12a as the center, and the resolver is arranged radially inward thereof. The main body 12 has a hollow structure, and the flange portion 12a has at least one radial through hole 12d communicating with the center through which the motor wiring is drawn out to the center of the main body 12. It has a structure. On the other hand, at least one notch 12e, 12e is provided at each end of the main body 12, and the resolver wiring is drawn out to the center of the main body 12 through these. Such a structure In this way, it is possible to arrange the resolver of the direct motor D1, the stator 29, the stator 29 of the direct motor D2, and the resolver in this order from the housing side. Can be adjusted. Therefore, if a separate facility for rotationally driving the reference outer rotor is prepared, the angle of the resolver relative to the stator can be adjusted with high accuracy by setting the main body 12 incorporating the stator and resolver in the facility. Therefore, it is possible to prevent the angle positioning accuracy from being lowered due to the deviation of the commutation, and to improve the compatibility of the drive control circuit with the two-axis coaxial motor of the present invention.
[0299] 図 41は、ダイレクトドライブモータ Dl、 D2の駆動回路を示すブロック図である。外 部のコンピュータ力もモータ回転指令が入力されたとき、ダイレクトドライブモータ D1 用のモータ制御回路 DMC1及びダイレクトドライブモータ D2用のモータ制御回路 D MC2は、それぞれ、その CPUから 3層アンプ (AMP)に駆動信号を出力し、 3層アン プ (AMP)力もダイレクトドライブモータ Dl、 D2に駆動電流が供給される。それにより ダイレクトドライブモータ Dl、 D1の外側ロータ 21, 21 'が独立して回転し、アーム A1 , A2 (図 38)を移動させるようになつている。外側ロータ 21, 21 'が回転すると、上述 のようにして回転角度を検出したレゾルバステータ 35, 36, 35,、 36,からレゾルバ 信号が出力されるので、それをレゾルバデジタル変換器 (RDC)でデジタル変換した 後に入力した CPUは、外側ロータ 21, 21 'が指令位置に到達した力否かを判断し、 指令位置に到達すれば、 3層アンプ (AMP)への駆動信号を停止することで外側口 ータ 21, 21 'の回転を停止させる。これにより外側ロータ 21, 21 'のサーボ制御が可 能となる。  FIG. 41 is a block diagram showing a drive circuit for direct drive motors Dl and D2. When a motor rotation command is also input to the external computer force, the motor control circuit DMC1 for the direct drive motor D1 and the motor control circuit DMC2 for the direct drive motor D2 are each sent from the CPU to the three-layer amplifier (AMP). The drive signal is output, and the drive current is supplied to the direct drive motors Dl and D2 with a three-layer amplifier (AMP) force. As a result, the outer rotors 21 and 21 ′ of the direct drive motors Dl and D1 rotate independently to move the arms A1 and A2 (FIG. 38). When the outer rotor 21, 21 'rotates, the resolver signal is output from the resolver stator 35, 36, 35, 36, which has detected the rotation angle as described above, and is output to the resolver digital converter (RDC). The CPU input after digital conversion judges whether or not the outer rotor 21, 21 'has reached the command position, and when it reaches the command position, it stops the drive signal to the 3-layer amplifier (AMP). Stop rotation of outer ports 21, 21 '. This enables servo control of the outer rotors 21, 21 '.
[0300] 真空環境での複数軸のアーム駆動の際には、電源投入時に現在のアーム A1およ び A2の回転位置を認識しないと真空槽の壁や、真空槽のシャツタにアーム A1等を ぶっけてしまう可能性がある力 本実施の形態では、回転軸の 1回転の絶対位置を 検出するアブソリュートレゾルバステータ 36および 36'と、より分解能の細かい回転位 置を検出するインクリメンタルレゾルバステータ 35および 35,からなる可変リラクタンス 型レゾルバを採用しているので、外側ロータ 21、 21,即ちアーム Al, A2の回転位置 制御を高精度に行える。 [0301] 尚、ここでは内側ロータ 30の回転検出にレゾルバを採用した力 検出器を隔壁 13 の内部の大気側に配置できるため、一般に高精度位置決めに使用するサーボモー タにおいては高精度で滑らかに駆動するための位置検出手段として採用されている 光学式ェンコーダや、磁気抵抗素子を使用した磁気式ェンコ一ダ等も使用できる。 次に、本実施の形態に力かるモータシステムの分解態様につき説明する。図 42〜 図 45は、本実施の形態に力かるモータシステムの分解工程を示す断面図であり、図 46〜図 49は、本実施の形態にカゝかるモータシステムの分解工程を示す斜視図であ る。 [0300] When driving multiple axes in a vacuum environment, if the current rotation position of arms A1 and A2 is not recognized when the power is turned on, the arm A1 or the like is placed on the wall of the vacuum chamber or the shatter of the vacuum chamber. In this embodiment, the absolute resolver stators 36 and 36 'that detect the absolute position of one rotation of the rotating shaft, and the incremental resolver stator 35 and that detect a rotational position with finer resolution are used in this embodiment. 35, a variable reluctance resolver is used, so that the rotational position of the outer rotors 21 and 21, that is, the arms Al and A2, can be controlled with high accuracy. [0301] It should be noted that here a force detector that employs a resolver for detecting the rotation of the inner rotor 30 can be arranged on the atmosphere side inside the partition wall 13, so that a servo motor generally used for high-precision positioning is highly accurate and smooth. An optical encoder adopted as a position detecting means for driving, a magnetic encoder using a magnetoresistive element, or the like can also be used. Next, a disassembled aspect of the motor system that works according to the present embodiment will be described. 42 to 45 are cross-sectional views showing a disassembly process of the motor system that works according to the present embodiment, and FIGS. 46 to 49 are perspective views showing a disassembly process of the motor system that works according to the present embodiment. It is.
[0302] 本実施の形態に力かるモータシステムにおいて、ダイレクトドライブモータ D1の軸 受 19の点検又は交換が必要になったものとする。かかる場合、頭部が露出した六角 ボルト 18に工具 (不図示)を係合させて、これをゆるめる。すると図 42に示すように、 軸受ホルダ 17を円板 10から分離できるので、ダイレクトドライブモータ Dl, D2を一 体で上方へと引き抜くことができる(図 46参照)。ここで、隔壁 13と円板 10とは組み付 けられたままとなるため、その気密性は崩壊しておらず、再組付けのときにリークチェ ックなどを行う必要はな 、。  [0302] In the motor system according to the present embodiment, it is assumed that the bearing 19 of the direct drive motor D1 needs to be inspected or replaced. In such a case, a tool (not shown) is engaged with the hexagon bolt 18 with the exposed head to loosen it. Then, as shown in FIG. 42, since the bearing holder 17 can be separated from the disk 10, the direct drive motors Dl and D2 can be pulled upward together (see FIG. 46). Here, since the partition wall 13 and the disk 10 remain assembled, their airtightness has not collapsed, and it is not necessary to perform a leak check or the like when reassembling.
[0303] このとき、ダイレクトドライブモータ D1の下面が露出することとなるから、軸受 19の潤 滑状態等を点検できる。力かる点検によって、軸受 19が交換時期にきていると判断さ れた場合、軸受 19の交換が必要となる。  [0303] At this time, since the lower surface of the direct drive motor D1 is exposed, the lubrication state and the like of the bearing 19 can be inspected. If it is determined that the bearing 19 is about to be replaced by a strong inspection, the bearing 19 needs to be replaced.
軸受 19の交換を行う場合、図 43〖こ示すよう〖こ、ボルト 22をヨーク 21bから取り外す( 図 47参照)。すると、軸受 19の内輪を固定していた軸受抑え BHを分離できるので、 図 44に示すように、軸受ホルダ 17と一体で軸受 19を取り外すことができる(図 48参 照)。  When replacing the bearing 19, remove the bolt 22 from the yoke 21b as shown in Fig. 43 (see Fig. 47). Then, since the bearing restraint BH that has fixed the inner ring of the bearing 19 can be separated, the bearing 19 can be removed integrally with the bearing holder 17 as shown in FIG. 44 (see FIG. 48).
[0304] かかる状態で、ボルト 20を軸受ホルダ 17から取り外すと、軸受 19の外輪を固定し て 、た軸受抑え BHを分離できるので、軸受ホルダ 17から軸受 19を分離することが できる。組付けは、以上と逆の手順で行えばよい。  [0304] If the bolt 20 is removed from the bearing holder 17 in such a state, the outer ring of the bearing 19 can be fixed and the bearing restraint BH can be separated, so that the bearing 19 can be separated from the bearing holder 17. Assembly may be performed in the reverse order of the above.
尚、ダイレクトドライブモータ D2の軸受 19'の点検又は交換が必要になった場合に は、図 39において、ボルト 24'をヨーク 21b'から取り外せば、円筒状部材 23'を分離 できるようになる。このとき、軸受 19'が視認できるので、その潤滑状態等を点検でき る。 If it is necessary to inspect or replace the bearing 19 'of the direct drive motor D2, the cylindrical member 23' can be separated by removing the bolt 24 'from the yoke 21b' in FIG. At this time, since the bearing 19 'is visible, its lubrication state and the like can be inspected. The
[0305] 力かる点検によって、軸受 19'が交換時期にきていると判断された場合、ボルト 20' を円筒状部材 23から取り外すと、軸受 19'の外輪を固定していた軸受抑え BH'を分 離できるので、ヨーク 21b'と一体で軸受 19'を分離することができる。  [0305] If it is determined that the bearing 19 'is about to be replaced by vigorous inspection, removing the bolt 20' from the cylindrical member 23 will remove the bearing restraint BH 'that secured the outer ring of the bearing 19'. Therefore, the bearing 19 ′ can be separated integrally with the yoke 21b ′.
更に、ボルト 22'をヨーク 21b'力も取り外すと、軸受 19の内輪を固定していた軸受 抑え BH'を分離できるので、ヨーク 21b'から軸受 19'を分離することができる。組付 けは、以上と逆の手順で行えばよい。図 45, 12に、ダイレクトドライブモータ Dl, D2 を完全に分解した状態を示す。  Further, when the bolt 22 ′ is also removed from the yoke 21b ′, the bearing restraint BH ′ that has fixed the inner ring of the bearing 19 can be separated, so that the bearing 19 ′ can be separated from the yoke 21b ′. Assembly may be performed in the reverse order. Figures 45 and 12 show the direct drive motors Dl and D2 completely disassembled.
[0306] 本実施の形態によれば、ダイレクトドライブモータ D1の第 1外側ロータ 21と、ダイレ タトドライブモータ D2の第 2外側ロータ 21 'の最小内径力 隔壁 13の最大外径より大 きくなつており、又ダイレクトドライブモータ D1のヨーク 21bが軸受ホルダ 17を介して ボルト 18により円板 10に取り付けられており、更にダイレクトドライブモータ D1の円筒 状部材 23に、軸受 19'を介してダイレクトドライブモータ D2のヨーク 21b'が取り付け られているので、ボルト 18を取り外すことで、軸受ホルダ 17ごとダイレクトドライブモー タ Dl, D2を円板 10及び隔壁 13から分離でき、隔壁 13による気密構造を分解する 必要はなぐダイレクトドライブモータ D1のメンテナンス作業を容易に行うことができる  [0306] According to this embodiment, the minimum inner diameter force of the first outer rotor 21 of the direct drive motor D1 and the second outer rotor 21 'of the direct drive motor D2 is larger than the maximum outer diameter of the partition wall 13. In addition, the yoke 21b of the direct drive motor D1 is attached to the disk 10 by the bolt 18 via the bearing holder 17, and further, the direct drive motor D1 is connected to the cylindrical member 23 of the direct drive motor D1 via the bearing 19 '. Since the yoke 21b 'of D2 is installed, the direct drive motor Dl and D2 can be separated from the disk 10 and the bulkhead 13 together with the bearing holder 17 by removing the bolt 18, and the airtight structure of the bulkhead 13 must be disassembled. Easily perform maintenance work on the direct drive motor D1
[0307] 図 50は、本実施の形態の変形例に力かる 4軸同軸モータシステムを示す断面図で ある。図 50に示す変形例においては、ダイレクトドライブモータ Dl, D2を 2組 (合計 4 個)直接に配置してなる力 個々のダイレクトドライブモータに関しては、図 39に示す 構成と同様であるので、主要な部品に同じ符号を付して説明を省略する。 FIG. 50 is a cross-sectional view showing a four-axis coaxial motor system that works on a modification of the present embodiment. In the modified example shown in FIG. 50, the force formed by directly arranging two sets (four in total) of direct drive motors Dl and D2 The individual direct drive motors are the same as those shown in FIG. The same reference numerals are given to the parts, and the description is omitted.
本実施の形態においては、直列に連結した本体 12の上面に取り付けられた上部 円板部 110に、隔壁ホルダ 113aを O—リング ORを介して気密的に結合し、その外 周面に薄肉円筒 113bの上端を TIG溶接してなる。薄肉円筒 113bの下端は、上述 の実施の形態と同様にホルダ 15に TIG溶接されて 、る。隔壁ホルダ 113aと薄肉円 筒 113bとホルダ 15とで隔壁を構成する力 これは 4つのダイレクトドライブモータに 共通して用いられる。  In the present embodiment, a partition wall holder 113a is hermetically coupled to the upper disk part 110 attached to the upper surface of the main body 12 connected in series via an O-ring OR, and a thin cylinder is formed on the outer peripheral surface thereof. The upper end of 113b is TIG welded. The lower end of the thin-walled cylinder 113b is TIG welded to the holder 15 as in the above-described embodiment. The partition wall holder 113a, the thin cylinder 113b and the holder 15 constitute a partition wall. This is commonly used for the four direct drive motors.
[0308] 円板部 110の上面は、蓋部材 101により閉止され、その外周に取り付けられた軸受 ホルダ 107は、軸受 19を支持するようになっている。円板部 110,蓋部材 101,軸受 ホルダ 107は、耐食性が高いオーステナイト系ステンレスを材料としている。本体 12, 円板 10、上部円板部 110によりハウジングを構成する。 [0308] The upper surface of the disc portion 110 is closed by the lid member 101, and the bearing is attached to the outer periphery thereof. The holder 107 supports the bearing 19. The disc portion 110, the lid member 101, and the bearing holder 107 are made of austenitic stainless steel having high corrosion resistance. The main body 12, the disc 10, and the upper disc portion 110 constitute a housing.
下方のダイレクトドライブモータ Dl, D2において、大気外側部材である円板 10の 外周上面に、別体の軸受ホルダ 17がボルト 18により固定されている。第 1外側ロータ 21は、軸受ホルダ 17に対して軸受 19により支持されている。第 2外側ロータ 21 'は、 円筒状部材 23に対して軸受 19'により支持されている。  In the lower direct drive motors Dl and D2, a separate bearing holder 17 is fixed by bolts 18 on the outer peripheral upper surface of the disk 10 which is an atmospheric outer member. The first outer rotor 21 is supported by the bearing 19 with respect to the bearing holder 17. The second outer rotor 21 ′ is supported by the bearing 19 ′ with respect to the cylindrical member 23.
[0309] 一方、上方のダイレクトドライブモータ Dl, D2において、大気外側部材である上部 円板部 110の外周上面に、軸受ホルダ 107がボルト 118により固定されている。第 1 外側ロータ 21は、軸受ホルダ 17に対して軸受 19により支持されている。第 2外側口 ータ 21 'は、第 1外側ロータ 21に対して軸受 19'により支持されている。  [0309] On the other hand, in the upper direct drive motors Dl and D2, a bearing holder 107 is fixed by bolts 118 on the outer peripheral upper surface of the upper disc portion 110 that is an atmospheric outer member. The first outer rotor 21 is supported by the bearing 19 with respect to the bearing holder 17. The second outer port 21 ′ is supported by the bearing 19 ′ with respect to the first outer rotor 21.
ダイレクトドライブモータ D1の第 1外側ロータ 21と、ダイレクトドライブモータ D2の第 2外側ロータ 21 'の最小内径が、隔壁 13の最大外径より大きくなつており、また上部 円板部 110の、別体の軸受ホルダ 107の取り付け外周面は、薄肉円筒 113bより半 径方向内側に位置しており、従って、軸受ホルダ 107を上部円板部 110より取り外せ ば、上部の 2つの外側ロータ 21, 21,を、上部円板部 110を分解することなく上方に 抜き出し可能となっており、更に軸受ホルダ 17を円板 10より取り外せば、下部の 2つ の外側ロータ 21, 21 'も、上部円板部 110を分解することなく上方に抜き出すことが できる。従って、軸受の点検や交換などのメンテナンス時に、隔壁 13による気密構造 を分解する必要はなぐメンテナンス作業を容易にすることができる。  The minimum inner diameter of the first outer rotor 21 of the direct drive motor D1 and the second outer rotor 21 'of the direct drive motor D2 is larger than the maximum outer diameter of the partition wall 13, and the upper disk part 110 is separated. The mounting outer peripheral surface of the bearing holder 107 is located on the inner side in the radial direction from the thin cylinder 113b. Therefore, if the bearing holder 107 is removed from the upper disk part 110, the two outer rotors 21, 21 at the upper part are connected. The upper disk part 110 can be extracted upward without disassembling, and if the bearing holder 17 is further removed from the disk 10, the lower two outer rotors 21, 21 ' Can be extracted upward without disassembling. Therefore, it is possible to facilitate the maintenance work without the need to disassemble the airtight structure by the partition wall 13 during maintenance such as inspection and replacement of the bearing.
[0310] 本実施の形態においては、中央の第 2外側ロータ 21,、 21,との間に、磁気シール ド板 25' , 25'を配置しているので、相互の磁気的干渉を抑制し、誤駆動や連れ周り などの不具合を回避している。又、本体 12, 12の間には、その外周力も薄肉円筒 11 3bの内側まで半径方向に延在する磁気シールド板 125が配置されている。磁気シ 一ルド板 125は、磁性体である炭素鋼を材料とし、第 2ステータ 29'、 29'の間に介 在することによって、洩れ磁束の影響を受けて隣接する第 2外側ロータ 21 '、 21 'に 誤った回転方向の推力を発生させな 、ように、互 、の磁界を遮蔽する磁気シールド として機能する。このように、その他の磁気シールド 25, 41、 12bの効果と相まって、 4軸同軸でありながら全体の軸長を抑えた構成が可能である。 [0310] In the present embodiment, the magnetic shield plates 25 'and 25' are arranged between the second outer rotors 21 and 21 at the center, so that mutual magnetic interference is suppressed. This avoids malfunctions such as erroneous driving and companionship. Between the main bodies 12 and 12, a magnetic shield plate 125 whose outer peripheral force extends in the radial direction to the inside of the thin cylinder 113b is disposed. The magnetic shield plate 125 is made of carbon steel, which is a magnetic material, and is interposed between the second stators 29 ′ and 29 ′, so that the adjacent second outer rotor 21 ′ is affected by the leakage magnetic flux. , 21 'functions as a magnetic shield that shields the magnetic field of each other so as not to generate a thrust in the wrong rotation direction. In this way, coupled with the effects of other magnetic shields 25, 41, 12b, Although it is a 4-axis coaxial, it can be configured with a reduced overall axial length.
[0311] 図 51は、本実施の形態に力かる 4軸同軸モータシステムを用いたフロッグレツグァ ーム式搬送装置の斜視図である。図 51において、各ダイレクトドライブモータ D1の口 ータには、第 1アーム A1が連結され、第 1アーム A1の先端には第 1リンク L1が枢動 可能に連結されている。一方、各ダイレクトドライブモータ D2のロータには、第 2ァー ム A2が連結され、第 2アーム A2の先端には第 2リンク L2が枢動可能に連結されて ヽ る。リンク LI, L2は、ウェハ Wを載置するテーブル Tに、それぞれ枢動可能に連結さ れている。各テーブル Tは、それぞれ独立に移動する。  [0311] FIG. 51 is a perspective view of a frog-leg-game transport apparatus using a four-axis coaxial motor system that is effective in the present embodiment. In FIG. 51, the first arm A1 is connected to the port of each direct drive motor D1, and the first link L1 is pivotally connected to the tip of the first arm A1. On the other hand, the second arm A2 is connected to the rotor of each direct drive motor D2, and the second link L2 is pivotally connected to the tip of the second arm A2. The links LI and L2 are pivotally connected to a table T on which the wafer W is placed. Each table T moves independently.
[0312] 以上の実施の形態では、表面磁石型の 32極 36スロットアウターロータ式ブラシレス モータを用いた例を用いて説明した力 この形式のモータに限定されるものではなく [0312] In the above embodiment, the force described using the example using the surface magnet type 32-pole 36-slot outer rotor brushless motor is not limited to this type of motor.
、ブラシレスモータであれば適用できるものであり、他の磁極形式、例えば永久磁石 埋め込み型であっても良いし、他のスロットコンビネーションでも良いし、あるいはイン ナロータ型であっても良い。 また、各軸の干渉対策として、軸方向に隣接する軸同士の回転子の極数およびス ロット数が異なる構成としても良い。例えば、 2軸同軸の場合は、第一軸が 32極 36ス ロット、第二軸が 24極 27スロット、 4軸同軸の場合は、第一軸および第三軸が 32極 3 6スロット、第二軸および第四軸が 24極 27スロットといった構成にすれば、各軸の磁 界による回転子および磁気カップリング装置への回転方向の推力発生といった相互 干渉を防ぐことができる。 Any brushless motor can be used, and other magnetic pole types such as a permanent magnet embedded type, other slot combinations, or an inner rotor type may be used. Further, as a countermeasure against interference of each axis, a configuration may be adopted in which the number of rotor poles and the number of slots of adjacent axes in the axial direction are different. For example, in the case of 2-axis coaxial, the first axis is 32 poles and 36 slots, the second axis is 24 poles and 27 slots, and in the case of 4-axis coaxial, the first axis and the third axis are 32 poles and 3 6 slots. If the two axes and the fourth axis are configured with 24 poles and 27 slots, mutual interference such as generation of thrust in the rotational direction to the rotor and magnetic coupling device due to the magnetic field of each axis can be prevented.
[0313] また、ロータの永久磁石は、ネオジゥム (Nd— Fe— B)系磁石を用い、耐食性を高 めるためのコ一ティングとして、ニッケルコ一ティングを施した例を用 、て説明したが、 この材質、表面処理に限定されるものではなぐ使用される環境などによって適宜変 更されるものであり、例えばベータアウト時の温度条件によっては高温減磁しにくい サマリウム ·コバルト(Sm'Co)系の磁石を用いるべきであり、超真空中で使用される のであればアウトガス遮断性の高い窒化チタンコーティングを施すべきである。  [0313] The rotor permanent magnet is a neodymium (Nd-Fe-B) magnet, and nickel coating is used as an example of coating to improve corrosion resistance. This material is not limited to the surface treatment, but is changed as appropriate depending on the environment in which it is used. For example, samarium-cobalt (Sm'Co) is less susceptible to high-temperature demagnetization depending on the temperature conditions during beta-out. System magnets should be used, and if used in ultra-vacuum, a titanium nitride coating with a high outgas barrier should be applied.
[0314] また、ヨークは、低炭素鋼を材料とし、ニッケルめっきを施した例を用いて説明した 力 この材質、表面処理に限定されるものではなぐ使用される環境などによって適 宜変更されるものであり、特に表面処理に関しては、超真空中で使用されるのであれ ばピンホールの少ない力-ゼンめっきやクリーンエスめつき、窒化チタンコーティング 等を施すべきである。 [0314] In addition, the yoke is made of low-carbon steel and explained with an example of nickel plating. This material is not limited to the surface treatment and is appropriately changed depending on the environment used. If it is used in ultra-vacuum, especially for surface treatment For example, force with few pinholes-Zen plating, clean soldering, titanium nitride coating, etc. should be applied.
また、永久磁石をヨークに締結する方法は、非磁性のくさびをヨーク外径側からねじ で締め上げる例を用いて説明したが、使用される環境などによって適宜変更されるも のであり、環境によっては接着でも良いし、他の締結方法でも良い。  The method for fastening the permanent magnet to the yoke has been described using an example in which a non-magnetic wedge is tightened from the outer diameter side of the yoke with a screw, but it may be changed as appropriate depending on the environment in which it is used. May be bonded or other fastening methods.
[0315] また、軸受 19, 19'は真空用グリス潤滑の 4点接触玉軸受を用いた例を説明したが 、この形式、材質、潤滑方法に限定されるものではなぐ使用される環境、荷重条件、 回転速度などによって適宜変更されるものであり、クロスローラ軸受であっても良いし 、 4軸同軸モータの場合、さらに機械的な剛性を高めるために、別な軸受で支持する 構造としても良いし、高速回転する場合など、多点接触軸受を用いることができない 場合は各軸の回転子を支持する軸受および別な軸受を深溝玉軸受ゃアンギユラ軸 受として予圧をかける構造としても良いし、超真空中で使用される場合は、軌道輪に 金や銀などの軟質金属をプレーティングしたような、ガス放出のな 、金属潤滑とした ものを用いても良い。  [0315] In addition, bearings 19 and 19 'have been described using an example of grease grease lubrication for four-point contact ball bearings. However, this is not limited to this type, material, and lubrication method. It can be changed as appropriate depending on conditions, rotational speed, etc., and it can be a cross roller bearing. In the case of a 4-axis coaxial motor, it can be supported by another bearing to further increase mechanical rigidity. If a multi-point contact bearing cannot be used, such as when rotating at high speeds, a bearing that supports the rotor of each shaft and another bearing may be configured to apply preload as deep groove ball bearings or angular bearings. When used in an ultra-vacuum, it is possible to use a metal-lubricated material that does not emit gas, such as a metal ring plated with a soft metal such as gold or silver.
[0316] また、磁気カップリングとして機能する内側ロータとして、永久磁石とバックヨークを 用いた形式で説明したが、永久磁石とバックヨークの材質および形状はこれに限定さ れるものではない。例えば、レゾルバの質量と軸受の摩擦トルクによっては、外側ロー タと同極数でなくても良いし、同幅でなくても良い。永久磁石を用いない突極でも良 い。  [0316] Further, although the inner rotor functioning as a magnetic coupling has been described as a form using a permanent magnet and a back yoke, the material and shape of the permanent magnet and the back yoke are not limited thereto. For example, depending on the mass of the resolver and the friction torque of the bearing, the number of poles may not be the same as that of the outer rotor, or the width may not be the same. A salient pole that does not use a permanent magnet is also acceptable.
また、角度検出器としてレゾルバを用いた例で説明したが、製造コストや分解能に よって適宜変更されるものであり、例えば光学式のロータリエンコーダなどでも良い。  Further, although an example in which a resolver is used as an angle detector has been described, it can be appropriately changed depending on manufacturing cost and resolution, and for example, an optical rotary encoder may be used.
[0317] また、角度検出器の回転側を回転自在に支持する軸受 33, 33'として、グリス潤滑 の 4点接触玉軸受を用いた例を説明したが、この形式、潤滑方法に限定されるもので はなぐ設置スペースや摩擦トルク、回転速度などによって適宜変更されるものであり 、高速回転や摩擦トルクの低減など、多点接触軸受を用いることができない場合は、 アンギユラ軸受ゃ深溝玉軸受を各軸ごとに 2個配置して、予圧をかける構造としても 良い。 [0317] In addition, an example in which grease lubricated four-point contact ball bearings are used as the bearings 33 and 33 'that rotatably support the rotation side of the angle detector has been described, but this type and the lubrication method are limited. However, if the multi-point contact bearing cannot be used, such as high-speed rotation or reduction of friction torque, an anguilla bearing is a deep groove ball bearing. A structure may be used in which two are arranged for each axis to apply preload.
また、その他の隔壁の外、中に配置される構造部品および隔壁の材質、形状、製 造方法は、製造コストや使用される環境、荷重条件、構成などによって適宜変更され るものである。 In addition, the material, shape, and structure of the structural parts and bulkheads placed outside and inside the other bulkheads The manufacturing method is appropriately changed depending on the manufacturing cost, the environment in which it is used, the load conditions, the configuration, and the like.
[0318] 以上述べたモータシステムは、各軸のロータや、ステータや、レゾルバに用いた磁 気カップリング力も漏れる磁束によって、互いのロータや回転検出器に用いた磁気力 ップリングに回転方向の推力を発生させな 、ように、互 、の磁界を遮蔽するための磁 気シールドを各軸のロータ間に配設したり、各軸のロータ、ステータ、レゾルバ力 発 生する電磁界によって互 、のレゾルバに干渉しな 、ように、互 、の電磁界を遮蔽す るための磁気シールドを配設したり、軸方向に隣接する軸同士のロータの極数ゃス テータのスロット数を変えたりすることによって、各軸相互に発生する磁気的干渉を防 止しているので、各軸の軸方向長さと、各軸の軸方向距離を短くすることができる。よ つて、 2軸同軸、 4軸同軸といった多軸同軸モータシステムでありながら、全体の軸長 を抑えた構成が可能である。特に、 4軸同軸といった多軸構成のダイレクトドライブモ ータを用いたシステムにおいては、チャンバ構造を大きく変えることなく高精度な位置 決めが出来るフロッグレッダアーム式ロボットを 2台設置できるので、装置全体の性能 および稼働率を高めることができる。  [0318] In the motor system described above, the thrust in the rotational direction is applied to the magnetic force coupling used for each rotor and rotation detector by the magnetic flux that also leaks the magnetic coupling force used for the rotor, stator, and resolver of each axis. Thus, magnetic shields for shielding each other's magnetic field are arranged between the rotors of each axis, or the electromagnetic fields generated by the rotor, stator and resolver force of each axis In order not to interfere with the resolver, a magnetic shield is provided to shield each other's electromagnetic field, or the number of rotor poles and the number of stator slots in the axially adjacent axes are changed. As a result, magnetic interference generated between the axes is prevented, so that the axial length of each axis and the axial distance of each axis can be shortened. Therefore, although it is a multi-axis coaxial motor system such as 2-axis coaxial or 4-axis coaxial, a configuration in which the overall axial length is suppressed is possible. In particular, in a system using a multi-axis direct drive motor such as a 4-axis coaxial system, two frog redder arm robots that can be positioned with high accuracy without greatly changing the chamber structure can be installed. Performance and availability can be increased.
[0319] 以上、本発明を実施の形態を参照して説明してきたが、本発明は上記実施の形態 に限定して解釈されるべきではなぐ適宜変更 ·改良が可能であることはもちろんであ る。例えば、本実施の形態のダイレクトドライブモータは、真空雰囲気に限らず、大気 外の雰囲気で使用することができる。例えば、半導体製造工程の場合、真空排気後 に真空槽内部にエッチング用の反応性ガスが導入されることがあるが、本実施の形 態のダイレクトドライブモータでは、隔壁により内部と外部とが遮蔽されているため、モ ータコイルや絶縁材等がエッチングされてしまうおそれもない。  [0319] The present invention has been described above with reference to the embodiment. However, the present invention should not be construed as being limited to the above embodiment, and can be appropriately changed or improved. The For example, the direct drive motor of the present embodiment can be used not only in a vacuum atmosphere but also in an atmosphere outside the atmosphere. For example, in the case of a semiconductor manufacturing process, reactive gas for etching may be introduced into the vacuum chamber after evacuation, but in the direct drive motor of this embodiment, the inside and outside are shielded by the partition walls. Therefore, there is no possibility that the motor coil or the insulating material will be etched.
〔第 7の実施の形態〕  [Seventh embodiment]
次に、本発明の実施の形態を図面を参照して説明する。図 52は、本実施の形態に 力かるダイレクトドライブモータを用いたフロッグレッダアーム式搬送装置の斜視図で ある。図 52において、 2つのダイレクトドライブモータ Dl、 D2を直列に連結している。 下方のダイレクトドライブモータ D1のロータには、第 1アーム A1が連結され、第 1ァー ム A1の先端には第 1リンク L1が枢動可能に連結されている。一方、上方のダイレクト ドライブモータ D2のロータには、第 2アーム A2が連結され、第 2アーム A2の先端に は第 2リンク L2が枢動可能に連結されている。リンク LI, L2は、ウェハ Wを載置する テーブル Tに、それぞれ枢動可能に連結されている。 Next, embodiments of the present invention will be described with reference to the drawings. FIG. 52 is a perspective view of a frog redder arm type conveyance device using a direct drive motor that works in the present embodiment. In FIG. 52, two direct drive motors Dl and D2 are connected in series. The first arm A1 is connected to the rotor of the lower direct drive motor D1, and the first link L1 is pivotally connected to the tip of the first arm A1. On the other hand, the upper direct The second arm A2 is connected to the rotor of the drive motor D2, and the second link L2 is pivotally connected to the tip of the second arm A2. The links LI and L2 are pivotally connected to a table T on which the wafer W is placed.
[0320] 図 52より明らかである力 ダイレクトドライブモータ Dl、 D2のロータがそれぞれ同方 向に回転すれば、テーブル Tも同方向に回転し、力かるロータが逆方向に回転すれ ば、テーブル Tは、ダイレクトドライブモータ Dl、 D2に接近もしくは離隔するようにな つている。従って、ダイレクトドライブモータ Dl、 D2を任意の角度で回転させれば、テ 一ブル Tが届く範囲内で、任意の 2次元位置にウェハ Wを搬送させることができる。 このように例えば半導体製造装置における真空槽内に配置されるウェハ搬送ァー ム、例えばスカラ型や図に示すフロッグレッダ型のように複数のアームを備えた装置 では、特に複数の回転モータが必要となる。真空環境では外界との接触表面積を極 力小さくすると同時に、スペースを有効に活用するためにモータ等の取付穴はなるベ く少なくする必要がある。また、ウェハ Wを水平にまっすぐに、振動を極力少なくして 搬送するためには、アームの先端に作用するモーメントをロータ支持部で強固に保 持する必要がある。そこで、ダイレクトドライブモータ Dl、 D2を複数、ハウジング部分 で同軸に連結し、連結部分はシールで密に接合 (溶接、 Oリング、金属ガスケット、等 による密な接合)して、モータロータの配設された空間とハウジング外部空間とを離隔 することち必要となる。 [0320] Force apparent from Fig. 52 If the rotors of the direct drive motors Dl and D2 rotate in the same direction, the table T also rotates in the same direction, and if the powerful rotor rotates in the opposite direction, the table T The direct drive motors Dl and D2 are approaching or separating from each other. Therefore, if the direct drive motors Dl and D2 are rotated at an arbitrary angle, the wafer W can be transferred to an arbitrary two-dimensional position within a range where the table T can reach. Thus, for example, a wafer transfer arm placed in a vacuum chamber in a semiconductor manufacturing apparatus, for example, a device having a plurality of arms such as a scalar type or a frog redder type shown in the figure, particularly requires a plurality of rotary motors. It becomes. In a vacuum environment, the contact surface area with the outside world should be minimized, and at the same time, the number of mounting holes for motors, etc. should be minimized to make effective use of space. In addition, in order to transport the wafer W horizontally and with minimal vibration, it is necessary to firmly hold the moment acting on the tip of the arm with the rotor support. Therefore, a plurality of direct drive motors Dl and D2 are connected coaxially at the housing part, and the connection part is tightly joined with a seal (tightly joined by welding, O-ring, metal gasket, etc.), and the motor rotor is arranged. It is necessary to separate the open space from the housing external space.
[0321] また、ウェハ Wを水平にまっすぐ、振動を少なく搬送するためにはアーム Al、 A2の 先端に作用するモーメントを、ロータ支持部で強固に保持する必要がある。更に、又 、真空環境での複数軸のアーム駆動の際には、電源投入時に現在のアームの回転 位置を認識しないと真空槽の壁や、真空槽のシャツタにアーム Al, A2等をぶつけて しまう可能性がある。このような要求に応じることができるダイレクトドライブモータを同 軸に連結したモータシステムについて説明する。  [0321] In addition, in order to transport wafer W horizontally and with little vibration, the moment acting on the tips of arms Al and A2 must be firmly held by the rotor support. In addition, when driving multiple axes in a vacuum environment, if the current rotation position of the arm is not recognized when the power is turned on, the arm Al, A2, etc. will be hit against the wall of the vacuum chamber or the shatter of the vacuum chamber. There is a possibility. A motor system in which a direct drive motor capable of meeting such requirements is connected to the same shaft will be described.
[0322] 本実施の形態は、表面磁石型の 32極 36スロットアウターロータ式ブラシレスタイプ のダイレクトドライブモータを用いる。 32極 36スロットというスロットコンビネーションは 、コギンダカは小さいが径方向に磁気吸引力が発生し回転時の振動は大きいことが 一般的に知られている 8極 9スロットというスロットコンビネーションの 4倍の構成である 。 2n倍 (nは整数)にしたことにより、径方向の磁気吸引力は相殺されるので、固定子 と回転子の真円度や同軸度および機構部品の剛性を高めることなく回転時の振動を 小さくでき、かつ、本来的にコギングが小さい構成であるので、非常に滑らかな回転 が得られる。一方、このような非常に多極なモータとすることにより、機械角の周期に 対する電気角の周期が多いので、位置決め制御性が良い。よって、本発明の如ぐ 減速器を用いずにロボット装置を駆動するようなダイレクトドライブモータには好適で ある。また、総磁束量を下げることなく固定子連結部の肉厚と突極幅、および回転子 のヨーク肉厚を狭くできるので、本発明の如ぐ薄型かつ大径幅狭のダイレクトドライ ブモータには好適である。 [0322] This embodiment uses a surface magnet type 32-pole 36-slot outer rotor brushless type direct drive motor. The slot combination of 32 poles and 36 slots is generally known to have a large magnetic attraction force in the radial direction and a large vibration during rotation, although the cogging is small. is there . 2 n times (n is an integer) cancels out the magnetic attractive force in the radial direction. Therefore, vibration during rotation can be achieved without increasing the roundness and coaxiality of the stator and rotor and the rigidity of the mechanical parts. Can be made small and cogging is inherently small, so that a very smooth rotation can be obtained. On the other hand, by using such a very multi-pole motor, the electrical angle cycle is greater than the mechanical angle cycle, so positioning controllability is good. Therefore, it is suitable for a direct drive motor that drives a robot apparatus without using a speed reducer as in the present invention. In addition, since the thickness and salient pole width of the stator connecting portion and the yoke thickness of the rotor can be reduced without lowering the total magnetic flux, the direct drive motor having a thin and large diameter and narrow width as in the present invention is used. Is preferred.
[0323] 図 53は、図 52の構成を Π-Π線で切断して矢印方向に見た図である。図 53を参照し て、 2軸のモータシステムの内部構造について詳細に説明する。まず、ダイレクトドラ イブモータ D1について説明する。定盤 Gに据え付けた円板 10の中央開口 10aに嵌 合しボルト 11により相互に固定された中空円筒状の本体 12は、その上端にカップ状 の隔壁 13を取り付けている。本体 12の中央は、ステータへの配線などを通すために 用いることができる。本体 12, 円板 10によりハウジングを構成する。  FIG. 53 is a view of the configuration of FIG. 52 taken along the Π-Π line and viewed in the direction of the arrow. With reference to FIG. 53, the internal structure of the two-axis motor system will be described in detail. First, the direct drive motor D1 will be described. A hollow cylindrical main body 12 fitted in the central opening 10a of the disk 10 installed on the surface plate G and fixed to each other by bolts 11 has a cup-shaped partition wall 13 attached to the upper end thereof. The center of the main body 12 can be used to pass wiring to the stator. The main body 12 and the disk 10 constitute a housing.
[0324] 隔壁 13は、非磁性体であるステンレス製であり、本体 12に嵌合される肉厚の底部 1 3aと、その周縁から軸線方向にダイレクトドライブモータ Dl、 D2を貫くようにして延在 する薄肉の円筒部 13bと、ホルダ 15とからなる。従って、隔壁 13は、ダイレクトドライ ブモータ Dl、 D2に共通に用いられる。円筒部 13bの下端は、 TIG溶接にて封止可 能にホルダ 15に接合され、ホルダ 15は、円板 10にボルト 16により固定されている。 ここで、円筒部 13bとホルダ 15の溶接部を略同一厚さとすることにより、片側への部 品にのみ熱が逃げることを抑制し、嵌合部を均一に溶接できる構造となっている。ホ ルダ 15と円板 10の接触面には、シール部材を填め込む溝力卩ェが施してあり、シー ル部材 ORを溝に填め込んだ後にホルダ 15と円板 10をボルト 16により締結すること により、締結部分を大気側力 分離隔絶している。隔壁 13は耐食性が高ぐ特に磁 性の少ないオーステナイト系ステンレスの SUS316を材料としており、ホルダ 15は隔 壁 13との溶接性から同じく SUS316を材料としている。  [0324] The partition wall 13 is made of stainless steel, which is a non-magnetic material. The partition wall 13 extends from the peripheral edge of the wall 13 through the direct drive motors Dl and D2 in the axial direction. It consists of an existing thin cylindrical portion 13 b and a holder 15. Therefore, the partition wall 13 is commonly used for the direct drive motors Dl and D2. The lower end of the cylindrical portion 13b is joined to a holder 15 so as to be sealed by TIG welding, and the holder 15 is fixed to the disc 10 with bolts 16. Here, by setting the welded portion of the cylindrical portion 13b and the holder 15 to substantially the same thickness, it is possible to suppress heat from escaping only to the component on one side and to weld the fitting portion uniformly. The contact surface between the holder 15 and the disc 10 is provided with a groove force that fits the seal member. After the seal member OR is fitted into the groove, the holder 15 and the disc 10 are fastened by the bolt 16. As a result, the fastening part is isolated from the atmospheric force. The partition wall 13 is made of austenitic stainless steel SUS316, which has high corrosion resistance, and is particularly magnetic. The holder 15 is also made of SUS316 because of its weldability with the partition wall 13.
[0325] 更に、隔壁 13とホルダ 15とは気密的に接合され、且つホルダ 15と円板 10、及び円 板 10と定盤 Gとは、それぞれ O—リング ORによって気密されている。従って、円板 10 と、隔壁 13とで囲われる内部空間は、その外部力も気密されている。尚、隔壁 13は 必ずしも非磁性体である必要はない。又、 O—リング ORを用いて気密する代わりに、 電子ビーム溶接やレーザビーム溶接などで部材間を気密してもも良い。 [0325] Furthermore, the partition wall 13 and the holder 15 are hermetically bonded, and the holder 15, the disk 10, and the circle. The plate 10 and the surface plate G are hermetically sealed by O-ring OR. Therefore, the internal space surrounded by the disk 10 and the partition wall 13 is hermetically sealed. The partition wall 13 is not necessarily made of a nonmagnetic material. Further, instead of using an O-ring OR, the members may be hermetically sealed by electron beam welding or laser beam welding.
円板 10の外周上面において、軸受ホルダ 17がボルト 18により固定されている。軸 受ホルダ 17には、真空中で用 、られる 4点接触式玉軸受 19の外輪が嵌合的に取り 付けられ、ボルト 20により固定されている。一方、軸受 19の内輪は、第 1外側ロータ 2 1の外周に嵌合し、ボルト 22により固定されている。すなわち、第 1外側ロータ 21は、 隔壁 13に対して回転自在に支持されており、またアーム A1 (図 52)を支持する円筒 状部材 23を、ボルト 24によって固定している。ここで、ボルト 24は、半径方向内方に 延在する磁気シールド板 25を、円筒状部材 23に共締めしている。  A bearing holder 17 is fixed with bolts 18 on the outer peripheral upper surface of the disk 10. The bearing holder 17 is fitted with an outer ring of a four-point contact ball bearing 19 that is used in a vacuum, and is fixed by bolts 20. On the other hand, the inner ring of the bearing 19 is fitted to the outer periphery of the first outer rotor 21 and is fixed by bolts 22. That is, the first outer rotor 21 is rotatably supported with respect to the partition wall 13, and a cylindrical member 23 that supports the arm A1 (FIG. 52) is fixed by the bolt 24. Here, the bolt 24 fastens the magnetic shield plate 25 extending inward in the radial direction together with the cylindrical member 23.
[0326] 円板 10および軸受ホルダ 17は、耐食性が高いオーステナイト系ステンレスを材料 としており、円板 10は、チャンバである定盤 Gとの嵌合固定およびシール装置を兼ね ており、その下面に、 O—リング ORを填め込む溝 10bが設けられている。 [0326] The disc 10 and the bearing holder 17 are made of austenitic stainless steel, which has high corrosion resistance. The disc 10 also serves as a fitting and fixing device with the surface plate G, which is a chamber, on the bottom surface. A groove 10b is provided to fill the O-ring OR.
磁気シールド板 25は、磁性体である SPCC鋼板をプレス成型加工後に、防鲭およ び耐食性を高めるためにニッケルめっきを施している。その効果については後述する 軸受 19は、ラジアル、アキシアル、モーメント荷重を 1個の軸受で負荷できる 4点接 触玉軸受である。この形式の軸受を用いることにより、ダイレクトドライブモータ D1の 軸受は 1個で済むため、本発明の 2軸同軸モータシステムを薄型化できる。軸受 19 は、内外輪とも耐食性が高くかつ焼入れによる硬化が得られるマルテンサイト系ステ ンレスを材料とし。転動体はセラミックボール、潤滑剤は真空であっても固化しない真 空用のグリスを用いている。  The magnetic shield plate 25 is subjected to nickel plating in order to enhance the anti-corrosion and corrosion resistance after press-forming the SPCC steel plate, which is a magnetic material. The effect of the bearing 19, which will be described later, is a four-point contact ball bearing that can apply radial, axial, and moment loads with a single bearing. By using this type of bearing, only one bearing for the direct drive motor D1 is required, so the two-axis coaxial motor system of the present invention can be made thinner. The bearing 19 is made of martensite stainless steel, which has high corrosion resistance for both the inner and outer rings and can be hardened by quenching. The rolling elements are ceramic balls, and the lubricant is vacuum grease that does not solidify even under vacuum.
[0327] 尚、軸受 19は内輪と外輪に金や銀などの軟質金属をプレーティングして、真空中 でもアウトガス放出のな 、金属潤滑としたものを用いてもよく、また 4点接触式玉軸受 であるので、アーム A1からの第 1外側ロータ 21がチルトする方向のモーメントを受け ることができるが、 4点接触式に限らず、クロスローラ、クロスボール、クロステーパ軸 受も用いることができ、予圧状態で用いても良いし、潤滑性向上のためフッ素系被膜 処理(DFO)を行っても良!ヽ。 [0327] The bearing 19 may be made of metal lubricated by plating a soft metal such as gold or silver on the inner ring and the outer ring so as not to release outgas even in vacuum, or a four-point contact ball. Because it is a bearing, it can receive a moment in the direction in which the first outer rotor 21 tilts from the arm A1, but it is not limited to the four-point contact type, and cross rollers, cross balls, and cross taper bearings can also be used. Yes, it can be used in a pre-loaded state, or a fluorine-based coating to improve lubricity Processing (DFO) may be performed!ヽ.
[0328] 第 1外側ロータ 21は、永久磁石 21aと、磁路を形成するため磁性体から成る円環状 のヨーク 21bと、永久磁石 21aとヨーク 21bを機械的に締結するための非磁性体から なるくさび (不図示)によって構成されている。永久磁石 21aは、 32極の構成で N極、 S極の磁石が各 16個交互に磁性金属からなり、極ごとに分割されたセグメント形式で あり、その個々の形状は扇形である。内径と外径の円弧中心は同一であるが、円周 方向端面の接線交点を永久磁石 21a寄りとすることで、くさびをヨーク 21b外径側か らねじで締め上げることにより永久磁石 21aをヨーク 21bに締結している。このような 構成とすることにより、接着剤など、アウトガスを発生する固定部材を用いることなく永 久磁石を締結できる。永久磁石 21aはエネルギー積の高いネオジゥム(Nd—Fe— B )系磁石であり、耐食性を高めるためにニッケルコーティングを施してある。ヨーク 21b は高い磁性を有する低炭素鋼を材料とし、加工成型後に、防鲭および耐食性を高め 、かつ軸受交換時の磨耗を防ぐためにニッケルめっきを施している。  [0328] The first outer rotor 21 includes a permanent magnet 21a, an annular yoke 21b made of a magnetic material to form a magnetic path, and a non-magnetic material for mechanically fastening the permanent magnet 21a and the yoke 21b. It consists of a wedge (not shown). Permanent magnet 21a has a configuration of 32 poles, each of which has 16 poles of N poles and S poles made of magnetic metal alternately, and is divided into segments. Each of the permanent magnets 21a has a sector shape. The inner and outer diameter arc centers are the same, but the tangent intersection of the circumferential end face is closer to the permanent magnet 21a, so that the wedge is tightened from the outer diameter side of the yoke 21b by screwing the permanent magnet 21a to the yoke. Signed to 21b. With this configuration, the permanent magnet can be fastened without using a fixing member that generates outgas, such as an adhesive. The permanent magnet 21a is a neodymium (Nd—Fe—B) based magnet having a high energy product, and is coated with nickel to enhance corrosion resistance. The yoke 21b is made of a low-carbon steel having high magnetism, and is plated with nickel to improve wear resistance and corrosion resistance and prevent wear during bearing replacement after processing and molding.
[0329] また、第 1外側ロータ 21は、軸受 19の内輪と円筒状部材 23を嵌合固定する面を有 している。 4点接触玉軸受 19は非常に薄肉の軸受であり、組みつけられる部材の精 度や線膨張係数の差異により回転精度や摩擦トルクが大きな影響を受ける。よって 本実施の形態の場合は、回転輪である軸受 19の内輪を、加工精度を出しやすくか つ線膨張係数が軸受の軌道輪材質と略同一であるヨーク 21bに締まり嵌めあるいは 中間嵌めとし、固定輪である軸受 19の外輪を、オーステナイト系ステンレス製の軸受 ホルダやアルミニウム製のボスにすきま嵌めとすることで、軸受 19の回転精度の低下 や温度上昇による摩擦トルクの上昇を防ぐ構成となっている。  [0329] The first outer rotor 21 has a surface for fitting and fixing the inner ring of the bearing 19 and the cylindrical member 23. The four-point contact ball bearing 19 is a very thin bearing, and its rotational accuracy and friction torque are greatly affected by differences in accuracy and linear expansion coefficient of the assembled parts. Therefore, in the case of the present embodiment, the inner ring of the bearing 19 which is a rotating ring is an interference fit or an intermediate fit to the yoke 21b which is easy to obtain processing accuracy and whose linear expansion coefficient is substantially the same as the bearing ring material of the bearing. The outer ring of the bearing 19, which is a fixed ring, is fitted to the austenitic stainless steel bearing holder or aluminum boss to prevent the bearing 19 from rotating and the friction torque from increasing due to temperature rise. ing.
[0330] 隔壁 13の半径方向内側において、第 1外側ロータ 21の内周面に対向するようにし て、第 1ステータ 29が配置されている。第 1ステータ 29は、本体 12の中央で半径方 向に延在したフランジ部 12aの円筒状に変形した下部に取り付けられており、電磁鋼 板の積層材で形成され、各突極には絶縁処理としてボビンを嵌め込んだ後にモータ コイルが集中巻されている。第 1ステータ 29の外径は隔壁 13の内径と略同一もしくは 小さい寸法としている。  [0330] A first stator 29 is disposed on the inner side in the radial direction of the partition wall 13 so as to face the inner peripheral surface of the first outer rotor 21. The first stator 29 is attached to a cylindrically deformed lower portion of a flange portion 12a extending in the radial direction at the center of the main body 12. The first stator 29 is formed of a laminated material of electromagnetic steel plates and is insulated from each salient pole. As a process, the motor coil is concentrated after the bobbin is fitted. The outer diameter of the first stator 29 is approximately the same as or smaller than the inner diameter of the partition wall 13.
[0331] 第 1ステータ 29の半径方向内側に、第 1内側ロータ 30が配置されている。第 1内側 ロータ 30は、本体 12の外周面にボルト固定されたレゾルバホルダ 32に対して、玉軸 受 33により回転自在に支持されている。第 1内側ロータ 30の外周面には、ノ ックョー ク 30bを介して永久磁石 30aが取り付けられている。永久磁石 30aは、第 1外側ロー タ 21の永久磁石 21aと同様に 32極の構成で N極、 S極の磁石が各 16個交互に磁性 金属からなっている。従って、第 1内側ロータ 30は、第 1ステータ 29によって駆動され る第 1外側ロータ 21に同期して連れ回されるようになつている。 [0331] The first inner rotor 30 is disposed on the radially inner side of the first stator 29. 1st inside The rotor 30 is rotatably supported by a ball bearing 33 with respect to a resolver holder 32 that is bolted to the outer peripheral surface of the main body 12. A permanent magnet 30a is attached to the outer peripheral surface of the first inner rotor 30 via a knock 30b. The permanent magnet 30a is composed of 32 poles in the same manner as the permanent magnet 21a of the first outer rotor 21, and 16 magnets of N poles and S poles are alternately made of magnetic metal. Accordingly, the first inner rotor 30 is rotated in synchronism with the first outer rotor 21 driven by the first stator 29.
[0332] 第 1内側ロータ 30を回転自在に支持する軸受 33は、ラジアル、アキシアル、モーメ ント荷重を 1個の軸受で負荷できる 4点接触玉軸受である。この形式の軸受を用いる ことにより、 1個の軸受で済むため、ダイレクトドライブモータ D1を薄型化できる。隔壁 13の内部は大気環境であるため、一般的な軸受鋼と鉱油を基油としたグリス潤滑を 用いた軸受を適用できる。 [0332] The bearing 33 that rotatably supports the first inner rotor 30 is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing. By using this type of bearing, it is possible to reduce the thickness of the direct drive motor D1 because only one bearing is required. Since the interior of the partition wall 13 is an atmospheric environment, a bearing using grease lubrication based on general bearing steel and mineral oil can be applied.
隔壁 13内部は大気環境であるため、永久磁石 30aはバックヨーク 30bに接着固定 してある。永久磁石 30aはエネルギー積の高いネオジゥム(Nd— Fe— B)系磁石で あり、鲭による減磁を防ぐためにニッケルコーティングを施してある。ヨーク 30bは高い 磁性を有する低炭素鋼を材料とし、加工成形後に防鲭のためにクロメートめつきを施 している。  Since the inside of the partition wall 13 is an atmospheric environment, the permanent magnet 30a is bonded and fixed to the back yoke 30b. Permanent magnet 30a is a high energy product neodymium (Nd-Fe-B) magnet with nickel coating to prevent demagnetization due to defects. The yoke 30b is made of low-carbon steel with high magnetism, and is chromated to prevent fouling after machining.
[0333] 第 1内側ロータ 30の内周には、回転角度を計測する検出器として、レゾルバロータ 34a及び 34bを組みつけており、それに対向する形で、レゾルバホルダ 32の外周に 、レゾルバステータ 35, 36を取り付けている力 本実施の形態では、高分解能のイン タリメンタルレゾルバステータ 35と、 1回転のいずれの位置にロータがあるかを検出で きるアブソリュートレゾルバステータ 36とを 2層に配置して!/、る。このため電源投入時 にも、アブソリュートレゾルバロータ 34bの回転角度がわかり、原点復帰が不要であり 、また、コイルに対する磁石の電気的位相角度がゎカゝるため、ダイレクトドライブモー タ D1の駆動電流制御に使用する回転角度検出が、極検出センサを用いることなく可 能となっている。  [0333] Resolver rotors 34a and 34b are assembled as detectors for measuring the rotation angle on the inner periphery of the first inner rotor 30, and the resolver stator 35 is disposed on the outer periphery of the resolver holder 32 so as to be opposed thereto. In this embodiment, the high-resolution incremental resolver stator 35 and the absolute resolver stator 36 that can detect the position of the rotor in one rotation are arranged in two layers. /! For this reason, even when the power is turned on, the rotational angle of the absolute resolver rotor 34b is known, no return to origin is required, and the electrical phase angle of the magnet with respect to the coil increases, so the drive current of the direct drive motor D1 The rotation angle used for control can be detected without using a pole detection sensor.
[0334] レゾルバホルダ 32と第 1内側ロータ 30は、モータの界磁およびモータコイルからの 電磁ノイズが角度検出器であるレゾルバステータ 35, 36に伝達されないように、磁性 体である炭素鋼を材料とし、加工成型後に防鲭のためにクロメートめつきを施してい る。 [0334] The resolver holder 32 and the first inner rotor 30 are made of carbon steel, which is a magnetic material, so that electromagnetic noise from the motor field and motor coil is not transmitted to the resolver stators 35, 36 that are angle detectors. In addition, after processing and molding, it has been chromated to prevent fouling. The
本実施の形態に用いて 、る高分解能の可変リラクタンス形レゾルバにぉ 、て、イン タリメンタルレゾルバロータ 34aは、一定のピッチを有する複数のスロット歯列を有し、 インクリメンタルレゾルバステータ 35の外周面には、回転軸と平行に各磁極でインクリ メンタルレゾルバロータ 34aに対して位相をずらした歯が設けられており、コイルが各 磁極に卷回されている。第 1内側ロータ 30と一体でインクリメンタルレゾルバロータ 34 aが回転すると、インクリメンタルレゾルバステータ 35の磁極との間のリラクタンスが変 化し、インクリメンタルレゾルバロータ 34aの 1回転でリラクタンス変化の基本波成分が n周期となるようにして、そのリラクタンス変化を検出して、図 54に例を示すレゾルバ 制御回路によりデジタルィ匕し、位置信号として利用することでインクリメンタルレゾル ノ ロータ 34a即ち第 1内側ロータ 30の回転角度 (又は回転速度)を検出するようにな つている。レゾルバロータ 34a、 34bと、レゾルバステータ 35, 36とで検出器を構成す る。  The high-resolution variable reluctance resolver used in the present embodiment has an incremental resolver rotor 34a having a plurality of slot teeth having a constant pitch, and the outer peripheral surface of the incremental resolver stator 35. Are provided with teeth shifted in phase with respect to the incremental resolver rotor 34a at each magnetic pole parallel to the rotation axis, and a coil is wound around each magnetic pole. When the incremental resolver rotor 34a rotates together with the first inner rotor 30, the reluctance between the incremental resolver stator 35 and the magnetic pole changes, and the fundamental wave component of the change in reluctance becomes n cycles in one revolution of the incremental resolver rotor 34a. Thus, the change in reluctance is detected, digitalized by the resolver control circuit shown in FIG. 54, and used as a position signal, so that the rotational angle of the incremental resolver rotor 34a, that is, the first inner rotor 30 is (Or rotation speed) is detected. The resolver rotors 34a and 34b and the resolver stators 35 and 36 constitute a detector.
[0335] 本実施の形態によれば、第 1外側ロータ 21に対して、磁気カップリング作用により 第 1内側ロータ 30が同速で回転し、すなわち連れ回るので、第 1外側ロータ 21の回 転角を隔壁 13越しに検出することができる。また、本実施の形態では、モータを形成 する部品ゃノ、ウジングを用いることなくレゾルバ単体で軸受 33を有しており、従って ハウジングに組み込む前に、レゾルバ単体での偏芯調整ゃレゾルバコイルの位置調 整などの精度調整が行えるので、ハウジングゃ両フランジに調整用の穴や切り欠きを 別途設ける必要がない。又、第 1外側ロータ 21と回転自在に支持する軸受装置 19の 回転輪を、加工精度が出しやすくかつ線膨張係数が軸受装置 19の駆動輪と略同一 であるロータヨーク 21bに嵌合することで、回転精度の向上と温度変化による摩擦ト ルクの変動防止を図ることができる。  [0335] According to the present embodiment, the first inner rotor 30 rotates at the same speed by the magnetic coupling action with respect to the first outer rotor 21, that is, rotates with the first outer rotor 21, so that the first outer rotor 21 rotates. The corner can be detected through the bulkhead 13. Further, in the present embodiment, the resolver alone has the bearing 33 without using the parts forming the motor and the uzing, and therefore, the eccentricity adjustment with the resolver alone is performed before the resolver coil is assembled into the housing. Since accuracy adjustment such as position adjustment can be performed, there is no need to provide adjustment holes or notches on both flanges of the housing. In addition, the rotating wheel of the bearing device 19 that is rotatably supported by the first outer rotor 21 is fitted into a rotor yoke 21b that is easy to obtain machining accuracy and has the same linear expansion coefficient as the driving wheel of the bearing device 19. In addition, the rotation accuracy can be improved and the friction torque can be prevented from changing due to temperature changes.
[0336] 次に、ダイレクトドライブモータ D2について説明する力 ここでは本体 12がハウジン グを構成する。上述したダイレクトドライブモータ D1の円筒状部材 23は、ダイレクトド ライブモータ D2に重合する位置まで上方に延在しており、その内周面に、真空中で 用いられる 4点接触式玉軸受 19 'の外輪が嵌合的に取り付けられ、ボルト 20'により 固定されている。一方、軸受 19 'の内輪は、第 2外側ロータ 21 'の外周に嵌合し、ボ ルト 22'により固定されている。ここで、ボルト 22'、半径方向内方に延在する磁気シ 一ルド板 41を共締めしている。第 2外側ロータ 21 'は、隔壁 13に対して回転自在に 支持されており、またアーム A2 (図 52)を支持するリング状部材 23'を、ボルト 24'に よって固定している。更に、ボルト 24'は、半径方向内方に延在する磁気シールド板 25,を、リング状部材 23'に共締めしている。 Next, the force for explaining the direct drive motor D2 Here, the main body 12 constitutes a housing. The above-described cylindrical member 23 of the direct drive motor D1 extends upward to a position where it overlaps with the direct drive motor D2, and has a four-point contact ball bearing 19 ′ used in vacuum on its inner peripheral surface. The outer ring is fitted and fitted with bolts 20 '. On the other hand, the inner ring of the bearing 19 ′ is fitted to the outer periphery of the second outer rotor 21 ′, It is fixed by the bolt 22 '. Here, the bolt 22 'and the magnetic shield plate 41 extending inward in the radial direction are fastened together. The second outer rotor 21 ′ is rotatably supported with respect to the partition wall 13, and a ring-shaped member 23 ′ that supports the arm A2 (FIG. 52) is fixed by a bolt 24 ′. Further, the bolt 24 'fastens the magnetic shield plate 25 extending inward in the radial direction together with the ring-shaped member 23'.
[0337] 磁気シールド板 41, 25 'は、磁性体である SPCC鋼板をプレス成型カ卩ェ後に、防 鲭および耐食性を高めるためにニッケルめっきを施している。磁気シールド板 41, 2 5,は、第 1外側ロータ 21及び第 2外側ロータ 21,の間に介在して磁気的シールドを 形成し、それらからの磁束漏れによるお互いの連れ回しを防止している。即ち、磁気 シールド板 25'は、非磁性体であるリング状部材 23'挟んでヨーク 21b'に締結してお り、それにより不要な磁気回路を生成することを防いでいる。この磁気シールド板 41, 25,により、ロータ相互の磁気干渉を防ぐことができるので、 2軸同軸モータシステム でありながら全体の軸長を抑えた構成が可能である。磁気シールド板 41は外部から の異物吸引を防止している。  [0337] The magnetic shield plates 41 and 25 'are subjected to nickel plating in order to enhance the anti-corrosion and corrosion resistance after press molding the SPCC steel plate, which is a magnetic material. The magnetic shield plates 41 and 25 are interposed between the first outer rotor 21 and the second outer rotor 21 to form a magnetic shield and prevent mutual rotation due to magnetic flux leakage from them. . That is, the magnetic shield plate 25 ′ is fastened to the yoke 21b ′ with the ring-shaped member 23 ′, which is a non-magnetic material, interposed therebetween, thereby preventing unnecessary magnetic circuits from being generated. Since the magnetic shield plates 41 and 25 can prevent magnetic interference between the rotors, it is possible to achieve a configuration in which the overall shaft length is suppressed while being a biaxial coaxial motor system. The magnetic shield plate 41 prevents foreign matter from being attracted from the outside.
[0338] 軸受 19'は、ラジアル、アキシアル、モーメント荷重を 1個の軸受で負荷できる 4点 接触玉軸受である。この形式の軸受を用いることにより、ダイレクトドライブモータ D2 の軸受は 1個で済むため、本発明の 2軸同軸モータを薄型化できる。内外輪とも耐食 性が高くかつ焼入れによる硬化が得られるマルテンサイト系ステンレスを材料とし。転 動体はセラミックボール、潤滑剤は真空であっても固化しない真空用のグリスを用い ている。  [0338] The bearing 19 'is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing. By using this type of bearing, since the direct drive motor D2 requires only one bearing, the biaxial coaxial motor of the present invention can be made thinner. The inner and outer rings are made of martensitic stainless steel, which has high corrosion resistance and can be hardened by quenching. The rolling elements are ceramic balls, and the lubricant is vacuum grease that does not solidify even under vacuum.
尚、軸受 19'は内輪と外輪に金や銀などの軟質金属をプレーティングして、真空中 でもアウトガス放出のな 、金属潤滑としたものを用いてもよく、また 4点接触式玉軸受 であるので、アーム A1からの第 1外側ロータ 21,がチルトする方向のモーメントを受 けることができるが、 4点接触式に限らず、クロスローラ、クロスボール、クロステーパ軸 受も用いることができ、予圧状態で用いても良いし、潤滑性向上のためフッ素系被膜 処理(DFO)を行っても良!ヽ。  The bearing 19 'may be made of a metal lubrication that is plated with a soft metal such as gold or silver on the inner ring and the outer ring and does not release outgas even in vacuum, or a four-point contact ball bearing. As a result, it is possible to receive a moment in the direction in which the first outer rotor 21 from the arm A1 tilts. However, not only a four-point contact type, but also a cross roller, a cross ball, and a cross taper bearing can be used. It can be used under preload conditions, or it can be treated with fluorine coating (DFO) to improve lubricity!ヽ.
[0339] 第 2外側ロータ 21 'は、永久磁石 21a'と、磁路を形成するため磁性体から成る円環 状のヨーク 21b'と、永久磁石 21a'とヨーク 21b'を機械的に締結するための非磁性 体力ゝらなるくさび (不図示)によって構成されている。永久磁石 21a'は、 32極の構成 で N極、 S極の磁石が各 16個交互に磁性金属からなり、極ごとに分割されたセグメン ト形式であり、その個々の形状は扇形である。内径と外径の円弧中心は同一である 力 円周方向端面の接線交点を永久磁石 21a'寄りとすることで、くさびをヨーク 21b ' 外径側からねじで締め上げることにより永久磁石 21a'をヨーク 21b 'に締結している。 このような構成とすることにより、接着剤など、アウトガスを発生する固定部材を用いる ことなく永久磁石を締結できる。永久磁石 21a'はエネルギー積の高いネオジゥム(N d-Fe-B)系磁石であり、耐食性を高めるためにニッケルコーティングを施してある 。ヨーク 21b 'は高い磁性を有する低炭素鋼を材料とし、加工成型後に、防鲭および 耐食性を高め、かつ軸受交換時の磨耗を防ぐためにニッケルめっきを施して ヽる。 [0339] The second outer rotor 21 'mechanically fastens the permanent magnet 21a', the annular yoke 21b 'made of a magnetic material to form a magnetic path, and the permanent magnet 21a' and the yoke 21b '. Non-magnetic for It is composed of a wedge (not shown) that is physically strong. Permanent magnet 21a 'is a segment type with a configuration of 32 poles, with 16 N-pole and S-pole magnets alternately made of magnetic metal and divided into poles, each of which has a sector shape. The center of the arc of the inner and outer diameters is the same force.By making the tangential intersection of the circumferential end faces closer to the permanent magnet 21a ', the wedge 21a' is tightened with a screw from the outer diameter side to tighten the permanent magnet 21a '. It is fastened to York 21b '. With such a configuration, the permanent magnet can be fastened without using a fixing member that generates outgas, such as an adhesive. Permanent magnet 21a 'is a high energy product neodymium (Nd-Fe-B) based magnet, which is coated with nickel to enhance corrosion resistance. Yoke 21b 'is made of low-carbon steel with high magnetic properties, and is plated with nickel to improve wear resistance and corrosion resistance after machining and to prevent wear during bearing replacement.
[0340] また、第 2外側ロータ 21 'は、軸受 19 'の内輪とリング状部材 23 'を嵌合固定する面 を有している。 4点接触玉軸受 19 'は非常に薄肉の軸受であり、組みつけられる部材 の精度や線膨張係数の差異により回転精度や摩擦トルクが大きな影響を受ける。よ つて本実施の形態の場合は、軸受 19 'の内輪を、加工精度を出しやすくかつ線膨張 係数が軸受の軌道輪材質と略同一であるヨーク 21bに締まり嵌めあるいは中間嵌め とし、軸受 19,の外輪を、オーステナイト系ステンレス製の軸受ホルダやアルミニウム 製のボスにすきま嵌めとすることで、軸受 19 'の回転精度の低下や温度上昇による摩 擦トルクの上昇を防ぐ構成となって 、る。  [0340] Further, the second outer rotor 21 'has a surface for fitting and fixing the inner ring of the bearing 19' and the ring-shaped member 23 '. The four-point contact ball bearing 19 'is a very thin bearing, and its rotational accuracy and friction torque are greatly affected by differences in the accuracy and linear expansion coefficient of the assembled parts. Therefore, in the case of the present embodiment, the inner ring of the bearing 19 ′ is tightly fitted or intermediately fitted to the yoke 21b, which is easy to obtain machining accuracy and has the same linear expansion coefficient as the bearing ring material of the bearing. The outer ring is made into a clearance fit with an austenitic stainless steel bearing holder or an aluminum boss, thereby preventing a decrease in rotational accuracy of the bearing 19 ′ and an increase in friction torque due to a temperature rise.
[0341] 隔壁 13の半径方向内側において、第 2外側ロータ 21 'の内周面に対向するように して、第 2ステータ 29 'が配置されている。第 2ステータ 29 'は、本体 12の中央で半径 方向に延在したフランジ部 12aの円筒状に変形した上部に取り付けられており、電磁 鋼板の積層材で形成され、各突極には絶縁処理としてボビンを嵌め込んだ後にモー タコイルが集中巻されている。第 2ステータ 29 'の外径は隔壁 13の内径と略同一もし くは小さい寸法としている。  [0341] On the radially inner side of the partition wall 13, a second stator 29 'is disposed so as to face the inner peripheral surface of the second outer rotor 21'. The second stator 29 ′ is attached to the upper part of the flange 12 a that extends in the radial direction in the center of the main body 12, and is formed of a laminated material of electromagnetic steel sheets, and each salient pole is insulated. As shown, the motor coil is concentrated after the bobbin is fitted. The outer diameter of the second stator 29 ′ is approximately the same as or smaller than the inner diameter of the partition wall 13.
[0342] 第 2ステータ 29 'の半径方向内側に、第 2内側ロータ 30'が配置されている。第 2内 側ロータ 30'は、本体 12の外周面にボルト固定されたレゾルバホルダ 32'に対して、 玉軸受 33 'により回転自在に支持されている。第 2内側ロータ 30'の外周面には、バ ックヨーク 30b 'を介して永久磁石 30a'が取り付けられている。永久磁石 30a'は、第 2外側ロータ 21 'の永久磁石 21a'と同様に 32極の構成で N極、 S極の磁石が各 16 個交互に磁性金属力もなつている。従って、第 2内側ロータ 30'は、第 2ステータ 29' によって第 2外側ロータ 21 'に同期して回転駆動されるようになっている。 [0342] A second inner rotor 30 'is arranged inside the second stator 29' in the radial direction. The second inner rotor 30 ′ is rotatably supported by a ball bearing 33 ′ with respect to a resolver holder 32 ′ bolted to the outer peripheral surface of the main body 12. A permanent magnet 30a ′ is attached to the outer peripheral surface of the second inner rotor 30 ′ via a back yoke 30b ′. Permanent magnet 30a ' 2 As with the permanent magnet 21a 'of the outer rotor 21', it has a 32-pole configuration, and each of the 16 N-pole and S-pole magnets has a magnetic metal force alternately. Accordingly, the second inner rotor 30 ′ is rotationally driven by the second stator 29 ′ in synchronization with the second outer rotor 21 ′.
[0343] 第 1内側ロータ 30'を回転自在に支持する軸受 33'は、ラジアル、アキシアル、モー メント荷重を 1個の軸受で負荷できる 4点接触玉軸受である。この形式の軸受を用い ることにより、 1個の軸受で済むため、ダイレクトドライブモータ D2を薄型化できる。隔 壁 13の内部は大気環境であるため、一般的な軸受鋼と鉱油を基油としたグリス潤滑 を用 、た軸受を適用できる。 [0343] The bearing 33 'that rotatably supports the first inner rotor 30' is a four-point contact ball bearing that can load radial, axial, and moment loads with a single bearing. By using this type of bearing, only one bearing is required, so the direct drive motor D2 can be made thinner. Since the inside of the partition wall 13 is an atmospheric environment, a bearing using grease lubrication based on general bearing steel and mineral oil can be applied.
隔壁 13内部は大気環境であるため、永久磁石 30a'はバックヨーク 30b'に接着固 定してある。永久磁石 30a'はエネルギー積の高いネオジゥム(Nd— Fe— B)系磁石 であり、鲭による減磁を防ぐためにニッケルコーティングを施してある。ヨーク 30b'は 高い磁性を有する低炭素鋼を材料とし、加工成形後に防鲭のためにクロメートめつき を施している。  Since the inside of the partition wall 13 is an atmospheric environment, the permanent magnet 30a ′ is bonded and fixed to the back yoke 30b ′. The permanent magnet 30a 'is a neodymium (Nd-Fe-B) magnet with a high energy product and is coated with nickel to prevent demagnetization due to defects. Yoke 30b 'is made of low-carbon steel with high magnetism, and is chromated to prevent fouling after machining.
[0344] 第 2内側ロータ 30'の内周には、回転角度を計測する検出器として、レゾルバロー タ 34a'及び 34b'を組みつけており、それに対向する形で、レゾルバホルダ 32'の外 周に、レゾルノ ステータ 35' , 36'を取り付けている力 本実施の形態では、高分解 能のインクリメンタルレゾルバステータ 35,と、 1回転のいずれの位置にロータがある かを検出できるアブソリュートレゾルバステータ 36'とを 2層に配置している。このため 電源投入時にも、アブソリュートレゾルバロータ 34b'の回転角度がわかり、原点復帰 が不要であり、また、コイルに対する磁石の電気的位相角度がわ力るため、ダイレクト ドライブモータ D2の相対回転角度を、極検出センサを用いることなく可能となってい る。  [0344] The resolver rotors 34a 'and 34b' are assembled as detectors for measuring the rotation angle on the inner periphery of the second inner rotor 30 ', and the outer periphery of the resolver holder 32' is opposed to it. In this embodiment, the resolution of the resolver stator 35 ', 36' is high resolution incremental resolver stator 35, and the absolute resolver stator 36 'that can detect the position of the rotor in one rotation. Are arranged in two layers. For this reason, even when the power is turned on, the rotational angle of the absolute resolver rotor 34b 'can be known, no return to origin is required, and the electrical phase angle of the magnet with respect to the coil is different, so the relative rotational angle of the direct drive motor D2 is This is possible without using a pole detection sensor.
[0345] レゾルバホルダ 32,と第 2内側ロータ 30,は、モータの界磁およびモータコイルから の電磁ノイズが角度検出器であるレゾルバステータ 35' , 36'に伝達されないように、 磁性体である炭素鋼を材料とし、加工成型後に防鲭のためにクロメートめつきを施し ている。  [0345] The resolver holder 32 and the second inner rotor 30 are magnetic bodies so that electromagnetic noise from the motor field and the motor coil is not transmitted to the resolver stators 35 'and 36' that are angle detectors. Carbon steel is used as a material, and chromate plating is applied after processing to prevent fouling.
本実施の形態によれば、第 2外側ロータ 21 'に対して、磁気カップリング作用により 第 2内側ロータ 30'が同速で回転し、すなわち連れ回るので、第 2外側ロータ 21 'の 回転角を隔壁 13越しに検出することができる。また、本実施の形態では、モータを形 成する部品ゃノ、ウジングを用いることなくレゾルバ単体で軸受 33を有しており、従つ てハウジングに組み込む前に、レゾルバ単体での偏芯調整ゃレゾルバコイルの位置 調整などの精度調整が行えるので、ハウジングゃ両フランジに調整用の穴や切り欠 きを別途設ける必要がない。又、第 2外側ロータ 21 'と回転自在に支持する軸受装置 19 'の回転輪を、加工精度が出しやすくかつ線膨張係数が軸受装置 19 'の駆動輪と 略同一であるロータヨーク 21b 'に嵌合することで、回転精度の向上と温度変化による 摩擦トルクの変動防止を図ることができる。 According to the present embodiment, the second inner rotor 30 'rotates at the same speed by the magnetic coupling action with respect to the second outer rotor 21'. The rotation angle can be detected through the partition wall 13. Further, in the present embodiment, the parts constituting the motor, the bearing 33 is provided as a single resolver without using uzing. Since it is possible to adjust the accuracy of the resolver coil position, etc., there is no need to provide adjustment holes or notches on both flanges of the housing. In addition, the rotating wheel of the bearing device 19 ′ that is rotatably supported by the second outer rotor 21 ′ is fitted to the rotor yoke 21 b ′, which is easy to obtain machining accuracy and whose linear expansion coefficient is substantially the same as the driving wheel of the bearing device 19 ′. By combining them, it is possible to improve the rotation accuracy and prevent the friction torque from fluctuating due to temperature changes.
[0346] 本実施の形態に用いている高分解能の可変リラクタンス形レゾルバにおいて、イン タリメンタルレゾルバロータ 34a'は、一定のピッチを有する複数のスロット歯列を有し 、インクリメンタルレゾルバステータ 35,の外周面には、回転軸と平行に各磁極でイン タリメンタルレゾルバロータ 34a'に対して位相をずらした歯が設けられており、コイル が各磁極に卷回されている。第 2内側ロータ 30'と一体でインクリメンタルレゾルバ口 ータ 34a,が回転すると、インクリメンタルレゾルバステータ 35,の磁極との間のリラクタ ンスが変化し、インクリメンタルレゾルバロータ 34a,の 1回転でリラクタンス変化の基本 波成分が n周期となるようにして、そのリラクタンス変化を検出して、図 54に例を示す レゾルバ制御回路によりデジタルィ匕し、位置信号として利用することでインクリメンタ ルレゾルバロータ 34a'即ち第 2内側ロータ 30'の回転角度 (又は回転速度)を検出 するようになつている。レゾルバロータ 34a,、 34b,と、レゾルバステータ 35,, 36,と で検出器を構成する。 In the high-resolution variable reluctance resolver used in the present embodiment, the incremental resolver rotor 34a ′ has a plurality of slot tooth rows having a constant pitch, and the outer circumference of the incremental resolver stator 35. The surface is provided with teeth that are shifted in phase with respect to the incremental resolver rotor 34a ′ at each magnetic pole parallel to the rotation axis, and a coil is wound around each magnetic pole. When the incremental resolver port 34a rotates together with the second inner rotor 30 ', the reluctance between the magnetic poles of the incremental resolver stator 35 changes, and the basic reluctance change occurs with one rotation of the incremental resolver rotor 34a. The reluctance change is detected so that the wave component has n cycles, is digitalized by the resolver control circuit shown in FIG. 54, and is used as a position signal, so that the incremental resolver rotor 34a ′, that is, the first 2The rotation angle (or rotation speed) of the inner rotor 30 'is detected. The resolver rotors 34a, 34b and the resolver stators 35, 36 constitute a detector.
[0347] 本実施の形態によれば、第 1外側ロータ 21と第 2外側ロータ 21 'との間に、磁気シ 一ルド板 25, 41を配置しているので、相互の磁気的干渉を抑制し、誤駆動や連れ周 りなどの不具合を回避している。又、本体 12においてダイレクトドライブモータ Dl, D 2の間を延在するフランジ部 12aの外周縁 12bは、磁性体である炭素鋼を材料とし、 第 1ステータ 29と第 2ステータ 29 'との間に介在し、それらが洩れ磁束の影響を受け ることで第 1外側ロータ 21又は第 2外側ロータ 21 'に誤った回転方向の推力を発生さ せな 、ように、互 、の磁界を遮蔽する磁気シールドとして機能する。  [0347] According to the present embodiment, the magnetic shield plates 25 and 41 are arranged between the first outer rotor 21 and the second outer rotor 21 ', thereby suppressing mutual magnetic interference. However, it avoids malfunctions such as erroneous driving and rotation. In addition, the outer peripheral edge 12b of the flange portion 12a extending between the direct drive motors Dl and D2 in the main body 12 is made of carbon steel, which is a magnetic material, between the first stator 29 and the second stator 29 ′. In order to prevent the first outer rotor 21 or the second outer rotor 21 ′ from generating a thrust in the wrong rotation direction due to the influence of the leakage magnetic flux, the magnetic fields that shield each other's magnetic field are included. Functions as a shield.
[0348] 尚、フランジ部 12aを中心として第 1ステータ 29と第 2ステータ 29 'を上下に配置し、 その半径方向内側にレゾルバを配置している。また、本体 12は中空構造となってお り、フランジ部 12aには中央に連通する径方向の通し穴 12dが少なくとも 1つ設けてあ り、ここを介してモータ配線を本体 12の中央に引き出す構造となっている。一方、本 体 12の両端部にはそれぞれ少なくとも 1つの切り欠き 12e、 12eが設けてあり、これら を介してレゾルバの配線を本体 12の中央に引き出す構造となっている。このような構 造とすることで、ハウジング側から順に、ダイレクトモータ D1のレゾルノ 、ステータ 29 、ダイレクトモータ D2のステータ 29,、そのレゾルバの順で配置することが可能となり 、 2軸でありながら容易にステータとレゾルバの角度調整が行える。そこで、基準とな る外側ロータを回転駆動する設備を別に用意しておけば、その設備にステータとレゾ ルバを組み込んだ本体 12をセットすることにより、高精度にステータに対するレゾル バの角度調整ができるので、コンミテーシヨンずれによる角度位置決め精度の低下を 防ぎ、かつ、本発明の 2軸同軸モータに対する駆動制御回路の互換性を高めること ができる。 [0348] The first stator 29 and the second stator 29 'are vertically arranged around the flange portion 12a. A resolver is arranged on the radially inner side. The main body 12 has a hollow structure, and the flange portion 12a has at least one radial through hole 12d communicating with the center through which the motor wiring is drawn out to the center of the main body 12. It has a structure. On the other hand, at least one notch 12e, 12e is provided at each end of the main body 12, and the resolver wiring is drawn out to the center of the main body 12 through these. With this structure, the direct motor D1 resolver, the stator 29, the direct motor D2 stator 29, and the resolver can be arranged in this order from the housing side. In addition, the angle of the stator and resolver can be adjusted. Therefore, if a separate facility for rotationally driving the reference outer rotor is prepared, the angle of the resolver relative to the stator can be adjusted with high accuracy by setting the main body 12 incorporating the stator and resolver in the facility. Therefore, it is possible to prevent the angle positioning accuracy from being lowered due to the deviation of the commutation, and to improve the compatibility of the drive control circuit with the two-axis coaxial motor of the present invention.
[0349] 図 55は、ダイレクトドライブモータ Dl、 D2の駆動回路を示すブロック図である。外 部のコンピュータ力もモータ回転指令が入力されたとき、ダイレクトドライブモータ D1 用のモータ制御回路 DMC1及びダイレクトドライブモータ D2用のモータ制御回路 D MC2は、それぞれ、その CPUから 3層アンプ (AMP)に駆動信号を出力し、 3層アン プ (AMP)力もダイレクトドライブモータ Dl、 D2に駆動電流が供給される。それにより ダイレクトドライブモータ Dl、 D1の外側ロータ 21, 21 'が独立して回転し、アーム A1 , A2 (図 52)を移動させるようになつている。外側ロータ 21, 21 'が回転すると、上述 のようにして回転角度を検出したレゾルバステータ 35, 36, 35,、 36,からレゾルバ 信号が出力されるので、それをレゾルバデジタル変換器 (RDC)でデジタル変換した 後に入力した CPUは、外側ロータ 21, 21 'が指令位置に到達した力否かを判断し、 指令位置に到達すれば、 3層アンプ (AMP)への駆動信号を停止することで外側口 ータ 21, 21 'の回転を停止させる。これにより外側ロータ 21, 21 'のサーボ制御が可 能となる。  FIG. 55 is a block diagram showing a drive circuit for the direct drive motors Dl and D2. When a motor rotation command is also input to the external computer force, the motor control circuit DMC1 for the direct drive motor D1 and the motor control circuit DMC2 for the direct drive motor D2 are each sent from the CPU to the three-layer amplifier (AMP). The drive signal is output, and the drive current is supplied to the direct drive motors Dl and D2 with a three-layer amplifier (AMP) force. As a result, the outer rotors 21, 21 'of the direct drive motors Dl, D1 rotate independently to move the arms A1, A2 (Fig. 52). When the outer rotor 21, 21 'rotates, the resolver signal is output from the resolver stator 35, 36, 35, 36, which has detected the rotation angle as described above, and is output to the resolver digital converter (RDC). The CPU input after digital conversion judges whether or not the outer rotor 21, 21 'has reached the command position, and when it reaches the command position, it stops the drive signal to the 3-layer amplifier (AMP). Stop rotation of outer ports 21, 21 '. This enables servo control of the outer rotors 21, 21 '.
[0350] 真空環境での複数軸のアーム駆動の際には、電源投入時に現在のアーム A1およ び A2の回転位置を認識しないと真空槽の壁や、真空槽のシャツタにアーム A1等を ぶっけてしまう可能性がある力 本実施の形態では、回転軸の 1回転の絶対位置を 検出するアブソリュートレゾルバステータ 36および 36'と、より分解能の細かい回転位 置を検出するインクリメンタルレゾルバステータ 35および 35,からなる可変リラクタンス 型レゾルバを採用しているので、外側ロータ 21、 21,即ちアーム Al, A2の回転位置 制御を高精度に行える。 [0350] When driving multiple axes in a vacuum environment, if the current rotation position of arms A1 and A2 is not recognized when the power is turned on, the arm A1 or the like is attached to the wall of the vacuum chamber or the shatter of the vacuum chamber. In this embodiment, the absolute resolver stators 36 and 36 'that detect the absolute position of one rotation of the rotating shaft, and the incremental resolver stator 35 and that detect a rotational position with finer resolution are used in this embodiment. 35, a variable reluctance resolver is used, so that the rotational position of the outer rotors 21 and 21, that is, the arms Al and A2, can be controlled with high accuracy.
[0351] 尚、ここでは内側ロータ 30の回転検出にレゾルバを採用した力 検出器を隔壁 13 の内部の大気側に配置できるため、一般に高精度位置決めに使用するサーボモー タにおいては高精度で滑らかに駆動するための位置検出手段として採用されている 光学式ェンコーダや、磁気抵抗素子を使用した磁気式ェンコ一ダ等も使用できる。 図 56は、本実施の形態の変形例に力かる 4軸同軸モータシステムを示す断面図で ある。 [0351] Here, since a force detector that employs a resolver for detecting the rotation of the inner rotor 30 can be disposed on the atmosphere side inside the partition wall 13, in general, a servo motor used for high-accuracy positioning is highly accurate and smooth. An optical encoder adopted as a position detecting means for driving, a magnetic encoder using a magnetoresistive element, or the like can also be used. FIG. 56 is a cross-sectional view showing a four-axis coaxial motor system that works on a modification of the present embodiment.
図 56に示す変形例においては、ダイレクトドライブモータ Dl, D2を 2組 (合計 4個) 直接に配置してなる力 個々のダイレクトドライブモータに関しては、図 53に示す構 成と同様であるので、主要な部品に同じ符号を付して説明を省略する。  In the modification shown in FIG. 56, two sets of direct drive motors Dl and D2 (4 in total) are directly arranged. The individual direct drive motors have the same configuration as shown in FIG. The same reference numerals are given to the main parts, and the description is omitted.
[0352] 本実施の形態においては、直列に連結した本体 12の上面に取り付けられた上部 円板部 110に、隔壁ホルダ 113aを O—リング ORを介して気密的に結合し、その外 周面に薄肉円筒 113bの上端を TIG溶接してなる。薄肉円筒 113bの下端は、上述 の実施の形態と同様にホルダ 15に TIG溶接されて 、る。隔壁ホルダ 113aと薄肉円 筒 113bとホルダ 15とで隔壁を構成する力 これは 4つのダイレクトドライブモータに 共通して用いられる。 In the present embodiment, partition wall holder 113a is airtightly coupled to upper disk portion 110 attached to the upper surface of main body 12 connected in series via O-ring OR, and the outer peripheral surface thereof. The upper end of thin cylinder 113b is TIG welded. The lower end of the thin-walled cylinder 113b is TIG welded to the holder 15 as in the above-described embodiment. The partition wall holder 113a, the thin cylinder 113b and the holder 15 constitute a partition wall. This is commonly used for the four direct drive motors.
[0353] 円板部 110の上面は、蓋部材 101により閉止され、その外周に取り付けられた軸受 ホルダ 107は、軸受 19を支持するようになっている。円板部 110,蓋部材 101,軸受 ホルダ 107は、耐食性が高!、オーステナイト系ステンレスを材料として!/、る。  [0353] The upper surface of the disc part 110 is closed by the lid member 101, and the bearing holder 107 attached to the outer periphery thereof supports the bearing 19. The disk part 110, the lid member 101, and the bearing holder 107 have high corrosion resistance! Use austenitic stainless steel as the material! /
上部円板部 110の、軸受ホルダ 107の取り付け外周面は、薄肉円筒 113bより半径 方向内側に位置しており、従って、軸受ホルダ 107を上部円板部 110より取り外せば 、 4つの外側ロータ 21, 21 'は、上部円板部 110を分解することなく上方に取り外し 可能となっている。従って、メンテナンス時などに気密構造を分解する必要はなぐ作 業を容易にすることができる。 [0354] 本実施の形態においては、中央の第 2外側ロータ 21,、 21,との間に、磁気シール ド板 25' , 25'を配置しているので、相互の磁気的干渉を抑制し、誤駆動や連れ周り などの不具合を回避している。又、本体 12, 12の間には、その外周力も薄肉円筒 11 3bの内側まで半径方向に延在する磁気シールド板 125が配置されている。磁気シ 一ルド板 125は、磁性体である炭素鋼を材料とし、第 2ステータ 29'、 29'の間に介 在することによって、洩れ磁束の影響を受けて隣接する第 2外側ロータ 21 '、 21 'に 誤った回転方向の推力を発生させな 、ように、互 、の磁界を遮蔽する磁気シールド として機能する。このように、その他の磁気シールド 25, 41、 12bの効果と相まって、 4軸同軸でありながら全体の軸長を抑えた構成が可能である。 The outer peripheral surface of the upper disk part 110 where the bearing holder 107 is attached is located radially inward of the thin cylinder 113b. Therefore, if the bearing holder 107 is removed from the upper disk part 110, the four outer rotors 21, 21 ′ can be removed upward without disassembling the upper disk part 110. Therefore, it is possible to facilitate work that does not require disassembly of the airtight structure during maintenance. [0354] In the present embodiment, the magnetic shield plates 25 'and 25' are arranged between the second outer rotors 21 and 21 at the center, so that mutual magnetic interference is suppressed. This avoids malfunctions such as erroneous driving and companionship. Between the main bodies 12 and 12, a magnetic shield plate 125 whose outer peripheral force extends in the radial direction to the inside of the thin cylinder 113b is disposed. The magnetic shield plate 125 is made of carbon steel, which is a magnetic material, and is interposed between the second stators 29 ′ and 29 ′, so that the adjacent second outer rotor 21 ′ is affected by the leakage magnetic flux. , 21 'functions as a magnetic shield that shields the magnetic field of each other so as not to generate a thrust in the wrong rotation direction. In this way, coupled with the effects of the other magnetic shields 25, 41, and 12b, it is possible to achieve a configuration in which the overall axial length is suppressed while being 4-axis coaxial.
[0355] 以上の実施の形態では、表面磁石型の 32極 36スロットアウターロータ式ブラシレス モータを用いた例を用いて説明した力 この形式のモータに限定されるものではなく In the above embodiment, the force described using the example using the surface magnet type 32-pole 36-slot outer rotor brushless motor is not limited to this type of motor.
、ブラシレスモータであれば適用できるものであり、他の磁極形式、例えば永久磁石 埋め込み型であっても良いし、他のスロットコンビネーションでも良いし、あるいはイン ナロータ型であっても良い。 また、各軸の干渉対策として、軸方向に隣接する軸同士の回転子の極数およびス ロット数が異なる構成としても良い。例えば、 2軸同軸の場合は、第一軸が 32極 36ス ロット、第二軸が 24極 27スロット、 4軸同軸の場合は、第一軸および第三軸が 32極 3 6スロット、第二軸および第四軸が 24極 27スロットといった構成にすれば、各軸の磁 界による回転子および磁気カップリング装置への回転方向の推力発生といった相互 干渉を防ぐことができる。 Any brushless motor can be used, and other magnetic pole types such as a permanent magnet embedded type, other slot combinations, or an inner rotor type may be used. Further, as a countermeasure against interference of each axis, a configuration may be adopted in which the number of rotor poles and the number of slots of adjacent axes in the axial direction are different. For example, in the case of 2-axis coaxial, the first axis is 32 poles and 36 slots, the second axis is 24 poles and 27 slots, and in the case of 4-axis coaxial, the first axis and the third axis are 32 poles and 3 6 slots. If the two axes and the fourth axis are configured with 24 poles and 27 slots, mutual interference such as generation of thrust in the rotational direction to the rotor and magnetic coupling device due to the magnetic field of each axis can be prevented.
[0356] また、ロータの永久磁石は、ネオジゥム (Nd— Fe— B)系磁石を用い、耐食性を高 めるためのコ一ティングとして、ニッケルコ一ティングを施した例を用 、て説明したが、 この材質、表面処理に限定されるものではなぐ使用される環境などによって適宜変 更されるものであり、例えばベータアウト時の温度条件によっては高温減磁しにくい サマリウム ·コバルト(Sm'Co)系の磁石を用いるべきであり、超真空中で使用される のであればアウトガス遮断性の高い窒化チタンコーティングを施すべきである。  [0356] The rotor permanent magnet is a neodymium (Nd-Fe-B) -based magnet, and nickel coating is used as an example of coating to improve corrosion resistance. This material is not limited to the surface treatment, and it is changed as appropriate depending on the environment in which it is used. System magnets should be used, and if used in ultra-vacuum, a titanium nitride coating with a high outgas barrier should be applied.
[0357] また、ヨークは、低炭素鋼を材料とし、ニッケルめっきを施した例を用いて説明した 1S この材質、表面処理に限定されるものではなぐ使用される環境などによって適 宜変更されるものであり、特に表面処理に関しては、超真空中で使用されるのであれ ばピンホールの少ない力-ゼンめっきやクリーンエスめつき、窒化チタンコーティング 等を施すべきである。 [0357] In addition, the yoke is made of low-carbon steel and has been explained using an example of nickel plating. 1S This material is suitable depending on the environment in which the material is used and not limited to surface treatment. Especially for surface treatment, if it is used in ultra-vacuum, it should be subjected to force-less plating with a small number of pinholes, clean soldering, titanium nitride coating, etc.
また、永久磁石をヨークに締結する方法は、非磁性のくさびをヨーク外径側からねじ で締め上げる例を用いて説明したが、使用される環境などによって適宜変更されるも のであり、環境によっては接着でも良いし、他の締結方法でも良い。  The method for fastening the permanent magnet to the yoke has been described using an example in which a non-magnetic wedge is tightened from the outer diameter side of the yoke with a screw, but it may be changed as appropriate depending on the environment in which it is used. May be bonded or other fastening methods.
[0358] また、軸受 19, 19'は真空用グリス潤滑の 4点接触玉軸受を用いた例を説明したが 、この形式、材質、潤滑方法に限定されるものではなぐ使用される環境、荷重条件、 回転速度などによって適宜変更されるものであり、クロスローラ軸受であっても良いし 、 4軸同軸モータの場合、さらに機械的な剛性を高めるために、別な軸受で支持する 構造としても良いし、高速回転する場合など、多点接触軸受を用いることができない 場合は各軸の回転子を支持する軸受および別な軸受を深溝玉軸受ゃアンギユラ軸 受として予圧をかける構造としても良いし、超真空中で使用される場合は、軌道輪に 金や銀などの軟質金属をプレーティングしたような、ガス放出のな 、金属潤滑とした ものを用いても良い。  [0358] Also, bearings 19 and 19 'have been described using an example of grease lubricated four-point contact ball bearings for vacuum, but this is not limited to this type, material, and lubrication method. It can be changed as appropriate depending on conditions, rotational speed, etc., and it can be a cross roller bearing. In the case of a 4-axis coaxial motor, it can be supported by another bearing to further increase mechanical rigidity. If a multi-point contact bearing cannot be used, such as when rotating at high speeds, a bearing that supports the rotor of each shaft and another bearing may be configured to apply preload as deep groove ball bearings or angular bearings. When used in an ultra-vacuum, it is possible to use a metal-lubricated material that does not emit gas, such as a metal ring plated with a soft metal such as gold or silver.
[0359] また、磁気カップリングとして機能する内側ロータとして、永久磁石とバックヨークを 用いた形式で説明したが、永久磁石とバックヨークの材質および形状はこれに限定さ れるものではない。例えば、レゾルバの質量と軸受の摩擦トルクによっては、外側ロー タと同極数でなくても良いし、同幅でなくても良い。永久磁石を用いない突極でも良 い。  [0359] Further, although the inner rotor functioning as a magnetic coupling has been described in the form of using a permanent magnet and a back yoke, the material and shape of the permanent magnet and the back yoke are not limited to this. For example, depending on the mass of the resolver and the friction torque of the bearing, the number of poles may not be the same as that of the outer rotor, or the width may not be the same. A salient pole that does not use a permanent magnet is also acceptable.
また、角度検出器としてレゾルバを用いた例で説明したが、製造コストや分解能に よって適宜変更されるものであり、例えば光学式のロータリエンコーダでも良い。  Further, although an example in which a resolver is used as an angle detector has been described, it can be appropriately changed depending on manufacturing cost and resolution, and for example, an optical rotary encoder may be used.
[0360] また、角度検出器の回転側を回転自在に支持する軸受 33, 33'として、グリス潤滑 の 4点接触玉軸受を用いた例を説明したが、この形式、潤滑方法に限定されるもので はなぐ設置スペースや摩擦トルク、回転速度などによって適宜変更されるものであり 、高速回転や摩擦トルクの低減など、多点接触軸受を用いることができない場合は、 アンギユラ軸受ゃ深溝玉軸受を各軸ごとに 2個配置して、予圧をかける構造としても 良い。 また、その他の隔壁の外、中に配置される構造部品および隔壁の材質、形状、製 造方法は、製造コストや使用される環境、荷重条件、構成などによって適宜変更され るものである。 [0360] In addition, an example in which grease lubrication four-point contact ball bearings are used as the bearings 33 and 33 'that rotatably support the rotation side of the angle detector has been described, but this type and the lubrication method are limited. However, if the multi-point contact bearing cannot be used, such as high-speed rotation or reduction of friction torque, an anguilla bearing is a deep groove ball bearing. A structure may be used in which two are arranged for each axis to apply preload. In addition, the material, shape, and manufacturing method of the structural parts and partition walls arranged in and out of the other partition walls are appropriately changed depending on the manufacturing cost, the environment used, the load conditions, the configuration, and the like.
[0361] 以上述べたモータシステムは、各軸のロータや、ステータや、レゾルバに用いた磁 気カップリング力も漏れる磁束によって、互いのロータや回転検出器に用いた磁気力 ップリングに回転方向の推力を発生させな 、ように、互 、の磁界を遮蔽するための磁 気シールドを各軸のロータ間に配設したり、各軸のロータ、ステータ、レゾルバ力 発 生する電磁界によって互 、のレゾルバに干渉しな 、ように、互 、の電磁界を遮蔽す るための磁気シールドを配設したり、軸方向に隣接する軸同士のロータの極数ゃス テータのスロット数を変えたりすることによって、各軸相互に発生する磁気的干渉を防 止しているので、各軸の軸方向長さと、各軸の軸方向距離を短くすることができる。よ つて、 2軸同軸、 4軸同軸といった多軸同軸モータシステムでありながら、全体の軸長 を抑えた構成が可能である。特に、 4軸同軸といった多軸構成のダイレクトドライブモ ータを用いたシステムにおいては、チャンバ構造を大きく変えることなく高精度な位置 決めが出来るフロッグレッダアーム式ロボットを 2台設置できるので、装置全体の性能 および稼働率を高めることができる。  [0361] In the motor system described above, the thrust in the rotational direction is applied to the magnetic force coupling used for each rotor and rotation detector by the magnetic flux that also leaks the magnetic coupling force used for the rotor, stator, and resolver of each axis. Thus, magnetic shields for shielding each other's magnetic field are arranged between the rotors of each axis, or the electromagnetic fields generated by the rotor, stator and resolver force of each axis In order not to interfere with the resolver, a magnetic shield is provided to shield each other's electromagnetic field, or the number of rotor poles and the number of stator slots in the axially adjacent axes are changed. As a result, magnetic interference generated between the axes is prevented, so that the axial length of each axis and the axial distance of each axis can be shortened. Therefore, although it is a multi-axis coaxial motor system such as 2-axis coaxial or 4-axis coaxial, a configuration in which the overall axial length is suppressed is possible. In particular, in a system using a multi-axis direct drive motor such as a 4-axis coaxial system, two frog redder arm robots that can be positioned with high accuracy without greatly changing the chamber structure can be installed. Performance and availability can be increased.
[0362] 以上、本発明を実施の形態を参照して説明してきたが、本発明は上記実施の形態 に限定して解釈されるべきではなぐ適宜変更 ·改良が可能であることはもちろんであ る。例えば、本実施の形態のダイレクトドライブモータは、真空雰囲気に限らず、大気 外の雰囲気で使用することができる。例えば、半導体製造工程の場合、真空排気後 に真空槽内部にエッチング用の反応性ガスが導入されることがあるが、本実施の形 態のダイレクトドライブモータでは、隔壁により内部と外部とが遮蔽されているため、モ ータコイルや絶縁材等がエッチングされてしまうおそれもない。  [0362] While the present invention has been described with reference to the embodiments, it should be understood that the present invention should not be construed as being limited to the above-described embodiments, and that modifications and improvements can be made as appropriate. The For example, the direct drive motor of the present embodiment can be used not only in a vacuum atmosphere but also in an atmosphere outside the atmosphere. For example, in the case of a semiconductor manufacturing process, reactive gas for etching may be introduced into the vacuum chamber after evacuation, but in the direct drive motor of this embodiment, the inside and outside are shielded by the partition walls. Therefore, there is no possibility that the motor coil or the insulating material will be etched.

Claims

請求の範囲 The scope of the claims
[1] 少なくとも主ロータとステータとを有するモータにおいて、  [1] In a motor having at least a main rotor and a stator,
前記主ロータは、磁性体力 なる円環状のヨークと、前記ヨークの内周面に配列さ れ永久磁石からなる複数の磁極と、隣接する前記磁極間に配置され前記ヨークの内 周面に取り付けられるスぺーサとを含み、  The main rotor is attached to the inner peripheral surface of the yoke disposed between the adjacent magnetic poles, an annular yoke having magnetic force, a plurality of magnetic poles made of permanent magnets arranged on the inner peripheral surface of the yoke, and Including spacers,
隣接する前記磁極の対向する一対の対向面における周方向の最小間隔は、前記 スぺーサの周方向の最大幅より小さくなつており、且つ前記磁極の対向面の最小間 隔となる部位は、前記スぺーサの最大幅の部位よりも半径方向外方に位置することを 特徴とするモータ。  The minimum distance in the circumferential direction between a pair of opposing surfaces of the adjacent magnetic poles is smaller than the maximum width in the circumferential direction of the spacer, and the minimum gap between the opposing surfaces of the magnetic poles is: A motor, characterized in that the motor is located radially outward from the maximum width portion of the spacer.
[2] 前記磁極の対向面と前記スぺーサとの間には、スキマが形成されていることを特徴 とする請求項 1に記載のモータ。  [2] The motor according to claim 1, wherein a gap is formed between an opposing surface of the magnetic pole and the spacer.
[3] 前記ヨークは、前記磁極が軸線方向に変位したときに、前記磁極に当接する当接 部を有していることを特徴とする請求項 1又は 2に記載のモータ。 3. The motor according to claim 1, wherein the yoke has an abutting portion that abuts on the magnetic pole when the magnetic pole is displaced in the axial direction.
[4] 前記スぺーサは、前記磁極が軸線方向に変位したときに、前記磁極に当接する当 接部を有していることを特徴とする請求項 1又は 2に記載のダイレクトドライブモータ。 4. The direct drive motor according to claim 1 or 2, wherein the spacer has a contact portion that contacts the magnetic pole when the magnetic pole is displaced in the axial direction.
[5] 前記スぺーサは、前記ヨークに対して非磁性体力もなるボルトにより固定されている ことを特徴とする請求項 1〜4のいずれかに記載のモータ。 [5] The motor according to any one of [1] to [4], wherein the spacer is fixed to the yoke by a bolt that also has a non-magnetic force.
[6] 前記モータは、減速機などを介さずにロータを直接駆動するダイレクトドライブモー タであり、大気外の雰囲気中で用いられ、ハウジングと、前記ハウジング力 延在し、 大気側と大気外側とを隔絶する隔壁とを有し、 [6] The motor is a direct drive motor that directly drives the rotor without using a reduction gear or the like. The motor is used in an atmosphere outside the atmosphere. The housing extends the housing force, and the atmosphere side and the atmosphere outside. And a partition wall that isolates
前記主ロータは、前記隔壁に対して大気外側に配置され、前記ステータは、前記 隔壁に対して大気側に配置され、  The main rotor is disposed outside the atmosphere with respect to the partition wall, and the stator is disposed on the atmosphere side with respect to the partition wall,
更に前記隔壁に対して大気側に配置され、且つ前記主ロータと共に連れ回る副口 ータと、前記副ロータの回転速度を検出する検出器とを有することを特徴とする請求 項 1〜5のいずれかに記載のモータ。  6. The apparatus according to claim 1, further comprising: a sub-porter disposed on the atmosphere side with respect to the partition wall and rotated together with the main rotor; and a detector for detecting a rotation speed of the sub-rotor. A motor according to any one of the above.
PCT/JP2006/321278 2006-10-25 2006-10-25 Motor WO2008050420A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/321278 WO2008050420A1 (en) 2006-10-25 2006-10-25 Motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2006/321278 WO2008050420A1 (en) 2006-10-25 2006-10-25 Motor

Publications (1)

Publication Number Publication Date
WO2008050420A1 true WO2008050420A1 (en) 2008-05-02

Family

ID=39324234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/321278 WO2008050420A1 (en) 2006-10-25 2006-10-25 Motor

Country Status (1)

Country Link
WO (1) WO2008050420A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014032725A1 (en) * 2012-08-31 2014-03-06 The Switch Drive Systems Oy A rotor of a permanent magnet electrical machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490609U (en) * 1977-12-09 1979-06-27
JPS61139253A (en) * 1984-12-06 1986-06-26 Nippon Denso Co Ltd Magnet fixing structure of rotary electric machine
JPH01150470U (en) * 1988-04-07 1989-10-18
JPH0678481A (en) * 1992-08-25 1994-03-18 Toshiba Corp Rotor with permanent magnet
JPH07123615A (en) * 1993-10-19 1995-05-12 Toshiba Corp Rotor with permanent magnet
JP2006158175A (en) * 2004-11-08 2006-06-15 Nsk Ltd Direct drive motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5490609U (en) * 1977-12-09 1979-06-27
JPS61139253A (en) * 1984-12-06 1986-06-26 Nippon Denso Co Ltd Magnet fixing structure of rotary electric machine
JPH01150470U (en) * 1988-04-07 1989-10-18
JPH0678481A (en) * 1992-08-25 1994-03-18 Toshiba Corp Rotor with permanent magnet
JPH07123615A (en) * 1993-10-19 1995-05-12 Toshiba Corp Rotor with permanent magnet
JP2006158175A (en) * 2004-11-08 2006-06-15 Nsk Ltd Direct drive motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014032725A1 (en) * 2012-08-31 2014-03-06 The Switch Drive Systems Oy A rotor of a permanent magnet electrical machine

Similar Documents

Publication Publication Date Title
JPH09238438A (en) Closed actuator
TW200843295A (en) Brushless motor
JP4930050B2 (en) Direct drive motor
JP4581757B2 (en) Motor system
JP2010273539A (en) Direct drive motor
JP4792793B2 (en) Direct drive motor
JP4692050B2 (en) Rotating support device
JP5288164B2 (en) Scalar robot
JP4656381B2 (en) Direct drive motor
JP4656380B2 (en) Motor system
WO2008050420A1 (en) Motor
JP2009038910A (en) Brushless motor
JP2006296057A (en) Motor
JP4711218B2 (en) Motor system
JP4618422B2 (en) Direct drive motor
JP2012249519A (en) Direct drive motor, transport device, and semiconductor manufacturing apparatus
JP4613574B2 (en) Motor system
JP2008167588A (en) Brushless motor
WO2008050418A1 (en) Rotation support device
WO2008050421A1 (en) Motor system
WO2008050422A1 (en) Motor
JP4613573B2 (en) Motor system
JP4736025B2 (en) Direct drive motor
WO2008050419A1 (en) Motor system
JP4692156B2 (en) Motor system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06822255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06822255

Country of ref document: EP

Kind code of ref document: A1