WO2008047050A1 - Systeme de determination du relief d'une surface de remplissage de granules dans un reacteur petrochimique. - Google Patents

Systeme de determination du relief d'une surface de remplissage de granules dans un reacteur petrochimique. Download PDF

Info

Publication number
WO2008047050A1
WO2008047050A1 PCT/FR2007/052185 FR2007052185W WO2008047050A1 WO 2008047050 A1 WO2008047050 A1 WO 2008047050A1 FR 2007052185 W FR2007052185 W FR 2007052185W WO 2008047050 A1 WO2008047050 A1 WO 2008047050A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
filling
granules
transmitter
relief
Prior art date
Application number
PCT/FR2007/052185
Other languages
English (en)
Inventor
Bernard Poussin
Original Assignee
Crealyst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37964391&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2008047050(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Crealyst filed Critical Crealyst
Priority to CA2666768A priority Critical patent/CA2666768C/fr
Priority to ES07858610T priority patent/ES2702985T3/es
Priority to US12/311,913 priority patent/US8217831B2/en
Priority to EP07858610.4A priority patent/EP2081670B1/fr
Publication of WO2008047050A1 publication Critical patent/WO2008047050A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/002Feeding of the particles in the reactor; Evacuation of the particles out of the reactor with a moving instrument
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/0015Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
    • B01J8/003Feeding of the particles in the reactor; Evacuation of the particles out of the reactor in a downward flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/04Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00752Feeding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00769Details of feeding or discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00743Feeding or discharging of solids
    • B01J2208/00769Details of feeding or discharging
    • B01J2208/00778Kinetic energy reducing devices in the flow channel

Definitions

  • the present invention relates to a system for determining the relief of a filling surface of granules in a petrochemical reactor.
  • the term “granules” any type of solid particles divided.
  • the term “vertical direction” defines the filling direction of a petrochemical reactor
  • the "horizontal plane” of the petrochemical reactor is a plane perpendicular to this filling direction.
  • the invention applies to the field of the petrochemical industry. It is known that during its refining, the oil undergoes chemical reactions, in particular in a receptacle called petrochemical reactor. To promote the reactions, the oil flows into the reactor through a catalyst in the form of granules, generally porous extruded beads comprising metal compounds. It will be noted that the petrochemical reactor generally operates at pressures of between 0 and 100 bar, and temperatures of between 100 and 500 ° C.
  • the catalyst must be replaced when it is worn, for example after two years.
  • the reactor is first emptied and then filled with new catalyst, using a granule filling device such as that described in document FR 2 862 625. This device filling takes place in the reactor filler opening, generally arranged in the top and center of the reactor.
  • the filling surface (that is to say the upper surface delimiting the pile of granules poured) must be as flat and horizontal as possible. Indeed, if during the filling of the granules, the filling surface has a relief, for example by forming a cone, segregation of the granules can occur, that is to say that the largest granules of the surface of the cone slide towards the lower parts of the cone, by gravity effect. Because of this segregation of the pellets, the oil that then flows into the petrochemical reactor tends to use a preferential passage, so that some of the catalytic granules react more than the others.
  • a system for determining the relief of a pellet filling surface in a storage silo comprising a transmitter, such as a laser beam, positioned above the filling surface , in the upper central part of the silo, so as to emit a signal to different points of this surface and thus determine the height of these different points.
  • this transmitter comprises means of rotation on itself.
  • Such a system thus makes it possible to obtain a topographic survey of the filling surface.
  • this system is used in a storage silo in the agri-food sector, receptacle not having the same configuration constraints and the same operating conditions as a petrochemical reactor.
  • the present invention aims to provide a system for obtaining a precise topographic survey of the filling surface in a petrochemical reactor, without using several emitters, even when the upper part of the reactor is occupied by a filling device.
  • the subject of the invention is a system for determining the relief of a filling surface of granules in a petrochemical reactor, the filling direction of the reactor defining a vertical direction, the reactor comprising a central vertical axis, the system comprising a transmitter configured to be positioned above the fill surface to emit a signal to different points on that surface, characterized in that the system comprises means for moving the transmitter at an angle to the central axis of the reactor greater than 60 °.
  • the "displacement" of the transmitter corresponds to a displacement of the entire transmitter, it thus comprises a translation or a rotation with respect to an axis outside the transmitter, but is distinguished from a rotation of the transmitter. transmitter on itself.
  • the entire transmitter it is possible to move the entire transmitter a relatively large distance so that it can take several positions relative to the central axis, for example diametrically opposed positions.
  • the displacement distance of the emitter it may be mentioned that, if the reactor is cylindrical, the emitter can be moved over a distance greater than the value of the radius of the reactor. It emerges that only one transmitter is sufficient to obtain a topographic survey of the filling surface, despite the presence of a filling device in the upper central part of the reactor.
  • the invention is particularly advantageous if the determination system is intended to be mounted in a reactor equipped with a filling device in its upper central part. In addition, a more precise determination of the relief is obtained.
  • the transmitter during its displacement, can take a large amount of different positions.
  • the filling surface is not flat, the more the transmitter can take different positions, the more it can vary the viewing angles of the relief, and thus determine its exact shape.
  • the filling device may constitute an obstacle to the aim of the relief, especially since the transmitter must be positioned higher than the filling device, so as not to be bothered by the rain of pellets. Due to its movement over a long distance, the transmitter can reach parts of the surface that were hidden by the filling device in a previous position.
  • the means for moving the transmitter make it possible to relate the determination system to reactors of various sizes, since the displacement distance can be adapted to the size of the reactor.
  • This advantage is particularly interesting because it allows the same determination system to be used on a large variety of reactors, which is economical since a reactor is only recharged every two or three years.
  • the displacement of the emitter takes place in a horizontal plane of the reactor.
  • a terrain determination system may further include one or more of the following features: -AT-
  • the transmitter is a transmitter / receiver, in particular a radar.
  • the use of the radar is particularly advantageous because it is suitable for taking measurements in a reactor being filled with granules, that is to say in an environment laden with dust or fine particles in suspension. .
  • the system further comprises means for rotating the transmitter on itself. Thanks to this rotation of the transmitter on itself, the accuracy of the determination system is further improved.
  • the rotation means preferably have one or more horizontal axes of rotation. Thus, not only can the transmitter travel a great distance, but its inclination with respect to the filling surface can furthermore change.
  • the displacement means allow the transmitter to move at an angle of 360 ° with respect to the central axis of the reactor, that is to say that the emitter is capable of making all around the central axis , for a better topographic survey of the filling surface.
  • the system comprises electrical means for driving the means for moving and / or rotating the transmitter.
  • Such means can be automatic or manually controlled from a remote control station of the petrochemical reactor.
  • the system comprises means for attachment to a pellet filling device in the petrochemical reactor.
  • mounting the transmitter on the reactor is particularly easy, since it is sufficient to mount it on the filling device, without having to access inaccessible parts of the reactor interior.
  • these fixing means are removable, so that we can report the determination system on different filling devices, and therefore on different reactors.
  • the displacement means comprise straight displacement means, in particular a guide rail of the transmitter. In a cylindrical reactor, these rectilinear means may, for example, be positioned along two parallel horizontal ropes of the reactor.
  • the displacement means comprise means for rotating the emitter around the central axis of the reactor, preferably around a device for filling granules in the reactor.
  • the system of determination moves to describe a circle around the filling device, which improves the accuracy of the measurements.
  • These means of rotation may possibly take the form of a circular guide rail.
  • the rotation around the filling device is particularly interesting since it makes it possible to position the emitter in a horizontal plane of the same height as the filling device, so that the emitter is not hindered by the rain of granules during the filling.
  • the determination system comprises a pivot arm, one end of which is connected to the transmitter, and the opposite end of which is intended to be connected to a pellet filling device.
  • This pivot arm is a simple way to perform the rotation.
  • this arm is a fixing means of the determination system on the reactor filling device, without an operator needs to go fix elements inside the reactor.
  • the invention also relates to an assembly of a device for filling granules in a petrochemical reactor and a system for determining the relief of the filling surface of the granules in this reactor, as described above.
  • the invention finally relates to a method of mounting an assembly as defined above, during which the granule filling device is first mounted in the reactor, then the determination system is reported on this device. filling.
  • the determination system can be cumbersome, after mounting the filling device on the reactor, while this device is generally bulky, especially since it is arranged opposite the opening of reactor filling.
  • FIG. 1 is a sectional view of a petrochemical reactor provided with a relief determination system according to a first embodiment of the invention
  • FIG. 2 is a sectional view along the line M-II of Figure 1;
  • FIG. 3 is an enlarged view of the system of FIG. 1;
  • FIG. 4 is a perspective view of displacement means and rotation means of the system of FIG. 1;
  • FIG. 5 is a view similar to that of Figure 2 of a relief determination system according to a second embodiment of the invention.
  • the oil flows into a petrochemical reactor 10, shown in Figure 1, of generally cylindrical shape.
  • the reactor 10 comprises a filling opening 12 and a discharge opening 14.
  • the reactor 10 comprises a central vertical axis X, and is filled in a filling direction represented by the arrow 15.
  • the latter Before the oil flows into the reactor 10, the latter is filled with a catalyst 16 formed of granules, for example porous extruded beads comprising metal.
  • the granules 16 are filled by means of a filling device 18, similar to that described in document FR 2 862 625, in the most homogeneous manner possible, by dispersing the granules in the form of rain.
  • the filling device 18 is suspended in the reactor by means of vertical feet 19, attached to an outer frame.
  • a system 22 for determining the relief of the surface 20 according to the invention is reported on the filling device 18.
  • This system 22 connected to a processing system, has the function of determining whether the filling surface 20 comprises filling discontinuities, such as cones.
  • the system 22 comprises a transmitter 24 more precisely a transmitter / receiver consisting of a radar. This radar is capable of taking measurements over distances up to 70 meters.
  • the radar is positioned above the filling surface 20, so as to emit electromagnetic waves to different points of this surface, for example points A, B, C, D, and thus make it possible to determine their height in the reactor .
  • the determination system 22 further comprises means 26 for moving the radar 24, shown in FIG. 4.
  • These means 26 comprise a circular rail 28, attached around the filling device 18, and a pivoting arm 30 mounted perpendicularly to the central axis X of the reactor.
  • the pivot arm 30 has an end 31 rotatably mounted on the circular rail 28. The rotation is implemented by means of a rack 32 provided at the periphery of the rail 28, cooperating with a pinion 34 integral with the pivoting arm 30, the pinion 34 being driven by an electric motor 36.
  • the end 38 of the pivoting arm 30, opposite the end 31, is connected to the radar 24.
  • the determination system 22 further comprises means 40 for rotating the radar 24 on itself. These means comprise an electric motor 42 driving the radar, symbolized by the plate 44 in FIG. 4.
  • the rotation axis Y of the radar is horizontal, as can be seen in FIG. 2, and allows a rotation of the radar in a vertical plane P v , more precisely in a radial plane, that is to say which passes through the central axis X of the reactor.
  • the radar 24 is in a first position, shown schematically in solid lines in FIG. 2. This radar 24 transmits signals towards different points A, B, C, D of the filling surface 20, which it can reach thanks to the rotation means 40. Thus, in this first position, the radar 24 can turn around the axis
  • the radar 24 can take a series of measurements, in order to determine the height of the points of the filling surface located in the vertical plane Pvi.
  • the displacement means 26 are triggered, so as to move the radar 24 at an angle ⁇ (alpha) relative to the axis X.
  • the transmitter 24 can move in the horizontal plane P H visible in Figure 1, so as to take a plurality of positions around the filling device 18, by varying the values of the angle ⁇ .
  • the radar 24 changes its position, it can take measurements in the vertical plane P Vn corresponding, thanks to its rotation around the means 40.
  • the radar 24 can move over great distances, so that it can perform measurements that were not accessible from the first position, especially because of the presence of the filling device 18 in the center of the reactor.
  • the radar 24 can visualize the relief of the filling surface at a totally different angle of sight than the first position.
  • the means 26 make it possible to move the radar 24 at an angle of 360 ° about the central axis X, so that once the radar 24 has been around the axis, taking a plurality of positions around this axis, a particularly accurate topographic survey of the filling surface 20 of the reactor is obtained.
  • the measurements taken by the determination system may be continuous or periodic. They are transmitted in real time to a control station and are processed so as to obtain the topographic survey of the filling surface 20. With this topographic survey, it is possible, when a relief has been determined on the surface filling 20, to modify the filling parameters in order to correct this relief and to obtain a horizontal flat surface.
  • the filling device 18 is first mounted in the reactor, supported by the feet 19. Next, the determination system 22 is reported on this device 18. Preferably, it is removably connected, for example to the using clips, so you can easily dismount it and report it to another reactor.
  • the circular rail 28 is first mounted on the filling device 18. Then, this device is mounted on the reactor supported by the feet 19. Next, the radar 24, connected to the pivoting arm 30, on the circular rail 28, preferably by fixing it removably with clips. To bring back the arm 30 and the radar 24, it is advantageous to introduce them into the filling aperture 12 perpendicular to their final position, that is to say that the pivoting arm 30 is parallel to the vertical axis X, which reduces the space required to mount it when the filling device 18 takes up too much space in the filling opening 12. Then, once the radar 24 and the pivoting arm 30 are in the reactor vessel, it is possible to orient them perpendicularly to the X axis, so that the arm 30 is in the horizontal plane P H for example in the first position described above.
  • FIG. 1 Another embodiment of the system according to the invention is illustrated in FIG. 1
  • the displacement means 26 comprise rectilinear means 46, aligned with two ropes of the circular section of the reactor 10.
  • the means 46 are composed of a guide rail, fixed with respect to the reactor, cooperating with a complementary guide means of the radar 24.
  • the determination system comprises rotation means 40 of the radar around an axis Y '.
  • the radar 24, in each of these positions, can be inclined in a vertical plane Py n to scan the filling surface in this plane.
  • the method of operation of the system is similar to that of the first embodiment.
  • the determination system adapts to various types of filling device, and can be implemented in the smallest spaces.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Remote Sensing (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

L invention concerne un système de détermination (22) du relief d une surface de remplissage de granulés dans un réacteur pétrochimique, la direction de remplissage du réacteur définissant une direction verticale, le réacteur comprenant un axe vertical central (X), le système comprenant un émetteur (24) configuré pour être positionné au- dessus de la surface de remplissage de façon à émettre un signal vers différents points de cette surface. Le système comprend des moyens(26) de déplacement de l émetteur (24) selon un angle (?) par rapport à l axe central (X) du réacteur supérieur à 60°.

Description

Système de détermination du relief d'une surface de remplissage de granulés dans un réacteur pétrochimique.
La présente invention concerne un système de détermination du relief d'une surface de remplissage de granulés dans un réacteur pétrochimique.
Dans la suite, on entendra par « granulés » tout type de particules solides divisées. On définit par ailleurs par « direction verticale » la direction de remplissage d'un réacteur pétrochimique, et par « plan horizontal » du réacteur pétrochimique un plan perpendiculaire à cette direction de remplissage. L'invention s'applique au domaine de l'industrie pétrochimique. On sait qu'au cours de son raffinage, le pétrole subit des réactions chimiques, notamment dans un réceptacle appelé réacteur pétrochimique. Pour favoriser les réactions, le pétrole s'écoule dans le réacteur à travers un catalyseur prenant la forme de granulés, généralement des billes extrudées poreuses comprenant des composés métalliques. On notera que le réacteur pétrochimique fonctionne généralement à des pressions comprises entre 0 et 100 bars, et des températures comprises entre 100 et 500°C.
On sait que le catalyseur doit être remplacé lorsqu'il est usé, par exemple au bout de deux ans. Pour mettre en œuvre ce remplacement, on vide tout d'abord le réacteur, puis on le remplit de catalyseur neuf, à l'aide d'un dispositif de remplissage de granulés tel que celui décrit dans le document FR 2 862 625. Ce dispositif de remplissage prend place dans l'ouverture de remplissage du réacteur, agencée généralement dans le haut et au centre du réacteur.
On sait que, lors du remplissage des granulés dans le réacteur pétrochimique, la surface de remplissage (c'est-à-dire la surface supérieure délimitant le tas de granulés versés) doit être la plus plane et horizontale possible. En effet, si au cours du remplissage des granulés, la surface de remplissage présente un relief, par exemple en formant un cône, il peut se produire une ségrégation des granulés, c'est à dire que les plus gros granulés de la surface du cône glissent vers les parties plus basses du cône, par effet de gravité. Du fait de cette ségrégation des granulés, le pétrole qui s'écoule ensuite dans le réacteur pétrochimique a tendance à utiliser un passage préférentiel, si bien qu'une partie des granulés catalytiques réagit davantage que les autres.
Or, on sait que les granulés catalytiques coûtent particulièrement cher, si bien que l'on cherche à les remplacer le moins souvent possible.
C'est pourquoi on cherche à faire réagir les granulés catalytiques de façon homogène, sans produire de passage préférentiel du pétrole. A cet effet, il est nécessaire de remplir les granulés dans le réacteur sans créer de cône sur la surface de remplissage. Afin de surveiller que la surface de remplissage est plane et horizontale, et éventuellement de la corriger, on peut agencer sur le réacteur un système de détermination du relief de la surface de remplissage des granulés.
On connaît déjà dans l'état de la technique un système de détermination du relief d'une surface de remplissage de granulés dans un silo de stockage, comprenant un émetteur, tel qu'un rayon laser, positionné au-dessus de la surface de remplissage, dans la partie supérieure centrale du silo, de façon à émettre un signal vers différents points de cette surface et ainsi déterminer la hauteur de ces différents points. Afin de balayer toute la surface de remplissage, cet émetteur comporte des moyens de rotation sur lui-même. Un tel système permet ainsi d'obtenir un relevé topographique de la surface de remplissage. On notera que ce système est utilisé dans un silo de stockage dans le domaine agroalimentaire, réceptacle n'ayant pas les mêmes contraintes de configuration et ni les mêmes conditions de fonctionnement qu'un réacteur pétrochimique.
Le problème consiste en ce que, au cours du remplissage de granulés dans un réacteur pétrochimique, la partie supérieure centrale du réacteur est occupée par le dispositif de remplissage. Il en résulte que, pour obtenir un relevé topographique satisfaisant de toute la surface de remplissage, il serait nécessaire de disposer plusieurs émetteurs dans la partie supérieure du réacteur, de façon à les monter excentrés par rapport au centre du réacteur, par exemple plusieurs émetteurs diamétralement opposés. Bien que cette solution permettrait d'avoir des mesures précises, elle nécessiterait plusieurs émetteurs, ce qui est coûteux. En outre, comme ces émetteurs seraient relativement éloignés de l'ouverture de remplissage du réacteur, leur montage sur le réacteur serait compliqué.
La présente invention vise à fournir un système permettant d'obtenir un relevé topographique précis de la surface de remplissage dans un réacteur pétrochimique, sans pour autant utiliser plusieurs émetteurs, même lorsque la partie supérieure du réacteur est occupée par un dispositif de remplissage.
A cet effet, l'invention a pour objet un système de détermination du relief d'une surface de remplissage de granulés dans un réacteur pétrochimique, la direction de remplissage du réacteur définissant une direction verticale, le réacteur comprenant un axe vertical central, le système comprenant un émetteur configuré pour être positionné au- dessus de la surface de remplissage de façon à émettre un signal vers différents points de cette surface, caractérisé en ce que le système comprend des moyens de déplacement de l'émetteur selon un angle par rapport à l'axe central du réacteur supérieur à 60°. On notera que le « déplacement » de l'émetteur correspond à un déplacement de tout l'émetteur, il comprend ainsi une translation ou une rotation par rapport à un axe extérieur à l'émetteur, mais se distingue d'une rotation de l'émetteur sur lui-même.
Ainsi, grâce à ces moyens de déplacement, il est possible de déplacer tout l'émetteur sur une distance relativement grande de façon qu'il puisse prendre plusieurs positions par rapport à l'axe central, par exemple des positions diamétralement opposées. Comme ordre de grandeur de la distance de déplacement de l'émetteur, on peut citer que, si le réacteur est cylindrique, l'émetteur peut être déplacé sur une distance supérieure à la valeur du rayon du réacteur. Il en ressort qu'un seul émetteur est suffisant pour obtenir un relevé topographique de la surface de remplissage, malgré la présence d'un dispositif de remplissage dans la partie supérieure centrale du réacteur. Ainsi, l'invention est particulièrement intéressante si le système de détermination est destiné à être monté dans un réacteur muni d'un dispositif de remplissage dans sa partie centrale supérieure. En outre, on obtient une détermination plus précise du relief. En effet, l'émetteur, au cours de son déplacement, peut prendre une grande quantité de positions différentes. Or, dans le cas où la surface de remplissage n'est pas plane, plus l'émetteur peut prendre de positions différentes, plus il peut varier les angles de visée du relief, et donc déterminer sa forme exacte. Par ailleurs, dans le cas où la détermination du relief a lieu au cours du remplissage du réacteur, le dispositif de remplissage peut constituer un obstacle à la visée du relief, surtout que l'émetteur doit être positionné plus haut que le dispositif de remplissage, afin de ne pas être gêné par la pluie de granulés. Grâce à son déplacement sur une grande distance, l'émetteur peut atteindre des parties de la surface qui étaient cachées par le dispositif de remplissage dans une position précédente.
Enfin, les moyens de déplacement de l'émetteur permettent de rapporter le système de détermination sur des réacteurs de dimensions variées, du fait que l'on peut adapter la distance de déplacement à la dimension du réacteur. Cet avantage est particulièrement intéressant car il permet d'utiliser le même système de détermination sur une grande diversité de réacteurs, ce qui est économique puisqu'il arrive qu'un réacteur ne soit rechargé que tous les deux ou trois ans.
De préférence, pour faciliter les mesures, le déplacement de l'émetteur a lieu dans un plan horizontal du réacteur.
Un système de détermination de relief peut en outre comporter l'une ou plusieurs des caractéristiques suivantes : -A-
L'émetteur est un émetteur/ récepteur, en particulier un radar. L'utilisation du radar est particulièrement avantageuse, du fait qu'il est adapté à la prise de mesures dans un réacteur en cours de remplissage de granulés, c'est-à-dire dans un environnement chargé en poussières ou en particules fines en suspension. En outre, il est intéressant d'utiliser un émetteur qui joue également le rôle de récepteur, de façon à diminuer le nombre de composants dans le réacteur.
Le système comporte en outre des moyens de rotation de l'émetteur sur lui- même. Grâce à cette rotation de l'émetteur sur lui-même, on améliore encore la précision du système de détermination. Les moyens de rotation ont de préférence un ou plusieurs axes de rotation horizontaux. Ainsi, non seulement l'émetteur peut se déplacer sur une grande distance, mais son inclinaison par rapport à la surface de remplissage peut en outre changer. Les moyens de déplacement permettent un déplacement de l'émetteur selon un angle de 360° par rapport à l'axe central du réacteur, c'est-à-dire que l'émetteur est capable de faire tout le tour de l'axe central, pour un meilleur relevé topographique de la surface de remplissage.
Le système comporte des moyens électriques d'entraînement des moyens de déplacement et/ou de rotation de l'émetteur. De tels moyens peuvent être automatiques ou commandés manuellement depuis un poste de contrôle distant du réacteur pétrochimique.
Le système comprend des moyens de fixation sur un dispositif de remplissage de granulés dans le réacteur pétrochimique. Ainsi, le montage de l'émetteur sur le réacteur est particulièrement aisé, puisqu'il suffit de le monter sur le dispositif de remplissage, sans avoir à accéder à des parties peu accessibles de l'intérieur du réacteur. De préférence, ces moyens de fixation sont amovibles, si bien que l'on peut rapporter le système de détermination sur différents dispositifs de remplissage, et donc sur différents réacteurs. Les moyens de déplacement comprennent des moyens rectilignes de déplacement, notamment un rail de guidage de l'émetteur. Dans un réacteur cylindrique, ces moyens rectilignes peuvent, par exemple, être positionnés selon deux cordes horizontales parallèles du réacteur. Les moyens de déplacement comprennent des moyens de rotation de l'émetteur autour de l'axe central du réacteur, de préférence autour d'un dispositif de remplissage de granulés dans le réacteur. Ainsi, le système de détermination se déplace de manière à décrire un cercle autour du dispositif de remplissage, ce qui améliore la précision des mesures. Ces moyens de rotation peuvent éventuellement prendre la forme d'un rail de guidage circulaire. La rotation autour du dispositif de remplissage est particulièrement intéressante puisqu'elle permet de positionner l'émetteur dans un plan horizontal de même hauteur que le dispositif de remplissage, si bien que l'émetteur n'est pas gêné par la pluie de granulés lors du remplissage. Le système de détermination comporte un bras de pivotement dont une extrémité est reliée à l'émetteur, et dont l'extrémité opposée est destinée à être reliée à un dispositif de remplissage de granulés. Ce bras de pivotement constitue un moyen simple pour effectuer la rotation. En outre, ce bras constitue un moyen de fixation du système de détermination sur le dispositif de remplissage du réacteur, sans qu'un opérateur ait besoin d'aller fixer des éléments à l'intérieur du réacteur. L'invention concerne également un ensemble d'un dispositif de remplissage de granulés dans un réacteur pétrochimique et d'un système de détermination du relief de la surface de remplissage des granulés dans ce réacteur, tel que décrit ci-dessus.
L'invention concerne enfin un procédé de montage d'un ensemble tel que défini ci- dessus, au cours duquel on monte tout d'abord le dispositif de remplissage de granulés dans le réacteur, puis on rapporte le système de détermination sur ce dispositif de remplissage. Ainsi, on peut monter le système de détermination, qui peut être encombrant, après le montage du dispositif de remplissage sur le réacteur, alors que ce dispositif est généralement encombrant, d'autant plus qu'il est disposé en regard de l'ouverture de remplissage du réacteur. L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple et faite en se référant aux dessins dans lesquels :
- la figure 1 est une vue en coupe d'un réacteur pétrochimique muni d'un système de détermination de relief selon un premier mode de réalisation de l'invention ;
- la figure 2 est une vue en coupe selon la ligne M-Il de la figure 1 ; - la figure 3 est une vue agrandie du système de la figure 1 ;
- la figure 4 est une vue en perspective de moyens de déplacement et de moyens de rotation du système de la figure 1 ;
- la figure 5 est une vue similaire à celle de la figure 2 d'un système de détermination de relief selon un second mode de réalisation de l'invention. Au cours d'un procédé de raffinage, le pétrole s'écoule dans un réacteur pétrochimique 10, représenté sur la figure 1 , de forme générale cylindrique. Le réacteur 10 comprend une ouverture de remplissage 12 et une ouverture d'évacuation 14. Le réacteur 10 comprend un axe vertical central X, et est rempli selon une direction de remplissage représentée par la flèche 15.
Avant que le pétrole ne s'écoule dans le réacteur 10, ce dernier est rempli d'un catalyseur 16 formé de granulés, par exemple des billes extrudées poreuses comprenant du métal. Les granulés 16 sont remplis à l'aide d'un dispositif de remplissage 18, similaire à celui décrit dans le document FR 2 862 625, de la façon la plus homogène possible, en dispersant les granulés sous forme de pluie. Le dispositif de remplissage 18 est suspendu dans le réacteur à l'aide de pieds verticaux 19, rattachés à un bâti extérieur. Afin de surveiller que la surface 20 de remplissage des granulés est plane et horizontale, on rapporte sur le dispositif de remplissage 18 un système 22 de détermination du relief de la surface 20, selon l'invention. Ce système 22, relié à un système de traitement, a pour fonction de déterminer si la surface de remplissage 20 comprend des discontinuités de remplissage, tels que des cônes. Comme on peut le voir sur la figure 3, le système 22 comprend un émetteur 24 plus précisément un émetteur/récepteur composé d'un radar. Ce radar est capable de prendre des mesures sur des distances allant jusqu'à 70 mètres.
Le radar est positionné au-dessus de la surface de remplissage 20, de façon à émettre des ondes électromagnétiques vers différents points de cette surface, par exemple les points A, B, C, D, et ainsi permettre de déterminer leur hauteur dans le réacteur.
Le système de détermination 22 comporte en outre des moyens 26 de déplacement du radar 24, représentés sur la figure 4. Ces moyens 26 comprennent un rail circulaire 28, rapporté autour du dispositif de remplissage 18, et un bras de pivotement 30, monté perpendiculairement à l'axe central X du réacteur. Le bras de pivotement 30 comporte une extrémité 31 montée rotative sur le rail circulaire 28. La rotation est mise en œuvre au moyen d'une crémaillère 32 prévue à la périphérie du rail 28, coopérant avec un pignon 34 solidaire du bras de pivotement 30, le pignon 34 étant entraîné par un moteur électrique 36. L'extrémité 38 du bras de pivotement 30, opposée à l'extrémité 31 , est reliée au radar 24.
Le système de détermination 22 comporte par ailleurs des moyens 40 de rotation du radar 24 sur lui-même. Ces moyens comprennent un moteur électrique 42 entraînant le radar, symbolisé par la plaque 44 sur la figure 4. L'axe de rotation Y du radar est horizontal, comme on peut le voir sur la figure 2, et autorise une rotation du radar dans un plan vertical Pv, plus précisément dans un plan radial, c'est-à-dire qui passe par l'axe central X du réacteur. Le fonctionnement du système de détermination de relief 22 va à présent être décrit.
Au cours du remplissage du réacteur 10, le radar 24 est dans une première position, schématisée en traits pleins sur la figure 2. Ce radar 24 émet des signaux vers différents points A, B, C, D de la surface de remplissage 20, qu'il peut atteindre grâce aux moyens de rotation 40. Ainsi, dans cette première position, le radar 24 peut tourner autour de l'axe
Y pour prendre différentes inclinaisons, telles que les inclinaisons d'angle β (bêta) et β' illustrées sur la figure 3. Les angles β et β' peuvent varier entre 0 et 80°. En conséquence, le radar 24 peut prendre une série de mesures, afin de déterminer la hauteur des points de la surface de remplissage situés dans le plan vertical Pvi. Une fois que le radar 24 a balayé les points de la surface de remplissage dans le plan Py les moyens de déplacement 26 sont déclenchés, de façon à déplacer le radar 24 selon un certain angle α (alpha) par rapport à l'axe X. Ainsi, l'émetteur 24 peut se déplacer dans le plan horizontal PH visible sur la figure 1 , de façon à prendre une pluralité de positions autour du dispositif de remplissage 18, en faisant varier les valeurs de l'angle α. Chaque fois que le radar 24 change de position, il peut prendre des mesures dans le plan vertical PVn correspondant, grâce à sa rotation autour des moyens 40.
Comme on peut le voir sur la figure 2, où le radar 24 est dans une n-ième position, illustrée en pointillés, correspondant à un angle α d'une valeur de 90°, le radar 24 peut se déplacer sur de grandes distances, si bien qu'il peut effectuer des mesures qui n'étaient pas accessibles depuis la première position, notamment en raison de la présence du dispositif de remplissage 18 au centre du réacteur. En outre, depuis cette n-ième position, le radar 24 peut visualiser du relief de la surface de remplissage selon un angle de visée totalement différent de celui de la première position.
Les moyens 26 permettent de déplacer le radar 24 selon un angle de 360° autour de l'axe central X, si bien que, une fois que le radar 24 a fait le tour de l'axe, en prenant une pluralité de positions autour de cet axe, on obtient un relevé topographique particulièrement précis de la surface de remplissage 20 du réacteur.
Les mesures prises par le système de détermination peuvent être continues ou périodiques. Elles sont transmises en temps réel à un poste de contrôle et sont traitées de façon à pouvoir obtenir le relevé topographique de la surface de remplissage 20. Grâce à ce relevé topographique, il est possible, lorsque l'on a déterminé un relief sur la surface de remplissage 20, de modifier les paramètres de remplissage afin de corriger ce relief et d'obtenir une surface plane horizontale.
En outre, il est possible d'assurer un historique du remplissage du réacteur, que l'on pourra consulter plus tard si l'on veut vérifier comment le réacteur a été rempli. Le procédé de montage du dispositif de remplissage 18 et du système de détermination 22 dans le réacteur 10 va à présent être décrit.
On monte tout d'abord le dispositif de remplissage 18 dans le réacteur, supporté par les pieds 19. Puis, on rapporte le système de détermination 22 sur ce dispositif 18. De préférence, on le rapporte de façon amovible, par exemple à l'aide de clips, afin de pouvoir le démonter facilement et le rapporter sur un autre réacteur.
Selon un procédé de montage légèrement différent, on monte tout d'abord le rail circulaire 28 sur le dispositif de remplissage 18. Puis, on monte ce dispositif sur le réacteur supporté par les pieds 19. Ensuite, on rapporte le radar 24, relié au bras pivotant 30, sur le rail circulaire 28, de préférence en le fixant de façon amovible avec des clips. Pour rapporter le bras 30 et le radar 24, il est avantageux de les introduire dans l'ouverture de remplissage 12 perpendiculairement à leur position finale, c'est-à-dire que le bras pivotant 30 est parallèle à l'axe vertical X, ce qui diminue l'espace nécessaire pour le monter lorsque le dispositif de remplissage 18 prend trop de place dans l'ouverture de remplissage 12. Puis, une fois que le radar 24 et le bras pivotant 30 sont dans la cuve du réacteur, on peut les orienter perpendiculairement à l'axe X, de façon que le bras 30 se situe dans le plan horizontal PH par exemple dans la première position décrite ci-dessus.
Un autre mode de réalisation du système selon l'invention est illustré sur la figure 5.
Les éléments analogues à ceux des figures 1 à 4 sont désignés par des références identiques. Les moyens de déplacement 26 comprennent des moyens rectilignes 46, alignés avec deux cordes de la section circulaire du réacteur 10. Les moyens 46 sont composés d'un rail de guidage, fixe par rapport au réacteur, coopérant avec un moyen de guidage complémentaire du radar 24. De même que le premier mode de réalisation, le système de détermination comporte des moyens de rotation 40 du radar autour d'un axe Y'. Ainsi, le radar 24, dans chacune de ces positions, peut être incliné dans un plan vertical Pyn pour balayer la surface de remplissage dans ce plan.
Le procédé de fonctionnement du sytème est similaire à celui du premier mode de réalisation.
On notera enfin que l'invention n'est pas limité aux modes de réalisations précédemment décrits.
Parmi les avantages de l'invention, on notera qu'il est possible de déterminer le relief de la surface de remplissage 20, sans pour autant avoir à faire entrer un opérateur dans le réacteur, ce qui lui évite d'avoir à travailler dans un milieu poussiéreux et chimique. On notera en outre que le montage du système de détermination dans le réacteur est particulièrement rapide, tout en disposant d'un système fournissant des mesures de distance particulièrement fiables.
Enfin, de par sa simplicité, sa légèreté et sa compacité, le système de détermination s'adapte à divers types de dispositif de remplissage, et peut être mise en œuvre dans les espaces les plus restreints.

Claims

REVENDICATIONS
1. Système de détermination (22) du relief d'une surface de remplissage (20) de granulés dans un réacteur pétrochimique (10), la direction de remplissage (15) du réacteur définissant une direction verticale, le réacteur comprenant un axe vertical central (X), le système comprenant un émetteur (24) configuré pour être positionné au-dessus de la surface de remplissage (20) de façon à émettre un signal vers différents points de cette surface, caractérisé en ce que le système comprend des moyens (26) de déplacement de l'émetteur (24) selon un angle (α - alpha) par rapport à l'axe central (X) du réacteur supérieur e 60°.
2. Système selon la revendication 1 , dans lequel l'émetteur est un émetteur/récepteur, en particulier un radar (24).
3. Système selon la revendication 1 ou 2, comportant en outre des moyens (40) de rotation de l'émetteur (24) sur lui-même.
4. Système selon l'une ou quelconque des revendications 1 à 3, dans lequel les moyens de déplacement (26) permettent un déplacement de l'émetteur selon un angle (α - alpha) de 360° par rapport à l'axe central du réacteur.
5. Système selon l'une ou quelconque des revendications 1 à 4, comportant des moyens électriques (36, 42) d'entraînement des moyens de déplacement (26) et/ou de rotation (40) de l'émetteur.
6. Système selon l'une ou quelconque des revendications 1 à 5, comprenant des moyens de fixation, de préférence amovibles, sur un dispositif (18) de remplissage de granulés dans le réacteur (10) .
7. Système selon l'une ou quelconque des revendications 1 à 6, dans lequel les moyens de déplacement (26) comprennent des moyens rectilignes (46) de déplacement, notamment un rail de guidage de l'émetteur.
8. Système selon l'une ou quelconque des revendications 1 à 7, dans lequel les moyens de déplacement (26) comprennent des moyens (28, 30) de rotation de l'émetteur autour de l'axe central (X) du réacteur, de préférence autour d'un dispositif (18) de remplissage de granulés dans le réacteur.
9. Système selon la revendication 8, comportant un bras de pivotement (30) dont une extrémité (38) est reliée à l'émetteur (24), et dont l'extrémité opposée (31 ) est destinée à être reliée à un dispositif (18) de remplissage de granulés
10. Ensemble d'un dispositif (18) de remplissage de granulés dans un réacteur pétrochimique et d'un système (22) de détermination du relief de la surface de remplissage des granulés dans ce réacteur, selon l'une ou quelconque des revendications 1 à 9.
1 1. Procédé de montage d'un ensemble selon la revendication 10 sur un réacteur, au cours duquel on monte tout d'abord le dispositif (18) de remplissage de granulés dans le réacteur, puis on rapporte le système de détermination (22) sur ce dispositif de remplissage.
PCT/FR2007/052185 2006-10-19 2007-10-17 Systeme de determination du relief d'une surface de remplissage de granules dans un reacteur petrochimique. WO2008047050A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2666768A CA2666768C (fr) 2006-10-19 2007-10-17 Systeme de determination du relief d'une surface de remplissage de granules dans un reacteur petrochimique
ES07858610T ES2702985T3 (es) 2006-10-19 2007-10-17 Sistema de determinación del relieve de una superficie de llenado de gránulos en un reactor petroquímico
US12/311,913 US8217831B2 (en) 2006-10-19 2007-10-17 System for determining relief on a granule filling surface in a petrochemical reactor
EP07858610.4A EP2081670B1 (fr) 2006-10-19 2007-10-17 Systeme de determination du relief d'une surface de remplissage de granules dans un reacteur petrochimique

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0654377 2006-10-19
FR0654377A FR2907546B1 (fr) 2006-10-19 2006-10-19 Systeme de determination du relief d'une surface de remplissage de granules dans un reacteur petrochimique

Publications (1)

Publication Number Publication Date
WO2008047050A1 true WO2008047050A1 (fr) 2008-04-24

Family

ID=37964391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/052185 WO2008047050A1 (fr) 2006-10-19 2007-10-17 Systeme de determination du relief d'une surface de remplissage de granules dans un reacteur petrochimique.

Country Status (6)

Country Link
US (1) US8217831B2 (fr)
EP (1) EP2081670B1 (fr)
CA (1) CA2666768C (fr)
ES (1) ES2702985T3 (fr)
FR (1) FR2907546B1 (fr)
WO (1) WO2008047050A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009098372A1 (fr) * 2007-11-15 2009-08-13 Total Raffinage Marketing Dispositif et procede pour le chargement de particules solides dans une enceinte
FR2984181A1 (fr) * 2011-12-20 2013-06-21 Total Raffinage Marketing Support de capteur pour un reacteur en cours de chargement
WO2013186497A1 (fr) * 2012-06-13 2013-12-19 Total Raffinage Marketing Distribution de particules solides dans un reacteur
US10044094B2 (en) 2014-02-21 2018-08-07 Vega Grieshaber Kg Level indicator comprising an energy transmission device

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8015310B2 (en) * 2008-08-08 2011-09-06 Cisco Technology, Inc. Systems and methods of adaptive playout of delayed media streams
CN102642727B (zh) * 2012-05-07 2013-11-06 鞍钢集团矿业公司 货运车辆物料平整机
US20140037419A1 (en) * 2012-08-06 2014-02-06 Exxonmobil Research And Engineering Company Process for reactor catalyst loading
DE102012017785A1 (de) 2012-09-10 2014-03-13 Thyssenkrupp Uhde Gmbh Beladevorrichtung
WO2014053331A1 (fr) * 2012-10-01 2014-04-10 Siemens Aktiengesellschaft Système de remplissage ayant un capteur intégré
DE102013101949A1 (de) 2013-02-27 2014-08-28 Thyssenkrupp Uhde Gmbh Vorrichtung zur Befüllung insbesondere von Radialreaktoren mit Katalysatormaterial
HUE049876T2 (hu) 2013-05-17 2020-11-30 Grieshaber Vega Kg Topológiameghatározás ömlesztett termékekhez
EP3404375A1 (fr) * 2013-05-17 2018-11-21 VEGA Grieshaber KG Commande d'appareil de mesure destinée à la détermination d'une topologie d'une surface d'un matériau en vrac
HUE028118T2 (en) * 2013-08-14 2016-11-28 Grieshaber Vega Kg Radar beam diverting unit for charge level gauge
US20150101406A1 (en) * 2013-10-16 2015-04-16 Exxonmobil Research And Engineering Company Real-time level monitoring for fixed bed catalyst loading using multiple level sensors
US10564026B2 (en) * 2014-02-11 2020-02-18 Vega Grieshaber Kg Filling level measuring device with a foldable antenna device
US10260928B2 (en) * 2014-02-11 2019-04-16 Vega Grieshaber Kg Determining a topology of the surface of a material filled into a container
US10254145B2 (en) * 2014-02-21 2019-04-09 Vega Grieshaber Kg Level indicator featuring optimized energy supply
CN106164627B (zh) * 2014-05-02 2019-11-19 Vega格里沙贝两合公司 物位测量装置和方法以及计算机可读介质
KR102122890B1 (ko) * 2014-10-22 2020-06-15 베가 그리이샤버 카게 균일한 라인 스캐닝으로 충전 재료 표면의 토폴로지를 결정하는 방법
EP3115779B1 (fr) * 2015-07-06 2023-07-26 ABB Schweiz AG Système et procédé pour mesurer une vitesse de propagation de signaux dans un milieu liquide ou gazeux
US20180116343A1 (en) * 2016-11-01 2018-05-03 Black Brass, Inc. Closure and fastening system for shoes

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040031335A1 (en) * 2000-02-17 2004-02-19 Fromme Guy A. Bulk materials management apparatus and method
FR2862625A1 (fr) * 2003-11-25 2005-05-27 Bernard Poussin Appareil destine au remplissage d'un recipient, avec des particules solides
FR2872497A1 (fr) * 2004-07-02 2006-01-06 Total France Sa Dispositif et procede pour le chargement d'une enceinte avec un solide divise comprenant un arbre de rotation creux
US20060201245A1 (en) * 2002-09-12 2006-09-14 Endress + Hauser Bmbh + Co. Kg Orientating device for a measuring instrument
US20060201246A1 (en) * 2005-03-11 2006-09-14 Ilona Rolfes Method employing the radar principle for measuring the fill level of a medium in a container

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2020507B (en) * 1978-02-24 1982-04-28 Hawker Siddeley Dynamics Eng Method and apparatus for measurement of the contents of a bunker or silo
US4219814A (en) * 1978-12-26 1980-08-26 Rca Corporation Scanning radar
LU81158A1 (fr) * 1979-04-13 1979-06-19 Wurth Paul Sa Dispositif de montage d'une sonde radar pour fours a cuve
SE421832B (sv) 1979-04-18 1982-02-01 Pharos Ab Anordning for att registrera topografin hos den chargerade massan i en masugn
LU87578A1 (fr) * 1989-09-07 1991-05-07 Wurth Paul Sa Dispositif de determination de la carte topographique de la surface de chargement d'un four a cuve
US6634234B1 (en) 2001-02-10 2003-10-21 Vega Grieshaber Kg Adjustable measurement head and a level measurement device and method employing it
US6859166B2 (en) * 2002-12-04 2005-02-22 Saab Marine Electronics Ab Antenna device for radar-based level gauging
US6759977B1 (en) * 2002-12-20 2004-07-06 Saab Marine Electronics Ab Method and apparatus for radar-based level gauging
DE102004041857A1 (de) 2004-08-27 2006-03-02 Endress + Hauser Gmbh + Co. Kg Verfahren und Vorrichtung zum Ausrichten eines Messgerätes

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040031335A1 (en) * 2000-02-17 2004-02-19 Fromme Guy A. Bulk materials management apparatus and method
US20060201245A1 (en) * 2002-09-12 2006-09-14 Endress + Hauser Bmbh + Co. Kg Orientating device for a measuring instrument
FR2862625A1 (fr) * 2003-11-25 2005-05-27 Bernard Poussin Appareil destine au remplissage d'un recipient, avec des particules solides
FR2872497A1 (fr) * 2004-07-02 2006-01-06 Total France Sa Dispositif et procede pour le chargement d'une enceinte avec un solide divise comprenant un arbre de rotation creux
US20060201246A1 (en) * 2005-03-11 2006-09-14 Ilona Rolfes Method employing the radar principle for measuring the fill level of a medium in a container

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009098372A1 (fr) * 2007-11-15 2009-08-13 Total Raffinage Marketing Dispositif et procede pour le chargement de particules solides dans une enceinte
EA017942B1 (ru) * 2007-11-15 2013-04-30 Тоталь Рафинаж Маркетинг Устройство и способ загрузки твердых частиц в камеру
US8948910B2 (en) 2007-11-15 2015-02-03 Total Raffinage Marketing Device and method for loading solid particles into a chamber
FR2984181A1 (fr) * 2011-12-20 2013-06-21 Total Raffinage Marketing Support de capteur pour un reacteur en cours de chargement
WO2013093357A1 (fr) * 2011-12-20 2013-06-27 Total Raffinage Marketing Support de capteur pour un reacteur en cours de chargement
US10576437B2 (en) 2011-12-20 2020-03-03 Total Raffinage France Sensor support for a reactor undergoing charging
WO2013186497A1 (fr) * 2012-06-13 2013-12-19 Total Raffinage Marketing Distribution de particules solides dans un reacteur
FR2991884A1 (fr) * 2012-06-13 2013-12-20 Total Raffinage Marketing Distribution de particules solides dans un reacteur
US9884302B2 (en) 2012-06-13 2018-02-06 Total Raffinage Chimie Distribution of solid particles in a reactor
US10044094B2 (en) 2014-02-21 2018-08-07 Vega Grieshaber Kg Level indicator comprising an energy transmission device

Also Published As

Publication number Publication date
US8217831B2 (en) 2012-07-10
ES2702985T3 (es) 2019-03-06
EP2081670B1 (fr) 2018-09-26
US20100019952A1 (en) 2010-01-28
FR2907546B1 (fr) 2009-01-23
FR2907546A1 (fr) 2008-04-25
EP2081670A1 (fr) 2009-07-29
CA2666768A1 (fr) 2008-04-24
CA2666768C (fr) 2015-01-06

Similar Documents

Publication Publication Date Title
EP2081670B1 (fr) Systeme de determination du relief d'une surface de remplissage de granules dans un reacteur petrochimique
CA2729190C (fr) Perfectionnements a la determination d'au moins une grandeur associee au rayonnement electromagnetique d'un objet sous test
EP0029768B1 (fr) Procédé et installation de surveillance et de commande d'un bras articulé de transfert de fluide destiné à relier un navire à une plate-forme en mer
FR2797295A1 (fr) Procede et appareil d'acquisition de donnees, dans un puits d'hydrocarbure en production
FR2761111A1 (fr) Procede et appareil d'acquisition de donnees dans un puits d'hydrocarbure
FR2902113A1 (fr) Procede de mesure a la volee de la hauteur d'une anode d'electrolyse
EP2035904A1 (fr) Dispositif de positionnement d'un objet dans toutes les directions
FR2578472A1 (fr) Perfectionnements aux robots industriels du type a structure spherique
CA2535927C (fr) Dispositif et procede pour la determination d'au moins une grandeur associee au rayonnement electromagnetique d'un objet sous test
EP2861336B1 (fr) Distribution de particules solides dans un reacteur
EP1418443B1 (fr) Procédé et dispositif pour la localisation d'un rebord disposé à la jonction de deux surfaces globalement planes
WO1992014996A1 (fr) Procede et dispositif pour la mesure et la surveillance du niveau d'un liquide, a partir d'un repere fixe, au moyen des ultrasons
EP0119930B1 (fr) Dispositif de repérage de position des barres de contrôle d'un réacteur nucléaire
EP0111428B1 (fr) Machine pour la mise en place et le soudage des fonds et brise-lames dans la virole d'un réservoir ou citerne
FR2507282A1 (fr) Dispositif d'articulation autour de deux directions et dispositif de visualisation comportant un tel dispositif d'articulation
FR2570502A1 (fr) Installation pour le controle ultrasonore de pieces, et dispositif pour balayer une surface de la piece a controler
FR2682474A1 (fr) Procede, dispositif et installation pour determiner la direction du brin allant a l'eau d'un cable de mouillage ou de remorquage sur un navire.
EP3934959B1 (fr) Installation de transport de véhicule par câble et procédé de mesure d'une information concernant une telle installation
EP3312552B1 (fr) Système et méthode de mesure sans contact de paramètres géométriques circulaires d éléments de turbomachine
EP0063984B1 (fr) Compteur kilométrique à mécanisme de démultiplication planétaire, pour véhicule à deux roues ou analogue
FR2533901A2 (fr) Dispositif de remplissage et de vidange des silos verticaux cylindriques de grands diametres
FR2646904A1 (fr) Dispositif de mesure d'une dimension transversale d'un objet sensiblement cylindrique, pour une pluralite de sections de cet objet
FR2639875A1 (fr) Machine d'impression d'objets a axe d'impression fixe
FR3045763A1 (fr) Mobile a mouvement combine
FR2833700A1 (fr) Procede pour le controle du niveau de remplissage de recipients et dispositif pour sa mise en oeuvre

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07858610

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2007858610

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2666768

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2563/DELNP/2009

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 12311913

Country of ref document: US