WO2008047549A1 - Transparent conductive film substrate and method of forming titanium oxide based transparent conductive film for use therein - Google Patents

Transparent conductive film substrate and method of forming titanium oxide based transparent conductive film for use therein Download PDF

Info

Publication number
WO2008047549A1
WO2008047549A1 PCT/JP2007/068790 JP2007068790W WO2008047549A1 WO 2008047549 A1 WO2008047549 A1 WO 2008047549A1 JP 2007068790 W JP2007068790 W JP 2007068790W WO 2008047549 A1 WO2008047549 A1 WO 2008047549A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive film
gas
titanium oxide
electrode
Prior art date
Application number
PCT/JP2007/068790
Other languages
French (fr)
Japanese (ja)
Inventor
Yoshikazu Kondo
Original Assignee
Konica Minolta Holdings, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Holdings, Inc. filed Critical Konica Minolta Holdings, Inc.
Priority to JP2008539713A priority Critical patent/JPWO2008047549A1/en
Publication of WO2008047549A1 publication Critical patent/WO2008047549A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides

Definitions

  • the present invention relates to a transparent conductive film substrate having a titanium oxide-based transparent conductive film and a method for forming the transparent conductive film.
  • ITO indium tin oxide
  • S ITO demands a new transparent conductive film material that can be converted to indium, which has a high risk of resource depletion. It has been.
  • the TiO transparent conductive film according to the current method requires a treatment at a high temperature (300 ° C or 400 ° C or higher) in order to improve conductivity when the conductive film is formed.
  • a high temperature 300 ° C or 400 ° C or higher
  • heat resistance is insufficient, and the conditions are limited. Therefore, it is difficult to obtain a conductive thin film having sufficient performance on a resin substrate.
  • the present invention seeks to obtain a transparent conductive film substrate having a good transparent conductive film on a resin base material using a material with a low risk of withering.
  • Non-Patent Document 1 67th JSAP Scientific Lecture, Proceedings (Autumn 2006) 566-567, 30p-RA-12-12
  • the present invention provides a transparent conductive film substrate having a good transparent conductive film on a resin base material using a low risk material without using a material with a risk of withering such as indium. It is something to try.
  • the transparent resin substrate is made of polyethylene terephthalate (PET), triacetyl cellulose (TAC), polyethylene naphthalate (PEN), polyethersulfone (PES), polycarbonate 3.
  • PET polyethylene terephthalate
  • TAC triacetyl cellulose
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • Niobium is contained in the titanium oxide layer-based transparent conductive film
  • the transparent conductive film substrate according to any one of 1 to 5.
  • a method for forming a transparent conductive film comprising forming a layer mainly composed of doped titanium oxide on a resin substrate.
  • a doped titanium oxide (mainly composed of) layer formed in advance on a transparent resin substrate is brought into a plasma state by introducing a reactive gas into the discharge space at or near atmospheric pressure.
  • a transparent conductive film substrate having a titanium oxide-based transparent conductive film excellent in storage performance, environmental resistance, and adhesion performance of conductive performance can be obtained.
  • FIG. 1 is a cross-sectional view showing a configuration of a transparent resin substrate having a titanium oxide-based transparent conductive film of the present invention.
  • FIG. 2 is a schematic view showing an example of a plasma jet type atmospheric pressure plasma discharge treatment apparatus according to the present invention.
  • FIG. 3 is a schematic diagram showing an example of a direct atmospheric pressure plasma discharge treatment apparatus used in the present invention.
  • FIG. 4 is a schematic view showing an example of a two-frequency atmospheric pressure plasma discharge device.
  • FIG. 5 is a schematic view showing an example of a direct atmospheric pressure plasma discharge treatment apparatus implemented by a two-frequency method.
  • FIG. 6 is a schematic view showing an example of a jet-type apparatus implemented in a two-frequency system.
  • the present invention mainly comprises a silicon oxide layer and a doped titanium oxide on a transparent resin substrate.
  • the transparent conductive film substrate has a structure in which the layers are sequentially stacked.
  • titanium oxide TiO layer (thin film) is in contact with organic polymer molecules of the resin base material compared to other materials such as ITO, SnO, and ZnO used as transparent conductive film materials. Therefore, it can be assumed that the degree of diffusion of the components at the interface is more remarkable than other materials (ITO, SnO, ZnO, etc.), that is, oligomers and groups in the resin base material. Low molecular components such as plastic materials required for forming the material are knocked out by plasma energy and molecular collision during film formation, and enter the interface with TiO and the film of TiO to deteriorate the conductivity and adhesion performance. ! /, Presumed to be something.
  • the present inventor has the idea that a silicon oxide film having a Si element smaller than the titanium element can be improved by coating between the resin base material and the titanium oxide layer. Under the circumstances, the present inventors have found the structure of the present invention, and found that the performance of the TiO-based transparent conductive film is dramatically improved.
  • a silicon oxide layer and a layer mainly composed of doped titanium oxide are sequentially laminated on the transparent resin substrate, so that a low resistance value can be maintained and the conductive performance can be maintained.
  • a transparent conductive film substrate made of a transparent resin substrate having a titanium oxide-based transparent conductive film having good properties, environmental resistance performance, adhesion performance, and the like can be produced.
  • FIG. 1 is a cross-sectional view showing the configuration of a transparent resin substrate having a titanium oxide-based transparent conductive film of the present invention.
  • a hard coat layer (CHC) 2 is provided on a transparent resin substrate 1, and this is used as a base material. Further, a silicon oxide layer 3 and a titanium oxide-based transparent conductive film 4 are formed.
  • the resin substrate used in the present invention is a transparent resin substrate, which is a transparent resin film.
  • Preferred transparent resin films include acrylic resin (PMMA), acrylonitrile butadiene styrene resin (ABS), ethylene acetate butyl resin (EVAC), ethylene butyl alcohol resin (EVOH), polyamide (PA), polycarbonate (PC), and polybutylene.
  • PBT Terephthalate
  • PE polyethylene
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • PMP polyethylene
  • PP polypropylene
  • PS polystyrene
  • PVC poly (vinyl chloride)
  • PVDC poly (vinylidene chloride)
  • SAN triacetyl cell port
  • TAC triacetyl cell port
  • the transparent resin substrate is polyethylene terephthalate (PET), triacetyl cellulose (TAC), polyethylene naphthalate (PEN), polyethersulfone (PES),
  • PET polyethylene terephthalate
  • TAC triacetyl cellulose
  • PEN polyethylene naphthalate
  • PS polyethersulfone
  • PC polycarbonate
  • PMM A acrylic resin
  • CHC hard coat layer
  • the transparent resin substrate has a hard coat layer
  • the surface becomes harder, scratch resistance and impact resistance can be improved, and adhesion can be further improved.
  • an actinic radiation curable resin layer is preferably used.
  • the actinic radiation curable resin layer is a layer mainly composed of a resin that is cured through a crosslinking reaction or the like by irradiation with actinic rays such as ultraviolet rays or electron beams.
  • actinic radiation curable resin a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and a hard coat layer is formed by curing by irradiation with actinic radiation such as ultraviolet rays or electron beams.
  • Typical examples of the actinic radiation curable resin include an ultraviolet curable resin and an electron beam curable resin, and a resin curable by ultraviolet irradiation is preferable.
  • Examples of the ultraviolet curable resin include an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, Alternatively, an ultraviolet curable epoxy resin or the like is preferably used.
  • the ultraviolet curable acrylic urethane resin is generally obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer, and further adding 2-hydroxyethyl acrylate or 2-hydroxyethyl methacrylate.
  • acrylate includes only acrylate as including methacrylate), and can be easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate.
  • Force S is possible.
  • those described in JP-A-59-151110 can be used.
  • a mixture of 100 parts of Unidic 17-806 (Dainippon Ink Co., Ltd.) and part of Coronate L (Nihon Polyurethane Co., Ltd.) is preferably used.
  • Examples of the UV curable polyester acrylate resin generally include those which are easily formed when 2-hydroxyethyl acrylate or 2-hydroxy acrylate monomer is reacted with polyester polyol. Those described in JP-A-59-151112 can be used.
  • an epoxy acrylate is an oligomer, and a reactive diluent and a photoinitiator are added to this to react with it.
  • S can be used, and those described in JP-A-1-105738 can be used.
  • ultraviolet curable polyol atallylate resin examples include trimethylolprononetriatalylate, ditrimethylolpropanetetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexatalylate, Examples include alkyl-modified dipentaerythritol pentaatarylate.
  • photoinitiators of these ultraviolet curable resins include benzoin and its derivatives, acetophenone, benzophenone, hydroxybenzophenone, Michler's keton, ⁇ -amiguchi oxime ester, thixanthone, and the like. Derivatives can be mentioned. You may use with a photosensitizer. The above photoinitiator can also be used as a photosensitizer. Moreover, when using an epoxy acrylate-based photoreaction initiator, a sensitizer such as ⁇ -butylamine, triethylamine, or tri- ⁇ -butylphosphine can be used.
  • the photoreaction initiator or photosensitizer used in the ultraviolet ray curable resin composition is 0.;! To 15 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the composition. is there.
  • Examples of the resin monomer include monomers having one unsaturated double bond such as methyl acrylate, ethyl acrylate, butyl acrylate, benzyl acrylate, cyclohexyl acrylate, butyl acetate, and styrene. Common monomers can be mentioned.
  • monomers having two or more unsaturated double bonds include ethylene glycol diacrylate, propylene glycolo-resin tallylate, divinino benzene, 1,4-cyclohexane di
  • examples include talirate, 1,4-cyclohexinoresimethinole asiatalylate, the above-mentioned trimethylonorepro pantoriatalylate, and pentaerythritol tetraacrylic ester.
  • UV curable resins examples include: Adeka Obtomer KR.BY series: KR-400, KR-410, KR-550, KR-566, KR-567, BY — 320B (manufactured by Asahi Denka Co., Ltd.); Koei Hard A—101—KK, A—101—WS, C—302, C—401—N, C—501, M—dish, M—102, T—102 , D—102, NS—Dish, FT—102Q8, MAG—1—P20, AG—106, M—Dish—C (manufactured by Guangei Chemical Co., Ltd.); Se force beam PHC2210 (S), PHC X—9 ( K—3), PHC2213, DP—10, DP—20, DP—30, P1000, P1100, P1200, P1300, P1400, P1500, P1600, SCR90
  • the compound include trimethylolpropane tritalylate, ditrimethylol nonrepropane tetratalate, pentaerythritol retriate, pentaerythritol tetratalate, dipentaerythritol hexaatalylate, Examples thereof include alkyl-modified dipentaerythritol pentaacrylate.
  • actinic ray curable resin layers can be coated on the transparent substrate by a known method such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, and an ink jet method.
  • any light source that generates ultraviolet light can be used without any limitation.
  • a low-pressure mercury lamp, medium-pressure mercury lamp, high-pressure mercury lamp, ultrahigh-pressure mercury lamp, carbon arc lamp, metal halide lamp, xenon lamp, or the like can be used.
  • Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is preferably 5 to 150 mj / cm 2 , particularly preferably 20 to 100 mj / cm 2 .
  • tension in the film transport direction it is preferable to apply tension in the film transport direction, and more preferably to apply tension in the width direction.
  • the tension to be applied is preferably 30 to 300 N / m.
  • Examples of the organic solvent for the UV curable resin layer composition coating solution include hydrocarbons (toluene). , Xylene,), alcohols (methanol, ethanol, isopropanol, butanol, cyclohexanol), ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone), esters (methyl acetate, ethyl acetate, lactic acid) Methyl), glycol ethers, and other organic solvents, or a mixture thereof can be used.
  • hydrocarbons toluene
  • Xylene examples include hydrocarbons (toluene). , Xylene,), alcohols (methanol, ethanol, isopropanol, butanol, cyclohexanol), ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone), esters (methyl acetate, ethyl acetate, lactic acid)
  • the coating amount is suitably 0.5;! To 30 m as a wet film thickness, and preferably 0.5 to 15 ⁇ m.
  • the dry film thickness is 0.1-20 ⁇ 111, preferably; Particularly preferably, it is 8 to 20 ⁇ m.
  • the pencil hardness is preferably a hard coat layer of 2H to 8H. Particularly preferred is 3 H to 6H.
  • Pencil hardness is JIS-K using the test pencil specified in JIS-S-6006 after conditioning the prepared hard coat film sample for 2 hours at 25 ° C and 60% relative humidity. According to the pencil hardness evaluation method stipulated by 5400, this is a representation of the hardness of a pencil that has been scratched 10 times with a pencil of each hardness at a weight of 1 kg and no scratches are observed.
  • the silicon oxide layer formed on the transparent resin substrate and the hard coat layer in the present invention is a titanium oxide TiO layer (thin film), which is a transparent conductive film material, and a resin substrate directly. It is a layer that avoids contact and prevents components from diffusing each other at the interface, and has a role of suppressing permeation of organic polymers, oligomers, low molecular components and the like in the resin substrate.
  • the silicon oxide layer according to the present invention can maintain its transparency by being 50 nm or less.
  • the silicon oxide layer according to the present invention can be formed by an atmospheric pressure plasma CVD method.
  • atmospheric pressure plasma CVD method (hereinafter also referred to as “atmospheric pressure plasma method”) applied to the formation of the silicon oxide layer according to the present invention will be described.
  • the atmospheric pressure plasma method for performing plasma CVD processing near atmospheric pressure does not need to be reduced in pressure compared to the plasma CVD method under vacuum, and therefore has a high plasma density as well as high productivity.
  • the film formation speed is high, and even under high pressure conditions under atmospheric pressure, the mean free path of the gas is very short compared to the conditions of normal CVD, so an extremely flat film can be obtained. Such a flat film has good optical properties.
  • the silicon oxide layer according to the present invention is excited by supplying a gas containing a silicon oxide film-forming gas to a discharge space where a high-frequency electric field is generated under atmospheric pressure or a pressure near the atmospheric pressure. Is exposed to the excited gas to form a silicon oxide layer on the transparent resin substrate.
  • the atmospheric pressure or the pressure in the vicinity thereof in the present invention is about 20 kPa to UOkPa, and 93 kPa to 104 kPa is preferable in order to obtain the good effects described in the present invention.
  • the excited gas as used in the present invention means that at least a part of the molecules in the gas move from the existing state to a higher state by obtaining energy.
  • the pressure between the opposing electrodes is set to atmospheric pressure or a pressure in the vicinity thereof, and a rare gas such as helium, argon, or an inert gas such as nitrogen is used as a discharge gas, and oxidation of tetraethoxysilane or the like is performed.
  • the substrate is exposed to the forming gas to form a silicon oxide layer on the transparent substrate.
  • Examples of the organic silicon compound used as the raw material gas for forming the silicon oxide thin film (layer) include tetraethylsilane, tetramethylsilane, tetraisopropyl silane, tetrabutylensilane, tetraethoxysilane, tetraisopropoxysilane, tetra Butoxysilane, Dimethylenoresimethoxysilane, Jetinoregetoxysilane, Jetinoresilanedi (2,4-pentane dinate), Methylenotrimethoxysilane, Methylenotriethoxysilane, Ethinotritriethoxysilane Lan, 2- (3,4-epoxycyclohexenole) ethinoretrimethoxysilane, 3-glycidoxy-sidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxy
  • Propylamine, N-phenyl-1-3-aminopropyltrimethoxysilane and the like can be mentioned, and any of them can be preferably used in the present invention. Two or more of these can be mixed and used at the same time.
  • the reaction promoting gas is introduced to control the reaction and film quality.
  • the reaction promoting gas include hydrogen, oxygen, nitrogen oxides, ammonia, hydrocarbons, alcohols, organic acids or moisture, and these are mixed in an amount of 0.001% to 30% by volume with respect to the gas. May be used. Of these, oxygen, hydrogen, water, carbon dioxide and the like are preferably used.
  • the conductive titanium oxide thin film provided on the silicon oxide layer is a layer mainly composed of doped titanium oxide, and is any one of a sputtering method, a vapor deposition method, and a CVD method. It is preferable that the titanium oxide thin film be formed at a low temperature.
  • the sputtering method can form a film relatively easily even with a high melting point material or compound, and it is not necessary to dissolve the material that is formed in a thin film that is not necessary in the thermal process unlike the vapor deposition method. It is possible to form a film easily even with a high melting point material such as titanium oxide and the like.
  • a reactive gas such as nitrogen gas or oxygen gas is introduced into a metal (for example, titanium) target by sputtering (in an atmosphere of several Pa),
  • a substrate is placed facing DC discharge sputtering, RF sputtering, or the target, and the target particles are repelled by the collision of ions or neutral particles on the target surface to adhere to the substrate surface and form a film.
  • a magnetron method may be used in which a magnet is placed near the target to be sputtered to apply a magnetic field, and collisions of ions and neutral particles on the target surface are increased to increase the deposition rate.
  • the deposition method placing the substrate and the film forming material to be cane deposited into the container, and the entire vacuum (10-3 to 10-about 4 Pa), dissolved feedstock with hot ( Evaporate).
  • the raw material becomes gas molecules, which collide with and adhere to the substrate to form a film.
  • the heating and melting method there are a resistance heating type, an electron beam type, a high frequency induction type, a laser type and the like.
  • CVD method under vacuum (10 3 about Pa), and take advantage of the reaction at the surface of the gas phase of the gaseous raw material, thin film on a substrate that a component of the elements contained in the raw material molecule It is a method to deposit on.
  • thermal CVD A method in which a substrate on which a thin film is to be deposited is heated and a source molecule is decomposed by thermal energy is called thermal CVD, but in the present invention, a method called plasma CVD is preferable.
  • plasma CVD a plasma of a gas containing discharge gas and source molecules is generated, and source molecules (for example, source gas containing titanium tetraethoxide) are decomposed by electrons accelerated in the plasma.
  • source molecules for example, source gas containing titanium tetraethoxide
  • heating is not necessary for the progress of film deposition itself.
  • a discharge gas such as a rare gas can be added.
  • any of these film forming methods is preferable because a titanium oxide thin film can be formed at a low temperature.
  • Atmospheric pressure plasma CVD method (hereinafter also referred to as atmospheric pressure plasma method! /) Is a plasma CVD process near atmospheric pressure (20kPa ⁇ ; about UOkPa), so the average free process of gas is very fast because the film formation speed is high. Therefore, it can be advantageously used for forming a titanium oxide-based transparent conductive film according to the present invention.
  • the layer mainly composed of titanium oxide constituting the titanium oxide-based transparent conductive film is A transparent resin substrate formed by supplying a gas containing a titanium oxide thin film forming gas to a discharge space in which a high-frequency electric field has been generated under atmospheric pressure or a pressure in the vicinity of the discharge space, and preferably forming the hard coat layer Can be formed on the transparent resin substrate through the hard coat layer and the silicon oxide layer.
  • the layer mainly composed of titanium oxide constituting the titanium oxide-based transparent conductive film is a component such as a dopant that is intentionally added, a trace component (element) taken from a source gas, or a reducing condition.
  • the titanium oxide layer contains a metal component and contains a trace component (dopant) described later. Therefore, it means a film having at least 90% or more of TiO as a composition.
  • the layer mainly composed of titanium oxide is preferably an atmospheric pressure plasma C according to the present invention.
  • the pressure between the counter electrodes is set to atmospheric pressure or a pressure near it, and a source gas containing a discharge gas and a titanium compound (for example, titanium tetraethoxide) is introduced into the discharge space to form a plasma state. Then, a titanium oxide thin film is formed on the substrate by exposing the substrate to the reactive gas in the plasma state.
  • a source gas containing a discharge gas and a titanium compound for example, titanium tetraethoxide
  • the gas to be used is basically a gas containing a discharge gas and a raw material gas containing a titanium compound as constituent components.
  • the discharge gas is a gas that is in an excited state or a plasma state in the discharge space and plays a role of applying energy to the transparent conductive layer forming gas to be excited or turned into a plasma state. It is a rare gas or an inert gas. It is characterized by using gas. Examples of rare gases include Group 18 elements of the periodic table, specifically, helium, neon, anoregon, krypton, xenon, radon, and the like.
  • the discharge gas is preferably contained at 90.0-99.9% by volume with respect to 100% by volume of the total gas.
  • Nitrogen can also be used as the discharge gas, and nitrogen, argon and helium are preferred as the discharge gas.
  • a raw material gas comprising a titanium compound Is a gas that receives energy from the discharge gas in the discharge space and enters an excited state or a plasma state to form a titanium oxide thin film.
  • the titanium compound raw material gas is preferably contained in an amount of 0.01 to 10% by volume, more preferably in the range of 0.01;! To 3% by volume.
  • Examples of the titanium compound used in the source gas for forming the titanium oxide-based transparent conductive film include an organic titanium compound, a titanium hydrogen compound, and a titanium halide.
  • Examples of the organic titanium compound include triethoxy titanium, Methoxytitanium, triisopropoxytitanium, tributoxytitanium, tetraethoxytitanium, tetraisopropoxytitanium, methinoresimethoxytitanium, ethinoretriethoxytitanium, methinoretriisopropoxytitanium, trietinoretitan, triisopropyltitanium, tributyltitanium, tetraethyltitanium , Tetraisopropyl Titanium, Tetraptinore Titanium, Tetradimethinoreamino Titanium, Dimethinore Titanium Di (2, 4-pentanedionate), Ethyl Titanium Tri (2, 4-
  • One feature of the present invention is to use doped TiO. Doping
  • the valence of the periodic table is different from the Ti element of TiO.
  • Nb, Ta, B, Al, Ga, In, Tl and the like can be mentioned.
  • Nb, Ta, and V are preferably used.
  • niobium is contained in the titanium oxide thin film to function as a dopant in the titanium oxide thin film (transparent conductive film), and the carrier (electron) And the conductivity (resistance performance) of the thin film can be improved.
  • the following niobium compound is contained in the source gas.
  • the niobium compound used as a starting material useful for the present invention include organic niobium compounds and niobium water.
  • organic niobium compounds include pentaethoxyniobium, pentater n-butoxyniobium, pentater n-butoxyniobium, niobium phenoxide, tetrakis (2, 2, 6, 6-tetramethyl-3).
  • niobium hydroxide compound 5-Heptanedioto niobium, niobium hydroxide compound, niobium hydroxide, niobium halide, niobium trichloride, niobium chloride and the like can be used.
  • the amount contained in the source gas is such that the dopant amount in the titanium oxide thin film is within the range of 10% by mass in the present invention! /, Preferably! /,. Adjust medium ratio
  • the titanium oxide thin film forming gas contains a reducing gas selected from hydrogen, hydrocarbons such as ethylene and acetylene, and water as a reaction gas.
  • the formed titanium oxide thin film can be made more uniform and dense, and the conductivity, adhesion, and crack resistance can be improved.
  • the reducing gas is 0.0001 to 10% by volume with respect to 100% by volume of the total gas, more preferably 0.00; 5% by volume.
  • an oxidizing gas such as oxygen, ozone, hydrogen peroxide, carbon dioxide or the like may be mixed in an amount of 10% by volume or less.
  • the layer mainly composed of titanium oxide By forming the layer mainly composed of titanium oxide by the atmospheric pressure plasma CVD method, a high-quality film with high crystallinity in which the amount of oxygen deficiency and the amount of dopant introduced is controlled on the substrate.
  • the film can be formed at a low temperature, and the area can be increased.
  • the adhesion force that does not cause residual solvent and low molecular components to be deposited on the surface from the resin base material and hard coat layer (CHC), for example, in a vacuum does not deteriorate.
  • a thin film mainly composed of titanium oxide doped with niobium as a dopant according to the present invention is further at least hydrogen gas, water vapor under atmospheric pressure or pressure near atmospheric pressure. It is preferable to perform a treatment in which a mixed gas containing the above-mentioned deviation force is introduced into the discharge space as a reactive gas into a plasma state, and the substrate is exposed to the reactive gas in the plasma state.
  • One method is a method called a plasma jet type atmospheric pressure plasma discharge treatment apparatus, in which a high-frequency voltage is applied between opposing electrodes, a mixed gas containing a discharge gas is supplied between the opposing electrodes, and the mixing is performed.
  • the gas is turned into plasma, and then the plasma mixed gas and the transparent conductive layer forming gas are combined and mixed, and then sprayed onto the transparent substrate to form the transparent conductive layer.
  • the other method is a direct type atmospheric pressure plasma discharge treatment apparatus, which mixes a mixed gas containing a discharge gas and a transparent conductive layer forming gas, and then, between the opposing electrodes, a transparent substrate. In this state, the gas is introduced into the discharge space and a high frequency voltage is applied between the opposing electrodes to form a transparent conductive layer on the transparent substrate.
  • FIG. 2 is a schematic view showing an example of a plasma jet type atmospheric pressure plasma discharge treatment apparatus according to the present invention.
  • the present invention is not limited to this.
  • the following explanation may include assertive expressions for terms, etc., but it is a preferred example of the present invention and limits the meaning and technical scope of the terms of the present invention. It is not a thing.
  • the atmospheric pressure plasma discharge treatment device 21 includes a pair of electrodes connected to a power source 31.
  • Electrodes 41a, 41b force 2 pairs parallel. At least one of the electrodes 41a and 41b is covered with a dielectric 42, and a high frequency voltage is applied by a power source 31 to a discharge space 43 formed between the electrodes.
  • the inside of the electrodes 41a and 41b has a hollow structure 44 so that heat generated by the discharge can be taken by water, oil, etc. during discharge and heat exchange can be performed so as to maintain a stable temperature. Na It is.
  • the gas 22 containing the discharge gas necessary for the discharge is supplied to the discharge space 43 through the flow path 24, and a high frequency voltage is applied to the discharge space 43.
  • the gas 22 including the discharge gas is turned into plasma.
  • the mixed gas 23 containing the source gas necessary for forming the thin film supplied by each gas supply means passes through the flow path 25 and is also transported to the mixed space 45, where it is converted into the plasma.
  • a transparent resin substrate that is merged with and mixed with the discharged discharge gas 22 and placed on a moving stage 47 or a transparent resin substrate having a hard coat layer on the outermost surface (hereinafter collectively referred to as a base material! /) Sprayed up.
  • the thin film forming mixed gas in contact with the plasma mixed gas is activated by the energy of the plasma to cause a chemical reaction, and a desired thin film is formed on the substrate 46.
  • This plasma jet type atmospheric pressure plasma discharge treatment apparatus has a structure in which a mixed gas containing a raw material gas necessary for forming a thin film is sandwiched or surrounded by an activated discharge gas.
  • the moving stage 47 on which the substrate is mounted has a structure capable of reciprocating scanning or continuous scanning, and if necessary, heat exchange similar to the above electrode is performed so that the temperature of the substrate can be maintained. It has a structure that can
  • a waste gas exhaust passage 48 for exhausting the gas blown onto the substrate 46 can be provided as necessary. Thereby, unnecessary by-products formed in the space can be quickly removed from the discharge space 45 or the substrate 46.
  • This plasma jet type atmospheric pressure plasma discharge treatment apparatus has a structure in which a discharge gas is turned into plasma and activated, and then merged with a mixed gas containing a raw material gas necessary for forming a thin film such as a silicon oxide layer or a titanium oxide layer. It has become. As a result, it is possible to prevent deposits from being deposited on the electrode surface. As described in Japanese Patent Application No. 2003-095367, an antifouling film or the like is attached to the electrode surface to prevent discharge before discharge. A structure in which a gas and a gas necessary for forming the transparent conductive layer are mixed can also be used.
  • the high-frequency power supply is performed in one frequency band.
  • a desired two-frequency system in which a power source having a different frequency is provided for each electrode can be used.
  • the ability of film formation can be improved by arranging a plurality of plasma jet type atmospheric pressure plasma discharge treatment apparatuses in the scanning direction of a plurality of stages.
  • this plasma jet type atmospheric pressure plasma discharge treatment apparatus shows! /, NA! /
  • the inside of the apparatus can be placed in a constant gas atmosphere, and a desired high-quality thin film can be formed.
  • FIG. 3 is a schematic view showing an example of a direct atmospheric pressure plasma discharge treatment apparatus used in the present invention.
  • two electrodes 41 connected to a power source 31 are provided side by side so as to be parallel to the moving stage electrode 47, respectively. At least one of the electrodes 41 and 47 is covered with a dielectric 42, and a high frequency voltage is applied by the electrode 31 to a space 43 formed between the electrodes 41 and 47. .
  • the inside of the electrodes 41, 47 has a hollow structure 44, so that heat generated by the discharge can be taken out by water, oil, etc. during discharge, and heat exchange can be performed so as to maintain a stable temperature. It has become.
  • the gas 22 containing the discharge gas necessary for the discharge passes through the flow path 24, and the mixed gas 23 containing the source gas necessary for forming the thin film flows. It passes through channel 25 and merges and mixes in mixing space 45.
  • the mixed gas G passes between the electrodes 41 and is supplied to the space 43 between the electrodes 41 and 47.
  • a high frequency voltage is applied to the space 43, plasma discharge is generated, and the gas G is turned into plasma.
  • the raw gas for forming the thin film is activated by the gas G that has been turned into a plasma, causing a chemical reaction, and a desired thin film is formed on the substrate 46.
  • the stage 47 on which the substrate is mounted has a structure capable of reciprocating scanning or continuous scanning, and heat exchange similar to the above electrode is performed so that the temperature of the substrate can be maintained as necessary. It has a structure that can
  • a waste gas exhaust passage 48 for exhausting the gas blown onto the substrate 46 can be provided as necessary. This quickly releases unwanted by-products formed in the space. It can be removed from the electric space 45 or the base material 46.
  • a gas necessary for forming a discharge gas and a transparent conductive layer before discharge can be obtained by attaching a dirt prevention film to the electrode surface. It can also be set as the structure to mix.
  • the inside of the apparatus has a certain gas atmosphere by surrounding the electrodes and the stage so that outside air does not enter. A desired high-quality thin film can be formed.
  • an atmospheric pressure plasma discharge apparatus for example, when the discharge gas is mainly helium or argon, the same apparatus as each atmospheric pressure plasma discharge apparatus described in the above figure can be used.
  • nitrogen gas is the main component of the discharge gas, it is preferable to use an atmospheric pressure plasma discharge device that uses two high frequencies as shown in Fig. 4 below.
  • FIG. 4 is a schematic view showing an example of a two-frequency atmospheric pressure plasma discharge apparatus.
  • the tool rotating electrode (first electrode) 135 has a frequency ⁇ from the first power source 141. High frequency voltage
  • V and the square tube type fixed electrode group (second electrode) 136 are connected to the second power source 142 at the frequency ⁇ .
  • the first filter is arranged so that the current from the first power source 141 flows toward the roll rotating electrode (first electrode) 135.
  • the first filter 1 is designed to make it difficult for current from the first power source 141 to pass to the ground side and to easily pass current from the second power source 142 to the ground side.
  • a second filter 144 is installed between the square tube-type fixed electrode group (second electrode) 136 and the second power source 142 so that the current from the second power source flows toward the second electrode. ing. 2nd The filter 144 is designed to pass the current from the second power source 142 to the ground side and to easily pass the current from the first power source 141 to the ground side.
  • the roll rotating electrode 135 may be the second electrode, and the rectangular tube-shaped fixed electrode group 136 may be the first electrode.
  • the first power source is connected to the first electrode, and the second power source is connected to the second electrode.
  • the first power supply is capable of applying a higher high-frequency voltage (V> V) than the second power supply.
  • the frequency has the ability to be ⁇ and ⁇ .
  • the discharge condition in the present invention is that two or more electric fields having different frequencies are applied to the discharge space, and an electric field obtained by superimposing the first high-frequency electric field and the second high-frequency electric field is applied.
  • the frequency ⁇ 2 of the second high-frequency electric field is higher than the frequency ⁇ ⁇ of the first high-frequency electric field, the strength VI of the first high-frequency electric field VI, and the strength of the second high-frequency electric field.
  • the relationship between V2 and the strength IV of the discharge starting electric field is
  • the output density of the second high frequency electric field is lW / cm 2 or more.
  • the high frequency means a frequency having a frequency of at least 0.5 kHz.
  • both of the superimposed high-frequency electric fields are sine waves
  • the frequency ⁇ 1 of the first high-frequency electric field is superimposed on the frequency ⁇ 2 of the second high-frequency electric field higher than the frequency ⁇ 1.
  • the waveform is a sawtooth waveform in which a sine wave with a higher frequency ⁇ 2 is superimposed on a sine wave with a frequency ⁇ 1.
  • the strength of the discharge starting electric field refers to the discharge space (electrode configuration etc.) used in the actual thin film formation method and the reaction conditions (gas conditions etc.). The lowest electric field strength that can be used.
  • the discharge starting electric field strength is governed by the discharge starting electric field strength of the discharge gas in the same discharge space, which varies somewhat depending on the gas type supplied to the discharge space, the dielectric type of the electrode, or the distance between the electrodes.
  • both pulse wave one wave may be continuous wave and the other may be pulse wave . Further, it may have a third electric field having a different frequency.
  • a first power source that applies a first high-frequency electric field having a frequency ⁇ ⁇ ⁇ and an electric field strength VI is connected to the first electrode constituting the counter electrode, and a frequency ⁇ 2 and an electric field strength V2 is connected to the second electrode.
  • An atmospheric pressure plasma discharge treatment apparatus connected to a second power source for applying a second high-frequency electric field is used.
  • the first filter is connected to the first electrode, the first power supply, or any of them
  • the second filter is connected to the second electrode, the second power supply, or any of them.
  • the first filter facilitates the passage of the current of the first high-frequency electric field from the first power source to the first electrode, grounds the current of the second high-frequency electric field, and the first power source from the second power source It is difficult to pass the current of the second high-frequency electric field to.
  • the second filter makes it easy to pass the current of the second high-frequency electric field from the second power source to the second electrode, grounds the current of the first high-frequency electric field, Use a power supply with a function that makes it difficult to pass the current of the first high-frequency electric field to the power supply.
  • the phrase “difficult to pass” preferably means that only 20% or less, more preferably 10% or less of the current can pass.
  • being easy to pass means preferably passing 80% or more, more preferably 90% or more of the current.
  • a capacitor of several tens of pF to several tens of thousands of pF or a coil of about several H can be used depending on the frequency of the second power supply.
  • the second filter can be used as a filter by using a coil of 10 H or higher according to the frequency of the first power supply and grounding it through these coils or capacitors.
  • the first power source of the atmospheric pressure plasma discharge treatment apparatus of the present invention has the ability to apply a higher electric field strength than the second power source!
  • the applied electric field strength and the discharge start electric field strength as used in the present invention are those measured by the following methods.
  • a high-frequency voltage probe (P6015A) is installed at each electrode, and the output signal of the high-frequency voltage probe is connected to an oscilloscope (Tektronix, TDS3012B), and the electric field strength at a predetermined time is measured.
  • an oscilloscope Tektronix, TDS3012B
  • a discharge gas is supplied between the electrodes, the electric field strength between the electrodes is increased, and the discharge starts.
  • the full electric field strength is defined as the discharge starting electric field strength IV.
  • the measuring instrument is the same as the applied electric field strength measurement.
  • the discharge gas is nitrogen gas according to the above measurement
  • the discharge start electric field strength IV (1/2 Vp-p) is about 3.7 kV / mm. Therefore, in the above relationship, the first application By applying the electric field strength as Vl ⁇ 3.7kV / mm, the nitrogen gas can be excited and put into a plasma state.
  • the frequency of the first power supply is preferably 200 kHz or less.
  • the electric field waveform may be a continuous wave or a pulse wave.
  • the lower limit is preferably about 1kHz.
  • the frequency of the second power supply is preferably 800 kHz or more.
  • the upper limit is about 200MHz! /.
  • the atmospheric pressure plasma discharge treatment apparatus used in the present invention discharges between the counter electrodes, puts the gas introduced between the counter electrodes into a plasma state, and leaves the gas between the counter electrodes or A thin film is formed on the substrate by exposing the substrate transferred between the electrodes to the plasma state gas.
  • a power supply having a different frequency is installed in each electrode, and the two-frequency system can be similarly implemented as an apparatus as shown in Fig. 5, for example.
  • 31a is the first power supply
  • 31b is the second power supply
  • 101a is the first filter
  • 101b is the second filter.
  • a discharge is caused between the counter electrodes, the gas introduced between the counter electrodes is excited or put into a plasma state, and a gas in an excited or plasma state is blown out of the counter electrode in a jet form.
  • This is performed in a two-frequency system in which a thin film is formed on the substrate by exposing the substrate in the vicinity of the counter electrode (standing still, transported! /, Or even! /,). Jet type equipment An example of the device is shown schematically in FIG.
  • the jet type atmospheric pressure plasma discharge treatment apparatus has a counter electrode composed of a first electrode 11 and a second electrode 12, and the first electrode 11 is connected to the first electrode 11 between the counter electrodes.
  • a first high-frequency electric field of frequency ⁇ 1 from power source 19a, electric field strength VI, current II is applied, and second electrode 12 has a second frequency ⁇ 2, electric field strength V2, current 12 from second power source 19b.
  • the high-frequency electric field is applied.
  • the first power supply 19a has a higher high-frequency electric field strength (VI> V2) than the second power supply 19b, and the first frequency ⁇ of the first power supply 19a is lower than the second frequency ⁇ 2 of the second power supply 19b. Apply frequency.
  • a first filter 14a is installed between the first electrode 11 and the first power supply 19a, and it is easy to pass the current from the first power supply 19a to the first electrode 11, and the second power supply It is designed so that the current from 19b is grounded and the current from the second power source 19b to the first power source 19a passes.
  • a second filter 14b is installed between the second electrode 12 and the second power source 19b to facilitate passage of current from the second power source 19b to the second electrode. Designed to source the current from 19a and make it difficult to pass the current from the first power source 19a to the second power source.
  • the thin film forming gas G described above is introduced from the gas supply means into the gap between the first electrode 11 and the second electrode 12 (discharge space) 13, and the first power source 19a and the second power source 19b
  • the above-described high-frequency electric field is applied between the first electrode 11 and the second electrode 12 to generate a discharge, and the thin film forming gas G described above is in a plasma state while jetting in the lower side of the counter electrode (lower side of the paper). Blow out, fill the processing space created by the lower surface of the counter electrode and the base material F with a plasma gas G °, and form a thin film on the base material F near the processing position 14.
  • the electrode heats or cools the electrode through the pipe from the electrode temperature adjusting means.
  • the physical properties, composition, etc. of the resulting thin film may change, and it is desirable to appropriately control this.
  • An insulating material such as distilled water or oil is preferably used as the temperature control medium.
  • Fig. 6 shows a measuring instrument used for measuring the applied electric field strength and the discharge starting electric field strength and the measurement position. 15 and 16 are high-frequency voltage probes, and 17 and 18 are oscilloscopes.
  • each of the electrodes described above is obtained by thermally spraying ceramics as a dielectric material on a conductive metallic base material and then sealing with an inorganic compound sealing material.
  • the ceramic dielectric need only have a thickness of about 1 mm.
  • ananoremina 'silicon nitride or the like is preferably used as the ceramic material used for thermal spraying.
  • alumina is particularly preferred because it is easy to process.
  • the dielectric layer may be a lining-treated dielectric provided with an inorganic material by lining.
  • Examples of the conductive metallic base material include titanium metal or titanium alloy, silver, platinum, stainless steel, aluminum, iron, and the like, a composite material of iron and ceramics, or a composite of aluminum and ceramics.
  • the ability to mention the material Titanium metal or titanium alloy is particularly preferred for reasons described below!
  • the distance between the first electrode and the second electrode facing each other is such that when a dielectric is provided on one of the electrodes, the surface of the dielectric and the surface of the conductive metallic base material of the other electrode This is the shortest distance. When dielectrics are provided on both electrodes, this is the shortest distance between the dielectric surfaces.
  • the distance between the electrodes is determined by taking into account the thickness of the dielectric provided on the conductive metallic base material, the magnitude of the applied electric field strength, the purpose of using the plasma, etc. From the viewpoint of carrying out the process, 0.;! To 20 mm is preferable, and 0.5 to 2 mm is particularly preferable.
  • the plasma discharge treatment vessel 131 in Fig. 4 may be made of metal as long as it can be insulated from the force electrode for which a treatment vessel made of Pyrex (registered trademark) glass or the like is preferably used.
  • a treatment vessel made of Pyrex (registered trademark) glass or the like is preferably used.
  • the inner surface of an aluminum or stainless steel frame Ceramic metal spraying may be performed on the metal frame, which may be pasted with a mid resin or the like, to provide insulation.
  • * indicates a HEIDEN Laboratory impulse high-frequency power source (100 kHz in continuous mode). Other than that, it is a high-frequency power source that can apply only a continuous sine wave.
  • an electrode capable of maintaining a uniform and stable discharge state by applying such an electric field to the atmospheric pressure plasma discharge treatment apparatus.
  • the power applied between the opposing electrodes is to supply power (power density) of lW / cm 2 or more to the second electrode (second high-frequency electric field) to excite the discharge gas and to generate plasma. Raised And applying energy to the thin film forming gas to form a thin film.
  • the upper limit value of the power supplied to the second electrode is preferably 50 W / cm 2 , more preferably 20 W / cm 2 .
  • the lower limit is preferably 1.2 W / cm 2 .
  • the discharge area (cm 2 ) refers to the area where discharge occurs between the electrodes.
  • the first electrode (first high-frequency electric field), by supplying a lW / cm 2 or more power (power density), while maintaining uniformity of the second high-frequency electric field, power density Can be improved.
  • a further uniform high-density plasma can be generated, and a further improvement in film formation speed and improvement in film quality can be achieved.
  • it is 5 W / cm 2 or more.
  • the upper limit value of the power supplied to the first electrode is preferably 50 W / cm 2 .
  • the waveform of the high-frequency electric field is not particularly limited.
  • a continuous sine wave continuous oscillation mode called continuous mode and an intermittent oscillation mode called pulse mode that performs ON / OFF intermittently. Either of them can be used, but at least the second electrode side (second The high-frequency electric field of the continuous sine wave is preferable because a denser and better quality film can be obtained.
  • the performance of the transparent conductive film produced in the examples was evaluated according to the following method.
  • Membrane permeability (Transmissivity of substrate with transparent conductive film) / (Transmittance of substrate without transparent conductive film)
  • the transmittance at a wavelength of 550 nm was used as a representative value. Measurement ⁇ ASCO V-530
  • the above (1) to (3) were evaluated by leaving it for 1000 hours in an atmosphere at a temperature of 60 ° C and a humidity of 90% RH, and then in a normal atmosphere for 12 hours.
  • the clear hard coat (CHC) layer and the undercoat coating (silicon oxide layer) are sequentially laminated in the following procedure. Used as a resin base material.
  • CHC Cer hard coat layer (CHC) coating composition
  • the clear hard coat layer coating composition was extrusion coated onto the film, then dried in a drying section set at 80 ° C., and then irradiated with ultraviolet rays using an ultraviolet irradiation facility.
  • the UV lamp used an output of 3kW (high pressure mercury type manufactured by Eye Graphic Co., Ltd.), and the illuminance was 0.1 lW / cm 2 .
  • the holding plate was set so that the surface temperature of the substrate was 25 ° C during irradiation.
  • a transparent resin film substrate having a clear hard coat layer (CHC layer) having a film thickness of 6 am was obtained.
  • the transparent resin film substrate as a resin base material, the following undercoating was performed.
  • the SiO film was coated using the direct atmospheric pressure plasma (CVD) method.
  • a high frequency was applied at two frequencies using the apparatus shown in FIG.
  • Power supply 2 High frequency side 13.56MHz 6W / cm 2
  • Tetraethoxysilane (TEOS) was vaporized by bubbling as a raw material for SiO. N gas: lslm, 40 ° C.
  • the moving platform electrode is attracted to the surface of a 200mm wide and 300mm long titanium plate.
  • Alumina was produced by thermal spraying as the electrical material.
  • a heat sink and a heater were installed on the back side so that the temperature of the substrate surface was always constant.
  • Electrode width 200mm
  • a substrate was placed on the movable gantry electrode, and a thin film was formed while continuously scanning to produce a silicon oxide thin film with the desired film thickness (shown in Table 1).
  • Example 1 was performed by a vacuum deposition method using an electron beam (EB) heating method.
  • EB electron beam
  • a deposited film of silicon oxide having a thickness of 50 nm was formed under the following deposition conditions.
  • Example 3 a titanium oxide-based transparent conductive film layer was formed by an atmospheric pressure plasma (CVD) method.
  • CVD atmospheric pressure plasma
  • a remote atmospheric pressure plasma method (two-frequency method described in JP-A-2004-068143) was used.
  • Figure 2 shows the equipment used.
  • Power supply 1 (SEREN high frequency power supply) Low frequency side lOOKHz 5w / cm 2
  • Power supply 2 (Pearl Industries high frequency power supply) High frequency side 13. 56MHz 3W / cm 2 (Electrode condition) Electrode square electrode is ceramic sprayed as a dielectric to 30mm square hollow titanium pipe! / Made.
  • Electrode (discharge) gap 0 ⁇ 5mm
  • Tetrizopropoxytitanium was vaporized by publishing as a raw material for TiO (N gas: 3 slm, 60 ° C).
  • pentaethoxyniobium as a dopant was similarly vaporized by bubbling (N 2 gas: 3 slm, 80 ° C).
  • This mixed gas was introduced from the raw material introduction slit. Further, the following discharge gas and reaction gas were mixed in the following proportions and introduced from the interelectrode (discharge) slit.
  • Discharge gas N 50slm + 50slm
  • Reaction gas H 0.5slm + 0.5slm
  • the movable gantry electrode was manufactured by spraying alumina as a dielectric on the surface of a 200 mm wide and 300 mm long titanium plate.
  • a heat sink and a heater were installed on the back side so that the temperature of the substrate surface was always constant.
  • Electrode width 200mm
  • Temperature of moving gantry electrode The temperature of the gantry was set so that the surface of the base material was at the temperature shown in Table 1.
  • the substrate was placed on the movable gantry electrode, and the film was formed while continuously scanning.
  • Nb-doped TiO film was prepared.
  • a titanium oxide transparent conductive film was formed by the following sputtering method.
  • the obtained sintered body was used as a target for deposition in a batch type DC magnetron sputtering apparatus.
  • the magnetic flux density on the target was lOOOGauss.
  • the ultimate vacuum within the chamber one, not more than 5 X 10- 6 Pa, gas pressure during the sputtering was set to 2 X 10- 4 Pa.
  • Argon gas and a mixed gas of argon and oxygen were used as the sputtering gas and introduced into the chamber as a separate system. Under these conditions, a TiO: Nb-based thin film having a film thickness of lOOnm was formed on the base material held on a heat insulating plate at 150 ° C.
  • the quantity ratio of argon and oxygen was 10: 1, 100: 1, 500: 1, 1000: 1, and the conditions of 500: 1, which were the best in permeation performance and resistance performance, were used as representative values. .
  • Atmospheric pressure plasma discharge treatment (single frequency) was performed on a substrate on which a thin film containing TiO as the main component was formed in advance by sputtering or atmospheric pressure plasma.
  • the electrode square electrode was fabricated by ceramic spraying as a dielectric material on a 30mm square hollow titanium pipe.
  • Electrode width 300mm
  • Electrode (discharge) gap 2.0 mm
  • a substrate on which a thin film containing TiO as a main component was formed was placed on the movable gantry electrode, and plasma was irradiated for 30 seconds while continuously scanning.
  • each of CHC, silicon oxide subbing, and titanium oxide-based conductive film was laminated by changing the production method as shown in Table 1, respectively.
  • a conductive film substrate was produced.
  • the transparent conductive film substrate of Example 4 was produced as follows.
  • Example 3 As in Example 3, except that the titanium oxide transparent conductive film was formed by atmospheric pressure plasma.
  • a titanium oxide transparent conductive film having tantalum as a dopant was formed using the (CVD) method under the following conditions for forming a titanium oxide transparent conductive film.
  • Tetrizopropoxytitanium publishing as a raw material for TiO film formation
  • Pentaethoxytantalum was vaporized by bubbling as a doping material (N gas
  • Example 3 Other conditions were the same as in Example 3. A base material is placed on the movable gantry electrode, and film formation is performed while continuously scanning to form a Ta-doped TiO film of about 100 nm, and the transmission of Example 4 is performed.
  • a bright conductive film substrate was produced.
  • Table 1 shows the results of evaluation by the above evaluation methods.
  • the transparent conductive film substrate of Comparative Example 1 has a poor resistance performance and particularly poor adhesion to the base material, and the permeation performance after storage under high temperature and high humidity conditions. It can be seen that is also lower than the others. It can also be seen that the formation of the silicon oxide layer is more preferable than the vapor deposition method from the viewpoint of adhesion. When it gets thicker The transmission performance is slightly reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)
  • Chemical Vapour Deposition (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

A transparent conductive film substrate having an appropriate transparent conductive film superimposed on a resin base material with the use of a material of low depletion risk without employing a material of depletion risk, such as indium. The transparent conductive film substrate is one having a titanium oxide based transparent conductive film formed on a resin base material, characterized in that the resin base material is transparent and is sequentially laminated with a silicon oxide layer and a layer of doped titanium oxide (composed mainly of the same).

Description

明 細 書  Specification
透明導電膜基板及びこれに用いる酸化チタン系透明導電膜の形成方法 技術分野  Transparent conductive film substrate and method for forming titanium oxide transparent conductive film used therefor
[0001] 本発明は、酸化チタン系透明導電膜を有する透明導電膜基板および該透明導電 膜の形成方法に関する。  The present invention relates to a transparent conductive film substrate having a titanium oxide-based transparent conductive film and a method for forming the transparent conductive film.
背景技術  Background art
[0002] 現在、種々の薄型ディスプレイ素子、部材、あるいはデバイスには透明導電膜が使 われている。透明導電膜としてはその導電性能が高いことから ITO (インジウムチンォ キサイド)が専ら使われている力 S、 ITOは資源枯渴のリスクが大きぐインジウムに変わ る新たな透明導電膜材料が求められている。  [0002] Currently, transparent conductive films are used in various thin display elements, members, or devices. As a transparent conductive film, ITO (indium tin oxide) is used exclusively because of its high conductive performance. S, ITO demands a new transparent conductive film material that can be converted to indium, which has a high risk of resource depletion. It has been.
[0003] ところで、昨今 TiO膜に透明導電性が発現することがわかり、例えば非特許文献 1  [0003] By the way, it has been found that transparent conductivity is developed in a TiO film recently.
(2006応用物理学会学術講演会、予稿集 563, 30p— RA— 16)に報告されている 。これらにより、 TiO膜に透明導電性が発現し、薄型ディスプレイ部材、太陽電池等 で用いられる透明導電膜材料として枯渴リスクのない TiOを用いることが期待されて いる。  (2006 Academic Lecture Meeting of Applied Physics Society, Proceedings 563, 30p—RA—16). As a result, transparent conductivity is developed in the TiO film, and it is expected that TiO without risk of drought will be used as a transparent conductive film material used in thin display members, solar cells and the like.
[0004] 一方で、液晶、有機 ELなど薄型ディスプレイ部材、また太陽電池などのモジュール は、近年軽量化、薄型化、耐衝撃性などに対するニーズが高ぐこれまで使用されて V、るガラス基板を、樹脂基材化するために種々の取り組みがされて!/、る。  [0004] On the other hand, thin display materials such as liquid crystal and organic EL, and modules such as solar cells have been used so far in recent years, where demands for weight reduction, thickness reduction, impact resistance, etc. are increasing. Various efforts have been made to make a resin base!
[0005] しかしながら、現手法で TiO透明導電膜を樹脂基材上に形成させた場合、ガラス 基板状に形成するときに比べ、導電性能の保存性、耐環境性能、密着性能等が劣 化し実用には種々の問題があった。  [0005] However, when a TiO transparent conductive film is formed on a resin substrate using the current method, the storage performance, environmental resistance, adhesion performance, etc. of the conductive performance are deteriorated compared to the case where it is formed on a glass substrate. There were various problems.
[0006] これらの性能劣化は、現状使用されている ITO、 SnO 、 ZnOに比べて顕著である [0006] These performance degradations are significant compared to ITO, SnO, and ZnO currently used.
Yes
[0007] これは、 TiO力 他の透明導電膜材料として用いられている ITO、 SnO 、 ZnO等 に比べて、樹脂基材中の有機ポリマー分子と TiO膜が直接接触した場合、その界面 で、相互に拡散する度合いが、他の材料よりも顕著であることが原因であると推測で きる。すなわち、樹脂基材中のオリゴマーや基材の形成に必要な可塑材料など低分 子成分力 m〇2との界面や、 Ti〇2の膜内に入り込み、導電性能や密着性能を悪化さ せていると推測される。 [0007] Compared to ITO, SnO, ZnO, etc., which are used as TiO force and other transparent conductive film materials, when the organic polymer molecules in the resin substrate and the TiO film are in direct contact, It can be inferred that the degree of mutual diffusion is more prominent than other materials. In other words, low content such as oligomers in resin base materials and plastic materials required for base material formation Interface and with the slave component force M_〇 2, enters the Ti_〇 second membrane, is estimated that exacerbate conductive performance and adhesion performance.
[0008] また、現手法による TiO透明導電膜においては、導電膜の形成時には、導電性を 向上させるため、高温(300°C、或いは 400°C以上)での処理が必要とされ、樹脂基 板を用いた場合には、耐熱性が不充分であることから、その条件が限られるため、充 分な性能を有する導電性薄膜を、樹脂基材上に得ることは難しかった。  [0008] In addition, the TiO transparent conductive film according to the current method requires a treatment at a high temperature (300 ° C or 400 ° C or higher) in order to improve conductivity when the conductive film is formed. When a plate is used, heat resistance is insufficient, and the conditions are limited. Therefore, it is difficult to obtain a conductive thin film having sufficient performance on a resin substrate.
[0009] 上記の知見のもと、チタン元素よりもさらに小さい Si元素を有する酸化珪素の膜を、 基材一酸化チタン層間に塗設することで改善ができるとの着想から、また、高温を必 要としない薄膜形成条件を選択することで、画期的にその性能が向上することをみい だした。  [0009] Based on the above knowledge, it is possible to improve by coating a silicon oxide film having a Si element smaller than the titanium element between the substrate and the titanium monoxide layer. By selecting thin film formation conditions that are not required, we have found that the performance is dramatically improved.
[0010] 本発明は、枯渴リスクの少ない材料を用いて、樹脂基材上に良好な透明導電膜を 有する透明導電膜基板を得ようとするものである。  The present invention seeks to obtain a transparent conductive film substrate having a good transparent conductive film on a resin base material using a material with a low risk of withering.
非特許文献 1 :第 67回応用物理学会学術講演会、講演予稿集 (2006 秋) 566頁〜 567頁, 30p-RA- 12~16  Non-Patent Document 1: 67th JSAP Scientific Lecture, Proceedings (Autumn 2006) 566-567, 30p-RA-12-12
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] したがって、本発明は、インジウム等の枯渴リスクのある材料を用いず、リスクの少な い材料を用いて、樹脂基材上に良好な透明導電膜を有する透明導電膜基板を得よ うとするものである。 Accordingly, the present invention provides a transparent conductive film substrate having a good transparent conductive film on a resin base material using a low risk material without using a material with a risk of withering such as indium. It is something to try.
課題を解決するための手段  Means for solving the problem
[0012] 本発明の上記課題は以下の手段により達成される。  [0012] The object of the present invention is achieved by the following means.
[0013] 1.樹脂基材上に成膜された酸化チタン系透明導電膜を有する透明導電膜基板で あって、透明樹脂基板に、酸化珪素層、ドープされた酸化チタン (を主体とする)層が 、順次積層されていることを特徴とする透明導電膜基板。  [0013] 1. A transparent conductive film substrate having a titanium oxide-based transparent conductive film formed on a resin substrate, the silicon oxide layer being doped on the transparent resin substrate (mainly comprising doped titanium oxide) A transparent conductive film substrate, wherein the layers are sequentially laminated.
[0014] 2.前記酸化珪素層の厚みが 50nm以下であることを特徴とする前記 1に記載の透 明導電膜基板。  [0014] 2. The transparent conductive film substrate according to 1 above, wherein the silicon oxide layer has a thickness of 50 nm or less.
[0015] 3.前記透明樹脂基板がポリエチレンテレフタレート(PET)、トリアセチルセルロー ス(TAC)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリカー ボネート(PC)、ポリメチルメタタリレート(PMMA)の!/、ずれかを含むことを特徴とする 前記 1または 2に記載の透明導電膜基板。 [0015] 3. The transparent resin substrate is made of polyethylene terephthalate (PET), triacetyl cellulose (TAC), polyethylene naphthalate (PEN), polyethersulfone (PES), polycarbonate 3. The transparent conductive film substrate as described in 1 or 2 above, wherein the transparent conductive film substrate includes any one of bonnet (PC) and polymethyl methacrylate (PMMA).
[0016] 4.前記透明樹脂基板がハードコート層を有することを特徴とする前記 1〜3の何れ 力、 1項に記載の透明導電膜基板。 [0016] 4. The transparent conductive substrate according to any one of items 1 to 3, wherein the transparent resin substrate has a hard coat layer.
[0017] 5.前記酸化珪素層の成膜方法が、大気圧プラズマ CVD法であることを特徴とする 前記;!〜 4の何れか 1項に記載の透明導電膜基板。 [0017] 5. The transparent conductive film substrate according to any one of;! To 4 above, wherein the method for forming the silicon oxide layer is an atmospheric pressure plasma CVD method.
[0018] 6.前記酸化チタン層系透明導電膜にニオブが含まれていることを特徴とする前記[0018] 6. Niobium is contained in the titanium oxide layer-based transparent conductive film,
1〜 5の何れか 1項に記載の透明導電膜基板。 The transparent conductive film substrate according to any one of 1 to 5.
[0019] 7.上記酸化チタン系透明導電膜の成膜方法が、スパッタ法、蒸着法、 CVD法の いずれかであることを特徴とする前記;!〜 6の何れか 1項に記載の透明導電膜基板。 [0019] 7. The transparent method according to any one of the above ;! to 6, wherein the titanium oxide transparent conductive film is formed by any one of a sputtering method, a vapor deposition method, and a CVD method. Conductive film substrate.
[0020] 8.前記;!〜 7のいずれか 1項に記載の透明導電膜基板のドープされた酸化チタン( を主体とする)層を成膜する透明導電膜の成膜方法であって、 [0020] 8. A method for forming a transparent conductive film for forming a doped titanium oxide (mainly) layer of the transparent conductive film substrate according to any one of ;;
大気圧または大気圧近傍の圧力下で、チタン化合物、ドーパント原料、反応ガスを含 む混合ガスを放電空間に導入してプラズマ状態とし、樹脂基材を前記プラズマ状態 の反応性ガスに晒すことによって、樹脂基材上にドープされた酸化チタンを主体とす る層を成膜することを特徴とする透明導電膜の成膜方法。  By introducing a mixed gas containing a titanium compound, a dopant raw material, and a reactive gas into a discharge space under an atmospheric pressure or a pressure near atmospheric pressure to form a plasma state, and exposing the resin substrate to the reactive gas in the plasma state. A method for forming a transparent conductive film, comprising forming a layer mainly composed of doped titanium oxide on a resin substrate.
[0021] 9.前記;!〜 7のいずれか 1項に記載の透明導電膜基板における酸化チタン系透明 導電膜の形成方法であって、 [0021] 9. A method for forming a titanium oxide-based transparent conductive film in the transparent conductive film substrate according to any one of the above;! To 7,
透明樹脂基板上に予め成膜されたドープされた酸化チタン (を主体とする)層を、 大気圧または大気圧近傍の圧力下、反応性ガスを放電空間に導入して、プラズマ状 態とした反応性ガスに晒す、後処理を行うことによって、低抵抗化させることを特徴と する酸化チタン系透明導電膜の形成方法。  A doped titanium oxide (mainly composed of) layer formed in advance on a transparent resin substrate is brought into a plasma state by introducing a reactive gas into the discharge space at or near atmospheric pressure. A method for forming a titanium oxide-based transparent conductive film, characterized in that resistance is lowered by performing post-treatment by exposure to a reactive gas.
[0022] 10.前記後処理が、少なくとも水素ガス、水蒸気のいずれかを含む雰囲気下で行 われる処理であることを特徴とする前記 9に記載の酸化チタン系透明導電膜の形成 方法。 [0022] 10. The method for forming a titanium oxide-based transparent conductive film according to 9, wherein the post-treatment is a treatment performed in an atmosphere containing at least one of hydrogen gas and water vapor.
発明の効果  The invention's effect
[0023] 本発明により、導電性能の保存性、耐環境性能、密着性能に優れた酸化チタン系 透明導電膜を有する透明導電膜基板が得られる。 図面の簡単な説明 [0023] According to the present invention, a transparent conductive film substrate having a titanium oxide-based transparent conductive film excellent in storage performance, environmental resistance, and adhesion performance of conductive performance can be obtained. Brief Description of Drawings
[0024] [図 1]本発明の酸化チタン系透明導電膜を有する透明樹脂基板の構成を示す断面 図である。  FIG. 1 is a cross-sectional view showing a configuration of a transparent resin substrate having a titanium oxide-based transparent conductive film of the present invention.
[図 2]本発明に係るプラズマジェット型大気圧プラズマ放電処理装置の一例を示す概 略図である。  FIG. 2 is a schematic view showing an example of a plasma jet type atmospheric pressure plasma discharge treatment apparatus according to the present invention.
[図 3]本発明に用いられるダイレクト型大気圧プラズマ放電処理装置の一例を示す概 略図である。  FIG. 3 is a schematic diagram showing an example of a direct atmospheric pressure plasma discharge treatment apparatus used in the present invention.
[図 4]2周波型の大気圧プラズマ放電装置の一例を示す概略図である。  FIG. 4 is a schematic view showing an example of a two-frequency atmospheric pressure plasma discharge device.
[図 5]2周波方式で実施するダイレクト型大気圧プラズマ放電処理装置の一例を示す 概略図である。  FIG. 5 is a schematic view showing an example of a direct atmospheric pressure plasma discharge treatment apparatus implemented by a two-frequency method.
[図 6]2周波方式で実施するジェット方式の装置の一例を示す概略図である。  FIG. 6 is a schematic view showing an example of a jet-type apparatus implemented in a two-frequency system.
符号の説明  Explanation of symbols
[0025] 1 透明樹脂基板 [0025] 1 Transparent resin substrate
2 ハードコート層  2 Hard coat layer
3 酸化珪素層  3 Silicon oxide layer
4 酸化チタン系透明導電膜  4 Titanium oxide transparent conductive film
21、 130 大気圧プラズマ放電処理装置  21, 130 Atmospheric pressure plasma discharge treatment equipment
135 ロール回転電極  135 Roll rotating electrode
131 プラズマ放電処理容器  131 Plasma discharge vessel
132 放電処理室  132 Discharge treatment chamber
136 角柱型固定電極  136 prismatic fixed electrode
11 第 1電極  11 First electrode
12 第 2電極  12 Second electrode
19a, 141 第 1電源  19a, 141 1st power supply
19b, 142 第 2電源  19b, 142 Second power supply
14a, 143 第 1フイノレター  14a, 143 1st Fino Letter
14b, 144 第 2フィルター  14b, 144 Second filter
150 ガス充填手段 151 ガス発生装置 150 Gas filling means 151 Gas generator
152 給気口  152 Air inlet
153 排気口  153 Exhaust port
160 電極温度調節手段  160 Electrode temperature control means
164、 167 ガイドロール  164, 167 Guide roll
165、 166 二ッフローノレ  165, 166
168、 169 仕切板  168, 169 divider
F 基材  F Substrate
G 反応ガス  G reaction gas
G, 処理排ガス  G, treated exhaust gas
G° プラズマ状態のガス  G ° Plasma state gas
22 放電ガスを含むガス  22 Gas including discharge gas
23 混合ガス  23 Gas mixture
24、 25 流路  24, 25 flow path
27 電極冷却用部材  27 Electrode cooling material
31 電源  31 Power supply
41 , 41a, 41b 電極  41, 41a, 41b electrode
42 誘電体  42 Dielectric
43 放電空間  43 Discharge space
44 中空構造  44 Hollow structure
45 混合空間  45 Mixing space
46 基材  46 Base material
47 移動ステージ、移動ステージ電極  47 Moving stage, moving stage electrode
48 廃ガス排気流路  48 Waste gas exhaust passage
49 廃ガス流路形成部材  49 Waste gas flow path forming member
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 以下、本発明を実施するための最良の形態について詳細に説明する。 Hereinafter, the best mode for carrying out the present invention will be described in detail.
[0027] 本発明は、透明樹脂基板上に、酸化珪素層、ドープされた酸化チタンを主体とする 層が、順次積層された構成を有する透明導電膜基板である。 [0027] The present invention mainly comprises a silicon oxide layer and a doped titanium oxide on a transparent resin substrate. The transparent conductive film substrate has a structure in which the layers are sequentially stacked.
[0028] Ti〇2系透明導電膜を樹脂基材上に形成させたとき、ガラス基板状に形成したとき に比べ、導電性能の保存性、耐環境性能、密着性能等は、 ITO、 SnO、 ZnO等の 材料に比べて劣ることから実用には種々の問題があった。 [0028] When the Ti_〇 2 based transparent conductive film was formed on a resin base material, compared with the time of forming the glass substrate shape, save conductive performance, environmental resistance, adhesion properties, etc., ITO, SnO, Since it was inferior to materials such as ZnO, there were various problems in practical use.
[0029] これは、酸化チタン TiO層(薄膜)は、他の透明導電膜材料として用いられている I TO、 SnO、 ZnO等の材料に比べて、樹脂基材の有機ポリマー分子と接触した場合 、その界面で、相互に成分の拡散する度合いが、他の材料 (ITO、 SnO、 ZnO等)よ りも顕著であることが原因であると推測でき、すなわち、樹脂基材中のオリゴマーや基 材の形成に必要な可塑材料など低分子成分が製膜時のプラズマエネルギーや分子 衝突によって叩き出され、 TiOとの界面や TiOの膜内に入り込むことにより導電性 能や密着性能を悪化させて!/、るものと推測される。 [0029] This is because the titanium oxide TiO layer (thin film) is in contact with organic polymer molecules of the resin base material compared to other materials such as ITO, SnO, and ZnO used as transparent conductive film materials. Therefore, it can be assumed that the degree of diffusion of the components at the interface is more remarkable than other materials (ITO, SnO, ZnO, etc.), that is, oligomers and groups in the resin base material. Low molecular components such as plastic materials required for forming the material are knocked out by plasma energy and molecular collision during film formation, and enter the interface with TiO and the film of TiO to deteriorate the conductivity and adhesion performance. ! /, Presumed to be something.
[0030] 本発明者は、これらの推論に基づき、チタン元素よりもさらに小さい Si元素を有する 酸化珪素の膜を、樹脂基材と酸化チタン層間に塗設することで改善ができるとの着 想のもと、本発明の構成を見出すに至り、それにより TiO系透明導電膜の性能が画 期的に向上することをみいだした。 [0030] Based on these inferences, the present inventor has the idea that a silicon oxide film having a Si element smaller than the titanium element can be improved by coating between the resin base material and the titanium oxide layer. Under the circumstances, the present inventors have found the structure of the present invention, and found that the performance of the TiO-based transparent conductive film is dramatically improved.
[0031] 従って、本発明においては、透明樹脂基板上に、酸化珪素層、ドープされた酸化 チタンを主体とする層が、順次積層されることで、低抵抗値が維持される導電性能の 保存性、耐環境性能、密着性能等が良好な酸化チタン系透明導電膜を有する透明 樹脂基板からなる透明導電膜基板を作製できる。  [0031] Therefore, in the present invention, a silicon oxide layer and a layer mainly composed of doped titanium oxide are sequentially laminated on the transparent resin substrate, so that a low resistance value can be maintained and the conductive performance can be maintained. A transparent conductive film substrate made of a transparent resin substrate having a titanium oxide-based transparent conductive film having good properties, environmental resistance performance, adhesion performance, and the like can be produced.
[0032] 図 1に、本発明の酸化チタン系透明導電膜を有する透明樹脂基板の構成を断面図 にて示した。透明樹脂基板 1上にハードコート層(CHC) 2を設けこれを基材とし、更 に酸化珪素層 3、酸化チタン系透明導電膜 4が形成されている。  FIG. 1 is a cross-sectional view showing the configuration of a transparent resin substrate having a titanium oxide-based transparent conductive film of the present invention. A hard coat layer (CHC) 2 is provided on a transparent resin substrate 1, and this is used as a base material. Further, a silicon oxide layer 3 and a titanium oxide-based transparent conductive film 4 are formed.
[0033] 本発明において用いられる樹脂基材は、透明樹脂基板であり、透明樹脂フィルム である。好ましい透明樹脂フィルムとしては、アクリル樹脂(PMMA)、アクリロニトリル ブタジエン スチレン樹脂(ABS)、エチレン 酢酸ビュル樹脂(EVAC)、ェチレ ンービュルアルコール樹脂(EVOH)、ポリアミド(PA)、ポリカーボネート(PC)、ポリ ブチレンテレフタレート(PBT)、ポリエチレン(PE)、ポリエチレンテレフタレート(PET )、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリメチルペンテ ン(PMP)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリ塩化ビュル(PVC)、ポリ塩 化ビニリデン(PVDC)、スチレン一アクリロニトリル樹脂(SAN)、トリァセチルセル口 ース (TAC)、等の樹脂からなるフィルムである。 [0033] The resin substrate used in the present invention is a transparent resin substrate, which is a transparent resin film. Preferred transparent resin films include acrylic resin (PMMA), acrylonitrile butadiene styrene resin (ABS), ethylene acetate butyl resin (EVAC), ethylene butyl alcohol resin (EVOH), polyamide (PA), polycarbonate (PC), and polybutylene. Terephthalate (PBT), polyethylene (PE), polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polyethersulfone (PES), polymethylpente From resins such as polyethylene (PMP), polypropylene (PP), polystyrene (PS), poly (vinyl chloride) (PVC), poly (vinylidene chloride) (PVDC), styrene-acrylonitrile resin (SAN), triacetyl cell port (TAC), etc. It is a film.
[0034] 特に、後述する、プラズマ処理等、の後処理時において、透明樹脂基板がポリェチ レンテレフタレート(PET)、トリァセチルセルロース(TAC)、ポリエチレンナフタレート (PEN)、ポリエーテルスルホン(PES)、ポリカーボネート(PC)、アクリル樹脂(PMM A)を使用することで、透過性に富み、軽量かつ非破壊の透明導電膜樹脂基板を作 製できる。 [0034] In particular, during post-treatment such as plasma treatment, which will be described later, the transparent resin substrate is polyethylene terephthalate (PET), triacetyl cellulose (TAC), polyethylene naphthalate (PEN), polyethersulfone (PES), By using polycarbonate (PC) and acrylic resin (PMM A), it is possible to produce a transparent, conductive resin substrate that is light and non-destructive.
[0035] これら透明樹脂基板上には、ハードコート層(CHC)を有することが好ましい。  [0035] It is preferable to have a hard coat layer (CHC) on these transparent resin substrates.
[0036] 上記透明樹脂基板がハードコート層を有することで、より硬質な表面となり、耐傷性 、耐衝撃性を向上させることができ、密着性をもよりよく向上させること力 Sできる。  [0036] When the transparent resin substrate has a hard coat layer, the surface becomes harder, scratch resistance and impact resistance can be improved, and adhesion can be further improved.
[0037] ハードコート層としては、活性線硬化樹脂層が好ましく用いられる。活性線硬化樹 脂層とは紫外線や電子線のような活性線照射により架橋反応等を経て硬化する樹脂 を主たる成分とする層をいう。活性線硬化樹脂としては、エチレン性不飽和二重結合 を有するモノマーを含む成分が好ましく用いられ、紫外線や電子線のような活性線を 照射することによって硬化させてハードコート層が形成される。活性線硬化樹脂とし ては紫外線硬化性樹脂や電子線硬化性樹脂等が代表的なものとして挙げられるが、 紫外線照射によって硬化する樹脂が好ましい。  [0037] As the hard coat layer, an actinic radiation curable resin layer is preferably used. The actinic radiation curable resin layer is a layer mainly composed of a resin that is cured through a crosslinking reaction or the like by irradiation with actinic rays such as ultraviolet rays or electron beams. As the actinic radiation curable resin, a component containing a monomer having an ethylenically unsaturated double bond is preferably used, and a hard coat layer is formed by curing by irradiation with actinic radiation such as ultraviolet rays or electron beams. Typical examples of the actinic radiation curable resin include an ultraviolet curable resin and an electron beam curable resin, and a resin curable by ultraviolet irradiation is preferable.
[0038] 紫外線硬化性樹脂としては、例えば、紫外線硬化型ウレタンアタリレート系樹脂、紫 外線硬化型ポリエステルアタリレート系樹脂、紫外線硬化型エポキシアタリレート系樹 脂、紫外線硬化型ポリオールアタリレート系樹脂、又は紫外線硬化型エポキシ樹脂 等が好ましく用いられる。  [0038] Examples of the ultraviolet curable resin include an ultraviolet curable urethane acrylate resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, Alternatively, an ultraviolet curable epoxy resin or the like is preferably used.
[0039] 紫外線硬化型アクリルウレタン系樹脂は、一般にポリエステルポリオールにイソシァ ネートモノマー、又はプレポリマーを反応させて得られた生成物に更に 2—ヒドロキシ ェチルアタリレート、 2—ヒドロキシェチルメタタリレート(以下アタリレートにはメタクリレ ートを包含するものとしてアタリレートのみを表示する)、 2—ヒドロキシプロピルアタリレ ート等の水酸基を有するアタリレート系のモノマーを反応させることによって容易に得 ること力 S出来る。例えば、特開昭 59— 151110号に記載のものを用いることが出来る 。例えば、ュニディック 17— 806 (大日本インキ (株)製) 100部とコロネート L (日本ポ リウレタン (株)製)一部との混合物等が好ましく用いられる。 [0039] The ultraviolet curable acrylic urethane resin is generally obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer, and further adding 2-hydroxyethyl acrylate or 2-hydroxyethyl methacrylate. (Hereinafter, acrylate includes only acrylate as including methacrylate), and can be easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate. Force S is possible. For example, those described in JP-A-59-151110 can be used. . For example, a mixture of 100 parts of Unidic 17-806 (Dainippon Ink Co., Ltd.) and part of Coronate L (Nihon Polyurethane Co., Ltd.) is preferably used.
[0040] 紫外線硬化型ポリエステルアタリレート系樹脂としては、一般にポリエステルポリオ ールに 2—ヒドロキシェチルアタリレート、 2—ヒドロキシアタリレート系のモノマーを反 応させると容易に形成されるものを挙げることが出来、特開昭 59— 151112号に記 載のものを用いることが出来る。 [0040] Examples of the UV curable polyester acrylate resin generally include those which are easily formed when 2-hydroxyethyl acrylate or 2-hydroxy acrylate monomer is reacted with polyester polyol. Those described in JP-A-59-151112 can be used.
[0041] 紫外線硬化型エポキシアタリレート系樹脂の具体例としては、エポキシアタリレート をオリゴマーとし、これに反応性希釈剤、光反応開始剤を添加し、反応させて生成す るものを挙げること力 S出来、特開平 1— 105738号に記載のものを用いることが出来る[0041] As a specific example of an ultraviolet curable epoxy acrylate resin, an epoxy acrylate is an oligomer, and a reactive diluent and a photoinitiator are added to this to react with it. S can be used, and those described in JP-A-1-105738 can be used.
Yes
[0042] 紫外線硬化型ポリオールアタリレート系樹脂の具体例としては、トリメチロールプロ ノ ントリアタリレート、ジトリメチロールプロパンテトラアタリレート、ペンタエリスリトールト リアタリレート、ペンタエリスリトールテトラアタリレート、ジペンタエリスリトールへキサァ タリレート、アルキル変性ジペンタエリスリトールペンタアタリレート等を挙げることが出 来る。  [0042] Specific examples of the ultraviolet curable polyol atallylate resin include trimethylolprononetriatalylate, ditrimethylolpropanetetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexatalylate, Examples include alkyl-modified dipentaerythritol pentaatarylate.
[0043] これら紫外線硬化性樹脂の光反応開始剤としては、具体的には、ベンゾイン及び その誘導体、ァセトフエノン、ベンゾフエノン、ヒドロキシベンゾフエノン、ミヒラーズケト ン、 α —アミ口キシムエステル、チォキサントン等及びこれらの誘導体を挙げることが 出来る。光増感剤と共に使用してもよい。上記光反応開始剤も光増感剤として使用 出来る。又、エポキシアタリレート系の光反応開始剤を使用する際、 η—プチルァミン 、トリェチルァミン、トリ—η—ブチルホスフィン等の増感剤を用いることが出来る。紫外 線硬化樹脂組成物に用レ、られる光反応開始剤又光増感剤は該組成物 100質量部 に対して 0. ;!〜 15質量部であり、好ましくは 1〜; 10質量部である。  [0043] Specific examples of photoinitiators of these ultraviolet curable resins include benzoin and its derivatives, acetophenone, benzophenone, hydroxybenzophenone, Michler's keton, α-amiguchi oxime ester, thixanthone, and the like. Derivatives can be mentioned. You may use with a photosensitizer. The above photoinitiator can also be used as a photosensitizer. Moreover, when using an epoxy acrylate-based photoreaction initiator, a sensitizer such as η-butylamine, triethylamine, or tri-η-butylphosphine can be used. The photoreaction initiator or photosensitizer used in the ultraviolet ray curable resin composition is 0.;! To 15 parts by mass, preferably 1 to 10 parts by mass with respect to 100 parts by mass of the composition. is there.
[0044] 樹脂モノマーとしては、例えば、不飽和二重結合が 1つのモノマーとして、メチルァ タリレート、ェチルアタリレート、ブチルアタリレート、ベンジルアタリレート、シクロへキ シルアタリレート、酢酸ビュル、スチレン等の一般的なモノマーを挙げることが出来る 。又不飽和二重結合を 2つ以上持つモノマーとして、エチレングリコールジァクリレー ト、プロピレングリコーノレジアタリレート、ジビニノレベンゼン、 1 , 4ーシクロへキサンジァ タリレート、 1 , 4ーシクロへキシノレジメチノレアジアタリレート、前出のトリメチローノレプロ パントリアタリレート、ペンタエリスリトールテトラアクリルエステル等を挙げることが出来 [0044] Examples of the resin monomer include monomers having one unsaturated double bond such as methyl acrylate, ethyl acrylate, butyl acrylate, benzyl acrylate, cyclohexyl acrylate, butyl acetate, and styrene. Common monomers can be mentioned. In addition, monomers having two or more unsaturated double bonds include ethylene glycol diacrylate, propylene glycolo-resin tallylate, divinino benzene, 1,4-cyclohexane di Examples include talirate, 1,4-cyclohexinoresimethinole asiatalylate, the above-mentioned trimethylonorepro pantoriatalylate, and pentaerythritol tetraacrylic ester.
[0045] 本発明にお!/、て使用し得る紫外線硬化樹脂の市販品としては、アデカオブトマー KR.BYシリーズ: KR— 400、 KR— 410、 KR— 550、 KR— 566、 KR— 567、 BY — 320B (旭電化(株)製);コーエイハード A— 101— KK、 A— 101— WS、 C— 302 、 C— 401— N、 C— 501、 M—皿、 M— 102、 T— 102、 D— 102、 NS—皿、 F T— 102Q8、 MAG— 1— P20、 AG— 106、 M—皿— C (広栄化学(株)製);セィ 力ビーム PHC2210 (S)、 PHC X— 9 (K— 3)、 PHC2213、 DP— 10、 DP— 20、 DP— 30、 P1000、 P1100、 P1200、 P1300、 P1400、 P1500、 P1600、 SCR90 0 (大日精化工業(株)製)、ァロニックス M— 6100、 M— 8030、 M— 8060 (東亞合 成 (株)製)等を適宜選択して利用出来る。 [0045] Examples of commercially available UV curable resins that can be used in the present invention include: Adeka Obtomer KR.BY series: KR-400, KR-410, KR-550, KR-566, KR-567, BY — 320B (manufactured by Asahi Denka Co., Ltd.); Koei Hard A—101—KK, A—101—WS, C—302, C—401—N, C—501, M—dish, M—102, T—102 , D—102, NS—Dish, FT—102Q8, MAG—1—P20, AG—106, M—Dish—C (manufactured by Guangei Chemical Co., Ltd.); Se force beam PHC2210 (S), PHC X—9 ( K—3), PHC2213, DP—10, DP—20, DP—30, P1000, P1100, P1200, P1300, P1400, P1500, P1600, SCR90 0 (manufactured by Dainichi Chemical Industries), Aronix M—6100 M-8030, M-8060 (manufactured by Toagosei Co., Ltd.) and the like can be selected as appropriate.
[0046] 又、具体的化合物例としては、トリメチロールプロパントリアタリレート、ジトリメチロー ノレプロパンテトラアタリレート、ペンタエリスリトーノレトリアタリレート、ペンタエリスリトー ルテトラアタリレート、ジペンタエリスリトールへキサアタリレート、アルキル変性ジペン タエリスリトールペンタアタリレート等を挙げることが出来る。  [0046] Specific examples of the compound include trimethylolpropane tritalylate, ditrimethylol nonrepropane tetratalate, pentaerythritol retriate, pentaerythritol tetratalate, dipentaerythritol hexaatalylate, Examples thereof include alkyl-modified dipentaerythritol pentaacrylate.
[0047] これらの活性線硬化樹脂層はグラビアコータ、ディップコータ、リバースコータ、ワイ ヤーバーコータ、ダイコータ、インクジェット法等公知の方法で上記透明基板上に塗 設することが出来る。  [0047] These actinic ray curable resin layers can be coated on the transparent substrate by a known method such as a gravure coater, a dip coater, a reverse coater, a wire bar coater, a die coater, and an ink jet method.
[0048] 紫外線硬化性樹脂を光硬化反応により硬化させ、硬化皮膜層を形成するための光 源としては、紫外線を発生する光源であれば制限なく使用出来る。例えば、低圧水 銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライド ランプ、キセノンランプ等を用いることが出来る。照射条件はそれぞれのランプによつ て異なるが、活性線の照射量は好ましくは、 5〜150mj/cm2であり、特に好ましくは 20〜100mj/cm2である。又、活性線を照射する際には、フィルムの搬送方向に張 力を付与しながら行うことが好ましぐ更に好ましくは幅方向にも張力を付与しながら 行うことである。付与する張力は 30〜300N/mが好ましい。 [0048] As a light source for curing an ultraviolet curable resin by a photocuring reaction to form a cured film layer, any light source that generates ultraviolet light can be used without any limitation. For example, a low-pressure mercury lamp, medium-pressure mercury lamp, high-pressure mercury lamp, ultrahigh-pressure mercury lamp, carbon arc lamp, metal halide lamp, xenon lamp, or the like can be used. Irradiation conditions vary depending on each lamp, but the irradiation amount of active rays is preferably 5 to 150 mj / cm 2 , particularly preferably 20 to 100 mj / cm 2 . Further, when irradiating actinic radiation, it is preferable to apply tension in the film transport direction, and more preferably to apply tension in the width direction. The tension to be applied is preferably 30 to 300 N / m.
[0049] 紫外線硬化樹脂層組成物塗布液の有機溶媒としては、例えば、炭化水素類(トル ェン、キシレン、)、アルコール類(メタノール、エタノール、イソプロパノール、ブタノー ノレ、シクロへキサノール)、ケトン類(アセトン、メチルェチルケトン、メチルイソブチルケ トン)、エステル類(酢酸メチル、酢酸ェチル、乳酸メチル)、グリコールエーテル類、 その他の有機溶媒の中から適宜選択し、或いはこれらを混合し利用出来る。プロピレ ングリコールモノアルキルエーテル(アルキル基の炭素原子数として 1〜4)又はプロ ピレンダリコールモノアルキルエーテル酢酸エステル(アルキル基の炭素原子数とし て 1〜4)等を 5質量%以上、より好ましくは 5〜80質量%以上含有する上記有機溶 媒を用いるのが好ましい。 [0049] Examples of the organic solvent for the UV curable resin layer composition coating solution include hydrocarbons (toluene). , Xylene,), alcohols (methanol, ethanol, isopropanol, butanol, cyclohexanol), ketones (acetone, methyl ethyl ketone, methyl isobutyl ketone), esters (methyl acetate, ethyl acetate, lactic acid) Methyl), glycol ethers, and other organic solvents, or a mixture thereof can be used. Propylene glycol monoalkyl ether (1 to 4 carbon atoms of the alkyl group) or propylene glycol monoalkyl ether acetate (1 to 4 carbon atoms of the alkyl group), etc., 5% by mass or more, more preferably It is preferable to use the above organic solvent containing 5 to 80% by mass or more.
[0050] 紫外線硬化性樹脂組成物塗布液の塗布方法としては、前述のものを用いることが 出来る。塗布量はウエット膜厚として 0. ;!〜 30 mが適当で、好ましくは、 0. 5〜15 〃mである。又、ドライ膜厚としては 0. 1— 20 ^ 111,好ましくは;!〜 20〃 mである。特 に好ましくは 8〜20 μ mである。  [0050] As the method for applying the ultraviolet curable resin composition coating solution, the above-described methods can be used. The coating amount is suitably 0.5;! To 30 m as a wet film thickness, and preferably 0.5 to 15 μm. The dry film thickness is 0.1-20 ^ 111, preferably; Particularly preferably, it is 8 to 20 μm.
[0051] 又、鉛筆硬度は、 2H〜8Hのハードコート層であることが好ましい。特に好ましくは 3 H〜6Hであることが好ましい。鉛筆硬度は、作製したハードコートフィルム試料を温 度 25°C、相対湿度 60%の条件で 2時間調湿した後、 JIS - S - 6006が規定する試 験用鉛筆を用いて、 JIS— K 5400が規定する鉛筆硬度評価方法に従い、 1kgの 加重にて各硬度の鉛筆で引つ搔きを 10回繰り返し、傷が全く認められない引つ搔き の硬度を表したものである。  [0051] The pencil hardness is preferably a hard coat layer of 2H to 8H. Particularly preferred is 3 H to 6H. Pencil hardness is JIS-K using the test pencil specified in JIS-S-6006 after conditioning the prepared hard coat film sample for 2 hours at 25 ° C and 60% relative humidity. According to the pencil hardness evaluation method stipulated by 5400, this is a representation of the hardness of a pencil that has been scratched 10 times with a pencil of each hardness at a weight of 1 kg and no scratches are observed.
[0052] 本発明において、透明樹脂基板上、ハードコート層上に形成される酸化珪素層は 、本発明において、透明導電膜材料である酸化チタン TiO層(薄膜)と、樹脂基材の 直接の接触を回避して、その界面で、相互に成分が拡散させないようにする層であり 、樹脂基材中の有機ポリマー、オリゴマー、低分子成分等の浸透を抑える役割を有 する。  [0052] In the present invention, the silicon oxide layer formed on the transparent resin substrate and the hard coat layer in the present invention is a titanium oxide TiO layer (thin film), which is a transparent conductive film material, and a resin substrate directly. It is a layer that avoids contact and prevents components from diffusing each other at the interface, and has a role of suppressing permeation of organic polymers, oligomers, low molecular components and the like in the resin substrate.
[0053] 本発明に係わる酸化珪素層は、 50nm以下にすることで透明性を維持できる。  [0053] The silicon oxide layer according to the present invention can maintain its transparency by being 50 nm or less.
[0054] 本発明に係わる酸化珪素層は、大気圧プラズマ CVD法により成膜することができ る。酸化珪素層を、樹脂基材と酸化チタン系薄膜の間に大気圧プラズマ CVD法によ つて成膜することで、絶縁性かつブロック性が高い、より緻密な酸化珪素を堆積させ ること力 Sでさる。 [0055] (大気圧プラズマ CVD法) [0054] The silicon oxide layer according to the present invention can be formed by an atmospheric pressure plasma CVD method. The ability to deposit denser silicon oxide with high insulation and blocking properties by depositing a silicon oxide layer between the resin substrate and the titanium oxide thin film using the atmospheric pressure plasma CVD method S I'll do it. [0055] (Atmospheric pressure plasma CVD method)
以下に、本発明に係る酸化珪素層の成膜に適用する大気圧プラズマ CVD法(以 下大気圧プラズマ法とも!/、う)につ!/、て説明する。  Hereinafter, the atmospheric pressure plasma CVD method (hereinafter also referred to as “atmospheric pressure plasma method”) applied to the formation of the silicon oxide layer according to the present invention will be described.
[0056] 大気圧近傍でのプラズマ CVD処理を行う大気圧プラズマ法は、真空下のプラズマ CVD法に比べ、減圧にする必要がないため生産性が高いだけでなぐプラズマ密度 が高密度であるために製膜速度が速ぐ更には通常の CVD法の条件に比較して、 大気圧下という高圧力条件では、ガスの平均自由工程も非常に短いため、極めて平 坦な膜が得られる。そのような平坦な膜は、光学特性が良好である。  [0056] The atmospheric pressure plasma method for performing plasma CVD processing near atmospheric pressure does not need to be reduced in pressure compared to the plasma CVD method under vacuum, and therefore has a high plasma density as well as high productivity. In addition, the film formation speed is high, and even under high pressure conditions under atmospheric pressure, the mean free path of the gas is very short compared to the conditions of normal CVD, so an extremely flat film can be obtained. Such a flat film has good optical properties.
[0057] 本発明に係る酸化珪素層は、大気圧もしくはその近傍の圧力下で、高周波電界を 発生させた放電空間に酸化珪素膜形成ガスを含有するガスを供給して励起し、透明 樹脂基板を該励起したガスに晒すことにより、透明樹脂基板上に酸化珪素層を形成 するものである。  [0057] The silicon oxide layer according to the present invention is excited by supplying a gas containing a silicon oxide film-forming gas to a discharge space where a high-frequency electric field is generated under atmospheric pressure or a pressure near the atmospheric pressure. Is exposed to the excited gas to form a silicon oxide layer on the transparent resin substrate.
[0058] 本発明でいう大気圧もしくはその近傍の圧力とは、 20kPa〜; UOkPa程度であり、 本発明に記載の良好な効果を得るためには、 93kPa〜; 104kPaが好ましい。  [0058] The atmospheric pressure or the pressure in the vicinity thereof in the present invention is about 20 kPa to UOkPa, and 93 kPa to 104 kPa is preferable in order to obtain the good effects described in the present invention.
[0059] また、本発明でいう励起したガスとは、エネルギーを得ることによって、ガス中の分 子の少なくとも一部が、今ある状態からより高い状態へ移ることをいい、励起ガス分子 、ラジカル化したガス分子、イオン化したガス分子を含むガスがこれに該当する。  [0059] The excited gas as used in the present invention means that at least a part of the molecules in the gas move from the existing state to a higher state by obtaining energy. This includes gas molecules containing ionized gas molecules and gas molecules containing ionized gas molecules.
[0060] すなわち、対向電極間(放電空間)を、大気圧もしくはその近傍の圧力とし、へリウ ム、アルゴン等の希ガスもしくは窒素などの不活性ガスを放電ガスに用い、テトラエト キシシラン等の酸化珪素膜形成ガス (原料ガス)を含む金属酸化物形成ガスを対向 電極間に導入し、高周波電圧を対向電極間に印加して原料ガスをプラズマ状態とし 、続いてプラズマ状態になった酸化珪素薄膜形成ガスに基材を晒して、透明基板上 に酸化珪素層を形成する。  [0060] That is, the pressure between the opposing electrodes (discharge space) is set to atmospheric pressure or a pressure in the vicinity thereof, and a rare gas such as helium, argon, or an inert gas such as nitrogen is used as a discharge gas, and oxidation of tetraethoxysilane or the like is performed. A silicon oxide thin film in which a metal oxide forming gas containing a silicon film forming gas (raw material gas) is introduced between the opposing electrodes, a high frequency voltage is applied between the opposing electrodes to change the raw material gas into a plasma state, and then into a plasma state. The substrate is exposed to the forming gas to form a silicon oxide layer on the transparent substrate.
[0061] 酸化珪素薄膜 (層)を形成する原料ガスとして用いられる有機珪素化合物としては、 例えば、テトラエチルシラン、テトラメチルシラン、テトライソプロビルシラン、テトラプチ ノレシラン、テトラエトキシシラン、テトライソプロポキシシラン、テトラブトキシシラン、ジメ チノレジメトキシシラン、ジェチノレジェトキシシラン、ジェチノレシランジ(2, 4—ペンタン ジ才ナート)、メチノレトリメトキシシラン、メチノレトリエトキシシラン、ェチノレトリエトキシシ ラン、 2—(3, 4—エポキシシクロへキシノレ)ェチノレトリメトキシシラン、 3—グリシドキシ シドキシプロピルトリエトキシシラン、 p—スチリルトリメトキシシラン、 3—メタクリロキシ [0061] Examples of the organic silicon compound used as the raw material gas for forming the silicon oxide thin film (layer) include tetraethylsilane, tetramethylsilane, tetraisopropyl silane, tetrabutylensilane, tetraethoxysilane, tetraisopropoxysilane, tetra Butoxysilane, Dimethylenoresimethoxysilane, Jetinoregetoxysilane, Jetinoresilanedi (2,4-pentane dinate), Methylenotrimethoxysilane, Methylenotriethoxysilane, Ethinotritriethoxysilane Lan, 2- (3,4-epoxycyclohexenole) ethinoretrimethoxysilane, 3-glycidoxy-sidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxy
ン、 3—アタリロキシプロビルトリメトキシシラン、 N— 2—アミノエチルー 3—ァミノプロピ 3-Atalyloxypropyl trimethoxysilane, N-2-aminoethyl-3-aminopropyl
、 N— 2—アミノエチルー 3—ァミノプロピルジェトキシシラン、 3—ァミノプロピルトリメト キシシラン、 3—ァミノプロピルトリエトキシシラン、 3—トリエトキシシリル一 N— (1 , 3- ジメチル一ブチリデン)プロピルァミン、 N—フエニル一 3—ァミノプロピルトリメトキシシ ラン等を挙げることが出来、何れも本発明において好ましく用いることが出来る。これ らを 2種以上同時に混合して使用することも出来る。 , N-2-aminoethyl-3-amino-propyl methoxysilane, 3-aminopropyltrimethyoxysilane, 3-aminopropyltriethoxysilane, 3-triethoxysilyl mono-N- (1,3-dimethyl monobutylidene) Propylamine, N-phenyl-1-3-aminopropyltrimethoxysilane and the like can be mentioned, and any of them can be preferably used in the present invention. Two or more of these can be mixed and used at the same time.
[0062] 反応促進ガスは、反応や膜質を制御するために導入される。反応促進ガスとしては 、水素、酸素、窒素酸化物、アンモニア、炭化水素類、アルコール類、有機酸類また は水分等がありこれらを該ガスに対して 0. 001体積%〜30体積%混合させて使用 してもよい。中でも酸素、水素、水、二酸化炭素などが好ましく用いられる。 [0062] The reaction promoting gas is introduced to control the reaction and film quality. Examples of the reaction promoting gas include hydrogen, oxygen, nitrogen oxides, ammonia, hydrocarbons, alcohols, organic acids or moisture, and these are mixed in an amount of 0.001% to 30% by volume with respect to the gas. May be used. Of these, oxygen, hydrogen, water, carbon dioxide and the like are preferably used.
[0063] 大気圧プラズマ CVD法、およびこれを行う装置については、後に詳述する。 [0063] The atmospheric pressure plasma CVD method and an apparatus for performing this will be described in detail later.
[0064] 次に本発明に係わる酸化チタン系透明導電膜について詳述する。 Next, the titanium oxide based transparent conductive film according to the present invention will be described in detail.
[0065] 本発明において、前記酸化珪素層上に設けられる導電性の酸化チタン系薄膜は、 ドープされた酸化チタンを主体とする層であり、スパッタ法、蒸着法、 CVD法のいず れかにより成膜されることが、低温下で酸化チタン系薄膜を形成させることができ好ま しい。 [0065] In the present invention, the conductive titanium oxide thin film provided on the silicon oxide layer is a layer mainly composed of doped titanium oxide, and is any one of a sputtering method, a vapor deposition method, and a CVD method. It is preferable that the titanium oxide thin film be formed at a low temperature.
[0066] スパッタ法は、高融点材料や化合物でも比較的容易に膜形成が可能であり、蒸着 法のように熱的過程ではなぐ薄膜に形成する材料を溶解する必要がないので、ター ゲット材料として酸化チタン等、酸化物等の高融点の材料でも容易に成膜可能であ  [0066] The sputtering method can form a film relatively easily even with a high melting point material or compound, and it is not necessary to dissolve the material that is formed in a thin film that is not necessary in the thermal process unlike the vapor deposition method. It is possible to form a film easily even with a high melting point material such as titanium oxide and the like.
[0067] スパッタ法によって、酸化物膜を成膜するには、金属(例えばチタン)のターゲットに 、スパッタ(数 Paの雰囲気下)、窒素ガスや酸素ガス等の反応性ガスを導入して、例 えば、 DC放電スパッタ、 RFスパッタ、或いはターゲットに対向して基板を配置して、 ターゲット表面のイオンや中性粒子の衝突により、ターゲットの粒子をはじき飛ばして 基材表面に付着し膜形成する。ターゲットのスパッタを行う近傍にマグネットを配置し て磁界を印カロ、ターゲット表面のイオンや中性粒子の衝突を増加させて、成膜速度 を大きくしたマグネトロン方式を用いてもよい。 [0067] In order to form an oxide film by sputtering, a reactive gas such as nitrogen gas or oxygen gas is introduced into a metal (for example, titanium) target by sputtering (in an atmosphere of several Pa), Example For example, a substrate is placed facing DC discharge sputtering, RF sputtering, or the target, and the target particles are repelled by the collision of ions or neutral particles on the target surface to adhere to the substrate surface and form a film. A magnetron method may be used in which a magnet is placed near the target to be sputtered to apply a magnetic field, and collisions of ions and neutral particles on the target surface are increased to increase the deposition rate.
[0068] また、蒸着方式は、成膜しょうとする基材と成膜原料を容器内におき、全体を真空 状態(10— 3〜10— 4Pa程度)にして、原料を熱で溶かす (蒸発させる。)。これにより原料 が気体分子となり、基材に衝突、付着して膜が形成される。加熱溶解の方法によって 、抵抗加熱式、電子ビーム式、高周波誘導式、レーザー式などがある。 [0068] Further, the deposition method, placing the substrate and the film forming material to be cane deposited into the container, and the entire vacuum (10-3 to 10-about 4 Pa), dissolved feedstock with hot ( Evaporate). As a result, the raw material becomes gas molecules, which collide with and adhere to the substrate to form a film. Depending on the heating and melting method, there are a resistance heating type, an electron beam type, a high frequency induction type, a laser type and the like.
[0069] CVD法は、真空下(10— 3Pa程度)、ガス状原料の気相での表面における反応を利 用して、原料分子に含まれる元素を構成要素とする薄膜を基材上に堆積する方法で ある。 [0069] CVD method, under vacuum (10 3 about Pa), and take advantage of the reaction at the surface of the gas phase of the gaseous raw material, thin film on a substrate that a component of the elements contained in the raw material molecule It is a method to deposit on.
[0070] 薄膜を堆積しょうとする基板を加熱し、熱エネルギーによって原料分子を分解反応 させる方法は、熱 CVDと呼ばれるが、本発明においてはプラズマ CVDとよばれる方 法が好ましい。プラズマ CVDでは、放電ガス、原料分子を含むガスのプラズマを生 成させ、そのプラズマ中で加速された電子によって原料分子(例えばチタンテトラエト キシド等を含む原料ガス)を分解させる。これらの CVD法にお!/、ては膜堆積の進行 自体には加熱は不要である。また放電の起こりにくい原料ガスの場合には希ガス等 の放電ガスを加えることができる。  [0070] A method in which a substrate on which a thin film is to be deposited is heated and a source molecule is decomposed by thermal energy is called thermal CVD, but in the present invention, a method called plasma CVD is preferable. In plasma CVD, a plasma of a gas containing discharge gas and source molecules is generated, and source molecules (for example, source gas containing titanium tetraethoxide) are decomposed by electrons accelerated in the plasma. In these CVD methods, heating is not necessary for the progress of film deposition itself. Further, in the case of a raw material gas that does not easily cause a discharge, a discharge gas such as a rare gas can be added.
[0071] これらの成膜方法は、いずれも、低温下で酸化チタン系薄膜を形成させることがで き好ましい。  [0071] Any of these film forming methods is preferable because a titanium oxide thin film can be formed at a low temperature.
[0072] しかしながらより好まし!/、成膜方法として大気圧プラズマ CVD法がある。  [0072] However, it is more preferable! / As a film forming method, there is an atmospheric pressure plasma CVD method.
[0073] (大気圧プラズマ CVD法)  [0073] (Atmospheric pressure plasma CVD method)
大気圧プラズマ CVD法(以下大気圧プラズマ法とも!/、う)は、大気圧近傍(20kPa 〜; UOkPa程度)においてプラズマ CVD処理を行うため製膜速度が速ぐガスの平 均自由工程が非常に短いため、極めて平坦な膜が得られることが特徴であり本発明 に係わる酸化チタン系透明導電膜の形成に有利に用いることができる。  Atmospheric pressure plasma CVD method (hereinafter also referred to as atmospheric pressure plasma method! /) Is a plasma CVD process near atmospheric pressure (20kPa ~; about UOkPa), so the average free process of gas is very fast because the film formation speed is high. Therefore, it can be advantageously used for forming a titanium oxide-based transparent conductive film according to the present invention.
[0074] 本発明において酸化チタン系透明導電膜を構成する酸化チタンを主体とする層は 、大気圧もしくはその近傍の圧力下で、高周波電界を発生させた放電空間に酸化チ タン系薄膜形成ガスを含有するガスを供給して励起し、好ましくは前記ハードコート 層を形成した透明樹脂基板を、該励起したガスに晒すことにより、前記ハードコート 層、酸化珪素層を介して、透明樹脂基板上に形成することができる。 In the present invention, the layer mainly composed of titanium oxide constituting the titanium oxide-based transparent conductive film is A transparent resin substrate formed by supplying a gas containing a titanium oxide thin film forming gas to a discharge space in which a high-frequency electric field has been generated under atmospheric pressure or a pressure in the vicinity of the discharge space, and preferably forming the hard coat layer Can be formed on the transparent resin substrate through the hard coat layer and the silicon oxide layer.
[0075] ここで、酸化チタン系透明導電膜を構成する酸化チタンを主体とする層は、意図的 に加えられるドーパント等の成分、原料ガスから取り込まれる微量成分(元素)、また、 還元条件での成膜であれば金属成分も含有され、又後述の微量成分(ドーパント)を 含む酸化チタン層である。従って、組成として少なくとも TiOを 90%以上有する膜と いう意味である。 Here, the layer mainly composed of titanium oxide constituting the titanium oxide-based transparent conductive film is a component such as a dopant that is intentionally added, a trace component (element) taken from a source gas, or a reducing condition. In this film formation, the titanium oxide layer contains a metal component and contains a trace component (dopant) described later. Therefore, it means a film having at least 90% or more of TiO as a composition.
[0076] これら酸化チタンを主体とする層は、好ましくは、本発明に係わる大気圧プラズマ C [0076] The layer mainly composed of titanium oxide is preferably an atmospheric pressure plasma C according to the present invention.
VD法を用いて後述の酸化チタン系薄膜形成ガス (原料ガス)を用いて成膜されるド ープされた酸化チタン層である。 This is a doped titanium oxide layer formed by using a titanium oxide thin film forming gas (raw material gas) described later using the VD method.
[0077] すなわち、対向電極間(放電空間)を、大気圧もしくはその近傍の圧力とし、放電ガ ス及びチタン化合物(例えば、チタンテトラエトキシド)を含む原料ガスを放電空間に 導入してプラズマ状態とし、基材を前記プラズマ状態の反応性ガスに晒すことによつ て、前記基材上に酸化チタン系薄膜を成膜する。 That is, the pressure between the counter electrodes (discharge space) is set to atmospheric pressure or a pressure near it, and a source gas containing a discharge gas and a titanium compound (for example, titanium tetraethoxide) is introduced into the discharge space to form a plasma state. Then, a titanium oxide thin film is formed on the substrate by exposing the substrate to the reactive gas in the plasma state.
[0078] 次に、本発明に係る酸化チタン系薄膜を形成するガスについて説明する。使用す るガスは、基本的に放電ガス及びチタン化合物を含有する原料ガスを構成成分とす るガスである。 Next, a gas for forming the titanium oxide thin film according to the present invention will be described. The gas to be used is basically a gas containing a discharge gas and a raw material gas containing a titanium compound as constituent components.
[0079] 放電ガスは、放電空間にお!/、て励起状態またはプラズマ状態となり透明導電層形 成ガスにエネルギーを与えて励起、またはプラズマ状態にする役割を担うガスで、希 ガスや不活性ガスを用いることを特徴とする。希ガスとしては、周期表の第 18属元素 、具体的には、ヘリウム、ネオン、ァノレゴン、クリプトン、キセノン、ラドン等を挙げること が出来る。放電ガスは、全ガス 100体積%に対し、 90. 0-99. 9体積%含有される ことが好ましい。  [0079] The discharge gas is a gas that is in an excited state or a plasma state in the discharge space and plays a role of applying energy to the transparent conductive layer forming gas to be excited or turned into a plasma state. It is a rare gas or an inert gas. It is characterized by using gas. Examples of rare gases include Group 18 elements of the periodic table, specifically, helium, neon, anoregon, krypton, xenon, radon, and the like. The discharge gas is preferably contained at 90.0-99.9% by volume with respect to 100% by volume of the total gas.
[0080] 放電ガスとしては、窒素も用いることができ、放電ガスとして窒素、アルゴン、へリウ ムが好ましい。  [0080] Nitrogen can also be used as the discharge gas, and nitrogen, argon and helium are preferred as the discharge gas.
[0081] 本発明に係る酸化チタン系薄膜の形成において、チタン化合物からなる原料ガス は、放電空間で放電ガスからエネルギーを受け励起状態またはプラズマ状態となり、 酸化チタン系薄膜を形成するガスである。このチタン化合物原料ガスは全ガス中で 0 . 01〜; 10体積%含有されることが好ましぐより好ましくは 0. ;!〜 3体積%である。 [0081] In the formation of the titanium oxide thin film according to the present invention, a raw material gas comprising a titanium compound Is a gas that receives energy from the discharge gas in the discharge space and enters an excited state or a plasma state to form a titanium oxide thin film. The titanium compound raw material gas is preferably contained in an amount of 0.01 to 10% by volume, more preferably in the range of 0.01;! To 3% by volume.
[0082] 酸化チタン系の透明導電膜を形成する原料ガスに用いられるチタン化合物として は、有機チタン化合物、チタン水素化合物、ハロゲン化チタン等があり、有機チタン 化合物としては、例えばトリエトキシチタン、トリメトキシチタン、トリイソプロポキシチタ ン、トリブトキシチタン、テトラエトキシチタン、テトライソプロポキシチタン、メチノレジメト キシチタン、ェチノレトリエトキシチタン、メチノレトリイソプロポキシチタン、トリェチノレチタ ン、トリイソプロピルチタン、トリブチルチタン、テトラエチルチタン、テトライソプロピル チタン、テトラプチノレチタン、テトラジメチノレアミノチタン、ジメチノレチタンジ(2, 4—ぺ ンタンジオナート)、ェチルチタントリ(2, 4—ペンタンジオナート)、チタントリス(2, 4 —ペンタンジオナート)、チタントリス(ァセトメチルァセタート)、トリァセトキシチタン、 ジプロポキシプロピオニルォキシチタン等、ジブチリロキシチタン、チタン水素化合物 としてはモノチタン水素化合物、ジチタン水素化合物等、ハロゲン化チタンとしては、 トリクロ口チタン、テトラクロ口チタン等を挙げることが出来、何れも本発明において好 ましく用いること力 S出来る。またこれらの薄膜形成性ガスを 2種以上を同時に混合して 使用することが出来る。また溶媒に溶解させて溶液として用いることもできる。  [0082] Examples of the titanium compound used in the source gas for forming the titanium oxide-based transparent conductive film include an organic titanium compound, a titanium hydrogen compound, and a titanium halide. Examples of the organic titanium compound include triethoxy titanium, Methoxytitanium, triisopropoxytitanium, tributoxytitanium, tetraethoxytitanium, tetraisopropoxytitanium, methinoresimethoxytitanium, ethinoretriethoxytitanium, methinoretriisopropoxytitanium, trietinoretitan, triisopropyltitanium, tributyltitanium, tetraethyltitanium , Tetraisopropyl Titanium, Tetraptinore Titanium, Tetradimethinoreamino Titanium, Dimethinore Titanium Di (2, 4-pentanedionate), Ethyl Titanium Tri (2, 4-pentanedionate), Titanium Tris (2, 4-pentanedionate), titanium tris (acetomethylacetate), triacetoxy titanium, dipropoxypropionyloxy titanium, etc., dibutyryloxy titanium, titanium hydrogen compound as monotitanium hydrogen compound, dititanium Examples of titanium halides such as hydrogen compounds can include trichrome mouth titanium and tetrachrome mouth titanium, and any of them can be used preferably in the present invention. Two or more of these thin film forming gases can be mixed and used at the same time. It can also be dissolved in a solvent and used as a solution.
[0083] (ドーピング材料)  [0083] (Doping material)
本発明においては、ドープされた TiOを用いることが 1つの特徴である。ドーピング  One feature of the present invention is to use doped TiO. Doping
2  2
用の材料としては、 TiOの Ti元素に対して周期表的な価数が異なる主に金属元素  As the material for the metal, the valence of the periodic table is different from the Ti element of TiO.
2  2
が用いることが好ましぐ特に、 V、 Nb、 Ta、 B、 Al、 Ga、 In、 Tlなどが挙げられ、中で も、本発明の目的効果である低抵抗の透明導電膜が形成できる観点から、 Nb、 Ta、 Vが好ましく用いられる。  In particular, V, Nb, Ta, B, Al, Ga, In, Tl and the like can be mentioned. Among them, a viewpoint of forming a low-resistance transparent conductive film which is an object effect of the present invention. Therefore, Nb, Ta, and V are preferably used.
[0084] 本発明の酸化チタン系薄膜の形成に於いては、酸化チタン系薄膜にニオブを含有 させることで、酸化チタン系薄膜 (透明導電膜)内でドーパントして機能し、キャリア( 電子)が発生し薄膜の導電性 (抵抗性能)を向上させることができる。  In the formation of the titanium oxide thin film of the present invention, niobium is contained in the titanium oxide thin film to function as a dopant in the titanium oxide thin film (transparent conductive film), and the carrier (electron) And the conductivity (resistance performance) of the thin film can be improved.
[0085] そのためには前記原料ガス中に下記のニオブ化合物を含有させる。本発明に有用 なドープ用原料として使用するニオブ化合物としては、有機ニオブ化合物、ニオブ水 酸化化合物、ハロゲン化ニオブ等があり、有機ニオブ合物としては、例えば、ペンタ エトキシニオブ、ペンター n—ブトキシニオブ、ペンター n—ブトキシニオブ、ニオブフ エノキシド、テトラキス(2, 2, 6, 6—テトラメチルー 3, 5—ヘプタンジォナト)ニオブ、 ニオブ水酸化化合物としては、水酸化ニオブ、ハロゲン化ニオブとしては、三塩化酸 化ニオブ、塩化ニオブなどを用いることができる。 [0085] For this purpose, the following niobium compound is contained in the source gas. Examples of the niobium compound used as a starting material useful for the present invention include organic niobium compounds and niobium water. Examples of organic niobium compounds include pentaethoxyniobium, pentater n-butoxyniobium, pentater n-butoxyniobium, niobium phenoxide, tetrakis (2, 2, 6, 6-tetramethyl-3). , 5-Heptanedioto) niobium, niobium hydroxide compound, niobium hydroxide, niobium halide, niobium trichloride, niobium chloride and the like can be used.
[0086] 原料ガス中に含有させる量としては、酸化チタン系薄膜中のドーパント量として、本 発明にお!/、て好まし!/、0. ;! 10質量%の範囲になるよう原料ガス中比率を調整する [0086] The amount contained in the source gas is such that the dopant amount in the titanium oxide thin film is within the range of 10% by mass in the present invention! /, Preferably! /,. Adjust medium ratio
[0087] 本発明では、酸化チタン系薄膜の形成において、酸化チタン系薄膜形成ガスに水 素、エチレン、アセチレン等の炭化水素、水から選ばれる還元性ガスを反応ガスとし て含有させることにより、形成された酸化チタン系薄膜をより均一に緻密にすることが でき、導電性、密着性、クラック耐性を向上させることができる。還元性ガスは全ガス 1 00体積%に対して 0. 0001〜; 10体積%が好ましぐより好ましくは 0. 00;! 5体積 %である。 In the present invention, in the formation of the titanium oxide thin film, the titanium oxide thin film forming gas contains a reducing gas selected from hydrogen, hydrocarbons such as ethylene and acetylene, and water as a reaction gas. The formed titanium oxide thin film can be made more uniform and dense, and the conductivity, adhesion, and crack resistance can be improved. The reducing gas is 0.0001 to 10% by volume with respect to 100% by volume of the total gas, more preferably 0.00; 5% by volume.
[0088] また、本発明に係る酸化チタン系薄膜の形成において、酸化性ガス、例えば、酸素 、オゾン、過酸化水素、二酸化炭素等のガスを 10体積%以下の量で混合することも できる。  [0088] In the formation of the titanium oxide thin film according to the present invention, an oxidizing gas such as oxygen, ozone, hydrogen peroxide, carbon dioxide or the like may be mixed in an amount of 10% by volume or less.
[0089] 酸化チタンを主体とする層の成膜方法が、大気圧プラズマ CVD法であることで、基 板上に酸素欠損量、ドーパントの導入量がコントロールされた結晶性の高い良質な 膜を低温下で成膜でき、さらには大面積化も可能になる。また、真空製膜ではないた め、樹脂基材、またハードコート層(CHC)から、例えば真空中のように残留溶媒や 低分子成分が表面に析出することがなぐ密着力が劣化しない。  [0089] By forming the layer mainly composed of titanium oxide by the atmospheric pressure plasma CVD method, a high-quality film with high crystallinity in which the amount of oxygen deficiency and the amount of dopant introduced is controlled on the substrate. The film can be formed at a low temperature, and the area can be increased. In addition, since it is not a vacuum film formation, the adhesion force that does not cause residual solvent and low molecular components to be deposited on the surface from the resin base material and hard coat layer (CHC), for example, in a vacuum does not deteriorate.
[0090] また、本発明に係わる、ニオブがドーパントしてドープされた酸化チタンを主体とす る薄膜は、成膜後、更に、大気圧または大気圧近傍の圧力下で、少なくとも水素ガス 、水蒸気のレ、ずれ力、を含む混合ガスを反応性ガスとして放電空間に導入してプラズ マ状態とし、基材を前記プラズマ状態の反応性ガスに晒す処理を行うことが好ましレ、  [0090] In addition, a thin film mainly composed of titanium oxide doped with niobium as a dopant according to the present invention, after film formation, is further at least hydrogen gas, water vapor under atmospheric pressure or pressure near atmospheric pressure. It is preferable to perform a treatment in which a mixed gas containing the above-mentioned deviation force is introduced into the discharge space as a reactive gas into a plasma state, and the substrate is exposed to the reactive gas in the plasma state.
[0091] これによつて、従来のドープされた酸化チタン系薄膜の導電性を向上させるために 必要であった高温(300°C、或いは 400°C以上)での熱処理が不要となり、これによ つて、耐熱温度の低い本発明に係わる樹脂基材を用いても TiO系透明導電膜を有 利により低抵抗化できることがわかった。本発明においては、前記の高温での後処理 (熱処理)に比べ、 200°C以下、好ましくは、 150°C以下という金属酸化物薄膜の成 膜条件としては比較的低温での後処理によって、樹脂基材上に導電性の高い、耐久 性のある透明導電膜を形成することができる。 [0091] Accordingly, in order to improve the conductivity of the conventional doped titanium oxide thin film Heat treatment at the required high temperature (300 ° C or 400 ° C or higher) is no longer necessary, and this makes it possible to have a TiO-based transparent conductive film even when using the resin base material according to the present invention having a low heat resistance temperature. It has been found that the resistance can be lowered by the advantage. In the present invention, as a film forming condition of the metal oxide thin film of 200 ° C. or less, preferably 150 ° C. or less, compared with the above-described post-treatment (heat treatment) at a high temperature, the post-treatment at a relatively low temperature is used. A highly conductive and durable transparent conductive film can be formed on the resin substrate.
[0092] 以下に、本発明に係る大気圧プラズマ法について、図を用いて説明する。 Hereinafter, the atmospheric pressure plasma method according to the present invention will be described with reference to the drawings.
[0093] 本発明に適用可能な大気圧プラズマ放電処理装置としては、特に制限はないが、 大きくは、以下の 2つの方式が挙げられる。 There are no particular limitations on the atmospheric pressure plasma discharge treatment apparatus applicable to the present invention, but the following two methods can be given as major examples.
[0094] 1つの方法は、プラズマジェット型大気圧プラズマ放電処理装置といわれる方法で 、対向電極間に高周波電圧を印加し、その対向電極間に放電ガスを含む混合ガスを 供給して、該混合ガスをプラズマ化し、次いでプラズマ化した混合ガスと、透明導電 層形成ガスとを会合、混合した後、透明基板上に吹き付けて透明導電層を形成する 方法である。 [0094] One method is a method called a plasma jet type atmospheric pressure plasma discharge treatment apparatus, in which a high-frequency voltage is applied between opposing electrodes, a mixed gas containing a discharge gas is supplied between the opposing electrodes, and the mixing is performed. In this method, the gas is turned into plasma, and then the plasma mixed gas and the transparent conductive layer forming gas are combined and mixed, and then sprayed onto the transparent substrate to form the transparent conductive layer.
[0095] 他方の方法は、ダイレクト型大気圧プラズマ放電処理装置と!/、われる方法で、放電 ガスを含む混合ガスと透明導電層形成ガスとを混合した後、対向電極間に、透明基 材を担持した状態で、その放電空間に上記ガスを導入し、対向電極間に高周波電圧 を印加して、透明基板上に透明導電層を形成する方法である。  [0095] The other method is a direct type atmospheric pressure plasma discharge treatment apparatus, which mixes a mixed gas containing a discharge gas and a transparent conductive layer forming gas, and then, between the opposing electrodes, a transparent substrate. In this state, the gas is introduced into the discharge space and a high frequency voltage is applied between the opposing electrodes to form a transparent conductive layer on the transparent substrate.
[0096] 図 2は、本発明に係るプラズマジェット型大気圧プラズマ放電処理装置の一例を示 す概略図である。なお、本発明はこれに限定されない。また、以下の説明には用語 等に対する断定的な表現が含まれている場合があるが、本発明の好ましい例を示す ものであって、本発明の用語の意義や技術的な範囲を限定するものではない。  FIG. 2 is a schematic view showing an example of a plasma jet type atmospheric pressure plasma discharge treatment apparatus according to the present invention. The present invention is not limited to this. In addition, the following explanation may include assertive expressions for terms, etc., but it is a preferred example of the present invention and limits the meaning and technical scope of the terms of the present invention. It is not a thing.
[0097] 図 2において、大気圧プラズマ放電処理装置 21は、電源 31に接続した 1対の電極  In FIG. 2, the atmospheric pressure plasma discharge treatment device 21 includes a pair of electrodes connected to a power source 31.
41a, 41b力 2対平行に併設されている。電極 41a、 41bは、各々少なくとも一方を 誘電体 42で被覆されており、その電極間で形成された放電空間 43に、電源 31によ り高周波電圧が印加される様になつている。  41a, 41b force 2 pairs parallel. At least one of the electrodes 41a and 41b is covered with a dielectric 42, and a high frequency voltage is applied by a power source 31 to a discharge space 43 formed between the electrodes.
[0098] 電極 41a、 41bの内部は中空構造 44になっており、放電中は水、オイルなどによつ て放電により発生する熱をとり、かつ安定な温度に保てるよう熱交換ができるようにな つている。 [0098] The inside of the electrodes 41a and 41b has a hollow structure 44 so that heat generated by the discharge can be taken by water, oil, etc. during discharge and heat exchange can be performed so as to maintain a stable temperature. Na It is.
[0099] また、記載のない各ガス供給手段により、放電に必要な放電ガスを含むガス 22が、 流路 24を通って放電空間 43に供給され、この放電空間 43に高周波電圧を印加して プラズマ放電が発生することにより、放電ガスを含むガス 22はプラズマ化される。ブラ ズマ化されたガス 22は、混合空間 45に噴出する。  [0099] Further, by each gas supply means not described, the gas 22 containing the discharge gas necessary for the discharge is supplied to the discharge space 43 through the flow path 24, and a high frequency voltage is applied to the discharge space 43. When the plasma discharge is generated, the gas 22 including the discharge gas is turned into plasma. The gas 22 that has been made into a plasma jets into the mixing space 45.
[0100] 一方、各ガス供給手段(不図示)により供給された、薄膜の形成に必要な原料ガス を含む混合ガス 23は流路 25を通り、同じく混合空間 45へ運ばれ、前記プラズマ化さ れた放電ガス 22と合流、混合され、移動ステージ 47に乗せられた透明樹脂基板ある いは最表面にハードコート層を有する透明樹脂基板(以下、総称して基材と!/、う) 46 上へ吹き付けられる。  [0100] On the other hand, the mixed gas 23 containing the source gas necessary for forming the thin film supplied by each gas supply means (not shown) passes through the flow path 25 and is also transported to the mixed space 45, where it is converted into the plasma. A transparent resin substrate that is merged with and mixed with the discharged discharge gas 22 and placed on a moving stage 47 or a transparent resin substrate having a hard coat layer on the outermost surface (hereinafter collectively referred to as a base material! /) Sprayed up.
[0101] プラズマ化された混合ガスに接触した薄膜形成用混合ガスは、プラズマのエネルギ 一により活性化され化学的な反応を起こし、基材 46上に所望の薄膜が形成される。  The thin film forming mixed gas in contact with the plasma mixed gas is activated by the energy of the plasma to cause a chemical reaction, and a desired thin film is formed on the substrate 46.
[0102] このプラズマジェット型大気圧プラズマ放電処理装置は、薄膜の形成に必要な原料 ガスを含む混合ガスが活性化された放電ガスに挟まれる、もしくは囲まれる様な構造 を有している。  This plasma jet type atmospheric pressure plasma discharge treatment apparatus has a structure in which a mixed gas containing a raw material gas necessary for forming a thin film is sandwiched or surrounded by an activated discharge gas.
[0103] 基材が乗っている移動ステージ 47は往復走査、もしくは連続走査が可能な構造を 有しており、必要に応じて、基材の温度が保てる様に前記電極と同じような熱交換が できる構造になっている。  [0103] The moving stage 47 on which the substrate is mounted has a structure capable of reciprocating scanning or continuous scanning, and if necessary, heat exchange similar to the above electrode is performed so that the temperature of the substrate can be maintained. It has a structure that can
[0104] また、基材 46上に吹き付けられたガスを排気する廃ガス排気流路 48を必要に応じ て付けることもできる。これにより空間中に製膜される不要な副生成物を速やかに放 電空間 45上、あるいは基材 46上から除去できる。  [0104] Further, a waste gas exhaust passage 48 for exhausting the gas blown onto the substrate 46 can be provided as necessary. Thereby, unnecessary by-products formed in the space can be quickly removed from the discharge space 45 or the substrate 46.
[0105] このプラズマジェット型大気圧プラズマ放電処理装置は、放電ガスをプラズマ化して 活性化した後、酸化珪素層或いは酸化チタン層等の薄膜形成に必要な原料ガスを 含む混合ガスと合流する構造となっている。これにより、電極表面に製膜物を堆積す ることを防ぐことができる力 特願 2003— 095367号に記載の様に、電極表面に汚 れ防止フィルムなどを貼り合わせることにより、放電前に放電ガスと透明導電層の形 成に必要なガスを混合させる構造とすることもできる。  [0105] This plasma jet type atmospheric pressure plasma discharge treatment apparatus has a structure in which a discharge gas is turned into plasma and activated, and then merged with a mixed gas containing a raw material gas necessary for forming a thin film such as a silicon oxide layer or a titanium oxide layer. It has become. As a result, it is possible to prevent deposits from being deposited on the electrode surface. As described in Japanese Patent Application No. 2003-095367, an antifouling film or the like is attached to the electrode surface to prevent discharge before discharge. A structure in which a gas and a gas necessary for forming the transparent conductive layer are mixed can also be used.
[0106] また、図 2に記載の装置では、高周波電源が 1周波数帯で行っているが、例えば、 特開 2003— 96569号公報に記載の様に、各々の電極に異なる周波数の電源を設 置する所望 2周波方式で実施することもできる。 [0106] In the apparatus shown in Fig. 2, the high-frequency power supply is performed in one frequency band. As described in Japanese Patent Laid-Open No. 2003-96569, a desired two-frequency system in which a power source having a different frequency is provided for each electrode can be used.
[0107] また、このプラズマジェット型大気圧プラズマ放電処理装置を複数台数ステージの 走査方向に並べることによって製膜の能力を上げることができる。 [0107] Further, the ability of film formation can be improved by arranging a plurality of plasma jet type atmospheric pressure plasma discharge treatment apparatuses in the scanning direction of a plurality of stages.
[0108] また、このプラズマジェット型大気圧プラズマ放電処理装置に示して!/、な!/、が、電極[0108] In addition, this plasma jet type atmospheric pressure plasma discharge treatment apparatus shows! /, NA! /
、ステージ全体を囲み外気が入らないような構造にすることで、装置内を一定のガス 雰囲気下にすることができ、所望の高質な薄膜を製膜させることができる。 By making a structure that surrounds the entire stage and does not allow outside air to enter, the inside of the apparatus can be placed in a constant gas atmosphere, and a desired high-quality thin film can be formed.
[0109] 図 3は、本発明に用いられるダイレクト型大気圧プラズマ放電処理装置の一例を示 す概略図である。 FIG. 3 is a schematic view showing an example of a direct atmospheric pressure plasma discharge treatment apparatus used in the present invention.
[0110] 図 3に示すダイレクト型大気圧プラズマ放電処理装置は、電源 31に接続した 2本の 電極 41が移動ステージ電極 47に各々平行になるように併設されている。電極 41及 び 47は、少なくとも一方を誘電体 42で被覆されており、その電極 41と 47との間で形 成された空間 43に、電極 31により高周波電圧が印加される様になつている。  In the direct type atmospheric pressure plasma discharge processing apparatus shown in FIG. 3, two electrodes 41 connected to a power source 31 are provided side by side so as to be parallel to the moving stage electrode 47, respectively. At least one of the electrodes 41 and 47 is covered with a dielectric 42, and a high frequency voltage is applied by the electrode 31 to a space 43 formed between the electrodes 41 and 47. .
[0111] なお、電極 41、 47の内部は中空構造 44になっており、放電中は水、オイルなどに よって放電により発生する熱をとり、かつ安定な温度に保てるよう熱交換ができるよう になっている。  [0111] It should be noted that the inside of the electrodes 41, 47 has a hollow structure 44, so that heat generated by the discharge can be taken out by water, oil, etc. during discharge, and heat exchange can be performed so as to maintain a stable temperature. It has become.
[0112] また、各ガス供給手段(不図示)により、放電に必要な放電ガスを含むガス 22が、流 路 24を通って、また、薄膜形成に必要な原料ガスを含む混合ガス 23は流路 25を通 り、混合空間 45で合流、混合される。混合されたガス Gは、電極 41間を通り、電極 41 と 47との間の空間 43に供給され、空間 43に高周波電圧が印加されるとプラズマ放 電が発生し、ガス Gはプラズマ化される。プラズマ化されたガス Gにより、薄膜形成用 の原料ガスは活性化され化学的な反応を起こし、基材 46上に所望の薄膜が形成さ れる。  [0112] Further, by each gas supply means (not shown), the gas 22 containing the discharge gas necessary for the discharge passes through the flow path 24, and the mixed gas 23 containing the source gas necessary for forming the thin film flows. It passes through channel 25 and merges and mixes in mixing space 45. The mixed gas G passes between the electrodes 41 and is supplied to the space 43 between the electrodes 41 and 47. When a high frequency voltage is applied to the space 43, plasma discharge is generated, and the gas G is turned into plasma. The The raw gas for forming the thin film is activated by the gas G that has been turned into a plasma, causing a chemical reaction, and a desired thin film is formed on the substrate 46.
[0113] 基材が乗っているステージ 47は、往復走査、もしくは連続走査が可能な構造を有し ており、必要に応じて、基材の温度が保てる様に前記電極と同じような熱交換ができ る構造になっている。  [0113] The stage 47 on which the substrate is mounted has a structure capable of reciprocating scanning or continuous scanning, and heat exchange similar to the above electrode is performed so that the temperature of the substrate can be maintained as necessary. It has a structure that can
[0114] また、基材 46上に吹き付けられたガスを排気する廃ガス排気流路 48を必要に応じ て付けることもできる。これにより空間中に製膜される不要な副生成物を速やかに放 電空間 45上、あるいは基材 46上から除去できる。 [0114] Further, a waste gas exhaust passage 48 for exhausting the gas blown onto the substrate 46 can be provided as necessary. This quickly releases unwanted by-products formed in the space. It can be removed from the electric space 45 or the base material 46.
[0115] これも同じく、特願 2003— 095367号に記載の様に、電極表面に汚れ防止フィル ムなどを貼り合わせることにより、放電前に放電ガスと透明導電層の形成に必要なガ スを混合させる構造とすることもできる。 [0115] Similarly, as described in Japanese Patent Application No. 2003-095367, a gas necessary for forming a discharge gas and a transparent conductive layer before discharge can be obtained by attaching a dirt prevention film to the electrode surface. It can also be set as the structure to mix.
[0116] また、図 3に記載の装置においても、例えば、特開 2003— 96569号公報に記載の 様に、各々の電極に異なる周波数の電源を設置する後述の方式と同様な 2周波方 式で実施することもできる。 [0116] Also in the apparatus shown in Fig. 3, for example, as described in Japanese Patent Application Laid-Open No. 2003-96569, a two-frequency method similar to the method described later in which a power source having a different frequency is installed on each electrode. Can also be implemented.
[0117] また、このダイレクト型大気圧プラズマ放電処理装置を複数台数ステージの走査方 向に並べることによって製膜の能力を上げることができる。 [0117] Further, it is possible to improve the film forming capability by arranging a plurality of direct type atmospheric pressure plasma discharge treatment apparatuses in the scanning direction of a plurality of stages.
[0118] また、このダイレクト型大気圧プラズマ放電処理装置に示していないが、電極、ステ ージ全体を囲み外気が入らなレ、ような構造にすることで、装置内を一定のガス雰囲 気下にすることができ、所望の高質な薄膜を製膜させることができる。 [0118] Further, although not shown in this direct type atmospheric pressure plasma discharge treatment apparatus, the inside of the apparatus has a certain gas atmosphere by surrounding the electrodes and the stage so that outside air does not enter. A desired high-quality thin film can be formed.
[0119] 大気圧プラズマ放電装置として、例えば、放電ガスがヘリウムまたはアルゴンを主成 分とする場合には、前述の図で説明した各大気圧プラズマ放電装置と同様の装置を 用いることができる力 放電ガスとして窒素ガスを主成分とする場合には、以下の図 4 に示す 2周波の高周波を用いる大気圧プラズマ放電装置を用いることが好ましレ、。 [0119] As an atmospheric pressure plasma discharge apparatus, for example, when the discharge gas is mainly helium or argon, the same apparatus as each atmospheric pressure plasma discharge apparatus described in the above figure can be used. When nitrogen gas is the main component of the discharge gas, it is preferable to use an atmospheric pressure plasma discharge device that uses two high frequencies as shown in Fig. 4 below.
[0120] 図 4は、 2周波型の大気圧プラズマ放電装置の一例を示す概略図である。 FIG. 4 is a schematic view showing an example of a two-frequency atmospheric pressure plasma discharge apparatus.
[0121] 装置の概略は、図 1に示した構成とほぼ同様である力 ロール回転電極(第 1電極)[0121] The outline of the device is almost the same as the configuration shown in FIG. 1. Force roll rotating electrode (first electrode)
135と角筒型固定電極群(第 2電極) 136との間の放電空間(対向電極間) 132に、口 ール回転電極(第 1電極) 135には第 1電源 141から周波数 ω であって高周波電圧 In the discharge space (between the counter electrodes) 132 between the 135 and the square tube-shaped fixed electrode group (second electrode) 136, the tool rotating electrode (first electrode) 135 has a frequency ω from the first power source 141. High frequency voltage
1  1
Vを、また角筒型固定電極群(第 2電極) 136には第 2電源 142から周波数 ωであつ V and the square tube type fixed electrode group (second electrode) 136 are connected to the second power source 142 at the frequency ω.
1 2 て高周波電圧 Vをかけるようになつている。 1 2 High frequency voltage V is applied.
[0122] ロール回転電極(第 1電極) 135と第 1電源 141との間には、第 1電源 141からの電 流がロール回転電極(第 1電極) 135に向かって流れるように第 1フィルター 143が設 置されている。該第 1フィルタ一は第 1電源 141からの電流をアース側へと通過しにく くし、第 2電源 142からの電流をアース側へと通過し易くするように設計されている。ま た、角筒型固定電極群(第 2電極) 136と第 2電源 142との間には、第 2電源からの電 流が第 2電極に向かって流れるように第 2フィルター 144が設置されている。第 2フィ ルター 144は、第 2電源 142からの電流をアース側へと通過しに《し、第 1電源 141 力、らの電流をアース側へと通過し易くするように設計されている。 [0122] Between the roll rotating electrode (first electrode) 135 and the first power source 141, the first filter is arranged so that the current from the first power source 141 flows toward the roll rotating electrode (first electrode) 135. 143 is installed. The first filter 1 is designed to make it difficult for current from the first power source 141 to pass to the ground side and to easily pass current from the second power source 142 to the ground side. In addition, a second filter 144 is installed between the square tube-type fixed electrode group (second electrode) 136 and the second power source 142 so that the current from the second power source flows toward the second electrode. ing. 2nd The filter 144 is designed to pass the current from the second power source 142 to the ground side and to easily pass the current from the first power source 141 to the ground side.
[0123] なお、ロール回転電極 135を第 2電極、また角筒型固定電極群 136を第 1電極とし てもよい。何れにしろ第 1電極には第 1電源が、また第 2電極には第 2電源が接続さ れる。第 1電源は第 2電源より大きな高周波電圧 (V〉V )を印加出来る能力を有し [0123] The roll rotating electrode 135 may be the second electrode, and the rectangular tube-shaped fixed electrode group 136 may be the first electrode. In any case, the first power source is connected to the first electrode, and the second power source is connected to the second electrode. The first power supply is capable of applying a higher high-frequency voltage (V> V) than the second power supply.
1 2  1 2
ており、また、周波数は ω く ω となる能力を有している。  In addition, the frequency has the ability to be ω and ω.
1 2  1 2
[0124] 本発明における放電条件は、放電空間に異なる周波数の電界を 2つ以上印加した もので、第 1の高周波電界と第 2の高周波電界とを重畳した電界を印加する。  [0124] The discharge condition in the present invention is that two or more electric fields having different frequencies are applied to the discharge space, and an electric field obtained by superimposing the first high-frequency electric field and the second high-frequency electric field is applied.
[0125] 前記第 1の高周波電界の周波数 ω ΐより、前記第 2の高周波電界の周波数 ω 2が 高ぐ且つ、前記第 1の高周波電界の強さ VIと、前記第 2の高周波電界の強さ V2と 、放電開始電界の強さ IVとの関係が、  [0125] The frequency ω 2 of the second high-frequency electric field is higher than the frequency ω ΐ of the first high-frequency electric field, the strength VI of the first high-frequency electric field VI, and the strength of the second high-frequency electric field. The relationship between V2 and the strength IV of the discharge starting electric field is
V1≥IV > V2  V1≥IV> V2
または V1〉IV≥V2 を満たし、  Or V1> IV≥V2
前記第 2の高周波電界の出力密度が、 lW/cm2以上である。 The output density of the second high frequency electric field is lW / cm 2 or more.
[0126] 高周波とは、少なくとも 0 · 5kHzの周波数を有するものをいう。  [0126] The high frequency means a frequency having a frequency of at least 0.5 kHz.
[0127] 重畳する高周波電界が、ともにサイン波である場合、第 1の高周波電界の周波数 ω 1と該周波数 ω 1より高い第 2の高周波電界の周波数 ω 2とを重ね合わせた成分とな り、その波形は周波数 ω 1のサイン波上に、それより高い周波数 ω 2のサイン波が重 なった鋸歯状の波形となる。  [0127] When both of the superimposed high-frequency electric fields are sine waves, the frequency ω 1 of the first high-frequency electric field is superimposed on the frequency ω 2 of the second high-frequency electric field higher than the frequency ω 1. The waveform is a sawtooth waveform in which a sine wave with a higher frequency ω 2 is superimposed on a sine wave with a frequency ω 1.
[0128] 本発明において、放電開始電界の強さとは、実際の薄膜形成方法に使用される放 電空間(電極の構成など)および反応条件 (ガス条件など)にお!/、て放電を起こすこと の出来る最低電界強度のことを指す。放電開始電界強度は、放電空間に供給される ガス種や電極の誘電体種または電極間距離などによって多少変動する力 同じ放電 空間においては、放電ガスの放電開始電界強度に支配される。  [0128] In the present invention, the strength of the discharge starting electric field refers to the discharge space (electrode configuration etc.) used in the actual thin film formation method and the reaction conditions (gas conditions etc.). The lowest electric field strength that can be used. The discharge starting electric field strength is governed by the discharge starting electric field strength of the discharge gas in the same discharge space, which varies somewhat depending on the gas type supplied to the discharge space, the dielectric type of the electrode, or the distance between the electrodes.
[0129] 上記でサイン波等の連続波の重畳について説明した力 これに限られるものではな く、両方パルス波であっても、一方が連続波でもう一方がパルス波であってもかまわ ない。また、更に周波数の異なる第 3の電界を有していてもよい。 [0129] Force described above for superposition of continuous wave such as sine wave Not limited to this, both pulse wave, one wave may be continuous wave and the other may be pulse wave . Further, it may have a third electric field having a different frequency.
[0130] 高周波電界を、同一放電空間に印加する具体的な方法としては、上記のように、対 向電極を構成する第 1電極に周波数 ω ΐであって電界強度 VIである第 1の高周波 電界を印加する第 1電源を接続し、第 2電極に周波数 ω 2であって電界強度 V2であ る第 2の高周波電界を印加する第 2電源を接続した大気圧プラズマ放電処理装置を 用いる。 [0130] As a specific method of applying a high-frequency electric field to the same discharge space, as described above, A first power source that applies a first high-frequency electric field having a frequency ω っ て and an electric field strength VI is connected to the first electrode constituting the counter electrode, and a frequency ω 2 and an electric field strength V2 is connected to the second electrode. An atmospheric pressure plasma discharge treatment apparatus connected to a second power source for applying a second high-frequency electric field is used.
[0131] また、第 1電極、第 1電源またはそれらの間の何れかには第 1フィルタを、また第 2電 極、第 2電源またはそれらの間の何れかには第 2フィルタを接続することが好ましぐ 第 1フィルタは第 1電源から第 1電極への第 1の高周波電界の電流を通過しやすくし 、第 2の高周波電界の電流をアースして、第 2電源から第 1電源への第 2の高周波電 界の電流を通過しにくくする。また、第 2フィルタはその逆で、第 2電源から第 2電極へ の第 2の高周波電界の電流を通過しやすくし、第 1の高周波電界の電流をアースして 、第 1電源から第 2電源への第 1の高周波電界の電流を通過しにくくする機能が備わ つているものを使用する。ここで、通過しにくいとは、好ましくは、電流の 20%以下、よ り好ましくは 10%以下しか通さないことをいう。逆に通過しやすいとは、好ましくは電 流の 80%以上、より好ましくは 90%以上を通すことをいう。  [0131] Also, the first filter is connected to the first electrode, the first power supply, or any of them, and the second filter is connected to the second electrode, the second power supply, or any of them. The first filter facilitates the passage of the current of the first high-frequency electric field from the first power source to the first electrode, grounds the current of the second high-frequency electric field, and the first power source from the second power source It is difficult to pass the current of the second high-frequency electric field to. On the other hand, the second filter makes it easy to pass the current of the second high-frequency electric field from the second power source to the second electrode, grounds the current of the first high-frequency electric field, Use a power supply with a function that makes it difficult to pass the current of the first high-frequency electric field to the power supply. Here, the phrase “difficult to pass” preferably means that only 20% or less, more preferably 10% or less of the current can pass. On the contrary, being easy to pass means preferably passing 80% or more, more preferably 90% or more of the current.
[0132] 例えば、第 1フィルタとしては、第 2電源の周波数に応じて数 10pF〜数万 pFのコン デンサ、もしくは数 H程度のコイルを用いることが出来る。第 2フィルタとしては、第 1電源の周波数に応じて 10 H以上のコイルを用い、これらのコイルまたはコンデン サを介してアース接地することでフィルタとして使用出来る。  [0132] For example, as the first filter, a capacitor of several tens of pF to several tens of thousands of pF or a coil of about several H can be used depending on the frequency of the second power supply. The second filter can be used as a filter by using a coil of 10 H or higher according to the frequency of the first power supply and grounding it through these coils or capacitors.
[0133] 更に、本発明の大気圧プラズマ放電処理装置の第 1電源は、第 2電源より高い電 界強度を印加出来る能力を有して!/、ること力 S好ましレ、。  [0133] Further, the first power source of the atmospheric pressure plasma discharge treatment apparatus of the present invention has the ability to apply a higher electric field strength than the second power source!
[0134] ここで、本発明でいう印加電界強度と放電開始電界強度は、下記の方法で測定さ れたものをいう。  Here, the applied electric field strength and the discharge start electric field strength as used in the present invention are those measured by the following methods.
[0135] 印加電界強度 VI及び V2 (単位: kV/mm)の測定方法:  [0135] Measurement method of applied electric field strength VI and V2 (unit: kV / mm):
各電極部に高周波電圧プローブ(P6015A)を設置し、該高周波電圧プローブの 出力信号をオシロスコープ (Tektronix社製、 TDS3012B)に接続し、所定の時点 の電界強度を測定する。  A high-frequency voltage probe (P6015A) is installed at each electrode, and the output signal of the high-frequency voltage probe is connected to an oscilloscope (Tektronix, TDS3012B), and the electric field strength at a predetermined time is measured.
[0136] 放電開始電界強度 IV (単位: kV/mm)の測定方法: [0136] Measurement method of electric field intensity IV (unit: kV / mm):
電極間に放電ガスを供給し、この電極間の電界強度を増大させていき、放電が始 まる電界強度を放電開始電界強度 IVと定義する。測定器は上記印加電界強度測定 と同じである。 A discharge gas is supplied between the electrodes, the electric field strength between the electrodes is increased, and the discharge starts. The full electric field strength is defined as the discharge starting electric field strength IV. The measuring instrument is the same as the applied electric field strength measurement.
[0137] 上記の測定により放電ガスを窒素ガスとした場合、その放電開始電界強度 IV(1/ 2Vp— p)は 3. 7kV/mm程度であり、従って、上記の関係において、第 1の印加電 界強度を、 Vl≥3. 7kV/mmとして印加することによって窒素ガスを励起、プラズマ 状態にすることが出来る。  [0137] When the discharge gas is nitrogen gas according to the above measurement, the discharge start electric field strength IV (1/2 Vp-p) is about 3.7 kV / mm. Therefore, in the above relationship, the first application By applying the electric field strength as Vl≥3.7kV / mm, the nitrogen gas can be excited and put into a plasma state.
[0138] ここで、第 1電源の周波数としては、 200kHz以下が好ましく用いることが出来る。ま たこの電界波形としては、連続波でもパルス波でもよい。下限は 1kHz程度が望まし い。  Here, the frequency of the first power supply is preferably 200 kHz or less. The electric field waveform may be a continuous wave or a pulse wave. The lower limit is preferably about 1kHz.
[0139] 一方、第 2電源の周波数としては、 800kHz以上が好ましく用いられる。この第 2電 源の周波数が高い程、プラズマ密度が高くなり、緻密で良質な薄膜が得られる。上限 は 200MHz程度が望まし!/、。  [0139] On the other hand, the frequency of the second power supply is preferably 800 kHz or more. The higher the frequency of the second power source, the higher the plasma density, and a dense and high-quality thin film can be obtained. The upper limit is about 200MHz! /.
[0140] このような 2つの電源から高周波電界を印加することは、第 1の高周波電界によって 高い放電開始電界強度を有する放電ガスの放電を開始するのに必要であり、また第 2の高周波電界の高い周波数および高い出力密度によりプラズマ密度を高くして薄 膜を形成することが重要である。  [0140] The application of a high-frequency electric field from such two power sources is necessary for initiating discharge of a discharge gas having a high discharge starting electric field strength by the first high-frequency electric field, and the second high-frequency electric field. It is important to form a thin film by increasing the plasma density due to the high frequency and high power density.
[0141] 本発明に用いられる大気圧プラズマ放電処理装置は、上述のように、対向電極の 間で放電させ、前記対向電極間に導入したガスをプラズマ状態とし、前記対向電極 間に静置あるいは電極間を移送される基材を該プラズマ状態のガスに晒すことによ つて、該基材の上に薄膜を形成させる。  [0141] The atmospheric pressure plasma discharge treatment apparatus used in the present invention, as described above, discharges between the counter electrodes, puts the gas introduced between the counter electrodes into a plasma state, and leaves the gas between the counter electrodes or A thin film is formed on the substrate by exposing the substrate transferred between the electrodes to the plasma state gas.
[0142] 図 3に記載の装置においても、各々の電極に異なる周波数の電源を設置して、例 えば図 5の様な装置として、 2周波方式を同様に実施することもできる。ここで 31aは 第 1電源を、 31bは第 2電源を、また 101aは第 1フィルタ、 101bは第 2フィルタである  [0142] In the apparatus shown in Fig. 3, a power supply having a different frequency is installed in each electrode, and the two-frequency system can be similarly implemented as an apparatus as shown in Fig. 5, for example. Where 31a is the first power supply, 31b is the second power supply, 101a is the first filter, and 101b is the second filter.
[0143] また、対向電極間で放電を起こさせ、該対向電極間に導入したガスを励起、または プラズマ状態とし、該対向電極外にジェット状に励起またはプラズマ状態のガスを吹 き出し、該対向電極の近傍にある基材(静置してレ、ても移送されて!/、てもよ!/、)を晒す ことによって該基材の上に薄膜を形成させる 2周波方式で実施するジェット方式の装 置の一例を、図 6に概略図で示した。 [0143] Further, a discharge is caused between the counter electrodes, the gas introduced between the counter electrodes is excited or put into a plasma state, and a gas in an excited or plasma state is blown out of the counter electrode in a jet form. This is performed in a two-frequency system in which a thin film is formed on the substrate by exposing the substrate in the vicinity of the counter electrode (standing still, transported! /, Or even! /,). Jet type equipment An example of the device is shown schematically in FIG.
[0144] ジェット方式の大気圧プラズマ放電処理装置は、第 1電極 11と第 2電極 12から構成 されている対向電極を有しており、該対向電極間に、第 1電極 11からは第 1電源 19a からの周波数 ω 1、電界強度 VI、電流 IIの第 1の高周波電界が印加され、また第 2 電極 12からは第 2電源 19bからの周波数 ω 2、電界強度 V2、電流 12の第 2の高周波 電界が印加されるようになっている。第 1電源 19aは第 2電源 19bより高い高周波電 界強度 (VI〉V2)を印カロ、また第 1電源 19aの第 1の周波数 ω ΐは第 2電源 19bの第 2の周波数 ω 2より低い周波数を印加する。  [0144] The jet type atmospheric pressure plasma discharge treatment apparatus has a counter electrode composed of a first electrode 11 and a second electrode 12, and the first electrode 11 is connected to the first electrode 11 between the counter electrodes. A first high-frequency electric field of frequency ω 1 from power source 19a, electric field strength VI, current II is applied, and second electrode 12 has a second frequency ω 2, electric field strength V2, current 12 from second power source 19b. The high-frequency electric field is applied. The first power supply 19a has a higher high-frequency electric field strength (VI> V2) than the second power supply 19b, and the first frequency ωΐ of the first power supply 19a is lower than the second frequency ω2 of the second power supply 19b. Apply frequency.
[0145] 第 1電極 11と第 1電源 19aとの間には、第 1フィルタ 14aが設置されており、第 1電 源 19aから第 1電極 11への電流を通過しやすくし、第 2電源 19bからの電流をアース して、第 2電源 19bから第 1電源 19aへの電流が通過しに《なるように設計されてい  [0145] A first filter 14a is installed between the first electrode 11 and the first power supply 19a, and it is easy to pass the current from the first power supply 19a to the first electrode 11, and the second power supply It is designed so that the current from 19b is grounded and the current from the second power source 19b to the first power source 19a passes.
[0146] また、第 2電極 12と第 2電源 19bとの間には、第 2フィルター 14bが設置されており、 第 2電源 19bから第 2電極への電流を通過しやすくし、第 1電源 19aからの電流をァ ースして、第 1電源 19aから第 2電源への電流を通過しにくくするように設計されてい [0146] In addition, a second filter 14b is installed between the second electrode 12 and the second power source 19b to facilitate passage of current from the second power source 19b to the second electrode. Designed to source the current from 19a and make it difficult to pass the current from the first power source 19a to the second power source.
[0147] 第 1電極 11と第 2電極 12との対向電極間(放電空間) 13に、ガス供給手段から前 述した薄膜形成ガス Gを導入し、第 1電源 19aと第 2電源 19bにより第 1電極 11と第 2 電極 12間に、前述した高周波電界を印加して放電を発生させ、前述した薄膜形成ガ ス Gをプラズマ状態にしながら対向電極の下側(紙面下側)にジェット状に吹き出させ て、対向電極下面と基材 Fとで作る処理空間をプラズマ状態のガス G° で満たし、基 材 Fの上に、処理位置 14付近で薄膜を形成させる。薄膜形成中、図示していないが 電極温度調節手段から媒体が配管を通って電極を加熱または冷却する。プラズマ放 電処理の際の基材の温度によっては、得られる薄膜の物性や組成等は変化すること があり、これに対して適宜制御することが望ましい。温度調節の媒体としては、蒸留水 、油等の絶縁性材料が好ましく用いられる。プラズマ放電処理の際、基材の幅手方 向あるいは長手方向での温度ムラ力 S、出来るだけ生じないように電極の内部の温度 を均等に調節することが望まれる。 [0148] また、図 6に前述の印加電界強度と放電開始電界強度の測定に使用する測定器と 測定位置を示した。 15及び 16は高周波電圧プローブであり、 17及び 18はオシロス コープである。 [0147] The thin film forming gas G described above is introduced from the gas supply means into the gap between the first electrode 11 and the second electrode 12 (discharge space) 13, and the first power source 19a and the second power source 19b The above-described high-frequency electric field is applied between the first electrode 11 and the second electrode 12 to generate a discharge, and the thin film forming gas G described above is in a plasma state while jetting in the lower side of the counter electrode (lower side of the paper). Blow out, fill the processing space created by the lower surface of the counter electrode and the base material F with a plasma gas G °, and form a thin film on the base material F near the processing position 14. During the thin film formation, although not shown, the electrode heats or cools the electrode through the pipe from the electrode temperature adjusting means. Depending on the temperature of the substrate during the plasma discharge treatment, the physical properties, composition, etc. of the resulting thin film may change, and it is desirable to appropriately control this. An insulating material such as distilled water or oil is preferably used as the temperature control medium. During the plasma discharge treatment, it is desirable to adjust the temperature inside the electrode evenly so that the temperature unevenness force S in the width direction or longitudinal direction of the substrate does not occur as much as possible. [0148] Fig. 6 shows a measuring instrument used for measuring the applied electric field strength and the discharge starting electric field strength and the measurement position. 15 and 16 are high-frequency voltage probes, and 17 and 18 are oscilloscopes.
[0149] ジェット方式の大気圧プラズマ放電処理装置を、基材の搬送方向と平行に複数台 並べ、同時に同じプラズマ状態のガスを放電させることにより、同一位置に複数層の 薄膜を形成可能となり、短時間で所望の膜厚を形成可能となる。また基材 Fの搬送方 向と平行に複数台並べ、各装置に異なる薄膜形成ガスを供給して異なったプラズマ 状態のガスをジェット噴射すれば、異なった層の積層薄膜を形成することも出来る。  [0149] By arranging a plurality of jet-type atmospheric pressure plasma discharge treatment devices in parallel with the transport direction of the substrate and simultaneously discharging the gas in the same plasma state, it becomes possible to form a plurality of thin films at the same position, A desired film thickness can be formed in a short time. In addition, multiple thin films with different layers can be formed by arranging multiple units in parallel with the transport direction of the base material F, supplying different thin film forming gases to each device, and jetting gas in different plasma states. .
[0150] 上述の各電極は、それぞれ導電性の金属質母材の上に誘電体としてのセラミックス を溶射後、無機化合物の封孔材料を用いて封孔処理したものである。セラミックス誘 電体は片肉で lmm程度被覆があればよい。溶射に用いるセラミックス材としては、ァ ノレミナ '窒化珪素等が好ましく用いられる力 この中でもアルミナが加工し易いので、 特に好ましく用いられる。また、誘電体層が、ライニングにより無機材料を設けたライ ユング処理誘電体であってもよレ、。  [0150] Each of the electrodes described above is obtained by thermally spraying ceramics as a dielectric material on a conductive metallic base material and then sealing with an inorganic compound sealing material. The ceramic dielectric need only have a thickness of about 1 mm. As the ceramic material used for thermal spraying, ananoremina 'silicon nitride or the like is preferably used. Among these, alumina is particularly preferred because it is easy to process. In addition, the dielectric layer may be a lining-treated dielectric provided with an inorganic material by lining.
[0151] 導電性の金属質母材としては、チタン金属またはチタン合金、銀、白金、ステンレス スティール、アルミニウム、鉄等の金属等や、鉄とセラミックスとの複合材料またはアル ミニゥムとセラミックスとの複合材料を挙げることが出来る力 後述の理由からはチタン 金属またはチタン合金が特に好まし!/、。  [0151] Examples of the conductive metallic base material include titanium metal or titanium alloy, silver, platinum, stainless steel, aluminum, iron, and the like, a composite material of iron and ceramics, or a composite of aluminum and ceramics. The ability to mention the material Titanium metal or titanium alloy is particularly preferred for reasons described below!
[0152] 対向する第 1電極および第 2の電極の電極間距離は、電極の一方に誘電体を設け た場合、該誘電体表面ともう一方の電極の、導電性の金属質母材表面との最短距離 のことをいう。双方の電極に誘電体を設けた場合、誘電体表面同士の距離の、最短 距離のことを言う。電極間距離は、導電性の金属質母材に設けた誘電体の厚さ、印 加電界強度の大きさ、プラズマを利用する目的等を考慮して決定される力 いずれの 場合も均一な放電を行う観点から 0. ;!〜 20mmが好ましぐ特に好ましくは 0. 5〜2 mmである。  [0152] The distance between the first electrode and the second electrode facing each other is such that when a dielectric is provided on one of the electrodes, the surface of the dielectric and the surface of the conductive metallic base material of the other electrode This is the shortest distance. When dielectrics are provided on both electrodes, this is the shortest distance between the dielectric surfaces. The distance between the electrodes is determined by taking into account the thickness of the dielectric provided on the conductive metallic base material, the magnitude of the applied electric field strength, the purpose of using the plasma, etc. From the viewpoint of carrying out the process, 0.;! To 20 mm is preferable, and 0.5 to 2 mm is particularly preferable.
[0153] 図 4におけるプラズマ放電処理容器 131はパイレックス(登録商標)ガラス製の処理 容器等が好ましく用いられる力 電極との絶縁がとれれば金属製を用いることも可能 である。例えば、アルミニウムまたは、ステンレススティールのフレームの内面にポリイ ミド樹脂等を張り付けても良ぐ該金属フレームにセラミックス溶射を行い絶縁性をと つてもよい。図 1において、平行した両電極の両側面(基材面近くまで)を上記のよう な材質の物で覆うことが好ましレ、。 [0153] The plasma discharge treatment vessel 131 in Fig. 4 may be made of metal as long as it can be insulated from the force electrode for which a treatment vessel made of Pyrex (registered trademark) glass or the like is preferably used. For example, the inner surface of an aluminum or stainless steel frame Ceramic metal spraying may be performed on the metal frame, which may be pasted with a mid resin or the like, to provide insulation. In Fig. 1, it is preferable to cover both sides of the parallel electrodes (up to the surface of the base material) with an object of the above-mentioned material.
本発明の大気圧プラズマ放電処理装置に設置する第 1電源(高周波電源)としては 印加電源記号 メーカー
Figure imgf000027_0001
As the first power supply (high frequency power supply) installed in the atmospheric pressure plasma discharge treatment apparatus of the present invention
Figure imgf000027_0001
A1 神鋼電機 3kHz SPG3-4500  A1 Shinko Electric 3kHz SPG3-4500
A2 神鋼電機 5kHz SPG5-4500  A2 Shinko Electric 5kHz SPG5-4500
A3 春日電機 15kHz AGI-023  A3 Kasuga Electric 15kHz AGI-023
A4 神鋼電機 50kHz SPG50— 4500  A4 Shinko Electric 50kHz SPG50— 4500
A5 ハイデン研究所 100kHz水 PHF- 6k  A5 HEIDEN Laboratory 100kHz water PHF-6k
A6 パール工業 200kHz CF— 2000— 200k  A6 Pearl Industry 200kHz CF— 2000— 200k
A7 パール工業 400kHz CF— 2000— 400k  A7 Pearl Industry 400kHz CF— 2000— 400k
等の市販のものを挙げることが出来、何れも使用することが出来る。  And the like, and any of them can be used.
[0155] また、第 2電源(高周波電源)としては、  [0155] As the second power source (high frequency power source),
印加電源記号 メーカー 周波数 製品名  Applied power supply symbol Manufacturer Frequency Product name
B1 ノ ーノレ工業 800kHz CF— 2000 800k  B1 Nonore Industry 800kHz CF—2000 800k
B2 パール工業 2MHz CF— 2000— 2M  B2 Pearl Industrial 2MHz CF— 2000— 2M
B3 ノ ーノレ工業 13. 56MHz CF— 5000 13M  B3 Norore Industries 13. 56MHz CF— 5000 13M
B4 ノ ーノレ工業 27MHz CF- 2000- 27M  B4 NORORE INDUSTRY 27MHz CF- 2000- 27M
B5 ノ ーノレ工業 150MHz CF- 2000- 150M  B5 Norore Industries 150MHz CF- 2000- 150M
等の市販のものを挙げることが出来、何れも好ましく使用出来る。  And the like, and any of them can be preferably used.
[0156] なお、上記電源のうち、 *印はハイデン研究所インパルス高周波電源(連続モード で 100kHz)である。それ以外は連続サイン波のみ印加可能な高周波電源である。 [0156] Of the above power sources, * indicates a HEIDEN Laboratory impulse high-frequency power source (100 kHz in continuous mode). Other than that, it is a high-frequency power source that can apply only a continuous sine wave.
[0157] 本発明にお!/、ては、このような電界を印加して、均一で安定な放電状態を保つこと が出来る電極を大気圧プラズマ放電処理装置に採用することが好ましい。 [0157] In the present invention, it is preferable to employ an electrode capable of maintaining a uniform and stable discharge state by applying such an electric field to the atmospheric pressure plasma discharge treatment apparatus.
[0158] 本発明において、対向する電極間に印加する電力は、第 2電極(第 2の高周波電 界)に lW/cm2以上の電力(出力密度)を供給し、放電ガスを励起、プラズマを発生 させ、エネルギーを薄膜形成ガスに与え、薄膜を形成する。第 2電極に供給する電力 の上限値としては、好ましくは 50W/cm2、より好ましくは 20W/cm2である。下限値 は、好ましくは 1. 2W/cm2である。なお、放電面積(cm2)は、電極間において放電 が起こる範囲の面積のことを指す。 [0158] In the present invention, the power applied between the opposing electrodes is to supply power (power density) of lW / cm 2 or more to the second electrode (second high-frequency electric field) to excite the discharge gas and to generate plasma. Raised And applying energy to the thin film forming gas to form a thin film. The upper limit value of the power supplied to the second electrode is preferably 50 W / cm 2 , more preferably 20 W / cm 2 . The lower limit is preferably 1.2 W / cm 2 . The discharge area (cm 2 ) refers to the area where discharge occurs between the electrodes.
[0159] また、第 1電極(第 1の高周波電界)にも、 lW/cm2以上の電力(出力密度)を供給 することにより、第 2の高周波電界の均一性を維持したまま、出力密度を向上させるこ とが出来る。これにより、更なる均一高密度プラズマを生成出来、更なる製膜速度の 向上と膜質の向上が両立出来る。好ましくは 5W/cm2以上である。第 1電極に供給 する電力の上限値は、好ましくは 50W/cm2である。 [0159] Also, the first electrode (first high-frequency electric field), by supplying a lW / cm 2 or more power (power density), while maintaining uniformity of the second high-frequency electric field, power density Can be improved. As a result, a further uniform high-density plasma can be generated, and a further improvement in film formation speed and improvement in film quality can be achieved. Preferably it is 5 W / cm 2 or more. The upper limit value of the power supplied to the first electrode is preferably 50 W / cm 2 .
[0160] ここで高周波電界の波形としては、特に限定されない。連続モードと呼ばれる連続 サイン波状の連続発振モードと、パルスモードと呼ばれる ON/OFFを断続的に行う 断続発振モード等があり、そのどちらを採用してもよいが、少なくとも第 2電極側(第 2 の高周波電界)は連続サイン波の方がより緻密で良質な膜が得られるので好ましレ、。 実施例  [0160] Here, the waveform of the high-frequency electric field is not particularly limited. There are a continuous sine wave continuous oscillation mode called continuous mode and an intermittent oscillation mode called pulse mode that performs ON / OFF intermittently. Either of them can be used, but at least the second electrode side (second The high-frequency electric field of the continuous sine wave is preferable because a denser and better quality film can be obtained. Example
[0161] 以下、実施例により本発明を具体的に説明する。  [0161] The present invention will be specifically described below with reference to examples.
[0162] 実施例 [0162] Examples
実施例で作製した透明導電膜の性能は,下記の方法に従って評価した。  The performance of the transparent conductive film produced in the examples was evaluated according to the following method.
[0163] 〔評価方法〕 [0163] [Evaluation method]
(1)透過性能  (1) Transmission performance
膜透過性能 = (透明導電膜付基材の透過率) / (透明導電膜のない基材の透過率 Membrane permeability = (Transmissivity of substrate with transparent conductive film) / (Transmittance of substrate without transparent conductive film)
) )
X 100  X 100
とした。  It was.
なお、 550nmの波長での透過率を代表値とした。測定衞 ASCO社製 V— 530 The transmittance at a wavelength of 550 nm was used as a representative value. Measurement 製 ASCO V-530
(2)抵抗性能 (2) Resistance performance
測定機三菱化学製ハイレスタ MCP— HT450型、プローブ MCP— HTP12を用い た。 JIS K 7194に従い表面抵抗率(Surface Resistivity) Ω /口を測定した。  Measuring machine Mitsubishi Chemical Hiresta MCP-HT450 and probe MCP-HTP12 were used. According to JIS K 7194, the surface resistivity (Ω) / mouth was measured.
[0164] (3)密着性能 透明導電膜表面に、カッターを用いて碁盤目状の傷を入れた後、粘着セロハンテ ープ [ニチバン (株)製工業用 24mm巾セロハンテープ]を用いて同じ箇所を剥離さ せて、剥離されていない部分の面積を 100分率で示した。 (テープピール試験)。す なわち、まったく剥がれていない場合は 100/100、全面が剥離した場合を 0/100 とした。 [0164] (3) Adhesion performance After making a grid-like scratch on the surface of the transparent conductive film using a cutter, the same part is peeled off using an adhesive cellophane tape [Nichiban Co., Ltd., industrial 24mm width cellophane tape]. The area of the non-exposed part is shown as a percentage. (Tape peel test). In other words, 100/100 when not peeled off at all, and 0/100 when the entire surface peeled off.
[0165] 尚、 [0165]
初期評価:  Initial evaluation:
成膜形成後、 12時間を通常雰囲気(25°C、湿度 50%RH)で放置し、上記(1)〜( 3)を評価した。  After the film formation, 12 hours was left in a normal atmosphere (25 ° C., humidity 50% RH) to evaluate the above (1) to (3).
高温高湿条件保存後評価:  Evaluation after storage at high temperature and high humidity:
温度 60°C、湿度 90%RHの雰囲気下で 1000時間、その後通常雰囲気下で 12時 間放置し、上記(1)〜(3)を評価した。  The above (1) to (3) were evaluated by leaving it for 1000 hours in an atmosphere at a temperature of 60 ° C and a humidity of 90% RH, and then in a normal atmosphere for 12 hours.
[0166] また、評価に於いて◎、〇、△、 Xはそれぞれ、 [0166] In the evaluation, ◎, ○, △, and X are respectively
◎:実用する上での性能を充分にクリアして!/、る。  A: Clear enough performance for practical use!
〇:実用する上での性能を満たして!/、る。  〇: Satisfies the performance required for practical use!
△:実用する上で支障はなレ、性能である。  (Triangle | delta): There is no trouble and performance in practical use.
X:実用上支障のある性能である。  X: Performance impeding practical use.
ことを同時に示したものである。  It is shown at the same time.
[0167] 《透明導電膜基板の作製》 [0167] <Preparation of transparent conductive film substrate>
以下の条件で、クリアハードコート(CHC)層、下引きコーティング (酸化珪素層)、 酸化チタン系透明導電膜、更に後処理を組み合わせて、表 1の如く実施例;!〜 3、比 較例 1の透明導電膜基板を作製した。  Examples as shown in Table 1, combining clear hard coat (CHC) layer, undercoat (silicon oxide layer), titanium oxide transparent conductive film, and post-treatment under the following conditions;! ~ 3, comparative example 1 transparent conductive film substrate was produced.
[0168] 〈使用樹脂基材〉 <Resin base material>
透明樹脂基板として、サイズ 200mm X 200mm、厚さ 125 mの二軸延伸ポリェ チレンテレフタレートフィルムを使用し、以下の手順でクリアハードコート(CHC)層、 下引きコーティング (酸化珪素層)を順次積層し、樹脂基材として用いた。  Using a biaxially stretched polyethylene terephthalate film with a size of 200mm x 200mm and a thickness of 125m as the transparent resin substrate, the clear hard coat (CHC) layer and the undercoat coating (silicon oxide layer) are sequentially laminated in the following procedure. Used as a resin base material.
[0169] 〈ハードコート層塗布〉 [0169] <Hard coat layer application>
(クリアハードコート層(CHC)塗布組成物) ジペンタエリスリトールへキサアタリレ 60質量部 ジペンタエリスリトールへキサアタリレート 2 20質量部 ジペンタエリスリトールへキサアタリレート 3量体以上の成分 20質量部 ィルガキュア 184 (チバスペシャルティケミカルズ(株)製) (Clear hard coat layer (CHC) coating composition) Dipentaerythritol Hexaatalyle 60 parts by mass Dipentaerythritol Hexaatalylate 2 20 parts by mass Dipentaerythritol Hexatalylate Trimer or higher component 20 parts by mass Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.)
イソプロピノレアノレコーノレ 50質量部  50 parts by mass of isopropylenoleanolone
酢酸ェチノレ 50質量部 Ethinole acetate 50 parts by mass
Figure imgf000030_0001
50質量部
Figure imgf000030_0001
50 parts by mass
上記フィルム上に、上記クリアハードコート層塗布組成物を押し出しコートし、次い で 80°Cに設定された乾燥部で乾燥した後、紫外線照射設備を使用して紫外線を照 射した。紫外線ランプは出力 3kW (アイグラフィック (株)社製高圧水銀タイプ)を用い 、照度は 0. lW/cm2とした。また照射時は基材の表面が、表面の温度 25°Cとなるよ うに保持板を設定した。 The clear hard coat layer coating composition was extrusion coated onto the film, then dried in a drying section set at 80 ° C., and then irradiated with ultraviolet rays using an ultraviolet irradiation facility. The UV lamp used an output of 3kW (high pressure mercury type manufactured by Eye Graphic Co., Ltd.), and the illuminance was 0.1 lW / cm 2 . In addition, the holding plate was set so that the surface temperature of the substrate was 25 ° C during irradiation.
[0170] 膜厚 6 a mのクリアハードコート層(CHC層)を有する透明樹脂フィルム基板を得た 上記透明樹脂フィルム基板を樹脂基材として、以下の下引きコーティングを行った  [0170] A transparent resin film substrate having a clear hard coat layer (CHC layer) having a film thickness of 6 am was obtained. Using the transparent resin film substrate as a resin base material, the following undercoating was performed.
[0172] 〈下引きコーティング〉 [0172] <Undercoating>
実施例 2, 3は、ダイレクト式大気圧プラズマ(CVD)法をもちいて、 SiO膜をコーテ イングした。  In Examples 2 and 3, the SiO film was coated using the direct atmospheric pressure plasma (CVD) method.
[0173] 〔大気圧プラズマ(CVD)法〕 [Atmospheric pressure plasma (CVD) method]
前記図 5で示した装置を用い 2周波で高周波を印加した。  A high frequency was applied at two frequencies using the apparatus shown in FIG.
[0174] (電源条件)電源 1:低周波側 1 OOKHz 5w/cm2 [0174] (Power Conditions) Power 1: Low frequency side 1 OOKHz 5w / cm 2
電源 2 :高周波側 13. 56MHz 6W/cm2 Power supply 2: High frequency side 13.56MHz 6W / cm 2
(ガス条件) SiOの原材料として、テトラエトキシシラン (TEOS)をバブリングにより 気化させた。 Nガス: lslm、 40°C。  (Gas condition) Tetraethoxysilane (TEOS) was vaporized by bubbling as a raw material for SiO. N gas: lslm, 40 ° C.
[0175] 放電ガス N : 60slm [0175] Discharge gas N: 60slm
反応促進ガス O : 6slm  Reaction promoting gas O: 6slm
〔移動架台電極〕移動架台電極は、 200mm幅、 300mm長のチタン板の表面に誘 電体としてアルミナを、溶射加工を行い製作した。また、背側に放熱板とヒーターを設 置して、常時基材表面の温度が一定になるようにした。 [Moving platform electrode] The moving platform electrode is attracted to the surface of a 200mm wide and 300mm long titanium plate. Alumina was produced by thermal spraying as the electrical material. In addition, a heat sink and a heater were installed on the back side so that the temperature of the substrate surface was always constant.
[0176] 誘電体厚み: lmm [0176] Dielectric thickness: lmm
電極巾: 200mm  Electrode width: 200mm
材質:チタン  Material: Titanium
移動架台電極の温度: 100°C  Temperature of moving platform electrode: 100 ° C
移動架台電極に基板を配置して、連続的に走査させながら薄膜形成を行い、所望の 膜厚 (表 1に示した)の酸化珪素薄膜を作製した。  A substrate was placed on the movable gantry electrode, and a thin film was formed while continuously scanning to produce a silicon oxide thin film with the desired film thickness (shown in Table 1).
[0177] 実施例 1は、エレクトロンビーム(EB)加熱方式による真空蒸着法により実施した。 [0177] Example 1 was performed by a vacuum deposition method using an electron beam (EB) heating method.
[0178] 〔蒸着法〕 [0178] [Vapor deposition method]
一酸化珪素と珪素の混合物を蒸着源に用いて、酸素ガスを供給しながら、下記の 蒸着条件により、膜厚 50nmの酸化珪素の蒸着膜を形成した。  Using a mixture of silicon monoxide and silicon as a deposition source and supplying oxygen gas, a deposited film of silicon oxide having a thickness of 50 nm was formed under the following deposition conditions.
[0179] (蒸着条件) [0179] (Vapor deposition conditions)
蒸着チャンバ一内の真空度; 0. 02Pa  Degree of vacuum in the deposition chamber; 0.02 Pa
電子ビーム電力; 35kW  Electron beam power; 35kW
冷却板保温温度; 150°C  Cold plate insulation temperature; 150 ° C
《酸化チタン系透明導電膜製膜条件》  <Titanium oxide-based transparent conductive film deposition conditions>
(1)大気圧プラズマ(CVD)法  (1) Atmospheric pressure plasma (CVD) method
実施例 3は、大気圧プラズマ (CVD)法にて酸化チタン系透明導電膜層を成膜した In Example 3, a titanium oxide-based transparent conductive film layer was formed by an atmospheric pressure plasma (CVD) method.
Yes
[0180] リモート式大気圧プラズマ法(特開 2004-068143記載の 2周波法)を用いた。用い た装置を図 2に示した。  [0180] A remote atmospheric pressure plasma method (two-frequency method described in JP-A-2004-068143) was used. Figure 2 shows the equipment used.
[0181] (電源条件) [0181] (Power requirements)
電源 1: (SEREN社製高周波電源)低周波側 lOOKHz 5w/cm2 Power supply 1: (SEREN high frequency power supply) Low frequency side lOOKHz 5w / cm 2
電源 2 : (パール工業製高周波電源)高周波側 13. 56MHz 3W/cm2 (電極条件)電極の角形電極は、 30mm角状の中空のチタンパイプに対し、誘電体 としてセラミック溶射加工を行!/、製作した。 Power supply 2: (Pearl Industries high frequency power supply) High frequency side 13. 56MHz 3W / cm 2 (Electrode condition) Electrode square electrode is ceramic sprayed as a dielectric to 30mm square hollow titanium pipe! / Made.
[0182] 誘電体厚み: lmm 電極巾: 300mm [0182] Dielectric thickness: lmm Electrode width: 300mm
印加電極温度: 90°C  Applied electrode temperature: 90 ° C
原料導入スリットギャップ: 1. 5mm  Raw material introduction slit gap: 1.5 mm
電極間(放電)ギャップ: 0· 5mm  Electrode (discharge) gap: 0 · 5mm
移動架台 電極間ギャップ: 1. Omm  Moving platform Electrode gap: 1. Omm
(ガス条件)  (Gas condition)
TiOの原材料として、テトライゾプロポキシチタン (TIPT)をパブリングにより気化さ せた(Nガス: 3slm、 60°C)。  Tetrizopropoxytitanium (TIPT) was vaporized by publishing as a raw material for TiO (N gas: 3 slm, 60 ° C).
[0183] また、ドーパントとしてペンタエトキシニオブをバブリングにより同じく気化させた(N ガス: 3slm、 80°C)。 [0183] Further, pentaethoxyniobium as a dopant was similarly vaporized by bubbling (N 2 gas: 3 slm, 80 ° C).
[0184] この混合ガスを原料導入スリットより導入させた。また以下の放電ガス、反応ガスを 以下の分量比で混合させ、電極間(放電)スリットより導入させた。  [0184] This mixed gas was introduced from the raw material introduction slit. Further, the following discharge gas and reaction gas were mixed in the following proportions and introduced from the interelectrode (discharge) slit.
[0185] 放電ガス N : 50slm+ 50slm [0185] Discharge gas N: 50slm + 50slm
反応ガス H : 0. 5slm + 0. 5slm  Reaction gas H: 0.5slm + 0.5slm
〔移動架台電極〕  (Moving base electrode)
移動架台電極は、 200mm幅、 300mm長のチタン板の表面に誘電体としてアルミ ナを溶射加工して製作した。また、背側に放熱板とヒーターを設置して、常時基材表 面の温度が一定になるようにした。  The movable gantry electrode was manufactured by spraying alumina as a dielectric on the surface of a 200 mm wide and 300 mm long titanium plate. In addition, a heat sink and a heater were installed on the back side so that the temperature of the substrate surface was always constant.
[0186] 誘電体厚み: lmm [0186] Dielectric thickness: lmm
電極巾: 200mm  Electrode width: 200mm
材質:チタン  Material: Titanium
移動架台電極の温度:基材表面が表 1に記載の温度になるように架台の温度を設 置した。  Temperature of moving gantry electrode: The temperature of the gantry was set so that the surface of the base material was at the temperature shown in Table 1.
[0187] 移動架台電極に基板を配置して、連続的に走査しながら成膜を行い、約 lOOnmの [0187] The substrate was placed on the movable gantry electrode, and the film was formed while continuously scanning.
Nbドープ TiO膜を作成した。 Nb-doped TiO film was prepared.
[0188] 比較例、実施例 1 , 2は、以下のスパッタ法にて酸化チタン系透明導電膜を成膜し た。 In Comparative Example and Examples 1 and 2, a titanium oxide transparent conductive film was formed by the following sputtering method.
[0189] (2)スパッタ法 TiO粉末(99. 99%)と Nb O粉末(99. 99%)を 95: 5の割合で混合した後、成 形、焼成し直径 20cmの TiO -Nb O系高密度焼結体を作製した。 [0189] (2) Sputtering method TiO powder (99.99%) and NbO powder (99.99%) were mixed at a ratio of 95: 5, then shaped and fired to produce a 20cm diameter TiO-NbO-based high-density sintered body. .
[0190] 得られた焼結体をターゲットとしてバッチ式の DCマグネトロンスパッタリング装置に 装着し成膜を行った。ターゲット上の磁束密度は lOOOGaussとした。チャンバ一内 の到達真空度を、 5 X 10— 6Pa以下とし、スパッタリング時のガス圧は、 2 X 10— 4Paとし た。スパッタリングガスとしてはアルゴンガスとアルゴンと酸素の混合ガスを用い、別系 統でチャンバ一内に導入した。この条件で、 150°Cの保温板に保持された基材に膜 厚 lOOnmの TiO: Nb系薄膜を形成した。尚、アルゴンと酸素の量比は、 10 : 1、 10 0 : 1、 500 : 1、 1000 : 1で行い、透過性能、抵抗性能でもっとも良好であった 500 : 1 の条件を代表値とした。 [0190] The obtained sintered body was used as a target for deposition in a batch type DC magnetron sputtering apparatus. The magnetic flux density on the target was lOOOGauss. The ultimate vacuum within the chamber one, not more than 5 X 10- 6 Pa, gas pressure during the sputtering was set to 2 X 10- 4 Pa. Argon gas and a mixed gas of argon and oxygen were used as the sputtering gas and introduced into the chamber as a separate system. Under these conditions, a TiO: Nb-based thin film having a film thickness of lOOnm was formed on the base material held on a heat insulating plate at 150 ° C. The quantity ratio of argon and oxygen was 10: 1, 100: 1, 500: 1, 1000: 1, and the conditions of 500: 1, which were the best in permeation performance and resistance performance, were used as representative values. .
[0191] 《後処理 (AGPァニール)条件》  [0191] 《Post-processing (AGP annealing) condition》
(1)大気圧プラズマ法 (ダイレクト)  (1) Atmospheric pressure plasma method (Direct)
あらかじめスパッタ法、大気圧プラズマ法にて TiO主成分とする薄膜を成膜した基 材に(単周波の)大気圧プラズマ放電処理を行った。  Atmospheric pressure plasma discharge treatment (single frequency) was performed on a substrate on which a thin film containing TiO as the main component was formed in advance by sputtering or atmospheric pressure plasma.
[0192] 図 3で示される装置を用いた。 [0192] The apparatus shown in Fig. 3 was used.
[0193] (電源条件) [0193] (Power supply conditions)
電源:(アドテックプラズマテクノロジ一社製高周波電源) 27MHz 10W/cm2 Power supply: (High frequency power supply manufactured by Adtech Plasma Technology) 27MHz 10W / cm 2
(電極条件) (Electrode condition)
電極の角形電極は、 30mm角状の中空のチタンパイプに対し、誘電体としてセラミ ック溶射加工を行!/、製作した。  The electrode square electrode was fabricated by ceramic spraying as a dielectric material on a 30mm square hollow titanium pipe.
[0194] 誘電体厚み: lmm [0194] Dielectric thickness: lmm
電極巾: 300mm  Electrode width: 300mm
印加電極温度: 90°C  Applied electrode temperature: 90 ° C
電極間(放電)ギャップ: 2· 0mm  Electrode (discharge) gap: 2.0 mm
(ガス条件)  (Gas condition)
放電ガス: Ar/60slm  Discharge gas: Ar / 60slm
反応促進ガス H /lslm  Reaction promoting gas H / lslm
〔移動架台〕 移動架台電極の温度: AGP (大気圧プラズマ法)ァニールとして表 1に記載した。 [Moving platform] Temperature of moving platform electrode: AGP (atmospheric pressure plasma method) annealing is shown in Table 1.
[0195] 上記の条件で、移動架台電極に TiO主成分とする薄膜を成膜した基材を配置して 連続的に走査しながら、プラズマを 30sec照射させた。 [0195] Under the above-described conditions, a substrate on which a thin film containing TiO as a main component was formed was placed on the movable gantry electrode, and plasma was irradiated for 30 seconds while continuously scanning.
[0196] 以上の条件で、それぞれ CHC、酸化珪素下引き、酸化チタン系導電膜を表 1に記 載の様にそれぞれ作製方法を変えて積層した比較例 1、実施例;!〜 3の透明導電膜 基板を作製した。 [0196] Under the above conditions, each of CHC, silicon oxide subbing, and titanium oxide-based conductive film was laminated by changing the production method as shown in Table 1, respectively. A conductive film substrate was produced.
[0197] 実施例 4の透明導電膜基板を以下のように作製した。 [0197] The transparent conductive film substrate of Example 4 was produced as follows.
[0198] 実施例 3と同様に、但し、酸化チタン系透明導電膜製膜の作製を、大気圧プラズマ  [0198] As in Example 3, except that the titanium oxide transparent conductive film was formed by atmospheric pressure plasma.
(CVD)法を用い以下の酸化チタン系透明導電膜製膜条件で成膜しドーパントとして タンタルを有する酸化チタン透明導電膜を形成した。  A titanium oxide transparent conductive film having tantalum as a dopant was formed using the (CVD) method under the following conditions for forming a titanium oxide transparent conductive film.
[0199] 〔ガス条件〕  [0199] [Gas conditions]
(原料ガス)  (Raw material gas)
TiO膜形成用の原材料として、テトライゾプロポキシチタン (TIPT)をパブリングに Tetrizopropoxytitanium (TIPT) publishing as a raw material for TiO film formation
2 2
より気化させた(Nガス: 3slm、 60。C)。  More vaporized (N gas: 3slm, 60.C).
2  2
[0200] また、ドープ材料としてペンタエトキシタンタルをバブリングにより気化させた(Nガ  [0200] Pentaethoxytantalum was vaporized by bubbling as a doping material (N gas
2 ス: 3slmゝ 90。C)。  2 S: 3slm ゝ 90. C).
[0201] (放電ガス) N : 60slm [0201] (Discharge gas) N: 60slm
2  2
(補助ガス) H : 1 · Oslm  (Auxiliary gas) H: 1 · Oslm
2  2
その他の条件は実施例 3と同様とした。移動架台電極に基材を配置して、連続的に 走査しながら成膜を行い、約 lOOnmの Taドープ TiO膜を形成して、実施例 4の透  Other conditions were the same as in Example 3. A base material is placed on the movable gantry electrode, and film formation is performed while continuously scanning to form a Ta-doped TiO film of about 100 nm, and the transmission of Example 4 is performed.
2  2
明導電膜基板を作製した。  A bright conductive film substrate was produced.
[0202] 実施例;!〜 4の透明導電膜基板を、透過性能、抵抗性能、密着性能について、初 期又高温高湿条件で保存後のそれぞれの特性を評価した。  [0202] The transparent conductive film substrates of Examples;! To 4 were evaluated for the permeation performance, resistance performance, and adhesion performance after storage under the initial or high temperature and high humidity conditions.
[0203] 前記の評価法により評価した結果を表 1に示した。 [0203] Table 1 shows the results of evaluation by the above evaluation methods.
[0204] [表 1]
Figure imgf000035_0001
[0204] [Table 1]
Figure imgf000035_0001
下引きとなる酸化珪素層のなレ、比較例 1の透明導電膜基板は抵抗性能も悪ぐ基 材との密着性が特に悪い、また、高温高湿条件での保存後に於いては透過性能も 他のものに比べ低下していることが判る。また、酸化珪素層の形成は密着性の観点 からは大気圧プラズマ法による成膜が蒸着法よりも好ましレ、ことがわかる。厚くなると 透過性能がやや落ちてくる。 The transparent conductive film substrate of Comparative Example 1 has a poor resistance performance and particularly poor adhesion to the base material, and the permeation performance after storage under high temperature and high humidity conditions. It can be seen that is also lower than the others. It can also be seen that the formation of the silicon oxide layer is more preferable than the vapor deposition method from the viewpoint of adhesion. When it gets thicker The transmission performance is slightly reduced.

Claims

請求の範囲 The scope of the claims
[1] 樹脂基材上に成膜された酸化チタン系透明導電膜を有する透明導電膜基板であつ て、  [1] A transparent conductive film substrate having a titanium oxide-based transparent conductive film formed on a resin substrate,
透明樹脂基板に、酸化珪素層、ドープされた酸化チタン (を主体とする)層が、順次 積層されていることを特徴とする透明導電膜基板。  A transparent conductive film substrate, wherein a silicon oxide layer and a doped titanium oxide (mainly) layer are sequentially laminated on a transparent resin substrate.
[2] 前記酸化珪素層の厚みが 50nm以下であることを特徴とする請求の範囲第 1項に記 載の透明導電膜基板。  [2] The transparent conductive film substrate according to [1], wherein the silicon oxide layer has a thickness of 50 nm or less.
[3] 前記透明樹脂基板がポリエチレンテレフタレート(PET)、トリァセチルセルロース (T [3] The transparent resin substrate is made of polyethylene terephthalate (PET), triacetyl cellulose (T
AC)、ポリエチレンナフタレート(PEN)、ポリエーテルスルホン(PES)、ポリカーボネ ート(PC)、ポリメチルメタタリレート(PMMA)の!/、ずれかを含むことを特徴とする請 求の範囲第 1項または第 2項に記載の透明導電膜基板。 AC), polyethylene naphthalate (PEN), polyethersulfone (PES), polycarbonate (PC), polymethyl methacrylate (PMMA) The transparent conductive film substrate according to item 1 or item 2.
[4] 前記透明樹脂基板がハードコート層を有することを特徴とする請求の範囲第 1項〜 第 3項の何れか 1項に記載の透明導電膜基板。 [4] The transparent conductive substrate according to any one of [1] to [3], wherein the transparent resin substrate has a hard coat layer.
[5] 前記酸化珪素層の成膜方法が、大気圧プラズマ CVD法であることを特徴とする請求 の範囲第 1項〜第 4項の何れか 1項に記載の透明導電膜基板。 [5] The transparent conductive film substrate according to any one of [1] to [4], wherein the silicon oxide layer is formed by an atmospheric pressure plasma CVD method.
[6] 前記酸化チタン層系透明導電膜にニオブが含まれていることを特徴とする請求の範 囲第 1項〜第 5項の何れか 1項に記載の透明導電膜基板。 [6] The transparent conductive film substrate according to any one of [1] to [5], wherein the titanium oxide layer-based transparent conductive film contains niobium.
[7] 上記酸化チタン系透明導電膜の成膜方法が、スパッタ法、蒸着法、 CVD法のいず れかであることを特徴とする請求の範囲第 1項〜第 6項の何れか 1項に記載の透明導 電膜基板。 [7] The method according to any one of claims 1 to 6, wherein the method of forming the titanium oxide-based transparent conductive film is any one of a sputtering method, a vapor deposition method, and a CVD method. The transparent conductive film substrate according to item.
[8] 請求の範囲第 1項〜第 7項のいずれ力、 1項に記載の透明導電膜基板にドープされた 酸化チタン (を主体とする)層を成膜する透明導電膜の成膜方法であって、 大気圧または大気圧近傍の圧力下で、チタン化合物、ドーパント原料、反応ガスを含 む混合ガスを放電空間に導入してプラズマ状態とし、樹脂基材を前記プラズマ状態 の反応性ガスに晒すことによって、樹脂基材上にドープされた酸化チタンを主体とす る層を成膜することを特徴とする透明導電膜の成膜方法。  [8] A method for forming a transparent conductive film, comprising forming a titanium oxide (based mainly) layer doped on the transparent conductive film substrate according to any one of claims 1 to 7. A mixed gas containing a titanium compound, a dopant raw material, and a reactive gas is introduced into a discharge space under a pressure at or near atmospheric pressure to form a plasma state, and the resin base material is a reactive gas in the plasma state. A method for forming a transparent conductive film, characterized in that a layer mainly composed of doped titanium oxide is formed on a resin base material by exposing to water.
[9] 請求の範囲第 1項〜第 7項のいずれか 1項に記載の透明導電膜基板における酸化 チタン系透明導電膜の形成方法であって、 透明樹脂基板上に予め成膜されたドープされた酸化チタン (を主体とする)層を、 大気圧または大気圧近傍の圧力下、反応性ガスを放電空間に導入して、プラズマ状 態とした反応性ガスに晒す、後処理を行うことによって、低抵抗化させることを特徴と する酸化チタン系透明導電膜の形成方法。 [9] A method for forming a titanium oxide-based transparent conductive film in the transparent conductive film substrate according to any one of claims 1 to 7, A doped titanium oxide (mainly composed of) layer formed in advance on a transparent resin substrate is brought into a plasma state by introducing a reactive gas into the discharge space at or near atmospheric pressure. A method for forming a titanium oxide-based transparent conductive film, characterized in that resistance is lowered by performing post-treatment by exposure to a reactive gas.
前記後処理が、少なくとも水素ガス、水蒸気のいずれかを含む雰囲気下で行われる 処理であることを特徴とする請求の範囲第 9項に記載の酸化チタン系透明導電膜の 形成方法。 10. The method for forming a titanium oxide-based transparent conductive film according to claim 9, wherein the post-treatment is a treatment performed in an atmosphere containing at least one of hydrogen gas and water vapor.
PCT/JP2007/068790 2006-10-12 2007-09-27 Transparent conductive film substrate and method of forming titanium oxide based transparent conductive film for use therein WO2008047549A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008539713A JPWO2008047549A1 (en) 2006-10-12 2007-09-27 Transparent conductive film substrate and method for forming titanium oxide-based transparent conductive film used therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-278557 2006-10-12
JP2006278557 2006-10-12

Publications (1)

Publication Number Publication Date
WO2008047549A1 true WO2008047549A1 (en) 2008-04-24

Family

ID=39313796

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068790 WO2008047549A1 (en) 2006-10-12 2007-09-27 Transparent conductive film substrate and method of forming titanium oxide based transparent conductive film for use therein

Country Status (2)

Country Link
JP (1) JPWO2008047549A1 (en)
WO (1) WO2008047549A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135096A (en) * 2007-10-29 2009-06-18 Sumitomo Chemical Co Ltd Transparent electroconductive substrate and method of manufacturing the same
JP2010237637A (en) * 2009-03-13 2010-10-21 Seiko Epson Corp Optical article and method of manufacturing the same
JP2012140646A (en) * 2010-12-28 2012-07-26 Innovation & Infinity Global Corp Diffusion blocking structure, and transparent electrically conductive structure and method for producing the same
JP2013019053A (en) * 2011-07-13 2013-01-31 Samsung Display Co Ltd Vapor deposition apparatus, vapor deposition method, and method for manufacturing organic light emitting display apparatus
JP2015163738A (en) * 2009-05-04 2015-09-10 ザ・ボーイング・カンパニーTheBoeing Company coating method
JP2016207541A (en) * 2015-04-24 2016-12-08 株式会社カネカ Transparent conductive film and display device, and method for producing transparent conductive film and method for producing display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09156022A (en) * 1995-12-05 1997-06-17 Mitsui Toatsu Chem Inc Transparent conductive laminate
JP2003303520A (en) * 2002-04-10 2003-10-24 Konica Minolta Holdings Inc Transparent conductive film laminated body and its manufacturing method, and article using transparent conductive film laminated body
JP2004087846A (en) * 2002-08-27 2004-03-18 Konica Minolta Holdings Inc Method of forming polycrystalline thin film
JP2005011737A (en) * 2003-06-20 2005-01-13 Nippon Sheet Glass Co Ltd Transparent conductive substrate, its manufacturing method and photoelectric conversion element
JP2005168113A (en) * 2003-12-01 2005-06-23 Meidensha Corp Setting method for capacity of compensating capacitor of induction generator
JP2005183007A (en) * 2003-12-16 2005-07-07 Dainippon Printing Co Ltd Transparent conductive sheet

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4269986B2 (en) * 2004-03-19 2009-05-27 住友金属鉱山株式会社 Oxide sintered compact target for manufacturing transparent conductive thin film, transparent conductive thin film, transparent conductive substrate, display device, and organic electroluminescence element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09156022A (en) * 1995-12-05 1997-06-17 Mitsui Toatsu Chem Inc Transparent conductive laminate
JP2003303520A (en) * 2002-04-10 2003-10-24 Konica Minolta Holdings Inc Transparent conductive film laminated body and its manufacturing method, and article using transparent conductive film laminated body
JP2004087846A (en) * 2002-08-27 2004-03-18 Konica Minolta Holdings Inc Method of forming polycrystalline thin film
JP2005011737A (en) * 2003-06-20 2005-01-13 Nippon Sheet Glass Co Ltd Transparent conductive substrate, its manufacturing method and photoelectric conversion element
JP2005168113A (en) * 2003-12-01 2005-06-23 Meidensha Corp Setting method for capacity of compensating capacitor of induction generator
JP2005183007A (en) * 2003-12-16 2005-07-07 Dainippon Printing Co Ltd Transparent conductive sheet

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009135096A (en) * 2007-10-29 2009-06-18 Sumitomo Chemical Co Ltd Transparent electroconductive substrate and method of manufacturing the same
JP2010237637A (en) * 2009-03-13 2010-10-21 Seiko Epson Corp Optical article and method of manufacturing the same
JP2015163738A (en) * 2009-05-04 2015-09-10 ザ・ボーイング・カンパニーTheBoeing Company coating method
JP2012140646A (en) * 2010-12-28 2012-07-26 Innovation & Infinity Global Corp Diffusion blocking structure, and transparent electrically conductive structure and method for producing the same
JP2013019053A (en) * 2011-07-13 2013-01-31 Samsung Display Co Ltd Vapor deposition apparatus, vapor deposition method, and method for manufacturing organic light emitting display apparatus
JP2016207541A (en) * 2015-04-24 2016-12-08 株式会社カネカ Transparent conductive film and display device, and method for producing transparent conductive film and method for producing display device

Also Published As

Publication number Publication date
JPWO2008047549A1 (en) 2010-02-25

Similar Documents

Publication Publication Date Title
WO2007026545A1 (en) Plasma discharge processing device and production method of gas barrier film
JP5320848B2 (en) Laminate with hard coat layer
JP4876918B2 (en) Transparent conductive film
JP5626308B2 (en) Method for producing gas barrier laminate and gas barrier laminate
WO2007138837A1 (en) Production method of gas barrier resin substrate and production system of gas barrier resin substrate
JP2009235576A (en) Thin film formation method
WO2008047549A1 (en) Transparent conductive film substrate and method of forming titanium oxide based transparent conductive film for use therein
JPWO2002048428A1 (en) Thin film forming method, article having thin film, optical film, dielectric coated electrode, and plasma discharge treatment apparatus
JPWO2012081555A1 (en) Gas barrier laminate and method for producing gas barrier laminate
WO2006067952A1 (en) Gas-barrier thin film laminate, gas-barrier resin base and organic el device
JPWO2008044474A1 (en) Method for forming transparent conductive film
WO2005059202A1 (en) Method for forming thin film and base having thin film formed by such method
JP2007113043A (en) Gas barrier thin film-stacked body, gas barrier resin base material, and organic electroluminescence device using the same
JP2007038445A (en) Gas barrier thin film laminate, gas barrier resin base material and organic electroluminescence device
JP2007017668A (en) Optical film
JPWO2015037534A1 (en) Functional film manufacturing apparatus and manufacturing method
WO2008044473A1 (en) Method for forming transparent conductive film and transparent conductive film substrate
JP2006236747A (en) Transparent electrode and manufacturing method of transparent electrode
JP2005272957A (en) Surface treatment method and base material surface-treated by the surface treatment method
WO2005083149A1 (en) Particle deposited substrate
JP5012745B2 (en) Laminate with hard coat layer
WO2005108055A1 (en) Film for display board and method for manufacturing organic el element and aluminum oxide thin film
JP4686956B2 (en) Method for forming functional body
JP4539059B2 (en) Method for producing transparent conductive film laminate
JP2009279778A (en) Laminate with hard coat layers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828536

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008539713

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828536

Country of ref document: EP

Kind code of ref document: A1