WO2008047856A1 - Image projection apparatus - Google Patents

Image projection apparatus Download PDF

Info

Publication number
WO2008047856A1
WO2008047856A1 PCT/JP2007/070329 JP2007070329W WO2008047856A1 WO 2008047856 A1 WO2008047856 A1 WO 2008047856A1 JP 2007070329 W JP2007070329 W JP 2007070329W WO 2008047856 A1 WO2008047856 A1 WO 2008047856A1
Authority
WO
WIPO (PCT)
Prior art keywords
control mode
color
light source
light
image
Prior art date
Application number
PCT/JP2007/070329
Other languages
French (fr)
Japanese (ja)
Inventor
Naoaki Tani
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Publication of WO2008047856A1 publication Critical patent/WO2008047856A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources

Definitions

  • the present invention relates to an image projection apparatus.
  • an image projection apparatus such as a projector
  • a method of adjusting the brightness of a projected image a method of controlling the magnitude of a drive current applied to a light source and a pulsed drive current applied to the light source
  • a method for controlling the duty ratio is known.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-70443
  • the present invention has been made in view of the above-described circumstances, and it is an object of the present invention to provide an image projection apparatus capable of effectively reducing power consumption while suppressing a change in color of a projection image.
  • a first aspect of the present invention modulates illumination light emitted from the light source unit based on a light source unit having a plurality of light sources that generate illumination light of different colors and an input video signal.
  • a second control mode for variably controlling the duty ratio of the current detecting a feature amount of the display image from the video signal corresponding to one or a plurality of frames, and based on the feature amount! / Select one of the control mode and the second control mode! /, Or either of them, or both, and perform image projection to control drive of the light source in the selected control mode Providing equipment.
  • each light source of the light source unit is in a control mode corresponding to the feature amount of the video signal, specifically, a first control mode in which the light amount is adjusted by variably controlling the magnitude of the light source drive current,
  • drive control is performed in one of the second control modes in which the light amount is adjusted by variably controlling the duty ratio of the drive current of the light source, or in a control mode in which both are combined. Therefore, the light quantity of each light source can be adjusted by an appropriate control mode corresponding to the feature amount of the display image.
  • control unit may detect the feature amount for each color of the illumination light and select a control mode for each color of the illumination light.
  • the feature amount of the display image is detected for each color, and the light source of each color is driven and controlled in the control mode selected according to the feature amount according to the feature amount. Therefore, the amount of light can be adjusted according to an appropriate control mode for each color.
  • the control unit detects luminance as a feature amount of the display image, selects the second control mode when the luminance is equal to or higher than a predetermined value, and the luminance is predetermined.
  • the first control mode may be selected when the value is less than the value of.
  • the second control mode in which the magnitude of the drive current is not changed is selected. Power to avoid S
  • the power consumption can be reduced while allowing a slight color change by selecting the second control mode.
  • the control unit detects the brightness of the image for each color of the illumination light, and when the luminance is equal to or higher than a predetermined value, the control unit detects the light source corresponding to the color.
  • the light source corresponding to the color may be drive controlled in the first control mode.
  • the brightness of the display image is detected for each color, and the light source control mode corresponding to each color is selected depending on whether this brightness is a predetermined value or more.
  • the drive control of the light source can be performed.
  • control unit may detect a bias of a color component as the feature amount of the image and may select a control mode according to the bias of the color component.
  • the deviation of the color component since the deviation of the color component is detected as the feature amount of the image and the control mode is selected according to the deviation of the color component, the deviation of the color component can be reflected in the drive control of the light source. it can.
  • driving the light sources in the second control mode controls the color tone rather than reducing power consumption.
  • each light source when displaying an image with a color component bias that does not cause a significant change in color tone, each light source is driven and controlled in the first control mode, allowing a slight color tone change. Effectively reduce power consumption.
  • the control unit converts the color of the illumination light having a color change due to increase / decrease in drive current larger than a predetermined value as the color component of the display image to the other illumination light.
  • at least the light source corresponding to the color may be dynamically controlled in the second control mode '.
  • a change in color tone due to increase / decrease in drive current is greater than a predetermined value.
  • a small amount is displayed.
  • changes in color tone can be prevented by selecting the second control mode that does not increase or decrease the drive current.
  • the power consumption can be reduced by selecting the first control mode.
  • all light sources are set in the first control mode.
  • Drive control may be performed.
  • the power consumption can be effectively reduced while allowing a slight change in color tone.
  • control unit may detect the number of colors in the image and select a control mode according to the number of colors! /.
  • the number of colors is detected as the feature quantity of the image, and the control mode is selected according to the number of colors, so that the number of colors can be reflected in the drive control of the light source. For example, color change When displaying an image with a number of colors that appears prominently, color control is more important than power consumption reduction by driving and controlling each light source in the second control mode. On the other hand, when displaying an image with the number of colors such that the color tone does not change significantly, the power consumption is controlled while driving the light sources in the first control mode while allowing some color change. The power S is used to further reduce the power consumption.
  • control unit may drive and control all of the light sources in the first control mode when the number of colors in the image is less than a predetermined number! /.
  • a second aspect of the present invention modulates illumination light emitted from the light source unit based on a light source unit having a plurality of light sources that generate illumination light of different colors and an input video signal.
  • a first control mode for variably controlling the magnitude of the drive current applied to each of the light sources, and a control unit for driving and controlling each of the light sources of the light source unit.
  • a second control mode for variably controlling a duty ratio of a drive current applied to the light source, and a color change due to a change in the magnitude of the drive current is larger than a predetermined value.
  • the light source is driven in the second control mode.
  • There is provided an image projection apparatus that controls and controls the light source whose color change is equal to or less than a predetermined value in the first control mode.
  • the light source when an LED is used as the light source, there is a change in color tone due to an increase or decrease in drive current for an LED that emits red illumination light or an LED that emits blue illumination light. Since it is smaller than the fixed value, the light amount is adjusted in the first control mode. For LEDs that emit green illumination light, the color change due to increase or decrease in drive current is greater than that of the other light sources, so the light intensity is adjusted in the second control mode.
  • the image projection device of the present invention it is possible to effectively reduce the power consumption while suppressing the change in the color of the projection image.
  • FIG. 1 is a side view showing a schematic configuration of an image projection apparatus according to an embodiment of the present invention.
  • FIG. 2 is a block diagram showing a schematic internal configuration of the image processing apparatus shown in FIG.
  • FIG. 3 is a diagram for explaining the operation of the gain adjustment circuit shown in FIG. 2.
  • FIG. 4 is a diagram for explaining the operation of the gain adjustment circuit shown in FIG. 2.
  • FIG. 5 is a diagram for explaining a first control mode.
  • FIG. 6 is a diagram for explaining a second control mode.
  • FIG. 7 is a graph showing the drive current / single light quantity characteristics and drive current power consumption characteristics of an LED.
  • FIG. 8 is a diagram showing a change in color tone when the drive current is increased or decreased.
  • FIG. 9 is a diagram for explaining light amount control of the image projection apparatus according to an embodiment of the present invention.
  • FIG. 10 is a diagram in which the color tone of each pixel of a display image formed based on a video signal is plotted in the xy space using the three primary colors of sRGB as a reference, and shows an example of a flower image.
  • FIG. 11 is a diagram in which the color tone of each pixel of a display image formed based on a video signal is plotted in the xy space with the three primary colors of sRGB as a reference, and shows an example of a sunset image.
  • FIG. 12 is a diagram in which the color tone of each pixel of a display image formed based on a video signal is plotted in the xy space using the three primary colors of sRGB as a reference, and is a diagram showing an example of a presentation image.
  • FIG. 13 is a diagram showing a first modification of the light source unit shown in FIG.
  • FIG. 14 is a diagram showing a second modification of the light source unit shown in FIG. It is a top view when seen from the emission end side of bright light.
  • FIG. 15 is a longitudinal sectional view of the light source unit shown in FIG.
  • FIG. 16 is a diagram for explaining the rotation state and light transmission efficiency of a rotating rod provided in the light source unit shown in FIG.
  • FIG. 17 is a diagram showing the magnitude relationship between the maximum current values of the drive currents of the LEDs of the respective colors provided in the light source unit according to the second modification.
  • FIG. 18 is a diagram showing an example of light amount control of LEDs of respective colors included in a light source unit according to a second modification.
  • FIG. 19 is a diagram showing an example of light amount control of LEDs of respective colors included in a light source unit according to a second modification.
  • FIG. 20 is a diagram showing the relationship between the angle of the rotating rod and the light transmission efficiency according to the second modification.
  • FIG. 21 is a diagram showing a schematic configuration of an image projection apparatus according to a third modification.
  • the image projection apparatus 1 includes a light source unit 2, a light guide unit 3 that guides illumination light emitted from the light source unit 2, and illumination guided by the light guide unit 3.
  • a transmissive liquid crystal display panel (light modulator) 4 that modulates light and a projection optical unit 5 that projects illumination light modulated by the transmissive liquid crystal display panel 4 onto a screen S are provided.
  • illustration of the polarizing plate and the like is omitted.
  • the light source unit 2 includes a plurality of light sources that emit illumination lights of different colors and a light combining element 6 that guides the illumination light emitted from each light source to a common optical path.
  • the light source includes an LED 2a that emits red illumination light, an LED 2b that emits green illumination light, and an LED 2c that emits blue illumination light.
  • the light guide unit 3 has various optical systems such as a taper rod that appropriately adjusts the parallelism and the like.
  • the LEDs 2a, 2b, and 2c are sequentially turned on in a time-sharing manner, and the illumination light is guided to the common light guide unit 3 by the light combining element 6, and this light guide
  • the unit 3 leads to the transmissive liquid crystal display panel 4.
  • the illumination light on which the display image is superimposed by passing through the transmissive liquid crystal display panel 4 is magnified by the projection optical unit 5 and projected onto the screen S. As a result, the display image is projected on the screen S.
  • the transmissive liquid crystal display panel 4 is driven and controlled in synchronization with the lighting timing of the LEDs 2a, 2b, and 2c. Specifically, LED2c emits light based on the red video signal during the period in which LED2a emits light, and LED2c emits based on the green video signal in the period in which LED2b emits light. During the period, the transmissive liquid crystal display panel 4 is driven and controlled based on the blue video signal. Since the light emission periods of the LEDs 2a, 2b, and 2c are set to be very short, the observer can have a visual effect that is almost the same as when white illumination light is irradiated.
  • the LEDs 2a, 2b, 2c and the transmissive liquid crystal display panel 4 are controlled by the control unit 10.
  • the control unit 10 includes an image processing circuit 11, a panel drive circuit 12, a CPU 13, and a light source drive circuit 14 as main components.
  • a video signal is input to the image processing circuit 11.
  • the image processing circuit 11 performs known image processing such as interpolation processing and gradation correction processing on the input video signal, and detects the feature amount of the display image based on the video signal corresponding to one frame. .
  • the image processing circuit 11 includes a ⁇ correction circuit 15, a feature amount detection circuit 16, and a gain adjustment circuit 17 as main components.
  • the ⁇ correction circuit 15 generates a linear video signal by performing ⁇ correction on the video signal.
  • the feature amount detection circuit 16 detects the feature amount of the display image based on the video signal corresponding to one frame input from the ⁇ correction circuit 15, outputs the detected feature amount to the CPU 13, and outputs a gain adjustment circuit 17. The feature amount and the video signal are output to
  • the feature amount detection circuit 16 detects feature amounts relating to the luminance of each color from the video signal corresponding to one frame, specifically, the maximum gradation values Rmax, Gmax, Bmax, and these maximum gradation values Rmax. , Gmax, Bmax are output to the CPU 13, and the maximum gradation values R max, Gmax, Bmax and the video signal are output to the gain adjustment circuit 17.
  • the gain adjustment circuit 17 adjusts the level of each light quantity of red, green, and blue, outputs the adjusted video signal to the panel drive circuit 12, and outputs the adjustment state to the CPU 13. Specifically, when the maximum gradation values Rmax, Gmax, and Bmax of each color in the display image are input from the feature amount detection circuit 16, the gain adjustment circuit 17 inputs the maximum gradation values Rmax, Gmax, and Bmax into the image. The gradation value of each pixel of the video signal is corrected so that the maximum display gradation value (for example, 255) of the projection apparatus is obtained, and the corrected video signal is output to the panel drive circuit 12.
  • the maximum display gradation value for example, 255
  • the gain adjustment circuit 17 applies 255 / Rmax to the gradation value of each pixel of the video signal as shown in FIG.
  • the video signal related to the panel transmittance is corrected, and the corrected video signal is output to the panel drive circuit 12.
  • the gain adjustment circuit 17 outputs to the CPU 13 a value obtained by correcting the gradation value of the video signal output to the panel drive circuit 12 to be higher. Specifically, as described above, the gradation of each pixel When 255 / Rmax is multiplied by the value, this coefficient 255 / Rmax is output to CPU13.
  • the CPU 13 corrects the light quantity by multiplying the light quantity of each color by the reciprocal Rmax / 255 of this coefficient.
  • the panel drive circuit 12 changes the transmittance of the transmissive liquid crystal display panel 4 for each pixel based on the gradation value of the video signal from the image processing circuit 11. Thereby, the transmittance of each pixel of the transmissive liquid crystal panel 4 is adjusted according to the video signal. As a result, as described above, the illumination light incident on the transmissive liquid crystal display panel 4 is not converted into the video signal. The display image based on it will be superimposed.
  • the CPU 13 generates control signals for driving and controlling the respective LEDs 2a, 2b, and 2c based on the feature amount and the video signal from the image processing circuit 11, and the generated control signals are used as the light source driving circuit. Output to 14. Specifically, the CPU 13 variably controls the magnitude of the drive current of each LED 2a, 2b, 2c to adjust the amount of light emitted from each LED 2a, 2b, 2c, and each LED 2a , 2b, 2c by controlling the duty ratio of the drive current, respectively, and a second control mode for adjusting the amount of light emitted from each LED 2a, 2b, 2c.
  • the CPU 13 selects one or both of the first control mode and the second control mode according to the feature amount, and sends control signals for the LEDs 2a, 2b, 2c based on the selected control mode. These are generated and output to the light source drive circuit 14.
  • the light source drive circuit 14 applies a drive current to each LED 2a, 2b, 2c based on each control signal from the CPU 13. As a result, the light emission amounts of the LEDs 2a, 2b, 2c are controlled based on the video signal.
  • the CPU 13 is supplied with a mode instruction signal from the user I / F 18 and a power signal from the power circuit 19.
  • User I / F18 has mode specified by user If it is, a signal corresponding to the designated mode is output to the CPU 13 as a mode instruction signal.
  • the power supply circuit 19 determines whether power is supplied from an AC adapter (not shown) or power is supplied from a notch (not shown). Output to CPU13 as power supply signal.
  • the first control mode is a control mode in which the amount of light of each LED 2a, 2b, 2c is adjusted by increasing or decreasing the magnitude of the drive current of each LED 2a, 2b, 2c.
  • the maximum current Imax is set to, for example, the maximum value that can be applied to each LED 2a, 2b, 2c during normal operation. This maximum current Imax is a value that can be set individually for each LED 2a, 2b, 2c.
  • the amount of light emitted from each LED 2a, 2b, 2c is adjusted by changing the magnitude of the drive current applied to each LED 2a, 2b, 2c.
  • the second control mode is a control mode in which the light intensity of each LED 2a, 2b, 2c is adjusted by variably controlling the duty ratio of the drive current of each LED 2a, 2b, 2c.
  • the magnitude of the drive current applied to each LED 2a, 2b, 2c is not changed, for example, by making the maximum current Imax constant and adjusting the current application time, Adjust the amount of light emitted from each LED2a, 2b, 2c.
  • FIG. 7 shows general characteristics of the light amount and the power consumption with respect to the drive current of each LED 2a, 2b, 2c.
  • the horizontal axis represents relative drive current
  • the vertical axis represents relative light intensity or power consumption.
  • each LED 2a, 2b, 2c tends to saturate when the drive current increases to some extent.
  • the power consumption of each LED2a, 2b, 2c increases as the drive current increases, and the increase width ⁇ ⁇ gradually increases as the applied current increases (in Fig. 7, ⁇ ⁇ ⁇ ⁇ ⁇ 1 ⁇ ⁇ 2 ). This is because the forward effect voltage of LEDs 2a, 2b, and 2c slightly increases as the drive current increases.
  • the first control mode is compared with the second control mode by the force S, which effectively reduces the power consumption.
  • FIG. 8 is a diagram showing on the xy color diagram the color expression gamut of red, green, and blue light from the LEDs 2a, 2b, and 2c.
  • the drive current of each LED2a, 2b, 2c is small, it has a wide color gamut as shown by the broken line in the figure, but when the drive current of each LED2a, 2b, 2c is large, red, green, blue
  • Each color tone changes as indicated by the solid line in the figure, and the color expression range tends to narrow.
  • the color tone of the illumination light changes greatly with the increase or decrease of the drive current, especially in the LED 2b that emits green illumination light.
  • LED 2a that emits red illumination light and LED 2c that emits blue illumination light the color change due to increase or decrease in drive current is hardly affected by the drive current.
  • the first control mode that variably controls the magnitude of the drive current of the LEDs 2a, 2b, and 2c is highly effective in reducing the power consumption. As shown in FIG. 8, it has a characteristic that the color tone of the green illumination light changes.
  • the feature quantity detection circuit 16 uses a feature quantity related to the brightness of the display image from the video signal corresponding to one frame, for example, the maximum gradation of each color. Detects max, Gmax, Bmax, outputs these maximum gradation levels Rmax, Gmax, Bmax to the CPU 13, and outputs these maximum gradation levels Rmax, Gmax, Bmax and the video signal to the gain adjustment circuit 17. .
  • the gain adjustment circuit 17 adjusts the level of the video signal of each color based on the maximum gradation values Rmax, Gmax, and Bmax, thereby generating a video signal related to the panel transmittance and a video signal related to the light amount.
  • the video signal related to the transmittance is output to the panel drive circuit 12 and the video signal related to the light quantity is output to the CPU 13.
  • the CPU 13 determines whether the maximum gradation values Rmax, Gmax, Bmax are equal to or greater than a preset threshold value. For the LED corresponding to the color for which the maximum gradation values Rmax, Gmax, and Bmax are determined to be greater than or equal to the threshold value, control by the second control mode is selected, and the maximum gradation value is less than the threshold value. The first control mode is selected for the LED corresponding to the color judged to be present.
  • the CPU 13 As indicated by a in 9, the CPU 13 generates a control signal that applies the maximum current Irmax to the LED 2 a for a period of one frame, and outputs this to the light source drive circuit 14.
  • the CPU 13 As shown in b of 9, the CPU 13 generates a control signal having a duty ratio corresponding to the maximum gradation value Rmax for the LED 2 a and outputs the control signal to the light source driving circuit 14.
  • the current application time is set longer as the maximum gradation straight Rmax is larger. It should be noted that an optimal value can be selected for the panelless driving cycle depending on the design items.
  • the CPU 13 When the maximum red gradation value Rmax is less than the threshold, the CPU 13 has a predetermined duty ratio with respect to the LED 2a as shown in c of FIG. Then, a control signal in the form of a current corresponding to the maximum gradation value Rmax is generated and output to the light source driving circuit 14.
  • the predetermined duty ratio is determined by adopting the duty ratio when the maximum gradation value Rmax matches the threshold value.
  • the CPU 13 does not increase or decrease the current value in the pulse-like waveform, as shown in FIG. 9c, and the current corresponding to the maximum gray level straight Rmax is 1 frame as shown in FIG. A control signal that is continuously applied over a period may be generated.
  • the CPU 13 similarly generates control signals for the LEDs 2b and 2c and outputs them to the light source drive circuit 14.
  • the light source drive circuit 14 When the light source drive circuit 14 receives the control signal generated in this way, the light source drive circuit 14 applies a drive current based on each control signal to each LED 2a, 2b, 2c.
  • the LEDs 2a, 2b, and 2c of each color emit light sequentially with the light amount corresponding to the maximum gradation values Rmax, Gmax, and Bmax, and each illumination light is transmitted through the color composition unit 6 and the light guide unit 7 to the transmissive liquid crystal display. After being guided to the display panel 4 and subjected to light modulation based on the video signal, it is projected onto the screen S by the projection optical unit 5. As a result, the projected image is displayed on the screen S.
  • the feature amount related to the luminance of the display image is detected from the video signal corresponding to one frame, and the control mode is set based on the detection result. Since the selection is made, each LED 2a, 2b, 2c can be driven and controlled in an optimal control mode according to the brightness of the display image.
  • the second control mode that does not change the magnitude of the drive current is selected to reduce the color tone rather than reducing the power consumption. Emphasis on.
  • the first control mode is selected to emphasize the reduction of power consumption over the change in color tone.
  • the brightness of the display image is detected for each color, and each LED 2a, 2b, 2c is driven and controlled in a control mode corresponding to the brightness, so that all the LEDs 2a, 2b , 2c can be driven more precisely than in the case of driving control in the same control mode.
  • the threshold value used by the CPU 13 is set individually for each color. For example, as shown in FIG. 8, for red and blue, the change in color tone due to increase / decrease in the drive current is small, so the power consumption can be effectively reduced by setting the threshold value higher. 1 Actively adopt control mode For green, the change in color tone due to increase / decrease in drive current is larger than that for other colors, so setting the above threshold value lower than for other colors results in a change in color tone and a reduction in power consumption. Adjust the balance. As a result, power S can be reduced more effectively to reduce power consumption.
  • the force is such that the maximum gradation value is detected from the video signal corresponding to one frame and the control mode can be switched in one frame period.
  • control mode can be switched at a period of a plurality of frames by detecting the maximum gradation value of the video signal power corresponding to the plurality of frames.
  • the maximum gradation value of each color of the display image formed based on the video signal is detected, and the control is adopted depending on whether or not the maximum gradation value is equal to or greater than the threshold value.
  • Force S which determined the mode, instead of this, the average gradation value in the display image is obtained for each color, and the second control mode (see Fig. 6) is adopted when this average gradation value is equal to or greater than the threshold value.
  • the first control mode see Fig. 5
  • the control mode that combines the second control mode and the first control mode see Fig. 9c
  • the display image is detected by detecting pixels for which the gradation value is greater than or equal to the threshold for each color.
  • the second control mode (see Fig. 6) is adopted when the number of pixels is greater than or equal to the preset reference number of pixels, and the first control mode is selected when the number of pixels is less than the reference number of pixels.
  • a control mode (see c in Fig. 9) that is a combination of the second control mode and the first control mode.
  • the method for determining whether the display image is bright or not is not limited to the method described above.
  • the second control mode that does not change the color tone is set when the criteria for judging whether or not the display image is bright is set appropriately and the display image is judged to be bright based on this criteria. If it is determined that the displayed image is long, the first control mode is accompanied by a change in color tone but has a high power consumption reduction effect, or a control mode that combines the second control mode and the first control mode. Should be adopted.
  • the maximum luminance value is detected for each color, and based on this maximum luminance value. Therefore, the power to select the control mode of each LED2a, 2b, 2c. Instead, all LEDs 2a, 2b, 2c are the same according to the overall brightness of the display image including red, green, and blue. It ’s a good idea to do this in the wholesale mode!
  • the ability to determine whether the display image is bright or not can be determined arbitrarily. For example, pixels with a gradation value greater than or equal to a predetermined value are extracted from the video signal in one frame, and the number of pixels is If the number of pixels is equal to or greater than the preset reference pixel number, the display image is judged to be bright and all LEDs 2a, 2b, 2c are driven and controlled in the second control mode. If it is less than the number, it may be determined that the display image is long and all the LEDs 2a, 2b, 2c may be driven and controlled in the first control mode. Further, an average gradation value in one frame may be obtained, and it may be determined whether or not the display image is bright based on whether or not the average gradation value is equal to or greater than a threshold value.
  • the control mode designated by the user may be preferentially adopted.
  • the CPU 13 when the CPU 13 receives a signal for designating the first control mode from the user I / F 18, it drives and controls the LEDs 2a, 2b, 2c in the first control mode.
  • the user's intention can be reflected in the drive control of the LEDs 2a, 2b, 2c.
  • the user may select a control mode for each color.
  • a judgment criterion for judging whether the display screen is bright or not such as the threshold value and the number of reference pixels, can be configured by the user! /, .
  • the CPU 13 may switch the control mode based on the power signal from the power circuit 19. For example, since power is supplied from the AC adapter and the power signal indicating the state of V is input, the power that can be consumed is not limited. Employing modes emphasizes color tone over power consumption. On the other hand, during the period when the power supply signal indicating that the power is being supplied from the battery is input, the usable power is limited. Therefore, the CPU 13 operates in the first control mode or the first control described above. Consists of a combination of control mode and second control mode By adopting the control mode, the effect of reducing power consumption is enhanced while allowing color change. Thus, the control mode may be switched according to the power supply state. In addition, when power is supplied from the battery, the control mode can be switched according to the remaining capacity of the battery! /.
  • the first control mode is adopted for colors having a small color change due to increase / decrease in drive current, i.e., red and blue, and colors having a large color change due to increase / decrease in drive current, That is, the second control mode is adopted for green.
  • the control mode is properly used for each color, so that the processing load on the image processing circuit 11 and the CPU 13 can be greatly reduced.
  • the image projection apparatus according to the present embodiment is based on the first embodiment described above in that the control mode is selected according to the color component bias of the display image formed based on the video signal! Different from the image projector.
  • FIG. 10 and FIG. 11 are diagrams in which the color tone of each pixel of the display image formed based on the video signal is plotted in the xy space with reference to the three primary colors of sRGB. An example of an image is shown in Fig. 11.
  • the control unit 10 of the image projection apparatus detects the color tone deviation of the display image from the video signal corresponding to one frame in the feature amount extraction circuit 16, and the CPU 13 based on the detection result. Determines the control mode to be adopted.
  • the color tone of each pixel can be easily determined by performing a matrix calculation process using a known technique, for example, using the RGB signal level of each pixel in the video signal and the matrix of each tristimulus value XYZ of the RGB primary colors. It can be sought.
  • the CPU 13 adopts the second control mode to suppress the color change due to the change in the magnitude of the drive current. Further, the CPU 13 adopts the second control mode for a large number of colors (for example, red in the display image shown in FIG. 11) when the color tone is uneven, thereby increasing the drive current. The color change due to the change in height is suppressed, while for the rarely included colors (for example, green and blue in Fig. 11), the first control mode is used to effectively reduce power consumption.
  • the control mode is selected based on the color deviation of the display image formed based on the video signal. It is possible to effectively reduce power consumption while keeping the color tone change within an allowable range.
  • the first control mode is always adopted for red and blue that are not affected by the color due to the magnitude of the current, regardless of the color tone, and the color changes according to the change in the magnitude of the current. Only for green, which is easy to do, the control mode may be selected according to the color tone deviation. As described above, the power consumption of the LEDs 2a and 2c can be further reduced by always adopting the first control mode.
  • each LED 2a, 2b, 2c is set to the first.
  • Control may be performed in the control mode.
  • the control mode For example, as in a presentation image, there are many pixels represented by the same color! /, And in the case of an image, the color tone of each pixel of the display image formed based on the video signal! / Is the three primary colors of sRGB
  • the number of points representing the color tone is higher than the natural image shown in Fig. 10 and Fig. 11, where the plot tends to appear linearly as shown in Fig. 12. Less is. If this is the case, don't mind the color change.
  • the first control mode that can effectively reduce power consumption should be adopted.
  • the light source unit 2 has three LEDs 2a, 2b, and 2c that emit illumination lights of different colors.
  • LED groups 2, 2b ′, 2 in which a plurality of LEDs emitting illumination light are arranged in an array on the same plane may be used.
  • the light amount control method for each LED is the same as described above.
  • a light source unit 2 ′ as shown in FIGS. 14 to 16 may be used.
  • Fig. 14 is a plan view of the light source unit 2 'when viewed from the emission end side of the illumination light
  • Fig. 15 is a longitudinal sectional view of the light source unit 2'
  • Fig. 16 is a diagram of the rotary head 20 included in the light source unit 2 '. It is a figure for demonstrating a rotation state and the transmission efficiency of light.
  • a plurality of LEDs 2a, a plurality of LEDs 2b, and a plurality of LEDs 2c are arranged on the same circumference.
  • a rotating rod 20 that can rotate around the center axis of the array.
  • the rotating rod 20 At the free end of the rotating rod 20, there is an incident end 20a for taking in the illumination light emitted from each LED, and the lighting timing of each LED 2a, 2b, 2c arranged on the same circumference is provided. Synchronously, when the rotating rod 20 is rotated around the center axis of the array, the illumination light emitted from the LEDs 2a, 2b, 2c facing the incident end 20a of the rotating rod 20 is incident on the rotating end 20a. It is taken into 20 and led to the incident end of the fixed rod 23 through the rotating rod 20.
  • each LED 2a, 2b, 2c has a desired color (for example, white) so that the combined light of the illumination light when all the LEDs 2a, 2b, 2c are turned on is turned on.
  • Determine the maximum drive current For example, as shown in FIG. 17, the maximum drive current Irmax of LED2a, the maximum drive current Igmax of LED2b, and the maximum drive current Ibmax of LED2c are set as follows.
  • the second control mode is adopted, and for red and blue, where the change in color tone due to increase / decrease in drive current is small, the first control mode is adopted to improve power consumption reduction.
  • the green power of the display image and the luminance power to be applied are preset threshold values (for example, the luminance corresponding to the amount of light obtained by the entire LED 2b when one LED 2b is completely turned off).
  • threshold values for example, the luminance corresponding to the amount of light obtained by the entire LED 2b when one LED 2b is completely turned off.
  • one LED 2b may be completely turned off, and the other LED 2b may be controlled with a duty ratio corresponding to the luminance.
  • the light transmission efficiency shows a periodic change depending on the rotation angle ⁇ . Is preferably reduced.
  • each LED 2a, 2b, 2c is led to the common transmissive liquid crystal display panel 4 through the common light guide unit 3.
  • the light guide units 3a, 3b, 3c and the transmission type night-night display non-linears 4a, 4b, 4c may be provided for the LEDs 2a, 2b, 2c, respectively.
  • each illumination light transmitted through the transmissive liquid crystal display panels 4a, 4b, 4c is guided to the same optical combining element 8, and is combined here and then guided to the projection optical unit 5. .
  • a reflective liquid crystal display panel or DMD Digital Micro Mirror
  • DMD Digital Micro Mirror

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Liquid Crystal (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

An image projection apparatus has first control mode for variably controlling the level of an LED drive current, and a second control mode for variably controlling the duty ratio of the LED drive current. A feature quantity of a display image is detected from a video signal that corresponds to one or a plurality of frames, and based on the feature quantity, either the first control mode or the second control mode or the both are selected, and in the selected control mode, LED drive control is performed.

Description

明 細 書  Specification
画像投影装置  Image projection device
技術分野  Technical field
[0001] 本発明は画像投影装置に関するものである。  [0001] The present invention relates to an image projection apparatus.
背景技術  Background art
[0002] 従来、プロジェクタなどの画像投影装置において、投影画像の明るさを調整する方 法として、光源に印加する駆動電流の大きさを制御する方法と、光源にパルス状の 駆動電流を印加し、そのデューティ比を制御する方法とが知られている。  Conventionally, in an image projection apparatus such as a projector, as a method of adjusting the brightness of a projected image, a method of controlling the magnitude of a drive current applied to a light source and a pulsed drive current applied to the light source A method for controlling the duty ratio is known.
特許文献 1 :特開 2005— 70443号公報  Patent Document 1: Japanese Patent Laid-Open No. 2005-70443
発明の開示  Disclosure of the invention
[0003] ところで、光源として LED (発光ダイオード)を使用する場合、 LEDの駆動電流を増 減させることで光量を調整しょうとすると、発光色の色味が変わってしまい、投影画像 の色合!/、が変化すると!/、う不都合があった。  [0003] By the way, when using an LED (light emitting diode) as a light source, if you try to adjust the amount of light by increasing or decreasing the LED drive current, the color of the emitted color will change and the color of the projected image will change! / , There was an inconvenience!
また、光源に印加する駆動電流のデューティ比を制御することにより光量を調整す る場合には、駆動電流を増減させる方法に比べて、消費電力を効果的に低減できな いという不都合があった。  In addition, when adjusting the light intensity by controlling the duty ratio of the drive current applied to the light source, there is a disadvantage that the power consumption cannot be effectively reduced compared to the method of increasing or decreasing the drive current. .
[0004] 本発明は上述した事情に鑑みてなされたものであって、投影画像の色の変化を抑 えながら効果的に消費電力を低減させることのできる画像投影装置を提供することを 目白勺とする。 [0004] The present invention has been made in view of the above-described circumstances, and it is an object of the present invention to provide an image projection apparatus capable of effectively reducing power consumption while suppressing a change in color of a projection image. And
[0005] 本発明の第 1の態様は、異なる色の照明光を発生する複数の光源を有する光源ュ ニットと、入力される映像信号に基づいて、前記光源ユニットから射出された照明光 を変調する光変調部と、前記光源ユニットの各前記光源を駆動制御する制御部とを 備え、前記制御部が、前記光源の駆動電流の大きさを可変制御する第 1制御モード と、前記光源の駆動電流のデューティ比を可変制御する第 2制御モードとを有し、一 または複数のフレームに対応する前記映像信号から表示画像の特徴量を検出し、該 特徴量に基づ!/、て前記第 1制御モード及び前記第 2制御モードの!/、ずれか一方、ま たは、両方を選択し、選択した制御モードにて前記光源の駆動制御を行う画像投影 装置を提供する。 [0005] A first aspect of the present invention modulates illumination light emitted from the light source unit based on a light source unit having a plurality of light sources that generate illumination light of different colors and an input video signal. A light modulation unit, and a control unit that drives and controls each light source of the light source unit, wherein the control unit variably controls the magnitude of the drive current of the light source, and the drive of the light source A second control mode for variably controlling the duty ratio of the current, detecting a feature amount of the display image from the video signal corresponding to one or a plurality of frames, and based on the feature amount! / Select one of the control mode and the second control mode! /, Or either of them, or both, and perform image projection to control drive of the light source in the selected control mode Providing equipment.
[0006] このような構成によれば、光源ユニットから射出された異なる色の照明光は、光変調 部に導かれ、映像信号に基づく光変調がされることにより、表示画像が重畳される。 この場合において、光源ユニットの各光源は、映像信号の特徴量に応じた制御モー ド、具体的には、光源の駆動電流の大きさを可変制御することで光量調整を行う第 1 制御モード、及び、光源の駆動電流のデューティ比を可変制御することで光量調整 を行う第 2制御モードのいずれか一方、或いは、両方を組み合わせた制御モードによ つて駆動制御されることとなる。したがって、表示画像の特徴量に応じた適切な制御 モードにより、各光源の光量を調整することが可能となる。  [0006] According to such a configuration, the illumination light of different colors emitted from the light source unit is guided to the light modulation unit, and the display image is superimposed by performing light modulation based on the video signal. In this case, each light source of the light source unit is in a control mode corresponding to the feature amount of the video signal, specifically, a first control mode in which the light amount is adjusted by variably controlling the magnitude of the light source drive current, In addition, drive control is performed in one of the second control modes in which the light amount is adjusted by variably controlling the duty ratio of the drive current of the light source, or in a control mode in which both are combined. Therefore, the light quantity of each light source can be adjusted by an appropriate control mode corresponding to the feature amount of the display image.
[0007] 上記画像投影装置において、前記制御部は、前記照明光の色毎に前記特徴量を 検出し、前記照明光の色毎に制御モードの選択を行うこととしてもよい。  [0007] In the image projection apparatus, the control unit may detect the feature amount for each color of the illumination light and select a control mode for each color of the illumination light.
[0008] このような構成によれば、色毎に表示画像の特徴量が検出され、この特徴量に応じ て各色の光源が該特徴量に応じて選択された制御モードにて駆動制御されるので、 色毎に適切な制御モードに従って光量を調整することができる。  According to such a configuration, the feature amount of the display image is detected for each color, and the light source of each color is driven and controlled in the control mode selected according to the feature amount according to the feature amount. Therefore, the amount of light can be adjusted according to an appropriate control mode for each color.
[0009] 上記画像投影装置において、前記制御部は、前記表示画像の特徴量として輝度を 検出し、該輝度が所定の値以上である場合に前記第 2制御モードを選択し、該輝度 が所定の値未満である場合に前記第 1制御モードを選択することとしてもよい。  [0009] In the image projection device, the control unit detects luminance as a feature amount of the display image, selects the second control mode when the luminance is equal to or higher than a predetermined value, and the luminance is predetermined. The first control mode may be selected when the value is less than the value of.
[0010] このような構成によれば、表示画像の輝度が明るぐ色調の変化がわかりやすい場 合には、駆動電流の大きさを可変させない第 2制御モードを選択するので、色調の変 化を回避すること力 Sできる。また、表示画像の輝度が暗ぐ色調の変化がわかりにくい 場合には、第 2制御モードを選択することにより、多少の色調変化を許容しながら消 費電力の低減を図ることができる。  [0010] According to such a configuration, when the change in color tone with bright display image brightness is easy to understand, the second control mode in which the magnitude of the drive current is not changed is selected. Power to avoid S In addition, when it is difficult to understand the change in color tone when the brightness of the displayed image is dark, the power consumption can be reduced while allowing a slight color change by selecting the second control mode.
[0011] 上記画像投影装置において、前記制御部は、前記照明光の色毎に前記画像の輝 度を検出し、該輝度が所定の値以上である場合に、当該色に対応する前記光源を 第 2制御モードで駆動制御し、該輝度が所定の値未満である場合に、当該色に対応 する前記光源を第 1制御モードで駆動制御することとしてもよい。  [0011] In the image projection device, the control unit detects the brightness of the image for each color of the illumination light, and when the luminance is equal to or higher than a predetermined value, the control unit detects the light source corresponding to the color. When the drive control is performed in the second control mode and the luminance is less than a predetermined value, the light source corresponding to the color may be drive controlled in the first control mode.
[0012] このような構成によれば、色毎に表示画像の輝度を検出し、この輝度が所定の値以 上か否かによって各色に対応する光源の制御モードを選択するので、より細やかな 光源の駆動制御を行うことができる。 [0012] According to such a configuration, the brightness of the display image is detected for each color, and the light source control mode corresponding to each color is selected depending on whether this brightness is a predetermined value or more. The drive control of the light source can be performed.
[0013] 上記画像投影装置において、前記制御部は、前記画像の特徴量として色成分の 偏りを検出し、該色成分の偏りに応じて、制御モードの選択を行うこととしてもよい。  [0013] In the image projection apparatus, the control unit may detect a bias of a color component as the feature amount of the image and may select a control mode according to the bias of the color component.
[0014] このように、画像の特徴量として色成分の偏りを検出し、この色成分の偏りに応じて 制御モードの選択を行うので、光源の駆動制御に色成分の偏りを反映させることがで きる。例えば、色調変化が顕著に出てしまうような色成分の偏りをもつ画像を表示す る場合には、各光源を第 2制御モードで駆動制御することにより、消費電力の低減よ りも色調を重視する。一方、色調変化があまり顕著に生じないような色成分の偏りをも つ画像を表示する場合には、各光源を第 1制御モードで駆動制御することにより、多 少の色調変化を許容しながら消費電力を効果的に低減させる。  As described above, since the deviation of the color component is detected as the feature amount of the image and the control mode is selected according to the deviation of the color component, the deviation of the color component can be reflected in the drive control of the light source. it can. For example, when displaying an image with a color component bias that causes a significant change in color tone, driving the light sources in the second control mode controls the color tone rather than reducing power consumption. To emphasize. On the other hand, when displaying an image with a color component bias that does not cause a significant change in color tone, each light source is driven and controlled in the first control mode, allowing a slight color tone change. Effectively reduce power consumption.
[0015] 上記画像投影装置にお!/、て、前記制御部は、前記表示画像の色成分として、駆動 電流の増減による色調変化が所定の値よりも大きい照明光の色を他の照明光の色ま たは所定の値よりも多く含む場合に、少なくとも当該色に対応する前記光源を前記第 2制卸モード'で馬区動制卸することとしてあよい。  [0015] In the image projection apparatus, the control unit converts the color of the illumination light having a color change due to increase / decrease in drive current larger than a predetermined value as the color component of the display image to the other illumination light. In the case where the number of colors or more than a predetermined value is included, at least the light source corresponding to the color may be dynamically controlled in the second control mode '.
[0016] このような構成によれば、駆動電流の増減による色調変化が所定の値よりも大きい 照明光の色を他の色または所定の値よりも多く含む画像を表示させる場合には、少 なくともこの色に対応する光源については、駆動電流の増減を伴わない第 2制御モ ードを選択することにより、色調の変化を防止することができる。また、この場合にお いて、上記他の色に対応する光源については、第 1制御モードを選択することにより 、消費電力の低減を図ることができる。  According to such a configuration, a change in color tone due to increase / decrease in drive current is greater than a predetermined value. When displaying an image that includes more colors of illumination light than other colors or a predetermined value, a small amount is displayed. For light sources corresponding to this color, changes in color tone can be prevented by selecting the second control mode that does not increase or decrease the drive current. In this case, for the light sources corresponding to the other colors, the power consumption can be reduced by selecting the first control mode.
また、駆動電流の増減による色調変化が所定の値よりも大きい照明光の色を他の 色または所定の値よりも少なく含む画像を表示させる場合には、全ての光源を第 1制 御モードで駆動制御することとしてもよい。これにより、多少の色調変化を許容しなが ら消費電力を効果的に低減させることができる。  In addition, when displaying an image that includes a color of illumination light whose color tone change due to increase / decrease in drive current is greater than a predetermined value, or other colors or less than a predetermined value, all light sources are set in the first control mode. Drive control may be performed. As a result, the power consumption can be effectively reduced while allowing a slight change in color tone.
[0017] 上記画像投影装置において、前記制御部は、前記画像における色数を検出し、該 色数に応じて、制御モードの選択を行うこととしてもよ!/、。  In the image projection apparatus, the control unit may detect the number of colors in the image and select a control mode according to the number of colors! /.
[0018] このように、画像の特徴量として色数を検出し、この色数に応じて制御モードの選択 を行うので、光源の駆動制御に色数を反映させることができる。例えば、色調変化が 顕著に出てしまうような色数の画像を表示する場合には、各光源を第 2制御モードで 駆動制御することにより、消費電力の低減よりも色調を重視する。一方、色調変化が あまり顕著に生じなレ、ような色数の画像を表示する場合には、各光源を第 1制御モー ドで駆動制御することにより、多少の色調変化を許容しながら消費電力の更なる低減 を図ること力 Sでさる。 In this way, the number of colors is detected as the feature quantity of the image, and the control mode is selected according to the number of colors, so that the number of colors can be reflected in the drive control of the light source. For example, color change When displaying an image with a number of colors that appears prominently, color control is more important than power consumption reduction by driving and controlling each light source in the second control mode. On the other hand, when displaying an image with the number of colors such that the color tone does not change significantly, the power consumption is controlled while driving the light sources in the first control mode while allowing some color change. The power S is used to further reduce the power consumption.
[0019] 上記画像投影装置において、前記制御部は、前記画像における色数が所定数より 少な!/、場合は、全ての前記光源を第 1制御モードで駆動制御することとしてもょレ、。  [0019] In the image projection apparatus, the control unit may drive and control all of the light sources in the first control mode when the number of colors in the image is less than a predetermined number! /.
[0020] このような構成によれば、例えば、プレゼンテーション用の画像のように、表示画像 における色数が所定数よりも少ない場合には、色の変化による視覚的な影響が少な いことから、第 1制御モードを採用することにより、消費電力を効果的に低減させるこ と力 Sできる。  [0020] According to such a configuration, for example, when the number of colors in the display image is smaller than a predetermined number, such as a presentation image, the visual influence due to the color change is small. By adopting the first control mode, the power consumption can be effectively reduced.
[0021] 本発明の第 2の態様は、異なる色の照明光を発生する複数の光源を有する光源ュ ニットと、入力される映像信号に基づいて、前記光源ユニットから射出された照明光 を変調する光変調部と、前記光源ユニットの各前記光源を駆動制御する制御部とを 備え、前記制御部が、各前記光源に印加する駆動電流の大きさを可変制御する第 1 制御モードと、各前記光源に印加する駆動電流のデューティ比を可変制御する第 2 制御モードとを有し、駆動電流の大きさの変化による色の変化が所定値よりも大きい 前記光源を前記第 2制御モードで駆動制御し、該色の変化が所定値以下である前 記光源を前記第 1制御モードで駆動制御する画像投影装置を提供する。  [0021] A second aspect of the present invention modulates illumination light emitted from the light source unit based on a light source unit having a plurality of light sources that generate illumination light of different colors and an input video signal. A first control mode for variably controlling the magnitude of the drive current applied to each of the light sources, and a control unit for driving and controlling each of the light sources of the light source unit. A second control mode for variably controlling a duty ratio of a drive current applied to the light source, and a color change due to a change in the magnitude of the drive current is larger than a predetermined value. The light source is driven in the second control mode. There is provided an image projection apparatus that controls and controls the light source whose color change is equal to or less than a predetermined value in the first control mode.
[0022] 駆動電流の増減による色調変化が大きい色に対応する光源については、駆動電 流を増減させる第 1制御モードを採用してしまうと、色調に変化が生じてしまう。従つ て、このような光源については、第 2制御モードにより駆動制御することにより、光量調 整を行う。これにより、駆動電流の増減に伴う色調変化を抑制することができる。これ に対し、駆動電流の増減による色調変化が小さい色に対応する光源については、第 1制御モードにより駆動制御を行うことで、光量調整を行う。これにより、色の変化を抑 えながら、消費電力を低下させることが可能となる。  [0022] For a light source corresponding to a color having a large change in color tone due to increase / decrease in drive current, if the first control mode for increasing / decreasing drive current is adopted, the color tone will change. Therefore, the light amount of such a light source is adjusted by controlling the drive in the second control mode. Thereby, the color tone change accompanying increase / decrease in drive current can be suppressed. On the other hand, for a light source corresponding to a color whose color tone change is small due to increase / decrease in drive current, the light amount is adjusted by performing drive control in the first control mode. This makes it possible to reduce power consumption while suppressing color changes.
例えば、上記光源として LEDを採用した場合には、赤色の照明光を射出する LED 、青色の照明光を射出する LEDについては、駆動電流の増減による色調変化が所 定の値よりも小さいため、第 1制御モードにより光量の調整を行う。また、緑色の照明 光を射出する LEDについては、駆動電流の増減による色調変化が上記他の光源に 比べて大きいため、第 2制御モードにより光量の調整を行う。 For example, when an LED is used as the light source, there is a change in color tone due to an increase or decrease in drive current for an LED that emits red illumination light or an LED that emits blue illumination light. Since it is smaller than the fixed value, the light amount is adjusted in the first control mode. For LEDs that emit green illumination light, the color change due to increase or decrease in drive current is greater than that of the other light sources, so the light intensity is adjusted in the second control mode.
また、上述した態様は、可能な範囲で組み合わせて利用することができるものであ  In addition, the above-described aspects can be used in combination as much as possible.
[0023] 本発明に係る画像投影装置によれば、投影画像の色の変化を抑えながら効果的 に消費電力を低減させることができるという効果を奏する。 [0023] According to the image projection device of the present invention, it is possible to effectively reduce the power consumption while suppressing the change in the color of the projection image.
図面の簡単な説明  Brief Description of Drawings
[0024] [図 1]本発明の一実施形態に係る画像投影装置の概略構成を示す側面図である。  FIG. 1 is a side view showing a schematic configuration of an image projection apparatus according to an embodiment of the present invention.
[図 2]図 1に示した画像処理装置の内部概略構成を示したブロック図である。  2 is a block diagram showing a schematic internal configuration of the image processing apparatus shown in FIG.
[図 3]図 2に示したゲイン調整回路の作用を説明するための図である。  FIG. 3 is a diagram for explaining the operation of the gain adjustment circuit shown in FIG. 2.
[図 4]図 2に示したゲイン調整回路の作用を説明するための図である。  FIG. 4 is a diagram for explaining the operation of the gain adjustment circuit shown in FIG. 2.
[図 5]第 1制御モードの説明をするための図である。  FIG. 5 is a diagram for explaining a first control mode.
[図 6]第 2制御モードの説明をするための図である。  FIG. 6 is a diagram for explaining a second control mode.
[図 7]LEDの駆動電流一光量特性及び駆動電流 消費電力特性を示した図である  FIG. 7 is a graph showing the drive current / single light quantity characteristics and drive current power consumption characteristics of an LED.
[図 8]駆動電流を増減させたときの色調の変化を示した図である。 FIG. 8 is a diagram showing a change in color tone when the drive current is increased or decreased.
[図 9]本発明の一実施形態に係る画像投影装置の光量制御を説明するための図で ある。  FIG. 9 is a diagram for explaining light amount control of the image projection apparatus according to an embodiment of the present invention.
[図 10]映像信号に基づいて形成される表示画像の各画素の色調を sRGBの 3原色を 基準として、 xy空間にプロットした図であり、花の画像の例を示した図である。  FIG. 10 is a diagram in which the color tone of each pixel of a display image formed based on a video signal is plotted in the xy space using the three primary colors of sRGB as a reference, and shows an example of a flower image.
[図 11]映像信号に基づいて形成される表示画像の各画素の色調を sRGBの 3原色を 基準として、 xy空間にプロットした図であり、夕日の画像の一例を示した図である。  FIG. 11 is a diagram in which the color tone of each pixel of a display image formed based on a video signal is plotted in the xy space with the three primary colors of sRGB as a reference, and shows an example of a sunset image.
[図 12]映像信号に基づいて形成される表示画像の各画素の色調を sRGBの 3原色を 基準として、 xy空間にプロットした図であり、プレゼンテーションの画像の一例を示し た図である。  FIG. 12 is a diagram in which the color tone of each pixel of a display image formed based on a video signal is plotted in the xy space using the three primary colors of sRGB as a reference, and is a diagram showing an example of a presentation image.
[図 13]図 1に示した光源ユニットの第 1の変形例を示した図である。  13 is a diagram showing a first modification of the light source unit shown in FIG.
[図 14]図 1に示した光源ユニットの第 2の変形例を示した図であり、光源ユニットを照 明光の射出端側からみたときの平面図である。 FIG. 14 is a diagram showing a second modification of the light source unit shown in FIG. It is a top view when seen from the emission end side of bright light.
[図 15]図 14に示した光源ユニットの縦断面図である。  15 is a longitudinal sectional view of the light source unit shown in FIG.
[図 16]図 14に示した光源ユニットが備える回転ロッドの回転状態及び光の伝達効率 を説明するための図である。  FIG. 16 is a diagram for explaining the rotation state and light transmission efficiency of a rotating rod provided in the light source unit shown in FIG.
[図 17]第 2の変形例に係る光源ユニットが備える各色の LEDの駆動電流の最大電流 値の大小関係を示した図である。  FIG. 17 is a diagram showing the magnitude relationship between the maximum current values of the drive currents of the LEDs of the respective colors provided in the light source unit according to the second modification.
[図 18]第 2の変形例に係る光源ユニットが備える各色の LEDの光量制御の一例を示 した図である。  FIG. 18 is a diagram showing an example of light amount control of LEDs of respective colors included in a light source unit according to a second modification.
[図 19]第 2の変形例に係る光源ユニットが備える各色の LEDの光量制御の一例を示 した図である。  FIG. 19 is a diagram showing an example of light amount control of LEDs of respective colors included in a light source unit according to a second modification.
[図 20]第 2の変形例に係る回転ロッドの角度と光の伝達効率との関係を示した図であ  FIG. 20 is a diagram showing the relationship between the angle of the rotating rod and the light transmission efficiency according to the second modification.
[図 21]第 3の変形例に係る画像投影装置の概略構成を示した図である。 FIG. 21 is a diagram showing a schematic configuration of an image projection apparatus according to a third modification.
符号の説明 Explanation of symbols
1 画像投影装置 1 Image projector
2 光源ユニット 2 Light source unit
2a, 2b, 2c LED 2a, 2b, 2c LED
3 導光ユニット 3 Light guide unit
4 透過型液晶表示パネル 4 transmissive LCD panel
6 光合成素子 6 Photosynthetic element
10 制御部 10 Control unit
11 画像処理回路 11 Image processing circuit
12 パネル駆動回路 12 Panel drive circuit
13 CPU 13 CPU
14 光源駆動回路 14 Light source drive circuit
18 ユーザ I/F 18 User I / F
19 電源回路 19 Power circuit
S スクリーン 発明を実施するための最良の形態 S screen BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 本発明の一実施形態に係る画像投影装置について、図を参照して説明する。 An image projection apparatus according to an embodiment of the present invention will be described with reference to the drawings.
本実施形態に係る画像投影装置 1は、図 1に示されるように、光源ユニット 2と、光源 ユニット 2から射出された照明光を導く導光ユニット 3と、導光ユニット 3により導かれた 照明光を変調する透過型液晶表示パネル (光変調部) 4と、該透過型液晶表示パネ ノレ 4により変調された照明光をスクリーン Sに対して投影する投影光学ユニット 5とを 備えている。なお、説明の簡略のため、偏光板等は図示を省略している。  As shown in FIG. 1, the image projection apparatus 1 according to the present embodiment includes a light source unit 2, a light guide unit 3 that guides illumination light emitted from the light source unit 2, and illumination guided by the light guide unit 3. A transmissive liquid crystal display panel (light modulator) 4 that modulates light and a projection optical unit 5 that projects illumination light modulated by the transmissive liquid crystal display panel 4 onto a screen S are provided. For the sake of simplicity, illustration of the polarizing plate and the like is omitted.
[0027] 光源ユニット 2は、異なる色の照明光を射出する複数の光源及び各光源から射出さ れた照明光を共通の光路に導く光合成素子 6を有している。 The light source unit 2 includes a plurality of light sources that emit illumination lights of different colors and a light combining element 6 that guides the illumination light emitted from each light source to a common optical path.
本実施形態では、上記光源として、赤色の照明光を射出する LED2a、緑色の照明 光を射出する LED2b、及び青色の照明光を射出する LED2cを備えている。  In the present embodiment, the light source includes an LED 2a that emits red illumination light, an LED 2b that emits green illumination light, and an LED 2c that emits blue illumination light.
導光ユニット 3は、平行度等を適切に調整するテーパロッド等の各種光学系を有し ている。  The light guide unit 3 has various optical systems such as a taper rod that appropriately adjusts the parallelism and the like.
[0028] このような構成を備える画像投影装置においては、 LED2a, 2b, 2cは、時分割で 順次点灯され、その照明光は光合成素子 6により共通する導光ユニット 3に導かれ、 この導光ユニット 3により透過型液晶表示パネル 4に導かれる。透過型液晶表示パネ ル 4を透過することにより表示画像が重畳された照明光は、投影光学ユニット 5によつ て拡大されてスクリーン Sに投影される。これにより、スクリーン Sには、表示画像が投 影される。  [0028] In the image projection apparatus having such a configuration, the LEDs 2a, 2b, and 2c are sequentially turned on in a time-sharing manner, and the illumination light is guided to the common light guide unit 3 by the light combining element 6, and this light guide The unit 3 leads to the transmissive liquid crystal display panel 4. The illumination light on which the display image is superimposed by passing through the transmissive liquid crystal display panel 4 is magnified by the projection optical unit 5 and projected onto the screen S. As a result, the display image is projected on the screen S.
[0029] この場合において、透過型液晶表示パネル 4は、各 LED2a, 2b, 2cの点灯タイミ ングと同期して、駆動制御される。具体的には、 LED2aが発光している期間におい ては、赤色の映像信号に基づいて、また、 LED2bが発光している期間においては緑 色の映像信号に基づいて、 LED2cが発光している期間においては、青色の映像信 号に基づいて透過型液晶表示パネル 4が駆動制御される。各 LED2a, 2b, 2cの発 光周期は非常に短く設定されていることから、観察者には白色の照明光が照射され ているのと略同様の視覚的効果を与えることができる。  In this case, the transmissive liquid crystal display panel 4 is driven and controlled in synchronization with the lighting timing of the LEDs 2a, 2b, and 2c. Specifically, LED2c emits light based on the red video signal during the period in which LED2a emits light, and LED2c emits based on the green video signal in the period in which LED2b emits light. During the period, the transmissive liquid crystal display panel 4 is driven and controlled based on the blue video signal. Since the light emission periods of the LEDs 2a, 2b, and 2c are set to be very short, the observer can have a visual effect that is almost the same as when white illumination light is irradiated.
[0030] 上記 LED2a, 2b, 2c及び透過型液晶表示パネル 4は、制御部 10により制御され 制御部 10は、画像処理回路 11、パネル駆動回路 12、 CPU13、及び光源駆動回 路 14を主な構成要素として備えて!/、る。 The LEDs 2a, 2b, 2c and the transmissive liquid crystal display panel 4 are controlled by the control unit 10. The control unit 10 includes an image processing circuit 11, a panel drive circuit 12, a CPU 13, and a light source drive circuit 14 as main components.
[0031] 画像処理回路 11には、映像信号が入力されるようになっている。画像処理回路 11 は、入力された映像信号に対して、補間処理、階調補正処理等の公知の画像処理 を行うとともに、 1フレームに対応する映像信号に基づいて表示画像の特徴量を検出 する。 A video signal is input to the image processing circuit 11. The image processing circuit 11 performs known image processing such as interpolation processing and gradation correction processing on the input video signal, and detects the feature amount of the display image based on the video signal corresponding to one frame. .
例えば、画像処理回路 11は、図 2に示すように、 γ補正回路 15、特徴量検出回路 16、及びゲイン調整回路 17を主な構成要素として備えている。 γ補正回路 15は、映 像信号に対して γ補正を行うことにより、リニアな映像信号を生成する。特徴量検出 回路 16は、 γ補正回路 15から入力される 1フレームに対応する映像信号に基づい て表示画像の特徴量を検出し、検出した特徴量を CPU13に出力するとともに、ゲイ ン調整回路 17に該特徴量及び映像信号を出力する。  For example, as shown in FIG. 2, the image processing circuit 11 includes a γ correction circuit 15, a feature amount detection circuit 16, and a gain adjustment circuit 17 as main components. The γ correction circuit 15 generates a linear video signal by performing γ correction on the video signal. The feature amount detection circuit 16 detects the feature amount of the display image based on the video signal corresponding to one frame input from the γ correction circuit 15, outputs the detected feature amount to the CPU 13, and outputs a gain adjustment circuit 17. The feature amount and the video signal are output to
例えば、特徴量検出回路 16は、 1フレームに対応する映像信号から各色の輝度に 関する特徴量、具体的には、最大階調値 Rmax, Gmax, Bmaxを検出し、これら最 大階調値 Rmax, Gmax, Bmaxを CPU13に出力するとともに、これら最大階調値 R max, Gmax, Bmaxと映像信号とをゲイン調整回路 17に出力する。  For example, the feature amount detection circuit 16 detects feature amounts relating to the luminance of each color from the video signal corresponding to one frame, specifically, the maximum gradation values Rmax, Gmax, Bmax, and these maximum gradation values Rmax. , Gmax, Bmax are output to the CPU 13, and the maximum gradation values R max, Gmax, Bmax and the video signal are output to the gain adjustment circuit 17.
[0032] ゲイン調整回路 17は、赤色、緑色、青色の各光量のレベル調整を行い、調整後の 映像信号をパネル駆動回路 12に出力し、調整状態を CPU13に出力する。具体的 には、ゲイン調整回路 17は、特徴量検出回路 16から表示画像における各色の最大 階調値 Rmax, Gmax, Bmaxが入力されると、この最大階調値 Rmax, Gmax, Bm axが画像投影装置の最大表示階調値 (例えば、 255)となるように映像信号の各画 素の階調値を補正し、この補正後の映像信号をパネル駆動回路 12に出力する。例 えば、画像投影装置の最大表示階調値が 255であった場合、ゲイン調整回路 17は 、図 3に示すように、映像信号の各画素の階調値に 255/Rmaxをかけることにより、 パネル透過率に関する映像信号を補正し、補正後の映像信号をパネル駆動回路 12 に出力する。 The gain adjustment circuit 17 adjusts the level of each light quantity of red, green, and blue, outputs the adjusted video signal to the panel drive circuit 12, and outputs the adjustment state to the CPU 13. Specifically, when the maximum gradation values Rmax, Gmax, and Bmax of each color in the display image are input from the feature amount detection circuit 16, the gain adjustment circuit 17 inputs the maximum gradation values Rmax, Gmax, and Bmax into the image. The gradation value of each pixel of the video signal is corrected so that the maximum display gradation value (for example, 255) of the projection apparatus is obtained, and the corrected video signal is output to the panel drive circuit 12. For example, when the maximum display gradation value of the image projector is 255, the gain adjustment circuit 17 applies 255 / Rmax to the gradation value of each pixel of the video signal as shown in FIG. The video signal related to the panel transmittance is corrected, and the corrected video signal is output to the panel drive circuit 12.
[0033] また、ゲイン調整回路 17は、パネル駆動回路 12に出力する映像信号の階調値を 高めに補正した値を CPU13に出力する。具体的には、上述のように、各画素の階調 値に 255/Rmaxをかけた場合には、この係数 255/Rmaxを CPU13に出力する。 The gain adjustment circuit 17 outputs to the CPU 13 a value obtained by correcting the gradation value of the video signal output to the panel drive circuit 12 to be higher. Specifically, as described above, the gradation of each pixel When 255 / Rmax is multiplied by the value, this coefficient 255 / Rmax is output to CPU13.
CPU13は、図 4に示すように、この係数の逆数 Rmax/255を各色の光量に乗ずる ことにより光量を補正する。  As shown in FIG. 4, the CPU 13 corrects the light quantity by multiplying the light quantity of each color by the reciprocal Rmax / 255 of this coefficient.
このように、透過型液晶表示パネル 4の透過率を増加させる一方で、この増加に対 応する分、光量を低下させるので、最終的にスクリーンに表示される投影画像の輝度 を変えることなぐ各 LED2a, 2b, 2cの発光量を効果的に低減させることが可能とな る。これにより、消費電力を低減させることができる。なお、上述は赤色に関して一例 を挙げて説明したが、緑色、青色についても同様である。  In this way, while increasing the transmittance of the transmissive liquid crystal display panel 4, the amount of light is reduced by the amount corresponding to this increase, so each brightness without changing the brightness of the projected image finally displayed on the screen. It is possible to effectively reduce the light emission amount of the LEDs 2a, 2b, 2c. Thereby, power consumption can be reduced. In the above description, an example is given regarding red, but the same applies to green and blue.
[0034] 図 1に戻り、パネル駆動回路 12は、画像処理回路 11からの映像信号の階調値に 基づいて透過型液晶表示パネル 4の透過率を画素毎に変化させる。これにより、透 過型液晶パネル 4の各画素の透過率は映像信号に応じて調整され、この結果、上述 のように、透過型液晶表示パネル 4に入射された照明光には、映像信号に基づく表 示画像が重畳されることとなる。  Referring back to FIG. 1, the panel drive circuit 12 changes the transmittance of the transmissive liquid crystal display panel 4 for each pixel based on the gradation value of the video signal from the image processing circuit 11. Thereby, the transmittance of each pixel of the transmissive liquid crystal panel 4 is adjusted according to the video signal. As a result, as described above, the illumination light incident on the transmissive liquid crystal display panel 4 is not converted into the video signal. The display image based on it will be superimposed.
[0035] また、 CPU13は、画像処理回路 11からの特徴量並びに映像信号に基づいて、各 LED2a, 2b, 2cを駆動制御するための制御信号をそれぞれ生成し、生成した制御 信号を光源駆動回路 14に出力する。具体的には、 CPU13は、各 LED2a, 2b, 2c の駆動電流の大きさをそれぞれ可変制御することにより、各 LED2a, 2b, 2cから射 出される光量を調整する第 1制御モードと、各 LED2a, 2b, 2cの駆動電流のデュー ティ比をそれぞれ制御することにより、各 LED2a, 2b, 2cから射出される光量を調整 する第 2制御モードとを備えて!/、る。  Further, the CPU 13 generates control signals for driving and controlling the respective LEDs 2a, 2b, and 2c based on the feature amount and the video signal from the image processing circuit 11, and the generated control signals are used as the light source driving circuit. Output to 14. Specifically, the CPU 13 variably controls the magnitude of the drive current of each LED 2a, 2b, 2c to adjust the amount of light emitted from each LED 2a, 2b, 2c, and each LED 2a , 2b, 2c by controlling the duty ratio of the drive current, respectively, and a second control mode for adjusting the amount of light emitted from each LED 2a, 2b, 2c.
そして、 CPU13は、特徴量に応じて上記第 1制御モード及び第 2制御モードのい ずれか一方、または、両方を選択し、選択した制御モードに基づいて各 LED2a, 2b , 2cに対する制御信号をそれぞれ生成し、これらを光源駆動回路 14に出力する。  Then, the CPU 13 selects one or both of the first control mode and the second control mode according to the feature amount, and sends control signals for the LEDs 2a, 2b, 2c based on the selected control mode. These are generated and output to the light source drive circuit 14.
[0036] 光源駆動回路 14は、 CPU13からの各制御信号に基づいて駆動電流を各 LED2a , 2b, 2cに対して印加する。これにより、 LED2a, 2b, 2cの発光量が映像信号に基 づいて制御される。  The light source drive circuit 14 applies a drive current to each LED 2a, 2b, 2c based on each control signal from the CPU 13. As a result, the light emission amounts of the LEDs 2a, 2b, 2c are controlled based on the video signal.
[0037] また、 CPU13には、ユーザ I/F18からのモード指示信号、電源回路 19からの電 源信号が入力されるようになっている。ユーザ I/F18は、ユーザによりモード指定が された場合に、指定されたモードに対応する信号をモード指示信号として CPU13に 出力する。電源回路 19は、 ACアダプタ(図示略)から電力が供給されている状態で あるか、または、ノ ッテリ(図示略)から電力が供給されている状態であるかを判別し、 この判別結果を電源信号として CPU13に出力する。 Further, the CPU 13 is supplied with a mode instruction signal from the user I / F 18 and a power signal from the power circuit 19. User I / F18 has mode specified by user If it is, a signal corresponding to the designated mode is output to the CPU 13 as a mode instruction signal. The power supply circuit 19 determines whether power is supplied from an AC adapter (not shown) or power is supplied from a notch (not shown). Output to CPU13 as power supply signal.
[0038] 次に、上記第 1制御モード及び第 2制御モードについて詳しく説明する。  [0038] Next, the first control mode and the second control mode will be described in detail.
第 1制御モードは、図 5に示すように、各 LED2a, 2b, 2cの駆動電流の大きさを増 減させることにより、各 LED2a, 2b, 2cの光量を調整する制御モードである。図 5に おいて、最大電流 Imaxは、例えば、通常時において各 LED2a, 2b, 2cに印加可能 な最大値に設定されている。なお、この最大電流 Imaxは、各 LED2a, 2b, 2cに対し て個別に設定可能な値である。  As shown in FIG. 5, the first control mode is a control mode in which the amount of light of each LED 2a, 2b, 2c is adjusted by increasing or decreasing the magnitude of the drive current of each LED 2a, 2b, 2c. In FIG. 5, the maximum current Imax is set to, for example, the maximum value that can be applied to each LED 2a, 2b, 2c during normal operation. This maximum current Imax is a value that can be set individually for each LED 2a, 2b, 2c.
このように、第 1制御モードでは、各 LED2a, 2b, 2cに印加する駆動電流の大きさ を変化させることで、各 LED2a, 2b, 2cから射出される光量を調整する。  Thus, in the first control mode, the amount of light emitted from each LED 2a, 2b, 2c is adjusted by changing the magnitude of the drive current applied to each LED 2a, 2b, 2c.
[0039] 第 2制御モードは、図 6に示すように、各 LED2a, 2b, 2cの駆動電流のデューティ 比を可変制御することにより、各 LED2a, 2b, 2cの光量を調整する制御モードであ る。図 6に示すように、第 2制御モードでは、各 LED2a, 2b, 2cに印加する駆動電流 の大きさは変えずに、例えば、最大電流 Imaxで一定とし、電流印加時間を調整する ことで、各 LED2a, 2b, 2cから射出される光量を調整する。  [0039] As shown in Fig. 6, the second control mode is a control mode in which the light intensity of each LED 2a, 2b, 2c is adjusted by variably controlling the duty ratio of the drive current of each LED 2a, 2b, 2c. The As shown in FIG. 6, in the second control mode, the magnitude of the drive current applied to each LED 2a, 2b, 2c is not changed, for example, by making the maximum current Imax constant and adjusting the current application time, Adjust the amount of light emitted from each LED2a, 2b, 2c.
[0040] ここで、図 7に、各 LED2a, 2b, 2cの駆動電流に対する光量及び消費電力の一般 的な特性を示す。  Here, FIG. 7 shows general characteristics of the light amount and the power consumption with respect to the drive current of each LED 2a, 2b, 2c.
図 7において、横軸は相対的な駆動電流、縦軸は、相対的な光量または消費電力 をそれぞれ示している。  In FIG. 7, the horizontal axis represents relative drive current, and the vertical axis represents relative light intensity or power consumption.
図 7に示されるように、各 LED2a, 2b, 2cの光量は駆動電流がある程度大きくなる と飽和する傾向にある。また、各 LED2a, 2b, 2cの消費電力は、駆動電流の増加に 伴い増加する力 S、その増加幅 Δ Ρは印加電流が増加するほど徐々に大きくなる(図 7 において、 Δ Ρ1 < Δ Ρ2)。これは、駆動電流の増加に伴い LED2a, 2b, 2cの順方 向効果電圧がわずかに増加するためである。  As shown in FIG. 7, the light quantity of each LED 2a, 2b, 2c tends to saturate when the drive current increases to some extent. In addition, the power consumption of each LED2a, 2b, 2c increases as the drive current increases, and the increase width Δ 電流 gradually increases as the applied current increases (in Fig. 7, Δ に お い て 1 <Δ Ρ2 ). This is because the forward effect voltage of LEDs 2a, 2b, and 2c slightly increases as the drive current increases.
[0041] このような特性を有することから、例えば、 LED2a, 2b, 2cの光量を低下させる場 合には、デューティ比を変えるのではなぐ駆動電流の大きさを減少させると、消費電 力が効果的に低減できることがわかる。例えば、図 7において、緑色の照明光を射出 する LED2bを例に挙げて説明すると、光量を相対値 4から 2へ低減させる場合、駆 動電流を約 9から約 2. 7に低下することとなり、また、このときの消費電力は約 20から 約 4まで低下することとなる。このことから、光量を 50%低下させる場合、駆動電流に して約 70%減少、消費電力にして約 83%低下させることが可能となる。これに対し、 ノ ルス駆動においてデューティ比を 1/2に低減させても、消費電力は 50%にしかな らない。 [0041] Because of such characteristics, for example, when reducing the amount of light of the LEDs 2a, 2b, 2c, if the drive current is reduced without changing the duty ratio, the power consumption is reduced. It can be seen that the force can be effectively reduced. For example, in Fig. 7, taking LED2b that emits green illumination light as an example, if the light intensity is reduced from 4 to 2, the drive current will be reduced from about 9 to about 2.7. In addition, the power consumption at this time decreases from about 20 to about 4. For this reason, when the amount of light is reduced by 50%, the drive current can be reduced by about 70% and the power consumption can be reduced by about 83%. On the other hand, even if the duty ratio is reduced to 1/2 in the noise drive, the power consumption is only 50%.
このこと力、ら、第 1制御モードは、第 2制御モードに比べて、消費電力を効果的に低 減させること力 Sでさる。  For this reason, the first control mode is compared with the second control mode by the force S, which effectively reduces the power consumption.
[0042] 次に、図 8は、各 LED2a, 2b, 2cからの赤、緑、青の光による色表現域を xy色調 図上に示した図である。各 LED2a, 2b, 2cの駆動電流が小さいときは、図中破線で 示されるように広い色表現域を有するが、各 LED2a, 2b, 2cの駆動電流が大きくな ると、赤、緑、青の色調がそれぞれ図中実線で示されるように変化し、色表現域が狭 くなる傾向にある。また、この図からわ力、るように、特に、緑色の照明光を射出する LE D2bにおいては、駆動電流の増減によって照明光の色調が大きく変化することがわ かる。これに対し、赤色の照明光を射出する LED2a、青色の照明光を射出する LED 2cに関しては、駆動電流の増減による色調変化は小さぐ駆動電流による影響をほと んど受けていない。  Next, FIG. 8 is a diagram showing on the xy color diagram the color expression gamut of red, green, and blue light from the LEDs 2a, 2b, and 2c. When the drive current of each LED2a, 2b, 2c is small, it has a wide color gamut as shown by the broken line in the figure, but when the drive current of each LED2a, 2b, 2c is large, red, green, blue Each color tone changes as indicated by the solid line in the figure, and the color expression range tends to narrow. Also, as shown in this figure, it can be seen that the color tone of the illumination light changes greatly with the increase or decrease of the drive current, especially in the LED 2b that emits green illumination light. On the other hand, for LED 2a that emits red illumination light and LED 2c that emits blue illumination light, the color change due to increase or decrease in drive current is hardly affected by the drive current.
[0043] このこと力、ら、図 5に示したように、 LED2a, 2b, 2cの駆動電流の大きさを可変制御 する第 1制御モードは、消費電力の低減効果は高いが、その一方で、図 8に示すよう に、緑色の照明光の色調が変化するという特性を有する。  [0043] As shown in FIG. 5, the first control mode that variably controls the magnitude of the drive current of the LEDs 2a, 2b, and 2c is highly effective in reducing the power consumption. As shown in FIG. 8, it has a characteristic that the color tone of the green illumination light changes.
[0044] 従って、本実施形態に係る画像投影装置では、上記点に着眼して、色変化を抑制 しながら、消費電力を効果的に低減させるベぐ以下のような光源制御を行うこととし ている。 Therefore, in the image projection apparatus according to the present embodiment, focusing on the above points, the following light source control that effectively reduces power consumption while suppressing color change is performed. Yes.
[0045] まず、制御部 10の画像処理回路 11に映像信号が入力されると、図 2に示した γ補 正回路 15により映像信号に γ補正が行われ、続いて、特徴量検出回路 16による特 徴量の検出処理が行われる。具体的には、特徴量検出回路 16は、 1フレームに対応 する映像信号から表示画像の明るさに関する特徴量、例えば、各色の最大階調ィ直 R max, Gmax, Bmaxを検出し、これら最大階調ィ直 Rmax, Gmax, Bmaxを CPU13 に出力するとともに、これら最大階調ィ直 Rmax, Gmax, Bmaxと映像信号とをゲイン 調整回路 17に出力する。 First, when a video signal is input to the image processing circuit 11 of the control unit 10, γ correction is performed on the video signal by the γ correction circuit 15 shown in FIG. 2, followed by the feature amount detection circuit 16. The feature amount detection process is performed. Specifically, the feature quantity detection circuit 16 uses a feature quantity related to the brightness of the display image from the video signal corresponding to one frame, for example, the maximum gradation of each color. Detects max, Gmax, Bmax, outputs these maximum gradation levels Rmax, Gmax, Bmax to the CPU 13, and outputs these maximum gradation levels Rmax, Gmax, Bmax and the video signal to the gain adjustment circuit 17. .
[0046] ゲイン調整回路 17は、最大階調値 Rmax, Gmax, Bmaxに基づいて各色の映像 信号のレベル調整を行うことにより、パネル透過率に関する映像信号と光量に関する 映像信号とを生成し、パネル透過率に関する映像信号をパネル駆動回路 12に出力 するとともに、光量に関する映像信号を CPU13に出力する。 The gain adjustment circuit 17 adjusts the level of the video signal of each color based on the maximum gradation values Rmax, Gmax, and Bmax, thereby generating a video signal related to the panel transmittance and a video signal related to the light amount. The video signal related to the transmittance is output to the panel drive circuit 12 and the video signal related to the light quantity is output to the CPU 13.
[0047] CPU13は、最大階調値 Rmax, Gmax, Bmax及び光量を補正する値が入力され ると、最大階調値 Rmax, Gmax, Bmaxが予め設定されている閾値以上であるか否 かを判定し、最大階調値 Rmax, Gmax, Bmaxが閾値以上であると判断した色に対 応する LEDに関しては、第 2制御モードによる制御を選択し、また、最大階調値が閾 値未満であると判断した色に対応する LEDに関しては第 1制御モードを選択する。  [0047] When the maximum gradation values Rmax, Gmax, Bmax and the value for correcting the light intensity are input, the CPU 13 determines whether the maximum gradation values Rmax, Gmax, Bmax are equal to or greater than a preset threshold value. For the LED corresponding to the color for which the maximum gradation values Rmax, Gmax, and Bmax are determined to be greater than or equal to the threshold value, control by the second control mode is selected, and the maximum gradation value is less than the threshold value. The first control mode is selected for the LED corresponding to the color judged to be present.
[0048] 例えば、赤色の最大階調値 Rmaxが最大値 (例えば、 255)であった場合には、図  [0048] For example, when the maximum gradation value Rmax of red is the maximum value (for example, 255),
9の aに示すように、 CPU13は、 LED2aに対して 1フレームの期間、最大電流 Irmax を印加するような制御信号を生成し、これを光源駆動回路 14に出力する。  As indicated by a in 9, the CPU 13 generates a control signal that applies the maximum current Irmax to the LED 2 a for a period of one frame, and outputs this to the light source drive circuit 14.
[0049] また、赤色の最大階調値 Rmaxが最大値未満かつ閾値以上であった場合には、図  [0049] If the maximum gradation value Rmax of red is less than the maximum value and greater than or equal to the threshold value,
9の bに示すように、 CPU13は、 LED2aに対して、最大階調値 Rmaxに応じたデュ 一ティ比をもつノ レス状の制御信号を生成し、これを光源駆動回路 14に出力する。 ここで、最大階調ィ直 Rmaxが大きいほど、電流印加時間は長く設定される。なお、パ ノレス駆動周期は、設計事項により最適な値を選択することが可能である。  As shown in b of 9, the CPU 13 generates a control signal having a duty ratio corresponding to the maximum gradation value Rmax for the LED 2 a and outputs the control signal to the light source driving circuit 14. Here, the current application time is set longer as the maximum gradation straight Rmax is larger. It should be noted that an optimal value can be selected for the panelless driving cycle depending on the design items.
[0050] また、赤色の最大階調値 Rmaxが閾値未満であった場合には、 CPU13は、図 9の cに示すように、 CPU13は、 LED2aに対して、所定のデューティ比であり、かつ、最 大階調値 Rmaxに応じた電流のノ レス状の制御信号を生成し、これを光源駆動回路 14に出力する。ここで、所定のデューティ比は、最大階調値 Rmaxが閾値と一致した ときのデューティ比を採用してレ、る。  [0050] When the maximum red gradation value Rmax is less than the threshold, the CPU 13 has a predetermined duty ratio with respect to the LED 2a as shown in c of FIG. Then, a control signal in the form of a current corresponding to the maximum gradation value Rmax is generated and output to the light source driving circuit 14. Here, the predetermined duty ratio is determined by adopting the duty ratio when the maximum gradation value Rmax matches the threshold value.
なお、 CPU13は、図 9の cに示したように、パルス状の波形において電流値を増減 させるのではなぐ図 5に示したように、最大階調ィ直 Rmaxに対応する電流を 1フレー ム期間にわたって連続して印加するような制御信号を生成することとしてもよい。 CPU13は、 LED2b, 2cに関しても同様に制御信号を生成し、これを光源駆動回 路 14に出力する。 Note that the CPU 13 does not increase or decrease the current value in the pulse-like waveform, as shown in FIG. 9c, and the current corresponding to the maximum gray level straight Rmax is 1 frame as shown in FIG. A control signal that is continuously applied over a period may be generated. The CPU 13 similarly generates control signals for the LEDs 2b and 2c and outputs them to the light source drive circuit 14.
[0051] 光源駆動回路 14は、このようにして生成された制御信号を受け付けると、各制御信 号に基づく駆動電流を各 LED2a, 2b, 2cに印加する。  When the light source drive circuit 14 receives the control signal generated in this way, the light source drive circuit 14 applies a drive current based on each control signal to each LED 2a, 2b, 2c.
これにより、各色の LED2a, 2b, 2cが最大階調値 Rmax, Gmax, Bmaxに応じた 光量にて順次発光し、各照明光は色合成部 6、導光ユニット 7を介して透過型液晶表 示パネル 4に導かれ、映像信号に基づく光変調が施された後、投影光学ユニット 5に よりスクリーン Sに投影されることとなる。これにより、スクリーン S上に投影画像が表示 される。  As a result, the LEDs 2a, 2b, and 2c of each color emit light sequentially with the light amount corresponding to the maximum gradation values Rmax, Gmax, and Bmax, and each illumination light is transmitted through the color composition unit 6 and the light guide unit 7 to the transmissive liquid crystal display. After being guided to the display panel 4 and subjected to light modulation based on the video signal, it is projected onto the screen S by the projection optical unit 5. As a result, the projected image is displayed on the screen S.
[0052] 以上説明してきたように、本実施形態に係る画像投影装置によれば、 1フレームに 対応する映像信号から表示画像の輝度に関する特徴量を検出し、この検出結果に 基づいて制御モードを選択するので、表示画像の明るさに応じた最適な制御モード にて各 LED2a, 2b, 2cをそれぞれ駆動制御することが可能となる。  As described above, according to the image projection apparatus according to the present embodiment, the feature amount related to the luminance of the display image is detected from the video signal corresponding to one frame, and the control mode is set based on the detection result. Since the selection is made, each LED 2a, 2b, 2c can be driven and controlled in an optimal control mode according to the brightness of the display image.
具体的には、表示画像の輝度が明るぐ色調の変化が顕著に現れる場合には、駆 動電流の大きさを可変させない第 2制御モードを選択することにより、消費電力の低 減よりも色調を重視する。  Specifically, when the change in color tone with brighter brightness of the displayed image appears remarkably, the second control mode that does not change the magnitude of the drive current is selected to reduce the color tone rather than reducing the power consumption. Emphasis on.
また、表示画像の輝度が暗ぐ色調の変化がわかりにくい場合には、第 1制御モー ドを選択することにより、色調の変化よりも消費電力の低減を重視する。  If it is difficult to see the change in color tone when the brightness of the displayed image is dark, the first control mode is selected to emphasize the reduction of power consumption over the change in color tone.
これにより、各フレーム画像の特徴に応じた光量調整が可能となり、色調の変化を 抑制しながら効果的に消費電力を低減させることができる。  This makes it possible to adjust the amount of light according to the characteristics of each frame image, and to effectively reduce power consumption while suppressing changes in color tone.
また、本実施形態に係る画像投影装置によれば、色毎に表示画像の輝度を検出し 、各 LED2a, 2b, 2cをそれぞれ輝度に応じた制御モードで駆動制御するので、全て の LED2a, 2b, 2cを同じ制御モードにて駆動制御する場合に比べて、細やかな駆 動制卸を fiうこと力できる。  Further, according to the image projection apparatus according to the present embodiment, the brightness of the display image is detected for each color, and each LED 2a, 2b, 2c is driven and controlled in a control mode corresponding to the brightness, so that all the LEDs 2a, 2b , 2c can be driven more precisely than in the case of driving control in the same control mode.
[0053] なお、本実施形態において、 CPU13が用いる上記閾値は、色毎に個別に設定さ れていることが好ましい。例えば、図 8に示したように、赤色及び青色に関しては、駆 動電流の増減による色調変化が小さいため、上記閾値を高めに設定することにより、 消費電力を効果的に低減させることのできる第 1制御モードを積極的に採用すること とし、また、緑色に関しては、駆動電流の増減による色調変化が他の色に比べて大き いため、上記閾値を他の色に比べて低めに設定することにより、色調の変化と消費 電力の低下とのバランスの調整を行う。これにより、消費電力を更に効果的に低減さ せること力 Sでさる。 In the present embodiment, it is preferable that the threshold value used by the CPU 13 is set individually for each color. For example, as shown in FIG. 8, for red and blue, the change in color tone due to increase / decrease in the drive current is small, so the power consumption can be effectively reduced by setting the threshold value higher. 1 Actively adopt control mode For green, the change in color tone due to increase / decrease in drive current is larger than that for other colors, so setting the above threshold value lower than for other colors results in a change in color tone and a reduction in power consumption. Adjust the balance. As a result, power S can be reduced more effectively to reduce power consumption.
[0054] また、本実施形態においては、 1フレームに対応する映像信号から最大階調値を検 出し、 1フレーム周期で制御モードの切替が可能な構成としていた力 これに代えて [0054] In the present embodiment, the force is such that the maximum gradation value is detected from the video signal corresponding to one frame and the control mode can be switched in one frame period.
、複数フレームに対応する映像信号力 最大階調値を検出することにより、複数フレ ームの周期で制御モードの切り替えが可能な構成としてもよい。 Further, it may be configured such that the control mode can be switched at a period of a plurality of frames by detecting the maximum gradation value of the video signal power corresponding to the plurality of frames.
[0055] また、本実施形態においては、映像信号に基づいて形成される表示画像の各色の 最大階調値を検出し、この最大階調値が閾値以上であるか否かによって採用する制 御モードを決めていた力 S、これに代えて、表示画像における平均階調値を色毎に求 め、この平均階調値が閾値以上である場合に第 2制御モード(図 6参照)を採用し、 平均階調値が閾値未満である場合に第 1制御モード(図 5参照)、或いは、第 2制御 モードと第 1制御モードとの組み合わせによる制御モード(図 9の c参照)を採用するこ ととしてあよい。  In the present embodiment, the maximum gradation value of each color of the display image formed based on the video signal is detected, and the control is adopted depending on whether or not the maximum gradation value is equal to or greater than the threshold value. Force S, which determined the mode, instead of this, the average gradation value in the display image is obtained for each color, and the second control mode (see Fig. 6) is adopted when this average gradation value is equal to or greater than the threshold value. When the average gradation value is less than the threshold value, the first control mode (see Fig. 5) or the control mode that combines the second control mode and the first control mode (see Fig. 9c) is adopted. This is good.
[0056] また、上記表示画像が明るいか否かを判断する場合、上記方法に代えて、表示画 像にお!/、て階調値が閾値以上の画素を色毎に検出し、検出した画素の数が予め設 定されている基準画素数以上である場合に、第 2制御モード(図 6参照)を採用し、該 画素の数が基準画素数未満である場合に、第 1制御モード(図 5参照)、或いは、第 2 制御モードと第 1制御モードとの組み合わせによる制御モード(図 9の c参照)を採用 することとしてあよい。  [0056] Further, when determining whether or not the display image is bright, instead of the above method, the display image is detected by detecting pixels for which the gradation value is greater than or equal to the threshold for each color. The second control mode (see Fig. 6) is adopted when the number of pixels is greater than or equal to the preset reference number of pixels, and the first control mode is selected when the number of pixels is less than the reference number of pixels. (Refer to Fig. 5) Alternatively, it may be possible to adopt a control mode (see c in Fig. 9) that is a combination of the second control mode and the first control mode.
[0057] また、表示画像が明るいか喑いかを判定するための方法については、上述した方 法に限られない。要は、表示画像が明るいか否かを判断するための判断基準を適宜 設定し、この判断基準に基づいて表示画像が明るいと判断した場合には、色調の変 化を伴わない第 2制御モードを採用し、表示画像が喑いと判断した場合には、色調 の変化を伴うが消費電力の低減効果の高い第 1制御モード、または、第 2制御モード と第 1制御モードとの組み合わせによる制御モードを採用すればよい。  [0057] Further, the method for determining whether the display image is bright or not is not limited to the method described above. In short, the second control mode that does not change the color tone is set when the criteria for judging whether or not the display image is bright is set appropriately and the display image is judged to be bright based on this criteria. If it is determined that the displayed image is long, the first control mode is accompanied by a change in color tone but has a high power consumption reduction effect, or a control mode that combines the second control mode and the first control mode. Should be adopted.
[0058] また、本実施形態においては、色毎に最大輝度値を検出し、この最大輝度値に基 づいて各 LED2a, 2b, 2cの制御モードを選択することとした力 これに代えて、赤、 緑、青を含めた表示画像の全体の明るさに応じて全ての LED2a, 2b, 2cを同じ制 卸モード、で制卸することとしてあよ!/、。 In the present embodiment, the maximum luminance value is detected for each color, and based on this maximum luminance value. Therefore, the power to select the control mode of each LED2a, 2b, 2c. Instead, all LEDs 2a, 2b, 2c are the same according to the overall brightness of the display image including red, green, and blue. It ’s a good idea to do this in the wholesale mode!
表示画像が明るいか否かの判断方法については、任意に決定することが可能であ る力 例えば、 1フレームにおける映像信号から所定値以上の階調値を持つ画素を 抽出し、この画素数が予め設定されている基準画素数以上であった場合には、表示 画像が明るいと判断して全ての LED2a, 2b, 2cを第 2制御モードで駆動制御し、ま た、上記画素数が基準画素数未満であった場合には、表示画像が喑いと判断して 全ての LED2a, 2b, 2cを第 1制御モードで駆動制御することとしてもよい。また、 1フ レームにおける平均階調値を求め、この平均階調値が閾値以上であるか否かにより 表示画像が明るいか否かを判断することとしてもよい。  The ability to determine whether the display image is bright or not can be determined arbitrarily. For example, pixels with a gradation value greater than or equal to a predetermined value are extracted from the video signal in one frame, and the number of pixels is If the number of pixels is equal to or greater than the preset reference pixel number, the display image is judged to be bright and all LEDs 2a, 2b, 2c are driven and controlled in the second control mode. If it is less than the number, it may be determined that the display image is long and all the LEDs 2a, 2b, 2c may be driven and controlled in the first control mode. Further, an average gradation value in one frame may be obtained, and it may be determined whether or not the display image is bright based on whether or not the average gradation value is equal to or greater than a threshold value.
[0059] また、本実施形態において、 CPU13がユーザ I/F18からモード指定信号を受け 付けた場合には、ユーザにより指定された制御モードを優先して採用することとしても よい。例えば、 CPU13が、第 1制御モードを指定する旨の信号をユーザ I/F18から 受け付けた場合には、第 1制御モードによって各 LED2a, 2b, 2cを駆動制御する。 このように、ユーザが所望する制御モードを優先的に採用することにより、 LED2a, 2 b, 2cの駆動制御にユーザの意思を反映させることができる。  In this embodiment, when the CPU 13 receives a mode designation signal from the user I / F 18, the control mode designated by the user may be preferentially adopted. For example, when the CPU 13 receives a signal for designating the first control mode from the user I / F 18, it drives and controls the LEDs 2a, 2b, 2c in the first control mode. Thus, by adopting the control mode desired by the user with priority, the user's intention can be reflected in the drive control of the LEDs 2a, 2b, 2c.
また、上記ユーザによる制御モードの選択は、色毎に可能な構成としてもよい。これ により、ユーザの意思をより詳細に反映させることができる。また、制御モードだけで なぐ例えば、表示画面が明るいか喑いかを判断するときの判断基準、例えば、上記 閾値や基準画素数にっレ、てもユーザが設定可能な構成としてもよ!/、。  The user may select a control mode for each color. As a result, the user's intention can be reflected in more detail. In addition to the control mode alone, for example, a judgment criterion for judging whether the display screen is bright or not, such as the threshold value and the number of reference pixels, can be configured by the user! /, .
[0060] また、本実施形態において、 CPU13は、電源回路 19からの電源信号に基づいて 制御モードを切り替えることとしてもよい。例えば、 ACアダプタから電力が供給されて V、る状態を示す電源信号が入力されてレ、る期間にぉレ、ては、消費可能な電力に制 限がないため、 CPU13は、第 2制御モードを採用することにより、消費電力よりも色 調を重視する。一方、バッテリから電力が供給されている状態を示す電源信号が入 力されている期間においては、使用可能な電力が制限されているため、 CPU13は、 第 1制御モード、或いは、上述した第 1制御モードと第 2制御モードの組合せからなる 制御モードを採用することにより、色調変化を許容しながら消費電力の低減効果を高 める。このように、電源の供給状態に応じて、制御モードを切り替えることとしてもよい 。また、バッテリから電力が供給されている場合において、バッテリの残容量に応じて 制卸モードを切り替えることとしてもよ!/、。 In the present embodiment, the CPU 13 may switch the control mode based on the power signal from the power circuit 19. For example, since power is supplied from the AC adapter and the power signal indicating the state of V is input, the power that can be consumed is not limited. Employing modes emphasizes color tone over power consumption. On the other hand, during the period when the power supply signal indicating that the power is being supplied from the battery is input, the usable power is limited. Therefore, the CPU 13 operates in the first control mode or the first control described above. Consists of a combination of control mode and second control mode By adopting the control mode, the effect of reducing power consumption is enhanced while allowing color change. Thus, the control mode may be switched according to the power supply state. In addition, when power is supplied from the battery, the control mode can be switched according to the remaining capacity of the battery! /.
なお、上述した各態様は、可能な範囲で組み合わせて適用することが可能である。  In addition, it is possible to apply each aspect mentioned above combining in the possible range.
[0061] 〔第 2の実施形態〕 [Second Embodiment]
次に、本発明の第 2の実施形態に係る画像投影装置について説明する。 本実施形態に係る画像投影装置においては、駆動電流の増減による色調変化が 小さい色、即ち、赤色及び青色に関しては、第 1制御モードを採用し、駆動電流の増 減による色調変化が大きい色、即ち、緑色に関しては、第 2制御モードを採用する。 このように、本実施形態における画像投影装置によれば、色毎に制御モードを使い 分けるので、画像処理回路 11及び CPU13における処理負担を大幅に低減させるこ と力 Sできる。  Next, an image projection apparatus according to a second embodiment of the present invention will be described. In the image projection apparatus according to the present embodiment, the first control mode is adopted for colors having a small color change due to increase / decrease in drive current, i.e., red and blue, and colors having a large color change due to increase / decrease in drive current, That is, the second control mode is adopted for green. As described above, according to the image projection apparatus of the present embodiment, the control mode is properly used for each color, so that the processing load on the image processing circuit 11 and the CPU 13 can be greatly reduced.
[0062] 〔第 3の実施形態〕 [Third Embodiment]
次に、本発明の第 3の実施形態に係る画像投影装置について説明する。 本実施形態に係る画像投影装置は、映像信号に基づ!/、て形成される表示画像の 色成分の偏りに応じて制御モードの選択を行う点で、上述した第 1の実施形態に係る 画像投影装置と異なる。  Next, an image projection apparatus according to a third embodiment of the present invention will be described. The image projection apparatus according to the present embodiment is based on the first embodiment described above in that the control mode is selected according to the color component bias of the display image formed based on the video signal! Different from the image projector.
以下、本実施形態に係る画像投影装置について、第 1の実施形態と異なる点につ いて主に説明する。  Hereinafter, the difference between the image projection apparatus according to the present embodiment and the first embodiment will be mainly described.
[0063] 図 10及び図 11は、映像信号に基づいて形成される表示画像の各画素の色調を s RGBの 3原色を基準として、 xy空間にプロットした図であり、図 10は、花の画像の例 であり、図 11は夕日の画像の一例である。  FIG. 10 and FIG. 11 are diagrams in which the color tone of each pixel of the display image formed based on the video signal is plotted in the xy space with reference to the three primary colors of sRGB. An example of an image is shown in Fig. 11.
図 10は、 RGBの 3原色で囲まれる三角形の色表現範囲に画素の色調プロットが広 力 Sつていることから、この表示画像には様々な色成分が含まれていることがわかる。こ れに対し、図 11では、 RGBの 3原色で囲まれる三角形の色表現範囲に画素の色調 プロットが Rの原色に近!/、範囲に偏って!/、ることから、この表示画像には G (緑)や B ( 青)の原色に近レ、成分がほとんど含まれて!/、な!/、ことがわかる。 [0064] 本実施形態に係る画像投影装置の制御部 10は、特徴量抽出回路 16において 1フ レームに対応する映像信号から表示画像の色調の偏りを検出し、この検出結果に基 づいて CPU13が採用する制御モードを決定する。ここで、各画素の色調は、公知の 手法によって、例えば、映像信号における各画素の RGB信号レベルと、 RGB原色の 各 3刺激値 XYZのマトリクスとを用いてマトリクス演算処理を行うことで容易に求めるこ と力 Sできる。 In Fig. 10, since the color tone plot of the pixel has a wide S in the triangular color expression range surrounded by the three primary colors of RGB, it can be seen that this display image contains various color components. In contrast, in Fig. 11, the pixel color plot is close to the R primary color in the triangular color expression range surrounded by the three primary colors RGB! Is close to the primary colors of G (green) and B (blue) and contains almost no ingredients! / ,! [0064] The control unit 10 of the image projection apparatus according to the present embodiment detects the color tone deviation of the display image from the video signal corresponding to one frame in the feature amount extraction circuit 16, and the CPU 13 based on the detection result. Determines the control mode to be adopted. Here, the color tone of each pixel can be easily determined by performing a matrix calculation process using a known technique, for example, using the RGB signal level of each pixel in the video signal and the matrix of each tristimulus value XYZ of the RGB primary colors. It can be sought.
CPU13は、色調の偏りがない場合には、第 2制御モードを採用することにより、駆 動電流の大きさの変化による色の変化を抑える。また、 CPU13は、色調の偏りがある 場合には、多く含まれている色(例えば、図 11に示される表示画像では、赤色)につ いて第 2制御モードを採用することにより駆動電流の大きさの変化による色の変化を 抑え、一方、ほとんど含まれていない色(例えば、図 11においては、緑色、青色)に ついては、第 1制御モードを採用することにより、消費電力を効果的に低減させる。  When there is no color tone bias, the CPU 13 adopts the second control mode to suppress the color change due to the change in the magnitude of the drive current. Further, the CPU 13 adopts the second control mode for a large number of colors (for example, red in the display image shown in FIG. 11) when the color tone is uneven, thereby increasing the drive current. The color change due to the change in height is suppressed, while for the rarely included colors (for example, green and blue in Fig. 11), the first control mode is used to effectively reduce power consumption. Let
[0065] 以上説明してきたように、本実施形態に係る画像投影装置によれば、映像信号に 基づいて形成される表示画像の色の偏りに基づいて制御モードを選択するので、投 影画像の色調変化を許容範囲に抑えながら効果的に消費電力を低減させることが できる。 [0065] As described above, according to the image projection apparatus of the present embodiment, the control mode is selected based on the color deviation of the display image formed based on the video signal. It is possible to effectively reduce power consumption while keeping the color tone change within an allowable range.
なお、本実施形態において、電流の大きさにより色の影響を受けない赤色、青色に ついては、上記色調の偏りにかかわらず常に第 1制御モードを採用し、電流の大きさ の変化によって色が変化しやすい緑色に関してのみ、上記色調の偏りに応じて制御 モードを選択することとしてもよい。このように、 LED2a, 2cについては、常に第 1制 御モードを採用することにより、消費電力を更に低減させることができる。  In the present embodiment, the first control mode is always adopted for red and blue that are not affected by the color due to the magnitude of the current, regardless of the color tone, and the color changes according to the change in the magnitude of the current. Only for green, which is easy to do, the control mode may be selected according to the color tone deviation. As described above, the power consumption of the LEDs 2a and 2c can be further reduced by always adopting the first control mode.
[0066] また、本実施形態において、図 12に示すように、色調図上のプロットが直線的に並 んでいる場合には、色調の変化に気づきにくいため、各 LED2a, 2b, 2cを第 1制御 モードで制御することとしてもよい。例えば、プレゼンテーション画像のように、同じ色 で表された画素が多!/、画像の場合には、映像信号に基づ!/、て形成される表示画像 の各画素の色調を sRGBの 3原色を基準として xy空間にプロットすると、図 12に示す ように、プロットが直線的に表れる傾向が強ぐ図 10、図 11に示した自然画に比べて 、色調を表す点の数 (色数)が少ない。このような場合には、色調の変化が気にならな いと判断して、消費電力を効果的に低減できる第 1制御モードを採用するとよい。 [0066] In the present embodiment, as shown in FIG. 12, when the plots on the color map are arranged in a straight line, it is difficult to notice the change in color, so each LED 2a, 2b, 2c is set to the first. Control may be performed in the control mode. For example, as in a presentation image, there are many pixels represented by the same color! /, And in the case of an image, the color tone of each pixel of the display image formed based on the video signal! / Is the three primary colors of sRGB When plotting in the xy space with reference to, the number of points representing the color tone (number of colors) is higher than the natural image shown in Fig. 10 and Fig. 11, where the plot tends to appear linearly as shown in Fig. 12. Less is. If this is the case, don't mind the color change. The first control mode that can effectively reduce power consumption should be adopted.
[0067] 〔第 1の変形例〕  [0067] [First modification]
なお、上記各実施形態においては、光源ユニット 2が、互いに異なる色の照明光を 射出する 3つの LED2a, 2b, 2cを有していた力 これに代えて、図 13に示すように、 同色の照明光を射出する複数の LEDを同一面上にアレイ状に配置した LED群 2 , 2b' , 2 を用いることとしてもよい。この場合において、各 LEDの光量制御方法は 、上述と同様である。  In each of the above embodiments, the light source unit 2 has three LEDs 2a, 2b, and 2c that emit illumination lights of different colors. Instead, as shown in FIG. LED groups 2, 2b ′, 2 in which a plurality of LEDs emitting illumination light are arranged in an array on the same plane may be used. In this case, the light amount control method for each LED is the same as described above.
[0068] 〔第 2の変形例〕  [Second Modification]
また、上記各実施形態に係る光源ユニット 2に代えて、図 14乃至図 16に示すような 光源ユニット 2'としてもよい。図 14は光源ユニット 2'を照明光の射出端側からみたと きの平面図、図 15は光源ユニット 2'の縦断面図、図 16は光源ユニット 2'が備える回 転口ッド 20の回転状態及び光の伝達効率を説明するための図である。  Further, instead of the light source unit 2 according to each of the above embodiments, a light source unit 2 ′ as shown in FIGS. 14 to 16 may be used. Fig. 14 is a plan view of the light source unit 2 'when viewed from the emission end side of the illumination light, Fig. 15 is a longitudinal sectional view of the light source unit 2', and Fig. 16 is a diagram of the rotary head 20 included in the light source unit 2 '. It is a figure for demonstrating a rotation state and the transmission efficiency of light.
図 14及び図 15に示すように、光源ユニット 2Ίこおいて、複数の LED2a、複数の L ED2b、複数の LED2cが同一円周上に配置されている。この配列の中心には、当該 配列中心軸周りに回転可能な回転ロッド 20が設けられている。  As shown in FIGS. 14 and 15, in two light source units, a plurality of LEDs 2a, a plurality of LEDs 2b, and a plurality of LEDs 2c are arranged on the same circumference. At the center of this array, there is provided a rotating rod 20 that can rotate around the center axis of the array.
この回転ロッド 20の自由端には、各 LEDから射出された照明光を取り込むための 入射端 20aが設けられており、同一円周上に配列された各 LED2a, 2b, 2cの点灯タ イミングに同期して、回転ロッド 20が配列中心軸回りに回転させられることにより、回 転ロッド 20の入射端 20aに対向する LED2a, 2b, 2cから発せられた照明光が入射 端 20a力、ら回転ロッド 20内に取り込まれ、この回転ロッド 20を介して固定ロッド 23の 入射端に導かれるようになつている。  At the free end of the rotating rod 20, there is an incident end 20a for taking in the illumination light emitted from each LED, and the lighting timing of each LED 2a, 2b, 2c arranged on the same circumference is provided. Synchronously, when the rotating rod 20 is rotated around the center axis of the array, the illumination light emitted from the LEDs 2a, 2b, 2c facing the incident end 20a of the rotating rod 20 is incident on the rotating end 20a. It is taken into 20 and led to the incident end of the fixed rod 23 through the rotating rod 20.
[0069] このような光源ユニット 2Ίこおいては、全ての LED2a, 2b, 2cを点灯したときの照 明光の合成光が所望の色(例えば、白色)になるように各 LED2a, 2b, 2cの最大駆 動電流を決定する。例えば、図 17に示すように、 LED2aの最大駆動電流 Irmax, L ED2bの最大駆動電流 Igmax, LED2cの最大駆動電流 Ibmaxは、以下のように設 定される。  [0069] In such a light source unit 2 mm, each LED 2a, 2b, 2c has a desired color (for example, white) so that the combined light of the illumination light when all the LEDs 2a, 2b, 2c are turned on is turned on. Determine the maximum drive current. For example, as shown in FIG. 17, the maximum drive current Irmax of LED2a, the maximum drive current Igmax of LED2b, and the maximum drive current Ibmax of LED2c are set as follows.
ibmaxく Irmax、 Igmax  ibmax-Irmax, Igmax
そして、駆動電流の増減による色調変化が大きい緑色に関しては、図 18に示され るように、第 2制御モードが採用され、駆動電流の増減による色調変化が小さい赤色 、青色に関しては、第 1制御モードを採用することにより、消費電力低減の向上を図る For green, which has a large color change due to increase / decrease in drive current, it is shown in Fig. 18. As shown in the figure, the second control mode is adopted, and for red and blue, where the change in color tone due to increase / decrease in drive current is small, the first control mode is adopted to improve power consumption reduction.
[0070] なお、表示画像の緑色に力、かる輝度力 予め設定されている閾値 (例えば、一の L ED2bを完全に消灯状態としたときの LED2b全体で得られる光量に対応する輝度) 以下であった場合には、図 19に示すように、一の LED2bを完全に消灯状態とし、他 の LED2bを輝度に応じたデューティ比で制御することとしてもよい。 [0070] It should be noted that the green power of the display image and the luminance power to be applied are preset threshold values (for example, the luminance corresponding to the amount of light obtained by the entire LED 2b when one LED 2b is completely turned off). In such a case, as shown in FIG. 19, one LED 2b may be completely turned off, and the other LED 2b may be controlled with a duty ratio corresponding to the luminance.
[0071] なお、上記光源ユニット 2Ίこおいて、回転ロッド 20を LED2a, 2b, 2cの配列中心 軸周りに回転させる場合、図 16に示すように、回転ロッド 20の回転角 Θが変化すると 、回転ロッド 20の射出端 20bと、該射出端 20bに対向配置された固定ロッド 23の入 射端 23aとの結合状態が変化し、光の伝達効率が変動する。回転ロッド 20の射出端 20bと固定ロッド 23の入射端 23aとは同一形状であり、例えば、四角に形成されてい る。ここで、両者の四辺が一致する状態のときの回転ロッド 20の回転角を 0° とした場 合、図 20に示すように、光の伝達効率は、回転角 0° と 90° のときに最大値をとり、 回転角 45° 及び 135° の時に最小値をとる正弦波として表される。このように、光の 伝達効率は回転角 Θによる周期的な変化を示すので、光量を低減させる場合には、 光の伝達効率の低い位置に配置された LED2a, 2b, 2cから優先的に光量を低減さ せることが好ましい。このように、光量調整を行うことにより、同じ明るさを得る場合でも 、消費電力を効率的に低減させることができる。  [0071] When the rotating rod 20 is rotated around the central axis of the LEDs 2a, 2b, 2c in the two light source units, as shown in FIG. 16, when the rotation angle Θ of the rotating rod 20 changes, The coupling state between the exit end 20b of the rotating rod 20 and the entrance end 23a of the fixed rod 23 arranged opposite to the exit end 20b changes, and the light transmission efficiency varies. The exit end 20b of the rotating rod 20 and the entrance end 23a of the fixed rod 23 have the same shape, for example, a square. Here, if the rotation angle of the rotating rod 20 is 0 ° when the four sides are coincident, the light transmission efficiency is as shown in Fig. 20 when the rotation angle is 0 ° and 90 °. It is expressed as a sine wave that takes the maximum value and takes the minimum value at rotation angles of 45 ° and 135 °. In this way, the light transmission efficiency shows a periodic change depending on the rotation angle Θ. Is preferably reduced. Thus, by adjusting the light amount, even when the same brightness is obtained, the power consumption can be efficiently reduced.
[0072] 〔第 3の変形例〕  [Third Modification]
また、上述した各実施形態においては、各 LED2a, 2b, 2cから射出された照明光 を共通する導光ユニット 3を介して共通する透過型液晶表示パネル 4に導いていたが 、これに変えて、図 21に示すように、 LED2a, 2b, 2cのそれぞれに対して、導光ュ ニット 3a, 3b, 3c、及び透過型 ί夜晶表示ノ ネノレ 4a, 4b, 4cを設けることとしてもよい 。この場合、透過型液晶表示パネル 4a, 4b, 4cを透過した各照明光は、同一の光合 成素子 8に導かれ、ここで合成された後、投影光学ユニット 5に導かれるようになって いる。  Further, in each of the above-described embodiments, the illumination light emitted from each LED 2a, 2b, 2c is led to the common transmissive liquid crystal display panel 4 through the common light guide unit 3. As shown in FIG. 21, the light guide units 3a, 3b, 3c and the transmission type night-night display non-linears 4a, 4b, 4c may be provided for the LEDs 2a, 2b, 2c, respectively. In this case, each illumination light transmitted through the transmissive liquid crystal display panels 4a, 4b, 4c is guided to the same optical combining element 8, and is combined here and then guided to the projection optical unit 5. .
[0073] 以上、本発明の実施形態について図面を参照して詳述してきたが、具体的な構成 はこの実施形態に限られるものではなぐ本発明の要旨を逸脱しない範囲の設計変 更等も含まれる。 As described above, the embodiments of the present invention have been described in detail with reference to the drawings. The present invention is not limited to this embodiment, and includes design changes and the like within the scope not departing from the gist of the present invention.
例えば、上述した各実施形態において、透過型液晶表示パネル 4に代えて、反射 型液晶表示パネル、或いは、 DMD (Digital Micro Mirror)を採用することとしてもよ い。  For example, in each of the above-described embodiments, a reflective liquid crystal display panel or DMD (Digital Micro Mirror) may be employed instead of the transmissive liquid crystal display panel 4.

Claims

請求の範囲 The scope of the claims
[1] 異なる色の照明光を発生する複数の光源を有する光源ユニットと、  [1] a light source unit having a plurality of light sources that generate illumination lights of different colors;
入力される映像信号に基づいて、前記光源ユニットから射出された照明光を変調 する光変調部と、  A light modulation unit that modulates illumination light emitted from the light source unit based on an input video signal;
前記光源ユニットの各前記光源を駆動制御する制御部と  A control unit that drives and controls each of the light sources of the light source unit;
を備え、  With
前記制御部が、  The control unit is
前記光源の駆動電流の大きさを可変制御する第 1制御モードと、  A first control mode for variably controlling the magnitude of the drive current of the light source;
前記光源の駆動電流のデューティ比を可変制御する第 2制御モードと  A second control mode for variably controlling the duty ratio of the drive current of the light source;
を有し、一または複数のフレームに対応する前記映像信号から表示画像の特徴量 を検出し、該特徴量に基づ!/、て前記第 1制御モード及び前記第 2制御モードの!/、ず れか一方、または、両方を選択し、選択した制御モードにて前記光源の駆動制御を 行う画像投影装置。  And detecting a feature amount of a display image from the video signal corresponding to one or a plurality of frames, and based on the feature amount! /, And in the first and second control modes! /, An image projection apparatus that selects one or both and performs drive control of the light source in the selected control mode.
[2] 前記制御部は、前記照明光の色毎に前記特徴量を検出し、前記照明光の色毎に 制御モードの選択を行う請求項 1に記載の画像投影装置。  2. The image projection apparatus according to claim 1, wherein the control unit detects the feature amount for each color of the illumination light and selects a control mode for each color of the illumination light.
[3] 前記制御部は、前記表示画像の特徴量として輝度を検出し、該輝度が所定の値以 上である場合に前記第 2制御モードを選択し、該輝度が所定の値未満である場合に 前記第 1制御モードを選択する請求項 1に記載の画像投影装置。 [3] The control unit detects luminance as a feature amount of the display image, selects the second control mode when the luminance is equal to or higher than a predetermined value, and the luminance is lower than the predetermined value. The image projector according to claim 1, wherein the first control mode is selected.
[4] 前記制御部は、前記照明光の色毎に前記画像の輝度を検出し、該輝度が所定の 値以上である場合に、当該色に対応する前記光源を前記第 2制御モードで駆動制 御し、該輝度が所定の値未満である場合に、当該色に対応する前記光源を前記第 1 制御モードで駆動制御する請求項 3に記載の画像投影装置。 [4] The control unit detects the luminance of the image for each color of the illumination light, and drives the light source corresponding to the color in the second control mode when the luminance is a predetermined value or more. 4. The image projecting device according to claim 3, wherein when the luminance is less than a predetermined value, the light source corresponding to the color is driven and controlled in the first control mode.
[5] 前記制御部は、前記表示画像の特徴量として色成分の偏りを検出し、該色成分の 偏りに応じて、制御モードの選択を行う請求項 1に記載の画像投影装置。 5. The image projecting device according to claim 1, wherein the control unit detects a bias of a color component as a feature amount of the display image and selects a control mode according to the bias of the color component.
[6] 前記制御部は、前記表示画像の色成分として、駆動電流の増減による色調変化が 所定の値よりも大きい照明光の色を他の照明光の色または所定の値よりも多く含む 場合に、少なくとも当該色に対応する前記光源を前記第 2制御モードで駆動制御す る請求項 5に記載の画像投影装置。 [6] The control unit includes, as a color component of the display image, a color of illumination light whose color tone change due to increase or decrease in drive current is larger than a predetermined value, more than the color of other illumination light or a predetermined value 6. The image projection device according to claim 5, wherein at least the light source corresponding to the color is driven and controlled in the second control mode.
[7] 前記制御部は、前記表示画像における色数を検出し、該色数に応じて、制御モー ドの選択を行う請求項 1に記載の画像投影装置。 7. The image projection apparatus according to claim 1, wherein the control unit detects the number of colors in the display image and selects a control mode according to the number of colors.
[8] 前記制御部は、前記表示画像における色数が所定数より少な!/、場合は、全ての前 記光源を第 1制御モードで駆動制御する請求項 7に記載の画像投影装置。 8. The image projection apparatus according to claim 7, wherein the control unit drives and controls all the light sources in the first control mode when the number of colors in the display image is less than a predetermined number! /.
[9] 異なる色の照明光を発生する複数の光源を有する光源ユニットと、 [9] a light source unit having a plurality of light sources that generate illumination lights of different colors;
入力される映像信号に基づいて、前記光源ユニットから射出された照明光を変調 する光変調部と、  A light modulation unit that modulates illumination light emitted from the light source unit based on an input video signal;
前記光源ユニットの各前記光源を駆動制御する制御部と  A control unit that drives and controls each of the light sources of the light source unit;
を備え、  With
前記制御部が、  The control unit is
各前記光源に印加する駆動電流の大きさを可変制御する第 1制御モードと、 各前記光源に印加する駆動電流のデューティ比を可変制御する第 2制御モードと を有し、駆動電流の大きさの変化による色の変化が所定値よりも大きい前記光源を 前記第 2制御モードで駆動制御し、該色の変化が所定値以下である前記光源を前 記第 1制御モ一ドで駆動制御する画像投影装置。  A first control mode for variably controlling the magnitude of the drive current applied to each light source; and a second control mode for variably controlling the duty ratio of the drive current applied to each light source. The light source whose color change due to the change in color is greater than a predetermined value is driven and controlled in the second control mode, and the light source whose color change is less than or equal to the predetermined value is driven and controlled in the first control mode. Image projection device.
PCT/JP2007/070329 2006-10-20 2007-10-18 Image projection apparatus WO2008047856A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006286675A JP2008102442A (en) 2006-10-20 2006-10-20 Image projector
JP2006-286675 2006-10-20

Publications (1)

Publication Number Publication Date
WO2008047856A1 true WO2008047856A1 (en) 2008-04-24

Family

ID=39314074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/070329 WO2008047856A1 (en) 2006-10-20 2007-10-18 Image projection apparatus

Country Status (2)

Country Link
JP (1) JP2008102442A (en)
WO (1) WO2008047856A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3021312A4 (en) * 2013-07-11 2017-02-08 EIZO Corporation Display device and drive method for backlight
CN113835287A (en) * 2019-06-20 2021-12-24 青岛海信激光显示股份有限公司 Laser projection device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8400391B2 (en) * 2008-01-10 2013-03-19 Honeywell International Inc. Method and system for improving dimming performance in a field sequential color display device
JP2010181695A (en) * 2009-02-06 2010-08-19 Ntt Docomo Inc Image display control device and image display control method
US8585213B2 (en) 2009-05-28 2013-11-19 Transpacific Image, Llc Projection-type display and control thereof
JP4686644B2 (en) * 2009-07-07 2011-05-25 シャープ株式会社 Liquid crystal display
JP4648481B1 (en) * 2009-12-07 2011-03-09 ▲高▼橋 厚子 Simple bathtub
JP5388894B2 (en) * 2010-02-19 2014-01-15 三菱電機株式会社 Display device
CN102472895B (en) 2010-04-20 2014-08-13 松下电器产业株式会社 Image display device
JP5673024B2 (en) * 2010-11-26 2015-02-18 セイコーエプソン株式会社 Image display device, image display system, and image display method
WO2014112032A1 (en) * 2013-01-15 2014-07-24 Necディスプレイソリューションズ株式会社 Image display device and image display method
JP6880584B2 (en) * 2016-07-12 2021-06-02 株式会社リコー Dimming device and dimming method
JP7162243B2 (en) * 2018-10-16 2022-10-28 パナソニックIpマネジメント株式会社 Semiconductor light source driving device and projection type image display device
CN110095256B (en) * 2019-05-08 2021-12-07 歌尔股份有限公司 Projector optical machine testing system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144332A (en) * 1999-11-12 2001-05-25 Sharp Corp Led drive method, led device, led lamp, led lamp drive method, and display device
JP2004177627A (en) * 2002-11-27 2004-06-24 Nec Kansai Ltd Light emitting diode display
JP2004341206A (en) * 2003-05-15 2004-12-02 Olympus Corp Display apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001144332A (en) * 1999-11-12 2001-05-25 Sharp Corp Led drive method, led device, led lamp, led lamp drive method, and display device
JP2004177627A (en) * 2002-11-27 2004-06-24 Nec Kansai Ltd Light emitting diode display
JP2004341206A (en) * 2003-05-15 2004-12-02 Olympus Corp Display apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3021312A4 (en) * 2013-07-11 2017-02-08 EIZO Corporation Display device and drive method for backlight
RU2627641C1 (en) * 2013-07-11 2017-08-10 ЭЙЗО Корпорайшн Display device and method for backlight control
CN113835287A (en) * 2019-06-20 2021-12-24 青岛海信激光显示股份有限公司 Laser projection device

Also Published As

Publication number Publication date
JP2008102442A (en) 2008-05-01

Similar Documents

Publication Publication Date Title
WO2008047856A1 (en) Image projection apparatus
US10210821B2 (en) Light source apparatus, image display apparatus and control method for light source apparatus
JP5305884B2 (en) Image processing apparatus, image processing method, and image processing program
JP4222392B2 (en) Image display device and image display method
JP2004341206A (en) Display apparatus
US9542911B2 (en) Display apparatus and method for controlling display apparatus
WO2010140299A1 (en) Image display device
US9363872B2 (en) Display device and method of controlling light source
MX2007007533A (en) Field sequential display of color images.
JPWO2007023681A1 (en) Image display device
JP5319836B2 (en) Image display device
JP2010128072A (en) Backlight driving device and backlight driving control method
US8159452B2 (en) Image display device and electronic apparatus
US8976204B2 (en) Display device
JP2006330177A (en) Display device and projector
JP5556287B2 (en) Projection display
JP6057397B2 (en) Projector, color correction apparatus, and projection method
TWI388222B (en) Device for adjusting white balance in a field sequential display and method thereof
KR20080086282A (en) Back light unit driving apparatus
JP6732841B2 (en) Image projection device
JP2008051861A (en) Rear projector
JP6122289B2 (en) Projector, projector control method and program
WO2014083970A1 (en) Image display device and image display method
JP2008026355A (en) Light source control device
US20130194315A1 (en) Gamut control using rgb driving with additional balancing phase for field sequential color displays and other displays

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07830063

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07830063

Country of ref document: EP

Kind code of ref document: A1