WO2008046267A1 - Procédé de vérification des étiquettes pour système rfid - Google Patents

Procédé de vérification des étiquettes pour système rfid Download PDF

Info

Publication number
WO2008046267A1
WO2008046267A1 PCT/CN2006/003686 CN2006003686W WO2008046267A1 WO 2008046267 A1 WO2008046267 A1 WO 2008046267A1 CN 2006003686 W CN2006003686 W CN 2006003686W WO 2008046267 A1 WO2008046267 A1 WO 2008046267A1
Authority
WO
WIPO (PCT)
Prior art keywords
tag
inventory
counting
status flag
status
Prior art date
Application number
PCT/CN2006/003686
Other languages
English (en)
French (fr)
Inventor
Jian Zhang
Yuanhua Liu
Dezhi Liu
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Publication of WO2008046267A1 publication Critical patent/WO2008046267A1/zh

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/0008General problems related to the reading of electronic memory record carriers, independent of its reading method, e.g. power transfer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10019Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves resolving collision on the communication channels between simultaneously or concurrently interrogated record carriers.
    • G06K7/10079Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves resolving collision on the communication channels between simultaneously or concurrently interrogated record carriers. the collision being resolved in the spatial domain, e.g. temporary shields for blindfolding the interrogator in specific directions

Definitions

  • RFID radio frequency identification technology mainly uses a wireless way to identify a tag, and its identification is mainly completed by a reader and a tag.
  • the reader can identify one or more tags.
  • the process of identifying the tag by the reader is called an inventory process.
  • the reader generally first selects the tag that is of interest to him. Only the selected tag participates in the inventory when inventorying, and the unselected tag does not participate in the inventory. Since there are multiple tags participating in the inventory, there are multiple tags that simultaneously respond to the reader identification request, causing a conflict.
  • the reader uses an anti-collision method to solve multiple label conflicts during the inventory process.
  • the tag When the tag is correctly recognized by the reader, the reader will confirm the tag and the tag will exit the inventory process.
  • EPC Gen2 and ISO18000-6 Type A/B/C standards there is no special support for multiple rounds of coordination work. Each round of inventory completes the inventory task alone, so there will be a large number of duplicate counts when performing multiple rounds of inventory to complete the system-checkpoint task.
  • EPC Gen2 a mode of multi-reader operation is proposed, which allows multiple readers to work at the same time. The inventory process between multiple readers can not perform each other and perform the inventory work alone. In this mode, multiple rounds of coordinated work mode cannot be provided.
  • a main object of the present invention is to provide a tag inventory method for a radio frequency identification system, which is used to improve tag inventory efficiency when a tag is to be counted in multiple rounds in a tag inventory task.
  • the present invention provides a tag inventory method for a radio frequency identification system.
  • the tag inventory method includes the following steps: Step S102: On the reader side, set an inventory status flag of the inventory task; Step S104, the reader sends a selection instruction including a tag selection condition and an inventory status flag to select the tag; Step S106, Determining whether the tag is selected according to the selection instruction and the tag status flag of the tag receiving the selection instruction; Step S108, the reader performs a tag inventory process, and the selected tag participates in the inventory, and changes the tag status flag of the tag that is successfully counted.
  • the inventory status flag indicates a first intermediate state or a second intermediate state
  • the tag status flag indicates one of an initial state, a first intermediate state, and a second intermediate state.
  • step S106 if the tag meets the tag selection condition, and the tag status flag is the initial state or the same as the inventory status flag, the tag is selected.
  • step S108 the tag status flag of the tag that was successfully counted is changed to an intermediate state different from the inventory status flag in the first intermediate state and the second intermediate state.
  • step S106 if the tag conforms to the tag selection component and the tag state flag is different from the inventory state flag, the tag is selected.
  • the tag status flag of the tag that was successfully counted is changed to the same intermediate state as the inventory status flag.
  • the tag status flag of the selected tag is changed to the initial state.
  • the tag status flag is maintained for a certain duration without energy supply, after which the tag status flag returns to the initial state.
  • the duration is not less than the time to complete the specified round count.
  • step S110 may be further included, the next round of inventory of the inventory task is performed, and steps S104 to S108 are repeated until the counting of the specified number of rounds is completed.
  • step S110 if another different inventory task is to be executed, the process returns to step S102, and the inventory status flag is set to an inventory status flag different from the state of the inventory flag of the previous inventory task.
  • FIG. 1 is a flow chart of a method for tag inventory of a radio frequency identification system according to the present invention
  • FIG. 2 is a schematic diagram of the same antenna tag inventory of the same reader according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of different reader tag inventory points according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a multi-reader tag inventory according to an embodiment of the present invention
  • FIG. The inventory coordination working mode 1 state table of the embodiment of the present invention and FIG.
  • a tag inventory method for a radio frequency identification system includes the following steps: Step S102: On the reader side, an inventory status flag of an inventory task is set. The inventory status flag indicates a first intermediate state or a second intermediate state. Step S104, the reader sends a selection instruction including a label selection condition and an inventory status flag to select the label. Step S106, determining whether the label is selected according to the selection instruction and the label status flag of the label receiving the selection instruction.
  • the tag status flag indicates one of an initial state, a first intermediate state, and a second intermediate state.
  • Step S108 the reader performs a label inventory process, and the selected label participates in the inventory, and changes the label status flag of the successfully counted label.
  • step S106 if the tag meets the tag selection condition, and the tag status flag is the initial state or the same as the inventory status flag, the tag is selected.
  • step S108 the tag status flag of the tag that was successfully counted is changed to an intermediate state different from the inventory status flag in the first intermediate state and the second intermediate state.
  • step S106 if the tag meets the tag selection condition and the tag status flag is different from the inventory status flag, the tag is selected.
  • step S108 the tag status flag of the tag that was successfully counted is changed to the same intermediate state as the inventory status flag.
  • the tag status flag can be maintained for a certain duration without energy supply, after which the tag status flag returns to the initial state. The duration is not less than the time to complete the specified round count.
  • step S110 may be further included, performing the next round of inventory of the inventory task, and repeating the step image S104 to step S108 until the counting of the specified number of rounds is completed.
  • step S110 if another different inventory task is to be executed, the process returns to step S102, and the inventory status flag is set to an inventory status flag different from the state of the inventory flag of the previous inventory task.
  • the technical problem to be solved by the invention is that when the RFID reader counts the label, the problem of multi-round counting and working together is to avoid repeated counting of the label by collaborative work, thereby reducing the number of times of label identification and improving the efficiency of label inventory.
  • the energy of the tag work needs to be provided by the electromagnetic signal sent by the reader. Since the electromagnetic field is not uniformly distributed in the space, some places have strong signals, and some places have weak signals. Then the tags are in the signal. In a weak place, you may not get enough energy to work, so the tag cannot be recognized by the reader.
  • the electromagnetic field distribution changes due to changes in the electromagnetic signal parameters sent by the reader, so the labels that can be counted in each round and the labels that cannot be counted may be different.
  • the label is counted up to multiple times and the same as the inventory. Therefore, a large number of duplicates are not only inefficient, but also increase the execution time of the inventory task. .
  • the purpose of the invention is to reduce or eliminate the label being repeatedly counted, improve the inventory efficiency, and shorten the inventory task time.
  • the basic idea of the invention is: by introducing a state flag, the rounds of the inventory are coordinated, and the status flag is used to prevent the tags that have been counted from being repeatedly counted, thereby achieving the purpose of synergy and improving the efficiency of inventory.
  • a status flag is defined, which can represent three states, and it is possible to represent three states as S0, SI, and S2.
  • the status flag is saved in the label.
  • One of the three states is the initial state, and the other two are the intermediate states. For the convenience of the subsequent description (the same below), it is possible to set SO to the initial state, and S1 and S2 to the intermediate state.
  • Step 1 the inventory task starts, and the state of the inventory task is initialized.
  • the status of the inventory task is used to control each round of inventory process in the inventory task, and this state can assist each round of inventory to perform label selection.
  • This state selects one of the intermediate states, S 1 or S2.
  • Step 2 the reader performs label selection, and divides the label into two parts: selected and unselected.
  • step 2 the reader selects the tag by sending a selection command.
  • the selection instruction contains the conditions for label selection and status information for the inventory task.
  • the tag determines whether it is selected based on the selection condition and the status information of the inventory task, and sets the tag status. Let's set the status of the inventory task to Sl. In the case where the inventory task has different meanings, the method of checking whether the label is selected is different.
  • step 1 When the sign means the first case described in step 1, the tag first checks for compliance. Select the condition of the instruction. If it does not match, the label will not be selected. If it is, check the status of the inventory task in the selection instruction. The tag checks its status. If the status is SO or S1, the tag is selected, otherwise it is not selected.
  • step 2 When the flag means the second case described in step 1, the tag first checks if the condition of the selection instruction is met. If it does not match, the tag is not selected. If it is, check the status of the inventory task in the selection instruction. The tag checks its status. If the status is not S1, the tag is selected, otherwise it is not selected. Further, in step 2, when the tag is selected, the flag status can be changed to S0. This is to ensure that after the tag is selected, if it is not successfully counted in this round of inventory, there is a chance to be re-selected for inventory in the other rounds or the next inventory task.
  • Step 3 The reader performs the label inventory process, and the selected label participates in the inventory process.
  • the unselected label does not participate in the inventory process, and the label is changed after the inventory is successfully checked.
  • the reader begins the inventory process, which specifies that the selected tag participates in the inventory. After the tag is successfully counted, the tag changes the flag status. In the case where the inventory task has a different meaning, the label changes the label differently.
  • Step 4 When the flag means the second case described in step 1, the tag changes the flag to Sl. Step 4.
  • the reader performs the inventory process to the end. After the inventory is completed, the label selected for participation in the inventory is successfully counted and the status of the label is changed. The end of the inventory process means that the status of the selected tag is changed. at this time:
  • Step 5 Execute the next round of inventory, and repeat steps 2 to 4 until all the rounding points in the inventory task are completed, that is, the inventory task is completed. After the inventory task is completed, record the status after the task is completed. Repeat the process from step 2 to step 4 for the next round of inventory. First, the label is selected, and the inventory task information in the selection instruction is the same as the information in the previous round of inventory. The label that was successfully counted in the last round has changed because of its status.
  • the inventory task When the next inventory task starts, the inventory task should be counted with the current flag, ie S2.
  • the reader sends a tag selection command carrying the flag S2, starting a new inventory task from step 2.
  • the tag status flag is required to remain in the state for one inventory task, unless the reader requests a change. That is, the duration of the tag flag status under no energy supply should be not less than one inventory task time, or the time of one inventory task time is not greater than the duration of the tag flag state without energy supply.
  • Figure 2 shows a schematic diagram of the same antenna performing the inventory task of the same reader.
  • the inventory task shown in the figure is completed by two rounds of inventory.
  • P100 is a reader
  • P110 is an antenna connected to P100
  • P120 is a tag identification coverage of antenna P110.
  • Label A is a label that can only be counted by the first round of inventory
  • label C is a label that can only be counted by the second round
  • label B is a label that can be counted by both the first round and the second round.
  • Figure 3 shows a schematic diagram of the same reader performing tag inventory tasks from different antennas.
  • P 2 00 is a reader
  • P210 and P230 are two antennas connected to the reader P200.
  • P220 is the tag identification coverage of the antenna P210
  • P240 is the tag identification coverage of the antenna P230.
  • P250 is the range of labels that can be counted by both antenna P210 and antenna P230.
  • Label A is a label that can only be counted by the first round of inventory, that is, it can only be counted by P210.
  • Tag C is a tag that can only be counted in the second round, that is, it can only be counted by P230.
  • Label B is a label that can be counted in both the first round and the second round, that is, it can be counted by P210 and P230.
  • Figure 4 shows a schematic diagram of the different readers completing the tag inventory task. The counting task shown in the figure is completed by two rounds of counting, and each of the antennas of different readers performs one round of counting.
  • the P300 and P330 are readers, the P310 is the antenna connected to the reader P300, and the P340 is the antenna connected to the reader P330.
  • P320 is the tag identification coverage of the antenna P310, and P350 is the tag identification coverage of the antenna P340.
  • P360 is the range of labels that can be counted by both antenna P310 and antenna P340.
  • Label A is a label that can only be counted by the first round of inventory, that is, it can only be counted by P310.
  • Tag C is a tag that can only be counted in the second round, that is, it can only be counted by P340.
  • Label B is a label that can be counted in both the first round and the second round, that is, it can be counted by P310 and P340.
  • Figure 5 shows a schematic diagram of multiple readers completing the tag inventory task. The inventory task shown in the figure is completed by multiple rounds of inventory, which are performed by each of the antennas of different readers.
  • P400, P420 and P470 are readers
  • P410 is an antenna connected to reader P400
  • P430 is an antenna connected to reader P420
  • P460 is an antenna connected to reader P470
  • P440 is the tag identification coverage of the antenna P410
  • P480 is the tag identification coverage of the antenna P430
  • P450 is the tag identification coverage of the antenna P460.
  • the labels in the overlapping coverage of each antenna can be repeatedly counted.
  • the following is an example of an inventory task consisting of two rounds of inventory, with a detailed description of how multiple rounds of inventory work together.
  • Figure 6 and Figure 7 show the changes in the status of the tag when performing the counting of multiple rounds of the inventory task.
  • Figure 6 shows the case where the state of the check task in step 1 is the first type
  • Figure 7 shows the case where the state of the check task in step 1 is the second.
  • the first time the task is counted the initial state of the inventory task is Sl.
  • the initial value of the status after the tag is powered on is SO. See Figure 6 for the first round of inventory before task 1.
  • the first round of inventory starts, the label selection is first performed, the reader sends a label selection instruction, and the instruction carries the inventory task status as S1. It may be assumed that the selection condition is all labels.
  • the state is SO or S1
  • the labels (A and B) are selected and the label status is set to SO, as shown in Figure 6 for the first round of task 1 inventory.
  • the reader then counts the selected label, and after the label is successfully counted, the status is set to S2.
  • the A and B labels are successfully counted and the status is S2.
  • the reader does not send energy, and the status of the label must remain unchanged. See Figure 6 for an inventory of Task 1 after the first round of inventory.
  • the second round of counting begins, and the label selection is first performed.
  • the reader sends a label selection command.
  • the instruction carries the inventory task status to S1, and the selection condition is all labels.
  • the label with the status SO or S1 is selected and the label status is set to S0. Since Tag A and Tag B have been successfully counted in the first round, the status is S2 and thus is not selected. Label C is selected and the label status is set to SO, as shown in Figure 6 for the second round of task 1 inventory. Then the reader performs an inventory, and the selected tag C participates in the inventory. After the inventory is successful, the status is set to S2. After the round of inventory is completed, the C tag is successfully counted and the status is S2. The second round of counting ends. See Figure 6 for the second round of inventory after task 1 is counted. After the two rounds of inventory are completed, the inventory task ends and the task inventory status changes to S2.
  • the second round of inventory only counts the C-tags that are not counted in the first round, and the B-labels that can be counted in the second round of coverage are not counted, reducing the time of inventory.
  • the reader is powered on, and the status of the tag after power-on is shown in Figure 6.
  • the status of the label Before the first round of inventory task 2 is counted. Since the label's status will last for a while after the last inventory task, its status may be maintained until the second time, then the status of the label may be S2 or S0. In addition, a new tag may be added, the status of which is S0. Therefore, the state of the tag will now be the case of S2 and SO.
  • the first round of counting begins, and the label selection is first performed.
  • the reader sends a selection command.
  • the instruction carries the inventory task status to S2, and the selection condition is also all labels.
  • the label (A label and B label) whose state is S0 or S2 in the coverage of the first round of inventory is selected, and the label status is set to S0, as shown in Fig. 6 for the first round selection of the task 2 of the inventory.
  • the reader then counts the selected label, and after the label is successfully counted, the status is set to S l. After the round of inventory is completed, the A and B labels are successfully counted, and the state is S2. At the end of the first round of inventory, the reader does not send energy, and the status of the label must remain unchanged.
  • the second round of counting begins, and the label selection is first performed.
  • the reader sends a label selection command.
  • the instruction carries the inventory task status to S2, and the selection condition is all labels.
  • the label with the state of SO or S2 in the second round of inventory coverage is selected, and the label status is set to S0. Since Tag A and Tag B have been successfully counted in the first round, the status is S1 and therefore not selected.
  • Label C is selected and the label status is set to SO, as shown in Figure 6 for the second round of task 2 inventory selection. Then the reader performs an inventory, and the selected label C participates in the inventory. After the inventory is successful, the status is set to S l.
  • the C tag is successfully counted and the status is Sl.
  • the second round of counting ends. See Figure 6 for the second round of inventory after task 2 is counted. After the two rounds of inventory are completed, the second inventory task ends and the task inventory status changes to Sl. Similarly, the second round of inventory only counts the C-tags that were not counted in the first round, and the B-labels that can be counted in the second round of coverage are not counted, reducing the time of the inventory. Similarly, follow-up The inventory task performs the same steps to complete the collaborative inventory workflow, and will not be described again.
  • the steps of the inventory are completely consistent with the first case, and the difference lies in the label selection state and The status after the label is counted is different, and the label selection and label status changes during the inventory process are detailed in Figure 7.
  • the inventory step of this case is not described here.
  • the inventory task is completed by more than two rounds of inventory, as shown in the figure 5 shows that the inventory task is completed by three rounds of counting of different antennas.
  • the multi-round counting step is the same as the previous steps.
  • the subsequent counting can avoid repeated counting of the labels that have been successfully counted before, thus reducing the number of label counts. The number of times, thereby greatly improving the inventory efficiency and shortening the time of each inventory task.
  • the present invention discloses for RF
  • the ID reader's method of multi-round inventory cooperation for tag identification avoids duplicate tagging by cooperative work, thereby reducing the number of queries during tag identification and improving tag inventory efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • General Factory Administration (AREA)
  • Warehouses Or Storage Devices (AREA)

Description

无线射频识别系统的标签清点方法 技术领域 本发明涉及无线射频识别领域,尤其涉及一种用于无线射频识别系统的标 签清点方法。 背景技术 RFID无线射频识别技术主要利用无线的方式对标签进行识别, 其识别主 要由阅读器和标签完成。 阅读器可以对一个或多个标签进行识别。 阅读器对标 签的识别过程被称为清点过程。 阅读器一般首先会选择自己感兴趣的标签,在清点时只有选中的标签才参 与清点, 没有被选中的标签则不参与清点。 由于会有多个标签参与清点, 因此 存在多个标签同时响应阅读器识别请求, 从而发生冲突。 为了能对多个标签进 行识别, 阅读器在清点过程中会采用防碰撞的方法来解决多个标签沖突的问 题。 当标签被阅读器正确识别后, 阅读器会给标签进行确认, 标签会退出清点 流程。 在 EPC Gen2和 ISO18000-6 Type A/B/C标准中, 都没有对多轮清点协同 工作进行特殊支持。 每轮清点独自完成清点任务, 因此在进行多轮清点完成统 —清点任务时, 会存在大量的重复清点情况。 在 EPC Gen2中提出了多阅读器工作的模式,该模式可以允许多个阅读器 同时工作, 多个阅读器之间的清点流程可以不互相影响, 独自完成清点工作。 在该模式下, 不能提供多轮清点协同工作模式。 因此, 需要一种技术方案, 能够在一次标签清点任务中需要对标签进行多 轮清点时提高标签的清点效率。 发明内容 本发明的主要目的在于提供一种用于无线射频识别系统的标签清点方法, 用于在一次标签清点任务中, 需要对标签进行多轮清点时, 提高标签的清点效 率。 为了实现上述目的,本发明提供了一种用于无线射频识别系统的标签清点 方法。 标签清点方法包括以下步骤: 步骤 S 102, 在阅读器侧, 设置清点任务的清点状态标志; 步骤 S104, 阅读器发送包括标签选择条件和清点状态标志的选择指令, 对标签进行选择; 步驟 S106, 根据选择指令和接收到选择指令的标签的标签状态标志, 来 判断标签是否被选中; 步骤 S108 , 阅读器执行标签清点流程, 被选中的标签参与清点, 改变被 成功清点的标签的标签状态标志。 可选地, 清点状态标志表示第一中间态或第二中间态,标签状态标志表示 初始态、 第一中间态、 和第二中间态中的一种。 在步驟 S106中, 如果标签符合标签选择条件, 并且标签状态标志为初始 态或与清点状态标志 ^目同, 则标签被选中。 在步骤 S 108 中, 将被成功清点的 标签的标签状态标志改变为第一中间态和第二中间态中与清点状态标志不同 的中间态。 在步骤 S106中, 如果标签符合标签选择奈件, 并且标签状态标志与清点 状态标志不同, 则标签被选中。 在步骤 S108 中, 将被成功清点的标签的标签 状态标志改变为与清点状态标志相同的中间态。 优选地,在步驟 S106中,将被选中的标签的标签状态标志改变为初始态。 优选地, 使得标签状态标志在无能源供应的情况下能够保持一定持续时间, 此后标签状态标志恢复为初始态。 持续时间不小于完成指定轮数清点的时间。 在步骤 S108之后, 还可以包括步骤 S110, 执行清点任务的下一轮清点, 重复步 S104至步骤 S108 , 直至指定轮数的清点完成。 在步骤 S110之后, 如果要执行另一次不同的清点任务, 则返回至步骤 S102, 并将清点状态标志设 置为与上一次清点任务的清点标志状态不同的清点状态标志。 通过上述技术方案,本发明通过协同工作避免了重复清点标签,从而减少 了标签识别时的查询次数, 提高了标签清点效率。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不 当 P艮定。 在附图中: 图 1是根据本发明的无线射频识别系统的标签清点方法的流程图; 图 2是根据本发明实施例的同一阅读器同一天线标签清点的示意图; 图 3是根据本发明实施例的同一阅读器不同天线标签清点的示意图; 图 4是根据本发明实施例的不同阅读器标签清点的示意图; 图 5是根据本发明实施例的多阅读器标签清点的示意图; 图 6是根据本发明实施例的清点协同工作方式 1状态表; 以及 图 7是根据本发明实施例的清点协同工作方式 2状态表。 具体实施方式 下面夺参考附图详细说明本发明。 参照图 1 ,根据本发明的用于无线射频识别系统的标签清点方法包括以下 步骤: 步骤 S 102 , 在阅读器侧, 设置清点任务的清点状态标志。 清点状态标志表示第一中间态或第二中间态。 步骤 S104, 阅读器发送包括标签选择条件和清点状态标志的选择指令, 对标签进行选择。 步骤 S 106 , 根据选择指令和接收到选择指令的标签的标签状态标志, 来 判断标签是否被选中。 标签状态标志表示初始态、 第一中间态、 和第二中间态中的一种。
^寻被选中的标签的标签状态标志改变为初始态。 步驟 S108 , 阅读器执行标签清点流程, 被选中的标签参与清点, 改变被 成功清点的标签的标签状态标志。 在步骤 S106中, 如果标签符合标签选择条件, 并且标签状态标志为初始 态或与清点状态标志相同, 则标签被选中。 在步骤 S108 中, 将被成功清点的 标签的标签状态标志改变为第一中间态和第二中间态中与清点状态标志不同 的中间态。 在步驟 S106中, 如果标签符合标签选择条件, 并且标签状态标志与清点 状态标志不同, 则标签被选中。 在步骤 S108 中, 将被成功清点的标签的标签 状态标志改变为与清点状态标志相同的中间态。 可以使得标签状态标志在无能源供应的情况下能够保持一定持续时间,此 后标签状态标志恢复为初始态。 持续时间不小于完成指定轮数清点的时间。 在步骤 S108之后, 还可以包括步骤 S110, 执行清点任务的下一轮清点, 重复步像 S104至步骤 S108 , 直至指定轮数的清点完成。 在步骤 S110之后, 如果要执行另一次不同的清点任务, 则返回至步骤 S102, 并将清点状态标志设 置为与上一次清点任务的清点标志状态不同的清点状态标志。 本发明所要解决的技术问题是 RFID阅读器清点标签时, 多轮清点协同工 作的问题,通过协同工作避免重复清点标签,从而减少标签识别时的查询次数, 提高标签清点效率。 这里首先说明一下为什么采用多轮清点来执行清点任务。对于无源标签来 说, 标签工作的能量需要由阅读器发送的电磁信号来提供, 由于电磁场在空间 的分布不是均勾的, 因此有的地方信号强, 有的地方信号弱, 那么标签在信号 弱的地方, 就可能得不到足够的能量工作, 这样该标签就无法被阅读器识别。 在每一轮清点中, 电磁场分布会因阅读器发送的电磁信号参数改变而改变, 因 此每一轮能够清点到的标签和不能清点到的标签都可能不同。 采用多轮清点, 可以增加覆盖范围内标签的识别率。 覆盖范围内的标签大多数都会被重复清点, 而对于一次清点任务来说,标 签被清点到多次与清点到一次意义相同, 因此大量的重复清点不仅效率低, 而 且增加了清点任务执行的时间。 本发明的目的就是减少或消除标签被重复清 点, 提高清点效率, 缩短清点任务时间。 本发明的基本思想是: 通过引入状态标志, 各轮清点间进行协调, 并通过 状态标志避免已经清点的标签被重复清点, 从而达到协同的目的, 提高清点效 率。 为实现多轮清点的协同工作, 定义状态标志, 该标志可以表示三个状态, 不妨将三个状态表示成 S0、 S I和 S2。 标签中保存这个状态标志, 三个状态中 一个为初始态, 另两个为中间态, 为了后续^描述方便(下同), 不妨设 SO为 初始态, S1和 S2为中间态。 标签的该标志在供电的情况下, 如果没有改变状 态的需求, 则标签应维持该标志的状态不变, 即 S1或 S2 , 在没有供电的情况 下, 该标志应能在一定持续时间内保持不变, 即 S1或 S2, 当没有供电超过了 持续时间, 标签的标志状态恢复为初始状态, 即 so。 本发明实施的步骤如下: 步骤 1 , 清点任务开始, 初始化清点任务的状态。 清点任务的状态用于对清点任务中的各轮清点过程进行控制 ,通过该状态 可以协助各轮清点进行标签选择。 该状态选取中间状态中的某一个状态, 即 S 1 或 S2。 不妨将清点任务的状态设为 Sl, 具体含义可以有两种: 第一种: 此次清点任务会选择标签状态为 SO或 S1 的标签, 那么清点成 功的标签状态将转入 S2状态; 第二种: 此次清点任务清点成功的标签将转入 S1状态, 那么此次清点任 务会选择标签状态为 SO或 S2的标签。 清点任务状态含义的不同定义, 后面的办同工作方法也会有相应的不同。 后续步骤中将分別进行描述。 步骤 2 , 阅读器进行标签选择, 将标签分为选中和未选中两部分。 在步骤 2中, 阅读器通过发送选择指令来对标签进行选择。选择指令中包 含了标签选择的条件和清点任务的状态信息。 标签根据选择条件和清点任务的 状态信息来判断是否被选中, 并设置标签状态。 不妨设清点任务的状态为 Sl。 在清点任务为不同含义的情况下, 标签检查是否被选中的方法不同。
1 ) 当标志含义为步骤 1种所述的第一种情况时, 标签首先检查是否符合 选择指令的条件, 如果不符合, 那么标签就不被选中。 如果符合, 再检查选择 指令中的清点任务状态。 标签检查自身的状态, 如果状态为 SO或 S1 , 那么该 标签被选中, 否则不被选中。
2 ) 当标志含义为步骤 1种所述的第二种情况时, 标签首先检查是否符合 选择指令的条件, 如果不符合, 那么标签就不被选中。 如果符合, 再检查选择 指令中的清点任务状态。 标签检查自身的状态, 如果状态不为 S1 , 那么该标签 被选中, 否则不被选中。 进一步地, 在步骤 2中, 当标签被选中后, 可以将标志状态改为 S0。 这 是为了确保标签在被选中后, 如果在本轮清点中没有被成功清点, 那么在其他 轮清点或下一次清点任务中有机会被重新选中进行清点。 步骤 3 , 阅读器执行标签清点流程, 选中的标签参与清点过程, 未选中的 标签不参与清点过程, 标签被成功清点后将改变状态。 阅读器开始清点流程,该清点流程指定被选中的标签参与清点。标签被成 功清点后, 标签改变标志状态。 在清点任务为不同含义的情况下, 标签改变标 志的方法不同。
1 ) 当标志含义为步骤 1中所述的第一种情况时, 标签将标志改为 S2。
2 ) 当标志含义为步骤 1中所述的第二种情况时, 标签将标志改为 Sl。 步骤 4, 阅读器执行清点流程至结束。 清点结束后, 被选中参与清点的标 签被成功清点, 并改变了标签的状态。 清点流程结束意味着被选中的标签的状态均被改变。 此时:
1 ) 当标志含义为步驟 1种所述的第一种情况时, 成功被清点的标签的标 志均为 S2。
2 ) 当标志含义为步骤 1种所述的第二种情况时, 成功被清点的标签的标 志均为 Sl。 步骤 5 , 执行下一轮清点, 重复步骤 2到步骤 4, 直至清点任务中所有轮 清点都完成清点, 即清点任务完成。 清点任务完成后,记录任务完成后的状态。 下一轮清点重复步骤 2到步骤 4的过程。首先进行标签的选择,选择指令 中的清点任务信息与上一轮清点的信息相同。 上一轮被成功清点的标签由于其 状态发生了改变, 因此在这一轮清点的选择中, 被成功清点的标签的状态与选 择指令带的状态不匹配, 因此被成功清点的标签不会被选中, 也就不会参与本 轮清点。 这样避免了已经被成功清点到的标签在本轮清点中再次被清点, 减少 了清点查询次数。 清点任务的多轮清点任务都清点完成后,该清点任务结束。此时被选中的 标签被成功清点后, 状态都发生了改变, 清点任务的状态也相应进行改变 如前面的步骤所述, 当清点任务完成后, 清点任务的当前标志应由 S1变 为 S2。 步骤 6 , 下一次清点任务开始, 跳转到步骤 2 , 继续清点任务。 当下一个清点任务开始时, 清点任务应采用当前的标志进行清点, 即 S2。 阅读器发送携带标志 S2的标签选择指令, 从步骤 2开始新的清点任务。 为达到在一次清点任务中避免重复清点标签的效果,需要标签状态标志能 在一次清点任务的时间内保持状态不变, 除非阅读器要求改变。 即要求标签标 志状态在无能源供应下的持续时间应不小于一次清点任务时间, 或者一次清点 任务时间不大于标签标志状态无能源供应下的持续时间。 当清点任务需要由多轮清点完成时, 不管是同一个天线, 同一个阅读器的 不同天线, 还是不同阅读器参与清点任务, 通过上述的方法, 可以有效避免在 一次清点任务中对标签进行重复清点, 从而提高清点效率, 缩短清点任务的时 间。 下面结合附图对技术方案的实施作进一步的详细描述。 图 2所示是同一阅读器的同一天线执行清点任务的示意图。图中所示的清 点任务由两轮清点来完成。 P100是阅读器, P110是连接在 P100上的天线, P120是天线 P110的标签识别覆盖范围。标签 A是仅第一轮清点能清点到的标 签,标签 C是仅第二轮能清点到的标签, 标签 B是第一轮和第二轮都能清点到 的标签。 图 3所示是同一阅读器由不同天线执行标签清点任务的示意图。图中所示 的清点任务由两轮清点来完成, 阅读器的两个天线各执行一轮清点。 P200是阅 读器, P210与 P230是连接在阅读器 P200上的两个天线。 P220是天线 P210 的标签识别覆盖范围, P240是天线 P230的标签识别覆盖范围。 P250是天线 P210和天线 P230都能清点到的标签范围。标签 A是仅第一轮清点能清点到的 标签, 即只能被 P210清点到。 标签 C是仅第二轮能清点到的标签, 即只能被 P230清点到。 标签 B是第一轮和第二轮都能清点到的标签, 即能被 P210和 P230清点到。 图 4所示是不同阅读器完成标签清点任务的示意图。图中所示的清点任务 由两轮清点来完成, 分别由不同阅读器的天线各执行一轮清点完成。 P300 和 P330是阅读器, P310是与阅读器 P300连接的天线, P340是与阅读器 P330 连接的天线。 P320是天线 P310的标签识别覆盖范围, P350是天线 P340的标 签识别覆盖范围。 P360是天线 P310和天线 P340都能清点到的标签范围。 标 签 A是仅第一轮清点能清点到的标签, 即只能被 P310清点到。 标签 C是仅第 二轮能清点到的标签, 即只能被 P340清点到。 标签 B是第一轮和第二轮都能 清点到的标签, 即能被 P310和 P340清点到。 图 5所示是多个阅读器完成标签清点任务的示意图。图中所示的清点任务 由多轮清点来完成,分别由不同阅读器的天线各执行一轮清点完成。 P400、P420 和 P470是阅读器, P410是与阅读器 P400连接的天线, P430是与阅读器 P420 连接的天线, P460是与阅读器 P470连接的天线。 P440是天线 P410的标签识 别覆盖范围, P480是天线 P430的标签识别覆盖范围, P450是天线 P460的标 签识别覆盖范围。 各天线重叠覆盖范围内的标签是可被重复清点到的。 下面以清点任务由两轮清点组成为例,伴细说明多轮清点是如何进行协同 工作的。图 6和图 7所示是执行清点任务多轮清点时,标签状态的变化示意图。 图 6所示是步驟 1清点任务状态含义为第一种的情况, 图 7所示是步骤 1清点 任务状态含义为第二种的情况。 首先说明在第一种情况下清点任务是如何实施的。 第一次清点任务执行, 清点任务的状态初始值为 Sl。 阅读器上电, 标签 上电后状态的初始值都是 SO, 见图 6清点任务 1第一轮清点前的情况。 第一轮清点开始, 首先进行标签选择, 阅读器发送标签选择指令, 指令携 带清点任务状态为 S1 , 不妨设选择条件是所有标签。 此时状态为 SO或 S1 的 标签(A标签和 B标签)被选中, 标签状态置为 SO, 见图 6清点任务 1第一 轮选择的情况。 然后阅读器对选中的标签进行清点, 标签清点成功后, 状态设置为 S2。 该轮清点完成后, A标签和 B标签被成功清点, 状态为 S2。 第一轮清点结束, 阅读器不发送能量, 此时标签的标志状态需维持不变。 见图 6清点任务 1第一 轮清点后的情况。 第二轮清点开始, 同样首先进行标签选择, 阅读器发送标签选择指令, 指 令携带清点任务状态为 S1 , 选择条件是所有标签。 此时状态为 SO或 S1 的标 签被选中, 标签状态设置为 S0。 由于标签 A和标签 B在第一轮中已被成功清 点, 状态为 S2 , 因此未被选中。 标签 C被选中, 标签状态置为 SO, 见图 6清 点任务 1第二轮选择的情况。 然后阅读器进行清点, 此时被选中的标签 C参与清点, 清点成功后, 状 态设置为 S2。 该轮清点完成后, C标签被成功清点, 状态为 S2。 第二轮清点 结束。 见图 6清点任务 1第二轮清点后的情况。 两轮清点结束后, 此次清点任务结束, 任务清点状态改变为 S2。 可以看 出, 第二轮清点只对在第一轮没有清点到的 C标签进行清点, 对第二轮覆盖范 围内能清点到的 B标签并没有进^ ·清点, 减少了清点的时间。 第二次清点任务执行, 清点任务此时的状态为 S2。 阅读器上电, 标签上 电后的状态见图 6清点任务 2第一轮清点前的情况。 由于标签在上一次清点任 务结束后, 其标签的状态会持续一段时间, 其状态可能会保持到第二次清点, 那么标签的状态可能为 S2, 也可能为 S0。 另外, 也可能会新加入标签, 其状 态为 S0。 因此, 此时标签的状态会存在 S2和 SO的情况。 第一轮清点开始, 同样首先进行标签选择, 阅读器发送选择指令, 指令携 带清点任务状态为 S2, 选择条件也是所有标签。此时在第一轮清点覆盖范围内 状态为 S0或 S2的标签( A标签和 B标签)被选中, 标签状态置为 S0, 见图 6 清点任务 2第一轮选择的情况。 然后阅读器对选中的标签进行清点, 标签清点成功后, 状态设置为 S l。 该轮清点完成后, A标签和 B标签被成功清点, 态为 S2。 第一轮清点结束, 阅读器不发送能量, 此时标签的标志状态需维持不变。 见图 6清点任务 2第一 轮清点后的情况。 第二轮清点开始, 同样首先进行标签选择, 阅读器发送标签选择指令, 指 令携带清点任务状态为 S2 , 选择条件是所有标签。 此时在第二轮清点覆盖范围 内状态为 SO或 S2的标签被选中, 标签状态设置为 S0。 由于标签 A和标签 B 在第一轮中已被成功清点, 状态为 S1 , 因此未被选中。 标签 C被选中, 标签 状态置为 SO, 见图 6清点任务 2第二轮选择的情况。 然后阅读器进行清点, 此时被选中的标签 C 参与清点, 清点成功后, 状 态设置为 S l。 该轮清点完成后, C标签被成功清点, 状态为 Sl。 第二轮清点 结束。 见图 6清点任务 2第二轮清点后的情况。 两轮清点结束后, 第二次清点任务结束, 任务清点状态改变为 Sl。 同样 第二轮清点只对在第一轮没有清点到的 C标签进行清点,对第二轮覆盖范围内 能清点到的 B标签并没有进^ "清点, 减少了清点的时间。 同理, 后续的清点任务执行同样的步骤, 可完成协同清点工作流程, 不再 赘述。 对于清点任务状态含义为第二种的情况,其清点的步骤与第一种情况完全 一致, 其差别在于标签选择状态和标签清点后的状态不同, 图 7中详细列出了 清点过程中标签选择和标签状态改变的情况。 该情况的清点步骤不在此赘述。 对于清点任务由超过两轮的清点完成的情况,如图 5所示为清点任务由不 同天线的三轮清点完成。 多轮清点步骤与前面所述的步骤相同。 后面清点可以 避免对前面已经被清点成功的标签进行重复清点, 因此会减少大量的标签清点 次数, 从而大大提高清点效率, 缩短每次清点任务的时间。 本发明公开的用于 RFID 阅读器对标签识别的多轮清点协同工作的方法 通过协同工作避免重复清点标签, 从而减少标签识别时的查询次数, 提高标签 清点效率。 以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领 域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之 内。

Claims

一种用于无线射频识别系统的标签清点方法, 其特征在于, 包括以下步 骤:
步骤 S102 , 在阅读器侧, 设置清点任务的清点状态标志; 步骤 S104, 所述阅读器发送包括标签选择条件和所迷清点状态标 志的选择指令, 对标签进行选择;
步骤 S106, 根据所述选择指令和接收到所述选择指令的标签的标 签状态标志, 来判断所述标签是否被选中;
步骤 S 108 , 所述阅读器执行标签清点流程, 被选中的标签参与清 点, 改变被成功清点的标签的标签状态标志。
根据权利要求 1所述的标签清点方法, 其特征在于, 所述清点状态标志 表示第一中间态或第二中间态, 所述标签状态标志表示初始态、 第一中. 间态、 和第二中间态中的一种。 根据权利要求 2所述的标签清点方法, 其特征在于, 在步骤 S106中, 如 果标签符合所述标签选择条件, 并且所述标签状态标志为初始态或与所 速清点状态标志相同, 则所述标签被选中。 根据权利要求 3所述的标签清点方法, 其特征在于, 在步驟 S108中, 将 被成功清点的标签的标签状态标志改变为第一中间态和第二中间态中与 所述清点状态标志不同的中间态。 根据权利要求 2所述的标签清点方法, 其特征在于, 在步骤 S106中, 如 果标签符合所述标签选择条件, 并且所述标签状态标志与所述清点状态 标志不同, 则所述标签被选中。 根据权利要求 5所述的标签清点方法, 其特征在于, 在步骤 S108中, 将 被成功清点的标签的标签状态标志改变为与所述清点状态标志相同的中 间态。 根据权利要求 1至 6中任一项所述的标签清点方法, 其特征在于, 在步
8. 根据权利要求 1至 6中任一项所述的标签清点方法, 其特征在于, 使得 所述标签状态标志在无能源供应的情况下能够保持一定持续时间, 此后 所述标签状态标志恢复为初始态。
9. 根据权利要求 8所述的标签清点方法, 其特征在于, 所述持续时间不小 于完成指定轮数清点的时间。
10. 根据权利要求 1至 6中任一项所述的标签清点方法, 其特征在于, 在步 驟 S108之后, 还包括步骤 S110, 执行所述清点任务的下一轮清点, 重 复步骤 S104至步骤 S108 , 直至指定轮数的清点完成。
11. 根据权利要求 10所述的标签清点方法,其特征在于,在步骤 S 110之后, 如果要执行另一次不同的清点任务, 则返回至步骤 S 102, 并将所述清点 状态标志设置为与上一次清点任务的清点标志状态不同的清点状态标 志
PCT/CN2006/003686 2006-10-18 2006-12-29 Procédé de vérification des étiquettes pour système rfid WO2008046267A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CNB2006101528049A CN100555304C (zh) 2006-10-18 2006-10-18 无线射频识别系统的标签清点方法
CN200610152804.9 2006-10-18

Publications (1)

Publication Number Publication Date
WO2008046267A1 true WO2008046267A1 (fr) 2008-04-24

Family

ID=39160151

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/003686 WO2008046267A1 (fr) 2006-10-18 2006-12-29 Procédé de vérification des étiquettes pour système rfid

Country Status (2)

Country Link
CN (1) CN100555304C (zh)
WO (1) WO2008046267A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107784247A (zh) * 2017-10-23 2018-03-09 中国石油大学(华东) 匿名射频识别系统分阶段丢失关键标签识别方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101826145B (zh) * 2009-03-06 2013-02-27 中兴通讯股份有限公司 射频识别系统中实现标签清点的装置及方法
CN105260690B (zh) * 2015-11-09 2018-02-23 深圳市鸿陆技术有限公司 Rfid读写器多天线识别电子标签的方法及系统
CN109635892A (zh) * 2018-11-26 2019-04-16 锐捷网络股份有限公司 一种盘点标签的方法、装置和货柜
CN116782132B (zh) * 2022-03-11 2024-03-08 汉朔科技股份有限公司 电子价签入网和漫游通信方法及系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078633A1 (en) * 2004-02-06 2005-08-25 Zih Corp Rfid group selection method
CN1706205A (zh) * 2002-10-18 2005-12-07 赛宝技术公司 使无源rfid标签的无用重复协商次数最少的系统和方法
CN1836797A (zh) * 2006-04-24 2006-09-27 天津市易雷电子标签科技有限公司 无线射频识别技术控制的机场行李分拣系统和平移式分拣装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1706205A (zh) * 2002-10-18 2005-12-07 赛宝技术公司 使无源rfid标签的无用重复协商次数最少的系统和方法
WO2005078633A1 (en) * 2004-02-06 2005-08-25 Zih Corp Rfid group selection method
CN1836797A (zh) * 2006-04-24 2006-09-27 天津市易雷电子标签科技有限公司 无线射频识别技术控制的机场行李分拣系统和平移式分拣装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107784247A (zh) * 2017-10-23 2018-03-09 中国石油大学(华东) 匿名射频识别系统分阶段丢失关键标签识别方法

Also Published As

Publication number Publication date
CN101136059A (zh) 2008-03-05
CN100555304C (zh) 2009-10-28

Similar Documents

Publication Publication Date Title
US9754143B2 (en) Radio frequency identification readers, methods and computer program products for adjusting a query command slot-counter parameter Q
WO2008046267A1 (fr) Procédé de vérification des étiquettes pour système rfid
US8872632B2 (en) Collision resolution protocol for mobile RFID tag identification
US7969282B2 (en) Optimized operation of a dense reader system
US8878649B2 (en) Method and apparatus pertaining to use of a plurality of different RFID tag interrogation modes
EP2431908B1 (en) Label anti-collision method and system
US9773132B2 (en) Tag anti-collision method, reader apparatus and system for RFID systems with multi-packet reception capability
TWI325252B (en) Channel scanning method for wireless communication system
US7016924B2 (en) Contactless IC card, responding method, and program therefor
CN101430753B (zh) 一种射频识别系统中标签防碰撞方法
CN102708341A (zh) 一种rfid系统标签防碰撞方法
US8385309B2 (en) Communication set up between wireless devices
EP1845630A1 (en) Rfid carrier sense method and rfid system using the same
US20100207731A1 (en) Method and Reader to Conduct a Label Query in a Radio Frequency Identification System
US9785803B2 (en) Method, apparatus and system for collecting tags using bit map in RFID system
CN101441698B (zh) 一种判断射频识别系统中标签清点结束的方法
CN106294247A (zh) 一种多天线rfid读写器与多电脑的连接系统及连接方法
KR101465661B1 (ko) 동일 주파수 대역을 사용하는 환경에서의 태그 인식 방법 및 이를 위한 nfc 장치
CN113283260B (zh) 多通道读写器通道智能切换的方法、读写器及存储介质
CN101436245B (zh) 一种射频识别系统中标签防碰撞方法
CN101739536A (zh) 一种在射频识别系统中对标签进行读写的方法和读写器
CN106503600B (zh) 一种基于时序的rfid主动防冲突方法
CN101609512A (zh) 基于射频识别的通用业务处理方法及系统
CN112418377A (zh) 电子价签及其工作方法
CN100535922C (zh) 一种用于射频识别的多标签接入方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06840716

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06840716

Country of ref document: EP

Kind code of ref document: A1