WO2008045082A1 - Réduction de longueur de piste nécessaire au décollage au moyen d'une tuyère variable - Google Patents

Réduction de longueur de piste nécessaire au décollage au moyen d'une tuyère variable Download PDF

Info

Publication number
WO2008045082A1
WO2008045082A1 PCT/US2006/040070 US2006040070W WO2008045082A1 WO 2008045082 A1 WO2008045082 A1 WO 2008045082A1 US 2006040070 W US2006040070 W US 2006040070W WO 2008045082 A1 WO2008045082 A1 WO 2008045082A1
Authority
WO
WIPO (PCT)
Prior art keywords
control system
take
engine control
turbofan engine
landing
Prior art date
Application number
PCT/US2006/040070
Other languages
English (en)
Inventor
Wayne Hurwitz
Ashok K. Jain
Original Assignee
United Technologies Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corporation filed Critical United Technologies Corporation
Priority to EP06851139.3A priority Critical patent/EP2074301B1/fr
Priority to PCT/US2006/040070 priority patent/WO2008045082A1/fr
Priority to US12/374,131 priority patent/US8935073B2/en
Publication of WO2008045082A1 publication Critical patent/WO2008045082A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/002Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto with means to modify the direction of thrust vector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/06Varying effective area of jet pipe or nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/06Varying effective area of jet pipe or nozzle
    • F02K1/12Varying effective area of jet pipe or nozzle by means of pivoted flaps
    • F02K1/1207Varying effective area of jet pipe or nozzle by means of pivoted flaps of one series of flaps hinged at their upstream ends on a fixed structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/06Varying effective area of jet pipe or nozzle
    • F02K1/15Control or regulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/06Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with front fan
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • This invention relates to thrust vectoring during take-off and/or landing of an aircraft using, for example, a turbofan engine.
  • Take-off field length is an important parameter for large commercial aircraft. Enabling a commercial aircraft to utilize a shorter field length enables the aircraft to operate at a greater number of airport facilities.
  • the take-off field length requirement is affected by factors such as aircraft gross take-off weight, aircraft aerodynamics, engine performance and operating environment. These same parameters also affect the ability of the aircraft to land on shorter fields.
  • a turbofan engine control system includes a core nacelle housing a compressor and a turbine.
  • the fan is arranged upstream from the core nacelle and is surrounded by a fan nacelle.
  • a bypass flow path is arranged downstream from the turbofan between the core and fan nacelles.
  • the bypass flow path includes a nozzle exit area.
  • the controller detects either a take-off condition or a landing condition.
  • the controller determines the take-off and landing conditions using various sensors that are typically indicative of those conditions.
  • the controller changes the effective nozzle exit area to achieve a thrust vector in response to the take-off and landing conditions.
  • the nozzle exit area is effectively changed, for example, by manipulating hinged flaps to achieve the thrust vector.
  • Figure l is a cross-sectional view of an example geared turbofan engine.
  • Figure 2 is a partially broken perspective view of the engine shown in Figure 1.
  • Figure 3 is a schematic end view of the engine shown in Figure 2 and its control system.
  • a geared turbofan engine 10 is shown in Figure 1.
  • a pylon 38 secures the engine 10 to the aircraft.
  • the engine 10 includes a core nacelle 12 that houses a low spool 14 and high spool 24 rotatable about an axis A.
  • the low spool 14 supports a low pressure compressor 16 and low pressure turbine 18.
  • the low spool 14 drives a turbofan 20 through a gear train 22.
  • the high spool 24 supports a high pressure compressor 26 and high pressure turbine 28.
  • a combustor 30 is arranged between the high pressure compressor 26 and high pressure turbine 28. Compressed air from compressors 16, 26 mixes with fuel from the combustor 30 and is expanded in turbines 18, 28.
  • the engine 10 is a high bypass turbofan arrangement.
  • the bypass ratio is greater than 10: 1
  • the turbofan diameter is substantially larger than the diameter of the low pressure compressor 16.
  • the low pressure turbine 18 has a pressure ratio that is greater than 5: 1, in one example.
  • the gear train 22 is an epicycle gear train, for example, a star gear train, providing a gear reduction ratio of greater than 2.5:1. It should be understood, however, that the above parameters are only exemplary of a contemplated geared turbofan engine. That is, the invention is applicable to other engines including direct drive turbofans.
  • Airflow enters a fan nacelle 34, which surrounds the core nacelle 12 and turbofan 20.
  • the turbofan 20 directs air into the core nacelle 12, which is used to drive the turbines 18, 28, as is known in the art.
  • Turbine exhaust E exits the core nacelle 12 once it has been expanded in the turbines 18, 28, in a passage provided between the core nacelle and a tail cone 32.
  • the core nacelle 12 is supported within the fan nacelle 34 by structure 36, which are commonly referred to as upper and lower bifurcations.
  • a generally annular bypass flow path 39 is arranged between the core and fan nacelles 12, 34.
  • the example illustrated in Figure 1 depicts a high bypass flow arrangement in which approximately eighty percent of the airflow entering the fan nacelle 34 bypasses the core nacelle 12.
  • the bypass flow B within the bypass flow path 39 exits the fan nacelle 34 through a nozzle exit area 40.
  • Thrust is a function of density, velocity and area. One or more of these parameters can be manipulated to vary the amount and direction of thrust provided by the bypass flow B.
  • the engine 10 includes a structure associated with the nozzle exit area 40 to change the physical area and geometry to manipulate the thrust provided by the bypass flow B.
  • the nozzle exit area may be effectively altered by other than structural changes, for example, by altering the boundary layer, which changes the flow velocity.
  • any device used to effectively change the nozzle exit area is not limited to physical locations near the exit of the fan nacelle 34, but rather, includes altering the bypass flow B at any suitable location.
  • the engine 10 has a flow control device 41 ( Figure 3) that is used to effectively change the nozzle exit area.
  • the flow control device 41 provides the fan nozzle exit area 40 for discharging axially the bypass flow B pressurized by the upstream turbofan 20 of the engine 10. A significant amount of thrust is provided by the bypass flow B due to the high bypass ratio.
  • the turbofan 20 of the engine 10 is typically designed for a particular flight condition, typically cruise at 0.8M and 35,000 feet.
  • the turbofan 20 is designed at a particular fixed stagger angle for an efficient cruise condition.
  • the flow control device 41 is operated to vary the nozzle exit area 40 to adjust fan bypass air flow such that the angle of attack or incidence on the fan blade is maintained close to design incidence at other flight conditions, such as landing and takeoff.
  • the flow control device 41 defines a nominal converged position for the nozzle exit area 40 at cruise and climb conditions, and radially opens relative thereto to define a diverged position for other flight conditions.
  • the flow control device 41 provides an approximately 20% change in the nozzle exit area 40.
  • the flow control device 41 includes multiple hinged flaps 42 ( Figure 2) arranged circumferentially about the rear of the fan nacelle 34.
  • the hinged flaps 42 can be actuated independently and/or in groups using segments 44.
  • the segments 44 and each hinged flap 42 can be moved angularly using actuators 46.
  • the segments 44 are guided by tracks 48 in one example.
  • the hinged flaps 42 may be manipulated to change the amount and/or direction of thrust.
  • the thrust vector is changed by effectively altering the nozzle exit area 40 so that an aircraft can utilize a shorter field.
  • a geometry of the nozzle exit area 40 is physically changed using the hinged flaps 42.
  • Figure 3 illustrates a downward thrust vector that assists the aircraft during take-off and landing.
  • the thrust vector used in a particular application depends upon the location of the engine relative to the aircraft's center of gravity.
  • the segments 44 are arranged in quadrants, and the upper quadrants are manipulated as a pair and the lower quadrants are manipulated as a pair to achieve the downward thrust vector.
  • the nozzle is varied to angle the thrust axies downward causing a component of the thrust to act as a net lifting force on the aircraft.
  • the lifting force directly adds to the aerodynamic lift of the aircraft reducing the required aircraft take-off velocity and, thus, reduces the required take- off field length.
  • An associated control system is schematically shown in Figure 3.
  • the control system includes a controller 50 that communicates with the actuators 46, which manipulate the segments 44. Additional or alternative components to those discussed below can be used to communicate with the controller 50, which is programmed to manipulate the flow control device 41.
  • the controller 50 commands the actuators 46 to achieve a downward thrust vector in response to, for example, a weight sensor 52 and a full throttle position indicator 54, which are indicative of a take-off condition.
  • the weight sensor 52 is used to determine when the aircraft is on the ground.
  • the controller 50 commands the actuators 46 to achieve a normal thrust vector once a predetermined aircraft velocity has been achieved subsequent to take-off.
  • the normal thrust vector may provide a small downward thrust that is typical in fixed nozzle turbofan engines. Accordingly, the thrust vector achieved by the flow control device 41 is in addition to any normal thrust vector.
  • the aircraft velocity is detected with an air speed sensor 60 and communicated to the controller 50.
  • the controller 50 also commands the actuators 46 to achieve a downward thrust vector in response to, for example, a full flap condition 56 indicative of the landing condition. In one example, the controller 50 commands the actuators 46 to achieve a normal thrust vector in response to actuation of a switch 58 by the pilot when the aircraft is taxing subsequent to landing.
  • an upward thrust vector can be used to reduce the overall trim drag related to operation of the aircraft aero-control surfaces. Additionally, the overall size and weight of the horizontal tails could be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Turbines (AREA)

Abstract

La présente invention concerne un système et un procédé de commande de turboréacteur à double flux. Le système comprend un logement de nacelle centrale (12), un compresseur et une turbine. Un turboréacteur à double flux est monté en amont de la nacelle centrale et est entouré par une nacelle de soufflante (34). Une voie de passage de dilution (39) s'étend en aval du turboréacteur à double flux, entre la nacelle centrale et la nacelle de soufflante. Cette voie de passage de dilution comporte une surface de sortie de la tuyère (40). Un élément de commande (50) détecte au moins une condition de décollage et/ou une condition d'atterrissage et modifie de manière effective la surface de sortie de la tuyère afin d'obtenir un vecteur poussée en réponse aux conditions de décollage et d'atterrissage.
PCT/US2006/040070 2006-10-12 2006-10-12 Réduction de longueur de piste nécessaire au décollage au moyen d'une tuyère variable WO2008045082A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06851139.3A EP2074301B1 (fr) 2006-10-12 2006-10-12 Turboréacteur à double-flux avec une tuyère de poussée controlée pour décollage et atterrissage
PCT/US2006/040070 WO2008045082A1 (fr) 2006-10-12 2006-10-12 Réduction de longueur de piste nécessaire au décollage au moyen d'une tuyère variable
US12/374,131 US8935073B2 (en) 2006-10-12 2006-10-12 Reduced take-off field length using variable nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2006/040070 WO2008045082A1 (fr) 2006-10-12 2006-10-12 Réduction de longueur de piste nécessaire au décollage au moyen d'une tuyère variable

Publications (1)

Publication Number Publication Date
WO2008045082A1 true WO2008045082A1 (fr) 2008-04-17

Family

ID=38859095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2006/040070 WO2008045082A1 (fr) 2006-10-12 2006-10-12 Réduction de longueur de piste nécessaire au décollage au moyen d'une tuyère variable

Country Status (3)

Country Link
US (1) US8935073B2 (fr)
EP (1) EP2074301B1 (fr)
WO (1) WO2008045082A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1916405A2 (fr) * 2006-10-17 2008-04-30 United Technologies Corporation Tuyère à section variable de contrôle du vecteur de poussée pour nacelle de soufflante de turboréacteur
US8769925B2 (en) 2006-06-29 2014-07-08 United Technologies Corporation Thrust vectorable fan variable area nozzle for a gas turbine engine fan nacelle

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8935073B2 (en) * 2006-10-12 2015-01-13 United Technologies Corporation Reduced take-off field length using variable nozzle
US8127529B2 (en) 2007-03-29 2012-03-06 United Technologies Corporation Variable area fan nozzle and thrust reverser
US10040563B1 (en) * 2013-04-11 2018-08-07 Geoffrey P. Pinto Dual panel actuator system for jet engines
US9732700B2 (en) * 2013-10-24 2017-08-15 The Boeing Company Methods and apparatus for passive thrust vectoring and plume deflection
US9546618B2 (en) * 2013-10-24 2017-01-17 The Boeing Company Methods and apparatus for passive thrust vectoring and plume deflection
US10654577B2 (en) 2017-02-22 2020-05-19 General Electric Company Rainbow flowpath low pressure turbine rotor assembly
US11421627B2 (en) 2017-02-22 2022-08-23 General Electric Company Aircraft and direct drive engine under wing installation
US11306681B2 (en) * 2019-01-15 2022-04-19 The Boeing Company Sheared exhaust nozzle
US11428160B2 (en) 2020-12-31 2022-08-30 General Electric Company Gas turbine engine with interdigitated turbine and gear assembly

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3000177A (en) * 1956-07-11 1961-09-19 Snecma Multiple-flow jet-propulsion engines
US3020714A (en) 1956-07-03 1962-02-13 Snecma Device for controlling the jet of a reaction propulsion motor
US3806068A (en) * 1971-03-01 1974-04-23 Hawker Siddeley Aviation Ltd Aircraft
US3863867A (en) * 1973-12-26 1975-02-04 Boeing Co Thrust control apparatus for a jet propulsion engine and actuating mechanism therefor
GB2023075A (en) * 1978-06-19 1979-12-28 Gen Electric Thrust vectoring apparatus for a vtol aircraft
US5706649A (en) * 1995-04-03 1998-01-13 Boeing North American, Inc. Multi axis thrust vectoring for turbo fan engines
EP0848152A2 (fr) * 1996-12-12 1998-06-17 United Technologies Corporation Tuyère variable pour un réacteur
US20030070417A1 (en) 2001-10-17 2003-04-17 Plumpe William Henry Apparatus and method for thrust vector control
US20040216446A1 (en) 2001-09-19 2004-11-04 Centre National De La Recherche Scientifique - Cnrs, A Corporation Of France Device for controlling propulsive jet mixing for aircraft jet engines
US20040237501A1 (en) * 2000-10-02 2004-12-02 Brice David C Apparatus method and system for gas turbine engine noise reduction
WO2007122368A1 (fr) * 2006-04-25 2007-11-01 Short Brothers Plc Tuyère d'échappement à section variable

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932058A (en) * 1974-06-07 1976-01-13 United Technologies Corporation Control system for variable pitch fan propulsor
US4132068A (en) * 1975-04-30 1979-01-02 The United States Of America As Represented By The United States National Aeronautics And Space Administration Variable area exhaust nozzle
US4294069A (en) * 1978-04-26 1981-10-13 United Technologies Corporation Exhaust nozzle control and core engine fuel control for turbofan engine
US4254619A (en) * 1978-05-01 1981-03-10 General Electric Company Partial span inlet guide vane for cross-connected engines
US4258545A (en) * 1978-06-15 1981-03-31 General Electric Company Optimal control for a gas turbine engine
US4644806A (en) * 1985-04-22 1987-02-24 General Electric Company Airstream eductor
GB8630754D0 (en) * 1986-12-23 1987-02-04 Rolls Royce Plc Turbofan gas turbine engine
US5048285A (en) * 1990-03-26 1991-09-17 Untied Technologies Corporation Control system for gas turbine engines providing extended engine life
US5857321A (en) * 1996-06-11 1999-01-12 General Electric Company Controller with neural network for estimating gas turbine internal cycle parameters
US5932940A (en) * 1996-07-16 1999-08-03 Massachusetts Institute Of Technology Microturbomachinery
US6582183B2 (en) * 2000-06-30 2003-06-24 United Technologies Corporation Method and system of flutter control for rotary compression systems
GB0418196D0 (en) * 2004-08-14 2004-09-15 Rolls Royce Plc Boundary layer control arrangement
US8235325B2 (en) * 2005-10-04 2012-08-07 United Technologies Corporation Fan variable area nozzle positional measurement system
US7328128B2 (en) * 2006-02-22 2008-02-05 General Electric Company Method, system, and computer program product for performing prognosis and asset management services
US7779811B1 (en) * 2006-09-13 2010-08-24 General Electric Company Thermoelectrically cooled components for distributed electronics control system for gas turbine engines
US9038362B2 (en) * 2006-10-12 2015-05-26 United Technologies Corporation Turbofan engine with variable area fan nozzle and low spool generator for emergency power generation and method for providing emergency power
WO2008063152A2 (fr) * 2006-10-12 2008-05-29 United Technologies Corporation Intégration efficace de moteur à double flux ayant une buse de ventilateur à section variable
US8365513B2 (en) * 2006-10-12 2013-02-05 United Technologies Corporation Turbofan engine operation control
US8935073B2 (en) * 2006-10-12 2015-01-13 United Technologies Corporation Reduced take-off field length using variable nozzle
US7725293B2 (en) * 2006-12-07 2010-05-25 General Electric Company System and method for equipment remaining life estimation
US7721549B2 (en) * 2007-02-08 2010-05-25 United Technologies Corporation Fan variable area nozzle for a gas turbine engine fan nacelle with cam drive ring actuation system
EP2479414B1 (fr) * 2007-08-08 2015-06-10 Rohr, Inc. Tuyère de soufflante à surface variable avec flux de dérivation
US20090226303A1 (en) * 2008-03-05 2009-09-10 Grabowski Zbigniew M Variable area fan nozzle fan flutter management system
US20110004388A1 (en) * 2009-07-01 2011-01-06 United Technologies Corporation Turbofan temperature control with variable area nozzle
US8689538B2 (en) * 2009-09-09 2014-04-08 The Boeing Company Ultra-efficient propulsor with an augmentor fan circumscribing a turbofan
GB0917319D0 (en) * 2009-10-05 2009-11-18 Rolls Royce Plc An apparatus and method of operating a gas turbine engine
US20110120079A1 (en) * 2009-11-24 2011-05-26 Schwark Jr Fred W Variable area fan nozzle stiffeners and placement
US8290683B2 (en) * 2010-02-16 2012-10-16 Telectro-Mek, Inc. Apparatus and method for reducing aircraft fuel consumption

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3020714A (en) 1956-07-03 1962-02-13 Snecma Device for controlling the jet of a reaction propulsion motor
US3000177A (en) * 1956-07-11 1961-09-19 Snecma Multiple-flow jet-propulsion engines
US3806068A (en) * 1971-03-01 1974-04-23 Hawker Siddeley Aviation Ltd Aircraft
US3863867A (en) * 1973-12-26 1975-02-04 Boeing Co Thrust control apparatus for a jet propulsion engine and actuating mechanism therefor
GB2023075A (en) * 1978-06-19 1979-12-28 Gen Electric Thrust vectoring apparatus for a vtol aircraft
US5706649A (en) * 1995-04-03 1998-01-13 Boeing North American, Inc. Multi axis thrust vectoring for turbo fan engines
EP0848152A2 (fr) * 1996-12-12 1998-06-17 United Technologies Corporation Tuyère variable pour un réacteur
US20040237501A1 (en) * 2000-10-02 2004-12-02 Brice David C Apparatus method and system for gas turbine engine noise reduction
US20040216446A1 (en) 2001-09-19 2004-11-04 Centre National De La Recherche Scientifique - Cnrs, A Corporation Of France Device for controlling propulsive jet mixing for aircraft jet engines
US20030070417A1 (en) 2001-10-17 2003-04-17 Plumpe William Henry Apparatus and method for thrust vector control
WO2007122368A1 (fr) * 2006-04-25 2007-11-01 Short Brothers Plc Tuyère d'échappement à section variable

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8769925B2 (en) 2006-06-29 2014-07-08 United Technologies Corporation Thrust vectorable fan variable area nozzle for a gas turbine engine fan nacelle
US8806850B2 (en) 2006-06-29 2014-08-19 United Technologies Corporation Thrust vectorable fan variable area nozzle for a gas turbine engine fan nacelle
EP1916405A2 (fr) * 2006-10-17 2008-04-30 United Technologies Corporation Tuyère à section variable de contrôle du vecteur de poussée pour nacelle de soufflante de turboréacteur
EP1916405A3 (fr) * 2006-10-17 2012-01-11 United Technologies Corporation Tuyère à section variable de contrôle du vecteur de poussée pour nacelle de soufflante de turboréacteur
EP3495650A1 (fr) * 2006-10-17 2019-06-12 United Technologies Corporation Procédé pour varier la section annulaire de sortie de soufflante d'un moteur de turbine à gaz

Also Published As

Publication number Publication date
US20090259379A1 (en) 2009-10-15
EP2074301B1 (fr) 2016-02-24
US8935073B2 (en) 2015-01-13
EP2074301A1 (fr) 2009-07-01

Similar Documents

Publication Publication Date Title
US8935073B2 (en) Reduced take-off field length using variable nozzle
EP2064434B1 (fr) Gestion de la ligne de fonctionnement d'un compresseur basse pression dans un moteur de turboréacteur à double flux
US8365513B2 (en) Turbofan engine operation control
EP2074322B1 (fr) Turboreacteur a double flux
EP2066872B1 (fr) Procédé et dispositif permettant d'empêcher une instabilité de turboréacteur à double flux dans une turbine à gaz
EP2074288B1 (fr) Turboréacteur à double flux à tuyère de soufflante à géométrie variable et générateur de corps inférieur permettant une alimentation d'urgence et procédé d'alimentation d'urgence
EP2074317B1 (fr) Nacelle pour moteur à turbine à gaz comprenant un mat positionné dans une tuyère de soufflante à section variable avec un système de variation de ladite section
EP2074316B1 (fr) Régulation de la vitesse maximale d'une turbine basse pression dans un turboréacteur
EP2074318B1 (fr) Turboréacteur à double flux et procédé de réglage de la section de sortie
US8209950B2 (en) Detecting ice buildup on an aircraft engine and actuating the turbofan exit nozzle to break the ice
US8137060B2 (en) Actuation of a turbofan engine bifurcation to change an effective nozzle exit area

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 06851139

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12374131

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006851139

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE