WO2008049986A1 - Inverseur de poussée à grilles pour moteur à réaction - Google Patents

Inverseur de poussée à grilles pour moteur à réaction Download PDF

Info

Publication number
WO2008049986A1
WO2008049986A1 PCT/FR2007/001574 FR2007001574W WO2008049986A1 WO 2008049986 A1 WO2008049986 A1 WO 2008049986A1 FR 2007001574 W FR2007001574 W FR 2007001574W WO 2008049986 A1 WO2008049986 A1 WO 2008049986A1
Authority
WO
WIPO (PCT)
Prior art keywords
slide
thrust reverser
sliding cover
drive
flap
Prior art date
Application number
PCT/FR2007/001574
Other languages
English (en)
Inventor
Guy Bernard Vauchel
Pierre André Marcel Baudu
Original Assignee
Aircelle
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aircelle filed Critical Aircelle
Priority to CA2666496A priority Critical patent/CA2666496C/fr
Priority to EP07848288.2A priority patent/EP2084385B1/fr
Priority to BRPI0717339-3A2A priority patent/BRPI0717339A2/pt
Priority to CN2007800392580A priority patent/CN101529073B/zh
Priority to US12/446,704 priority patent/US8677732B2/en
Priority to ES07848288.2T priority patent/ES2515143T3/es
Publication of WO2008049986A1 publication Critical patent/WO2008049986A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/54Nozzles having means for reversing jet thrust
    • F02K1/64Reversing fan flow
    • F02K1/70Reversing fan flow using thrust reverser flaps or doors mounted on the fan housing
    • F02K1/72Reversing fan flow using thrust reverser flaps or doors mounted on the fan housing the aft end of the fan housing being movable to uncover openings in the fan housing for the reversed flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/54Nozzles having means for reversing jet thrust
    • F02K1/76Control or regulation of thrust reversers
    • F02K1/763Control or regulation of thrust reversers with actuating systems or actuating devices; Arrangement of actuators for thrust reversers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/50Kinematic linkage, i.e. transmission of position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/18Mechanical movements
    • Y10T74/18568Reciprocating or oscillating to or from alternating rotary
    • Y10T74/188Reciprocating or oscillating to or from alternating rotary including spur gear
    • Y10T74/18808Reciprocating or oscillating to or from alternating rotary including spur gear with rack

Definitions

  • the invention relates to a thrust reverser, referred to as grilles or cascades, for a jet engine.
  • An aircraft is driven by several turbojets each housed in a nacelle also housing a set of ancillary actuators related to its operation and providing various functions when the turbojet engine is in operation or stopped.
  • These ancillary actuating devices comprise in particular a mechanical thrust reversal system.
  • a nacelle generally has a tubular structure comprising an air inlet upstream of the turbojet engine, a median section intended to surround a fan of the turbojet engine, a downstream section housing the thrust reverser means and intended to surround the combustion chamber of the turbojet engine. , and is generally terminated by an ejection nozzle whose output is located downstream of the turbojet engine.
  • the modern nacelles are intended to house a turbofan engine capable of generating through the blades of the rotating fan a flow of hot air (also called primary flow) from the combustion chamber of the turbojet engine, and a flow of cold air (secondary flow) flowing outside the turbojet through an annular passage, also called vein, formed between a shroud of the turbojet engine and an inner wall of the nacelle.
  • the two air flows are ejected from the turbojet engine from the rear of the nacelle.
  • the role of a thrust reverser is, during the landing of an aircraft, to improve the braking capacity thereof by redirecting forward at least a portion of the thrust generated by the turbojet engine.
  • the inverter obstructs the cold flow vein and directs the latter towards the front of the nacelle, thereby generating a counter-thrust which is added to the braking of the wheels of the aircraft.
  • an inverter comprises movable covers movable between, on the one hand, an extended position in which they open in the nacelle a passage intended for the deflected flow, and on the other hand, a position of retraction in which they close this passage.
  • These covers can perform a deflection function or simply activation other means of deflection.
  • a grid inverter also known as a cascade inverter
  • the reorientation of the air flow is carried out by deflection grids, the hood having a simple sliding function aimed at discover or cover these grids.
  • Additional locking doors, also called shutters, activated by the sliding of the cowling, generally allow a closure of the vein downstream of the grids so as to optimize the reorientation of the cold flow.
  • flaps are pivotally mounted, by an upstream end, on the sliding cowl between a retracted position in which they provide, with said movable cowl, aerodynamic continuity of the inner wall of the nacelle and an extended position in which, in a situation of reverse thrust, they at least partially close the annular channel to deflect a flow of gas to the deflection grids discovered by the sliding of the movable cowl.
  • the pivoting of the flaps is guided by rods attached, on the one hand, to the flap, and on the other hand, to a fixed point of the internal structure delimiting the annular channel.
  • a first problem of such a configuration lies in the kinetics of the degree of opening of the flaps which, at the beginning of the opening phase of the movable covers, is faster than the opening of said cover. This has the consequence that, at the beginning of the opening phase of the movable hoods, the passage section through the nacelle is smaller than the section of the vein which is blocked by the shutters. This results in an increase in the pressure in the engine, which implies a delicate management of the turbojet engine speed in this transitional phase.
  • a second problem lies in the guide rods passing through the vein and thus generating numerous aerodynamic disturbances in the secondary flow.
  • Fixing the links on the internal structure is a third problem. Indeed, the installation of fixed points of articulation reduces the surface of the internal structure that can be used for an acoustic treatment of said internal structure.
  • a fourth problem finally lies in the fact that the thrust reversal structure is mechanically linked by the rods to the internal structure.
  • the thrust reversal structure and the structure internal are not independent of one another, which complicates their removal when maintenance operations on the nacelle or turbojet require it.
  • this problem relates more particularly to internal structures of the so-called "O-duct” type, that is to say made from a single piece completely surrounding the turbojet engine unlike "C-duct type structures”. Comprising two half-parts joined together around the turbojet engine.
  • the scissor type linkage simple and light, however has the disadvantage of deploying the flap very quickly in the annular channel at the beginning of the retracting stroke of the sliding cowl, and therefore does not solve the problem of the kinetic difference d opening between the movable hood and the flaps.
  • the grids are integrated in a movable shell moved with the moving cowl, said ferrule being a bulky element and impacting the mass of the whole of the nacelle.
  • the presence of this mobile shroud also requires clean guiding elements which impact the mass of the whole and complicate the implementation of the system.
  • the present invention aims to avoid these drawbacks while preserving the simplicity and lightness of the drive means of the shutter, and for this purpose consists of a thrust reverser for a jet engine, as presented in the introduction, and in which furthermore a drive slide of the flap is movably mounted in at least one guide slide in translation formed in a structure of the sliding cover, and is connected to a downstream end of the flap via a driving rod, so that a translational movement of the slide in its guide rail is accompanied by a pivoting of the connecting rod and therefore the flap, and wherein actuating means are provided for driving the slide in translation in its guide rail when the sliding cowl is in a translational phase downstream.
  • the invention thus provides a thrust reverser with fixed grilles, without connecting rods capable of forming obstacles in the annular channel, and in which a deployment maneuver of the flaps during the reverse thrust can be adapted to the deployment of the hood sliding to ensure a total exhaust section always sufficient relative to the air inlet section.
  • the flap deployment maneuver can notably be substantially delayed until the sliding cowl has moved back a predetermined distance, that is to say when the mobile cowl is in a terminal phase of its translation travel towards the 'downstream.
  • the drive slide forms an intermediate movable section of an actuating cylinder disposed along a longitudinal axis of the inverter, which actuating actuator comprises a tubular base connected to the external nacelle upstream of the inverter and which houses the drive slide and an end rod, both mounted independently of one another, axially sliding in the base of the cylinder, a downstream end of the end rod being connected to the hood sliding.
  • the sliding cover and the flap have a common actuating cylinder.
  • the guide slides in translation of the drive slide are for example two in number and arranged on either side of the drive slide, each of these slides receiving an end, preferably provided with a shoe or roller, a transverse axis of articulation of the drive rod on the drive slide.
  • the end of the end rod of the actuating cylinder can be connected to the sliding cover via a transverse drive shaft housed in a cavity of oblong shape perpendicular to the direction of movement of the hood, and practiced in a structure of the sliding hood.
  • the guide slide in translation of the driving slide extends in length in a transverse plane of the sliding cover and forms a circular arc substantially concentric with the circumference of the sliding cover, and said connecting rod of The drive is articulated on the shutter and on the drive slide about axes substantially parallel to a longitudinal axis of the inverter.
  • the sliding cowl and the shutter thus have separate actuating means.
  • the drive slide can advantageously be connected to a plurality of flaps distributed on the circumference of the sliding cowl.
  • the drive slide has a length portion provided with a toothing designed to mesh with a driven pinion, rotated in a transverse plane of the sliding cowl, by an actuator.
  • This actuator is for example electric and energized when the sliding cowl reaches a terminal phase of its translation travel downstream.
  • an actuating cylinder of the driving slide arranged parallel to the guide slide of the slide, is articulated by a first end on a structure of the sliding cover and by a second end on the drive slide.
  • the sliding cowl may comprise a plurality of flaps distributed around its circumference and each having driving rods of different lengths in order to generate vortex effects making it possible to improve the drag at the outlet of the gate opening.
  • the present invention also relates to a nacelle turbojet turbofan, characterized in that it comprises at least one thrust reverser as described above.
  • FIG. 1 is a schematic partial view, in longitudinal section along a plane passing through deflection grids, a thrust reverser grids according to a first embodiment of the invention, in the closed position;
  • FIG. 2 is a schematic partial view, in longitudinal section along a plane passing through an actuating cylinder of the sliding cover and an inversion flap, the thrust reverser of Figure 1 during a phase of displacement the sliding cowl downstream (to discover the grids);
  • FIG. 3 is a view similar to Figure 2 during a deployment phase of the shutter for closing the annular flow channel;
  • - Figure 4 is a view similar to Figures 2 and 3 in reverse thrust situation;
  • - Figure 5 is a sectional view along the line V-V of Figure 4;
  • FIG. 6 is a sectional view along the line VI-Vl of Figure 5;
  • FIG. 7 is a schematic cross-sectional view of a thrust reverser according to a second embodiment of the invention, in the closed position;
  • FIG. 8 is a schematic partial view in longitudinal section, similar to FIG. 1, of the thrust reverser of FIG. 7;
  • Fig. 9 is an enlarged view of a detail of Fig. 8;
  • FIG. 10 is a view similar to Figure 8 during a phase of deployment of the flap for closing the annular flow channel
  • Figure 1 1 is a view similar to Figure 7 in reverse thrust situation
  • FIG. 12 is a partial schematic cross sectional view of a thrust reverser according to a third embodiment of the invention.
  • the thrust reverser 1 represented in FIGS. 1 to 12 is associated with a turbofan engine (not shown) and comprises an external nacelle which defines with a concentric internal structure 1 1 an annular channel of flow 10 for a secondary flow vein.
  • a longitudinally sliding hood 2 consists of two hemi-cylindrical parts mounted on the nacelle so as to slide along slides (not shown).
  • An opening provided with fixed deflection gratings 4 is provided in the external nacelle of the thrust reverser 1. This opening, in a situation of direct thrust of the gases, is closed by the sliding cover 2 and is disengaged in a situation of thrust reversal, by a displacement in longitudinal translation downstream (with reference to the flow direction of the gases) of the sliding cowl 2.
  • a plurality of inversion flaps 20, distributed on the circumference of the cover 2 are each pivotally mounted, by an upstream end about an articulation axis 21, on the sliding cover 2 between a retracted position and a deployed position in which, in a reverse thrust situation, they seal the annular channel 10 to deflect a flow of gas to the gate opening 4.
  • a seal (not shown) is provided on the periphery of each flap 20 in order to isolate the flow flowing in the annular channel 10 from the external flow to the nacelle.
  • the sliding cover 2 forms all or part of a downstream part of the nacelle, the flaps 20 then being retracted into the sliding cover 2 which closes the opening to grids 4
  • the sliding cowl 2 is moved to the downstream position and the flaps 20 pivot in the closed position of the turbojet. in order to deflect the secondary flow towards the grids 4 and to form an inverted flow guided by the grids 4.
  • a slider 24 for driving a flap 20 (or two flaps 20 placed on either side of the slider 24) is mounted to move in two lateral guiding rails 33 in translational motion. in a structure of the sliding cowl 2.
  • the drive slide 24 is connected to a downstream end of the flap 20 via a driving rod 30 articulated on the shutter around an axis 31 and on the slide 24 around a transverse axis 26, so that a translational movement of the slider 24 in its guide rails 33 is accompanied by a pivoting of the connecting rod 30 and consequently of the flap 20.
  • the guide rails 33 are arranged on either side of the drive slide 24, each receiving one end, provided with a shoe or roller 32, with the transverse hinge axis 26. driving rod (s) 30 on one end of the driving slide 24.
  • the drive slide forms an intermediate movable section 24 of an actuating jack 22 "telescopic" disposed along a longitudinal axis of the inverter.
  • This actuating cylinder 22, pneumatic, electric or hydraulic, comprises a tubular base 23 connected, fixed or rotated, to the external nacelle upstream (in 3) of the inverter 1.
  • the base 23 houses the drive slide 24 and an end rod 25, both mounted independently of one another, axially sliding in the base 23 of the cylinder 22.
  • a downstream end of the end rod 25 is connected to the sliding cover 2 via a transverse drive axis 27 housed in a cavity 28 of oblong shape perpendicular to the direction of movement of the cover 2, and made in a fitting 29 of the sliding cover 2.
  • This cavity 28 avoids alignment of hyperstatic points between the base 23 of the jack 22, the pivot axis 26 at the end of the movable section 24 and the drive shaft 27 to the end of the rod 25.
  • the jack 22 is controlled so as to drive the slider 24 in translation in its guide rails 33 when the sliding cover 2 is in a terminal phase of its translation path downstream. It is indeed important to be able to evacuate the air captured by the inlet of the turbojet engine equally in direct or inverted thrust, and more particularly during the thrust reversal during which the reduction of the section of the channel 10 by the flaps must be able to be offset by increasing the section of the access offered upstream of the inverter by the deflection grids 4 when they are discovered by the retreat of the movable cowl 2.
  • a first phase of the thrust reversal (see FIG. 2), the deployment of the rod 25 out of the jack 22 is engaged so as to move the hood 2 downstream, while the section 24 remains retracted in the base 23 of the jack 22 and that or the flaps 20 remain retracted in the sliding cover 2.
  • the deployment stroke of the section 24 can end after that of the rod 25 or at the same time.
  • the axes 26 and 27 are joined downstream.
  • the present invention is not limited to a particular operating sequence of the section 24 and the rod 25, their respective races to be carried out so that the upstream aerodynamic pressure is maintained substantially constant during the process reverse thrust.
  • the flap (s) 20 When returning to direct thrust, the flap (s) 20 may be fully or partially retracted before or during the upward movement of the movable cowl 2 to cover the grids (4).
  • the lateral guide rails 33 provide a force recovery that avoids a risk of buckling of the cylinder 22 due to the aerodynamic pressure on the flaps 20.
  • the actuating means of the sliding cover 102 and the flap 120 are distinct.
  • the movement of the movable cowl 102 is controlled by a jack (not shown) pneumatic, electric or hydraulic.
  • a jack (not shown) pneumatic, electric or hydraulic.
  • Each hemicylindrical portion of the cover 102 has a slideway 133 (see FIG. 9). extending in length in a transverse plane, for translational guiding of a driving slide 142.
  • the slideway 133 forms a circular arc that is substantially concentric with the circumference of the sliding cover 102 (see FIGS. 7 and 11).
  • a same drive slide 142 is connected, by means of rods 130 hinged about axes 131 and 143 parallel to the longitudinal axis of the inverter, with several inverting flaps 120 distributed around the circumference of each part. hemicylindrical hood 102.
  • the drive slide 142 has a length portion provided with a toothing 144 designed to mesh with a pinion 141 driven in rotation in a transverse plane of the sliding cowl 102 by an electric actuator 140.
  • the movement of the slide 142 in its slideway 133 causes a pivoting of the drive rods 130 and flaps 120 to the closed position of the annular channel 110.
  • One or more power supply connectors (not shown) are arranged to put the actuator electrical 140 under tension when the sliding cover 102 reaches a terminal phase of its travel path downstream.
  • the slider 142 can be maintained in the rest position (in direct drive) by a dedicated latch or by the pinion 141 itself.
  • Figure 12 illustrates yet another alternative embodiment which is similar to the previous embodiment.
  • the displacement of the drive slide 242 in its slideway is ensured by an actuating jack 245 preferably electrically arranged parallel to the guide slide of the slide 242, and articulated by a first end.
  • the invention makes it possible to easily modify the length of a driving rod 30, 130 or 230 or the position of its articulation axis 31, 131 or 231 on the corresponding inversion flap in order to adjust the efficiency of the drive. shutting of the annular channel by the flap during the reverse thrust. It is also possible to have driving rods 30, 130 or 230 of different lengths for the different shutters, to create flow baffles bypassing the flaps (the flaps may have overlapping portions) to add to the direct leakage vortex effects improving drag at the exit of the ejection section. Finally, the deflection grids 4, 104 being fixed and placed upstream of the structure of the inverter, these are placed in an environment of thick aerodynamic lines.
  • the definition of the internal diameter of the grids 4, 104 is easy to manage especially to reduce the length of displacement of the sliding cover 2, 102, 202 because the total exhaust section through the grids 4, 104 is a multiple of their length and the internal diameter. It will be understood that for the same exhaust section, the larger the diameter, the shorter the length of the grid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Wind Motors (AREA)

Abstract

L'inverseur de poussée (1 ) comprend une ouverture munie de grilles (4) fixes qui, en situation de poussée directe, est fermée par un capot coulissant (2) et qui, en situation d'inversion de poussée, est dégagée par déplacement en translation longitudinale vers l'aval du capot (2). Un volet (20) est monté pivotant par une extrémité amont sur le capot (2) entre une position rétractée et une position déployée dans laquelle, en situation d'inversion de poussée, il obture un canal annulaire (10) en vue de dévier un flux de gaz vers l'ouverture à grilles (4). Un coulisseau (24) d'entraînement du volet (20) est monté mobile dans au moins une glissière (33) de guidage en translation ménagée dans une structure du capot (2), et est relié à une extrémité aval du volet (20) par l'intermédiaire d'une bielle d'entraînement (30), de sorte qu'un mouvement de translation du coulisseau (24) dans sa glissière de guidage (33) s'accompagne d'un pivotement de la bielle (30) et par conséquent du volet (20). Des moyens d'actionnement (22) sont prévus pour entraîner le coulisseau (24) en translation dans sa glissière de guidage (33) lorsque le capot (2) est dans une phase de translation vers l'aval.

Description

Inverseur de poussée à grilles pour moteur à réaction
L'invention concerne un inverseur de poussée, dit à grilles ou à cascades, pour un moteur à réaction. Un avion est mu par plusieurs turboréacteurs logés chacun dans une nacelle abritant également un ensemble de dispositifs d'actionnement annexes liés à son fonctionnement et assurant diverses fonctions lorsque le turboréacteur est en fonctionnement ou à l'arrêt. Ces dispositifs d'actionnement annexes comprennent notamment un système mécanique d'inversion de poussée.
Une nacelle présente généralement une structure tubulaire comprenant une entrée d'air en amont du turboréacteur, une section médiane destinée à entourer une soufflante du turboréacteur, une section aval abritant les moyens d'inversion de poussée et destinée à entourer la chambre de combustion du turboréacteur, et est généralement terminée par une tuyère d'éjection dont la sortie est située en aval du turboréacteur.
Les nacelles modernes sont destinés à abriter un turboréacteur double flux apte à générer par l'intermédiaire des pâles de la soufflante en rotation un flux d'air chaud (également appelé flux primaire) issu de la chambre de combustion du turboréacteur, et un flux d'air froid (flux secondaire) qui circule à l'extérieur du turboréacteur à travers un passage annulaire, également appelé veine, formé entre un carénage du turboréacteur et une paroi interne de la nacelle. Les deux flux d'air sont éjectés du turboréacteur par l'arrière de la nacelle. Le rôle d'un inverseur de poussée est, lors de l'atterrissage d'un avion, d'améliorer la capacité de freinage de celui-ci en redirigeant vers l'avant au moins une partie de la poussée générée par le turboréacteur. Dans cette phase, l'inverseur obstrue la veine du flux froid et dirige ce dernier vers l'avant de la nacelle, générant de ce fait une contre-poussée qui vient s'ajouter au freinage des roues de l'avion.
Les moyens mis en œuvre pour réaliser cette réorientation du flux froid varient suivant le type d'inverseur. Cependant, dans tous les cas, la structure d'un inverseur comprend des capots mobiles déplaçables entre, d'une part, une position déployée dans laquelle ils ouvrent dans la nacelle un passage destiné au flux dévié, et d'autre part, une position d'escamotage dans laquelle ils ferment ce passage. Ces capots peuvent remplir une fonction de déviation ou simplement d'activation d'autres moyens de déviation.
Dans le cas d'un inverseur à grilles, également connu sous le nom d'inverseur à cascade, la réorientation du flux d'air est effectuée par des grilles de déviation, le capot n'ayant qu'une simple fonction de coulissage visant à découvrir ou recouvrir ces grilles. Des portes de blocage complémentaires, également appelées volets, activées par le coulissement du capotage, permettent généralement une fermeture de la veine en aval des grilles de manière à optimiser la réorientation du flux froid. Ces volets sont montés pivotants, par une extrémité amont, sur le capot coulissant entre une position rétractée dans laquelle ils assurent, avec ledit capot mobile, la continuité aérodynamique de la paroi interne de la nacelle et une position déployée dans laquelle, en situation d'inversion de poussée, ils viennent obturer au moins partiellement le canal annulaire en vue de dévier un flux de gaz vers les grilles de déviation découvertes par le coulissement du capot mobile. Le pivotement des volets est guidé par des biellettes rattachées, d'une part, au volet, et d'autre part, à un point fixe de la structure interne délimitant le canal annulaire.
Un premier problème d'une telle configuration réside dans la cinétique du degré d'ouverture des volets qui, en début de phase d'ouverture des capots mobiles, est plus rapide que l'ouverture dudit capot. Ceci a pour conséquence qu'en en début de phase d'ouverture des capots mobiles, la section de passage à travers la nacelle est inférieure à la section de la veine qui est bloquée par les volets. Il s'ensuit une augmentation de la pression dans le moteur, ce qui implique une gestion délicate du régime du turboréacteur dans cette phase transitoire.
Un deuxième problème réside dans les biellettes de guidage traversant la veine et engendrant de ce fait de nombreuses perturbations aérodynamiques dans le flux secondaire. La fixation des biellettes sur la structure interne constitue un troisième problème. En effet, l'installation de points fixes d'articulation réduit la surface de la structure interne pouvant être utilisée pour un traitement acoustique de ladite structure interne.
Un quatrième problème enfin réside dans le fait que la structure d'inversion de poussée se trouve mécaniquement liée par les biellettes à la structure interne. De ce fait, la structure d'inversion de poussée et la structure interne ne sont pas indépendantes l'une de l'autre, ce qui complique leur dépose lorsque des opérations de maintenance sur la nacelle ou le turboréacteur l'exigent. Il convient de noter que ce problème concerne plus particulièrement des structures internes de type dit « O-duct », c'est-à-dire réalisée à partir d'une seule pièce entourant complètement le turboréacteur contrairement aux structures de type « C-duct » comprenant deux demi-parties réunies entre elles autour du turboréacteur.
Plusieurs solutions ont été mises en place de manière à résoudre un ou plusieurs de ces problèmes. Le document US 3 262 268, par exemple, décrit un tel inverseur de poussée à grilles, dans lequel une tringlerie de commande du pivotement du volet comprend deux leviers "en ciseaux", dont un levier est articulé sur le capot coulissant et l'autre levier plus en aval est articulé sur des poutres de guidage appartenant à la nacelle externe. Cette solution évite l'emploi de bielles de liaison entre le volet et la structure interne.
La tringlerie du type à ciseaux, simple et légère, a toutefois pour inconvénient de déployer le volet très rapidement dans le canal annulaire dès le début de la course de recul du capot coulissant, et ne résout donc pas le problème de la différence de cinétique d'ouverture entre le capot mobile et les volets.
Le document US 4 005 822 décrit également un tel inverseur de poussée dans lequel les volets montés pivotants sur le capot mobile et rattachés à une bielle montée sur les moyens d'actionnement du capot mobile de manière à ce que, une fois les moyens d'actionnement en fin de course, ils provoque le recul de la bielle, faisant alors de ce fait pivoter le volet.
Un tel système permet une ouverture des volets retardée par rapport à l'ouverture du capot mobile empêchant ainsi une augmentation de pression dans la veine. Toutefois, l'inconvénient inverse se produit, la section de passage à travers la nacelle, ajoutée à celles des deux flux en jet direct étant trop importante par rapport à la section d'entrée d'air de la nacelle. Une telle situation est également préjudiciable au turboréacteur.
On notera également que les grilles sont intégrées à une virole mobile déplacée avec le capot mobile, ladite virole étant un élément encombrant et impactant la masse de l'ensemble de la nacelle. La présence de cette virole mobile nécessite également des éléments de guidage propres qui viennent impacter la masse de l'ensemble et compliquer la mise en œuvre du système.
On notera enfin que la vis d'entraînement des volets subit directement les efforts de pression aérodynamique s'exerçant sur les volets, ce qui risque d'entraîner une déformation incompatible avec la fiabilité requise pour un tel système.
On citera enfin le document US 4 909 422 qui prévoit un système d'entraînement complexe par l'intermédiaire de vérins hydrauliques ou pneumatiques rattachés au capot mobile et au volet selon un jeu de vases communicants.
La présente invention vise à éviter ces inconvénients tout en préservant la simplicité et la légèreté des moyens d'entraînement du volet, et consiste à cet effet en un inverseur de poussée pour moteur à réaction, tel que présenté en introduction, et dans lequel en outre un coulisseau d'entraînement du volet est monté mobile dans au moins une glissière de guidage en translation ménagée dans une structure du capot coulissant, et est relié à une extrémité aval du volet par l'intermédiaire d'une bielle d'entraînement, de sorte qu'un mouvement de translation du coulisseau dans sa glissière de guidage s'accompagne d'un pivotement de la bielle et par conséquent du volet, et où des moyens d'actionnement sont prévus pour entraîner le coulisseau en translation dans sa glissière de guidage lorsque le capot coulissant est dans une phase de translation vers l'aval.
L'invention fournit ainsi un inverseur de poussée à grilles fixes, sans bielles de liaison susceptibles de former des obstacles dans le canal annulaire, et dans lequel une manœuvre de déploiement des volets lors de l'inversion de poussée peut être adaptée au déploiement du capot coulissant afin d'assurer une section totale d'échappement toujours suffisante par rapport à la section d'entrée d'air. La manœuvre de déploiement des volets pourra notamment être sensiblement différée jusqu'à ce que le capot coulissant ait reculé d'une distance prédéterminée, c'est-à-dire lorsque le capot mobile est dans une phase terminale de sa course de translation vers l'aval.
La charge des volets due aux efforts aérodynamiques sur ceux-ci est supportée, par l'intermédiaire des bielles et coulisseaux d'entraînement, par les glissières de guidage en translation de ces derniers. Une meilleure efficacité d'inversion de poussée est aisément obtenue en adaptant la longueur de la bielle d'entraînement ainsi que la position de son articulation sur l'extrémité aval du volet de manière à régler l'obturation du canal annulaire par le volet.
Dans une forme de réalisation, le coulisseau d'entraînement forme un tronçon mobile intermédiaire d'un vérin d'actionnement disposé selon un axe longitudinal de l'inverseur, lequel vérin d'actionnement comporte une base tubulaire liée à la nacelle externe en amont de l'inverseur et qui loge le coulisseau d'entraînement ainsi qu'une tige terminale, tous deux montés, indépendamment l'un de l'autre, axialement coulissant dans la base du vérin, une extrémité aval de la tige terminale étant reliée au capot coulissant. Ainsi, le capot coulissant et le volet possèdent un vérin d'actionnement commun.
Dans ce cadre, les glissières de guidage en translation du coulisseau d'entraînement sont par exemple au nombre de deux et disposées de part et d'autre du coulisseau d'entraînement, chacune de ces glissières recevant une extrémité, pourvue de préférence d'un patin ou galet, d'un axe transversal d'articulation de la bielle d'entraînement sur le coulisseau d'entraînement.
L'extrémité de la tige terminale du vérin d'actionnement peut être reliée au capot coulissant par l'intermédiaire d'un axe transversal d'entraînement logé dans une cavité de forme oblongue perpendiculairement à la direction de déplacement du capot, et pratiquée dans une structure du capot coulissant.
Dans une autre forme de réalisation, la glissière de guidage en translation du coulisseau d'entraînement s'étend en longueur dans un plan transversal du capot coulissant et forme un arc de cercle sensiblement concentrique avec la circonférence du capot coulissant, et ladite bielle d'entraînement est articulée sur le volet et sur le coulisseau d'entraînement autour d'axes sensiblement parallèles à un axe longitudinal de l'inverseur.
Ici, le capot coulissant et le volet possèdent ainsi des moyens d'actionnement distincts. Dans ce cadre, le coulisseau d'entraînement peut avantageusement être relié à une pluralité de volets répartis sur la circonférence du capot coulissant.
Selon une possibilité, le coulisseau d'entraînement présente une portion de longueur dotée d'une denture prévue pour engrener avec un pignon entraîné, en rotation dans un plan transversal du capot coulissant, par un actionneur. Cet actionneur est par exemple électrique et mis sous tension lorsque le capot coulissant atteint une phase terminale de sa course de translation vers l'aval.
Selon une autre possibilité, un vérin d'actionnement du coulisseau d'entraînement, disposé parallèlement à la glissière de guidage du coulisseau, est articulé par une première extrémité sur une structure du capot coulissant et par une seconde extrémité sur le coulisseau d'entraînement.
Le capot coulissant peut comporter une pluralité de volets répartis sur sa circonférence et comportant chacun des bielles d'entraînement de longueurs différentes en vue de générer des effets de tourbillon permettant d'améliorer la traînée en sortie de l'ouverture à grilles.
La présente invention se rapport également à une nacelle de turboréacteur double flux, caractérisé en ce qu'elle comprend au moins un inverseur de poussée tel que décrit précédemment.
D'autres avantages et caractéristiques de l'invention ressortiront à la lecture de la description suivante réalisée à titre d'exemple et en référence aux dessins annexés dans lesquels:
- la figure 1 est une vue partielle schématique, en coupe longitudinale selon un plan passant par des grilles de déviation, d'un inverseur de poussée à grilles selon une première forme de réalisation de l'invention, en position fermée;
- la figure 2 est une vue partielle schématique, en coupe longitudinale selon un plan passant par un vérin d'actionnement du capot coulissant et d'un volet d'inversion, de l'inverseur de poussée de la figure 1 durant une phase de déplacement du capot coulissant vers l'aval (pour découvrir les grilles);
- la figure 3 est une vue analogue à la figure 2 durant une phase de déploiement du volet pour obturer le canal annulaire d'écoulement;
- la figure 4 est une vue analogue aux figures 2 et 3 en situation d'inversion de poussée; - la figure 5 est une vue en coupe selon la ligne V-V de la figure 4;
- la figure 6 est une vue en coupe selon la ligne Vl-Vl de la figure 5;
- la figure 7 est une vue schématique en coupe transversale d'un inverseur de poussée selon une deuxième forme de réalisation de l'invention, en position fermée; - la figure 8 est une vue partielle schématique en coupe longitudinale, analogue à la figure 1 , de l'inverseur de poussée de la figure 7; - la figure 9 est une vue agrandie d'un détail de la figure 8;
- la figure 10 est une vue analogue à la figure 8 durant une phase de déploiement du volet pour obturer le canal annulaire d'écoulement;
- la figure 1 1 est une vue analogue à la figure 7 en situation d'inversion de poussée;
- la figure 12 est une vue schématique partielle en coupe transversale d'un inverseur de poussée selon une troisième forme de réalisation de l'invention.
De manière connue en soi, l'inverseur de poussée 1 représenté sur les figures 1 à 12 est associé à un turboréacteur à double flux (non représenté) et comprend une nacelle externe qui définit avec une structure interne concentrique 1 1 un canal annulaire d'écoulement 10 pour une veine de flux secondaire.
Un capot 2 coulissant longitudinalement est constitué de deux parties hémicylindriques montées sur la nacelle de manière à pouvoir coulisser le long de glissières (non représentées).
Une ouverture munie de grilles de déviation 4 fixes est ménagée dans la nacelle externe de l'inverseur de poussée 1. Cette ouverture, en situation de poussée directe des gaz, est fermée par le capot coulissant 2 et elle est dégagée, en situation d'inversion de poussée, par un déplacement en translation longitudinale vers l'aval (par référence au sens d'écoulement des gaz) du capot coulissant 2.
Une pluralité de volets d'inversion 20, répartis sur la circonférence du capot 2, sont chacun montés pivotant, par une extrémité amont autour d'un axe d'articulation 21 , sur le capot coulissant 2 entre une position rétractée et une position déployée dans laquelle, en situation d'inversion de poussée, ils obturent le canal annulaire 10 en vue de dévier un flux de gaz vers l'ouverture à grilles 4. Un joint d'étanchéité (non représenté) est prévu sur le pourtour de chaque volet 20 afin d'isoler le flux circulant dans le canal annulaire 10 du flux externe à la nacelle.
Lors du fonctionnement du turboréacteur en poussée directe (voir figure 1), le capot coulissant 2 forme tout ou partie d'une partie aval de la nacelle, les volets 20 étant alors rétractés dans le capot coulissant 2 qui obture l'ouverture à grilles 4. Pour inverser la poussée du turboréacteur, le capot coulissant 2 est déplacé en position aval et les volets 20 pivotent en position d'obturation de manière à dévier le flux secondaire vers les grilles 4 et de former un flux inversé guidé par les grilles 4.
Comme indiqué sur les figures 2 à 6, un coulisseau 24 d'entraînement d'un volet 20 (ou de deux volets 20 placés de part et d'autre du coulisseau 24) est monté mobile dans deux glissières latérales 33 de guidage en translation ménagée dans une structure du capot coulissant 2.
Le coulisseau d'entraînement 24 est relié à une extrémité aval du volet 20 par l'intermédiaire d'une bielle d'entraînement 30 articulée sur le volet autour d'un axe 31 et sur le coulisseau 24 autour d'un axe transversal 26, de sorte qu'un mouvement de translation du coulisseau 24 dans ses glissières de guidage 33 s'accompagne d'un pivotement de la bielle 30 et par conséquent du volet 20.
Les glissières de guidage 33 (voir figures 5 et 6) sont disposées de part et d'autre du coulisseau d'entraînement 24, chacune recevant une extrémité, pourvue d'un patin ou galet 32, de l'axe transversal 26 d'articulation de la (ou des) bielle(s) d'entraînement 30 sur une extrémité du coulisseau d'entraînement 24.
Ici, le coulisseau d'entraînement forme un tronçon mobile intermédiaire 24 d'un vérin d'actionnement 22 "télescopique" disposé selon un axe longitudinal de l'inverseur.
Ce vérin d'actionnement 22, pneumatique, électrique ou hydraulique, comporte une base tubulaire 23 liée, fixe ou rotulée, à la nacelle externe en amont (en 3) de l'inverseur 1. La base 23 loge le coulisseau d'entraînement 24 ainsi qu'une tige terminale 25, tous deux montés, indépendamment l'un de l'autre, axialement coulissant dans la base 23 du vérin 22.
Une extrémité aval de la tige terminale 25 est reliée au capot coulissant 2 par l'intermédiaire d'un axe transversal d'entraînement 27 logé dans une cavité 28 de forme oblongue perpendiculairement à la direction de déplacement du capot 2, et pratiquée dans une ferrure 29 du capot coulissant 2. Cette cavité 28 permet d'éviter un alignement de points hyperstatiques entre la base 23 du vérin 22, l'axe de pivotement 26 à l'extrémité du tronçon mobile 24 et l'axe d'entraînement 27 à l'extrémité de la tige 25.
Le vérin 22 est commandé de manière à entraîner le coulisseau 24 en translation dans ses glissières de guidage 33 lorsque le capot coulissant 2 est dans une phase terminale de sa course de translation vers l'aval. II importe en effet de pouvoir évacuer l'air capté par l'entrée du turboréacteur de manière égale en poussée directe ou inversée, et plus particulièrement lors de l'inversion de poussée durant laquelle la réduction de la section du canal 10 par les volets 20 doit pouvoir être compensée par l'augmentation de la section de l'accès offert en amont de l'inverseur par les grilles de déviation 4 lorsqu'elles sont découvertes par le recul du capot mobile 2.
Ainsi, dans une première phase de l'inversion de poussée (voir figure 2), le déploiement de la tige 25 hors du vérin 22 est engagé de manière à déplacer le capot 2 vers l'aval, tandis que le tronçon 24 reste rétracté dans le base 23 du vérin 22 et que le ou les volets 20 restent donc rétractés dans le capot coulissant 2.
Lorsque le capot coulissant 2 atteint une phase terminale de sa course de translation vers l'aval (voir figure 3), le déploiement du tronçon intermédiaire 24 hors de la base 23, jusqu'ici différé, est engagé et effectué plus rapidement que celui de la tige 25. Le déplacement de l'axe 26 dans les glissières 33 est répercuté sur le volet 20 par l'intermédiaire de la bielle 30.
La course de déploiement du tronçon 24 peut se terminer après celle de la tige 25 ou en même temps. En situation d'inversion de poussée (voir figure 4), les axes 26 et 27 se sont rejoints en aval. Bien évidemment, la présente invention n'est pas limitée à une séquence d'actionnement particulière du tronçon 24 et de la tige 25, leurs courses respectives devant être réalisées de manière à ce que la pression aérodynamique amont soit maintenue sensiblement constante au cours du processus d'inversion de poussée.
Lors du retour en poussée directe, le ou les volets 20 peuvent être totalement ou partiellement rétractés avant ou pendant le déplacement vers l'amont du capot mobile 2 pour recouvrir les grilles 4.
Les glissières latérales de guidage 33 assurent une reprise d'effort qui permet d'éviter un risque de flambage du vérin 22 dû à la pression aérodynamique sur les volets 20.
Dans la variante de réalisation illustrée sur les figures 7 à 11 , les moyens d'actionnement du capot coulissant 102 et du volet 120 sont distincts.
Le déplacement du capot mobile 102 est commandé par un vérin (non représenté) pneumatique, électrique ou hydraulique. Chaque partie hémicylindrique du capot 102 comporte une glissière 133 (voir figure 9) s'étendant en longueur dans un plan transversal, pour le guidage en translation d'un coulisseau d'entraînement 142.
La glissière 133 forme un arc de cercle sensiblement concentrique avec la circonférence du capot coulissant 102 (voir figures 7 et 11). Un même coulisseau d'entraînement 142 est relié, par l'intermédiaire de bielles 130 articulées autour d'axes 131 et 143 parallèles à l'axe longitudinal de l'inverseur, à plusieurs volets d'inversion 120 répartis sur la circonférence de chaque partie hémicylindrique du capot 102.
Le coulisseau d'entraînement 142 présente une portion de longueur dotée d'une denture 144 prévue pour engrener avec un pignon 141 entraîné, en rotation dans un plan transversal du capot coulissant 102, par un actionneur électrique 140. Ainsi, le déplacement du coulisseau 142 dans sa glissière 133 provoque un pivotement des bielles d'entraînement 130 et des volets 120 vers la position d'obturation du canal annulaire 110. Un ou plusieurs connecteurs d'alimentation de puissance (non représentés) sont disposés de manière à mettre l'actionneur électrique 140 sous tension lorsque le capot coulissant 102 atteint une phase terminale de sa course de translation vers l'aval.
Le coulisseau 142 peut être maintenu en position de repos (en poussée directe) par un verrou dédié ou par le pignon 141 lui-même.
La figure 12 illustre encore une autre variante de réalisation qui s'apparente à la forme de réalisation précédente. Ici, le déplacement du coulisseau d'entraînement 242 dans sa glissière est assuré par un vérin d'actionnement 245 de préférence électrique disposé parallèlement à la glissière de guidage du coulisseau 242, et articulé par une première extrémité
(en 246) sur une structure du capot coulissant 202 et par une seconde extrémité (en 247) sur le coulisseau d'entraînement 242.
L'actionnement du vérin 245 en phase terminale de la course de recul du capot coulissant 202 entraîne le coulisseau 142 dans sa glissière et provoque ainsi un pivotement de la bielle 230 et du volet 220 vers la position d'obturation du canal annulaire.
L'invention permet de modifier facilement la longueur d'une bielle d'entraînement 30, 130 ou 230 ou la position de son axe d'articulation 31 , 131 ou 231 sur le volet d'inversion correspondant afin d'ajuster l'efficacité de l'obturation du canal annulaire par le volet lors de l'inversion de poussée. Il est aussi possible de disposer des bielles d'entraînement 30, 130 ou 230 de longueurs différentes pour les différents volets, en vue de créer des chicanes au flux contournant les volets (les volets pouvant avoir des parties en recouvrement) pour ajouter aux fuites directes des effets de tourbillons améliorant la traînée à la sortie de la section d'éjection. Enfin, les grilles de déviation 4, 104 étant fixes et placées en amont de la structure de l'inverseur, celles ci sont placées dans un environnement de lignes aérodynamiques épaisses. La définition du diamètre interne des grilles 4, 104 est facile à gérer notamment pour réduire la longueur de déplacement du capot coulissant 2, 102, 202 car la section totale d'échappement par les grilles 4, 104 est un multiple de leur longueur et du diamètre interne. On comprendra que pour une même section d'échappement, plus le diamètre est grand plus la longueur de la grille est réduite.
Comme mentionné dans le cas où un même actionneur 22 commande le capot mobile 2 et les volets 20, il convient de noter que les modes de réalisations précédemment décrits dans lesquels le capot mobile 2 et les volets 20 sont équipés d'actionneurs distincts ne sont pas non plus limités à une séquence d'actionnement particulière desdits actionneurs, ceux-ci devant être commandés de manière à ce que la pression aérodynamique amont soit maintenue sensiblement constante au cours du processus d'inversion de poussée.
Bien que l'invention ait été décrite avec des exemples particuliers de réalisation, il est bien évident qu'elle n'y est nullement limitée et qu'elle comprend tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci entrent dans le cadre de l'invention.

Claims

REVENDICATIONS
1.- Inverseur de poussée (1) pour nacelle de turboréacteur double flux comprenant, d'une part, des moyens de déviation (4, 104) d'au moins une partie d'un flux d'air du turboréacteur, et d'autre part, au moins un capot mobile (2, 102, 202) en translation selon une direction sensiblement parallèle à un axe longitudinal de la nacelle et présentant au moins un volet (20, 120) monté pivotant par une extrémité amont sur le capot mobile, ledit capot mobile étant apte à passer alternativement d'une position de fermeture dans laquelle il assure, le volet étant en position rétractée, la continuité aérodynamique de la nacelle et couvre les moyens de déviation, à une position d'ouverture dans laquelle il ouvre un passage dans la nacelle et découvre les moyens de déviation, le volet étant en position pivotée dans laquelle il est apte à venir obturer une partie d'un canal annulaire (10, 110) de la nacelle, caractérisé en ce qu'un coulisseau (24; 142; 242) d'entraînement du volet (20; 120) est monté mobile dans au moins une glissière (33; 133) de guidage en translation ménagée dans une structure du capot coulissant (2; 102; 202), et est relié à une extrémité aval du volet (20; 120) par l'intermédiaire d'une bielle d'entraînement (30; 130; 230), de sorte qu'un mouvement de translation du coulisseau (24; 142; 242) dans sa glissière de guidage (33; 133) s'accompagne d'un pivotement de la bielle (30; 130; 230) et par conséquent du volet (20; 120), et en ce que des moyens d'actionnement (22; 140; 245) sont prévus pour entraîner le coulisseau (24; 142; 242) en translation dans sa glissière de guidage (33; 133) lorsque le capot coulissant (2; 102; 202) est dans une phase de translation vers l'aval.
2 - Inverseur de poussée selon la revendication 1 , caractérisé en ce que les moyens d'actionnement (22; 140; 245) sont prévus pour entraîner le coulisseau (24; 142; 242) en translation dans sa glissière de guidage (33; 133) lorsque le capot coulissant (2; 102; 202) est dans une phase terminale de sa course en translation vers l'aval
3.- Inverseur de poussée selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que le coulisseau d'entraînement forme un tronçon mobile intermédiaire (24) d'un vérin d'actionnement (22) disposé selon un axe longitudinal de l'inverseur, lequel vérin d'actionnement (22) comporte une base tubulaire (23) liée à la nacelle externe en amont de l'inverseur (1) et qui loge le coulisseau d'entraînement (24) ainsi qu'une tige terminale (25), tous deux montés, indépendamment l'un de l'autre, axialement coulissant dans la base (23) du vérin (22), une extrémité aval de la tige terminale (25) étant reliée au capot coulissant (2).
4.- Inverseur de poussée selon la revendication 3, caractérisé en ce que l'extrémité de la tige terminale (25) du vérin d'actionnement (22) est reliée au capot coulissant (2) par l'intermédiaire d'un axe transversal d'entraînement (27) logé dans une cavité (28) de forme oblongue perpendiculairement à la direction de déplacement du capot (2), et pratiquée dans une structure (29) du capot coulissant (2).
5.- Inverseur de poussée selon la revendication 3 ou 4, caractérisé en ce que les glissières (33) de guidage en translation du coulisseau d'entraînement (24) sont au nombre de deux et disposées de part et d'autre du coulisseau d'entraînement (24), chacune de ces glissières (33) recevant une extrémité, pourvue de préférence d'un patin ou galet (32), d'un axe transversal (26) d'articulation de la bielle d'entraînement (30) sur le coulisseau d'entraînement (24).
6.- Inverseur de poussée selon l'une quelconque des revendications 1 ou 2, caractérisé en ce que la glissière (133) de guidage en translation du coulisseau d'entraînement (142; 242) s'étend en longueur dans un plan transversal du capot coulissant (102; 202) et forme un arc de cercle sensiblement concentrique avec la circonférence du capot coulissant (102; 202), et en ce que ladite bielle d'entraînement (130; 230) est articulée sur le volet (120) et sur le coulisseau d'entraînement (142; 242) autour d'axes (131 , 143; 231 , 243) sensiblement parallèles à un axe longitudinal de l'inverseur.
7 - Inverseur de poussée selon la revendication 6, caractérisé en ce que le coulisseau d'entraînement (142; 242) est relié à une pluralité de volets (120) répartis sur la circonférence du capot coulissant (102; 202).
8.- Inverseur de poussée selon la revendication 6 ou 7, caractérisé en ce que le coulisseau d'entraînement (142) présente une portion de longueur dotée d'une denture (144) prévue pour engrener avec un pignon (141) entraîné, en rotation dans un plan transversal du capot coulissant (102), par un actionneur (140).
9.- Inverseur de poussée selon la revendication 8, caractérisé en ce que l'actionneur (140) est électrique, et mis sous tension lorsque le capot coulissant (102) atteint une phase terminale de sa course de translation vers l'aval.
10.- Inverseur de poussée selon la revendication 6 ou 7, caractérisé en ce qu'un vérin (245) d'actionnement du coulisseau d'entraînement (242), disposé parallèlement à la glissière de guidage du coulisseau (242), est articulé par une première extrémité (en 246) sur une structure du capot coulissant (202) et par une seconde extrémité (en 247) sur le coulisseau d'entraînement (242).
11.- Inverseur de poussée selon l'une des revendications 1 à 10, caractérisé en ce que le capot coulissant (2; 102; 202) comporte une pluralité de volets (20; 120) répartis sur sa circonférence et comportant chacun des bielles d'entraînement (30; 130; 230) de longueurs différentes.
12.- Nacelle de turboréacteur double flux, caractérisé en ce qu'elle comprend au moins un inverseur de poussée selon l'une quelconque des revendications 1 à 11.
PCT/FR2007/001574 2006-10-23 2007-09-26 Inverseur de poussée à grilles pour moteur à réaction WO2008049986A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2666496A CA2666496C (fr) 2006-10-23 2007-09-26 Inverseur de poussee a grilles pour moteur a reaction
EP07848288.2A EP2084385B1 (fr) 2006-10-23 2007-09-26 Inverseur de poussée à grilles pour moteur à réaction
BRPI0717339-3A2A BRPI0717339A2 (pt) 2006-10-23 2007-09-26 Reversor de empuxo e nacela de turboélice
CN2007800392580A CN101529073B (zh) 2006-10-23 2007-09-26 用于喷气发动机具有栅格的推力反向装置
US12/446,704 US8677732B2 (en) 2006-10-23 2007-09-26 Thrust reverser with grids for jet engine
ES07848288.2T ES2515143T3 (es) 2006-10-23 2007-09-26 Inversor de empuje con rejillas para motor a reacción

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0609265 2006-10-23
FR0609265A FR2907512B1 (fr) 2006-10-23 2006-10-23 Inverseur de poussee a grilles pour moteur a reaction

Publications (1)

Publication Number Publication Date
WO2008049986A1 true WO2008049986A1 (fr) 2008-05-02

Family

ID=38055603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/001574 WO2008049986A1 (fr) 2006-10-23 2007-09-26 Inverseur de poussée à grilles pour moteur à réaction

Country Status (9)

Country Link
US (1) US8677732B2 (fr)
EP (1) EP2084385B1 (fr)
CN (1) CN101529073B (fr)
BR (1) BRPI0717339A2 (fr)
CA (1) CA2666496C (fr)
ES (1) ES2515143T3 (fr)
FR (1) FR2907512B1 (fr)
RU (1) RU2009118515A (fr)
WO (1) WO2008049986A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011018569A2 (fr) 2009-08-14 2011-02-17 Aircelle Dispositif d'inversion de poussée

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2915733B1 (fr) * 2007-05-04 2009-06-05 Airbus France Sas Dispositif de sortie d'air mobile pour un aeronef
FR2917788B1 (fr) * 2007-06-19 2009-07-24 Aircelle Sa Actionneur double action a effet programme
EP2479414B1 (fr) * 2007-08-08 2015-06-10 Rohr, Inc. Tuyère de soufflante à surface variable avec flux de dérivation
US9759087B2 (en) 2007-08-08 2017-09-12 Rohr, Inc. Translating variable area fan nozzle providing an upstream bypass flow exit
US8170771B2 (en) * 2008-06-30 2012-05-01 Honeywell International Inc. Fluid-powered thrust reverser actuation system speed control
FR2946094B1 (fr) 2009-06-02 2014-04-18 Aircelle Sa Inverseur de poussee pour nacelle de turboreacteur double flux.
FR2946696B1 (fr) * 2009-06-10 2012-04-20 Aircelle Sa Dispositif d'inversion de poussee
FR2954410B1 (fr) * 2009-12-18 2014-07-04 Aircelle Sa Cadre avant pour une structure d'inverseur de poussee a grilles de deviation
US8875486B2 (en) 2010-05-17 2014-11-04 Rohr, Inc. Guide system for nacelle assembly
US8511973B2 (en) 2010-06-23 2013-08-20 Rohr, Inc. Guide system for nacelle assembly
US20120079805A1 (en) * 2010-09-30 2012-04-05 Alan Roy Stuart Thrust reverser assembly
FR2966434B1 (fr) * 2010-10-21 2013-05-31 Sagem Defense Securite Systeme d'actionnement pour un ensemble de propulsion d'un avion
FR2966882B1 (fr) * 2010-11-03 2017-10-27 Aircelle Sa Inverseur de poussee pour turboreacteur d'aeronef a nombre d'actionneurs reduit
FR2966883B1 (fr) 2010-11-03 2012-11-02 Aircelle Sa Dispositif d'inversion de poussee sans bielle dans la veine
FR2978802B1 (fr) * 2011-08-05 2017-07-14 Aircelle Sa Inverseur a grilles mobiles et tuyere variable par translation
FR2978800B1 (fr) * 2011-08-05 2014-05-23 Aircelle Sa Nacelle de turboreacteur a tuyere variable
FR2994586B1 (fr) * 2012-08-20 2014-08-08 Aircelle Sa Ensemble de poussee a grilles pour turboreacteur d'aeronef
US10145335B2 (en) * 2012-09-28 2018-12-04 United Technologies Corporation Turbomachine thrust reverser
US9573695B2 (en) 2013-02-22 2017-02-21 United Technologies Corporation Integrated nozzle and plug
US9670876B2 (en) 2013-02-22 2017-06-06 United Technologies Corporation Tandem thrust reverser with sliding rails
US9447749B2 (en) * 2013-04-02 2016-09-20 Rohr, Inc. Pivoting blocker door for thrust reverser
FR3008741B1 (fr) * 2013-07-17 2017-04-28 Aircelle Sa Systeme inverseur de poussee electrique pour nacelle de moteur d'aeronef et nacelle de moteur d'aeronef ainsi equipee
DE102013225045A1 (de) * 2013-12-05 2015-06-11 Technische Universität Dresden Schubumkehreinheit für ein Strahltriebwerk
DE102013226770A1 (de) 2013-12-19 2015-06-25 Liebherr-Aerospace Lindenberg Gmbh Fluggasturbine mit einer Triebwerksverkleidung mit Schubumkehrvorrichtung
DE102013226767A1 (de) 2013-12-19 2015-07-09 Liebherr-Aerospace Lindenberg Gmbh Fluggasturbine mit einer Schubumkehrvorrichtung mit Kaskadenelementen und integriertem Zahnstangenantrieb
FR3023325B1 (fr) * 2014-07-04 2016-07-15 Aircelle Sa Cadre arriere pour une structure d'inverseur de poussee a grilles de deviation
DE102014219068B4 (de) * 2014-09-22 2021-02-18 Premium Aerotec Gmbh Fluggasturbinenschubumkehrvorrichtung mit Führungselementen
US9784214B2 (en) * 2014-11-06 2017-10-10 Rohr, Inc. Thrust reverser with hidden linkage blocker doors
US10024270B2 (en) * 2015-10-13 2018-07-17 Rohr, Inc. Vibration damping drag link fitting for a thrust reverser
US10655564B2 (en) 2016-05-13 2020-05-19 Rohr, Inc. Thrust reverser system with hidden blocker doors
US9976696B2 (en) 2016-06-21 2018-05-22 Rohr, Inc. Linear actuator with multi-degree of freedom mounting structure
US11022071B2 (en) * 2016-12-21 2021-06-01 The Boeing Company Load distribution panel assembly, system and method
GB2576720A (en) * 2018-08-28 2020-03-04 Safran Nacelles Ltd Apparatus for providing an electrical connection
FR3086007B1 (fr) * 2018-09-18 2020-09-04 Safran Nacelles Nacelle de turboreacteur avec un inverseur de poussee a grilles comprenant un secteur de commande des volets
FR3097275B1 (fr) * 2019-06-14 2022-12-16 Safran Nacelles Inverseur de poussée à capot mobile comprenant un mécanisme de diminution de poussée indépendant du capot mobile
FR3105304B1 (fr) 2019-12-19 2021-12-10 Safran Nacelles Inverseur de poussée avec système d’actionnement anti-flambage
CN111636978B (zh) * 2020-06-16 2021-06-18 南京航空航天大学 一种适用于涡轮基循环组合发动机的流量调节机构
CN113879557A (zh) * 2020-07-02 2022-01-04 中国航发商用航空发动机有限责任公司 反推叶栅装置制造方法、制造工装及反推叶栅装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3262268A (en) * 1965-06-07 1966-07-26 Gen Electric Thrust reverser
US3280562A (en) * 1963-09-30 1966-10-25 Northwest Airlines Inc Thrust reversing device for fan type jet engines
US3511055A (en) * 1968-05-29 1970-05-12 Rohr Corp Thrust reverser
US4005822A (en) * 1975-12-22 1977-02-01 Rohr Industries, Inc. Fan duct thrust reverser
GB2045179A (en) * 1979-03-30 1980-10-29 Gen Electric Thrust reverser for a long duct fan engine
US4909442A (en) * 1984-05-14 1990-03-20 The Boeing Company Actuation system for a blocker door in a jet engine nacelle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2622929A1 (fr) * 1987-11-05 1989-05-12 Hispano Suiza Sa Inverseur de poussee de turboreacteur a grilles,a section variable d'ejection
FR2846377B1 (fr) * 2002-10-25 2006-06-30 Hispano Suiza Sa Inverseur de poussee electromecanique pour turboreacteur a controle permanent de position

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3280562A (en) * 1963-09-30 1966-10-25 Northwest Airlines Inc Thrust reversing device for fan type jet engines
US3262268A (en) * 1965-06-07 1966-07-26 Gen Electric Thrust reverser
US3511055A (en) * 1968-05-29 1970-05-12 Rohr Corp Thrust reverser
US4005822A (en) * 1975-12-22 1977-02-01 Rohr Industries, Inc. Fan duct thrust reverser
GB2045179A (en) * 1979-03-30 1980-10-29 Gen Electric Thrust reverser for a long duct fan engine
US4909442A (en) * 1984-05-14 1990-03-20 The Boeing Company Actuation system for a blocker door in a jet engine nacelle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011018569A2 (fr) 2009-08-14 2011-02-17 Aircelle Dispositif d'inversion de poussée
US9115668B2 (en) 2009-08-14 2015-08-25 Aircelle Thrust reversal device

Also Published As

Publication number Publication date
FR2907512B1 (fr) 2008-12-12
CN101529073A (zh) 2009-09-09
CN101529073B (zh) 2013-08-07
EP2084385A1 (fr) 2009-08-05
FR2907512A1 (fr) 2008-04-25
US8677732B2 (en) 2014-03-25
EP2084385B1 (fr) 2014-07-16
RU2009118515A (ru) 2010-11-27
CA2666496C (fr) 2015-06-23
CA2666496A1 (fr) 2008-05-02
ES2515143T3 (es) 2014-10-29
BRPI0717339A2 (pt) 2013-10-15
US20100139242A1 (en) 2010-06-10

Similar Documents

Publication Publication Date Title
EP2084385B1 (fr) Inverseur de poussée à grilles pour moteur à réaction
EP1128052B1 (fr) Inverseur de poussée à grilles aubagées de déviation à structure arrière fixe
CA2763523A1 (fr) Inverseur de poussee pour nacelle de turboreacteur double flux
EP2156042A1 (fr) Actionneur lineaire a action multiple
EP2776699B1 (fr) Dispositif d'inversion de poussée
CA2654362A1 (fr) Inverseur de poussee formant une tuyere adaptative
WO2009136096A2 (fr) Nacelle de turboréacteur à double flux
EP2193594A2 (fr) Actionneur lineaire telescopique double action a systeme d'entraînement a moteur unique
CA2776262A1 (fr) Dispositif d'inversion de poussee
FR2949141A1 (fr) Dispositif d'inversion de poussee
WO2013021108A1 (fr) Nacelle de turboréacteur à tuyère variable
EP2737193B1 (fr) Ensemble propulsif d'aéronef
FR2966882A1 (fr) Inverseur de poussee pour turboreacteur d'aeronef a nombre d'actionneurs reduit
FR2934326A1 (fr) Dispositif d'inversion de poussee
CA2792973A1 (fr) Dispositif d'inversion de poussee
WO2010066957A1 (fr) Nacelle de turboreacteur a section de tuyere variable
FR3100578A1 (fr) Inverseur de poussée muni d’une cinématique à câble pour volets écopants

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780039258.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07848288

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007848288

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2666496

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009118515

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12446704

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0717339

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20090422