WO2008047722A1 - Mobile communication system, control device, base station device control method, and program - Google Patents

Mobile communication system, control device, base station device control method, and program Download PDF

Info

Publication number
WO2008047722A1
WO2008047722A1 PCT/JP2007/069986 JP2007069986W WO2008047722A1 WO 2008047722 A1 WO2008047722 A1 WO 2008047722A1 JP 2007069986 W JP2007069986 W JP 2007069986W WO 2008047722 A1 WO2008047722 A1 WO 2008047722A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
delay amount
data
communication system
unit
Prior art date
Application number
PCT/JP2007/069986
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Hamaguchi
Hideo Namba
Shimpei To
Kimihiko Imamura
Yasuyuki Kato
Daiichiro Nakashima
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Publication of WO2008047722A1 publication Critical patent/WO2008047722A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0671Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different delays between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services

Definitions

  • the present invention relates to a mobile communication system, a control apparatus, a base station apparatus control method, and a program, and more particularly to a mobile communication system, a control apparatus, a base station apparatus control method, and a program that perform delay diversity.
  • the 3GPP (3rd Generation Partnership Project) calls such a technology that enables broadcast-type multimedia services as ⁇ > ( ⁇ imedia Broadcast Multicast Service).
  • ⁇ > ⁇ imedia Broadcast Multicast Service
  • MBMS a form in which the above-mentioned distribution is performed in units of base station apparatuses (hereinafter referred to as single cell MBMS) and a form in which a plurality of base station apparatuses distribute the same data (hereinafter referred to as multi-cell MBMS).
  • single cell MBMS base station apparatuses
  • multi-cell MBMS multi-cell MBMS
  • a base station apparatus is usually composed of a plurality of sector apparatuses, and in a single cell MBMS, the same data is distributed from each sector apparatus. Since each sector device functions as an independent base station device, hereinafter, unless otherwise specified, the term “base station device” refers to a sector device.
  • soft compiling which is one of the techniques for improving the reception characteristics of a mobile station apparatus, is particularly used where the received power is small, such as a cell edge.
  • the mobile station apparatus receives and combines the data transmitted by each of the base station apparatuses. As a result, the reception power is increased and the reception characteristics are improved as compared with the case where only the data transmitted by a single base station apparatus is received.
  • delay diversity is known as another technique for improving the reception characteristics of a mobile station apparatus.
  • Delay diversity is a technique for improving reception characteristics by separating and extracting delay components caused by reflection and the like in a mobile station apparatus and treating the same data as if it were received multiple times.
  • the delay amount needs to be larger than a certain level. Therefore, there is a technique for ensuring that a delay amount equal to or greater than a predetermined value is obtained by intentionally transmitting a delay component in the base station apparatus.
  • a CDTD Cyclic Delay Transmit Diversity
  • the CDTD technique is a technique proposed in an Orthogonal Frequency Division Multiplexing (OFDM) (Orthogonal Frequency Division Multiplexing Access) system. This CDTD technique will be described in detail below.
  • the CDTD technology is provided with a plurality of antennas in a base station apparatus, and delay effects of different delay amounts are given to the respective antennas so that a mobile station apparatus can obtain the effect of delay diversity. This effect increases as the number of antennas increases.
  • FIG. 16 is a diagram illustrating an example of functional blocks of the base station apparatus 200 that employs OFDMA and CDTD techniques.
  • the base station device 200 includes a data scheduling unit 210, a channel estimation code selection unit 220, a mapping unit 230, an S / P (serial / parallel) conversion unit 240, an interleaving unit 250, 2 One transmission unit 260 is included.
  • Each transmission unit 260 includes a plurality of phase rotation units 261, an IFFT dnverseFast Fourier Transform (inverse fast Fourier transform) unit 262, a P / S (Parallel / serial: Parallel IJ) conversion unit 263, a GI (Guard Interval: Guard innovator) Addition part 264, D / A (Digital / Analog: digital / analog) conversion part 265, RF (Radio Frequency: wireless) part 266, antenna 267 Consists of including.
  • phase rotation units 261 an IFFT dnverseFast Fourier Transform (inverse fast Fourier transform) unit 262, a P / S (Parallel / serial: Parallel IJ) conversion unit 263, a GI (Guard Interval: Guard innovator) Addition part 264, D / A (Digital / Analog: digital / analog) conversion part 265, RF (Radio Frequency: wireless) part 266, antenna 267 Consists of including.
  • Data scheduling section 210 performs transmission data scheduling and the like, and outputs the result to mapping section 230.
  • Propagation path estimation code selection section 220 selects a propagation path estimation signal used for estimating propagation path characteristics in the mobile station apparatus, and outputs it to mapping section 230.
  • Mapping section 230 generates a data symbol sequence composed of a plurality of data symbols obtained by modulating different subcarriers based on the input transmission data and propagation path estimation signal, and S / P conversion section 240 To enter.
  • S / P conversion section 240 performs serial-parallel conversion on each data symbol constituting the data symbol sequence, and outputs parallel to phase rotation section 261 for each subchannel composed of a plurality of subcarriers. To do.
  • the S / P converter 240 outputs the same signal to each transmitter 260.
  • Interleaving section 250 performs predetermined replacement of the order of data symbols output in parallel by S / P conversion section 240 to each phase rotation section 261 before being input to each phase rotation section 261. Replace according to the rules!
  • Each phase rotation unit 261 receives input of CDTD transmission information indicating whether or not the input data symbol string is a target of cyclic delay transmission from a control unit (not shown). Then, when it is an object of cyclic delay transmission, a predetermined phase rotation is given to each input data symbol and output to IFFT section 260. Note that the amount of phase rotation given here differs depending on the transmitter 260. Also, the phase rotation units 261 may differ from each other.
  • the IFFT unit 262 obtains a plurality of sample values (samples) by performing inverse fast Fourier transform processing on the input data symbol sequence, and outputs the sample values to the P / S conversion unit 263 in parallel.
  • the set of samples obtained in this way is called an OFDM symbol.
  • P / S conversion section 263 performs parallel / serial conversion on the OFDM symbols input in parallel, and serially outputs them to GI addition section 264.
  • the calorie unit with GI 264 adds a GI to the input OFDM symbol and outputs it to the D / A conversion unit 265. All the processing so far is performed by digital processing, and the amplitude of the OFDM symbol input to the D / A conversion unit 265 is indicated by a digital value. D / A conversion The unit 265 acquires an analog signal based on the digital value and outputs the analog signal to the RF unit 266. The RF unit 266 converts the frequency of the input analog signal into a transmission band frequency, and transmits it from the antenna 267 to the radio section.
  • the base station apparatus 200 gives different phase rotations for each transmission unit 260.
  • the mobile station apparatus responds to the amount of rotation. Since the same effect as the amount of delay is obtained, the delay diversity effect can be obtained in the mobile station apparatus.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-354708
  • the mobile station apparatus can have a plurality of base stations as in the MBMS.
  • the effect of delay diversity cannot be obtained between the data transmitted by each base station device.
  • one of the problems of the present invention is that when the mobile station apparatus receives data transmitted from a plurality of base station apparatuses, the data transmitted by each base station apparatus respectively.
  • the present invention provides a mobile communication system, a control device, a base station device control method, and a program capable of realizing delay diversity between devices.
  • a mobile communication system which is effective in the present invention for solving the above-mentioned problems is a mobile communication system including a plurality of base station apparatuses each including a wireless transmission means for wirelessly transmitting communication data to a mobile station apparatus.
  • the transmission control means for wirelessly transmitting the communication data at a predetermined timing from each of the plurality of base station apparatuses, and the delay amount for each base station apparatus so as to be different for each base station apparatus.
  • the wireless transmission of the communication data is delayed from the predetermined timing according to the delay amount. It is a sign.
  • the mobile station apparatus since the communication data is transmitted after the delay amount determined to be different for each base station apparatus, the mobile station apparatus uses the data transmitted from each base station apparatus. When receiving, delay diversity between the data transmitted by each base station apparatus is realized.
  • the wireless transmission means performs inverse discrete Fourier transform processing on a data symbol sequence composed of a plurality of data symbols each obtained by modulating the communication data.
  • Each of the base station devices according to control of the transmission control means, and a radio transmission unit that wirelessly transmits a sample sequence obtained as a result of the inverse discrete Fourier transform process.
  • the sample sequence obtained as a result of the inverse discrete Fourier transform process is cyclically delayed in accordance with the delay amount determined by the delay amount determination unit.
  • the wireless transmission of data may be delayed from the predetermined timing.
  • delay diversity between data transmitted by each base station apparatus is realized by cyclically delaying the sample string.
  • the wireless transmission means performs inverse discrete Fourier transform processing on a data symbol sequence composed of a plurality of data symbols each obtained by modulating the communication data.
  • Each of the base station devices according to control of the transmission control means, and a radio transmission unit that wirelessly transmits a sample sequence obtained as a result of the inverse discrete Fourier transform process.
  • the wireless transmission of the communication data may be delayed from the predetermined timing.
  • the wireless transmission means includes a data symbol sequence composed of a plurality of data symbols obtained by modulating the communication data.
  • An inverse discrete Fourier transform unit that performs an inverse discrete Fourier transform process on the radio signal, and a radio transmission unit that wirelessly transmits a sample sequence obtained as a result of the inverse discrete Fourier transform process, wherein each of the base station devices transmits the transmission
  • the communication data is wirelessly transmitted by the wireless transmission means in accordance with control of the control means, a plurality of data symbol sequences that are grouped according to the delay amount determined by the delay amount determination means By rotating the phase of each data symbol for each loop, wireless transmission of the communication data may be delayed from the predetermined timing.
  • the amount of phase rotation can be unified within a group.
  • each base station apparatus has a rotation amount corresponding to the delay amount determined by the delay amount determination means and the position of each data symbol in the data symbol sequence.
  • the phase rotation may be given to each data symbol.
  • the force S is used to vary the amount of phase rotation for each data symbol (each subcarrier).
  • the wireless transmission means sets the position of each data symbol in the data symbol sequence to the delay amount determined by the delay amount determination means. It is good also as including the interleaving part which replaces according to the permutation rule according to and inputs into the said inverse discrete Fourier-transform part.
  • the mobile communication system includes a control device for controlling each of the base station devices, and the delay amount determining means is provided in the control device.
  • the control device is configured to determine the delay amount determined by the delay amount determination means.
  • Transmission means for transmitting to the respective base station apparatuses, each base station apparatus transmits the communication data by the wireless transmission means under the control of the transmission control means.
  • the wireless transmission of the communication data may be delayed from the predetermined timing in accordance with the delay amount information received from the control device.
  • control device (exchanger or the like) collectively determines the delay amount for each base station device, the delay amounts of the respective base station devices can be surely made different from each other.
  • the delay amount determining means may determine the delay amount based on a random value.
  • control device can determine the delay amount based on the random value.
  • the delay amount determining means is provided in each of the plurality of base station apparatuses, and determines the delay amount based on a random value. Yes, that's good.
  • the delay amount is determined based on the random value, even if each base station device determines the delay amount, the base station device Make sure that the delays are different from each other.
  • the delay amount determination means is provided in each of the plurality of base station apparatuses, and is a random value determined for each cell and a value set in advance for each sector.
  • the delay amount may be determined based on the above.
  • the delay amount is determined using a random value determined for each cell and a value preset for each sector, a delay amount difference between sectors that is relatively easy to predict. It is possible to ensure the delay amount difference between cells that is relatively difficult to predict while ensuring the above.
  • the wireless transmission means includes one known data symbol obtained by modulating known data and the communication data according to the phase of the known data symbol.
  • One or a plurality of data symbols obtained by modulating the signal may be transmitted wirelessly.
  • the mobile station apparatus receives data symbol sequences respectively transmitted from a plurality of base station apparatuses.
  • the mobile station device can receive only the data symbol sequence transmitted by V, whichever base station device is V / !, but the data symbol sequence Can be received if it only receives a constant phase rotation as a whole.
  • the mobile station apparatus can receive only the data symbol ⁇ IJ transmitted by one of the base station apparatuses.
  • the data symbol string as a whole undergoes a constant phase rotation.
  • the mobile station apparatus can receive the data symbol sequence transmitted by each base station apparatus because it can create the same state as in the case where it is not.
  • the mobile station apparatus receives data transmitted from a plurality of base station apparatuses, it is possible to use different known data among the base station apparatuses.
  • the wireless transmission means modulates the known data unified between the base station devices, and the communication data. It is also possible to wirelessly transmit one or a plurality of data symbols obtained by modulating the received data.
  • the mobile station apparatus can receive the data symbol sequence transmitted by each base station apparatus.
  • control device is a control device for controlling a plurality of base station devices each including a wireless transmission means for wirelessly transmitting communication data, and each of the plurality of base station devices. From the transmission control means for wirelessly transmitting the communication data at a predetermined timing, the delay amount determining means for determining the delay amount for each base station apparatus so as to be different for each base station apparatus, and the delay amount determination Transmission means for transmitting delay amount information indicating the delay amount determined by the means to each of the base station devices.
  • the base station apparatus control method is a base station apparatus control method for controlling a plurality of base station apparatuses each including a wireless transmission means for wirelessly transmitting communication data.
  • the communication data is transmitted from each of the base station devices at a predetermined timing.
  • a transmission control step for wirelessly transmitting data, a delay amount determination step for determining a delay amount for each base station device so as to be different for each base station device, and each base station device in the transmission control step When wirelessly transmitting the communication data in accordance with control, delaying wireless transmission of the communication data from the predetermined timing according to the delay amount determined in the delay amount determining step; It is characterized by including.
  • the program according to the present invention is a program for causing a computer to function as a control device for controlling a plurality of base station devices including wireless transmission means for wirelessly transmitting communication data.
  • a transmission control unit that wirelessly transmits the communication data at a predetermined timing from each of the plurality of base station apparatuses, and a delay that determines a delay amount for each base station apparatus so as to differ for each base station apparatus.
  • This is a program for causing the computer to function as an amount determining unit and a transmitting unit that transmits delay amount information indicating the delay amount determined by the delay amount determining unit to each base station apparatus.
  • FIG. 1 is a diagram showing a system configuration of a mobile communication system according to an embodiment of the present invention.
  • FIG. 2 is a plan view showing a configuration example of a sector and a cell realized by the base station apparatus according to the embodiment of the present invention.
  • FIG. 3 is a diagram for explaining forces, cell edges and sector edges according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing functional blocks of the exchange according to the first embodiment of the present invention.
  • Fig. 5 is a diagram showing functional blocks of a base station apparatus that is effective in the first embodiment of the present invention.
  • FIG. 6 is a diagram schematically showing a plurality of subchannels used in the OFDMA standard.
  • Enzo 77] The eleventh practical embodiment of the present invention is powerful, and the internal relieve part is used for the insertion. It is a figure which shows the example of a replacement. .
  • FIG. 99] ((aa)) is the force that is applied to the eleventh embodiment of the present invention, and the output force from the IIFFFFTT section. It is a figure which shows the OOFFDDMM cylinder which is to be touched. . ((Bb)) is the circulation by the circulation delay delay part relating to the eleventh embodiment of the present invention.
  • FIG. 11 is a diagram showing functional blocks of the base station apparatus that is powerful in the third embodiment of the present invention. 12] The base station apparatus that is powerful in the fourth embodiment of the present invention.
  • FIG. 13 is a diagram showing functional blocks of the base station apparatus according to the fifth embodiment of the present invention.
  • FIG. 14 is a diagram showing functional blocks of the base station apparatus according to the fifth embodiment of the present invention. It is a schematic diagram showing an example of the rotation amount set by the amount setting unit.
  • FIG. 15 is a diagram showing functional blocks of a base station apparatus that focuses on the sixth embodiment of the present invention.
  • FIG. 16 is a diagram illustrating an example of functional blocks of a base station apparatus adopting OFDMA and CDTD technologies.
  • FIG. 1 is a diagram showing a system configuration of a mobile communication system 1 that focuses on the present embodiment.
  • the mobile communication system 1 includes an exchange 10, a plurality of base station devices 20, and a plurality of mobile station devices 30.
  • the exchange 10, the base station device 20, and the mobile station device 30 each have a computer having a CPU and a memory as a main component.
  • the CPU implements each function according to the present embodiment by reading and executing a program stored in the memory.
  • the memory stores various programs and data including a program for realizing the present embodiment, and also functions as a work memory for the CPU.
  • the exchange 10 performs wired communication with a network (not shown). Further, the exchange 10 and each base station device 20 perform wired communication with each other. In the present embodiment, the exchange 10 and the base station apparatuses 20 are synchronized with each other with respect to mutual communication.
  • each base station device 20 and each mobile station device 30 perform wireless communication with each other. In this embodiment, this wireless communication is performed in accordance with the OFDMA standard.
  • the mobile station device 30 communicates with a communication device installed on a network (not shown) via the base station device 20 and the exchange 10.
  • FIG. 2 is a plan view showing a configuration example of a sector and a cell realized by each base station apparatus 20.
  • a sector realized by a certain base station apparatus 20 indicates a geographical range in which the base station apparatus 20 and the mobile station apparatus 30 can communicate.
  • a cell is composed of sectors each realized by a plurality of base station devices 20.
  • one cell is realized by sectors each realized by three base station apparatuses 20.
  • cell C1 is composed of sectors # 11, # 12, and # 13
  • cells C2 to C7 are also composed of sectors # 21, # 22, # 23 to sectors # 71, # 72, and # 73. Has been.
  • each cell is indicated by a solid hexagon, and the three base station devices 20 constituting each cell are collectively indicated by one rectangle.
  • the overlap between cells and between sectors is described for convenience, but there is actually an overlap.
  • one cell for example, cell C1
  • cell C2 is adjacent to six cells (cell C2 to cell C7), and the boundary is called a cell edge.
  • Sectors are also adjacent to each other, and the boundary is called a sector edge.
  • FIG. 3 is a diagram in which the portions of the cell C1 and the cell C2 are extracted from FIG. 2, and are diagrams for explaining the cell edge and the sector edge.
  • the cell edge connects points P3 and P4 indicating two vertices adjacent to one of the vertices of cell C2 drawn in the same hexagon among the six vertices of cell C1 drawn in a hexagon.
  • the sector edge is, for example, a line connecting the point P1 indicating the position of the base station device 20 and the point P2 indicating the midpoint of one of the six hexagonal sides indicating the cell C1 and its vicinity.
  • the exchange 10 acquires communication data for the mobile station device 30 from the network. Then, whether the acquired communication data is to be transmitted by MBMS, is transferred with the base station apparatus 20. It is determined whether it should be transmitted by one-to-one communication with the mobile station device 30.
  • the exchange 10 transmits one or more specific base station devices 20 (for example, destinations of communication data) Communication data is transmitted to the three base station devices 20) that realize the cell in which the station device 30 is located.
  • the base station device 20 wirelessly transmits the UNI data received from the exchange 10 through one-to-one communication with the mobile station device 30.
  • the exchange 10 transmits to a plurality of base station apparatuses 20 in the MBMS data distribution area. , Send communication data.
  • This distribution area is specified in advance by, for example, the identification number of the base station device 20. Further, the exchange 10 determines the timing at which each base station apparatus 20 wirelessly transmits MB MS data, and notifies each base station apparatus 20 of the timing.
  • Each base station device 20 wirelessly transmits MBMS data received from the exchange 10 at the notified timing.
  • each base station apparatus 20 includes a plurality of antennas, a delay of a different delay amount is given to each antenna by the CDTD technique.
  • this delay amount is given to each base station apparatus by the CDTD technique.
  • delay diversity between MBMS data transmitted by each base station apparatus is realized.
  • each base station apparatus 20 will be described as having only one antenna!
  • the exchange 10a functions as a control device for controlling the delay amount for each base station device 20a. Further, in the base station device 20a, a delay in radio transmission timing is realized by a cyclic delay. Details of the cyclic delay will be described later.
  • FIG. 4 is a diagram showing functional blocks of the exchange 10a that is effective in the present embodiment.
  • the exchange 10a includes a communication data acquisition unit 11, a transmission control unit 12, a transmission area determination unit 13, and a switch 15.
  • the transmission area determination unit 13 includes a delay amount determination unit 14 therein.
  • FIG. 5 is a diagram showing functional blocks of the base station device 20a that are effective in the present embodiment.
  • the base station device 20a includes a data scheduling unit 21, a channel estimation code selection unit 22, a mapping unit 23a S / P conversion unit 24, an interleaving unit 25a an IFFT unit 26, a cyclic delay unit 27 P / S conversion unit 28 GI addition unit 29 D / A conversion unit 41 RF unit 42, antenna 43, and delay amount setting unit 44.
  • Each of these units functions as a wireless transmission unit that transmits communication data.
  • Communication data acquisition unit 11 acquires communication data from a network (not shown) and outputs it to switch 15.
  • the switch 15 transmits the input communication data to each base station device 20 by performing a switching process according to the control of the transmission control unit 12 described later.
  • transmission control unit 12 receives MBMS input from communication data acquisition unit 11 from each of a plurality of base station devices 20 at a predetermined timing. Send data wirelessly. Specifically, information indicating the transmission timing of MBMS data (referred to as MBMS transmission information) is generated and input to switch 15. Then, the switch 15 is controlled so as to transmit to the base station apparatus 20 together with the MBMS data. On the other hand, if the communication data input to the switch 15 is UNI data, the transmission control unit 12 transmits the UNI data to the cell where the mobile station device 30 that is the destination of the UNI data is located. The switch 15 is controlled so as to transmit to one or a plurality of realized base station apparatuses 20.
  • the transmission area determination unit 13 determines one or a plurality of base station devices 20a to which the transmission control unit 12 should transmit MBMS transmission information and MBMS data, and notifies the transmission control unit 12 of the determination. In accordance with this notification, the transmission control unit 12 controls the switch 15 to transmit MBMS transmission information and MBMS data to each base station apparatus 20a.
  • the delay amount determination unit 14 determines the delay amount for each base station apparatus 20a so as to be different for each base station apparatus 20a. Specifically, different delay amounts are determined for each base station device 20a. Details of this determination will be described later.
  • the delay amount determination unit 14 generates information indicating the determined delay amount (referred to as delay amount information) for each base station device 20 a and outputs the information to the transmission control unit 12.
  • the transmission control unit 12 sends the input delay amount information to each base station device 20a. Control switch 15 to transmit.
  • the base station apparatus 20a receives the MBMS data and the UNI data transmitted by the exchange 10 as described above, and performs radio transmission to the mobile station apparatus 30 according to the OFDMA standard. To do. Also, when the MBMS transmission information and the delay amount information transmitted by the exchange 10 are received and the MBMS data is wirelessly transmitted, the communication data is wirelessly transmitted according to the delay amount indicated by the received delay amount information. Delay from the timing indicated by the information. This will be specifically described below.
  • the OFDMA standard will be described.
  • communication data is modulated by a predetermined modulation method. This modulation is performed for each predetermined modulation unit amount that differs depending on the modulation method, and a data symbol string is obtained as a result of the modulation.
  • the data symbol sequence thus obtained is converted into a plurality of samples by inverse discrete Fourier transform.
  • the OFDM symbol consisting of a plurality of samples is transmitted on a carrier wave.
  • n 0 is applied.
  • the N subcarriers are classified into a predetermined number of groups, and each dulp is called a subchannel.
  • Re [] is a symbol representing the real part of a complex number.
  • Equation (2) the baseband OFDM symbol S (t) has n frequencies (supports The subcarrier), each d n is a multicarrier signal dispersion. When this is expressed in complex form, it becomes as shown in Equation (3).
  • Equation (4) is in the form of inverse discrete Fourier transform.
  • the data symbol sequence is subjected to inverse discrete Fourier transform, so that N (n) samples at a time interval of l / (Nf).
  • Sample value u (k / Nf) is assigned to a subcarrier of a different frequency.
  • FIG. 6 is a diagram schematically showing a plurality of subchannels used in the OFDMA standard.
  • twelve subchannels are prepared, and although not shown, each subchannel is composed of a predetermined number of subcarriers.
  • One frame is composed of a predetermined number of time-sequential OFDM symbols.
  • the part corresponding to each subchannel in one frame is called a block.
  • the part corresponding to each OFDM symbol in one block is called a chunk.
  • Each chunk is composed of a part of the OFDM symbol.
  • a mobile station device is placed at the head of each frame.
  • a known data symbol hereinafter referred to as a propagation path estimation symbol
  • a propagation path estimation code used for estimating the propagation path characteristics.
  • the propagation path estimation symbols are allocated to all subcarriers. That is, the data symbols constituting the OFDM symbol located at the head of each frame are all propagation path estimation symbols.
  • the data scheduling unit 21 receives communication data from the exchange 10 and allocates one or more subchannels to each transmission destination of the received communication data. Although the MBMS data transmission destination is not particularly defined, the data scheduling unit 21 assigns one or more subchannels to MBMS data on the assumption that there is one transmission destination.
  • the data scheduling unit 21 determines the transmission timing of communication data.
  • the transmission timing is determined according to the MBMS transmission information received at the same time. More specifically, based on the subchannels allocated as described above, a block to which each communication data is to be transmitted is determined, and further, a chunk in the block and the chunk are configured for each communication data of a modulation unit amount.
  • the transmission timing of communication data is determined by determining the position of the data symbol in the data symbol sequence (a part of the OFDM symbol) to be performed.
  • the data scheduling unit 21 excludes the position to be the propagation path estimation symbol from the position determined as the transmission timing of the communication data.
  • the data scheduling unit 21 outputs communication data to the mapping unit 23a in accordance with the transmission timing determined as described above. Specifically, the mapping unit 23a outputs sequential communication data for each modulation unit amount at the timing when the data symbol at the determined position is generated.
  • the channel estimation code selection unit 22 outputs the channel estimation code at the timing when the mapping unit 23a generates the channel estimation symbol.
  • the propagation path estimation code selection unit 22 stores a plurality of types of propagation path estimation codes, and selects a propagation path estimation code to be output according to the MBMS transmission information. Specifically, the timing for generating a propagation path estimation symbol for a block in which MB MS data is transmitted. In this case, a channel estimation code for MBMS data transmission is selected and output.
  • a propagation path estimation code for UNI data transmission is selected and output.
  • the propagation path estimation code for MBMS data transmission is a code common to all base station apparatuses 20a
  • the propagation path estimation code for UNI data transmission is an arbitrary code different for each base station apparatus 20a.
  • the mapping unit 23a sequentially modulates the communication data input from the data scheduling unit 21 and the channel estimation code input from the channel estimation code selection unit 22 with the input timing, and the data symbols are modulated. Generate. For this modulation, use a phase modulation method such as QPSK (Quadrature Phase Shift Keying) or a quadrature amplitude modulation method such as 16QAM (16 Quadrature Amplitude Modulation). Is preferred.
  • the mapping unit 23a sequentially outputs the generated data symbols to the S / P conversion unit 24.
  • the S / P conversion unit 24 holds the data symbols sequentially input from the mapping unit 23a until the number of sample data symbols are input. In other words, it holds until data symbols of lOFDM symbols are input. When all the data symbols constituting the data symbol sequence are input, the S / P conversion unit 24 outputs these data symbols in parallel to the interleaving unit 25a. By this processing, the data symbol string is mapped to the input of the IF T section 26.
  • Interleaving section 25a replaces the order of the data symbols input in parallel with each other based on a predetermined replacement rule, and outputs the result to IFFT section 26.
  • FIG. 7 is a diagram illustrating an example of replacement performed by the interleaving unit 25a.
  • the first input data symbol is used as the first output
  • the X + first input data symbol is used as the second output.
  • the i-th output is ((if (t (t (1)) when i is 1 + f (t— 1) or more and f (t) or less, and i is the number of input data symbols Y or less.
  • Floor () is the floor Is a number.
  • FIG. 8 is a diagram illustrating the example illustrated in FIG. 7 in the case where there are subchannels.
  • 12 subchannels are prepared, and each subchannel includes 12 subcarriers.
  • X shown in FIG. 7 is set to 12
  • the exchange is performed as shown in FIG.
  • IFFT section 26 performs processing on the input data symbol sequence by performing inverse fast Fourier transform processing, which is a kind of inverse discrete Fourier transform processing, to obtain an OFDM symbol including the above-mentioned number of samples, and cyclically Outputs to delay unit 27 in parallel.
  • inverse fast Fourier transform processing which is a kind of inverse discrete Fourier transform processing
  • the cyclic delay unit 27 gives the input OFDM symbol a cyclic delay (described later) of the delay amount set by the delay amount setting unit 44, and then outputs it to the P / S conversion unit 28.
  • P / S conversion unit 28 performs parallel-serial conversion on the OFDM symbol input from cyclic delay unit 27 to generate a serial signal, and outputs the serial signal to GI addition unit 29.
  • the GI adding unit 29 adds a GI to the input OFDM symbol. Specifically, a predetermined number of samples are acquired from the end of the OFDM symbol and added to the head of OFDM.
  • the GI addition unit 29 outputs the OFDM symbol to which the GI is added to the D / A conversion unit 41.
  • the processing so far is all performed by digital processing, and the amplitude of the OFDM symbol input to the D / A conversion unit 41 is indicated by a digital value.
  • the D / A converter 41 acquires an analog signal based on this digital value and outputs it to the RF unit 42.
  • the RF unit 42 converts the input analog signal into a signal having a radio band frequency, and transmits the signal from the antenna 43 to the radio section.
  • the delay amount setting unit 44 receives the delay amount information from the exchange 10, determines the delay amount based on the received delay amount information, and sets it in the cyclic delay unit 27.
  • the delay amount setting unit 44 stores offset information in advance. This offset information is input by a maintenance person. For example, when there are a plurality of antennas, the offset information differs for each antenna. In this case, the maintenance person may input the offset information in the exchange 10, and the exchange 10 may notify the offset information to each base station apparatus 20. Alternatively, the maintenance person may provide the offset information in each base station apparatus 20. It is good also as inputting.
  • the delay amount setting unit 44 responds to the received delay amount information and the stored offset information. The delay amount is determined, and the determined delay amount is set in the cyclic delay unit 27. In a more specific example, the delay amount setting unit 44 determines the delay amount by changing the delay amount indicated by the received delay amount information according to the offset information, and sets the delay amount in the cyclic delay unit 27.
  • FIG. 9A shows an OFDM symbol output from IFFT section 26.
  • (b) of the figure shows the OFDM symbol after the cyclic delay processing by the cyclic delay unit 27.
  • FIG. As described above, one OFDM symbol is configured to include N samples. In the cyclic delay, the delay is realized by sequentially shifting the order of the samples. For example, if the delay amount is S, the kth sample that satisfies S + k ⁇ N—1 is changed to S + kth. Also, the kth sample that satisfies S + k> N ⁇ 1 is changed to S + k ⁇ Nth.
  • the OFDM symbol received by the mobile station device 30 is configured as shown in equations (5) and (6).
  • the mobile station device 30 receives the OFDM symbol delayed by the delay amount S.
  • the delay amount determination unit 14 determines the delay amount for each base station device 20a based on the arrangement of each cell and each sector. That is, the MBMS data transmitted by a plurality of base station devices 20a Since the mobile station apparatus 30 that is positioned at the cell edge or the sector edge is generally received, the delay amount determination unit 14 determines the delay between the data transmitted by the respective base station apparatuses 20 at the cell edge or the sector edge. The amount of delay for each base station apparatus 20a is determined so that the amounts are appropriately different. More specifically, the delay amount determination unit 14 manages the position, number of antennas, and directivity characteristics of the antennas provided in each base station device 20, and based on these, each base station device 20a Desirable to determine the amount of delay! /.
  • the delay amount determination unit 14 may acquire a random value for each base station device 20a, and determine the delay amount for each base station device 20a based on the acquired random value! Yo! / Specifically, it is preferable to determine the delay amount linearly with respect to the random value. In this case, the delay amount determination unit 14 uses a plurality of random values in advance so that the delay amount for each base station device 20a becomes the same value or a value close to each other, and as a result, the effect of delay diversity cannot be obtained. Is stored, and a random value is preferably selected for each base station apparatus 20a.
  • the delay amount determination unit 14 stores random values at N / M intervals.
  • M is the number of base station apparatuses 20a determined by the transmission area determining unit 13
  • N is the number of samples included in one OFDM symbol.
  • the delay amount determination unit 14 may determine the delay amount based on a random value determined for each cell and a value set in advance for each sector.
  • the delay amount determination unit 14 stores a set value set in advance for each sector. For example, as described above, the set value is 0 for the first sector, 341 for the second sector, and 682 for the third sector. Further, the delay amount determination unit 14 obtains a random value for each cell and calculates a delay amount for each cell based on the random value. Then, the delay amount for each base station device 20a is calculated by adding the set value to the delay amount for each cell. In this way, it is possible to ensure a delay amount difference between cells that is relatively difficult to predict while ensuring a difference in delay amount between sectors that are relatively easy to predict.
  • the delay amount determination unit 14 may periodically re-determine the delay amount and transmit it to each base station device 20a.
  • the mobile station device 30 since the communication data is transmitted after the delay amount determined to be different for each base station device 20a is transmitted, the mobile station device 30 When data transmitted from each base station apparatus 20a is received, delay diversity between the data transmitted by each base station apparatus 20a is realized.
  • the exchange 10 determines the delay amount for each base station device 20a at once, it is possible to ensure that the delay amounts of the base station devices 20a are different from each other.
  • a specific base station device 20 may function as a control device.
  • a control device separate from the exchange 10 and the base station device 20 may be provided.
  • a control device for determining the delay amount is not provided, and each base station device 20b determines the delay amount.
  • FIG. 10 is a diagram showing functional blocks of the base station device 20b which is effective in the present embodiment.
  • the base station device 20b is the base station device 20a with a delay amount determining unit 45 added. That is, the delay amount determination unit 45 is provided in each base station device 20b. After The delay amount determination unit 45 will be described below.
  • the delay amount determination unit 45 determines the delay amount based on the random value. Specifically, when transmitting MBMS data, for example, for each frame, the delay amount is determined based on a random value. Then, the delay amount information indicating the determined delay amount is output to the delay amount setting unit 44. The delay amount setting unit 44 determines the delay amount in the same manner as in the first embodiment according to the delay amount information thus input, and sets it in the cyclic delay unit 27.
  • the delay amount determination unit 45 determines the delay amount based on a random value determined for each cell and a value set in advance for each sector in the same manner as the delay amount determination unit 14. It may be. In this case, it is preferable that one of the plurality of base station devices 20b configuring one cell acquires a random value determined for each cell and notifies the other base station device 20b. is there.
  • This embodiment is different from the first and second embodiments in the timing of giving a delay. That is, in the first and second embodiments, a cyclic delay is given after IFFT, but in this embodiment, a delay is given before IFFT.
  • the delay is given not by the cyclic delay but by the phase rotation. That is, the formula
  • Equation (7) Equation (7).
  • the delay is realized by phase rotation in this way, the value of S does not necessarily have to be an integer. Therefore, by setting the phase rotation amount steplessly, the delay amount can be reduced steplessly. It is possible to set force. Therefore, in this embodiment, a cyclic delay is realized by the phase rotation of.
  • FIG. 11 is a diagram showing functional blocks of the base station device 20c which is effective in the present embodiment.
  • base station apparatus 20c includes a predetermined number (number of subchannels) of phase rotation unit 46a between interleaving unit 25a and IFFT unit 26 in place of cyclic delay unit 27 in base station device 20b.
  • a rotation amount setting unit 47a is included instead of the delay amount setting unit 44.
  • Interleaving section 25a outputs each data symbol to, for example, phase rotation section 46a that differs for each subchannel.
  • Each phase rotation unit 46a rotates the phase of each data symbol input from the interleaving unit 25a according to the rotation amount input from the rotation amount setting unit 47a, and outputs it to the IFFT unit 26. More specifically, each phase rotation unit 46a adds the rotation amount input from the rotation amount setting unit 47a and the position of each data symbol in the data symbol sequence to each data symbol input from the interleaving unit 25a. (The value of n in Equation (7)) and a phase rotation of the rotation amount according to
  • the rotation amount setting unit 47a determines the phase rotation amount of each data symbol constituting the data symbol sequence according to the delay amount information input from the delay amount determination unit 45, and sends it to each phase rotation unit 46a.
  • the rotation amount setting unit 47a stores offset information in advance, similarly to the delay amount setting unit 44. This offset information is input by the maintenance person. For example, when there are a plurality of antennas, the offset information is different for each antenna. It may be different depending on the sub-channel.
  • the rotation amount setting unit 47a determines the rotation amount for each phase rotation unit 46a according to the received delay amount information and the stored offset information, and sets the determined rotation amount to each phase rotation unit 46a. In a more specific example, the rotation amount setting unit 47a determines the rotation amount by changing the rotation amount indicated by the received delay amount information according to the offset information, and sets the rotation amount in each phase rotation unit 46a.
  • the processing in the rotation amount setting unit 47a will be described with a specific example.
  • the difference in rotation between subchannels is 2 ⁇ / 12. This 12 is the number of subchannels.
  • the offset information of the m-th subchannel is (2 ⁇ / 1 2) X (m ⁇ 1).
  • Delay amount determination unit 45 The time indicated by the delay amount information input by 45 If the amount of rotation S is 2 ⁇ / ⁇ , for example, the rotation amount setting unit 47a sets the rotation amount of the first subchannel to 2 ⁇ / ⁇ + 0 and the rotation amount of the second subchannel to 2 ⁇ / ⁇ .
  • the rotation amount S of each subchannel is determined in such a manner as + 2 ⁇ / 12. In this way, when transmitting the same MBMS data to multiple subchannels! /, Delay diversity can be appropriately achieved even between MBMS data transmitted on each subchannel. Is done.
  • each mobile station device 30c receives data transmitted from each base station device 20c! Thus, delay diversity between the transmitted data is realized.
  • a predetermined number of phase rotation units 46a are added between interleaving unit 25a and IFFT unit 26, and a delay amount setting unit
  • a predetermined number of phase rotation units 46a are added between the interleave unit 25a and the IFFT unit 26 instead of the cyclic delay unit 27.
  • the same effect as described above can be obtained by including the rotation amount setting unit 47a instead of the delay amount setting unit 44.
  • This embodiment is different from the first to third embodiments in the configuration related to the propagation path estimation code. That is, in the first to third embodiments, the MBMS data transmission channel estimation code common to all the base station apparatuses 20a is used for the block to be transmitted by MBMS, but in this embodiment, Also, a block for performing transmission by MBMS uses a different channel estimation code for UNI data transmission for each base station apparatus 20a. In this way, an arbitrary code can be used as a propagation path estimation code, but the contents of subcarriers received by the mobile station device 30 from the plurality of base station devices 20 are different from each other. It becomes impossible to receive. Therefore, in the present embodiment, a configuration for enabling the mobile station device 30 to receive each subcarrier from the plurality of base station devices 20 while allowing an arbitrary code to be used as a channel estimation code. Indicates.
  • Fig. 12 is a diagram showing functional blocks of the base station device 20d, which focuses on the present embodiment. As shown in the figure, in the base station device 20d, the base station device 20c replaces the propagation channel estimation code selection unit 22 and the mapping unit 23a with a propagation channel estimation code generation unit 48 and a map pin. And include the 23b section!
  • the channel estimation code generator 48 generates and outputs an arbitrary channel estimation code at the timing when the mapping unit 23a generates a channel estimation symbol.
  • Mapping section 23b for each subcarrier, is based on the propagation path estimation code input from propagation path estimation code selection section 22! Depending on the phase of the propagation path estimation symbol, the communication data input from the data scheduling unit 21 is phase-modulated with one or more data symbols in this order to the S / P conversion unit 24. Output sequentially.
  • the mapping unit 23b sequentially transmits the communication data input from the data scheduling unit 21 and the channel estimation code input from the channel estimation code selection unit 22 at the input timing. Modulate and generate data symbols.
  • the data is sequentially output to the S / P converter 24.
  • the mapping unit 23b holds the phase of the data symbol that is a propagation path estimation symbol included in the head of each subcarrier while generating a plurality of data symbols for one block. .
  • the subsequent communication data is phase-modulated according to the phase of the propagation path estimation symbol arranged at the head.
  • mapping section 23b holds a reference phase common to all base station apparatuses 20a, and calculates a phase difference between the reference phase and the phase of the propagation path estimation symbol. Then, the phase of the subsequent data symbol generated according to the communication data is rotated according to the calculated phase difference.
  • the mobile station device 30 can receive each subcarrier from a plurality of base station devices 20 power while allowing an arbitrary code to be used as a channel estimation code.
  • the propagation path estimation code is set for each frame. And included in each subcarrier.
  • the mobile station device 30 can estimate the propagation path state for each subcarrier and use the estimation result for reception of communication data.
  • the reception timing is acquired based on the propagation path estimation code, and communication data is received according to the reception timing.
  • propagation path estimation symbols are arranged only in some of the subcarriers. Specifically, a predetermined number of subcarriers are grouped (hereinafter, this group is referred to as a subcarrier group), and one of a plurality of subcarriers constituting each group is used for channel estimation. A sign shall be included.
  • Each of the subcarrier groups may be a subchannel or may be grouped according to a different standard from the subchannel! /.
  • the mobile station apparatus 30 uses the propagation path state of another subcarrier in order to estimate the propagation path state of a certain subcarrier.
  • each d is given a phase rotation of e j27t nS / N , and the amount of rotation varies depending on n. If the amount of rotation is different, an appropriate channel state is not acquired even if the channel state of another subcarrier is acquired based on the channel state of a certain subcarrier. Therefore, in this embodiment, the rotation amount is unified within the subcarrier group.
  • FIG. 13 is a diagram showing functional blocks of the base station device 20e that are effective in the present embodiment.
  • the base station device 20e includes a phase rotation unit 46b and a rotation amount setting unit 47b in place of the phase rotation unit 46a and the rotation amount setting unit 47a in the base station device 20c. ing.
  • the rotation amount setting unit 47b determines the phase rotation amount for each subcarrier group according to the delay amount information input from the delay amount determination unit 45. The rotation amount setting unit 47b sets the rotation amount for each subcarrier group thus generated in each phase rotation unit 46b.
  • Each phase rotation unit 46b gives each data symbol a phase rotation of the rotation amount set by each phase rotation unit 46b.
  • a corresponding amount of phase rotation is applied to each data symbol. That is, the phase rotational force S of the rotation amount unified within the subcarrier group is given to each data symbol.
  • FIG. 14 shows an example of the rotation amount set by the rotation amount setting unit 47b when there are 12 subcarriers in one subchannel and when these subcarriers are grouped by four. It is a schematic diagram shown.
  • the rotation amount setting unit 47b sets three rotation amounts W 1, W 2 and W in each phase rotation unit 46b. Where m is the subchannel number.
  • the phase rotation unit 46b rotates the phase of the rotation amount W for the subcarriers belonging to the first subcarrier group and the subcarriers belonging to the second subcarrier group.
  • a phase rotation of the rotation amount unified within the subcarrier group is given, such as a phase rotation of the rotation amount W.
  • the rotation amount setting unit 47b stores offset information in advance, and the rotation amount setting unit 47b for each phase rotation unit 46a according to the received delay amount information and the stored offset information. Determine the amount of rotation.
  • the offset information of the m-th subchannel is (2 ⁇ / 12) X (m ⁇ 1).
  • the rotation amount setting unit 47b calculates a different rotation amount for each subchannel according to the received delay amount information and the stored offset information by the same processing as in the third embodiment. Become. Let S be the amount of rotation.
  • the offset information of the present embodiment includes a difference ⁇ X in the amount of rotation between the subcarrier groups.
  • the rotation amount setting unit 47b is based on the rotation amounts S and ⁇ calculated as described above.
  • the difference in rotation amount between adjacent subcarrier groups between subchannels may be ⁇ , or greater than ⁇ . It may be a large value.
  • the difference between W and W (S) — (S + 2 ⁇ ⁇ ) may be a large value.
  • the amount of phase rotation can be unified within a subcarrier group, so that only one of a plurality of subcarriers constituting a subcarrier group is used for channel estimation. Even when the code is included, the mobile station device 30 can appropriately acquire the propagation path state of each subcarrier.
  • FIG. 15 is a diagram illustrating functional blocks of the base station device 20f, which focuses on the present embodiment. As shown in the figure, the base station device 20f includes an interleave unit 25b in place of the interleave unit 25a in the base station device 20a.
  • the interleaving unit 25b acquires the delay amount set in the cyclic delay unit 27 by the delay amount setting unit 44. Then, the order of each data symbol input in parallel from the S / P converter 24 is changed based on the replacement rule corresponding to the acquired delay amount, and then output to the IFFT unit 26.
  • the interleave unit 25b determines a replacement rule to be used so that the frequency width does not match the frequency width according to the delay amount.
  • the base station device 20f wirelessly transmits to the mobile station device 30 a control signal indicating an applied replacement rule, using a control signal transmission unit (not shown).
  • a control signal transmission unit not shown.
  • the mobile station device 30 receives this control signal, the mobile station device 30 subjects the received data symbol string to a dingering process based on the replacement rule indicated by the control signal.
  • the frequency width between subcarriers used for data symbol transmission to a certain user does not match the above-described frequency width in which the valley of received power occurs! /, Do it with power S.
  • a program for realizing the functions of the exchange 10a and the base station devices 20a to 20f is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into the computer system.
  • the above processes may be performed by executing.
  • the “computer system” here may include an OS and hardware such as peripheral devices.
  • this “computer system” includes a homepage provision environment (or display environment) if a WWW system is used.
  • Computer-readable recording medium refers to a flexible disk, a magneto-optical disk, a writable nonvolatile memory such as a ROM and a flash memory, a portable medium such as a CD-ROM, and a built-in computer system.
  • a storage device such as a hard disk.
  • the "computer-readable recording medium” includes a volatile property inside a computer system that becomes a server or a client when a program is transmitted via a communication line such as a network such as the Internet or a telephone line. It also includes those that hold programs for a certain period of time, such as memory (for example, DRAM (Dynamic Random Access Memory)).
  • memory for example, DRAM (Dynamic Random Access Memory)
  • the above program may be transmitted from a computer system storing the program in a storage device or the like to another computer via a transmission medium or by transmission waves in the transmission medium. It may be transmitted to the system.
  • the “transmission medium” for transmitting the program is a medium having a function of transmitting information such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line! /, Mah.
  • the program may be for realizing a part of the functions described above. Furthermore, what can implement
  • the present invention can be applied to the case where delay diversity is achieved between data transmitted by each base station apparatus.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A mobile communication system includes a plurality of base station devices including radio transmission means for radio-transmitting communication data to a mobile station device. The system includes: transmission control means for radio-transmitting communication data at a predetermined timing from each of the base station devices; and delay amount decision means for deciding a delay amount for each of the base station devices in such a manner that the delay amounts are different between the base station devices. When radio-transmitting communication data by the radio transmission means in accordance with control by the transmission control means, each of the base station devices delays the radio-transmission of the communication data from a predetermined timing in accordance with the delay amount decided by the delay amount decision means.

Description

明 細 書  Specification
移動体通信システム、制御装置、基地局装置制御方法、及びプログラム 技術分野  Mobile communication system, control apparatus, base station apparatus control method, and program
[0001] 本発明は移動体通信システム、制御装置、基地局装置制御方法、及びプログラム に関し、特に遅延ダイバーシチを行う移動体通信システム、制御装置、基地局装置 制御方法、及びプログラムに関する。  TECHNICAL FIELD [0001] The present invention relates to a mobile communication system, a control apparatus, a base station apparatus control method, and a program, and more particularly to a mobile communication system, a control apparatus, a base station apparatus control method, and a program that perform delay diversity.
本願 (ま、 2006年 10月 13曰 ίこ、 曰本 ίこ出願された特願 2006— 280128号 ίこ基づ き優先権を主張し、その内容をここに援用する。  This application (October 2006, No. 13-2006, Japanese patent application No. 2006- 280128, filed here, claims priority, and the contents thereof are incorporated herein by reference.
背景技術  Background art
[0002] 近年の移動体通信システムにおいては、 1つの基地局装置対 1つの移動局装置の 関係により、電話サービスやインターネット接続サービスが提供されている。こうした 基地局装置と移動局装置間の 1対 1の通信による情報配信では、移動局装置ごとに 無線リソースが確保される。  In recent mobile communication systems, telephone service and Internet connection service are provided due to the relationship between one base station device and one mobile station device. In such information distribution by one-to-one communication between the base station device and the mobile station device, radio resources are secured for each mobile station device.
[0003] これに対し、近年は、スポーツ中継、天気予報、ラジオ番組などのマルチメディア情 報を、同時に複数のユーザに配信する放送型マルチメディアサービスに対する関心 が高まっている。放送型マルチメディアサービスでは、基地局装置は、共通の無線リ ソースを用いて複数の移動局装置にデータを送信する。これにより、上述した 1対 1の 通信による情報配信に比べると、無線リソースの効率的な利用が実現される。  [0003] On the other hand, in recent years, there has been an increasing interest in broadcast multimedia services that simultaneously deliver multimedia information such as sports broadcasts, weather forecasts, and radio programs to a plurality of users. In the broadcast multimedia service, the base station device transmits data to a plurality of mobile station devices using a common wireless resource. As a result, more efficient use of radio resources is realized compared to the above-described information distribution by one-to-one communication.
[0004] このような放送型マルチメディアサービスを可能にする技術を、 3GPP(3rd Generati on Partnership Project)では ΜΒΜ≥>(Μιι imedia Broadcast Multicast Service)と呼ん でいる。この MBMSには、基地局装置単位で上記配信を行う形態(以下、シングノレ セル MBMSと称する。)と、複数の基地局装置が同一のデータを配信する形態(以 下、マルチセル MBMSと称する。)と、がある。  [0004] The 3GPP (3rd Generation Partnership Project) calls such a technology that enables broadcast-type multimedia services as ΜΒΜ≥> (ιιιimedia Broadcast Multicast Service). In this MBMS, a form in which the above-mentioned distribution is performed in units of base station apparatuses (hereinafter referred to as single cell MBMS) and a form in which a plurality of base station apparatuses distribute the same data (hereinafter referred to as multi-cell MBMS). There is.
[0005] なお、基地局装置は通常複数のセクタ装置から構成されており、シングルセル MB MSでは、各セクタ装置から同一のデータが配信される。各セクタ装置はそれぞれ独 立した基地局装置として機能するので、以下では、特に断らない限り、基地局装置と いう場合、セクタ装置を指すこととする。 [0006] MBMSでは、特にセルエッジなど受信電力が小さいところで移動局装置の受信特 性を改善する技術の 1つであるソフトコンパイニングが利用される。ソフトコンバイニン グを利用する場合、移動局装置は、複数の基地局装置がそれぞれ送信したデータを 受信し合成する。これによつて、単一の基地局装置が送信したデータのみを受信す る場合に比べて受信電力が増大し、受信特性が改善される。 [0005] It should be noted that a base station apparatus is usually composed of a plurality of sector apparatuses, and in a single cell MBMS, the same data is distributed from each sector apparatus. Since each sector device functions as an independent base station device, hereinafter, unless otherwise specified, the term “base station device” refers to a sector device. [0006] In MBMS, soft compiling, which is one of the techniques for improving the reception characteristics of a mobile station apparatus, is particularly used where the received power is small, such as a cell edge. When using soft combining, the mobile station apparatus receives and combines the data transmitted by each of the base station apparatuses. As a result, the reception power is increased and the reception characteristics are improved as compared with the case where only the data transmitted by a single base station apparatus is received.
[0007] ところで、移動局装置の受信特性を改善する他の技術として、遅延ダイバーシチが 知られている。遅延ダイバーシチは、反射等によって生ずる遅延成分を移動局装置 において分離抽出し、同じデータが複数回受信されたかのように取り扱うことによって 、受信特性を改善する技術である。  Meanwhile, delay diversity is known as another technique for improving the reception characteristics of a mobile station apparatus. Delay diversity is a technique for improving reception characteristics by separating and extracting delay components caused by reflection and the like in a mobile station apparatus and treating the same data as if it were received multiple times.
[0008] ただし、遅延成分を分離抽出するためには、遅延量がある程度以上大きいことが必 要である。そこで、基地局装置において故意に遅延成分を送信することにより、所定 値以上の遅延量を確実に得られるようにする技術がある。この技術の具体的な例とし て、特許文献 1にも挙げられている CDTD (Cyclic Delay Transmit Diversity:循環遅 延送信ダイバーシチ)技術がある。 CDTD技術は、 OFDM(Orthogonal Frequency Division Multiplexing尸ンスアム又 (ュ OFDMA(Orthogonal Frequency Division Multipl exing Access)システムにおいて提案されている技術である。以下、この CDTD技術 について詳細に説明する。  However, in order to separate and extract the delay component, the delay amount needs to be larger than a certain level. Therefore, there is a technique for ensuring that a delay amount equal to or greater than a predetermined value is obtained by intentionally transmitting a delay component in the base station apparatus. As a specific example of this technique, there is a CDTD (Cyclic Delay Transmit Diversity) technique described in Patent Document 1. The CDTD technique is a technique proposed in an Orthogonal Frequency Division Multiplexing (OFDM) (Orthogonal Frequency Division Multiplexing Access) system. This CDTD technique will be described in detail below.
[0009] CDTD技術は、基地局装置に複数のアンテナを備え、アンテナごとに異なる遅延 量の遅延を与えることにより、移動局装置で遅延ダイバーシチの効果を得られるよう にしたものである。この効果は、アンテナ数が多いほど大きくなる。  [0009] The CDTD technology is provided with a plurality of antennas in a base station apparatus, and delay effects of different delay amounts are given to the respective antennas so that a mobile station apparatus can obtain the effect of delay diversity. This effect increases as the number of antennas increases.
[0010] 図 16は、 OFDMA及び CDTD技術を採用する基地局装置 200の機能ブロックの 一例を示す図である。同図に示すように、基地局装置 200はデータスケジューリング 部 210、伝搬路推定用符号選択部 220、マッピング部 230、 S/P (serial / Parallel : 直並列)変換部 240、インターリーブ部 250、 2つの送信部 260を含んで構成される。 各送信部 260は、その内部に複数の位相回転部 261、 IFFT dnverseFast Fourier T ransform :逆高速フーリエ変換)部 262、 P/S (Parallel / serial :並直歹 IJ)変換部 263 、 GI (Guard Interval :ガードインターノベル)付加部 264、 D/A (Digital / Analog :デ ジタル/アナログ)変換部 265、 RF (Radio Frequency:無線)部 266、アンテナ 267を 含んで構成される。 FIG. 16 is a diagram illustrating an example of functional blocks of the base station apparatus 200 that employs OFDMA and CDTD techniques. As shown in the figure, the base station device 200 includes a data scheduling unit 210, a channel estimation code selection unit 220, a mapping unit 230, an S / P (serial / parallel) conversion unit 240, an interleaving unit 250, 2 One transmission unit 260 is included. Each transmission unit 260 includes a plurality of phase rotation units 261, an IFFT dnverseFast Fourier Transform (inverse fast Fourier transform) unit 262, a P / S (Parallel / serial: Parallel IJ) conversion unit 263, a GI (Guard Interval: Guard innovator) Addition part 264, D / A (Digital / Analog: digital / analog) conversion part 265, RF (Radio Frequency: wireless) part 266, antenna 267 Consists of including.
[0011] データスケジューリング部 210は、送信データのスケジューリング等を行い、マツピ ング部 230に出力する。伝搬路推定用符号選択部 220は、移動局装置において伝 搬路特性を推定するために用いられる伝搬路推定用信号を選択し、マッピング部 23 0に出力する。マッピング部 230は、入力された送信データ及び伝搬路推定用信号 に基づき、互いに異なるサブキャリアを変調することにより得られる複数のデータシン ボルからなるデータシンボル列を生成し、 S/P変換部 240に入力する。 S/P変換 部 240は、データシンボル列を構成する各データシンボルに直並列変換を施し、そ れぞれ複数のサブキャリアにより構成されるサブチャネルごとに位相回転部 261に対 してパラレル出力する。  Data scheduling section 210 performs transmission data scheduling and the like, and outputs the result to mapping section 230. Propagation path estimation code selection section 220 selects a propagation path estimation signal used for estimating propagation path characteristics in the mobile station apparatus, and outputs it to mapping section 230. Mapping section 230 generates a data symbol sequence composed of a plurality of data symbols obtained by modulating different subcarriers based on the input transmission data and propagation path estimation signal, and S / P conversion section 240 To enter. S / P conversion section 240 performs serial-parallel conversion on each data symbol constituting the data symbol sequence, and outputs parallel to phase rotation section 261 for each subchannel composed of a plurality of subcarriers. To do.
なお、 S/P変換部 240は、各送信部 260に対して同じものを出力する。  Note that the S / P converter 240 outputs the same signal to each transmitter 260.
[0012] インターリーブ部 250は、 S/P変換部 240が各位相回転部 261に対してパラレル 出力した各データシンボルの順序を、各位相回転部 261に入力される前の段階で、 所定の入替規則に基づ!/、て入れ替える。 [0012] Interleaving section 250 performs predetermined replacement of the order of data symbols output in parallel by S / P conversion section 240 to each phase rotation section 261 before being input to each phase rotation section 261. Replace according to the rules!
[0013] 各位相回転部 261は、図示しない制御部から、入力されたデータシンボル列が循 環遅延送信の対象であるか否力、を示す CDTD送信情報の入力を受け付ける。そし て、循環遅延送信の対象である場合に、入力された各データシンボルに所定の位相 回転を与え、 IFFT部 260に出力する。なお、ここで与えられる位相回転の量は、送 信部 260によって異なる。また、位相回転部 261によっても互いに異なる場合がある Each phase rotation unit 261 receives input of CDTD transmission information indicating whether or not the input data symbol string is a target of cyclic delay transmission from a control unit (not shown). Then, when it is an object of cyclic delay transmission, a predetermined phase rotation is given to each input data symbol and output to IFFT section 260. Note that the amount of phase rotation given here differs depending on the transmitter 260. Also, the phase rotation units 261 may differ from each other.
[0014] IFFT部 262は、入力されたデータシンボル列に逆高速フーリエ変換処理を施すこ とにより複数の標本値 (サンプル)を取得し、 P/S変換部 263にパラレル出力する。 こうして得られるサンプルの組は OFDMシンボルと呼ばれる。 P/S変換部 263は、 パラレル入力された OFDMシンボルに並直列変換を施し、 GI付加部 264に対して シリアル出力する。 The IFFT unit 262 obtains a plurality of sample values (samples) by performing inverse fast Fourier transform processing on the input data symbol sequence, and outputs the sample values to the P / S conversion unit 263 in parallel. The set of samples obtained in this way is called an OFDM symbol. P / S conversion section 263 performs parallel / serial conversion on the OFDM symbols input in parallel, and serially outputs them to GI addition section 264.
[0015] GI付カロ部 264は、入力された OFDMシンボルに GIを付加し、 D/A変換部 265に 出力する。ここまでの処理は全てデジタル処理により行われており、 D/A変換部 26 5に入力される OFDMシンボルの振幅はデジタル値により示されている。 D/A変換 部 265は、このデジタル値に基づいてアナログ信号を取得し、 RF部 266に出力する 。 RF部 266は、入力されたアナログ信号の周波数を送信帯域周波数に変換し、アン テナ 267から無線区間に送出する。 [0015] The calorie unit with GI 264 adds a GI to the input OFDM symbol and outputs it to the D / A conversion unit 265. All the processing so far is performed by digital processing, and the amplitude of the OFDM symbol input to the D / A conversion unit 265 is indicated by a digital value. D / A conversion The unit 265 acquires an analog signal based on the digital value and outputs the analog signal to the RF unit 266. The RF unit 266 converts the frequency of the input analog signal into a transmission band frequency, and transmits it from the antenna 267 to the radio section.
[0016] このように、 CDTD技術では、基地局装置 200が送信部 260ごとに異なる位相回転 を与えており、このような位相回転を与えると、移動局装置においては、その回転量 に応じた量の遅延が生じているのと同じ効果が得られるので、結局、移動局装置で 遅延ダイバーシチの効果が得られるようになる。 [0016] As described above, in the CDTD technique, the base station apparatus 200 gives different phase rotations for each transmission unit 260. When such phase rotation is given, the mobile station apparatus responds to the amount of rotation. Since the same effect as the amount of delay is obtained, the delay diversity effect can be obtained in the mobile station apparatus.
特許文献 1 :特開 2005— 354708号公報  Patent Document 1: Japanese Patent Laid-Open No. 2005-354708
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0017] しかしながら、上記 CDTD技術では、単一の基地局装置内において、送信部(アン テナ)ごとに異なる遅延を生じさせることができるものの、上記 MBMSのように、移動 局装置が複数の基地局装置からそれぞれ送信されたデータを受信する場合、各基 地局装置がそれぞれ送信するデータ間では遅延ダイバーシチの効果が得られない という問題があった。 [0017] However, although the CDTD technique can cause different delays for each transmission unit (antenna) in a single base station apparatus, the mobile station apparatus can have a plurality of base stations as in the MBMS. When receiving data transmitted from each station device, there is a problem that the effect of delay diversity cannot be obtained between the data transmitted by each base station device.
[0018] 従って、本発明の課題の一つは、移動局装置が複数の基地局装置からそれぞれ 送信されたデータを受信する場合にお!/、て、各基地局装置がそれぞれ送信するデ ータ間での遅延ダイバーシチを実現することのできる移動体通信システム、制御装置 、基地局装置制御方法、及びプログラムを提供することにある。  [0018] Accordingly, one of the problems of the present invention is that when the mobile station apparatus receives data transmitted from a plurality of base station apparatuses, the data transmitted by each base station apparatus respectively. The present invention provides a mobile communication system, a control device, a base station device control method, and a program capable of realizing delay diversity between devices.
課題を解決するための手段  Means for solving the problem
[0019] 上記課題を解決するための本発明に力、かる移動体通信システムは、それぞれ通信 データを移動局装置へ無線送信する無線送信手段を含む複数の基地局装置を含 む移動体通信システムであって、前記複数の基地局装置のそれぞれから、所定のタ イミングで、前記通信データを無線送信させる送信制御手段と、前記基地局装置ごと に異なるよう、前記基地局装置ごとの遅延量を決定する遅延量決定手段と、を含み、 前記各基地局装置は、前記送信制御手段の制御に応じて前記無線送信手段により 前記通信データを無線送信する際、前記遅延量決定手段により決定された遅延量 に応じて、該通信データの無線送信を前記所定のタイミングより遅延させる、ことを特 徴とする。 [0019] A mobile communication system which is effective in the present invention for solving the above-mentioned problems is a mobile communication system including a plurality of base station apparatuses each including a wireless transmission means for wirelessly transmitting communication data to a mobile station apparatus. The transmission control means for wirelessly transmitting the communication data at a predetermined timing from each of the plurality of base station apparatuses, and the delay amount for each base station apparatus so as to be different for each base station apparatus. A delay amount determining means for determining, wherein each of the base station devices is determined by the delay amount determining means when wirelessly transmitting the communication data by the wireless transmitting means in accordance with control of the transmission control means. The wireless transmission of the communication data is delayed from the predetermined timing according to the delay amount. It is a sign.
[0020] これによれば、基地局装置ごとに異なるよう決定された遅延量の遅延を施した上で 通信データが送信されるので、移動局装置が各基地局装置からそれぞれ送信され たデータを受信する場合にぉレ、て、各基地局装置がそれぞれ送信するデータ間で の遅延ダイバーシチが実現される。  [0020] According to this, since the communication data is transmitted after the delay amount determined to be different for each base station apparatus, the mobile station apparatus uses the data transmitted from each base station apparatus. When receiving, delay diversity between the data transmitted by each base station apparatus is realized.
[0021] また、上記移動体通信システムにお!/、て、前記無線送信手段は、それぞれ前記通 信データを変調してなる複数のデータシンボルから構成されるデータシンボル列に 逆離散フーリエ変換処理を施す逆離散フーリエ変換部と、前記逆離散フーリエ変換 処理の結果得られるサンプル列を無線送信する無線送信部と、を含み、前記各基地 局装置は、前記送信制御手段の制御に応じて前記無線送信手段により前記通信デ ータを無線送信する際、前記遅延量決定手段により決定された遅延量に応じて前記 逆離散フーリエ変換処理の結果得られるサンプル列を循環遅延させることにより、該 通信データの無線送信を前記所定のタイミングより遅延させる、こととしてもよい。  [0021] In addition, in the mobile communication system, the wireless transmission means performs inverse discrete Fourier transform processing on a data symbol sequence composed of a plurality of data symbols each obtained by modulating the communication data. Each of the base station devices according to control of the transmission control means, and a radio transmission unit that wirelessly transmits a sample sequence obtained as a result of the inverse discrete Fourier transform process. When the communication data is wirelessly transmitted by the wireless transmission unit, the sample sequence obtained as a result of the inverse discrete Fourier transform process is cyclically delayed in accordance with the delay amount determined by the delay amount determination unit. The wireless transmission of data may be delayed from the predetermined timing.
[0022] これによれば、サンプル列を循環遅延させることにより、各基地局装置がそれぞれ 送信するデータ間での遅延ダイバーシチが実現される。  [0022] According to this, delay diversity between data transmitted by each base station apparatus is realized by cyclically delaying the sample string.
[0023] また、上記移動体通信システムにお!/、て、前記無線送信手段は、それぞれ前記通 信データを変調してなる複数のデータシンボルから構成されるデータシンボル列に 逆離散フーリエ変換処理を施す逆離散フーリエ変換部と、前記逆離散フーリエ変換 処理の結果得られるサンプル列を無線送信する無線送信部と、を含み、前記各基地 局装置は、前記送信制御手段の制御に応じて前記無線送信手段により前記通信デ ータを無線送信する際、前記遅延量決定手段により決定された遅延量に応じて前記 データシンボル列を構成する複数のデータシンボルそれぞれの位相を回転させるこ とにより、該通信データの無線送信を前記所定のタイミングより遅延させる、こととして あよい。  [0023] In addition, in the mobile communication system, the wireless transmission means performs inverse discrete Fourier transform processing on a data symbol sequence composed of a plurality of data symbols each obtained by modulating the communication data. Each of the base station devices according to control of the transmission control means, and a radio transmission unit that wirelessly transmits a sample sequence obtained as a result of the inverse discrete Fourier transform process. When wirelessly transmitting the communication data by the wireless transmission means, by rotating the phase of each of the plurality of data symbols constituting the data symbol sequence according to the delay amount determined by the delay amount determination means, The wireless transmission of the communication data may be delayed from the predetermined timing.
[0024] これによれば、各データシンボルの位相を回転させることにより、各基地局装置がそ れぞれ送信するデータ間での遅延ダイバーシチが実現される。  [0024] According to this, by rotating the phase of each data symbol, delay diversity between data transmitted by each base station apparatus is realized.
[0025] また、上記各移動体通信システムにお!/、て、前記無線送信手段は、それぞれ前記 通信データを変調してなる複数のデータシンボルから構成されるデータシンボル列 に逆離散フーリエ変換処理を施す逆離散フーリエ変換部と、前記逆離散フーリエ変 換処理の結果得られるサンプル列を無線送信する無線送信部と、を含み、前記各基 地局装置は、前記送信制御手段の制御に応じて前記無線送信手段により前記通信 データを無線送信する際、前記遅延量決定手段により決定された遅延量に応じてグ ノレープ化された、前記データシンボル列を構成する複数のデータシンボルを、ダル ープ毎にそれぞれの位相を回転させることにより、該通信データの無線送信を前記 所定のタイミングより遅延させる、こととしてもよい。 [0025] Also, in each of the mobile communication systems described above, the wireless transmission means includes a data symbol sequence composed of a plurality of data symbols obtained by modulating the communication data. An inverse discrete Fourier transform unit that performs an inverse discrete Fourier transform process on the radio signal, and a radio transmission unit that wirelessly transmits a sample sequence obtained as a result of the inverse discrete Fourier transform process, wherein each of the base station devices transmits the transmission When the communication data is wirelessly transmitted by the wireless transmission means in accordance with control of the control means, a plurality of data symbol sequences that are grouped according to the delay amount determined by the delay amount determination means By rotating the phase of each data symbol for each loop, wireless transmission of the communication data may be delayed from the predetermined timing.
[0026] これによれば、グループ内で位相の回転量を統一することができる。 [0026] According to this, the amount of phase rotation can be unified within a group.
[0027] また、上記移動体通信システムにおいて、前記各基地局装置は、前記遅延量決定 手段により決定された遅延量と、前記データシンボル列内における各データシンボル の位置と、に応じた回転量の位相回転を、該各データシンボルに与える、こととしても よい。 [0027] Further, in the mobile communication system, each base station apparatus has a rotation amount corresponding to the delay amount determined by the delay amount determination means and the position of each data symbol in the data symbol sequence. The phase rotation may be given to each data symbol.
[0028] これによれば、データシンボルごと(サブキャリアごと)に、位相回転量を異ならせる こと力 Sでさる。  [0028] According to this, the force S is used to vary the amount of phase rotation for each data symbol (each subcarrier).
[0029] また、上記各移動体通信システムにお!/、て、前記無線送信手段は、前記データシ ンボル列内における各データシンボルの位置を、前記遅延量決定手段により決定さ れた遅延量に応じた入替規則により入れ替え、前記逆離散フーリエ変換部に入力す るインターリーブ部、を含む、こととしてもよい。  [0029] In addition, in each of the mobile communication systems described above, the wireless transmission means sets the position of each data symbol in the data symbol sequence to the delay amount determined by the delay amount determination means. It is good also as including the interleaving part which replaces according to the permutation rule according to and inputs into the said inverse discrete Fourier-transform part.
[0030] 循環遅延送信を行うと、遅延量に応じた周波数幅で受信電力の谷が生ずることが 知られている。このため、あるユーザに対して複数のサブキャリアを用いてデータシン ボルを送信する場合において、この複数のサブキャリア間の周波数幅が丁度上記周 波数幅と一致していると、該ユーザに対して送信されるデータシンボルは、いずれも その受信電力が低下した状態で受信されることになり、望ましくない。上記構成によ れば、あるユーザに対するデータシンボル送信に使用するサブキャリア間の周波数 幅力、受信電力の谷が生ずる上記周波数幅と一致しないようにすることができる。  [0030] It is known that when cyclic delay transmission is performed, a trough in received power occurs with a frequency width corresponding to the delay amount. For this reason, when a data symbol is transmitted to a certain user using a plurality of subcarriers, if the frequency width between the plurality of subcarriers is exactly the same as the above frequency width, the user is notified. All data symbols transmitted in this way are received with their received power lowered, which is undesirable. According to the above configuration, it is possible to prevent the frequency width between subcarriers used for data symbol transmission for a certain user from being coincident with the frequency width in which the valley of the received power is generated.
[0031] また、上記各移動体通信システムにおいて、当該移動体通信システムは、前記各 基地局装置を制御するための制御装置、を含み、前記遅延量決定手段は、前記制 御装置に備えられ、前記制御装置は、前記遅延量決定手段により決定された遅延量 を示す遅延量情報を、前記各基地局装置に対して送信する送信手段、を含み、前 記各基地局装置は、前記送信制御手段の制御に応じて前記無線送信手段により前 記通信データを無線送信する際、前記制御装置から受信される前記遅延量情報に 応じて、該通信データの無線送信を前記所定のタイミングより遅延させる、こととして あよい。 [0031] Further, in each of the above mobile communication systems, the mobile communication system includes a control device for controlling each of the base station devices, and the delay amount determining means is provided in the control device. The control device is configured to determine the delay amount determined by the delay amount determination means. Transmission means for transmitting to the respective base station apparatuses, each base station apparatus transmits the communication data by the wireless transmission means under the control of the transmission control means. When wirelessly transmitting, the wireless transmission of the communication data may be delayed from the predetermined timing in accordance with the delay amount information received from the control device.
[0032] これによれば、制御装置(交換機など)が基地局装置ごとの遅延量を一括して決定 するので、確実に、各基地局装置の遅延量が互いに異なるようにすることができる。  [0032] According to this, since the control device (exchanger or the like) collectively determines the delay amount for each base station device, the delay amounts of the respective base station devices can be surely made different from each other.
[0033] また、この移動体通信システムにおいて、前記遅延量決定手段は、ランダム値に基 づいて遅延量を決定する、こととしてもよい。 [0033] Further, in this mobile communication system, the delay amount determining means may determine the delay amount based on a random value.
[0034] これによれば、制御装置は、ランダム値に基づ!/、て遅延量を決定できる。 [0034] According to this, the control device can determine the delay amount based on the random value.
[0035] また、上記各移動体通信システムにお!/、て、前記遅延量決定手段は、前記複数の 基地局装置のそれぞれに備えられ、それぞれランダム値に基づレ、て遅延量を決定 する、こととしてあよい。 [0035] Also, in each of the above mobile communication systems, the delay amount determining means is provided in each of the plurality of base station apparatuses, and determines the delay amount based on a random value. Yes, that's good.
[0036] これによれば、ランダム値に基づ!/、て遅延量が決定されるので、各基地局装置がそ れぞれ遅延量を決定する場合であっても、各基地局装置の遅延量が互いに異なるよ うにすることカでさる。  [0036] According to this, since the delay amount is determined based on the random value, even if each base station device determines the delay amount, the base station device Make sure that the delays are different from each other.
[0037] また、この移動体通信システムにおいてさらに、前記遅延量決定手段は、前記複数 の基地局装置のそれぞれに備えられ、セルごとに決定されるランダム値と、セクタごと に予め設定される値と、に基づいて遅延量を決定する、こととしてもよい。  [0037] Further, in this mobile communication system, the delay amount determination means is provided in each of the plurality of base station apparatuses, and is a random value determined for each cell and a value set in advance for each sector. The delay amount may be determined based on the above.
[0038] これによれば、セルごとに決定されるランダム値と、セクタごとに予め設定される値と 、を用いて遅延量を決定するので、比較的予測しやすいセクタ間での遅延量差を確 実に確保しつつ、比較的予測しにくいセル間での遅延量差も適切に確保することが でさるようになる。  [0038] According to this, since the delay amount is determined using a random value determined for each cell and a value preset for each sector, a delay amount difference between sectors that is relatively easy to predict. It is possible to ensure the delay amount difference between cells that is relatively difficult to predict while ensuring the above.
[0039] また、上記移動体通信システムにお!/、て、前記無線送信手段は、既知データを変 調してなる 1つの既知データシンボルと、該既知データシンボルの位相に応じて前記 通信データを変調してなる 1又は複数のデータシンボルとを無線送信する、こととして あよい。  [0039] In addition, in the mobile communication system, the wireless transmission means includes one known data symbol obtained by modulating known data and the communication data according to the phase of the known data symbol. One or a plurality of data symbols obtained by modulating the signal may be transmitted wirelessly.
[0040] 移動局装置が複数の基地局装置からそれぞれ送信されたデータシンボル列を受 信する際、その内容が基地局装置ごとに異なっていると、一般には、移動局装置は V、ずれかの基地局装置が送信したデータシンボル列しか受信できな!/、が、データシ ンボル列が全体として一定の位相回転を受けているにすぎない場合には受信可能 である。上記移動体通信システムによれば、上記既知データシンボルの位相が基地 局装置間で異なっていたとしても、一般には、移動局装置はいずれかの基地局装置 が送信したデータシンボル歹 IJしか受信できな!/、ところ、上記既知データシンボルに続 けて送信されるデータシンボルの位相を、該既知データシンボルの位相に応じて変 調することにより、データシンボル列が全体として一定の位相回転を受けているにす ぎない場合と同様の状態を作れるので、移動局装置は各基地局装置がそれぞれ送 信したデータシンボル列を受信できる。これにより、移動局装置が複数の基地局装置 からそれぞれ送信されたデータを受信する場合に、基地局装置間で異なる既知デー タを用いること力 Sできるようになる。 [0040] The mobile station apparatus receives data symbol sequences respectively transmitted from a plurality of base station apparatuses. When the content is different for each base station device, in general, the mobile station device can receive only the data symbol sequence transmitted by V, whichever base station device is V / !, but the data symbol sequence Can be received if it only receives a constant phase rotation as a whole. According to the mobile communication system, even if the phase of the known data symbol is different between base station apparatuses, in general, the mobile station apparatus can receive only the data symbol 歹 IJ transmitted by one of the base station apparatuses. However, by modulating the phase of the data symbol transmitted subsequent to the known data symbol according to the phase of the known data symbol, the data symbol string as a whole undergoes a constant phase rotation. Therefore, the mobile station apparatus can receive the data symbol sequence transmitted by each base station apparatus because it can create the same state as in the case where it is not. As a result, when the mobile station apparatus receives data transmitted from a plurality of base station apparatuses, it is possible to use different known data among the base station apparatuses.
[0041] また、上記移動体通信システムにお!/、て、前記無線送信手段は、前記各基地局装 置間で統一された既知データを変調してなる 1つの既知データシンボルと、前記通 信データを変調してなる 1又は複数のデータシンボルとを無線送信する、こととしても よい。 [0041] In addition, in the mobile communication system, the wireless transmission means modulates the known data unified between the base station devices, and the communication data. It is also possible to wirelessly transmit one or a plurality of data symbols obtained by modulating the received data.
[0042] これによれば、既知データは基地局装置間で統一されて!/、るので、移動局装置は 、各基地局装置により送信されたデータシンボル列を受信できる。  [0042] According to this, since the known data is unified among the base station apparatuses! /, The mobile station apparatus can receive the data symbol sequence transmitted by each base station apparatus.
[0043] また、本発明にかかる制御装置は、それぞれ通信データを無線送信する無線送信 手段を含む複数の基地局装置を制御するための制御装置であって、前記複数の基 地局装置のそれぞれから、所定のタイミングで、前記通信データを無線送信させる送 信制御手段と、前記基地局装置ごとに異なるよう、前記基地局装置ごとの遅延量を 決定する遅延量決定手段と、前記遅延量決定手段により決定された遅延量を示す 遅延量情報を、前記各基地局装置に対して送信する送信手段と、を含むことを特徴 とする。  [0043] Further, the control device according to the present invention is a control device for controlling a plurality of base station devices each including a wireless transmission means for wirelessly transmitting communication data, and each of the plurality of base station devices. From the transmission control means for wirelessly transmitting the communication data at a predetermined timing, the delay amount determining means for determining the delay amount for each base station apparatus so as to be different for each base station apparatus, and the delay amount determination Transmission means for transmitting delay amount information indicating the delay amount determined by the means to each of the base station devices.
[0044] また、本発明にかかる基地局装置制御方法は、それぞれ通信データを無線送信す る無線送信手段を含む複数の基地局装置を制御するための基地局装置制御方法 であって、前記複数の基地局装置のそれぞれから、所定のタイミングで、前記通信デ ータを無線送信させる送信制御ステップと、前記基地局装置ごとに異なるよう、前記 基地局装置ごとの遅延量を決定する遅延量決定ステップと、前記各基地局装置が、 前記送信制御ステップでの制御に応じて前記通信データを無線送信する際、前記 遅延量決定ステップにお!/、て決定された遅延量に応じて、該通信データの無線送信 を前記所定のタイミングより遅延させるステップと、を含むことを特徴とする。 [0044] Further, the base station apparatus control method according to the present invention is a base station apparatus control method for controlling a plurality of base station apparatuses each including a wireless transmission means for wirelessly transmitting communication data. The communication data is transmitted from each of the base station devices at a predetermined timing. A transmission control step for wirelessly transmitting data, a delay amount determination step for determining a delay amount for each base station device so as to be different for each base station device, and each base station device in the transmission control step When wirelessly transmitting the communication data in accordance with control, delaying wireless transmission of the communication data from the predetermined timing according to the delay amount determined in the delay amount determining step; It is characterized by including.
[0045] また、本発明に力、かるプログラムは、コンピュータを、それぞれ通信データを無線送 信する無線送信手段を含む複数の基地局装置を制御するための制御装置として機 能させるためのプログラムであって、前記複数の基地局装置のそれぞれから、所定の タイミングで、前記通信データを無線送信させる送信制御手段、前記基地局装置ごと に異なるよう、前記基地局装置ごとの遅延量を決定する遅延量決定手段、及び前記 遅延量決定手段により決定された遅延量を示す遅延量情報を、前記各基地局装置 に対して送信する送信手段、として前記コンピュータを機能させるためのプログラムで ある。 [0045] Further, the program according to the present invention is a program for causing a computer to function as a control device for controlling a plurality of base station devices including wireless transmission means for wirelessly transmitting communication data. A transmission control unit that wirelessly transmits the communication data at a predetermined timing from each of the plurality of base station apparatuses, and a delay that determines a delay amount for each base station apparatus so as to differ for each base station apparatus This is a program for causing the computer to function as an amount determining unit and a transmitting unit that transmits delay amount information indicating the delay amount determined by the delay amount determining unit to each base station apparatus.
発明の効果  The invention's effect
[0046] 移動局装置が複数の基地局装置からそれぞれ送信されたデータを受信する場合 において、各基地局装置がそれぞれ送信するデータ間での遅延ダイバーシチが実 現される。  [0046] When the mobile station apparatus receives data transmitted from each of the plurality of base station apparatuses, delay diversity between the data transmitted by each base station apparatus is realized.
図面の簡単な説明  Brief Description of Drawings
[0047] [図 1]本発明の実施の形態に力、かる移動体通信システムのシステム構成を示す図で ある。  FIG. 1 is a diagram showing a system configuration of a mobile communication system according to an embodiment of the present invention.
[図 2]本発明の実施の形態に力、かる基地局装置により実現されるセクタ及びセルの一 構成例を示した平面図である。  FIG. 2 is a plan view showing a configuration example of a sector and a cell realized by the base station apparatus according to the embodiment of the present invention.
[図 3]本発明の実施の形態に力、かるセルエッジ及びセクタエッジについて説明するた めの図である。  FIG. 3 is a diagram for explaining forces, cell edges and sector edges according to the embodiment of the present invention.
[図 4]本発明の第 1の実施形態に力、かる交換機の機能ブロックを示す図である。  FIG. 4 is a diagram showing functional blocks of the exchange according to the first embodiment of the present invention.
[図 5]本発明の第 1の実施形態に力、かる基地局装置の機能ブロックを示す図である。  [Fig. 5] Fig. 5 is a diagram showing functional blocks of a base station apparatus that is effective in the first embodiment of the present invention.
[図 6]OFDMA規格において利用される複数のサブチャネルを模式的に示した図で ある。 園園 77]]本本発発明明のの第第 11のの実実施施形形態態にに力力、、かかるるイインンタターーリリーーブブ部部にによよりり行行わわれれるる入入れれ替替ええのの 例例をを示示すす図図ででああるる。。 FIG. 6 is a diagram schematically showing a plurality of subchannels used in the OFDMA standard. Enzo 77]] The eleventh practical embodiment of the present invention is powerful, and the internal relieve part is used for the insertion. It is a figure which shows the example of a replacement. .
園園 88]]本本発発明明のの第第 11のの実実施施形形態態にに力力、、かかるるイインンタターーリリーーブブ部部にによよりり行行わわれれるる入入れれ替替ええのの 例例をを示示すす図図ででああるる。。 [Environment 88]] The eleventh practical embodiment of the present invention is powerful, and the internal relieve part is used for the insertion. It is a figure which shows the example of a replacement. .
[[図図 99]] ((aa))はは、、本本発発明明のの第第 11のの実実施施形形態態にに力力、、かかるる IIFFFFTT部部かからら出出力力さされれるる OOFFDDMMシシンン ボボルルをを示示すす図図ででああるる。。 ((bb))はは、、本本発発明明のの第第 11のの実実施施形形態態ににかかかかるる循循環環遅遅延延部部にによよるる循循
Figure imgf000012_0001
[[Fig. 99]] ((aa)) is the force that is applied to the eleventh embodiment of the present invention, and the output force from the IIFFFFTT section. It is a figure which shows the OOFFDDMM cylinder which is to be touched. . ((Bb)) is the circulation by the circulation delay delay part relating to the eleventh embodiment of the present invention.
Figure imgf000012_0001
園園 1100]]本本発発明明のの第第 22のの実実施施形形態態にに力力、、かかるる基基地地局局装装置置のの機機能能ブブロロッッククをを示示すす図図ででああるる 園 11]本発明の第 3の実施形態に力、かる基地局装置の機能ブロックを示す図である 園 12]本発明の第 4の実施形態に力、かる基地局装置の機能ブロックを示す図である 園 13]本発明の第 5の実施形態に力、かる基地局装置の機能ブロックを示す図である 園 14]本発明の第 5の実施形態に力、かる回転量設定部により設定される回転量の例 を示す模式図である。 (Sonoen 1100]] A diagram showing the functional capability of the base station apparatus installed in the twenty-second embodiment of the present invention. FIG. 11 is a diagram showing functional blocks of the base station apparatus that is powerful in the third embodiment of the present invention. 12] The base station apparatus that is powerful in the fourth embodiment of the present invention. FIG. 13 is a diagram showing functional blocks of the base station apparatus according to the fifth embodiment of the present invention. FIG. 14 is a diagram showing functional blocks of the base station apparatus according to the fifth embodiment of the present invention. It is a schematic diagram showing an example of the rotation amount set by the amount setting unit.
園 15]本発明の第 6の実施形態に力、かる基地局装置の機能ブロックを示す図である 15] FIG. 15 is a diagram showing functional blocks of a base station apparatus that focuses on the sixth embodiment of the present invention.
[図 16]OFDMA及び CDTD技術を採用する基地局装置の機能ブロックの一例を示 す図である。 FIG. 16 is a diagram illustrating an example of functional blocks of a base station apparatus adopting OFDMA and CDTD technologies.
符号の説明 Explanation of symbols
10, 10a 交換機  10, 10a switch
11 通信データ取得部  11 Communication data acquisition unit
12 送信制御部  12 Transmission control unit
13 送信エリア決定部  13 Transmission area determination unit
14 遅延量決定部  14 Delay amount determination unit
20, 20a, 20b, 20c, 20d, 20e, 20f 基地局装置 21 データスケジュ一リング部 20, 20a, 20b, 20c, 20d, 20e, 20f Base station equipment 21 Data scheduling department
22 伝搬路推定用符号選択部  22 Code selector for channel estimation
23a, 23b マツピング部  23a, 23b Mapping part
24 S/P変換部  24 S / P converter
25a, 26b インター -リーブ部  25a, 26b Inter-leave section
26 IFFT部  26 IFFT Department
27 循環遅延部  27 Circular delay section
28 P/S変換部  28 P / S converter
29 GI付加部  29 GI addition part
30 移動局装置  30 Mobile station equipment
41 D/A変換部  41 D / A converter
42 RF部  42 RF section
43 アンテナ  43 Antenna
44 遅延量設定部  44 Delay amount setting section
45 遅延量決定部  45 Delay amount determiner
46a, 46b 位相回転部  46a, 46b Phase rotation part
47a, 47b 回転量;設定部  47a, 47b Rotation amount; Setting part
48 伝搬路推定用符号生成部  48 Code generator for channel estimation
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0049] 以下、本発明の実施形態について、図面を参照しながら説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0050] 図 1は、本実施形態に力、かる移動体通信システム 1のシステム構成を示す図である 。同図に示すように、移動体通信システム 1は、交換機 10、複数の基地局装置 20、 複数の移動局装置 30を含んで構成される。 [0050] FIG. 1 is a diagram showing a system configuration of a mobile communication system 1 that focuses on the present embodiment. As shown in the figure, the mobile communication system 1 includes an exchange 10, a plurality of base station devices 20, and a plurality of mobile station devices 30.
[0051] 交換機 10、基地局装置 20、移動局装置 30は、いずれも CPU及びメモリを備えた コンピュータを主要な構成としている。 CPUは、メモリに記憶されるプログラムを読み 出して実行することにより、本実施形態にかかる各機能を実現する。メモリは、本実施 形態を実現するためのプログラムを含む各種プログラム及びデータを記憶するととも に、 CPUのワークメモリとしても機能する。 [0052] 交換機 10は、図示しないネットワークとの間で有線による通信を行う。また、交換機 10と各基地局装置 20とは、互いに有線による通信を行う。なお、本実施形態では、 交換機 10及び各基地局装置 20は、相互の通信に関して、互いに同期している。 [0051] The exchange 10, the base station device 20, and the mobile station device 30 each have a computer having a CPU and a memory as a main component. The CPU implements each function according to the present embodiment by reading and executing a program stored in the memory. The memory stores various programs and data including a program for realizing the present embodiment, and also functions as a work memory for the CPU. The exchange 10 performs wired communication with a network (not shown). Further, the exchange 10 and each base station device 20 perform wired communication with each other. In the present embodiment, the exchange 10 and the base station apparatuses 20 are synchronized with each other with respect to mutual communication.
[0053] また、各基地局装置 20と各移動局装置 30とは、互いに無線による通信を行う。この 無線による通信は、本実施形態では、 OFDMA規格に則って行われる。移動局装 置 30は、基地局装置 20及び交換機 10を介して、図示しないネットワーク上に設置さ れる通信装置との間で通信を行う。  [0053] Also, each base station device 20 and each mobile station device 30 perform wireless communication with each other. In this embodiment, this wireless communication is performed in accordance with the OFDMA standard. The mobile station device 30 communicates with a communication device installed on a network (not shown) via the base station device 20 and the exchange 10.
[0054] 図 2は、各基地局装置 20により実現されるセクタ及びセルの一構成例を示した平面 図である。ここで、ある基地局装置 20により実現されるセクタは、該基地局装置 20と 移動局装置 30とが通信可能な地理的範囲を指す。また、セルは、複数の基地局装 置 20がそれぞれ実現するセクタにより構成される。図 2では、 3つの基地局装置 20が それぞれ実現するセクタにより、 1つのセルが実現される。同図において、セル C1は セクタ # 11 , # 12, # 13により構成され、セル C2〜C7も、同様に、セクタ # 21 , # 22, # 23〜セクタ # 71 , # 72, # 73により構成されている。  FIG. 2 is a plan view showing a configuration example of a sector and a cell realized by each base station apparatus 20. Here, a sector realized by a certain base station apparatus 20 indicates a geographical range in which the base station apparatus 20 and the mobile station apparatus 30 can communicate. A cell is composed of sectors each realized by a plurality of base station devices 20. In FIG. 2, one cell is realized by sectors each realized by three base station apparatuses 20. In the figure, cell C1 is composed of sectors # 11, # 12, and # 13, and cells C2 to C7 are also composed of sectors # 21, # 22, # 23 to sectors # 71, # 72, and # 73. Has been.
[0055] 図 2においては、各セルを実線の六角形で示し、各セルを構成する 3つの基地局装 置 20をまとめて 1つの長方形で表している。なお、同図では、便宜上セル間及びセク タ間の重なりを記載してレ、なレ、が、実際には重なってレ、る部分がある。  In FIG. 2, each cell is indicated by a solid hexagon, and the three base station devices 20 constituting each cell are collectively indicated by one rectangle. In the figure, there is a portion where the overlap between cells and between sectors is described for convenience, but there is actually an overlap.
[0056] 一般に、 1つのセル (例えばセル C1)は 6つのセル (セル C2乃至セル C7)に隣接し ており、その境界はセルエッジと呼ばれる。また、セクタ同士も隣接しており、その境 界はセクタエッジと呼ばれる。これらのエッジは大まかな地理的範囲を指して!/、る。  [0056] In general, one cell (for example, cell C1) is adjacent to six cells (cell C2 to cell C7), and the boundary is called a cell edge. Sectors are also adjacent to each other, and the boundary is called a sector edge. These edges point to a rough geographic area!
[0057] 図 3は、図 2からセル C1及びセル C2の部分を抜き出した図であり、セルエッジ及び セクタエッジについて説明するための図である。セルエッジは、例えば六角形で描か れたセル C1の 6頂点のうち、同じく六角形で描かれたセル C2の各頂点のうちのいず れかと隣接する 2頂点を示す点 P3及び点 P4を結ぶ線及びその付近である。また、セ クタエッジは、例えば基地局装置 20の位置を示す点 P1と、セル C1を示す六角形の 六辺のうちの一辺の中点を示す点 P2を結ぶ線及びその付近である。  FIG. 3 is a diagram in which the portions of the cell C1 and the cell C2 are extracted from FIG. 2, and are diagrams for explaining the cell edge and the sector edge. For example, the cell edge connects points P3 and P4 indicating two vertices adjacent to one of the vertices of cell C2 drawn in the same hexagon among the six vertices of cell C1 drawn in a hexagon. The line and its vicinity. The sector edge is, for example, a line connecting the point P1 indicating the position of the base station device 20 and the point P2 indicating the midpoint of one of the six hexagonal sides indicating the cell C1 and its vicinity.
[0058] 交換機 10は、ネットワークから移動局装置 30向けの通信データを取得する。そして 、取得した通信データが MBMSにより送信すべきものであるか、基地局装置 20と移 動局装置 30との 1対 1通信により送信すべきものであるか、を判定する。 The exchange 10 acquires communication data for the mobile station device 30 from the network. Then, whether the acquired communication data is to be transmitted by MBMS, is transferred with the base station apparatus 20. It is determined whether it should be transmitted by one-to-one communication with the mobile station device 30.
[0059] 1対 1通信により送信すべき通信データ(以下、 UNIデータと称する。 )であると判定 した場合、交換機 10は、 1以上の特定の基地局装置 20 (例えば、通信データの宛先 移動局装置 30が在圏しているセルを実現する 3つの基地局装置 20)に対して、通信 データを送信する。基地局装置 20は、交換機 10から受信した UNIデータを、移動局 装置 30との 1対 1通信により無線送信する。  [0059] When it is determined that the communication data is to be transmitted by one-to-one communication (hereinafter referred to as UNI data), the exchange 10 transmits one or more specific base station devices 20 (for example, destinations of communication data) Communication data is transmitted to the three base station devices 20) that realize the cell in which the station device 30 is located. The base station device 20 wirelessly transmits the UNI data received from the exchange 10 through one-to-one communication with the mobile station device 30.
[0060] 一方、 MBMSにより送信すべき通信データ(以下、 MBMSデータと称する。)であ ると判定した場合、交換機 10は、 MBMSデータの配信エリア内にある複数の基地局 装置 20に対して、通信データを送信する。この配信エリアは、例えば基地局装置 20 の識別番号により予め特定されている。また、交換機 10は、各基地局装置 20が MB MSデータを無線送信するタイミングを決定し、各基地局装置 20に対して通知する。  [0060] On the other hand, when it is determined that the communication data is to be transmitted by MBMS (hereinafter referred to as MBMS data), the exchange 10 transmits to a plurality of base station apparatuses 20 in the MBMS data distribution area. , Send communication data. This distribution area is specified in advance by, for example, the identification number of the base station device 20. Further, the exchange 10 determines the timing at which each base station apparatus 20 wirelessly transmits MB MS data, and notifies each base station apparatus 20 of the timing.
[0061] 各基地局装置 20は、通知されたタイミングで、交換機 10から受信した MBMSデー タを無線送信する。この場合において、各基地局装置 20が複数のアンテナを備えて いる場合には、 CDTD技術により、アンテナごとに異なる遅延量の遅延を与える。本 実施形態では、この遅延量を、さらに基地局装置ごとに異なるよう決定することで、各 基地局装置がそれぞれ送信する MBMSデータ間での遅延ダイバーシチを実現する 。以下では、このための具体的な構成について、 6つの実施形態を挙げて、詳細に 説明する。なお、簡単のため、以下の各実施形態では、各基地局装置 20は 1つのみ アンテナを備えて!/ヽるものとして説明する。  Each base station device 20 wirelessly transmits MBMS data received from the exchange 10 at the notified timing. In this case, when each base station apparatus 20 includes a plurality of antennas, a delay of a different delay amount is given to each antenna by the CDTD technique. In the present embodiment, by determining this delay amount to be different for each base station apparatus, delay diversity between MBMS data transmitted by each base station apparatus is realized. Hereinafter, a specific configuration for this will be described in detail with reference to six embodiments. For simplicity, in each of the following embodiments, each base station apparatus 20 will be described as having only one antenna!
[0062] [第 1の実施形態]本実施形態では、交換機 10aが、基地局装置 20aごとの遅延量 を制御する制御装置として機能する。また、基地局装置 20aにおいては、循環遅延 により、無線送信タイミングの遅延が実現される。循環遅延の詳細については後述す  [First Embodiment] In this embodiment, the exchange 10a functions as a control device for controlling the delay amount for each base station device 20a. Further, in the base station device 20a, a delay in radio transmission timing is realized by a cyclic delay. Details of the cyclic delay will be described later.
[0063] 図 4は、本実施形態に力、かる交換機 10aの機能ブロックを示す図である。同図に示 すように、交換機 10aは、通信データ取得部 11、送信制御部 12、送信エリア決定部 13、スィッチ 15を含んで構成される。また、送信エリア決定部 13は、その内部に遅延 量決定部 14を含んで構成される。 [0063] FIG. 4 is a diagram showing functional blocks of the exchange 10a that is effective in the present embodiment. As shown in the figure, the exchange 10a includes a communication data acquisition unit 11, a transmission control unit 12, a transmission area determination unit 13, and a switch 15. The transmission area determination unit 13 includes a delay amount determination unit 14 therein.
[0064] また、図 5は、本実施形態に力、かる基地局装置 20aの機能ブロックを示す図である 同図に示すように、基地局装置 20aは、データスケジューリング部 21、伝搬路推定用 符号選択部 22、マッピング部 23a S/P変換部 24、インターリーブ部 25a IFFT部 26、循環遅延部 27 P/S変換部 28 GI付加部 29 D/A変換部 41 RF部 42、ァ ンテナ 43、遅延量設定部 44を含んで構成される。これらの各部は、通信データを送 信する無線送信手段として機能する。 [0064] FIG. 5 is a diagram showing functional blocks of the base station device 20a that are effective in the present embodiment. As shown in the figure, the base station device 20a includes a data scheduling unit 21, a channel estimation code selection unit 22, a mapping unit 23a S / P conversion unit 24, an interleaving unit 25a an IFFT unit 26, a cyclic delay unit 27 P / S conversion unit 28 GI addition unit 29 D / A conversion unit 41 RF unit 42, antenna 43, and delay amount setting unit 44. Each of these units functions as a wireless transmission unit that transmits communication data.
[0065] 通信データ取得部 11 (図 4)は、図示しないネットワークから通信データを取得し、 スィッチ 15に出力する。スィッチ 15は、後述する送信制御部 12の制御に応じたスィ ツチング処理を行うことにより、入力された通信データを各基地局装置 20 送信する Communication data acquisition unit 11 (FIG. 4) acquires communication data from a network (not shown) and outputs it to switch 15. The switch 15 transmits the input communication data to each base station device 20 by performing a switching process according to the control of the transmission control unit 12 described later.
[0066] 送信制御部 12は、スィッチ 15に入力された通信データが MBMSデータであつたと すると、複数の基地局装置 20のそれぞれから、所定のタイミングで、通信データ取得 部 11から入力された MBMSデータを無線送信させる。具体的には、 MBMSデータ の送信タイミングを示す情報 (MBMS送信情報と呼ぶ。)を生成し、スィッチ 15に入 力する。そして、各基地局装置 20に対し、 MBMSデータとともに送信するよう、スイツ チ 15を制御する。一方、スィッチ 15に入力された通信データが UNIデータであった とすると、送信制御部 12は、該 UNIデータを、該 UNIデータの宛先である移動局装 置 30が在圏しているセルを実現している 1又は複数の基地局装置 20に対して送信 するよう、スィッチ 15を制御する。 [0066] If the communication data input to switch 15 is MBMS data, transmission control unit 12 receives MBMS input from communication data acquisition unit 11 from each of a plurality of base station devices 20 at a predetermined timing. Send data wirelessly. Specifically, information indicating the transmission timing of MBMS data (referred to as MBMS transmission information) is generated and input to switch 15. Then, the switch 15 is controlled so as to transmit to the base station apparatus 20 together with the MBMS data. On the other hand, if the communication data input to the switch 15 is UNI data, the transmission control unit 12 transmits the UNI data to the cell where the mobile station device 30 that is the destination of the UNI data is located. The switch 15 is controlled so as to transmit to one or a plurality of realized base station apparatuses 20.
[0067] 送信エリア決定部 13は、送信制御部 12が MBMS送信情報及び MBMSデータを 送信すべき 1又は複数の基地局装置 20aを決定し、送信制御部 12に通知する。送 信制御部 12は、この通知に従い、各基地局装置 20aに対し、 MBMS送信情報及び MBMSデータを送信するよう、スィッチ 15を制御する。  [0067] The transmission area determination unit 13 determines one or a plurality of base station devices 20a to which the transmission control unit 12 should transmit MBMS transmission information and MBMS data, and notifies the transmission control unit 12 of the determination. In accordance with this notification, the transmission control unit 12 controls the switch 15 to transmit MBMS transmission information and MBMS data to each base station apparatus 20a.
[0068] 遅延量決定部 14は、基地局装置 20aごとに異なるよう、基地局装置 20aごとの遅延 量を決定する。具体的には、各基地局装置 20aについて、互いに異なる遅延量を決 定する。この決定の詳細については後述する。遅延量決定部 14は、決定した遅延量 を示す情報 (遅延量情報と称する。)を基地局装置 20aごとに生成し、送信制御部 12 に出力する。送信制御部 12は、各基地局装置 20aに対し、入力された遅延量情報を 送信するよう、スィッチ 15を制御する。 [0068] The delay amount determination unit 14 determines the delay amount for each base station apparatus 20a so as to be different for each base station apparatus 20a. Specifically, different delay amounts are determined for each base station device 20a. Details of this determination will be described later. The delay amount determination unit 14 generates information indicating the determined delay amount (referred to as delay amount information) for each base station device 20 a and outputs the information to the transmission control unit 12. The transmission control unit 12 sends the input delay amount information to each base station device 20a. Control switch 15 to transmit.
[0069] 本実施形態にかかる基地局装置 20aは、以上のようにして交換機 10が送信した M BMSデータ及び UNIデータを受信し、移動局装置 30に対して、 OFDMA規格に従 い、無線送信する。また、交換機 10が送信した MBMS送信情報及び遅延量情報を 受信し、 MBMSデータを無線送信する際、受信した遅延量情報により示される遅延 量に応じて、該通信データの無線送信を、 MBMS送信情報により示されるタイミング より遅延させる。以下、具体的に説明する。  [0069] The base station apparatus 20a according to the present embodiment receives the MBMS data and the UNI data transmitted by the exchange 10 as described above, and performs radio transmission to the mobile station apparatus 30 according to the OFDMA standard. To do. Also, when the MBMS transmission information and the delay amount information transmitted by the exchange 10 are received and the MBMS data is wirelessly transmitted, the communication data is wirelessly transmitted according to the delay amount indicated by the received delay amount information. Delay from the timing indicated by the information. This will be specifically described below.
[0070] まず、 OFDMA規格について説明する。 OFDMA規格では、まず通信データに所 定の変調方式による変調が施される。この変調は変調方式によって異なる所定の変 調単位量ごとに行われ、変調の結果データシンボル列が得られる。こうして得られた データシンボル列は、逆離散フーリエ変換により複数のサンプルに変換される。この 複数のサンプルからなる OFDMシンボルは、搬送波に乗せられて送信される。  First, the OFDMA standard will be described. In the OFDMA standard, first, communication data is modulated by a predetermined modulation method. This modulation is performed for each predetermined modulation unit amount that differs depending on the modulation method, and a data symbol string is obtained as a result of the modulation. The data symbol sequence thus obtained is converted into a plurality of samples by inverse discrete Fourier transform. The OFDM symbol consisting of a plurality of samples is transmitted on a carrier wave.
[0071] 以下、逆離散フーリエ変換について説明する。データシンボル列を構成する各デ ータシンボルを d (n = 0, 1 ,〜, N— 1。この Nはサンプル数と呼ばれる数字である。 )とすると、式(1)に示されるように、各 dは、それぞれ周波数 (サブキャリア) nf に割り  [0071] Hereinafter, the inverse discrete Fourier transform will be described. Assuming that each data symbol constituting the data symbol sequence is d (n = 0, 1,..., N—1, where N is a number called the number of samples), as shown in Equation (1), d is assigned to each frequency (subcarrier) nf.
n 0 当てられる。この N個のサブキャリアは、所定数ずつのグループに分類され、各ダル ープはサブチャネルと呼ばれる。  n 0 is applied. The N subcarriers are classified into a predetermined number of groups, and each dulp is called a subchannel.
[0072] [数 1] dne ! …( 1 ) [0072] [Equation 1] d n e! … (1)
[0073] 式(1)を用いて、式(2)に示すベースバンド OFDMシンボル S (t)が定義される。 [0073] The baseband OFDM symbol S (t) shown in equation (2) is defined using equation (1).
B  B
なお、 Re [ ]は、複素数の実部を表す記号である。  Re [] is a symbol representing the real part of a complex number.
[0074] [数 2]
Figure imgf000017_0001
[0074] [Equation 2]
Figure imgf000017_0001
[0075] 式(2)に示されるように、ベースバンド OFDMシンボル S (t)は、 n個の周波数(サ ブキャリア)に、各 dnが分散したマルチキャリア信号となっている。これを複素表現 すると、式(3)のようになる。 [0075] As shown in Equation (2), the baseband OFDM symbol S (t) has n frequencies (supports The subcarrier), each d n is a multicarrier signal dispersion. When this is expressed in complex form, it becomes as shown in Equation (3).
[0076] [数 3]
Figure imgf000018_0001
[0076] [Equation 3]
Figure imgf000018_0001
[0077] :の u (t)を l/ (Nf )の時間間隔で標本化すると、式 (4)のようになる。ただし、 k= [0077] When u (t) is sampled at a time interval of l / (Nf), Equation (4) is obtained. Where k =
4 Four
Figure imgf000018_0002
Figure imgf000018_0002
[0079] 式 (4)は、逆離散フーリエ変換の形式となっている。つまり、各 dをそれぞれ異なる 周波数のサブキャリアに割り当てることにより、データシンボル列を逆離散フーリエ変 換することで、 u (t)を l/ (Nf )の時間間隔で標本化してなる N個の標本値 u (k/Nf [0079] Equation (4) is in the form of inverse discrete Fourier transform. In other words, by assigning each d to a subcarrier of a different frequency, the data symbol sequence is subjected to inverse discrete Fourier transform, so that N (n) samples at a time interval of l / (Nf). Sample value u (k / Nf
0  0
) (この標本値の実部をサンプルという。)力得られるようになる。 OFDMシンボルは、 (The real part of this sample value is called a sample.) The OFDM symbol is
0 0
こうして得られる N個のサンプルにより構成される。  It consists of N samples obtained in this way.
[0080] 図 6は、 OFDMA規格において利用される複数のサブチャネルを模式的に示した 図である。同図の例では 12個のサブチャネルが用意されており、図示していないが、 各サブチャネルはそれぞれ所定数のサブキャリアにより構成されている。また、所定 数の時間的に連続する OFDMシンボルにより 1フレームが構成される。また、 1フレ ーム内の各サブチャネルに対応する部分は、それぞれブロックと呼ばれる。さらに、 1 ブロック内の各 OFDMシンボルに対応する部分は、それぞれチャンクと呼ばれる。各 チャンクは、 OFDMシンボルの一部分により構成される。  FIG. 6 is a diagram schematically showing a plurality of subchannels used in the OFDMA standard. In the example of the figure, twelve subchannels are prepared, and although not shown, each subchannel is composed of a predetermined number of subcarriers. One frame is composed of a predetermined number of time-sequential OFDM symbols. The part corresponding to each subchannel in one frame is called a block. Furthermore, the part corresponding to each OFDM symbol in one block is called a chunk. Each chunk is composed of a part of the OFDM symbol.
[0081] また、図 6にも示されるように、 OFDMA規格では、各フレームの先頭に、移動局装 置 30において伝搬路特性を推定するために用いられる既知符号 (以下、伝搬路推 定用符号という。)を変調してなる既知データシンボル (以下、伝搬路推定用シンボル という。 [0081] Also, as shown in FIG. 6, in the OFDMA standard, a mobile station device is placed at the head of each frame. In FIG. 30, a known data symbol (hereinafter referred to as a propagation path estimation symbol) obtained by modulating a known code (hereinafter referred to as a propagation path estimation code) used for estimating the propagation path characteristics.
)が配置される。特に本実施形態では、伝搬路推定用シンボルは全サブキャリアに配 置されるものとする。すなわち、各フレームの先頭に位置する OFDMシンボルを構成 するデータシンボルは、全て伝搬路推定用シンボルである。  ) Is placed. In particular, in this embodiment, it is assumed that the propagation path estimation symbols are allocated to all subcarriers. That is, the data symbols constituting the OFDM symbol located at the head of each frame are all propagation path estimation symbols.
[0082] データスケジューリング部 21は、交換機 10から通信データを受信し、受信した通信 データの各送信先に対し、 1つ以上のサブチャネルを割り当てる。なお、 MBMSデ ータの送信先は特に定まっていないが、データスケジューリング部 21は、 1つの送信 先があるものとして、 MBMSデータにも 1つ以上のサブチャネルを割り当てる。  The data scheduling unit 21 receives communication data from the exchange 10 and allocates one or more subchannels to each transmission destination of the received communication data. Although the MBMS data transmission destination is not particularly defined, the data scheduling unit 21 assigns one or more subchannels to MBMS data on the assumption that there is one transmission destination.
[0083] さらに、データスケジューリング部 21は、通信データの送信タイミングを決定する。  [0083] Furthermore, the data scheduling unit 21 determines the transmission timing of communication data.
特に、通信データが MBMSデータである場合には、同時期に受信される MBMS送 信情報に応じて、その送信タイミングを決定する。より具体的には、上述のようにして 割り当てられたサブチャネルに基づき、各通信データを送信すべきブロックを決定し 、さらに変調単位量の通信データごとに、ブロック内におけるチャンクと該チャンクを 構成するデータシンボル列(OFDMシンボルの一部分)内におけるデータシンボル の位置とを決定することにより、通信データの送信タイミングを決定する。なお、この 場合において、データスケジューリング部 21は、伝搬路推定用シンボルとなるべき位 置については、通信データの送信タイミングとして決定する位置から除外する。デー タスケジューリング部 21は、以上のようにして決定した送信タイミングに応じて、マツピ ング部 23aに対し、通信データを出力する。具体的には、マッピング部 23aにおいて 、上記決定した位置のデータシンボルが生成されるタイミングで、変調単位量ずつ順 次通信データを出力する。  In particular, when the communication data is MBMS data, the transmission timing is determined according to the MBMS transmission information received at the same time. More specifically, based on the subchannels allocated as described above, a block to which each communication data is to be transmitted is determined, and further, a chunk in the block and the chunk are configured for each communication data of a modulation unit amount. The transmission timing of communication data is determined by determining the position of the data symbol in the data symbol sequence (a part of the OFDM symbol) to be performed. In this case, the data scheduling unit 21 excludes the position to be the propagation path estimation symbol from the position determined as the transmission timing of the communication data. The data scheduling unit 21 outputs communication data to the mapping unit 23a in accordance with the transmission timing determined as described above. Specifically, the mapping unit 23a outputs sequential communication data for each modulation unit amount at the timing when the data symbol at the determined position is generated.
[0084] 伝搬路推定用符号選択部 22は、マッピング部 23aにおいて伝搬路推定用シンポ ルが生成されるタイミングで、伝搬路推定用符号を出力する。この場合において、伝 搬路推定用符号選択部 22は、複数種類の伝搬路推定用符号を記憶しており、 MB MS送信情報に応じて、出力する伝搬路推定用符号を選択する。具体的には、 MB MSデータが送信されるブロックにかかる伝搬路推定用シンボルが生成されるタイミ ングでは、 MBMSデータ送信用の伝搬路推定用符号を選択し、出力する。一方、 U NIデータが送信されるブロックにかかる伝搬路推定用シンボルが生成されるタイミン グでは、 UNIデータ送信用の伝搬路推定用符号を選択し、出力する。ここで、 MBM Sデータ送信用の伝搬路推定用符号は全基地局装置 20aに共通の符号であり、 UN Iデータ送信用の伝搬路推定用符号は基地局装置 20aごとに異なる任意の符号であ [0084] The channel estimation code selection unit 22 outputs the channel estimation code at the timing when the mapping unit 23a generates the channel estimation symbol. In this case, the propagation path estimation code selection unit 22 stores a plurality of types of propagation path estimation codes, and selects a propagation path estimation code to be output according to the MBMS transmission information. Specifically, the timing for generating a propagation path estimation symbol for a block in which MB MS data is transmitted. In this case, a channel estimation code for MBMS data transmission is selected and output. On the other hand, at the timing when a propagation path estimation symbol is generated for a block to which U NI data is transmitted, a propagation path estimation code for UNI data transmission is selected and output. Here, the propagation path estimation code for MBMS data transmission is a code common to all base station apparatuses 20a, and the propagation path estimation code for UNI data transmission is an arbitrary code different for each base station apparatus 20a. Ah
[0085] マッピング部 23aは、データスケジューリング部 21から入力された通信データ及び 伝搬路推定用符号選択部 22から入力された伝搬路推定用符号を入力されたタイミ ングで順次変調し、データシンボルを生成する。この変調においては、 QPSK(Quadr ature Phase Shift Keying,四位相偏移変調)などの位相変調方式若しくは 16QAM(1 6 Quadrature Amplitude Modulation, 16直交振幅変調)などの直角位相振幅変調方 式を使用することが好適である。マッピング部 23aは、生成したデータシンボルを、 S /P変換部 24に対して順次出力する。 The mapping unit 23a sequentially modulates the communication data input from the data scheduling unit 21 and the channel estimation code input from the channel estimation code selection unit 22 with the input timing, and the data symbols are modulated. Generate. For this modulation, use a phase modulation method such as QPSK (Quadrature Phase Shift Keying) or a quadrature amplitude modulation method such as 16QAM (16 Quadrature Amplitude Modulation). Is preferred. The mapping unit 23a sequentially outputs the generated data symbols to the S / P conversion unit 24.
[0086] S/P変換部 24は、マッピング部 23aから順次入力されるデータシンボルを、サンプ ル数のデータシンボルが入力されるまで保持する。すなわち、 lOFDMシンボル分 のデータシンボルが入力されるまで保持する。 S/P変換部 24は、データシンボル列 を構成する全てのデータシンボルが入力されると、インターリーブ部 25aに対してこれ らのデータシンボルをパラレル出力する。この処理により、データシンボル列が、 IFF T部 26の入力にマッピングされる。  [0086] The S / P conversion unit 24 holds the data symbols sequentially input from the mapping unit 23a until the number of sample data symbols are input. In other words, it holds until data symbols of lOFDM symbols are input. When all the data symbols constituting the data symbol sequence are input, the S / P conversion unit 24 outputs these data symbols in parallel to the interleaving unit 25a. By this processing, the data symbol string is mapped to the input of the IF T section 26.
[0087] インターリーブ部 25aは、パラレル入力された各データシンボルの順序を所定の入 替規則に基づいて入れ替えた上で、 IFFT部 26に対して出力する。図 7は、インター リーブ部 25aにより行われる入れ替えの例を示す図である。同図に示す例では、 1番 目の出力として 1番目の入力データシンボルを、 2番目の出力として X+ 1番目の入 力データシンボルを、というような入替規則に基づいて入れ替えが行われている。す なわち、 i番目の出力は、 iが 1 + f (t— 1)以上 f (t)以下であり、かっこの iが入力デー タシンボルの個数 Y以下である場合に、 ( (i-f (t- l) - l) X X+t)番目の入力デー タシンボルとなる。ただし、関数 f (t)は、非負の整数 tに対し、 f (0) =0, f (t) = floor ( f (t— 1) + 1 + (Y— t) /X)により示される再帰関数である。なお、 floor ( )は床関 数である。 [0087] Interleaving section 25a replaces the order of the data symbols input in parallel with each other based on a predetermined replacement rule, and outputs the result to IFFT section 26. FIG. 7 is a diagram illustrating an example of replacement performed by the interleaving unit 25a. In the example shown in the figure, the first input data symbol is used as the first output, and the X + first input data symbol is used as the second output. . In other words, the i-th output is ((if (t (t (1)) when i is 1 + f (t— 1) or more and f (t) or less, and i is the number of input data symbols Y or less. -l)-l) X X + t) th input data symbol. However, the function f (t) is expressed by f (0) = 0, f (t) = floor (f (t— 1) + 1 + (Y— t) / X) for non-negative integer t It is a recursive function. Floor () is the floor Is a number.
[0088] 図 8は、図 7に示す例を、サブチャネルがある場合について示す図である。同図に 示す例では、 12個のサブチャネルが用意されており、各サブチャネルに 12個のサブ キャリアが含まれている。このような場合に図 7に示す Xを 12とすると、図 8に示すよう に入れ替えがなされることになる。  FIG. 8 is a diagram illustrating the example illustrated in FIG. 7 in the case where there are subchannels. In the example shown in the figure, 12 subchannels are prepared, and each subchannel includes 12 subcarriers. In such a case, if X shown in FIG. 7 is set to 12, the exchange is performed as shown in FIG.
[0089] IFFT部 26は、入力されたデータシンボル列に逆離散フーリエ変換処理の一種で ある逆高速フーリエ変換処理を施すことにより上記サンプル数のサンプルを含んでな る OFDMシンボルを取得し、循環遅延部 27にパラレル出力する。  [0089] IFFT section 26 performs processing on the input data symbol sequence by performing inverse fast Fourier transform processing, which is a kind of inverse discrete Fourier transform processing, to obtain an OFDM symbol including the above-mentioned number of samples, and cyclically Outputs to delay unit 27 in parallel.
[0090] 循環遅延部 27は、入力された OFDMシンボルに、遅延量設定部 44により設定さ れる遅延量の循環遅延(後述)を与えた上で、 P/S変換部 28に出力する。  The cyclic delay unit 27 gives the input OFDM symbol a cyclic delay (described later) of the delay amount set by the delay amount setting unit 44, and then outputs it to the P / S conversion unit 28.
[0091] P/S変換部 28は、循環遅延部 27から入力される OFDMシンボルに並直列変換 を施してシリアル信号とし、 GI付加部 29に出力する。 GI付加部 29は、入力された O FDMシンボルに GIを付加する。具体的には、 OFDMシンボルの最後尾から所定数 のサンプルを取得し、 OFDMの先頭に付加する。 GI付加部 29は、 GIが付加された OFDMシンボルを、 D/A変換部 41に出力する。  [0091] P / S conversion unit 28 performs parallel-serial conversion on the OFDM symbol input from cyclic delay unit 27 to generate a serial signal, and outputs the serial signal to GI addition unit 29. The GI adding unit 29 adds a GI to the input OFDM symbol. Specifically, a predetermined number of samples are acquired from the end of the OFDM symbol and added to the head of OFDM. The GI addition unit 29 outputs the OFDM symbol to which the GI is added to the D / A conversion unit 41.
[0092] ここまでの処理は全てデジタル処理により行われており、 D/A変換部 41に入力さ れる OFDMシンボルの振幅はデジタル値により示されている。 D/A変換部 41は、 このデジタル値に基づいてアナログ信号を取得し、 RF部 42に出力する。 RF部 42は 、入力されたアナログ信号を無線帯域周波数の信号に変換し、アンテナ 43から無線 区間に送出する。  The processing so far is all performed by digital processing, and the amplitude of the OFDM symbol input to the D / A conversion unit 41 is indicated by a digital value. The D / A converter 41 acquires an analog signal based on this digital value and outputs it to the RF unit 42. The RF unit 42 converts the input analog signal into a signal having a radio band frequency, and transmits the signal from the antenna 43 to the radio section.
[0093] 遅延量設定部 44は、交換機 10から遅延量情報を受信し、受信した遅延量情報に 基づいて遅延量を決定し、循環遅延部 27に設定する。具体的な例では、遅延量設 定部 44は、オフセット情報を予め記憶している。このオフセット情報は保守者によつ て入力されるものであり、例えばアンテナが複数ある場合にはアンテナごとに異なる。 この場合において、交換機 10において保守者がオフセット情報を入力し、交換機 10 が各基地局装置 20に対してオフセット情報を通知することとしてもよいし、各基地局 装置 20において保守者がオフセット情報を入力することとしてもよい。  The delay amount setting unit 44 receives the delay amount information from the exchange 10, determines the delay amount based on the received delay amount information, and sets it in the cyclic delay unit 27. In a specific example, the delay amount setting unit 44 stores offset information in advance. This offset information is input by a maintenance person. For example, when there are a plurality of antennas, the offset information differs for each antenna. In this case, the maintenance person may input the offset information in the exchange 10, and the exchange 10 may notify the offset information to each base station apparatus 20. Alternatively, the maintenance person may provide the offset information in each base station apparatus 20. It is good also as inputting.
[0094] 遅延量設定部 44は、受信した遅延量情報と記憶しているオフセット情報とに応じて 遅延量を決定し、決定した遅延量を循環遅延部 27に設定する。より具体的な例では 、遅延量設定部 44は、受信した遅延量情報により示される遅延量をオフセット情報 に応じて変更することにより遅延量を決定し、循環遅延部 27に設定する。 [0094] The delay amount setting unit 44 responds to the received delay amount information and the stored offset information. The delay amount is determined, and the determined delay amount is set in the cyclic delay unit 27. In a more specific example, the delay amount setting unit 44 determines the delay amount by changing the delay amount indicated by the received delay amount information according to the offset information, and sets the delay amount in the cyclic delay unit 27.
[0095] 以下、循環遅延部 27により行われる循環遅延処理の詳細について説明する。 The details of the cyclic delay processing performed by the cyclic delay unit 27 will be described below.
[0096] 図 9の(a)は、 IFFT部 26から出力される OFDMシンボルを示す図である。一方、 同図の(b)は、循環遅延部 27による循環遅延処理後の OFDMシンボルを示す図で ある。上述のように、 1つの OFDMシンボルは N個のサンプルを含んで構成される。 循環遅延では、このサンプルの順番を順次シフトさせることにより、遅延が実現される 。例えば遅延量が Sである場合、 S + k≤N— 1を満たす k番目のサンプルについて は、 S + k番目に変更される。また、 S + k〉N— 1を満たす k番目のサンプルについ ては、 S + k— N番目に変更される。その結果、移動局装置 30で受信される OFDM シンボルは、式(5)及び式(6)のように構成される。 FIG. 9A shows an OFDM symbol output from IFFT section 26. In FIG. On the other hand, (b) of the figure shows the OFDM symbol after the cyclic delay processing by the cyclic delay unit 27. FIG. As described above, one OFDM symbol is configured to include N samples. In the cyclic delay, the delay is realized by sequentially shifting the order of the samples. For example, if the delay amount is S, the kth sample that satisfies S + k≤N—1 is changed to S + kth. Also, the kth sample that satisfies S + k> N−1 is changed to S + k−Nth. As a result, the OFDM symbol received by the mobile station device 30 is configured as shown in equations (5) and (6).
[0097] [数 5] +あ≤N— Ϊ] . . - (5 )[0097] [Equation 5] + A≤N—Ϊ]..-(5)
Figure imgf000022_0001
Figure imgf000022_0001
[0098] [数 6] [0098] [Equation 6]
Figure imgf000022_0002
Figure imgf000022_0002
[0099] すなわち、移動局装置 30は、遅延量 Sの分だけ遅延した状態の OFDMシンボルを 受信することになる。 That is, the mobile station device 30 receives the OFDM symbol delayed by the delay amount S.
[0100] 次に、遅延量決定部 14 (図 4)により決定される遅延量について詳細に説明する。  [0100] Next, the delay amount determined by the delay amount determination unit 14 (Fig. 4) will be described in detail.
遅延量決定部 14は、各セル及び各セクタの配置に基づいて、基地局装置 20aごとの 遅延量を決定する。すなわち、複数の基地局装置 20aが送信した MBMSデータを 受信するのは、概ねセルエッジ若しくはセクタエッジに位置している移動局装置 30と なるので、遅延量決定部 14は、セルエッジ若しくはセクタエッジにおいて、各基地局 装置 20がそれぞれ送信するデータ間での遅延量が適切に相違することとなるよう、 基地局装置 20aごとの遅延量を決定する。より具体的には、遅延量決定部 14は、各 基地局装置 20に備えられるアンテナの位置や本数及び指向性の特性を管理し、こ れらに基づレ、て、基地局装置 20aごとの遅延量を決定することが望まし!/、。 The delay amount determination unit 14 determines the delay amount for each base station device 20a based on the arrangement of each cell and each sector. That is, the MBMS data transmitted by a plurality of base station devices 20a Since the mobile station apparatus 30 that is positioned at the cell edge or the sector edge is generally received, the delay amount determination unit 14 determines the delay between the data transmitted by the respective base station apparatuses 20 at the cell edge or the sector edge. The amount of delay for each base station apparatus 20a is determined so that the amounts are appropriately different. More specifically, the delay amount determination unit 14 manages the position, number of antennas, and directivity characteristics of the antennas provided in each base station device 20, and based on these, each base station device 20a Desirable to determine the amount of delay! /.
[0101] また、遅延量決定部 14は、基地局装置 20aごとにランダム値を取得し、取得したラ ンダム値に基づ!/、て基地局装置 20aごとの遅延量を決定することとしてもよ!/、。具体 的には、ランダム値に対して線形に遅延量を決定することが好適である。この場合に おいて、遅延量決定部 14は、基地局装置 20aごとの遅延量が互いに同じ値若しくは 近い値となり、結果として遅延ダイバーシチの効果が得られなくなることのないよう、 予め複数のランダム値を記憶しておき、その中から基地局装置 20aごとにランダム値 を選択することが好適である。  [0101] Also, the delay amount determination unit 14 may acquire a random value for each base station device 20a, and determine the delay amount for each base station device 20a based on the acquired random value! Yo! / Specifically, it is preferable to determine the delay amount linearly with respect to the random value. In this case, the delay amount determination unit 14 uses a plurality of random values in advance so that the delay amount for each base station device 20a becomes the same value or a value close to each other, and as a result, the effect of delay diversity cannot be obtained. Is stored, and a random value is preferably selected for each base station apparatus 20a.
[0102] より具体的な例では、遅延量決定部 14は、 N/M間隔でランダム値を記憶しておく [0102] In a more specific example, the delay amount determination unit 14 stores random values at N / M intervals.
Yes
ただし、 Mは送信エリア決定部 13により決定された基地局装置 20aの数であり、 Nは 1つの OFDMシンボルに含まれるサンプルの数である。また、ここでは、ランダム値を そのまま遅延量 Sとして使用することとする。例えば N= 1024、 M = 7である場合、 N 146となるので、遅延量決定部 14は、 146間隔の 7つのランダム値(0, 146, 292, 438, 584, 730, 876)を記憶しておく。そして、基地局装置 20aごとに排他的 にランダム値を選択し、遅延量とする。これにより、適切に、各基地局装置 20aの遅延 量が決定される。  Here, M is the number of base station apparatuses 20a determined by the transmission area determining unit 13, and N is the number of samples included in one OFDM symbol. Here, the random value is used as the delay amount S as it is. For example, when N = 1024 and M = 7, N 146, so the delay amount determination unit 14 stores seven random values (0, 146, 292, 438, 584, 730, 876) at 146 intervals. Keep it. Then, a random value is exclusively selected for each base station device 20a and used as a delay amount. Thereby, the delay amount of each base station apparatus 20a is appropriately determined.
[0103] また、遅延量決定部 14は、セクタ構成を考慮して遅延量を決定することとしてもよい 。例えば、セクタ間での遅延量の差を N/セクタ数 3 341とすることが好適である。 この場合、 1番目のセクタに 0を、 2番目のセクタに 341を、 3番目のセクタに 682を、 それぞれ割り当て、上述のようにして算出した遅延量に加算する。例えば、上述のよ うにして算出した遅延量が 0であったとすると、 1番目のセクタの遅延量を 0 + 0 = 0、 2 番目のセクタの遅延量を 0 + 341 = 341、 3番目のセクタの遅延量を 0 + 682 = 682 と決定する。こうすれば、各セクタにおいてそれぞれ送信されるデータ間で、確実に 遅延ダイバーシチが実現される。 [0103] Further, the delay amount determination unit 14 may determine the delay amount in consideration of the sector configuration. For example, it is preferable that the difference in delay amount between sectors is N / number of sectors 3341. In this case, 0 is assigned to the first sector, 341 is assigned to the second sector, and 682 is assigned to the third sector, and these are added to the delay amount calculated as described above. For example, if the delay amount calculated as described above is 0, the delay amount of the first sector is 0 + 0 = 0, the delay amount of the second sector is 0 + 341 = 341, Set the sector delay to 0 + 682 = 682 And decide. In this way, delay diversity is reliably realized between data transmitted in each sector.
[0104] また、遅延量決定部 14は、セルごとに決定されるランダム値と、セクタごとに予め設 定される値と、に基づいて遅延量を決定することとしてもよい。具体的な例では、遅延 量決定部 14は、予めセクタごとに設定される設定値を記憶する。この設定値は、例え ば上述のように、 1番目のセクタが 0、 2番目のセクタが 341、 3番目のセクタが 682と いうようなものである。また、遅延量決定部 14は、セルごとにランダム値を取得し、該 ランダム値に基づいてセルごとの遅延量を算出する。そして、上記設定値をセルごと の遅延量に加算することにより、基地局装置 20aごとの遅延量を算出する。こうすれ ば、比較的予測しやすいセクタ間での遅延量差を確実に確保しつつ、比較的予測し にくいセル間での遅延量差も適切に確保することができるようになる。  [0104] Further, the delay amount determination unit 14 may determine the delay amount based on a random value determined for each cell and a value set in advance for each sector. In a specific example, the delay amount determination unit 14 stores a set value set in advance for each sector. For example, as described above, the set value is 0 for the first sector, 341 for the second sector, and 682 for the third sector. Further, the delay amount determination unit 14 obtains a random value for each cell and calculates a delay amount for each cell based on the random value. Then, the delay amount for each base station device 20a is calculated by adding the set value to the delay amount for each cell. In this way, it is possible to ensure a delay amount difference between cells that is relatively difficult to predict while ensuring a difference in delay amount between sectors that are relatively easy to predict.
[0105] また、遅延量決定部 14は、定期的に遅延量を再決定し、各基地局装置 20aに対し て送信することとしてあよい。  [0105] Further, the delay amount determination unit 14 may periodically re-determine the delay amount and transmit it to each base station device 20a.
[0106] 以上説明したように、本実施形態によれば、基地局装置 20aごとに異なるよう決定さ れた遅延量の遅延を施した上で通信データが送信されるので、移動局装置 30が各 基地局装置 20aからそれぞれ送信されたデータを受信する場合にお!/、て、各基地局 装置 20aがそれぞれ送信するデータ間での遅延ダイバーシチが実現される。  [0106] As described above, according to the present embodiment, since the communication data is transmitted after the delay amount determined to be different for each base station device 20a is transmitted, the mobile station device 30 When data transmitted from each base station apparatus 20a is received, delay diversity between the data transmitted by each base station apparatus 20a is realized.
[0107] さらに、交換機 10が基地局装置 20aごとの遅延量を一括して決定するので、確実 に、各基地局装置 20aの遅延量が互いに異なるようにすること力 Sできる。  [0107] Furthermore, since the exchange 10 determines the delay amount for each base station device 20a at once, it is possible to ensure that the delay amounts of the base station devices 20a are different from each other.
[0108] なお、本実施形態では交換機 10を制御装置として使用した場合につ!/、て説明した  In this embodiment, the case where the exchange 10 is used as a control device has been described as! /
1S 必ずしも交換機 10でなくともよぐ例えば特定の基地局装置 20が制御装置として 機能することとしてもよい。また、交換機 10や基地局装置 20とは別体の制御装置を 設けることとしてあよい。  1S Not necessarily the exchange 10, for example, a specific base station device 20 may function as a control device. In addition, a control device separate from the exchange 10 and the base station device 20 may be provided.
[0109] [第 2の実施形態]本実施形態では、遅延量を決定するための制御装置を設けず、 各基地局装置 20bが遅延量を決定する。  [Second Embodiment] In this embodiment, a control device for determining the delay amount is not provided, and each base station device 20b determines the delay amount.
[0110] 図 10は、本実施形態に力、かる基地局装置 20bの機能ブロックを示す図である。同 図に示すように、基地局装置 20bは、基地局装置 20aに遅延量決定部 45を加えたも のとなつている。すなわち、遅延量決定部 45は各基地局装置 20bに備えられる。以 下では、この遅延量決定部 45について説明する。 [0110] FIG. 10 is a diagram showing functional blocks of the base station device 20b which is effective in the present embodiment. As shown in the figure, the base station device 20b is the base station device 20a with a delay amount determining unit 45 added. That is, the delay amount determination unit 45 is provided in each base station device 20b. After The delay amount determination unit 45 will be described below.
[0111] 遅延量決定部 45は、ランダム値に基づいて遅延量を決定する。具体的には、 MB MSデータを送信する場合に、例えばフレームごとに、ランダム値に基づいて遅延量 を決定する。そして、決定した遅延量を示す遅延量情報を遅延量設定部 44に出力 する。遅延量設定部 44は、こうして入力された遅延量情報に応じて、第 1の実施形態 と同様にして遅延量を決定し、循環遅延部 27に設定する。  [0111] The delay amount determination unit 45 determines the delay amount based on the random value. Specifically, when transmitting MBMS data, for example, for each frame, the delay amount is determined based on a random value. Then, the delay amount information indicating the determined delay amount is output to the delay amount setting unit 44. The delay amount setting unit 44 determines the delay amount in the same manner as in the first embodiment according to the delay amount information thus input, and sets it in the cyclic delay unit 27.
[0112] なお、遅延量決定部 45は、遅延量決定部 14と同様にして、セルごとに決定される ランダム値と、セクタごとに予め設定される値と、に基づいて遅延量を決定することと してもよい。この場合、 1つのセルを構成する複数の基地局装置 20bのうち、 1つが上 記セルごとに決定されるランダム値を取得し、他の基地局装置 20bに通知するように することが好適である。  [0112] Note that the delay amount determination unit 45 determines the delay amount based on a random value determined for each cell and a value set in advance for each sector in the same manner as the delay amount determination unit 14. It may be. In this case, it is preferable that one of the plurality of base station devices 20b configuring one cell acquires a random value determined for each cell and notifies the other base station device 20b. is there.
[0113] 本実施形態によれば、第 1の実施形態のように制御装置を設ける必要がないので、 システム構成が簡略化される。  According to the present embodiment, since it is not necessary to provide a control device as in the first embodiment, the system configuration is simplified.
[0114] [第 3の実施形態]本実施形態は、遅延を与えるタイミングにおいて、第 1及び第 2 の実施形態と異なっている。すなわち、第 1及び第 2の実施形態では IFFTの後に循 環遅延が与えられているが、本実施形態では、 IFFTの前に遅延が与えられる。 [Third Embodiment] This embodiment is different from the first and second embodiments in the timing of giving a delay. That is, in the first and second embodiments, a cyclic delay is given after IFFT, but in this embodiment, a delay is given before IFFT.
[0115] なお、この場合、循環遅延ではなく位相回転により遅延が与えられる。すなわち、式 [0115] In this case, the delay is given not by the cyclic delay but by the phase rotation. That is, the formula
(5)及び式(6)は式(7)のように変形することができる。  (5) and Equation (6) can be transformed as Equation (7).
[0116] [数 7] [0116] [Equation 7]
Figure imgf000025_0001
Figure imgf000025_0001
[0117] このことは、 dnの位相回転によっても、遅延を実現できるということを意味している。 [0117] This is also the phase rotation of the d n, which means that can realize a delay.
しかも、このように位相回転により遅延を実現する場合、必ずしも Sの値を整数としなく ともよいので、位相の回転量を無段階で細かく設定することで、遅延量を無段階で細 力べ設定することが可能となる。そこで本実施形態では、 の位相回転によって循環 遅延を実現する。 In addition, when the delay is realized by phase rotation in this way, the value of S does not necessarily have to be an integer. Therefore, by setting the phase rotation amount steplessly, the delay amount can be reduced steplessly. It is possible to set force. Therefore, in this embodiment, a cyclic delay is realized by the phase rotation of.
[0118] 図 11は、本実施形態に力、かる基地局装置 20cの機能ブロックを示す図である。同 図に示すように、基地局装置 20cは、基地局装置 20bにおいて、循環遅延部 27に代 えて、インターリーブ部 25aと IFFT部 26の間に所定数(サブチャネル数)の位相回 転部 46aを加え、さらに遅延量設定部 44に代えて回転量設定部 47aを含めたものと なっている。  [0118] FIG. 11 is a diagram showing functional blocks of the base station device 20c which is effective in the present embodiment. As shown in the figure, base station apparatus 20c includes a predetermined number (number of subchannels) of phase rotation unit 46a between interleaving unit 25a and IFFT unit 26 in place of cyclic delay unit 27 in base station device 20b. In addition, a rotation amount setting unit 47a is included instead of the delay amount setting unit 44.
[0119] インターリーブ部 25aは、各データシンボルを、例えばサブチャネルごとに異なる位 相回転部 46aに出力する。各位相回転部 46aは、回転量設定部 47aから入力される 回転量に応じて、インターリーブ部 25aから入力される各データシンボルの位相を回 転させ、 IFFT部 26に出力する。より具体的には、各位相回転部 46aは、インターリー ブ部 25aから入力される各データシンボルに、回転量設定部 47aから入力される回 転量と、データシンボル列における各データシンボルの位置(式(7)における nの値) と、に応じた回転量の位相回転を与える。  [0119] Interleaving section 25a outputs each data symbol to, for example, phase rotation section 46a that differs for each subchannel. Each phase rotation unit 46a rotates the phase of each data symbol input from the interleaving unit 25a according to the rotation amount input from the rotation amount setting unit 47a, and outputs it to the IFFT unit 26. More specifically, each phase rotation unit 46a adds the rotation amount input from the rotation amount setting unit 47a and the position of each data symbol in the data symbol sequence to each data symbol input from the interleaving unit 25a. (The value of n in Equation (7)) and a phase rotation of the rotation amount according to
[0120] 回転量設定部 47aは、遅延量決定部 45から入力された遅延量情報に応じて、デー タシンボル列を構成する各データシンボルの位相回転量を決定し、各位相回転部 4 6aに設定する。具体的な例では、回転量設定部 47aは、遅延量設定部 44と同様に 、オフセット情報を予め記憶している。このオフセット情報は保守者によって入力され るものであり、例えばアンテナが複数ある場合にはアンテナごとに異なる。また、サブ チヤネノレによって異なることとしてもよい。回転量設定部 47aは、受信した遅延量情報 と記憶しているオフセット情報とに応じて位相回転部 46aごとの回転量を決定し、決 定した回転量を各位相回転部 46aに設定する。より具体的な例では、回転量設定部 47aは、受信した遅延量情報により示される回転量をオフセット情報に応じて変更す ることにより回転量を決定し、各位相回転部 46aに設定する。  [0120] The rotation amount setting unit 47a determines the phase rotation amount of each data symbol constituting the data symbol sequence according to the delay amount information input from the delay amount determination unit 45, and sends it to each phase rotation unit 46a. Set. In a specific example, the rotation amount setting unit 47a stores offset information in advance, similarly to the delay amount setting unit 44. This offset information is input by the maintenance person. For example, when there are a plurality of antennas, the offset information is different for each antenna. It may be different depending on the sub-channel. The rotation amount setting unit 47a determines the rotation amount for each phase rotation unit 46a according to the received delay amount information and the stored offset information, and sets the determined rotation amount to each phase rotation unit 46a. In a more specific example, the rotation amount setting unit 47a determines the rotation amount by changing the rotation amount indicated by the received delay amount information according to the offset information, and sets the rotation amount in each phase rotation unit 46a.
[0121] 回転量設定部 47aにおける処理について、具体的な例を挙げて説明する。この例 では、サブチャネル間での回転量の差を 2 π /12とする。この 12はサブチャネル数 である。そして、この値に応じて、 m番目のサブチャネルのオフセット情報を(2 π /1 2) X (m— 1)とする。遅延量決定部 45により入力された遅延量情報により示される回 転量 Sが例えば 2 π /Νであったとすると、回転量設定部 47aは、 1番目のサブチヤ ネルの回転量を 2 π /Ν + 0、 2番目のサブチャネルの回転量を 2 π /Ν + 2 π /12 、というようにして、各サブチャネルの回転量 Sを決定する。こうすれば、複数のサブチ ャネルにお!/、て同一の MBMSデータを送信する場合にお!/、て、各サブチャネルに おいてそれぞれ送信される MBMSデータ間でも、適切に遅延ダイバーシチが実現 される。 [0121] The processing in the rotation amount setting unit 47a will be described with a specific example. In this example, the difference in rotation between subchannels is 2π / 12. This 12 is the number of subchannels. According to this value, the offset information of the m-th subchannel is (2π / 1 2) X (m−1). Delay amount determination unit 45 The time indicated by the delay amount information input by 45 If the amount of rotation S is 2π / Ν, for example, the rotation amount setting unit 47a sets the rotation amount of the first subchannel to 2π / Ν + 0 and the rotation amount of the second subchannel to 2π / Ν. The rotation amount S of each subchannel is determined in such a manner as + 2π / 12. In this way, when transmitting the same MBMS data to multiple subchannels! /, Delay diversity can be appropriately achieved even between MBMS data transmitted on each subchannel. Is done.
[0122] 以上説明したように、本実施形態によっても、移動局装置 30が各基地局装置 20c からそれぞれ送信されたデータを受信する場合にお!/、て、各基地局装置 20cがそれ ぞれ送信するデータ間での遅延ダイバーシチが実現される。  [0122] As described above, according to this embodiment, each mobile station device 30c receives data transmitted from each base station device 20c! Thus, delay diversity between the transmitted data is realized.
[0123] なお、本実施形態では、基地局装置 20bにおいて、循環遅延部 27に代えて、イン ターリーブ部 25aと IFFT部 26の間に所定数の位相回転部 46aを加え、さらに遅延 量設定部 44に代えて回転量設定部 47aを含めた構成について説明した力 基地局 装置 20aにおいて、循環遅延部 27に代えて、インターリーブ部 25aと IFFT部 26の 間に所定数の位相回転部 46aを加え、さらに遅延量設定部 44に代えて回転量設定 部 47aを含めることとしても、上記同様の効果が得られるのは勿論である。  In this embodiment, in base station apparatus 20b, instead of cyclic delay unit 27, a predetermined number of phase rotation units 46a are added between interleaving unit 25a and IFFT unit 26, and a delay amount setting unit In the force base station apparatus 20a described in the configuration including the rotation amount setting unit 47a instead of 44, a predetermined number of phase rotation units 46a are added between the interleave unit 25a and the IFFT unit 26 instead of the cyclic delay unit 27. Of course, the same effect as described above can be obtained by including the rotation amount setting unit 47a instead of the delay amount setting unit 44.
[0124] [第 4の実施形態]本実施形態は、伝搬路推定用符号に関する構成が第 1乃至第 3 の実施形態のものと異なっている。すなわち、第 1乃至第 3の実施形態では、 MBM Sによる送信を行うブロックには全基地局装置 20aに共通な MBMSデータ送信用の 伝搬路推定用符号を使用していたが、本実施形態では、 MBMSによる送信を行うブ ロックにも、基地局装置 20aごとに異なる UNIデータ送信用の伝搬路推定用符号を 用いる。こうすると、任意の符号を伝搬路推定用符号として使えることになる反面、移 動局装置 30が複数の基地局装置 20から受信するサブキャリアは、その内容が互い に異なるものとなってしまい、受信不能となってしまう。そこで、本実施形態では、任 意の符号を伝搬路推定用符号として使えるようにしつつ、移動局装置 30が複数の基 地局装置 20から各サブキャリアを受信可能となるようにするための構成を示す。  [Fourth Embodiment] This embodiment is different from the first to third embodiments in the configuration related to the propagation path estimation code. That is, in the first to third embodiments, the MBMS data transmission channel estimation code common to all the base station apparatuses 20a is used for the block to be transmitted by MBMS, but in this embodiment, Also, a block for performing transmission by MBMS uses a different channel estimation code for UNI data transmission for each base station apparatus 20a. In this way, an arbitrary code can be used as a propagation path estimation code, but the contents of subcarriers received by the mobile station device 30 from the plurality of base station devices 20 are different from each other. It becomes impossible to receive. Therefore, in the present embodiment, a configuration for enabling the mobile station device 30 to receive each subcarrier from the plurality of base station devices 20 while allowing an arbitrary code to be used as a channel estimation code. Indicates.
[0125] 図 12は、本実施形態に力、かる基地局装置 20dの機能ブロックを示す図である。同 図に示すように、基地局装置 20dは、基地局装置 20cにおいて、伝搬路推定用符号 選択部 22及びマッピング部 23aに代えて、伝搬路推定用符号生成部 48及びマツピ ング部 23bを含めたものとなって!/、る。 [0125] Fig. 12 is a diagram showing functional blocks of the base station device 20d, which focuses on the present embodiment. As shown in the figure, in the base station device 20d, the base station device 20c replaces the propagation channel estimation code selection unit 22 and the mapping unit 23a with a propagation channel estimation code generation unit 48 and a map pin. And include the 23b section!
[0126] 伝搬路推定用符号生成部 48は、マッピング部 23aにおいて伝搬路推定用シンポ ルが生成されるタイミングで、任意の伝搬路推定用符号を生成し、出力する。  [0126] The channel estimation code generator 48 generates and outputs an arbitrary channel estimation code at the timing when the mapping unit 23a generates a channel estimation symbol.
[0127] マッピング部 23bは、サブキャリアごとに、伝搬路推定用符号選択部 22から入力さ れた伝搬路推定用符号に基づ!/、て位相変調された伝搬路推定用シンボルと、該伝 搬路推定用シンボルの位相に応じて、データスケジューリング部 21から入力された 通信データを位相変調してなる 1又は複数のデータシンボルとを、この順で S/P変 換部 24に対して順次出力する。  [0127] Mapping section 23b, for each subcarrier, is based on the propagation path estimation code input from propagation path estimation code selection section 22! Depending on the phase of the propagation path estimation symbol, the communication data input from the data scheduling unit 21 is phase-modulated with one or more data symbols in this order to the S / P conversion unit 24. Output sequentially.
[0128] 具体的には、マッピング部 23bは、データスケジューリング部 21から入力された通 信データ及び伝搬路推定用符号選択部 22から入力された伝搬路推定用符号を入 力されたタイミングで順次変調し、データシンボルを生成する。そして、 S/P変換部 2 4に対して順次出力する。この場合において、マッピング部 23bは、 1ブロックにかか る複数のデータシンボルの生成を行っている間、各サブキャリアの先頭に含まれる、 伝搬路推定用シンボルであるデータシンボルの位相を保持する。そして、サブキヤリ ァごとに、その先頭に配置される伝搬路推定用シンボルの位相に応じて、後続の通 信データを位相変調する。  [0128] Specifically, the mapping unit 23b sequentially transmits the communication data input from the data scheduling unit 21 and the channel estimation code input from the channel estimation code selection unit 22 at the input timing. Modulate and generate data symbols. The data is sequentially output to the S / P converter 24. In this case, the mapping unit 23b holds the phase of the data symbol that is a propagation path estimation symbol included in the head of each subcarrier while generating a plurality of data symbols for one block. . Then, for each subcarrier, the subsequent communication data is phase-modulated according to the phase of the propagation path estimation symbol arranged at the head.
[0129] より具体的には、マッピング部 23bは、全基地局装置 20aに共通な基準位相を保持 し、該基準位相と、伝搬路推定用シンボルの位相と、の位相差を算出する。そして、 算出した位相差に応じて、通信データに応じて生成した後続のデータシンボルの位 相を回転させる。  More specifically, mapping section 23b holds a reference phase common to all base station apparatuses 20a, and calculates a phase difference between the reference phase and the phase of the propagation path estimation symbol. Then, the phase of the subsequent data symbol generated according to the communication data is rotated according to the calculated phase difference.
[0130] 以上説明したように、本実施形態によれば、伝搬路推定用符号が基地局装置 20間 で異なっていたとしても、ある基地局装置 20が送信するデータシンボル列に対して、 他の基地局装置が送信するデータシンボル歹 IJが、全体として一定の位相回転を受け ているにすぎない場合と同様の状態を作れるので、移動局装置 30は各基地局装置 [0130] As described above, according to the present embodiment, even if the propagation path estimation code differs between base station apparatuses 20, a data symbol sequence transmitted from a base station apparatus 20 Since the data symbol 歹 IJ transmitted by the base station device of the mobile station device 30 can be in the same state as when only a constant phase rotation is received as a whole, the mobile station device 30
20がそれぞれ送信したデータシンボル列を受信できる。すなわち、任意の符号を伝 搬路推定用符号として使えるようにしつつ、移動局装置 30が複数の基地局装置 20 力、ら各サブキャリアを受信可能となってレ、る。 20 can receive the transmitted data symbol sequence. In other words, the mobile station device 30 can receive each subcarrier from a plurality of base station devices 20 power while allowing an arbitrary code to be used as a channel estimation code.
[0131] [第 5の実施形態]上記各実施形態においては、伝搬路推定用符号は、フレームご とに各サブキャリアに含まれる。この場合、移動局装置 30は、サブキャリアごとの伝搬 路状態を推定し、推定結果を通信データの受信に用いることができる。具体的な例 では、伝搬路推定用符号に基づいて受信タイミングを取得し、該受信タイミングに応 じて通信データを受信する。 [Fifth Embodiment] In each of the above embodiments, the propagation path estimation code is set for each frame. And included in each subcarrier. In this case, the mobile station device 30 can estimate the propagation path state for each subcarrier and use the estimation result for reception of communication data. In a specific example, the reception timing is acquired based on the propagation path estimation code, and communication data is received according to the reception timing.
[0132] 一方、本実施形態では、伝搬路推定用シンボルは全サブキャリアではなぐそのう ちのいくつかのみに配置される。具体的には、サブキャリアを所定数ずつグループ化 し(以下では、このグループをサブキャリアグループということにする。)、各グループ を構成する複数のサブキャリアのうちの 1つに伝搬路推定用符号を含めることとする。 なお、このサブキャリアグループは、それぞれがサブチャネルであってもよいし、サブ チャネルとは異なる基準でグルーピングされたものであってもよ!/、。移動局装置 30は 、あるサブキャリアの伝搬路状態を推定するために、他のサブキャリアの伝搬路状態 を用いる。 On the other hand, in the present embodiment, propagation path estimation symbols are arranged only in some of the subcarriers. Specifically, a predetermined number of subcarriers are grouped (hereinafter, this group is referred to as a subcarrier group), and one of a plurality of subcarriers constituting each group is used for channel estimation. A sign shall be included. Each of the subcarrier groups may be a subchannel or may be grouped according to a different standard from the subchannel! /. The mobile station apparatus 30 uses the propagation path state of another subcarrier in order to estimate the propagation path state of a certain subcarrier.
[0133] 第 3及び第 4の実施形態では、サブキャリアごとに異なる回転量の位相回転が与え られる。すなわち、各 dにそれぞれ ej27t nS/Nの位相回転が与えられており、この回転 量は nによって異なる。回転量が異なると、あるサブキャリアの伝搬路状態に基づいて 他のサブキャリアの伝搬路状態を取得しても、適切な伝搬路状態が取得されない。そ こで、本実施形態では、サブキャリアグループ内で回転量を統一する。 [0133] In the third and fourth embodiments, a phase rotation with a different rotation amount is given to each subcarrier. That is, each d is given a phase rotation of e j27t nS / N , and the amount of rotation varies depending on n. If the amount of rotation is different, an appropriate channel state is not acquired even if the channel state of another subcarrier is acquired based on the channel state of a certain subcarrier. Therefore, in this embodiment, the rotation amount is unified within the subcarrier group.
[0134] 図 13は、本実施形態に力、かる基地局装置 20eの機能ブロックを示す図である。同 図に示すように、基地局装置 20eは、基地局装置 20cにおいて、各位相回転部 46a 及び回転量設定部 47aに代えて各位相回転部 46b及び回転量設定部 47bを含めた ものとなっている。  FIG. 13 is a diagram showing functional blocks of the base station device 20e that are effective in the present embodiment. As shown in the figure, the base station device 20e includes a phase rotation unit 46b and a rotation amount setting unit 47b in place of the phase rotation unit 46a and the rotation amount setting unit 47a in the base station device 20c. ing.
[0135] 回転量設定部 47bは、遅延量決定部 45から入力された遅延量情報に応じて、前 記サブキャリアグループごとに、位相の回転量を決定する。回転量設定部 47bは、こ うして生成したサブキャリアグループごとの回転量を、各位相回転部 46bに設定する  [0135] The rotation amount setting unit 47b determines the phase rotation amount for each subcarrier group according to the delay amount information input from the delay amount determination unit 45. The rotation amount setting unit 47b sets the rotation amount for each subcarrier group thus generated in each phase rotation unit 46b.
[0136] 各位相回転部 46bは、各位相回転部 46bにより設定された回転量の位相回転を、 各データシンボルに与える。その結果、遅延量情報により示される遅延量と、各デー タシンボルの無線送信に使用するサブキャリアの属するサブキャリアグループと、に 応じた回転量の位相回転が、該各データシンボルに与えられる。すなわち、サブキヤ リアグループ内で統一された回転量の位相回転力 S、該各データシンボルに与えられ ることになる。以下、具体的な例を挙げて説明する。 [0136] Each phase rotation unit 46b gives each data symbol a phase rotation of the rotation amount set by each phase rotation unit 46b. As a result, the delay amount indicated by the delay amount information and the subcarrier group to which the subcarrier used for radio transmission of each data symbol belongs. A corresponding amount of phase rotation is applied to each data symbol. That is, the phase rotational force S of the rotation amount unified within the subcarrier group is given to each data symbol. Hereinafter, a specific example will be described.
[0137] 図 14は、 1つのサブチャネル内に 12のサブキャリアがあるとし、さらにこれらのサブ キャリアを 4つずつグループ化した場合において、回転量設定部 47bにより設定され る回転量の例を示す模式図である。回転量設定部 47bは、各位相回転部 46bに、 3 つの回転量 W , W , W を設定する。ただし、 mはサブチャネル番号である。各 FIG. 14 shows an example of the rotation amount set by the rotation amount setting unit 47b when there are 12 subcarriers in one subchannel and when these subcarriers are grouped by four. It is a schematic diagram shown. The rotation amount setting unit 47b sets three rotation amounts W 1, W 2 and W in each phase rotation unit 46b. Where m is the subchannel number. Each
m0 ml πι2  m0 ml πι2
位相回転部 46bは、この設定を受け、第 1のサブキャリアグループに属するサブキヤリ ァについては回転量 W の位相回転、第 2のサブキャリアグループに属するサブキヤ  In response to this setting, the phase rotation unit 46b rotates the phase of the rotation amount W for the subcarriers belonging to the first subcarrier group and the subcarriers belonging to the second subcarrier group.
mO  mO
リアについては回転量 W の位相回転、第 3のサブキャリアグループに属するサブキ  For the rear, the phase rotation of the rotation amount W, the subkey belonging to the third subcarrier group
ml  ml
ャリアについては回転量 W の位相回転、というように、サブキャリアグループ内で統 一された回転量の位相回転を与える。  For the carrier, a phase rotation of the rotation amount unified within the subcarrier group is given, such as a phase rotation of the rotation amount W.
[0138] 次に、回転量設定部 47bが生成するサブキャリアグループごとの回転量の、サブキ ャリアグループ間での相互関係について説明する。  [0138] Next, the mutual relationship between the subcarrier groups in the rotation amount for each subcarrier group generated by the rotation amount setting unit 47b will be described.
[0139] 回転量設定部 47bは、回転量設定部 47aと同様に、オフセット情報を予め記憶して おり、受信した遅延量情報と記憶しているオフセット情報とに応じて位相回転部 46a ごとの回転量を決定する。ここでは、第 3の実施形態と同様に、 m番目のサブチヤネ ルのオフセット情報を(2兀/12) X (m— 1)とする。その結果、回転量設定部 47bは 、第 3の実施形態と同様の処理により、受信した遅延量情報と記憶しているオフセット 情報とに応じて、サブチャネルごとに異なる回転量を算出することになる。この回転量 を S とする。  [0139] Similar to the rotation amount setting unit 47a, the rotation amount setting unit 47b stores offset information in advance, and the rotation amount setting unit 47b for each phase rotation unit 46a according to the received delay amount information and the stored offset information. Determine the amount of rotation. Here, as in the third embodiment, the offset information of the m-th subchannel is (2 兀 / 12) X (m−1). As a result, the rotation amount setting unit 47b calculates a different rotation amount for each subchannel according to the received delay amount information and the stored offset information by the same processing as in the third embodiment. Become. Let S be the amount of rotation.
m  m
[0140] 本実施形態のオフセット情報には、サブキャリアグループ間での回転量の相違量 Δ Xが含まれる。回転量設定部 47bは、上述のようにして算出した回転量 S と Δ Χに基  [0140] The offset information of the present embodiment includes a difference ΔX in the amount of rotation between the subcarrier groups. The rotation amount setting unit 47b is based on the rotation amounts S and ΔΧ calculated as described above.
m  m
づいて、各サブキャリアグループの回転量を算出する。例えば上記例では、 w mO =s Then, the rotation amount of each subcarrier group is calculated. For example, in the above example, w mO = s
、W = S + Δ Χ、λ¥ = S + 2 Δ Χとする。なおこの場合において、相違量 Δ Χを m ml m m2 m , W = S + Δ Χ, λ ¥ = S + 2 Δ Χ. In this case, the difference Δ Χ is expressed as m ml m m2 m
サブ'チヤネノレ間で異ならせることとしてもよレ、し、統一することとしてもよレ、。  It's also good to make it different between the sub-Cyanenoles, and it's also good to unify.
[0141] また、特に相違量 Δ Χをサブチャネル間で統一する場合において、サブチャネル間 の隣接サブキャリアグループ間での回転量の差を、 Δ Χとしてもよいし、 Δ Χより大き い値としてもよい。例えば上記例では、 W と W の差(S )—(S + 2 Δ Χ) =[0141] Also, in particular, when the difference amount ΔΧ is unified between subchannels, the difference in rotation amount between adjacent subcarrier groups between subchannels may be ΔΧ, or greater than ΔΧ. It may be a large value. For example, in the above example, the difference between W and W (S) — (S + 2 Δ Χ) =
2 π /ΐ 2— 2 Δ Χ力 Δ Xとなるよう Δ Xを決定してもよ!/、し、 Δ Xより大き!/ 直となるよう Δ Xを決定してもよ!/、。前者では Δ Χ = 2 π /36となり、後者では Δ Χ< 2 π /36とな る。 Δ Χより大きい値とすれば、隣接するサブチャネル間での相互相関を少なくするこ と力 Sできる。 2 π / ΐ 2— 2 Δ You can decide Δ X so that it becomes Δ X! /, And you can decide Δ X so that it is bigger than Δ X! /. In the former case, Δ Χ = 2π / 36, and in the latter case, ΔΧ <2π / 36. If the value is larger than ΔΧ, the cross-correlation between adjacent subchannels can be reduced.
[0142] 以上説明したように、本実施形態によれば、サブキャリアグループ内で位相回転量 を統一できるので、サブキャリアグループを構成する複数のサブキャリアのうちの 1つ のみに伝搬路推定用符号を含める場合においても、移動局装置 30は、各サブキヤリ ァの伝搬路状態を適切に取得することができる。  [0142] As described above, according to the present embodiment, the amount of phase rotation can be unified within a subcarrier group, so that only one of a plurality of subcarriers constituting a subcarrier group is used for channel estimation. Even when the code is included, the mobile station device 30 can appropriately acquire the propagation path state of each subcarrier.
[0143] [第 6の実施形態]循環遅延送信を行うと、遅延量に応じた周波数幅で受信電力の 谷が生ずることが知られている。このため、あるユーザに対して複数のサブキャリアを 用いてデータシンボルを送信する場合において、この複数のサブキャリア間の周波 数幅が丁度上記周波数幅と一致してレ、ると、該ユーザに対して送信されるデータシ ンボルは、いずれもその受信電力が低下した状態で受信されることになり、望ましくな い。そこで、本実施形態では、あるユーザに対するデータシンボル送信に使用するサ ブキャリア間の周波数幅力 受信電力の谷が生ずる上記周波数幅と一致しないよう にする構成を示す。  [Sixth Embodiment] It is known that when cyclic delay transmission is performed, a valley of received power occurs in a frequency width corresponding to the delay amount. For this reason, when a data symbol is transmitted to a certain user using a plurality of subcarriers, if the frequency width between the plurality of subcarriers exactly matches the above frequency width, the user is notified. In contrast, any data symbol transmitted to the receiver will be received with its reception power lowered, which is undesirable. Therefore, in the present embodiment, a configuration is shown in which the frequency width between subcarriers used for data symbol transmission to a certain user does not coincide with the above frequency width in which a valley of received power is generated.
[0144] 図 15は、本実施形態に力、かる基地局装置 20fの機能ブロックを示す図である。同 図に示すように、基地局装置 20fは、基地局装置 20aにおいて、インターリーブ部 25 aに代えてインターリーブ部 25bを含めたものとなっている。  [0144] FIG. 15 is a diagram illustrating functional blocks of the base station device 20f, which focuses on the present embodiment. As shown in the figure, the base station device 20f includes an interleave unit 25b in place of the interleave unit 25a in the base station device 20a.
[0145] インターリーブ部 25bは、遅延量設定部 44により循環遅延部 27に設定された遅延 量を取得する。そして、 S/P変換部 24からパラレル入力される各データシンボルの 順序を、取得した遅延量に応じた入替規則に基づいて入れ替えた上で、 IFFT部 26 に対して出力する。  [0145] The interleaving unit 25b acquires the delay amount set in the cyclic delay unit 27 by the delay amount setting unit 44. Then, the order of each data symbol input in parallel from the S / P converter 24 is changed based on the replacement rule corresponding to the acquired delay amount, and then output to the IFFT unit 26.
[0146] すなわち、上記入れ替えにより、 1つのサブチャネルに含まれていたサブキャリアが 、入替規則に応じた周波数幅で分散する。そこで、インターリーブ部 25bは、この周 波数幅が、遅延量に応じた上記周波数幅と一致しないよう、使用する入替規則を決 疋 。 [0147] なお、各基地局装置 20fがそれぞれこの決定処理を行うので、セクタ間やセル間で 遅延量が異なる場合、決定される入替規則も、セクタ間やセル間で異なることになる That is, by the above replacement, the subcarriers included in one subchannel are dispersed with a frequency width according to the replacement rule. Therefore, the interleave unit 25b determines a replacement rule to be used so that the frequency width does not match the frequency width according to the delay amount. [0147] Since each base station apparatus 20f performs this determination process, if the delay amount differs between sectors or cells, the determined replacement rule also differs between sectors or cells.
[0148] また、基地局装置 20fは、移動局装置 30に対し、図示していない制御信号送信手 段を用いて、適用中の入替規則を示す制御信号を無線送信する。移動局装置 30は 、この制御信号を受信すると、該制御信号により示される入替規則に基づき、受信さ れているデータシンボル列にディンタリーブ処理を施す。 [0148] Also, the base station device 20f wirelessly transmits to the mobile station device 30 a control signal indicating an applied replacement rule, using a control signal transmission unit (not shown). When the mobile station device 30 receives this control signal, the mobile station device 30 subjects the received data symbol string to a dingering process based on the replacement rule indicated by the control signal.
[0149] 以上説明したように、本実施形態によれば、あるユーザに対するデータシンボル送 信に使用するサブキャリア間の周波数幅が、受信電力の谷が生ずる上記周波数幅と 一致しな!/、ようにすること力 Sでさる。  [0149] As described above, according to the present embodiment, the frequency width between subcarriers used for data symbol transmission to a certain user does not match the above-described frequency width in which the valley of received power occurs! /, Do it with power S.
[0150] なお、交換機 10aや、基地局装置 20a乃至 20fの機能を実現するためのプログラム をコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプロ グラムをコンピュータシステムに読み込ませ、実行することにより、上記各処理を行つ てもよい。  [0150] It should be noted that a program for realizing the functions of the exchange 10a and the base station devices 20a to 20f is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read into the computer system. The above processes may be performed by executing.
[0151] ここでいう「コンピュータシステム」とは、 OSや周辺機器等のハードウェアを含むもの であってもよい。また、この「コンピュータシステム」は、 WWWシステムを利用している 場合であれば、ホームページ提供環境(あるいは表示環境)も含むものとする。  The “computer system” here may include an OS and hardware such as peripheral devices. In addition, this “computer system” includes a homepage provision environment (or display environment) if a WWW system is used.
[0152] また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気 ディスク、 ROM,フラッシュメモリ等の書き込み可能な不揮発性メモリ、 CD-ROM 等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のこと をいう。  [0152] "Computer-readable recording medium" refers to a flexible disk, a magneto-optical disk, a writable nonvolatile memory such as a ROM and a flash memory, a portable medium such as a CD-ROM, and a built-in computer system. A storage device such as a hard disk.
[0153] さらに、「コンピュータ読み取り可能な記録媒体」には、インターネット等のネットヮー クゃ電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライ アントとなるコンピュータシステム内部の揮発性メモリ(例えば DRAM (Dynamic Rand om Access Memory) )のように、一定時間プログラムを保持しているものも含むものと する。  [0153] Further, the "computer-readable recording medium" includes a volatile property inside a computer system that becomes a server or a client when a program is transmitted via a communication line such as a network such as the Internet or a telephone line. It also includes those that hold programs for a certain period of time, such as memory (for example, DRAM (Dynamic Random Access Memory)).
[0154] また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシス テムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータ システムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インター ネット等のネットワーク(通信網)や電話回線等の通信回線 (通信線)のように情報を 伝送する機能を有する媒体のことを!/、う。 [0154] In addition, the above program may be transmitted from a computer system storing the program in a storage device or the like to another computer via a transmission medium or by transmission waves in the transmission medium. It may be transmitted to the system. Here, the “transmission medium” for transmitting the program is a medium having a function of transmitting information such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line! /, Yeah.
[0155] さらに、上記プログラムは、上述した各機能の一部を実現するためのものであっても よい。さらに、上述した各機能をコンピュータシステムにすでに記録されているプログ ラムとの組み合わせで実現できるもの、いわゆる差分ファイル (差分プログラム)であ つてもよい。 [0155] Furthermore, the program may be for realizing a part of the functions described above. Furthermore, what can implement | achieve each function mentioned above in combination with the program already recorded on the computer system, and what is called a difference file (difference program) may be used.
[0156] なお、本発明は以上説明した各実施形態に限定されるものではなぐ本発明の要 旨を逸脱しない範囲で適宜設計変更を加えたものも本発明の技術的範囲に含まれ 産業上の利用可能性  It should be noted that the present invention is not limited to the embodiments described above, and those appropriately modified in design without departing from the gist of the present invention are also included in the technical scope of the present invention. Availability of
[0157] 移動局装置が複数の基地局装置からそれぞれ送信されたデータを受信する場合 において、各基地局装置がそれぞれ送信するデータ間での遅延ダイバーシチを実 現する場合に適用することができる。  [0157] When the mobile station apparatus receives data transmitted from each of a plurality of base station apparatuses, the present invention can be applied to the case where delay diversity is achieved between data transmitted by each base station apparatus.

Claims

請求の範囲 The scope of the claims
[1] それぞれ通信データを移動局装置へ無線送信する無線送信手段を含む複数の基 地局装置を含む移動体通信システムであって、  [1] A mobile communication system including a plurality of base station devices each including wireless transmission means for wirelessly transmitting communication data to a mobile station device,
前記複数の基地局装置のそれぞれから、所定のタイミングで、前記通信データを無 線送信させる送信制御手段と、  Transmission control means for wirelessly transmitting the communication data from each of the plurality of base station devices at a predetermined timing;
前記基地局装置ごとに異なるよう、前記基地局装置ごとの遅延量を決定する遅延 量決定手段と、  A delay amount determining means for determining a delay amount for each base station device so as to be different for each base station device;
を含み、  Including
前記各基地局装置は、前記送信制御手段の制御に応じて前記無線送信手段によ り前記通信データを無線送信する際、前記遅延量決定手段により決定された遅延量 に応じて、該通信データの無線送信を前記所定のタイミングより遅延させる、 ことを特徴とする移動体通信システム。  Each base station apparatus wirelessly transmits the communication data by the wireless transmission unit according to the control of the transmission control unit, and the communication data according to the delay amount determined by the delay amount determination unit. The mobile communication system is characterized in that the wireless transmission is delayed from the predetermined timing.
[2] 請求項 1に記載の移動体通信システムにお!/ヽて、  [2] In the mobile communication system according to claim 1,
前記無線送信手段は、  The wireless transmission means includes
それぞれ前記通信データを変調してなる複数のデータシンボル力 構成されるデ ータシンボル列に逆離散フーリエ変換処理を施す逆離散フーリエ変換部と、 前記逆離散フーリエ変換処理の結果得られるサンプル列を無線送信する無線送信 部と、  An inverse discrete Fourier transform unit for performing an inverse discrete Fourier transform process on a data symbol sequence composed of a plurality of data symbol forces each modulated by the communication data, and a sample sequence obtained as a result of the inverse discrete Fourier transform process by radio transmission A wireless transmitter
を含み、  Including
前記各基地局装置は、前記送信制御手段の制御に応じて前記無線送信手段によ り前記通信データを無線送信する際、前記遅延量決定手段により決定された遅延量 に応じて前記逆離散フーリエ変換処理の結果得られるサンプル列を循環遅延させる ことにより、該通信データの無線送信を前記所定のタイミングより遅延させる、 ことを特徴とする移動体通信システム。  Each base station apparatus wirelessly transmits the communication data by the wireless transmission means according to the control of the transmission control means, and the inverse discrete Fourier according to the delay amount determined by the delay amount determination means. A mobile communication system characterized by delaying wireless transmission of the communication data from the predetermined timing by cyclically delaying a sample sequence obtained as a result of the conversion process.
[3] 請求項 1に記載の移動体通信システムにお!/ヽて、 [3] In the mobile communication system according to claim 1,!
前記無線送信手段は、  The wireless transmission means includes
それぞれ前記通信データを変調してなる複数のデータシンボル力 構成されるデ ータシンボル列に逆離散フーリエ変換処理を施す逆離散フーリエ変換部と、 前記逆離散フーリエ変換処理の結果得られるサンプル列を無線送信する無線送信 部と、 An inverse discrete Fourier transform unit that performs an inverse discrete Fourier transform process on a data symbol sequence composed of a plurality of data symbol forces each of which modulates the communication data; A wireless transmission unit that wirelessly transmits a sample sequence obtained as a result of the inverse discrete Fourier transform process;
を含み、  Including
前記各基地局装置は、前記送信制御手段の制御に応じて前記無線送信手段によ り前記通信データを無線送信する際、前記遅延量決定手段により決定された遅延量 に応じて前記データシンボル列を構成する複数のデータシンボルそれぞれの位相を 回転させることにより、該通信データの無線送信を前記所定のタイミングより遅延させ る、  Each of the base station devices, when wirelessly transmitting the communication data by the wireless transmission means according to the control of the transmission control means, the data symbol sequence according to the delay amount determined by the delay amount determination means By rotating the phase of each of the plurality of data symbols that constitutes, the wireless transmission of the communication data is delayed from the predetermined timing.
ことを特徴とする移動体通信システム。  A mobile communication system.
[4] 請求項 1に記載の移動体通信システムにお!/、て、 [4] In the mobile communication system according to claim 1,! /
前記無線送信手段は、  The wireless transmission means includes
それぞれ前記通信データを変調してなる複数のデータシンボル力 構成されるデ ータシンボル列に逆離散フーリエ変換処理を施す逆離散フーリエ変換部と、 前記逆離散フーリエ変換処理の結果得られるサンプル列を無線送信する無線送信 部と、  An inverse discrete Fourier transform unit for performing an inverse discrete Fourier transform process on a data symbol sequence composed of a plurality of data symbol forces each modulated by the communication data, and a sample sequence obtained as a result of the inverse discrete Fourier transform process by radio transmission A wireless transmitter
を含み、  Including
前記各基地局装置は、前記送信制御手段の制御に応じて前記無線送信手段によ り前記通信データを無線送信する際、前記遅延量決定手段により決定された遅延量 に応じてグループ化された、前記データシンボル列を構成する複数のデータシンポ ルを、グループ毎にそれぞれの位相を回転させることにより、該通信データの無線送 信を前記所定のタイミングより遅延させる、  Each of the base station devices is grouped according to the delay amount determined by the delay amount determination unit when the communication data is wirelessly transmitted by the wireless transmission unit according to the control of the transmission control unit. The wireless transmission of the communication data is delayed from the predetermined timing by rotating the phase of each of the plurality of data symbols constituting the data symbol sequence for each group.
ことを特徴とする移動体通信システム。  A mobile communication system.
[5] 請求項 3又は 4に記載の移動体通信システムにおいて、 [5] The mobile communication system according to claim 3 or 4,
前記各基地局装置は、前記遅延量決定手段により決定された遅延量と、前記デー タシンボル列内における各データシンボルの位置と、に応じた回転量の位相回転を 、該各データシンボルに与える、  Each of the base station devices gives each data symbol a phase rotation of a rotation amount according to the delay amount determined by the delay amount determining means and the position of each data symbol in the data symbol sequence.
ことを特徴とする移動体通信システム。  A mobile communication system.
[6] 請求項 2から 5までのいずれかに記載の移動体通信システムにおいて、 前記無線送信手段は、 [6] In the mobile communication system according to any one of claims 2 to 5, The wireless transmission means includes
前記データシンボル列内における各データシンボルの位置を、前記遅延量決定手 段により決定された遅延量に応じた入替規則により入れ替え、前記逆離散フーリエ 変換部に入力するインターリーブ部、  An interleaving unit that replaces the position of each data symbol in the data symbol sequence with a replacement rule according to a delay amount determined by the delay amount determining unit, and inputs the inverted symbol to the inverse discrete Fourier transform unit;
を含む、  including,
ことを特徴とする移動体通信システム。  A mobile communication system.
[7] 請求項 1から 6までのいずれかに記載の移動体通信システムにおいて、 [7] In the mobile communication system according to any one of claims 1 to 6,
当該移動体通信システムは、  The mobile communication system is
前記各基地局装置を制御するための制御装置、  A control device for controlling each of the base station devices;
を含み、  Including
前記遅延量決定手段は、前記制御装置に備えられ、  The delay amount determining means is provided in the control device,
前記制御装置は、  The controller is
前記遅延量決定手段により決定された遅延量を示す遅延量情報を、前記各基地 局装置に対して送信する送信手段、  Transmitting means for transmitting delay amount information indicating the delay amount determined by the delay amount determining means to each of the base station devices;
を含み、  Including
前記各基地局装置は、前記送信制御手段の制御に応じて前記無線送信手段によ り前記通信データを無線送信する際、前記制御装置から受信される前記遅延量情 報に応じて、該通信データの無線送信を前記所定のタイミングより遅延させる、 ことを特徴とする移動体通信システム。  Each of the base station devices, when wirelessly transmitting the communication data by the wireless transmission unit according to the control of the transmission control unit, according to the delay amount information received from the control device, A mobile communication system characterized by delaying wireless transmission of data from the predetermined timing.
[8] 請求項 7に記載の移動体通信システムにおいて、 [8] In the mobile communication system according to claim 7,
前記遅延量決定手段は、ランダム値に基づいて遅延量を決定する、  The delay amount determining means determines a delay amount based on a random value.
ことを特徴とする移動体通信システム。  A mobile communication system.
[9] 請求項 1から 6までのいずれかに記載の移動体通信システムにおいて、 [9] In the mobile communication system according to any one of claims 1 to 6,
前記遅延量決定手段は、前記複数の基地局装置のそれぞれに備えられ、それぞ れランダム値に基づ!/、て遅延量を決定する、  The delay amount determining means is provided in each of the plurality of base station apparatuses, and determines the delay amount based on random values.
ことを特徴とする移動体通信システム。  A mobile communication system.
[10] 請求項 8又は 9に記載の移動体通信システムにおいて、 [10] The mobile communication system according to claim 8 or 9,
前記遅延量決定手段は、セルごとに決定されるランダム値と、セクタごとに予め設定 されるィ直と、に基づいて遅延量を決定する、 The delay amount determining means is set in advance for each sector and a random value determined for each cell. The amount of delay is determined based on
ことを特徴とする移動体通信システム。  A mobile communication system.
[11] 請求項 1に記載の移動体通信システムにお!/ヽて、 [11] In the mobile communication system according to claim 1,!
前記無線送信手段は、既知データを変調してなる 1つの既知データシンボルと、該 既知データシンボルの位相に応じて前記通信データを変調してなる 1又は複数のデ ータシンボルとを無線送信する、  The wireless transmission means wirelessly transmits one known data symbol obtained by modulating known data and one or a plurality of data symbols obtained by modulating the communication data according to the phase of the known data symbol.
ことを特徴とする移動体通信システム。  A mobile communication system.
[12] 請求項 1に記載の移動体通信システムにお!/、て、 [12] In the mobile communication system according to claim 1,! /
前記無線送信手段は、前記各基地局装置間で統一された既知データを変調して なる 1つの既知データシンボルと、前記通信データを変調してなる 1又は複数のデー タシンボルとを無線送信する、  The wireless transmission means wirelessly transmits one known data symbol obtained by modulating known data unified between the base station devices and one or more data symbols obtained by modulating the communication data.
ことを特徴とする移動体通信システム。  A mobile communication system.
[13] それぞれ通信データを無線送信する無線送信手段を含む複数の基地局装置を制 御するための制御装置であって、 [13] A control device for controlling a plurality of base station devices each including wireless transmission means for wirelessly transmitting communication data,
前記複数の基地局装置のそれぞれから、所定のタイミングで、前記通信データを無 線送信させる送信制御手段と、  Transmission control means for wirelessly transmitting the communication data from each of the plurality of base station devices at a predetermined timing;
前記基地局装置ごとに異なるよう、前記基地局装置ごとの遅延量を決定する遅延 量決定手段と、  A delay amount determining means for determining a delay amount for each base station device so as to be different for each base station device;
前記遅延量決定手段により決定された遅延量を示す遅延量情報を、前記各基地 局装置に対して送信する送信手段と、  Transmission means for transmitting delay amount information indicating the delay amount determined by the delay amount determination means to each of the base station devices;
を含むことを特徴とする制御装置。  The control apparatus characterized by including.
[14] それぞれ通信データを無線送信する無線送信手段を含む複数の基地局装置を制 御するための基地局装置制御方法であって、 [14] A base station apparatus control method for controlling a plurality of base station apparatuses each including wireless transmission means for wirelessly transmitting communication data,
前記複数の基地局装置のそれぞれから、所定のタイミングで、前記通信データを無 線送信させる送信制御ステップと、  A transmission control step of wirelessly transmitting the communication data at a predetermined timing from each of the plurality of base station devices;
前記基地局装置ごとに異なるよう、前記基地局装置ごとの遅延量を決定する遅延 前記各基地局装置が、前記送信制御ステップでの制御に応じて前記通信データを 無線送信する際、前記遅延量決定ステップにおいて決定された遅延量に応じて、該 通信データの無線送信を前記所定のタイミングより遅延させるステップと、 A delay for determining a delay amount for each base station apparatus so that the base station apparatuses differ from one base station apparatus to another. Each base station apparatus transmits the communication data according to control in the transmission control step. When wirelessly transmitting, delaying wireless transmission of the communication data from the predetermined timing in accordance with the delay amount determined in the delay amount determining step;
を含むことを特徴とする基地局装置制御方法。  A base station apparatus control method comprising:
[15] コンピュータを、それぞれ通信データを無線送信する無線送信手段を含む複数の 基地局装置を制御するための制御装置として機能させるためのプログラムであって、 前記複数の基地局装置のそれぞれから、所定のタイミングで、前記通信データを無 線送信させる送信制御手段、 [15] A program for causing a computer to function as a control device for controlling a plurality of base station devices each including wireless transmission means for wirelessly transmitting communication data, each from the plurality of base station devices, Transmission control means for wirelessly transmitting the communication data at a predetermined timing;
前記基地局装置ごとに異なるよう、前記基地局装置ごとの遅延量を決定する遅延 量決定手段、及び  A delay amount determining means for determining a delay amount for each base station device, so as to be different for each base station device; and
前記遅延量決定手段により決定された遅延量を示す遅延量情報を、前記各基地 局装置に対して送信する送信手段、  Transmitting means for transmitting delay amount information indicating the delay amount determined by the delay amount determining means to each of the base station devices;
として前記コンピュータを機能させるためのプログラム。  A program for causing the computer to function as
PCT/JP2007/069986 2006-10-13 2007-10-12 Mobile communication system, control device, base station device control method, and program WO2008047722A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006280128 2006-10-13
JP2006-280128 2006-10-13

Publications (1)

Publication Number Publication Date
WO2008047722A1 true WO2008047722A1 (en) 2008-04-24

Family

ID=39313953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069986 WO2008047722A1 (en) 2006-10-13 2007-10-12 Mobile communication system, control device, base station device control method, and program

Country Status (1)

Country Link
WO (1) WO2008047722A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010521900A (en) * 2007-03-20 2010-06-24 大唐移▲動▼通信▲設▼▲備▼有限公司 Broadcast / multicast service transmission method, system and base station in single frequency network
WO2010143720A1 (en) * 2009-06-12 2010-12-16 三菱電機株式会社 Communication apparatus
KR20110110767A (en) * 2009-01-29 2011-10-07 노오텔 네트웍스 리미티드 Scheduling transmission of data at a base station based on an interference indicator message from another base station
JP2013198052A (en) * 2012-03-22 2013-09-30 Toshiba Corp Transmission system, decoding device, memory controller and memory system
WO2016111155A1 (en) * 2015-01-07 2016-07-14 三菱電機株式会社 Wireless communication device, wireless communication system, and wireless communication method
WO2019107316A1 (en) * 2017-12-01 2019-06-06 ソフトバンク株式会社 Transmission delay control in three-dimensional cell of multiple sector cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003348643A (en) * 2002-04-27 2003-12-05 Samsung Electronics Co Ltd Soft handover method for multimedia broadcast/ multicast service in code division multiple access mobile communication system
JP2005333475A (en) * 2004-05-20 2005-12-02 Ntt Docomo Inc Mobile communication system and radio controller
JP2006129475A (en) * 2004-10-13 2006-05-18 Samsung Electronics Co Ltd Transmitting apparatus and method of base station which uses block coding and cyclic delay diversity system in orthogonal frequency division multiplexing mobile communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003348643A (en) * 2002-04-27 2003-12-05 Samsung Electronics Co Ltd Soft handover method for multimedia broadcast/ multicast service in code division multiple access mobile communication system
JP2005333475A (en) * 2004-05-20 2005-12-02 Ntt Docomo Inc Mobile communication system and radio controller
JP2006129475A (en) * 2004-10-13 2006-05-18 Samsung Electronics Co Ltd Transmitting apparatus and method of base station which uses block coding and cyclic delay diversity system in orthogonal frequency division multiplexing mobile communication system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010521900A (en) * 2007-03-20 2010-06-24 大唐移▲動▼通信▲設▼▲備▼有限公司 Broadcast / multicast service transmission method, system and base station in single frequency network
KR20110110767A (en) * 2009-01-29 2011-10-07 노오텔 네트웍스 리미티드 Scheduling transmission of data at a base station based on an interference indicator message from another base station
JP2012516601A (en) * 2009-01-29 2012-07-19 ノーテル・ネットワークス・リミテッド Scheduling method, system, and base station
US8897797B2 (en) 2009-01-29 2014-11-25 Apple Inc. Scheduling transmission of data at a base station based on an interference indicator message from another base station
KR101578257B1 (en) * 2009-01-29 2015-12-16 애플 인크. Scheduling transmission of data at a base station based on an interference indicator message from another base station
WO2010143720A1 (en) * 2009-06-12 2010-12-16 三菱電機株式会社 Communication apparatus
JP5236807B2 (en) * 2009-06-12 2013-07-17 三菱電機株式会社 Communication device
JP2013198052A (en) * 2012-03-22 2013-09-30 Toshiba Corp Transmission system, decoding device, memory controller and memory system
WO2016111155A1 (en) * 2015-01-07 2016-07-14 三菱電機株式会社 Wireless communication device, wireless communication system, and wireless communication method
KR101833694B1 (en) 2015-01-07 2018-02-28 미쓰비시덴키 가부시키가이샤 Wireless communication device, wireless communication system, and wireless communication method
WO2019107316A1 (en) * 2017-12-01 2019-06-06 ソフトバンク株式会社 Transmission delay control in three-dimensional cell of multiple sector cell
JP2019102978A (en) * 2017-12-01 2019-06-24 ソフトバンク株式会社 Transmission delay control of multi-sector cell in three-dimensional cell

Similar Documents

Publication Publication Date Title
US6694147B1 (en) Methods and apparatus for transmitting information between a basestation and multiple mobile stations
US8743815B2 (en) Method and base station for transmitting SA-preamble and method and user equipment for receiving SA-preamble
US7944877B2 (en) Apparatus and method for allocating resources in an orthogonal frequency division multiple access mobile communication system
RU2406230C2 (en) Frequency hopping in sc-fdma environment
CN102067656B (en) Method and apparatus for a performance test in an OFDMA system
JP4878626B2 (en) Transmission method, transmission system, and receiver
RU2419994C2 (en) Method and device in hybrid structure fdm-cdm for control channels with one carrier
JP5088506B2 (en) Physical resource management method and physical resource management apparatus in broadband communication system
KR101288369B1 (en) Transmitting device and communication method
US8265647B2 (en) Communication terminal and device
EP2247138B1 (en) Coordination method, apparatus and user equipment
TW200818944A (en) Transmitting apparatus and radio resource assigning method
WO2008047722A1 (en) Mobile communication system, control device, base station device control method, and program
WO2007049768A1 (en) Transmitter, communication system and transmission method
JPH1127231A (en) Radio communication system
JPWO2009139383A1 (en) Base station, user equipment and method
JP2009543380A (en) Broadcast channel transmission method and apparatus
BRPI0706606B1 (en) method and device for wireless communication, computer readable memory and processor
US8130717B2 (en) Random access method using different frequency hopping patterns between neighboring cells and mobile communication device
JP2004328255A (en) Multi-carrier communication device
US8243637B2 (en) Method and apparatus for mobile broadcast and multicast using randomized transmit signal phases in a single frequency network
CN101325432B (en) Method for transmitting frequency-hopping signaling, frequency-hopping mode and method for collocating scheduling signaling
JP2008160720A (en) Radio base station equipped with transmitting section compatible with several sectors and transmission method of signal for several sectors
WO2009085770A1 (en) Wireless system with reduced effect of iq imbalance
KR100784323B1 (en) Apparatus and method for allocating resource in mobile communication base station system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07829722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07829722

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP