WO2008044475A1 - Objective optical element unit and optical pickup device - Google Patents

Objective optical element unit and optical pickup device Download PDF

Info

Publication number
WO2008044475A1
WO2008044475A1 PCT/JP2007/068795 JP2007068795W WO2008044475A1 WO 2008044475 A1 WO2008044475 A1 WO 2008044475A1 JP 2007068795 W JP2007068795 W JP 2007068795W WO 2008044475 A1 WO2008044475 A1 WO 2008044475A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical
optical element
wavelength
phase structure
Prior art date
Application number
PCT/JP2007/068795
Other languages
French (fr)
Japanese (ja)
Inventor
Eiji Nomura
Kohei Ota
Original Assignee
Konica Minolta Opto, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto, Inc. filed Critical Konica Minolta Opto, Inc.
Priority to JP2008538630A priority Critical patent/JPWO2008044475A1/en
Publication of WO2008044475A1 publication Critical patent/WO2008044475A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms
    • G02B5/189Structurally combined with optical elements not having diffractive power
    • G02B5/1895Structurally combined with optical elements not having diffractive power such optical elements having dioptric power
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • G02B5/1876Diffractive Fresnel lenses; Zone plates; Kinoforms
    • G02B5/188Plurality of such optical elements formed in or on a supporting substrate
    • G02B5/1885Arranged as a periodic array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • G11B7/1367Stepped phase plates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1392Means for controlling the beam wavefront, e.g. for correction of aberration
    • G11B7/13922Means for controlling the beam wavefront, e.g. for correction of aberration passive
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0006Recording, reproducing or erasing systems characterised by the structure or type of the carrier adapted for scanning different types of carrier, e.g. CD & DVD
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B2007/13722Fresnel lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B33/00Constructional parts, details or accessories not provided for in the other groups of this subclass
    • G11B33/14Reducing influence of physical parameters, e.g. temperature change, moisture, dust
    • G11B33/1406Reducing the influence of the temperature
    • G11B33/1433Reducing the influence of the temperature by reducing the effects of the thermal expansion

Definitions

  • the present invention relates to an objective optical element unit used in an optical pickup device capable of recording and / or reproducing information interchangeably with different types of optical discs, and an optical pickup device using the objective optical element unit.
  • a high-density optical disc capable of recording and / or reproducing information (hereinafter, “recording and / or reproduction” is referred to as “recording / reproduction”) using a blue-violet semiconductor laser having a wavelength of about 400 nm.
  • BD Blu-ray Disc
  • BD Blu-ray Disc
  • 15-25 GB per layer for an optical disc with a diameter of 12 cm This information can be recorded.
  • such an optical disc is referred to as a “high density optical disc”.
  • optical disc players and recorders optical information recording / reproducing devices
  • the value of optical disc players and recorders can be described simply by being able to record / reproduce information appropriately for such high-density optical discs. It's not enough.
  • DV D and CD compact discs
  • making it possible to properly record / reproduce information on DVDs and CDs in the same way increases the commercial value of optical disc players and recorders for high-density optical discs.
  • optical pickup devices mounted on optical disc players and recorders for high-density optical discs are suitable for maintaining high compatibility with both high-density optical discs, DVDs, and CDs. It is desirable to have a function capable of recording / reproducing data.
  • optical systems for high-density optical discs and DV The power to selectively switch between the optical system for D and CD according to the recording density of the optical disk for recording / reproducing information. Multiple optical systems are required, which is disadvantageous for miniaturization. Cost increases.
  • an optical system for high-density optical discs and an optical system for DVDs and CDs are also used in compatible optical pickup devices. It is advantageous to simplify the configuration of the optical pickup device and reduce the cost by reducing the number of optical components constituting the optical pickup device as much as possible.
  • Patent Document 1 describes an objective optical element that is compatible with both HD DVD, DVD, and CD, and an optical pickup device equipped with the objective optical element.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2006-92720
  • the objective optical element disclosed in Patent Document 1 is used in an optical pickup device that records / reproduces information for both HD DVD, DVD, and CD. Since the HD DVD has the same protective substrate thickness and numerical aperture as the DVD, the common objective optical element is used to record / reproduce information for both BD, DVD, and CD. It can be said that the difficulty level is lower than that.
  • a diffractive structure is provided on the optical element (condensing optical element) on the optical disc side.
  • a diffractive structure is provided on an optical surface having a large curvature, a mold for forming the diffractive structure is manufactured.
  • the light transmittance is likely to be lowered due to vignetting of light.
  • the condensing optical element In contrast, by using a glass lens as the condensing optical element, the ability to eliminate the diffraction structure that corrects the aberration deterioration of the condensing spot caused by temperature changes required when a plastic lens is used. There is a problem that increases. In addition, when a glass lens is used as the condensing optical element, there is a problem that the weight of the objective optical element unit increases, which is disadvantageous for increasing the speed of the optical pickup device.
  • the present invention takes the above-mentioned problems into consideration, has good temperature characteristics, and records / records information on at least three types of optical discs having different light source wavelengths and protective substrate thicknesses.
  • An object of the present invention is to provide an objective optical element unit and an optical pickup device that can be manufactured easily and can be manufactured at a low cost while appropriately reproducing. Means for solving the problem
  • the objective optical element unit includes a first light source that emits a light beam having a wavelength ⁇ 1, and a wavelength 2 ( ⁇ 1 ⁇ 2).
  • a second light source that emits a light beam having a wavelength of 3
  • a third light source that emits a light beam having a wavelength of 3 ( ⁇ 2 ⁇ 3)
  • the optical optical system condenses the light beam having the first light source power on the information recording surface of the first optical information recording medium through the protective substrate having a thickness of tl, thereby recording and / or reproducing information.
  • An objective optical element unit of an optical pickup device capable of recording and / or reproducing information by focusing on the information recording surface of the recording medium, each of which is made of a single plastic material.
  • the first optical element is caused by a difference between a first phase structure that suppresses aberration deterioration of a condensing spot caused by a temperature change with respect to the light beam having the wavelength ⁇ 1, and a thickness tl, t2 of the protective substrate. do it It has a second phase structure that suppresses the spherical aberration deterioration that occurs and a third phase structure that suppresses the spherical aberration deterioration that occurs due to the difference between the thicknesses tl and t3 of the protective substrate.
  • the second phase structure preferably has a function of suppressing spherical aberration deterioration caused by at least the difference between the protective substrate thicknesses tl and t2, but the difference between the protective substrate thicknesses tl and t2 It is more preferable to have a function of suppressing the spherical aberration deterioration caused by the above and the function of suppressing the spherical aberration deterioration based on the difference between the wavelengths ⁇ 1 and ⁇ 2.
  • the first phase structure is the amount of change in wavefront aberration on the information recording surface of the first optical information recording medium with respect to the light flux with wavelength ⁇ 1 when the temperature rises by 30 ° C from 25 ° C. It is preferable that the structure suppresses 0.1 ⁇ lrms or less.
  • the objective optical element unit has the first optical element disposed on the light source side and the second optical element disposed on the optical information recording medium side.
  • the first optical element and the second optical element are formed of plastic, so that the cost can be reduced as compared with the case where the second optical element is a glass lens.
  • the use of the first optical element and the second optical element increases the degree of design freedom compared with the case of using a single optical element.
  • a force S is used to form a good focused spot or optimum focused spot on the surface.
  • Each of the first to third phase structures can take various cross-sectional shapes as schematically shown in Figs. Fig. 6 shows the case of a sawtooth shape, and Fig. 7 shows the case of a stepped shape with all steps being in the same direction.
  • a structure that gives a specific action to a light beam having a predetermined phase difference is given to a light beam having a wavelength of at least one of the incident light beams as a phase structure (or phase difference providing structure).
  • a phase structure or phase difference providing structure.
  • it refers to a structure that has a sawtooth shape or a step shape along the optical axis direction when the cross section is viewed in a plane including the optical axis.
  • Fig. 6 shows the case of a sawtooth shape
  • Fig. 7 shows the case of a stepped shape with all steps being in the same direction.
  • a structure that gives a specific action to a light beam having a predetermined phase difference is given to a light beam having a wavelength of at
  • the optical path length increases as the distance from the optical axis increases.
  • a staircase structure phase difference providing structure in which the optical path length decreases as the distance from the optical axis increases, or at a predetermined height from the optical axis, the optical axis It shows the case of a staircase structure (phase difference providing structure) in which the optical path length becomes shorter as the force is separated and the optical path length becomes longer as the distance from the optical axis is increased from the optical axis.
  • FIG. 9 shows a pattern in which the cross-sectional shape including the optical axis is stepwise arranged in a concentric manner.
  • the level is shifted by the height corresponding to each level surface (4 levels in the example shown in Fig. 9).
  • a structure formed by shifting the steps is also referred to as a staircase, a staircase shape, or a staircase structure, and the shift amount by which the steps are shifted is also referred to as a step.
  • the width of each level surface in one pattern may be the same or different.
  • FIG. 6 shows the case where the directions of the saw blades are the same
  • FIG. 9 shows the force S showing the case where the directions of the patterns whose cross-sectional shapes are stepped are the same, as shown in FIG. 10 and FIG.
  • the sawtooth having the phase reversal part PR the sawtooth having a sawtooth direction opposite to the sawtooth closer to the optical axis than the phase reversal part PR and the sawtooth farther from the optical axis than the phase reversal part PR
  • the pattern may include a pattern in which the direction of the steps is opposite between the pattern closer to the optical axis than the phase inversion part PR and the pattern farther from the optical axis than the phase inversion part PR.
  • each structure is formed on a plane, and each structure may be formed on a spherical surface or an aspheric surface.
  • the number of predetermined level planes is set to 5. This is not limited to this.
  • the objective optical element unit includes a first light source that emits a light beam having a wavelength ⁇ 1, a second light source that emits a light beam having a wavelength 2 ( ⁇ 1 ⁇ 2), and A third light source that emits a light beam having a wavelength of 3 ( ⁇ 2 ⁇ 3), and a condensing optical system that includes an objective optical element unit, and the condensing optical system includes a light beam from the first light source Information can be recorded and / or reproduced by focusing the light on the information recording surface of the first optical information recording medium through a protective substrate having a thickness of tl.
  • Information can be recorded and / or reproduced by focusing the light beam from the light source on the information recording surface of the second optical information recording medium via the protective substrate with thickness t2 (tl ⁇ t2). Furthermore, the light flux from the third light source is collected on the information recording surface of the third optical information recording medium through a protective substrate having a thickness t3 (t2 ⁇ t3).
  • Each has a single first optical element and second optical element made of plastic
  • the first optical element changes the amount of change in wavefront aberration on the information recording surface of the first optical information recording medium with respect to the light beam having the wavelength ⁇ 1 when the temperature rises by 30 ° C. from 25 ° C.
  • the first phase structure that suppresses 0.1 ⁇ lr ms or less and the second phase structure that suppresses spherical aberration deterioration caused by the difference between the thickness tl and t2 of the protective substrate and the thickness tl of the protective substrate , and a third phase structure that suppresses spherical aberration deterioration caused by the difference in t3.
  • the cost is reduced by forming the first optical element and the second optical element from plastic.
  • the first to third phase structures it is possible to achieve good light collection on the information recording surface of three different types of optical information recording media while suppressing aberration deterioration of the light collecting spot due to temperature change. A spot or an optimum focused spot can be formed.
  • the objective optical element unit according to claim 3 is the invention according to claim 1, wherein the first phase structure, the second phase structure, and the third phase structure At least two of them are superimposed on one optical surface.
  • “Superimposition” means literally overlapping. In this specification, even if the first phase structure and the second phase structure are provided on different optical surfaces, respectively, or even if the first phase structure and the second phase structure are on the same optical surface, These are provided in different areas, and when there is no overlapping area, this is not a superposition in this specification. Further, another phase structure may be superimposed as long as at least two phase structures are superimposed. For example, a third phase structure may be further superimposed in addition to the first phase structure and the second phase structure.
  • phase structure such as the first phase structure and the second phase structure is preferably a concentric structure centered on the optical axis when viewed from the optical axis direction.
  • the first phase structure and the second phase structure are preferably structures in which a blaze shape is periodically repeated.
  • the blazed shape is a sawtooth shape in cross section including the optical axis of the optical element as shown in FIGS. 1 (a), (b), 2 (a), and (b).
  • the base surface topological structure has a base surface (for example, in FIGS. 1 and 2).
  • it has an oblique surface C that is neither perpendicular nor parallel to B) and a step D that intersects the oblique surface C and the base surface B.
  • the base surface means a flat plate surface when the first optical element is a flat plate type, and an envelope surface of a phase structure when it is a lens.
  • the blazed shape is periodically repeated naturally includes a shape in which the same blazed shape is repeated in the same cycle.
  • a blazed shape which is a unit of period, has regularity, and a shape in which the period gradually increases or decreases gradually is also referred to as “blazed shape is repeated periodically. It is included in what is!
  • the phase structure has a blazed shape
  • a triangular shape including a case where the oblique surface is a curved surface
  • the same triangle may be repeated, or it may have a shape in which the size of the triangle gradually increases or decreases as the distance from the optical axis increases.
  • the length of the triangle in the optical axis direction (or the direction of the passing light) hardly changes.
  • the pitch depth the length in the direction of the optical axis of one triangle. Is called the pitch width.
  • the shape of the superposition structure formed by superimposing the first phase structure and the second phase structure may leave behind the blazed shape of the first phase structure and the second phase structure.
  • the superposition structure formed by superimposing the first phase structure and the second phase structure is an oblique surface that is neither perpendicular nor parallel to the base surface on which the optical element superposition structure is provided. You may have.
  • a blazed-type phase structure (see FIGS. 1 and 2 (a)) having a larger pitch width (or period width)
  • a small pitch width or period width
  • At least one force at the position of the step of the phase structure i.e., the first phase structure
  • a large pitch width or periodic width
  • a small pitch width Alternatively, it may or may not coincide with the position of the step D of the phase structure having a period width (ie, the second phase structure).
  • the positions of all the steps D in the first phase structure are the same as the positions of the steps D in the second phase structure.
  • An example of the optical path difference providing structure superimposed so as to match is shown in Fig. 1 (c).
  • the blazed triangular shape S in the first phase structure and the blazed triangular force S in the second phase structure are similar to each other if they are similar to each other. As described above, it has a surface parallel to the base surface and does not have a surface oblique to the base surface.
  • the objective optical element unit according to claim 4 is the invention according to claim 3, wherein the first phase structure and the second phase structure are the first optical element. It is superimposed on the optical surface on the light source side.
  • the objective optical element unit according to claim 5 is the invention according to any one of claims 1 to 4, wherein the third optical information is the third optical information.
  • the working distance WD3 with respect to the recording medium satisfies the following expression (1), and further, the paraxial power of the first optical element with respect to the light beam with the wavelength ⁇ 1 is pi, and the first distance with respect to the light beam with the wavelength ⁇ 1 When the paraxial power of the optical element 2 is ⁇ 2, the following equation (2) is satisfied.
  • the working distance WD3 for the third optical information recording medium may be shortened. Therefore, by setting pl / p2 below the upper limit of equation (2), the working distance WD3 is set within the range shown in equation (1). Can be determined.
  • the objective optical element unit according to claim 6 is the paraxial axis of the first optical element with respect to the light beam having the wavelength ⁇ 1 in the invention according to any one of claims 1 to 4.
  • the power is pi and the paraxial power of the second optical element with respect to the light beam having the wavelength ⁇ 1 is ⁇ 2, the following expression (3) is satisfied.
  • the first optical element when the first optical element is not provided with power (for example, a parallel plate), it is preferable to install the first optical element in an inclined state.
  • the objective optical element unit according to claim 7 is the invention according to any one of claims 1 to 6 in the claims 1 to 6, and the second optical element. Since the optical surface of the element consists only of a refracting surface, it is easier to design than the case where a phase structure is provided on the optical surface of the second optical element. Costs can be reduced and light utilization efficiency can be increased.
  • the objective optical element unit according to claim 8 is the invention according to any one of claims 1 to 7, and the invention according to any one of claims 1 to 7, and the first phase structure.
  • the optical path length increases with increasing distance from the optical axis at a predetermined height from the optical axis, and the optical path length decreases with increasing distance from the optical axis after the predetermined height from the optical axis.
  • the optical path length decreases as the distance from the optical axis increases at a predetermined height from the optical axis, or the optical path length increases as the distance from the optical axis increases from the predetermined height. It is characterized by a phase difference providing structure.
  • the line ( ⁇ ) in Fig. 3 represents the wavefront of a single lens having two aspherical optical surfaces when the temperature rises from the design reference temperature, and the horizontal axis is the optical surface. It represents the effective radius, and the vertical axis represents the optical path difference.
  • a single lens generates spherical aberration due to the change in refractive index with temperature rise, and the wavefront changes as shown by the line ( ⁇ ).
  • the single lens is made of resin, the refractive index change with temperature changes is large, so spherical aberration is generated. The amount gets bigger.
  • Line (B) is an optical path difference added to the transmitted wavefront by the annular structure determined as in claim 8.
  • Line (C) has a temperature from the design reference temperature. It is a figure showing the mode of the wave front which permeate
  • the objective optical element unit according to claim 9 is the same as the phase at the position of the predetermined height of the first phase structure in the invention according to claim 8. This region includes a position of 70% of the effective light beam diameter of the first light beam.
  • the change in the wavefront accompanying the change in temperature is maximum at around 70% of the effective beam diameter. Therefore, as in the third aspect of the claims, the annular zone that is the turning point of the phase structure, that is, a predetermined height. If the region with the same phase as the phase at the position (optical path difference) is set so as to include the position of 70% of the effective beam diameter, the effect of improving the temperature characteristics can be most expected.
  • the objective optical element unit according to claim 10 is the invention according to any one of claims 1 to 9, wherein the first phase structure is a light beam having the wavelength ⁇ 1.
  • the first phase structure is a light beam having the wavelength ⁇ 1.
  • the light intensity of the X-order outgoing light is made larger than the light intensity of any other order of outgoing light
  • the light intensity of the y-order outgoing light Is a phase structure that increases the light intensity of any other order of emitted light, and satisfies the following formula (4).
  • represents an integer other than 0
  • y represents an integer other than 1
  • nl represents the refractive index at the wavelength ⁇ 1 of the first optical element
  • ⁇ 2 represents the wavelength of the first optical element. Refractive index at ⁇ 2.
  • the first optical element exhibits high transmittance with respect to the wavelength ⁇ 1 and the wavelength ⁇ 2 by satisfying the equation (4). 1st because it can be secured Recording / reproducing speed on the optical information recording medium and the second optical information recording medium can be increased.
  • the objective optical element unit according to claim 11 is the invention according to any one of claims 1 to 10, wherein the second phase structure includes the first light flux and the front beam.
  • the diffractive structure diffracts the second light beam without diffracting the third light beam.
  • the second phase structure By making the second phase structure a diffractive structure that selectively diffracts only the second light beam, the aberration with respect to the second light beam can be controlled independently, and the first information recording medium and the second information can be controlled. Good condensing characteristics can be obtained for both recording media.
  • the objective optical element unit according to claim 12 is the invention according to claim 11, wherein the second phase structure is a butterfly whose cross-sectional shape including the optical axis is stepped. It is a staircase structure with concentric rings arranged in a concentric circle, with the steps shifted by the height corresponding to each level surface for each predetermined number A of the level surfaces.
  • the number A of the predetermined level surfaces is any one of 4, 5, and 6. It is characterized by this.
  • the objective optical element unit according to claim 14 is characterized in that the objective optical element unit according to claim 12 or
  • the optical path difference caused by one step of the staircase is 1.9 times or more and 2.1 times or less of the wavelength ⁇ .
  • the objective optical element unit according to claim 15 is the invention according to any one of claims 1 to 14, wherein the third phase structure includes the first light flux and the front beam.
  • the diffractive structure diffracts the third light beam without diffracting the second light beam.
  • the third phase structure is a diffractive structure that selectively diffracts only the third light beam, thereby independently controlling the aberration with respect to the third light beam.
  • the objective optical element unit according to claim 16 is the invention according to claim 15, wherein the third phase structure is a butterfly having a stepped cross section including an optical axis. It is a staircase structure with concentric rings arranged in a concentric circle, with the steps shifted by a height corresponding to each level surface for each predetermined number of level surfaces B
  • B is preferably 2.
  • the objective optical element unit according to claim 17 is characterized in that the object optical element unit according to claim 15 or
  • the optical path difference caused by one step of the step structure is 4.9 times or more and 5.1 times or less of the wavelength ⁇ .
  • the objective optical element unit according to claim 18 is the objective optical element unit according to any one of claims 1 to 7, in which the wavelength ⁇ 1 that has passed through the first phase structure is The light flux has the highest light intensity of the 10th-order diffracted light, and the light beam having the wavelength ⁇ 2 that has passed through the first phase structure has the highest light intensity of the 6th-order diffracted light and has passed through the first phase structure.
  • the light beam with the wavelength ⁇ 3 has the highest light intensity of the fifth-order diffracted light
  • the light beam having the wavelength ⁇ 1 that has passed through the second phase structure has the highest light intensity of the second-order diffracted light
  • the light beam having the wavelength ⁇ 2 that has passed through the second phase structure has the light intensity of the first-order diffracted light
  • the light beam having the wavelength 3 that has passed through the second phase structure has the highest light intensity of the first-order diffracted light
  • the light beam having the wavelength ⁇ 1 that has passed through the third phase structure has the highest light intensity of the 0th-order diffracted light
  • the light beam having the wavelength ⁇ 2 that has passed through the third phase structure has the light intensity of the 0th-order diffracted light.
  • the light beam of wavelength 3 that has the highest value and has passed through the third phase structure has the highest light intensity of the first-order diffracted light.
  • the objective optical element unit according to Claim 19 is the invention according to any one of Claims 1 to 18, wherein the second phase structure has a thickness tl of a protective substrate. , the spherical aberration deterioration caused by the difference between t2 and the spherical aberration deterioration based on the difference between the wavelengths ⁇ 1 and ⁇ 2 are suppressed.
  • optical pickup device according to claim 20, wherein the optical pickup device emits a light flux having a wavelength of ⁇ 1.
  • the information is recorded and / or reproduced by collecting light on the information recording surface of the first optical information recording medium via the first optical information recording medium.
  • Information can be recorded and / or reproduced by focusing on the information recording surface of the second optical information recording medium via a protective substrate of t2 (tl ⁇ t2).
  • Information is recorded and / or collected by focusing the light beam from the light source on the information recording surface of the third optical information recording medium through a protective substrate having a thickness of t3 (t2 ⁇ t3). Characterized in that it is possible to
  • a high-density optical disc includes an optical disc having a protective film with a thickness of several to several tens of nanometers on the information recording surface (in this specification, the protective substrate includes the protective film), and the thickness of the protective substrate. This includes optical disks with a length of zero.
  • DVD is a DVD series optical disc in which information is recorded / reproduced with an objective lens of NA 0.60-0.67 and the thickness of the protective substrate is 0.6 mm. It is a generic term and includes DVD-ROM, DVD-Video, DVD-Audio, DV D—RAM, DVD-R, DVD—RW, DVD + R, DVD + RW, and the like. Also, this In the booklet, CD is a general term for CD series optical discs in which information is recorded / reproduced by an objective lens of NA 0.45-0.51 and the thickness of the protective substrate is about 1.2 mm. — Includes ROM, CD-Audio, CD-Video, CD-R, CD-RW, etc. As for the recording density, the recording density of the high-density optical disc is the highest, followed by DVD and CD.
  • the thickness tl and t3 of the protective substrate are the same.
  • the first light source, the second light source, and the third light source are preferably laser light sources.
  • the laser light source it is preferable to use a semiconductor laser, a silicon laser, or the like.
  • the wavelength ⁇ 1 of the first light source is preferably 350 nm or more and 440 ⁇ m or less, more preferably Is 380 nm or more and 415 nm or less
  • the wavelength 2 of the second light source is preferably 570 or more, 680 or less, more preferably 630 or more and 670 or less
  • the wavelength of the third light source 3 Is preferably 750 or more and 880 or less, more preferably 760 or more and 820 or less.
  • At least two of the first light source, the second light source, and the third light source may be unitized.
  • Unitization means, for example, that the first light source and the second light source are fixedly housed in one package, but is not limited to this, and the two light sources are fixed so that aberration correction is not possible Is widely included.
  • a light receiving element to be described later may be packaged.
  • a photodetector such as a photodiode is preferably used as a photodiode. The light reflected on the information recording surface of the optical disc enters the light receiving element, and the read signal of the information recorded on each optical disc is obtained using the output signal.
  • the light receiving element may be composed of a plurality of photodetectors.
  • the light receiving element may have a main photodetector and a sub photodetector.
  • two sub-light detectors are provided on both sides of a light detector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub-light detectors. It is good also as a simple light receiving element.
  • the light receiving element has a plurality of light receiving elements corresponding to each light source.
  • the condensing optical system may have only the objective optical element unit, but in addition, other optical elements such as a coupling lens such as a collimator lens and a flat plate optical element having an optical function may be provided. You may have.
  • the coupling lens is a single lens or a lens group that is disposed between the objective optical element unit and the light source and changes the divergence angle of the light beam.
  • the condensing optical system has an optical element such as a diffractive optical element that divides the light beam emitted from the light source into a main light beam used for recording and reproducing information and two sub light beams used for tracking and the like. It may be.
  • the objective optical element unit refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing the light beam emitted from the light source onto the information recording surface of the optical disk.
  • the objective optical element unit is an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing the light beam emitted from the light source onto the information recording surface of the optical disk.
  • it refers to an optical system that can be integrally displaced at least in the optical axis direction by an actuator.
  • the present invention it is possible to appropriately record and / or reproduce information with respect to at least three types of optical discs having favorable temperature characteristics and having different light source wavelengths and protective substrate thicknesses.
  • An optical picker that is easy to manufacture and can reduce manufacturing costs. It is possible to provide an objective optical element unit and an optical pickup device for the optical device.
  • FIG. 1 is a diagram showing a phase difference providing structure (c) in which a first phase structure (a) and a second phase structure (b) are overlapped with the positions of steps being matched.
  • FIG. 2 is a diagram showing a phase difference providing structure (c) in which a first phase structure (a) and a second phase structure (b) are overlapped by shifting the position of a step.
  • FIG. 3 is a drawing for explaining the principle of temperature aberration correction by the ring structure of the first phase structure.
  • FIG. 4 is a diagram schematically showing a configuration of an optical pickup device according to the present invention.
  • FIG. 5 is a cross-sectional view schematically showing an example of an objective optical element unit OL according to the present invention.
  • FIG. 6 is a diagram showing an example of a phase structure.
  • FIG. 7 is a diagram showing an example of a phase structure.
  • FIG. 8 is a diagram showing an example of a phase structure.
  • FIG. 9 is a diagram showing an example of a phase structure.
  • FIG. 10 is a diagram showing an example of a phase structure.
  • FIG. 11 is a diagram showing an example of a phase structure.
  • DOE1 first diffraction structure DOE2 second diffraction structure
  • FIG. Figure 4 shows the information stored in the high-density optical information recording medium BD (first optical information recording medium), DVD (second optical information recording medium), and CD (third optical information recording medium).
  • Record and playback 1 is a diagram schematically showing a configuration of an optical pickup device PU.
  • the combination of wavelength, protective substrate thickness, and numerical aperture is not limited to this.
  • the optical pickup device PU includes a blue-violet semiconductor laser LD1 (first light source) for BD, a red semiconductor laser LD2 (second light source) for DVD, an infrared semiconductor laser LD3 (third light source) for CD, BD / DVD / CD shared photodetector PD, objective optical element OL, collimating optical system CL, 2-axis actuator AC1, 1-axis actuator AC2, first prism PI, second prism P2, third prism P3, vertical It consists of a lifting mirror ML and a sensor optical system SE for adding astigmatism to the reflected light flux from the information recording surface of each optical disk.
  • a blue-violet SHG laser may be used as a light source for BD.
  • the uniaxial actuator AC2 is used so that the blue-violet laser beam is emitted from the collimating optical system CL in the state of a parallel beam.
  • the blue-violet semiconductor laser LD1 is caused to emit light.
  • the divergent light beam emitted from the blue-violet semiconductor laser LD1 is reflected by the first prism P1 and then the second prism P2 and the third prism P3, as shown in FIG. Are sequentially transmitted and converted into a parallel light beam by the collimating optical system CL.
  • the beam diameter is regulated by the stop STO, and it becomes a condensed spot formed on the information recording surface RL1 by the objective optical element unit OL via the BD protective substrate P L1. .
  • the objective optical unit OL is focused and tracked by the 2-axis actuator AC1 placed around it. A detailed description of the objective optical element unit OL will be given later.
  • the reflected light beam modulated by the information pits on the information recording surface RL1 is transmitted again through the objective optical element unit OL, then reflected by the rising mirror ML, and is reflected as a convergent light beam when passing through the collimating optical system CL. Become. Then, the third prism P3, the second prism P2, and the first prism After sequentially passing through PI, astigmatism is added by the sensor optical system SE and converges on the light receiving surface of the photodetector PD. Information recorded on the BD can be read using the output signal of the photodetector PD.
  • the red laser beam is emitted in the state of a parallel beam from the collimating optical system CL.
  • the red semiconductor laser LD2 is caused to emit light.
  • the divergent light beam emitted from the red semiconductor laser LD2 is reflected by the second prism P2 and then transmitted through the third prism P3, as shown by the broken line in FIG. 4, and is transmitted by the collimating optical system CL. Converted to parallel light flux.
  • the objective optical element unit OL is connected to the 2-axis actuator AC1 located around it.
  • the reflected light beam modulated by the information pits on the information recording surface RL2 is transmitted again through the objective optical element unit OL, then reflected by the rising mirror ML, and is reflected as a convergent light beam when passing through the collimating optical system CL. Become. Thereafter, after passing through the third prism P3, the second prism P2 and the first prism P1 in order, astigmatism is added by the sensor optical system SE and converges on the light receiving surface of the photodetector PD.
  • the information recorded on the DVD can be read using the output signal of the photodetector PD.
  • the infrared laser beam is emitted in the state of a parallel beam from the collimating optical system CL.
  • the infrared semiconductor laser LD3 is caused to emit light.
  • the divergent light beam emitted from the infrared semiconductor laser LD3 is reflected by the third prism P3 and then converted into a parallel light beam by the collimating optical system CL, as shown by the dashed line in FIG.
  • the objective optical element unit OL is focused by a two-axis actuator AC1 arranged around it. Fi.
  • the reflected light beam modulated by the information pits on the information recording surface RL2 is transmitted again through the objective optical element unit OL, then reflected by the rising mirror ML, and is reflected as a convergent light beam when passing through the collimating optical system CL. Become. Thereafter, after passing through the third prism P3, the second prism P2 and the first prism P1 in order, astigmatism is added by the sensor optical system SE and converges on the light receiving surface of the photodetector PD.
  • the information recorded on the CD can be read using the output signal of the photodetector PD.
  • the spherical aberration when using the BD can be corrected by driving the collimating optical system CL in the optical axis direction by the uniaxial actuator AC2.
  • This spherical aberration correction mechanism enables wavelength variations due to manufacturing errors of the blue-violet semiconductor laser LD1, changes in the refractive index and refractive index distribution of the objective optical system due to temperature changes, focus jumps between information recording layers of multilayer discs, protective substrate PL1 It is possible to correct spherical aberration caused by thickness variation and thickness distribution due to manufacturing errors. Note that this spherical aberration correction mechanism may correct spherical aberration when using a DVD or CD.
  • FIG. 5 schematically shows the configuration of the object optical element unit OL according to the present invention.
  • the objective optical element unit OL has an aberration correction element (first optical element) L1 and a condensing element (second optical element) L2 arranged in order from the laser light source side through a lens barrel (holding member) HL.
  • first optical element first optical element
  • second optical element condensing element
  • the optical axis X is held so as to be coaxial.
  • the aberration correction element L1 is made of plastic having an Abbe number of 50 or more and 60 or less, and the optical surface on the optical disk side corresponds to the central region C1 corresponding to the numerical aperture NA3 and the numerical aperture NA3 to the numerical aperture NA1.
  • the optical surface on the laser light source side is divided into a central region C3 corresponding to the numerical aperture NA2 and a peripheral region C4 corresponding to the numerical aperture NA2 to numerical aperture NA1. Yes.
  • the first diffractive structure DOE1 is formed in the central region C1 of the optical surface on the optical disc side, and the third diffractive structure DOE3 is formed in the peripheral region C2.
  • the first diffractive structure DOE1 is a superposed structural force of the first phase structure and the third phase structure, and the third diffractive structure DOE3 consists only of the third phase structure.
  • the first phase structure reduces aberrations in the focused spot due to temperature changes.
  • the third phase structure is for correcting the spherical aberration caused by the difference in thickness between the protective substrate PL1 and the protective substrate PL3.
  • a second diffractive structure (also referred to as an optical path difference providing structure) DOE2 is formed in the central region C3 of the optical surface on the laser light source side, and the peripheral region C4 includes fine structures such as a diffractive structure and a phase structure.
  • the plane is such that no fine structure is formed.
  • the second diffractive structure DOE2 is composed of a second phase structure that corrects the spherical aberration caused by the difference in thickness between the protective substrate PL1 and the protective substrate PL2 and the wavelength difference between the blue-violet laser beam and the red laser beam.
  • the specific diffraction orders of the first phase structure, the second phase structure, and the third phase structure are (10, 6, 5), (0, 1, 0), (0, 0, 1), respectively.
  • the first diffractive structure DOE1 may be superimposed on the second diffractive structure DOE2.
  • the first phase structure may be provided on the optical surface on the light source side of the aberration correction element L1, or may be provided on the optical surface on the optical disk side.
  • w) may be (10, 6, 5), (5, 3, 2), or (2, 1, 1).
  • the first phase structure and the second phase structure overlap with the optical surface on the light source side of the aberration correction element L1.
  • the diffraction order of the second phase structure when the light beam having the wavelength ⁇ 1 passes, the 0th order diffracted light has the highest light intensity, and when the light beam having the wavelength 2 passes, the first order diffracted light has the highest light intensity.
  • the light intensity is high (0, 1, 0).
  • the optical path length increases as the distance from the optical axis increases from the optical axis at a predetermined height, and from the optical axis after the predetermined height from the optical axis.
  • a phase difference providing structure in which the optical path length increases as the distance increases is preferable.
  • the position includes 70% of the effective light beam diameter of the light flux having the region force wavelength ⁇ 1 in the same phase as the phase at the position of the predetermined height of the first phase structure.
  • the second phase structure is preferably a diffractive structure that does not diffract a light beam having a wavelength ⁇ 1 and a light beam having a wavelength ⁇ 3 but diffracts a light beam having a wavelength ⁇ 2.
  • the specific diffraction orders are (0, 1,
  • the second phase structure is a structure in which patterns whose cross-sectional shape including the optical axis is stepped are arranged concentrically, and the number of level planes is equal to the number of level planes every predetermined number of level planes.
  • a structure in which the steps are shifted by a height corresponding to the number of steps is preferable.
  • the number A of the predetermined level surfaces is preferably 4, 5, or 6.
  • the optical path difference caused by one step of the staircase is preferably twice the wavelength ⁇ 1.
  • the third phase structure is preferably a diffractive structure that diffracts the third light beam without diffracting the light beam having the wavelength ⁇ 1 and the light beam having the wavelength ⁇ 2.
  • the specific diffraction order is preferably (0, 0, 1).
  • the third phase structure is a structure in which patterns whose cross-sectional shape including the optical axis is stepped are arranged concentrically, and the number of level planes is the number of level planes every predetermined number of level planes.
  • a structure in which the steps are shifted by a height corresponding to the number of steps is preferable.
  • the optical path difference caused by one step of the staircase is preferably 5 times the wavelength ⁇ 1.
  • Examples 1 and 2 below are examples in which the first phase structure and the second phase structure are superimposed on the light source side optical surface of the first optical element.
  • the third phase structure is an example formed on the optical surface of the first optical element on the optical disc side.
  • a power of 10 for example, 2.5 X 1CT 3
  • E for example, 2 ⁇ 5E ⁇ 3
  • the optical surface of the objective lens is formed as an aspherical surface that is symmetric about the optical axis and is defined by a mathematical formula in which the coefficients shown in Table 1 are substituted into Equation (1).
  • X (h) is the coordinate axis of the aspherical surface in the optical axis direction (the light traveling direction is positive)
  • is the conic coefficient
  • is the aspherical coefficient
  • h is the height from the optical axis
  • r is the radius of curvature on the optical axis of the aspheric surface
  • optical path length given to the light flux of each wavelength by the diffractive structure is defined by an equation in which the coefficient shown in the table is substituted into the optical path difference function of Formula 2.
  • is the wavelength of the incident light beam
  • ⁇ ⁇ is the manufacturing wavelength (blazed wavelength)
  • dor is the diffraction order
  • C is the coefficient of the optical path difference function
  • Example 1 shows the lens data of Example 1.
  • the amount of aberration change when the temperature rises from the design reference temperature of 25 ° C to 30 ° C is 165m rms for the comparative example without the 10th / 6th / 5th diffraction structures.
  • the material refractive index variation - are a 9 X 10- 5 / ° C.
  • Example 2 shows the lens data of Example 2.
  • the amount of aberration change when the temperature rose by 30 ° C from the design reference temperature of 25 ° C was 87 rms for the comparative example without the 10th / 6th / 5th diffraction structures.
  • 9 m rms is obtained.

Abstract

Disclosed is an easily produced low-cost optical pickup device, which has good temperature characteristics and is capable of adequately recording and/or reproducing information on and/or from different optical disks. Also disclosed is an objective optical element unit for such an optical pickup device. For the purpose of providing such objective optical element unit and optical pickup device, the cost is reduced by making a first optical element and a second optical element from a plastic, and aberration deterioration of a focusing spot due to temperature change and thickness difference of a protection substrate is suppressed by providing first to third phase structures, thereby forming an optimum focusing spot on the information recording surfaces of different optical information recording media.

Description

明 細 書  Specification
対物光学素子ユニット及び光ピックアップ装置  Objective optical element unit and optical pickup device
技術分野  Technical field
[0001] 本発明は、異なる種類の光ディスクに対して互換可能に情報の記録及び/又は再 生を行える光ピックアップ装置に用いる対物光学素子ユニット及びそれを用いた光ピ ックアップ装置に関する。  The present invention relates to an objective optical element unit used in an optical pickup device capable of recording and / or reproducing information interchangeably with different types of optical discs, and an optical pickup device using the objective optical element unit.
背景技術  Background art
[0002] 近年、波長 400nm程度の青紫色半導体レーザを用いて、情報の記録及び/又は 再生(以下、「記録及び/又は再生」を「記録/再生」と記載する)を行える高密度光 ディスクシステムの研究 ·開発が急速に進んでいる。一例として、 NA0. 85、光源波 長 405nmの仕様で情報の記録/再生を行う光ディスク、いわゆる Blu— ray Disc ( 以下、 BDという)では、直径 12cmの光ディスクに対して、 1層あたり 15〜25GBの情 報の記録が可能である。以下、本明細書では、このような光ディスクを「高密度光ディ スク」と呼ぶ。  In recent years, a high-density optical disc capable of recording and / or reproducing information (hereinafter, “recording and / or reproduction” is referred to as “recording / reproduction”) using a blue-violet semiconductor laser having a wavelength of about 400 nm. System research and development is progressing rapidly. As an example, an optical disc that records and reproduces information with specifications of NA 0.85 and light source wavelength 405 nm, so-called Blu-ray Disc (hereinafter referred to as BD), 15-25 GB per layer for an optical disc with a diameter of 12 cm This information can be recorded. Hereinafter, in the present specification, such an optical disc is referred to as a “high density optical disc”.
[0003] ところで、力、かるタイプの高密度光ディスクに対して適切に情報の記録/再生がで きると言うだけでは、光ディスクプレーヤやレコーダ(光情報記録再生装置)とレ、つた 製品としての価値は十分なものとはいえない。現在、多種多様な情報を記録した DV Dや CD (コンパクトディスク)が販売されている状況をふまえると、高密度光ディスクに 対して情報の記録/再生ができるだけでは足らず、例えばユーザが所有して!/、る D VDや CDに対しても同様に適切に情報の記録/再生ができるようにすることが、高 密度光ディスク用の光ディスクプレーヤやレコーダなどの商品価値を高めることに通 じる。このような背景から、高密度光ディスク用の光ディスクプレーヤやレコーダなどに 搭載される光ピックアップ装置は、高密度光ディスクと DVD、更には CDとの何れに 対しても互換性を維持しながら適切に情報を記録/再生できる機能を有することが 望まれる。  [0003] By the way, the value of optical disc players and recorders (optical information recording / reproducing devices), and the value of these products, can be described simply by being able to record / reproduce information appropriately for such high-density optical discs. It's not enough. Based on the current situation in which DV D and CD (compact discs) that record a wide variety of information are sold, it is not possible to record / reproduce information on high-density optical discs. Similarly, making it possible to properly record / reproduce information on DVDs and CDs in the same way increases the commercial value of optical disc players and recorders for high-density optical discs. Against this background, optical pickup devices mounted on optical disc players and recorders for high-density optical discs are suitable for maintaining high compatibility with both high-density optical discs, DVDs, and CDs. It is desirable to have a function capable of recording / reproducing data.
[0004] 高密度光ディスクと DVD、更には CDとの何れに対しても互換性を維持しながら適 切に情報を記録/再生を可能とする方法として、高密度光ディスク用の光学系と DV Dや CD用の光学系とを情報を記録/再生する光ディスクの記録密度に応じて選択 的に切り替える方法が考えられる力 複数の光学系が必要となるので、小型化に不 利であり、またコストが増大する。 [0004] As a method for recording / reproducing information appropriately while maintaining compatibility with both high-density optical discs, DVDs, and even CDs, optical systems for high-density optical discs and DV The power to selectively switch between the optical system for D and CD according to the recording density of the optical disk for recording / reproducing information. Multiple optical systems are required, which is disadvantageous for miniaturization. Cost increases.
[0005] 従って、光ピックアップ装置の構成を簡素化し、低コスト化を図るためには、互換性 を有する光ピックアップ装置においても、高密度光ディスク用の光学系と DVDや CD 用の光学系とを共通化して、光ピックアップ装置を構成する光学部品点数を極力減 らすことが光ピックアップ装置の構成の簡素化、低コスト化に有利となる。  [0005] Therefore, in order to simplify the configuration of the optical pickup device and reduce the cost, an optical system for high-density optical discs and an optical system for DVDs and CDs are also used in compatible optical pickup devices. It is advantageous to simplify the configuration of the optical pickup device and reduce the cost by reducing the number of optical components constituting the optical pickup device as much as possible.
[0006] 特許文献 1には、 HD DVDと DVD、さらには CDとの何れに対しても互換性をも つ対物光学素子、及びこの対物光学素子を搭載した光ピックアップ装置が記載され ている。  [0006] Patent Document 1 describes an objective optical element that is compatible with both HD DVD, DVD, and CD, and an optical pickup device equipped with the objective optical element.
特許文献 1:特開 2006— 92720号公報  Patent Document 1: Japanese Unexamined Patent Publication No. 2006-92720
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] 然るに、特許文献 1に開示された対物光学素子は、 HD DVDと DVD、さらには C Dとの何れに対しても情報の記録/再生を行う光ピックアップ装置に用いられるもの である。 HD DVDは DVDに対して保護基板厚や開口数が等しいために、対物光 学素子の共通化は、 BDと DVD、さらには CDとの何れに対しても情報の記録/再生 を実現する場合よりも難易度は低いと言える。又、特許文献 1においては、光ディスク 側の光学素子 (集光光学素子)に回折構造を設けているが、曲率の大きい光学面に 回折構造を設けると、それを形成するための金型の製造が困難となり、また光線のケ ラレ等により光透過率が低下し易いという問題がある。これに対し、集光光学素子を ガラスレンズとすることにより、プラスチックレンズとした場合に必要となる温度変化に 起因した集光スポットの収差劣化を補正する回折構造を省略できる力 その代わりに 製造コストが増大するという問題がある。しかも集光光学素子にガラスレンズを用いた 場合には、対物光学素子ユニットの重量が増大し、光ピックアップ装置の高倍速化に 不利となるという問題もある。  [0007] However, the objective optical element disclosed in Patent Document 1 is used in an optical pickup device that records / reproduces information for both HD DVD, DVD, and CD. Since the HD DVD has the same protective substrate thickness and numerical aperture as the DVD, the common objective optical element is used to record / reproduce information for both BD, DVD, and CD. It can be said that the difficulty level is lower than that. In Patent Document 1, a diffractive structure is provided on the optical element (condensing optical element) on the optical disc side. However, if a diffractive structure is provided on an optical surface having a large curvature, a mold for forming the diffractive structure is manufactured. In addition, there is a problem that the light transmittance is likely to be lowered due to vignetting of light. In contrast, by using a glass lens as the condensing optical element, the ability to eliminate the diffraction structure that corrects the aberration deterioration of the condensing spot caused by temperature changes required when a plastic lens is used. There is a problem that increases. In addition, when a glass lens is used as the condensing optical element, there is a problem that the weight of the objective optical element unit increases, which is disadvantageous for increasing the speed of the optical pickup device.
[0008] 以上のようなことから、高密度光ディスクと DVD、そして CDといった規格種類が異 なる少なくとも 3種類の光ディスクに対して高性能な互換を実現するためには、例え ば、高密度光ディスクに対して ΝΑ0· 8以上の大きな開口数を備える対物光学素子 ユニットであることが要求される上に、それら異なる 3種類の光ディスクの保護基板厚 の差に起因して発生する球面収差の劣化などを抑制するために必要とされる位相構 造などの構造或いは更に温度特性を補償する構造などを持たせながら、それぞれの 光ディスクに使用される所定波長の光束に対して光透過率が低下することを抑制し、 し力、も製造の難易度及び製造コストの増大を抑えることが重要な課題であることを見 し/ [0008] From the above, in order to realize high-performance compatibility for at least three types of optical discs of different standard types, such as high-density optical discs, DVDs, and CDs, For example, it is required to be an objective optical element unit with a large numerical aperture of ΝΑ0 · 8 or higher for high-density optical discs, and it occurs due to the difference in the protective substrate thickness of these three different types of optical discs. Light transmission is possible for a light beam of a predetermined wavelength used for each optical disc while providing a structure such as a phase structure required for suppressing deterioration of spherical aberration or the like, or a structure for compensating temperature characteristics. It is important to prevent the rate from falling, and to suppress the increase in manufacturing force and manufacturing cost.
[0009] 本発明は、上述の問題を考慮したものであり、良好な温度特性を有し、それぞれに 使用する光源の波長及び保護基板厚が異なる少なくとも 3種類の光ディスクに対して 情報の記録/再生を適切に行いながらも、製造容易で且つ製造コストも抑えることが できる対物光学素子ユニット及び光ピックアップ装置を提供することを目的とする。 課題を解決するための手段  [0009] The present invention takes the above-mentioned problems into consideration, has good temperature characteristics, and records / records information on at least three types of optical discs having different light source wavelengths and protective substrate thicknesses. An object of the present invention is to provide an objective optical element unit and an optical pickup device that can be manufactured easily and can be manufactured at a low cost while appropriately reproducing. Means for solving the problem
[0010] 以上の課題を解決するために、請求の範囲第 1項に記載の対物光学素子ユニット は、波長 λ 1の光束を出射する第 1光源と、波長え 2 ( λ 1 < λ 2)の光束を出射する 第 2光源と、波長え 3 ( λ 2< λ 3)の光束を出射する第 3光源と、対物光学素子ュニ ットを含む集光光学系とを有し、前記集光光学系が、前記第 1光源力 の光束を、厚 さ tlの保護基板を介して第 1光情報記録媒体の情報記録面に集光させることによつ て、情報の記録及び/又は再生を行うことが可能となっており、また前記第 2光源か らの光束を、厚さ t2 (tl <t2)の保護基板を介して第 2光情報記録媒体の情報記録 面に集光させることによって、情報の記録及び/又は再生を行うことが可能となって おり、更に前記第 3光源からの光束を、厚さ t3 (t2<t3)の保護基板を介して第 3光 情報記録媒体の情報記録面に集光させることによって、情報の記録及び/又は再 生を行うことが可能となっている光ピックアップ装置の対物光学素子ユニットであって それぞれプラスチックを素材とする単一の第 1の光学素子と第 2の光学素子とを有 し、 In order to solve the above problems, the objective optical element unit according to claim 1 includes a first light source that emits a light beam having a wavelength λ 1, and a wavelength 2 (λ 1 <λ 2). A second light source that emits a light beam having a wavelength of 3, a third light source that emits a light beam having a wavelength of 3 (λ 2 <λ 3), and a condensing optical system including an objective optical element unit. The optical optical system condenses the light beam having the first light source power on the information recording surface of the first optical information recording medium through the protective substrate having a thickness of tl, thereby recording and / or reproducing information. And the light flux from the second light source is condensed on the information recording surface of the second optical information recording medium through a protective substrate having a thickness t2 (tl <t2). Thus, information can be recorded and / or reproduced, and the light beam from the third light source is further transmitted through a protective substrate having a thickness t3 (t2 <t3). An objective optical element unit of an optical pickup device capable of recording and / or reproducing information by focusing on the information recording surface of the recording medium, each of which is made of a single plastic material. A first optical element and a second optical element;
前記第 1の光学素子は、前記波長 λ 1の光束に対して温度変化に起因する集光ス ポットの収差劣化を抑制する第 1位相構造と、保護基板の厚さ tl , t2の差に起因して 生じる球面収差劣化を抑制する第 2位相構造と、保護基板の厚さ tl , t3の差に起因 して生じる球面収差劣化を抑制する第 3位相構造とを有することを特徴とする。 The first optical element is caused by a difference between a first phase structure that suppresses aberration deterioration of a condensing spot caused by a temperature change with respect to the light beam having the wavelength λ1, and a thickness tl, t2 of the protective substrate. do it It has a second phase structure that suppresses the spherical aberration deterioration that occurs and a third phase structure that suppresses the spherical aberration deterioration that occurs due to the difference between the thicknesses tl and t3 of the protective substrate.
[0011] 尚、第 2位相構造は、少なくとも保護基板の厚さ tl , t2の差に起因して生じる球面 収差劣化抑制する機能を有することが好ましいが、保護基板の厚さ tl , t2の差に起 因して生じる球面収差劣化抑制及び波長 λ 1 , λ 2の差に基づく球面収差劣化を抑 制する機能を有することがより好ましレ、。  Note that the second phase structure preferably has a function of suppressing spherical aberration deterioration caused by at least the difference between the protective substrate thicknesses tl and t2, but the difference between the protective substrate thicknesses tl and t2 It is more preferable to have a function of suppressing the spherical aberration deterioration caused by the above and the function of suppressing the spherical aberration deterioration based on the difference between the wavelengths λ 1 and λ 2.
[0012] また、第 1位相構造は、温度が 25°Cより 30°C上昇した際に波長 λ 1の光束に対し て第 1光情報記録媒体の情報記録面上での波面収差の変化量を 0. 1 λ lrms以下 に抑制する構造であることが好ましレ、。  [0012] In addition, the first phase structure is the amount of change in wavefront aberration on the information recording surface of the first optical information recording medium with respect to the light flux with wavelength λ 1 when the temperature rises by 30 ° C from 25 ° C. It is preferable that the structure suppresses 0.1 λ lrms or less.
[0013] また、第 1の光学素子が光源側に配置され、第 2の光学素子が光情報記録媒体側 に配置される対物光学素子ユニットであることが好ましい。  [0013] Further, it is preferable that the objective optical element unit has the first optical element disposed on the light source side and the second optical element disposed on the optical information recording medium side.
[0014] 本発明によれば、第 1の光学素子と第 2の光学素子とをプラスチックから形成するこ とで第 2の光学素子をガラスレンズとするときよりもコストが低減できる。又、第 1の光学 素子と第 2の光学素子を用いることで単一の光学素子を用いるときよりも設計の自由 度が増える。さらに、第 1の光学素子に前記第 1〜第 3位相構造を設けることで、温度 変化に起因した集光スポットの収差劣化を抑えた状態で、異なる 3種類の光情報記 録媒体の情報記録面上に良好な集光スポット或いは最適な集光スポットを形成する こと力 Sでさる。  [0014] According to the present invention, the first optical element and the second optical element are formed of plastic, so that the cost can be reduced as compared with the case where the second optical element is a glass lens. In addition, the use of the first optical element and the second optical element increases the degree of design freedom compared with the case of using a single optical element. Furthermore, by providing the first to third phase structures on the first optical element, information recording on three different types of optical information recording media can be performed while suppressing aberration deterioration of the focused spot due to temperature changes. A force S is used to form a good focused spot or optimum focused spot on the surface.
[0015] 第 1乃至第 3の各位相構造は図 6〜; 11に概略的に示すように様々な断面形状をと り得る。図 6は鋸歯状である場合であり、図 7は全ての段差が同じ方向とされた階段状 である場合である。本明細書では、入射光束のうち少なくとも 1つの波長の光束に対 して所定の位相差を付与することにより、この光束に対して特定の作用を与える構造 を「位相構造 (又は位相差付与構造)」とし、例えば、図 6や図 7のように、光軸を含む 平面でその断面をみた場合に鋸歯状あるいは光軸方向に沿った階段状となった構 造などを指す。また、図 8は段差の方向が途中で反対となる階段状である場合、つま り光軸を含む断面形状が、光軸から所定の高さまでは、光軸から離れるに従って光 路長が長くなり、前記光軸から所定の高さ以降は、光軸から離れるに従って光路長 が短くなる階段構造 (位相差付与構造)、或いは、光軸から所定の高さまでは、光軸 力 離れるに従って光路長が短くなり、前記光軸から所定の高さ以降は、光軸から離 れるに従って光路長が長くなる階段構造 (位相差付与構造)である場合を示している [0015] Each of the first to third phase structures can take various cross-sectional shapes as schematically shown in Figs. Fig. 6 shows the case of a sawtooth shape, and Fig. 7 shows the case of a stepped shape with all steps being in the same direction. In this specification, a structure that gives a specific action to a light beam having a predetermined phase difference is given to a light beam having a wavelength of at least one of the incident light beams as a phase structure (or phase difference providing structure). For example, as shown in Fig. 6 and Fig. 7, it refers to a structure that has a sawtooth shape or a step shape along the optical axis direction when the cross section is viewed in a plane including the optical axis. In addition, in Fig. 8, when the step is stepped in the opposite direction in the middle, that is, when the cross-sectional shape including the optical axis is at a predetermined height from the optical axis, the optical path length increases as the distance from the optical axis increases. After the predetermined height from the optical axis, a staircase structure (phase difference providing structure) in which the optical path length decreases as the distance from the optical axis increases, or at a predetermined height from the optical axis, the optical axis It shows the case of a staircase structure (phase difference providing structure) in which the optical path length becomes shorter as the force is separated and the optical path length becomes longer as the distance from the optical axis is increased from the optical axis.
[0016] また、図 9は、光軸を含む断面形状が階段状とされたパターンを同心円状に配列し[0016] FIG. 9 shows a pattern in which the cross-sectional shape including the optical axis is stepwise arranged in a concentric manner.
、所定のレベル面の個数毎(図 9に示す例ではレベル面の個数は 5)に、それぞれの レベル面に対応した段数分(図 9に示す例では 4段)の高さだけ段をシフトさせた場合 を示している。本明細書では、段をシフトさせたことにより形成された構造を、階段、 階段状、又は階段構造ともいい、段をシフトさせたシフト量を段差ともいう。尚、 1つの パターン中の各レベル面の幅は、同じであっても異なっていても良い。 For each given number of level surfaces (the number of level surfaces is 5 in the example shown in Fig. 9), the level is shifted by the height corresponding to each level surface (4 levels in the example shown in Fig. 9). This shows the case where In this specification, a structure formed by shifting the steps is also referred to as a staircase, a staircase shape, or a staircase structure, and the shift amount by which the steps are shifted is also referred to as a step. Note that the width of each level surface in one pattern may be the same or different.
[0017] 図 6では各鋸歯の向きが同一である場合を示し、図 9では断面形状が階段状とされ た各パターンの向きが同一である場合を示した力 S、図 10や図 11のように、位相反転 部 PRを有し、位相反転部 PRよりも光軸に近い側にある鋸歯と位相反転部 PRよりも 光軸から遠い側にある鋸歯とで鋸歯の向きが反対の鋸歯や、位相反転部 PRよりも光 軸に近い側にあるパターンと位相反転部 PRよりも光軸から遠い側にあるパターンと で段の向きが反対のパターンを含む構造であってもよい。なお、図 6乃至 11は、各構 造を平面上に形成した場合を示した場合である力 S、各構造は球面上或いは非球面 上に形成しても良い。また、図 9や図 11では、所定のレベル面の個数を 5としている 力 これに限られるものではない。 FIG. 6 shows the case where the directions of the saw blades are the same, and FIG. 9 shows the force S showing the case where the directions of the patterns whose cross-sectional shapes are stepped are the same, as shown in FIG. 10 and FIG. In this way, the sawtooth having the phase reversal part PR, the sawtooth having a sawtooth direction opposite to the sawtooth closer to the optical axis than the phase reversal part PR and the sawtooth farther from the optical axis than the phase reversal part PR The pattern may include a pattern in which the direction of the steps is opposite between the pattern closer to the optical axis than the phase inversion part PR and the pattern farther from the optical axis than the phase inversion part PR. 6 to 11 show a force S, which is a case where each structure is formed on a plane, and each structure may be formed on a spherical surface or an aspheric surface. In FIGS. 9 and 11, the number of predetermined level planes is set to 5. This is not limited to this.
[0018] 請求の範囲第 2項に記載の対物光学素子ユニットは、波長 λ 1の光束を出射する 第 1光源と、波長え 2 ( λ 1 < λ 2)の光束を出射する第 2光源と、波長え 3 ( λ 2< λ 3 )の光束を出射する第 3光源と、対物光学素子ユニットを含む集光光学系とを有し、 前記集光光学系が、前記第 1光源からの光束を、厚さ tlの保護基板を介して第 1光 情報記録媒体の情報記録面に集光させることによって、情報の記録及び/又は再 生を行うことが可能となっており、また前記第 2光源からの光束を、厚さ t2 (tl <t2)の 保護基板を介して第 2光情報記録媒体の情報記録面に集光させることによって、情 報の記録及び/又は再生を行うことが可能となっており、更に前記第 3光源からの光 束を、厚さ t3 (t2<t3)の保護基板を介して第 3光情報記録媒体の情報記録面に集 光させることによって、情報の記録及び/又は再生を行うことが可能となっている光ピ ックアップ装置の対物光学素子ユニットであって、 The objective optical element unit according to claim 2 includes a first light source that emits a light beam having a wavelength λ 1, a second light source that emits a light beam having a wavelength 2 (λ 1 <λ 2), and A third light source that emits a light beam having a wavelength of 3 (λ 2 <λ 3), and a condensing optical system that includes an objective optical element unit, and the condensing optical system includes a light beam from the first light source Information can be recorded and / or reproduced by focusing the light on the information recording surface of the first optical information recording medium through a protective substrate having a thickness of tl. Information can be recorded and / or reproduced by focusing the light beam from the light source on the information recording surface of the second optical information recording medium via the protective substrate with thickness t2 (tl <t2). Furthermore, the light flux from the third light source is collected on the information recording surface of the third optical information recording medium through a protective substrate having a thickness t3 (t2 <t3). By Rukoto, recording and / or optical pin which it is possible to reproduce information An objective optical element unit of a backup device,
それぞれプラスチックを素材とする単一の第 1の光学素子と第 2の光学素子とを有 し、  Each has a single first optical element and second optical element made of plastic,
前記第 1の光学素子は、温度が 25°Cより 30°C上昇した際に前記波長 λ 1の光束に 対して前記第 1光情報記録媒体の情報記録面上での波面収差の変化量を 0. 1 λ lr ms以下に抑制する第 1位相構造と、保護基板の厚さ tl , t2の差に起因して生じる球 面収差劣化を抑制する第 2位相構造と、保護基板の厚さ tl , t3の差に起因して生じ る球面収差劣化を抑制する第 3位相構造とを有することを特徴とする。  The first optical element changes the amount of change in wavefront aberration on the information recording surface of the first optical information recording medium with respect to the light beam having the wavelength λ 1 when the temperature rises by 30 ° C. from 25 ° C. The first phase structure that suppresses 0.1 λ lr ms or less and the second phase structure that suppresses spherical aberration deterioration caused by the difference between the thickness tl and t2 of the protective substrate and the thickness tl of the protective substrate , and a third phase structure that suppresses spherical aberration deterioration caused by the difference in t3.
[0019] 本発明によれば、第 1の光学素子と第 2の光学素子とをプラスチックから形成するこ とでコストを低減している。又、前記第 1〜第 3位相構造を設けることで、温度変化に 起因した集光スポットの収差劣化を抑えた状態で、異なる 3種類の光情報記録媒体 の情報記録面上に良好な集光スポット或いは最適な集光スポットを形成することがで きる。 According to the present invention, the cost is reduced by forming the first optical element and the second optical element from plastic. In addition, by providing the first to third phase structures, it is possible to achieve good light collection on the information recording surface of three different types of optical information recording media while suppressing aberration deterioration of the light collecting spot due to temperature change. A spot or an optimum focused spot can be formed.
[0020] 請求の範囲第 3項に記載の対物光学素子ユニットは、請求の範囲第 1項に記載の 発明において、前記第 1位相構造と、前記第 2位相構造と、前記第 3位相構造とのう ち少なくとも 2つは、一つの光学面に重畳されていることを特徴とする。「重畳」とは、 文字通り重ね合わせるという意味である。本明細書において、第 1位相構造と第 2位 相構造がそれぞれ他の光学面に設けられている場合や、第 1位相構造と第 2位相構 造とが同一の光学面にあつたとしても、それぞれ異なる領域に設けられており、重な る領域が一切ない場合は、本明細書における重畳ではない。また、少なくとも 2つの 位相構造が重畳していればよぐ更に他の位相構造を重畳してもよい。例えば、第 1 位相構造、第 2位相構造に加えて、第 3位相構造を更に重畳させてもよい。  [0020] The objective optical element unit according to claim 3 is the invention according to claim 1, wherein the first phase structure, the second phase structure, and the third phase structure At least two of them are superimposed on one optical surface. “Superimposition” means literally overlapping. In this specification, even if the first phase structure and the second phase structure are provided on different optical surfaces, respectively, or even if the first phase structure and the second phase structure are on the same optical surface, These are provided in different areas, and when there is no overlapping area, this is not a superposition in this specification. Further, another phase structure may be superimposed as long as at least two phase structures are superimposed. For example, a third phase structure may be further superimposed in addition to the first phase structure and the second phase structure.
[0021] なお、第 1位相構造、第 2位相構造などの位相構造は、光軸方向から見た場合、光 軸を中心とした同心円状の構造となっていることが好ましい。  [0021] The phase structure such as the first phase structure and the second phase structure is preferably a concentric structure centered on the optical axis when viewed from the optical axis direction.
[0022] また、第 1位相構造、第 2位相構造は、ブレーズ型形状が周期的に繰り返されてい る構造であることが好ましい。ここで、ブレーズ型形状とは、図 1 (a)、 (b)、図 2 (a)、 ( b)に示されるように、光学素子の光軸を含む断面形状が鋸歯状の形状となっている ことであり、別の言い方としては、ベース面位相構造が、ベース面(例えば図 1、 2に 示す B)に対して直角でも平行でもない斜めの面 Cと、斜めの面 Cとベース面 Bとに交 差する段差 Dとを有するということである。尚、ベース面とは、第 1の光学素子が、平 板型の場合は平板面をいい、レンズの場合は位相構造の包絡面をいう。又、「ブレー ズ型形状が周期的に繰り返されている」とは、同一のブレーズ型形状が同一の周期 で繰り返されている形状は当然含む。さらに、周期の一単位となるブレーズ型形状が 、規則性を持って、周期が徐々に長くなつたり、徐々に短くなつたりする形状も、「ブレ ーズ型形状が周期的に繰り返されてレ、る」ものに含まれて!/、るとする。 [0022] Further, the first phase structure and the second phase structure are preferably structures in which a blaze shape is periodically repeated. Here, the blazed shape is a sawtooth shape in cross section including the optical axis of the optical element as shown in FIGS. 1 (a), (b), 2 (a), and (b). In other words, the base surface topological structure has a base surface (for example, in FIGS. 1 and 2). In other words, it has an oblique surface C that is neither perpendicular nor parallel to B) and a step D that intersects the oblique surface C and the base surface B. The base surface means a flat plate surface when the first optical element is a flat plate type, and an envelope surface of a phase structure when it is a lens. In addition, “the blazed shape is periodically repeated” naturally includes a shape in which the same blazed shape is repeated in the same cycle. In addition, a blazed shape, which is a unit of period, has regularity, and a shape in which the period gradually increases or decreases gradually is also referred to as “blazed shape is repeated periodically. It is included in what is!
[0023] 位相構造がブレーズ型形状を有する場合、単位形状である三角形 (斜めの面が曲 面である場合を含む)が繰り返された形状となる。同一の三角形が繰り返されてもよい し、光軸から離れるにつれて徐々に三角形の大きさが大きくなつていく形状、又は、 小さくなつていく形状であってもよい。但し、三角形の大きさが徐々に変化する場合で あっても、三角形において、光軸方向(又は通過する光線の方向)の長さはほとんど 変化しないことが好ましい。なお、ブレーズ型形状において、一つの三角形の光軸方 向の長さ(三角形を通過する光線の方向の長さとしてもよい)を、ピッチ深さといい、 一つの三角形のベース面に沿った方向の長さをピッチ幅という。  [0023] When the phase structure has a blazed shape, a triangular shape (including a case where the oblique surface is a curved surface) is repeated. The same triangle may be repeated, or it may have a shape in which the size of the triangle gradually increases or decreases as the distance from the optical axis increases. However, even in the case where the size of the triangle changes gradually, it is preferable that the length of the triangle in the optical axis direction (or the direction of the passing light) hardly changes. In a blazed shape, the length in the direction of the optical axis of one triangle (may be the length in the direction of light passing through the triangle) is called the pitch depth, and the direction along the base surface of one triangle. Is called the pitch width.
[0024] また、第 1位相構造、第 2位相構造を重畳させてなる重畳構造の形状にぉレ、て、第 1位相構造、第 2位相構造のブレーズ型形状の名残が残っていてもよい。別の言い 方をすると、第 1位相構造、第 2位相構造を重畳させてなる重畳構造が、光学素子の 重畳構造が設けられているベース面に対して直角でもなく平行でもない、斜めの面を 有していてもよい。  [0024] Furthermore, the shape of the superposition structure formed by superimposing the first phase structure and the second phase structure may leave behind the blazed shape of the first phase structure and the second phase structure. . In other words, the superposition structure formed by superimposing the first phase structure and the second phase structure is an oblique surface that is neither perpendicular nor parallel to the base surface on which the optical element superposition structure is provided. You may have.
[0025] また、第 1位相構造、第 2位相構造の中で、より大きなピッチ幅 (もしくは周期の幅) を有するブレーズ型形状の位相構造(図 1、 2 (a)参照)と、それに比して小さなピッチ 幅 (もしくは周期の幅)を有するブレーズ型形状の位相構造(図 1、 2 (b)参照)の少な くとも二つの位相構造について、当該二つの位相構造を重畳させる際に、大きなピッ チ幅 (もしくは周期幅)を有する位相構造 (即ち第 1位相構造)の段差 (図 1でベース 面 Bに対してほぼ直角な面 D)の位置の少なくとも一つ力、小さなピッチ幅 (もしくは周 期幅)を有する位相構造 (即ち第 2位相構造)の段差 Dの位置と一致しても、しなくて もよい。第 1位相構造の全ての段差 Dの位置が、第 2位相構造の段差 Dの位置と一 致するように重畳された光路差付与構造の例を図 1 (c)に示す。なお、第 1位相構造 のブレーズ型形状の三角形と第 2位相構造のブレーズ型形状の三角形力 S、互いに 相似形である場合は、図 1 (c)の左側の構造や、図 7に示す構造のように、ベース面 に対し平行な面を有し、ベース面に対して斜めの面を有さない。一方で、第 1位相構 造のブレーズ型形状の三角形と第 2位相構造のブレーズ型形状の三角形力 S、互い に相似形でない場合、即ち非相似である場合は、第 1位相構造の全ての段差 Dの位 置が、第 2位相構造の段差 Dの位置と一致するように重畳したとしても、図 1 (c)の右 側の構造に示されるように、ベース面に対して斜めの面を残すこと、即ち、ブレーズ 型形状の名残を残すことが可能となる。これに対し、第 1位相構造の段差 Dの位置と 少なくとも一つの第 2位相構造の段差 Dの位置が一致しないようにすることにより、更 に好ましくは第 1位相構造 (図 2 (a) )の周期が、第 2位相構造 (図 2 (b) )の周期の整 数倍に一致しないように、互いの段差 Dの位置をずらすことにより、図 2 (c)に示すよう なブレーズ型形状の名残を残すことが可能となる。 [0025] In addition, among the first phase structure and the second phase structure, a blazed-type phase structure (see FIGS. 1 and 2 (a)) having a larger pitch width (or period width), When at least two phase structures of a blazed-type phase structure (see Figs. 1 and 2 (b)) with a small pitch width (or period width) are superimposed, At least one force at the position of the step of the phase structure (i.e., the first phase structure) having a large pitch width (or periodic width) (surface D substantially perpendicular to the base surface B in Fig. 1), a small pitch width ( Alternatively, it may or may not coincide with the position of the step D of the phase structure having a period width (ie, the second phase structure). The positions of all the steps D in the first phase structure are the same as the positions of the steps D in the second phase structure. An example of the optical path difference providing structure superimposed so as to match is shown in Fig. 1 (c). Note that the blazed triangular shape S in the first phase structure and the blazed triangular force S in the second phase structure are similar to each other if they are similar to each other. As described above, it has a surface parallel to the base surface and does not have a surface oblique to the base surface. On the other hand, if the blazed triangle of the first phase structure and the blazed triangle force S of the second phase structure are not similar to each other, that is, if they are dissimilar to each other, all of the first phase structure Even if the position of the step D is superimposed so as to coincide with the position of the step D of the second phase structure, as shown in the structure on the right side of FIG. It is possible to leave a remnant of the blaze shape. On the other hand, by making the position of the step D of the first phase structure not coincide with the position of the step D of at least one second phase structure, it is more preferable that the first phase structure (Fig. 2 (a)) By shifting the position of each step D so that the period does not match the integer multiple of the period of the second phase structure (Figure 2 (b)), a blaze shape as shown in Figure 2 (c) It becomes possible to leave a remnant of.
[0026] 請求の範囲第 4項に記載の対物光学素子ユニットは、請求の範囲第 3項に記載の 発明において、前記第 1位相構造と前記第 2位相構造とは、前記第 1の光学素子の 光源側の光学面に重畳されていることを特徴とする。  [0026] The objective optical element unit according to claim 4 is the invention according to claim 3, wherein the first phase structure and the second phase structure are the first optical element. It is superimposed on the optical surface on the light source side.
[0027] 請求の範囲第 5項に記載の対物光学素子ユニットは、請求の範囲第 1項〜第 4項 のレ、ずれかに記載の発明にお!/、て、前記第 3の光情報記録媒体に対するワーキング ディスタンス WD3は、以下の(1)式を満足し、更に前記波長 λ 1の光束に対する前 記第 1の光学素子の近軸パワーを piとし、前記波長 λ 1の光束に対する前記第 2の 光学素子の近軸パワーを ρ2としたときに、以下の(2)式を満足することを特徴とする。  [0027] The objective optical element unit according to claim 5 is the invention according to any one of claims 1 to 4, wherein the third optical information is the third optical information. The working distance WD3 with respect to the recording medium satisfies the following expression (1), and further, the paraxial power of the first optical element with respect to the light beam with the wavelength λ 1 is pi, and the first distance with respect to the light beam with the wavelength λ 1 When the paraxial power of the optical element 2 is ρ2, the following equation (2) is satisfied.
[0028] 0. 20 (mm)≤WD3≤0. 50 (mm) (1)  [0028] 0. 20 (mm) ≤WD3≤0. 50 (mm) (1)
0< pl/p2≤0. 30 (2)  0 <pl / p2≤0. 30 (2)
pl/p2が(2)式の下限を上回るように、前記第 1の光学素子にパワーを持たせると 、温度変化に起因して生じる球面収差劣化を抑制しやすいというメリットがある。一方 、前記第 1の光学素子にパワーを持たせすぎると、前記第 3光情報記録媒体に対す るワーキングディスタンス WD3が短くなる恐れがある。そこで、 pl/p2を(2)式の上 限以下とすることで、(1)式に示すような範囲内でワーキングディスタンス WD3を設 定できる。 Giving the first optical element power so that pl / p2 exceeds the lower limit of equation (2) has an advantage that spherical aberration deterioration caused by temperature changes can be easily suppressed. On the other hand, if the first optical element has too much power, the working distance WD3 for the third optical information recording medium may be shortened. Therefore, by setting pl / p2 below the upper limit of equation (2), the working distance WD3 is set within the range shown in equation (1). Can be determined.
[0029] 尚、以下の(2 ' )式を満たすとより好ましい。  [0029] It is more preferable to satisfy the following expression (2 ').
[0030] 0. 03< pl/p2≤0. 30 (2' )  [0030] 0. 03 <pl / p2≤0. 30 (2 ')
請求の範囲第 6項に記載の対物光学素子ユニットは、請求の範囲第 1項〜第 4項 のいずれかに記載の発明において、前記波長 λ 1の光束に対する前記第 1の光学 素子の近軸パワーを piとし、前記波長 λ 1の光束に対する前記第 2の光学素子の近 軸パワーを ρ2としたときに、以下の(3)式を満足することを特徴とする。  The objective optical element unit according to claim 6 is the paraxial axis of the first optical element with respect to the light beam having the wavelength λ 1 in the invention according to any one of claims 1 to 4. When the power is pi and the paraxial power of the second optical element with respect to the light beam having the wavelength λ1 is ρ2, the following expression (3) is satisfied.
[0031] pl/p2 = 0 (3)  [0031] pl / p2 = 0 (3)
(3)式に示すように、前記第 1の光学素子にパワーを持たせない(例えば平行平板 とした)場合、前記第 1の光学素子を傾けた状態で設置したほうが好ましい。  As shown in the formula (3), when the first optical element is not provided with power (for example, a parallel plate), it is preferable to install the first optical element in an inclined state.
[0032] 請求の範囲第 7項に記載の対物光学素子ユニットは、請求の範囲第 1項〜第 6項 の!/、ずれかに記載の発明にお!/、て、前記第 2の光学素子の光学面は屈折面のみか らなることを特徴とするので、前記第 2の光学素子の光学面に位相構造を設けた場 合と比較し、設計が容易であり、対物光学素子ユニットのコストを低減できると共に、 光の利用効率を高めることができる。  [0032] The objective optical element unit according to claim 7 is the invention according to any one of claims 1 to 6 in the claims 1 to 6, and the second optical element. Since the optical surface of the element consists only of a refracting surface, it is easier to design than the case where a phase structure is provided on the optical surface of the second optical element. Costs can be reduced and light utilization efficiency can be increased.
[0033] 請求の範囲第 8項に記載の対物光学素子ユニットは、請求の範囲第 1項〜第 7項 の!/、ずれかに記載の発明にお!/、て、前記第 1位相構造の光軸を含む断面形状は、 光軸から所定の高さまでは、光軸から離れるに従って光路長が長くなり、前記光軸か ら所定の高さ以降は、光軸から離れるに従って光路長が短くなる位相差付与構造、 或いは、光軸から所定の高さまでは、光軸から離れるに従って光路長が短くなり、前 記光軸から所定の高さ以降は、光軸から離れるに従って光路長が長くなる位相差付 与構造であることを特徴とする。  [0033] The objective optical element unit according to claim 8 is the invention according to any one of claims 1 to 7, and the invention according to any one of claims 1 to 7, and the first phase structure. In the cross-sectional shape including the optical axis, the optical path length increases with increasing distance from the optical axis at a predetermined height from the optical axis, and the optical path length decreases with increasing distance from the optical axis after the predetermined height from the optical axis. The optical path length decreases as the distance from the optical axis increases at a predetermined height from the optical axis, or the optical path length increases as the distance from the optical axis increases from the predetermined height. It is characterized by a phase difference providing structure.
[0034] 請求の範囲第 8項のように決定された第 1位相構造の輪帯構造による温度収差の 補正の原理を説明する。図 3中の線 (Α)は、非球面である 2つの光学面を有する単レ ンズの、設計基準温度から温度が上昇した場合の波面の様子を表すものであり、横 軸が光学面の有効半径を表し、縦軸が光路差を表す。単レンズは、温度上昇に伴う 屈折率変化の影響で球面収差が発生し、線 (Α)のように波面が変化する。特に単レ ンズが樹脂製の場合、温度変化に伴う屈折率変化が大きいため、球面収差の発生 量は大きくなる。 [0034] The principle of correction of temperature aberration by the annular structure of the first phase structure determined as in claim 8 will be described. The line (Α) in Fig. 3 represents the wavefront of a single lens having two aspherical optical surfaces when the temperature rises from the design reference temperature, and the horizontal axis is the optical surface. It represents the effective radius, and the vertical axis represents the optical path difference. A single lens generates spherical aberration due to the change in refractive index with temperature rise, and the wavefront changes as shown by the line (Α). In particular, when the single lens is made of resin, the refractive index change with temperature changes is large, so spherical aberration is generated. The amount gets bigger.
[0035] また、線 (B)は、請求の範囲第 8項のように決定された輪帯構造により透過波面に 付加される光路差であり、線 (C)は、設計基準温度から温度が上昇した場合の、かか る輪帯構造と単レンズとを透過した波面の様子を表す図である。線 (B)及び線 (C)か ら、かかる輪帯構造を透過した波面と、設計基準温度から温度が上昇した場合の単 レンズの波面とが打ち消しあうことで、光ディスクの情報記録面上に集光されたレー ザ光の波面は、巨視的にみると光路差のない良好な波面となり、かかる輪帯構造に より単レンズの温度収差が補正されることが理解できる。  [0035] Line (B) is an optical path difference added to the transmitted wavefront by the annular structure determined as in claim 8. Line (C) has a temperature from the design reference temperature. It is a figure showing the mode of the wave front which permeate | transmitted the ring zone structure and single lens at the time of rising. From the line (B) and the line (C), the wave front transmitted through the annular structure and the wave front of the single lens when the temperature rises from the design reference temperature cancel each other on the information recording surface of the optical disc. It can be understood that the wavefront of the condensed laser beam is a good wavefront with no optical path difference when viewed macroscopically, and the temperature aberration of the single lens is corrected by such an annular structure.
[0036] 請求の範囲第 9項に記載の対物光学素子ユニットは、請求の範囲第 8項に記載の 発明において、前記第 1位相構造の前記所定の高さの位置での位相と同位相となる 領域が、前記第 1光束の有効光束径の 70%の位置を含むことを特徴とする。  The objective optical element unit according to claim 9 is the same as the phase at the position of the predetermined height of the first phase structure in the invention according to claim 8. This region includes a position of 70% of the effective light beam diameter of the first light beam.
[0037] 温度変化に伴う波面の変化は、有効光束径の 70%付近で最大となるので、請求の 範囲第 3項のように位相構造の折り返し地点である輪帯、即ち所定の高さの位置で の位相(光路差)と同位相を持つ領域が有効光束径の 70%の位置を含むように設定 すると、温度特性改善の効果を最も期待できる。  [0037] The change in the wavefront accompanying the change in temperature is maximum at around 70% of the effective beam diameter. Therefore, as in the third aspect of the claims, the annular zone that is the turning point of the phase structure, that is, a predetermined height. If the region with the same phase as the phase at the position (optical path difference) is set so as to include the position of 70% of the effective beam diameter, the effect of improving the temperature characteristics can be most expected.
[0038] 請求の範囲第 10項に記載の対物光学素子ユニットは、請求の範囲第 1項〜第 9項 のいずれかに記載の発明において、前記第 1位相構造は、前記波長 λ 1の光束が 入射したときに、 X次の出射光の光強度を他のいかなる次数の出射光の光強度よりも 大きくし、前記波長 λ 2の光束が入射したときに、 y次の出射光の光強度を他のいか なる次数の出射光の光強度よりも大きくする位相構造であり、下記の式 (4)を満たす ことを特徴とする。  [0038] The objective optical element unit according to claim 10 is the invention according to any one of claims 1 to 9, wherein the first phase structure is a light beam having the wavelength λ1. When X is incident, the light intensity of the X-order outgoing light is made larger than the light intensity of any other order of outgoing light, and when the luminous flux of wavelength λ 2 is incident, the light intensity of the y-order outgoing light Is a phase structure that increases the light intensity of any other order of emitted light, and satisfies the following formula (4).
0. 9 · (χ· λ l) / (nl - l) ≤ (y λ 2) / (η2- 1)≤ 1. 2 · (χ· λ 1) / (η1 - 1)  0 (9) (χλ1) / (nl-l) ≤ (y λ2) / (η2-1) ≤ 1.2 (χλ1) / (η1-1)
(4)  (Four)
但し、 χは 0以外の整数を指し、 yは 0以外の整数を指し、 nlは前記第 1の光学素子 の前記波長 λ 1における屈折率を指し、 η2は前記第 1の光学素子の前記波長 λ 2に おける屈折率を指す。  Where χ represents an integer other than 0, y represents an integer other than 0, nl represents the refractive index at the wavelength λ 1 of the first optical element, and η2 represents the wavelength of the first optical element. Refractive index at λ 2.
[0039] 請求の範囲第 10項に記載の発明によれば、式 (4)をみたすことで、前記第 1の光 学素子は前記波長 λ 1と前記波長 λ 2に対して高い透過率を確保できるため、第 1 光情報記録媒体と第 2光情報記録媒体への記録/再生速度の高速化が可能となるAccording to the invention described in claim 10, the first optical element exhibits high transmittance with respect to the wavelength λ 1 and the wavelength λ 2 by satisfying the equation (4). 1st because it can be secured Recording / reproducing speed on the optical information recording medium and the second optical information recording medium can be increased.
Yes
[0040] 請求の範囲第 11項に記載の対物光学素子ユニットは、請求の範囲第 1項〜第 10 項のいずれかに記載の発明において、前記第 2位相構造は、前記第 1光束及び前 記第 3光束を回折せず、前記第 2光束を回折する回折構造であることを特徴とする。  [0040] The objective optical element unit according to claim 11 is the invention according to any one of claims 1 to 10, wherein the second phase structure includes the first light flux and the front beam. The diffractive structure diffracts the second light beam without diffracting the third light beam.
[0041] 前記第 2位相構造を第 2光束のみを選択的に回折する回折構造とすることで、第 2 光束に対する収差を独立に制御することが可能となり、第 1情報記録媒体と第 2情報 記録媒体の両方に対して良好な集光特性が得られる。  [0041] By making the second phase structure a diffractive structure that selectively diffracts only the second light beam, the aberration with respect to the second light beam can be controlled independently, and the first information recording medium and the second information can be controlled. Good condensing characteristics can be obtained for both recording media.
[0042] 請求の範囲第 12項に記載の対物光学素子ユニットは、請求の範囲第 11項に記載 の発明において、前記第 2位相構造は、光軸を含む断面形状が階段状とされたバタ ーンが同心円状に配列された階段構造であって、所定のレベル面の個数 A毎に、そ れぞれのレベル面に対応した段数分の高さだけ段をシフトさせた構造であることを特 徴とする。  [0042] The objective optical element unit according to claim 12 is the invention according to claim 11, wherein the second phase structure is a butterfly whose cross-sectional shape including the optical axis is stepped. It is a staircase structure with concentric rings arranged in a concentric circle, with the steps shifted by the height corresponding to each level surface for each predetermined number A of the level surfaces. Features.
[0043] 請求の範囲第 12項に記載の発明によれば、請求の範囲第 11項にあるような回折 特性を第 2位相構造に持たせることが可能になる。  [0043] According to the invention described in claim 12, it is possible to give the second phase structure the diffraction characteristics as described in claim 11.
[0044] 請求の範囲第 13項に記載の対物光学素子ユニットは、請求の範囲第 12項に記載 の発明において、前記所定のレベル面の個数 Aは、 4、 5、 6の何れかであることを特 徴とする。 [0044] In the objective optical element unit according to Claim 13, in the invention according to Claim 12, the number A of the predetermined level surfaces is any one of 4, 5, and 6. It is characterized by this.
[0045] 請求の範囲第 13項に記載の発明によれば、 3つの光束に対して高い透過率が確 保できる。なお、 3つの光束に透過率を最も高く確保するためには、所定のレベル面 の個数 Aを 5とするのがより好まし!/、。  [0045] According to the invention described in claim 13, high transmittance can be secured for the three light beams. In order to ensure the highest transmittance for the three luminous fluxes, it is more preferable to set the number A of predetermined level surfaces to 5! /.
[0046] 請求の範囲第 14項に記載の対物光学素子ユニットは、請求の範囲第 12項又は第[0046] The objective optical element unit according to claim 14 is characterized in that the objective optical element unit according to claim 12 or
13項に記載の発明において、前記階段の 1つの段差により生じる光路差は前記波 長 λ ΐの 1. 9倍以上 2. 1倍以下であることを特徴とする。 In the invention described in item 13, the optical path difference caused by one step of the staircase is 1.9 times or more and 2.1 times or less of the wavelength λΐ.
[0047] 請求の範囲第 14項に記載の発明によれば、 3つの光束に対して高い透過率が確 保できる。 [0047] According to the invention described in claim 14, high transmittance can be secured for the three light beams.
[0048] 請求の範囲第 15項に記載の対物光学素子ユニットは、請求の範囲第 1項〜第 14 項のいずれかに記載の発明において、前記第 3位相構造は、前記第 1光束及び前 記第 2光束を回折せず、前記第 3光束を回折する回折構造であることを特徴とする。 [0048] The objective optical element unit according to claim 15 is the invention according to any one of claims 1 to 14, wherein the third phase structure includes the first light flux and the front beam. The diffractive structure diffracts the third light beam without diffracting the second light beam.
[0049] 請求の範囲第 15項に記載の発明によれば、前記第 3位相構造を第 3光束のみを 選択的に回折する回折構造とすることで、第 3光束に対する収差を独立に制御する ことが可能となり、第 1情報記録媒体と第 3情報記録媒体の両方に対して良好な集光 特性が得られる。 [0049] According to the invention of claim 15, the third phase structure is a diffractive structure that selectively diffracts only the third light beam, thereby independently controlling the aberration with respect to the third light beam. As a result, good light condensing characteristics can be obtained for both the first information recording medium and the third information recording medium.
[0050] 請求の範囲第 16項に記載の対物光学素子ユニットは、請求の範囲第 15項に記載 の発明において、前記第 3位相構造は、光軸を含む断面形状が階段状とされたバタ ーンが同心円状に配列された階段構造であって、所定のレベル面の個数 B毎に、そ れぞれのレベル面に対応した段数分の高さだけ段をシフトさせた構造であることを特 徴とする。なお、 Bは 2であることが好ましい。  [0050] The objective optical element unit according to claim 16 is the invention according to claim 15, wherein the third phase structure is a butterfly having a stepped cross section including an optical axis. It is a staircase structure with concentric rings arranged in a concentric circle, with the steps shifted by a height corresponding to each level surface for each predetermined number of level surfaces B Features. B is preferably 2.
[0051] 請求の範囲第 16項に記載の発明によれば、請求の範囲第 15項にあるような回折 特性を第 3位相構造に持たせることが可能になる。  [0051] According to the invention described in claim 16, it is possible to give the third phase structure diffraction characteristics as in claim 15.
[0052] 請求の範囲第 17項に記載の対物光学素子ユニットは、請求の範囲第 15項又は第  [0052] The objective optical element unit according to claim 17 is characterized in that the object optical element unit according to claim 15 or
16項に記載の発明において、前記階段構造の 1つの段差により生じる光路差は前 記波長 λ ΐの 4. 9倍以上 5. 1倍以下であることを特徴とする。  In the invention described in item 16, the optical path difference caused by one step of the step structure is 4.9 times or more and 5.1 times or less of the wavelength λΐ.
[0053] 請求の範囲第 17項に記載の発明によれば、記録/再生速度の高速化が要求され る第 1光情報記録媒体と第 2光情報記録媒体とに対して高い透過率を確保できる。 そして、請求の範囲第 17項のように、階段の 1つの段差により生じる光路差を波長え 1のほぼ 5倍にすることで、この効果がより顕著となる。  [0053] According to the invention of claim 17, high transmittance is ensured for the first optical information recording medium and the second optical information recording medium, which are required to increase the recording / reproducing speed. it can. Then, as described in claim 17, this effect becomes more prominent by making the optical path difference caused by one step of the staircase approximately 5 times the wavelength 1.
[0054] 請求の範囲第 18項に記載の対物光学素子ユニットは、請求の範囲第 1項〜第 7項 のいずれかに記載の発明において、前記第 1位相構造を通過した前記波長 λ 1の光 束は、 10次回折光の光強度が最も高くなり、前記第 1位相構造を通過した前記波長 λ 2の光束は、 6次回折光の光強度が最も高くなり、前記第 1位相構造を通過した前 記波長 λ 3の光束は、 5次回折光の光強度が最も高くなり、  [0054] The objective optical element unit according to claim 18 is the objective optical element unit according to any one of claims 1 to 7, in which the wavelength λ1 that has passed through the first phase structure is The light flux has the highest light intensity of the 10th-order diffracted light, and the light beam having the wavelength λ 2 that has passed through the first phase structure has the highest light intensity of the 6th-order diffracted light and has passed through the first phase structure. The light beam with the wavelength λ 3 has the highest light intensity of the fifth-order diffracted light,
前記第 2位相構造を通過した前記波長 λ 1の光束は、 2次回折光の光強度が最も 高くなり、前記第 2位相構造を通過した前記波長 λ 2の光束は、 1次回折光の光強度 が最も高くなり、前記第 2位相構造を通過した前記波長え 3の光束は、 1次回折光の 光強度が最も高くなり、 前記第 3位相構造を通過した前記波長 λ 1の光束は、 0次回折光の光強度が最も 高くなり、前記第 3位相構造を通過した前記波長 λ 2の光束は、 0次回折光の光強度 が最も高くなり、前記第 3位相構造を通過した前記波長え 3の光束は、 1次回折光の 光強度が最も高くなることを特徴とする。 The light beam having the wavelength λ 1 that has passed through the second phase structure has the highest light intensity of the second-order diffracted light, and the light beam having the wavelength λ 2 that has passed through the second phase structure has the light intensity of the first-order diffracted light. The light beam having the wavelength 3 that has passed through the second phase structure has the highest light intensity of the first-order diffracted light, The light beam having the wavelength λ 1 that has passed through the third phase structure has the highest light intensity of the 0th-order diffracted light, and the light beam having the wavelength λ 2 that has passed through the third phase structure has the light intensity of the 0th-order diffracted light. The light beam of wavelength 3 that has the highest value and has passed through the third phase structure has the highest light intensity of the first-order diffracted light.
[0055] 請求の範囲第 19項に記載の対物光学素子ユニットは、請求の範囲第 1項〜第 18 項のいずれかに記載の発明において、前記第 2位相構造は、保護基板の厚さ tl , t2 の差に起因して生じる球面収差劣化及び波長 λ 1 , λ 2の差に基づく球面収差劣化 を抑制する構造であることを特徴とする。  [0055] The objective optical element unit according to Claim 19 is the invention according to any one of Claims 1 to 18, wherein the second phase structure has a thickness tl of a protective substrate. , the spherical aberration deterioration caused by the difference between t2 and the spherical aberration deterioration based on the difference between the wavelengths λ 1 and λ 2 are suppressed.
[0056] 請求の範囲第 20項に記載の光ピックアップ装置は、波長 λ 1の光束を出射する第  [0056] The optical pickup device according to claim 20, wherein the optical pickup device emits a light flux having a wavelength of λ1.
1光源と、波長え 2 ( λ 1 < λ 2)の光束を出射する第 2光源と、波長え 3 ( λ 2< λ 3) の光束を出射する第 3光源と、請求の範囲第 1項〜第 19項のいずれかに記載の対 物光学素子ユニットを含む集光光学系とを有し、前記集光光学系が、前記第 1光源 力、らの光束を、厚さ tlの保護基板を介して第 1光情報記録媒体の情報記録面に集 光させることによって、情報の記録及び/又は再生を行うことが可能となっており、ま た前記第 2光源力もの光束を、厚さ t2 (tl <t2)の保護基板を介して第 2光情報記録 媒体の情報記録面に集光させることによって、情報の記録及び/又は再生を行うこと が可能となっており、更に前記第 3光源からの光束を、厚さ t3 (t2<t3)の保護基板 を介して第 3光情報記録媒体の情報記録面に集光させることによって、情報の記録 及び/又は再生を行うことが可能となっていることを特徴とする。  A first light source, a second light source that emits a light beam having a wavelength of 2 (λ 1 <λ 2), a third light source that emits a light beam of a wavelength of 3 (λ 2 <λ 3), and claim 1 A condensing optical system including the object optical element unit according to any one of claims 19 to 19, wherein the condensing optical system converts the first light source power and the luminous flux into a protective substrate having a thickness of tl. The information is recorded and / or reproduced by collecting light on the information recording surface of the first optical information recording medium via the first optical information recording medium. Information can be recorded and / or reproduced by focusing on the information recording surface of the second optical information recording medium via a protective substrate of t2 (tl <t2). Information is recorded and / or collected by focusing the light beam from the light source on the information recording surface of the third optical information recording medium through a protective substrate having a thickness of t3 (t2 <t3). Characterized in that it is possible to reproduce.
[0057] 本明細書においては、高密度光ディスクの例としては、 NAO. 85の対物レンズによ り情報の記録/再生が行われ、保護基板の厚さが 0. 1mm程度である規格の光ディ スク(例えば、 BD :ブルーレイディスク)が挙げられる。また、高密度光ディスクには、 情報記録面上に数〜数十 nm程度の厚さの保護膜 (本明細書では、保護基板は保 護膜も含むものとする)を有する光ディスクや、保護基板の厚さが 0の光ディスクも含 まれる。更に、本明細書においては、 DVDとは、 NA0. 60—0. 67程度の対物レン ズにより情報の記録/再生が行われ、保護基板の厚さが 0. 6mm程度である DVD 系列光ディスクの総称であり、 DVD-ROM, DVD-Video, DVD-Audio, DV D— RAM、 DVD-R, DVD— RW、 DVD + R、 DVD + RW等を含む。また、本明 細書においては、 CDとは、 NA0. 45—0. 51程度の対物レンズにより情報の記録/ 再生が行われ、保護基板の厚さが 1. 2mm程度である CD系列光ディスクの総称で あり、 CD— ROM、 CD-Audio, CD-Video, CD-R, CD— RW等を含む。尚、 記録密度については、高密度光ディスクの記録密度が最も高ぐ次いで DVD、 CD の順に低くなる。 [0057] In this specification, as an example of a high-density optical disk, information is recorded / reproduced by an objective lens of NAO. 85, and a standard light whose protective substrate thickness is about 0.1 mm is used. Discs (for example, BD: Blu-ray Disc) are listed. A high-density optical disc includes an optical disc having a protective film with a thickness of several to several tens of nanometers on the information recording surface (in this specification, the protective substrate includes the protective film), and the thickness of the protective substrate. This includes optical disks with a length of zero. Further, in this specification, DVD is a DVD series optical disc in which information is recorded / reproduced with an objective lens of NA 0.60-0.67 and the thickness of the protective substrate is 0.6 mm. It is a generic term and includes DVD-ROM, DVD-Video, DVD-Audio, DV D—RAM, DVD-R, DVD—RW, DVD + R, DVD + RW, and the like. Also, this In the booklet, CD is a general term for CD series optical discs in which information is recorded / reproduced by an objective lens of NA 0.45-0.51 and the thickness of the protective substrate is about 1.2 mm. — Includes ROM, CD-Audio, CD-Video, CD-R, CD-RW, etc. As for the recording density, the recording density of the high-density optical disc is the highest, followed by DVD and CD.
[0058] なお、保護基板の厚さ tl、 t2、 t3に関しては、以下の条件式を満たすことが好まし いが、これに限られない。  [0058] Note that, regarding the thicknesses tl, t2, and t3 of the protective substrate, it is preferable to satisfy the following conditional expression, but the present invention is not limited to this.
[0059] 0. 070mm≤tl≤0. 125mm [0059] 0. 070mm≤tl≤0. 125mm
0. 5mm≥≥t2≤0. 7mm  0. 5mm≥≥t2≤0. 7mm
0. 8mm≥≥td≤ 1. 3mm  0. 8mm≥≥td≤1.3mm
なお、保護基板の厚さ tl、 t3は、  The thickness tl and t3 of the protective substrate are
0. 0750mm≤tl≤0. 125mm  0. 0750mm≤tl≤0. 125mm
1. 0mm≤t3≤ 1. 3mm  1. 0mm≤t3≤1.3mm
であることが好ましい。  It is preferable that
[0060] 本明細書において、第 1光源、第 2光源、第 3光源は、好ましくはレーザ光源である 。レーザ光源としては、好ましくは半導体レーザ、シリコンレーザ等を用いることが出 来る。  In the present specification, the first light source, the second light source, and the third light source are preferably laser light sources. As the laser light source, it is preferable to use a semiconductor laser, a silicon laser, or the like.
[0061] また、第 1光ディスク、第 2光ディスク、第 3光ディスクとして、それぞれ、 BD、 DVD 及び CDが用いられる場合、第 1光源の波長 λ 1は好ましくは、 350nm以上、 440η m以下、より好ましくは、 380nm以上、 415nm以下であって、第 2光源の波長え 2は 好ましくは 570應以上、 680應以下、より好ましくは 630腹以上、 670應以下で あって、第 3光源の波長え 3は好ましくは、 750腹以上、 880應以下、より好ましく は、 760應以上、 820應以下である。  [0061] When BD, DVD, and CD are used as the first optical disc, the second optical disc, and the third optical disc, respectively, the wavelength λ1 of the first light source is preferably 350 nm or more and 440 ηm or less, more preferably Is 380 nm or more and 415 nm or less, and the wavelength 2 of the second light source is preferably 570 or more, 680 or less, more preferably 630 or more and 670 or less, and the wavelength of the third light source 3 Is preferably 750 or more and 880 or less, more preferably 760 or more and 820 or less.
[0062] また、第 1光源、第 2光源、第 3光源のうち少なくとも 2つの光源をユニット化してもよ い。ユニット化とは、例えば第 1光源と第 2光源とが 1パッケージに固定収納されてい るようなものをいうが、これに限られず、 2つの光源が収差補正不能なように固定され ている状態を広く含むものである。また、光源に加えて、後述する受光素子を 1パッケ ージ化してもよい。 [0063] 光情報記録媒体からの反射光を受光する受光素子としては、フォトダイオードなど の光検出器が好ましく用いられる。光ディスクの情報記録面上で反射した光が受光 素子へ入射し、その出力信号を用いて、各光ディスクに記録された情報の読み取り 信号が得られる。さらに、受光素子上の集光スポットの形状変化、位置変化による光 量変化を検出して、合焦検出やトラック検出を行い、この検出に基づいて、合焦、トラ ッキングのために対物光学素子ユニットを移動させることが出来る。受光素子は、複 数の光検出器からなっていてもよい。受光素子は、メインの光検出器とサブの光検出 器を有していてもよい。例えば、情報の記録再生に用いられるメイン光を受光する光 検出器の両脇に 2つのサブの光検出器を設け、当該 2つのサブの光検出器によって トラッキング調整用のサブ光を受光するような受光素子としてもよい。また、受光素子 は各光源に対応した複数の受光素子を有してレ、てもよレ、。 [0062] Further, at least two of the first light source, the second light source, and the third light source may be unitized. Unitization means, for example, that the first light source and the second light source are fixedly housed in one package, but is not limited to this, and the two light sources are fixed so that aberration correction is not possible Is widely included. In addition to the light source, a light receiving element to be described later may be packaged. [0063] As a light receiving element that receives reflected light from the optical information recording medium, a photodetector such as a photodiode is preferably used. The light reflected on the information recording surface of the optical disc enters the light receiving element, and the read signal of the information recorded on each optical disc is obtained using the output signal. Furthermore, it detects the change in the amount of light due to the shape change and position change of the focused spot on the light receiving element, and performs focus detection and track detection. Based on this detection, the objective optical element is used for focusing and tracking. You can move the unit. The light receiving element may be composed of a plurality of photodetectors. The light receiving element may have a main photodetector and a sub photodetector. For example, two sub-light detectors are provided on both sides of a light detector that receives main light used for recording and reproducing information, and the sub light for tracking adjustment is received by the two sub-light detectors. It is good also as a simple light receiving element. The light receiving element has a plurality of light receiving elements corresponding to each light source.
[0064] 集光光学系は、対物光学素子ユニットのみを有していても良いが、その他にコリメ 一ターレンズ等のカップリングレンズや、光学機能を有する平板光学素子等、他の光 学素子を有していてもよい。なお、カップリングレンズとは、対物光学素子ユニットと光 源の間に配置され、光束の発散角を変える単レンズ又はレンズ群のことをいう。更に 集光光学系は、光源から射出された光束を、情報の記録再生に用いられるメイン光 束と、トラッキング等に用いられる二つのサブ光束とに分割する回折光学素子などの 光学素子を有していてもよい。本明細書において、対物光学素子ユニットとは、光ピ ックアップ装置において光ディスクに対向する位置に配置され、光源から射出された 光束を光ディスクの情報記録面上に集光する機能を有する光学系を指す。好ましく は、対物光学素子ユニットとは、光ピックアップ装置において光ディスクに対向する位 置に配置され、光源から射出された光束を光ディスクの情報記録面上に集光する機 能を有する光学系であって、更に、ァクチユエータにより少なくとも光軸方向に一体的 に変位可能とされた光学系を指す。  [0064] The condensing optical system may have only the objective optical element unit, but in addition, other optical elements such as a coupling lens such as a collimator lens and a flat plate optical element having an optical function may be provided. You may have. The coupling lens is a single lens or a lens group that is disposed between the objective optical element unit and the light source and changes the divergence angle of the light beam. Furthermore, the condensing optical system has an optical element such as a diffractive optical element that divides the light beam emitted from the light source into a main light beam used for recording and reproducing information and two sub light beams used for tracking and the like. It may be. In this specification, the objective optical element unit refers to an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing the light beam emitted from the light source onto the information recording surface of the optical disk. . Preferably, the objective optical element unit is an optical system that is disposed at a position facing the optical disk in the optical pickup device and has a function of condensing the light beam emitted from the light source onto the information recording surface of the optical disk. Further, it refers to an optical system that can be integrally displaced at least in the optical axis direction by an actuator.
発明の効果  The invention's effect
[0065] 本発明によれば、良好な温度特性を有し、それぞれに使用する光源の波長及び保 護基板厚が異なる少なくとも 3種類の光ディスクに対して情報の記録及び/又は再 生を適切に行いながらも、製造容易で且つ製造コストも抑えることができる光ピックァ ップ装置用の対物光学素子ユニット及び光ピックアップ装置を提供することができる。 図面の簡単な説明 [0065] According to the present invention, it is possible to appropriately record and / or reproduce information with respect to at least three types of optical discs having favorable temperature characteristics and having different light source wavelengths and protective substrate thicknesses. An optical picker that is easy to manufacture and can reduce manufacturing costs. It is possible to provide an objective optical element unit and an optical pickup device for the optical device. Brief Description of Drawings
[0066] [図 1]第 1位相構造 (a)と、第 2位相構造 (b)とを、段差の位置を一致させて重畳させ た位相差付与構造 (c)を示す図である。  [0066] FIG. 1 is a diagram showing a phase difference providing structure (c) in which a first phase structure (a) and a second phase structure (b) are overlapped with the positions of steps being matched.
[図 2]第 1位相構造 (a)と、第 2位相構造 (b)とを、段差の位置をずらして重畳させた 位相差付与構造 (c)を示す図である。  FIG. 2 is a diagram showing a phase difference providing structure (c) in which a first phase structure (a) and a second phase structure (b) are overlapped by shifting the position of a step.
[図 3]第 1位相構造の輪帯構造による温度収差の補正の原理を説明するためのダラ フである。  FIG. 3 is a drawing for explaining the principle of temperature aberration correction by the ring structure of the first phase structure.
[図 4]本発明に係る光ピックアップ装置の構成を概略的に示す図である。  FIG. 4 is a diagram schematically showing a configuration of an optical pickup device according to the present invention.
[図 5]本発明に係る対物光学素子ユニット OLの一例を模式的に示す断面図である。  FIG. 5 is a cross-sectional view schematically showing an example of an objective optical element unit OL according to the present invention.
[図 6]位相構造の例を示す図である。  FIG. 6 is a diagram showing an example of a phase structure.
[図 7]位相構造の例を示す図である。  FIG. 7 is a diagram showing an example of a phase structure.
[図 8]位相構造の例を示す図である。  FIG. 8 is a diagram showing an example of a phase structure.
[図 9]位相構造の例を示す図である。  FIG. 9 is a diagram showing an example of a phase structure.
[図 10]位相構造の例を示す図である。  FIG. 10 is a diagram showing an example of a phase structure.
[図 11]位相構造の例を示す図である。  FIG. 11 is a diagram showing an example of a phase structure.
符号の説明  Explanation of symbols
[0067] AC1 2軸ァクチユエータ [0067] AC1 2-axis actuator
AC 2 1軸ァクチユエータ  AC 2 1-axis actuator
B ベース面  B Base surface
C 斜めの面  C Diagonal surface
C1 中央領域  C1 central area
C2 周辺領域  C2 peripheral area
C3 中央領域  C3 Central area
C4 周辺領域  C4 peripheral area
CL コリメート光学系  CL collimating optics
D 段差  D Step
DOE1 第 1回折構造 DOE2 第 2回折構造 DOE1 first diffraction structure DOE2 second diffraction structure
DOE3 第 3回折構造  DOE3 3rd diffraction structure
L ブレーズ寸法  L blaze dimensions
L1 収差補正素子  L1 aberration correction element
L2 集光素子  L2 condensing element
LD1 青紫色半導体レーザ  LD1 Blue-violet semiconductor laser
LD2 赤色半導体レーザ  LD2 Red semiconductor laser
LD3 赤外半導体レーザ  LD3 infrared semiconductor laser
ML ミラー  ML mirror
OL 対物光学素子ユニット  OL Objective optical element unit
P1 プリズム  P1 prism
P2 プリズム  P2 prism
P3 プリズム  P3 prism
PD 光検出器  PD photodetector
PL1 保護基板  PL1 protection board
PL2 保護基板  PL2 protection board
PL3 保護基板  PL3 protection board
PU 光ピックアップ装置  PU optical pickup device
RL1 情報記録面  RL1 information recording surface
RL2 情報記録面  RL2 information recording surface
RL3 情報記録面  RL3 information recording surface
SE センサー光学系  SE sensor optics
STO 絞り  STO aperture
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、本発明の実施の形態について図面を用いて説明する。まず、図 4を用いて 本発明による対物光学素子ユニットを用いた光ピックアップ装置について説明する。 図 4は、高密度光情報記録媒体 BD (第 1光情報記録媒体)と DVD (第 2光情報記録 媒体)と CD (第 3光情報記録媒体)との何れに対しても適切に情報の記録 ·再生を行 える光ピックアップ装置 PUの構成を概略的に示す図である。 BDの仕様は、第 1波長 λ l =405nm、保護基板 PL1の厚さ tl = 0. 1mm、開口数 NA1 =0. 85であり、 D VDの仕様は、第 2波長え 2 = 655nm、保護基板 PL2の厚さ t2 = 0. 6mm、開口数 NA2 = 0. 65であり、 CDの仕様は、第 3波長え 3 = 785nm、保護基板 PL3の厚さ t 3 = 1. 2mm、開口数 NA3 = 0. 51である。但し、波長、保護基板の厚さ、及び開口 数の組合せはこれに限られなレ、。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. First, an optical pickup device using the objective optical element unit according to the present invention will be described with reference to FIG. Figure 4 shows the information stored in the high-density optical information recording medium BD (first optical information recording medium), DVD (second optical information recording medium), and CD (third optical information recording medium). Record and playback 1 is a diagram schematically showing a configuration of an optical pickup device PU. BD specification is 1st wavelength λ l = 405nm, protective substrate PL1 thickness tl = 0.1mm, numerical aperture NA1 = 0.85, DVD specification is 2nd wavelength 2 = 655nm, protection Substrate PL2 thickness t2 = 0.6mm, numerical aperture NA2 = 0.65, CD specification is 3rd wavelength 3 = 785nm, protective substrate PL3 thickness t3 = 1.2mm, numerical aperture NA3 = 0.51. However, the combination of wavelength, protective substrate thickness, and numerical aperture is not limited to this.
[0069] 光ピックアップ装置 PUは、 BD用の青紫色半導体レーザ LD1 (第 1光源)、 DVD用 の赤色半導体レーザ LD2 (第 2光源)、 CD用の赤外半導体レーザ LD3 (第 3光源)、 BD/DVD/CD共用の光検出器 PD、対物光学素子ユニット OL、コリメート光学系 CL、 2軸ァクチユエータ AC1、 1軸ァクチユエータ AC2、第 1プリズム PI、第 2プリズ ム P2、第 3プリズム P3、立上げミラー ML、各光ディスクの情報記録面からの反射光 束に対して非点収差を付加するためのセンサー光学系 SEとから構成されている。尚 、 BD用の光源として、青紫色 SHGレーザを使用しても良い。  [0069] The optical pickup device PU includes a blue-violet semiconductor laser LD1 (first light source) for BD, a red semiconductor laser LD2 (second light source) for DVD, an infrared semiconductor laser LD3 (third light source) for CD, BD / DVD / CD shared photodetector PD, objective optical element OL, collimating optical system CL, 2-axis actuator AC1, 1-axis actuator AC2, first prism PI, second prism P2, third prism P3, vertical It consists of a lifting mirror ML and a sensor optical system SE for adding astigmatism to the reflected light flux from the information recording surface of each optical disk. A blue-violet SHG laser may be used as a light source for BD.
[0070] 光ピックアップ装置 PUにおいて、 BDに対して情報の記録/再生を行う場合には、 コリメート光学系 CLから青紫色レーザ光束が平行光束の状態で射出されるように、 1 軸ァクチユエータ AC2によりコリメート光学系 CLの位置を光軸方向に調整した後、青 紫色半導体レーザ LD1を発光させる。青紫色半導体レーザ LD1から射出された発 散光束は、図 4において実泉でその光泉経路を描いたように、第 1プリズム P1により 反射された後、第 2プリズム P2、及び第 3プリズム P3を順に透過し、コリメート光学系 CLにより平行光束に変換される。その後、立上げミラー MLにより反射された後、絞り STOにより光束径が規制され、対物光学素子ユニット OLによって BDの保護基板 P L1を介して情報記録面 RL1上に形成される集光スポットとなる。対物光学素子ュニ ット OLは、その周辺に配置された 2軸ァクチユエータ AC1によってフォーカシングゃ トラッキングを行う。なお、対物光学素子ユニット OLについての詳しい説明は後述す  [0070] When recording / reproducing information with respect to the BD in the optical pickup device PU, the uniaxial actuator AC2 is used so that the blue-violet laser beam is emitted from the collimating optical system CL in the state of a parallel beam. After adjusting the position of the collimating optical system CL in the optical axis direction, the blue-violet semiconductor laser LD1 is caused to emit light. The divergent light beam emitted from the blue-violet semiconductor laser LD1 is reflected by the first prism P1 and then the second prism P2 and the third prism P3, as shown in FIG. Are sequentially transmitted and converted into a parallel light beam by the collimating optical system CL. After that, after being reflected by the rising mirror ML, the beam diameter is regulated by the stop STO, and it becomes a condensed spot formed on the information recording surface RL1 by the objective optical element unit OL via the BD protective substrate P L1. . The objective optical unit OL is focused and tracked by the 2-axis actuator AC1 placed around it. A detailed description of the objective optical element unit OL will be given later.
[0071] 情報記録面 RL1で情報ピットにより変調された反射光束は、再び対物光学素子ュ ニット OLを透過した後、立上げミラー MLにより反射され、コリメート光学系 CLを通過 する際に収斂光束となる。その後、第 3プリズム P3、第 2プリズム P2及び第 1プリズム PIを順に透過した後、センサー光学系 SEにより非点収差が付加され、光検出器 PD の受光面上に収束する。光検出器 PDの出力信号を用いて BDに記録された情報を 読み取ることができる。 [0071] The reflected light beam modulated by the information pits on the information recording surface RL1 is transmitted again through the objective optical element unit OL, then reflected by the rising mirror ML, and is reflected as a convergent light beam when passing through the collimating optical system CL. Become. Then, the third prism P3, the second prism P2, and the first prism After sequentially passing through PI, astigmatism is added by the sensor optical system SE and converges on the light receiving surface of the photodetector PD. Information recorded on the BD can be read using the output signal of the photodetector PD.
[0072] また、光ピックアップ装置 PUにお!/、て、 DVDに対して情報の記録/再生を行う場 合には、コリメート光学系 CLから赤色レーザ光束が平行光束の状態で射出されるよう に、 1軸ァクチユエータ AC2によりコリメート光学系 CLの位置を光軸方向に調整した 後、赤色半導体レーザ LD2を発光させる。赤色半導体レーザ LD2から射出された発 散光束は、図 4において破線でその光線経路を構いたように、第 2プリズム P2により 反射された後、第 3プリズム P3を透過し、コリメート光学系 CLにより平行光束に変換 される。その後、立上げミラー MLにより反射された後、対物光学素子ユニット OLによ つて DVDの保護基板 PL2を介して情報記録面 RL2上に形成される集光スポットとな る。対物光学素子ユニット OLは、その周辺に配置された 2軸ァクチユエータ AC1によ  [0072] Further, when recording / reproducing information on / from a DVD to the optical pickup device PU, the red laser beam is emitted in the state of a parallel beam from the collimating optical system CL. In addition, after adjusting the position of the collimating optical system CL in the direction of the optical axis by the single-axis actuator AC2, the red semiconductor laser LD2 is caused to emit light. The divergent light beam emitted from the red semiconductor laser LD2 is reflected by the second prism P2 and then transmitted through the third prism P3, as shown by the broken line in FIG. 4, and is transmitted by the collimating optical system CL. Converted to parallel light flux. After that, after being reflected by the rising mirror ML, it becomes a focused spot formed on the information recording surface RL2 by the objective optical element unit OL via the DVD protective substrate PL2. The objective optical element unit OL is connected to the 2-axis actuator AC1 located around it.
[0073] 情報記録面 RL2で情報ピットにより変調された反射光束は、再び対物光学素子ュ ニット OLを透過した後、立上げミラー MLにより反射され、コリメート光学系 CLを通過 する際に収斂光束となる。その後、第 3プリズム P3、第 2プリズム P2及び第 1プリズム P1を順に透過した後、センサー光学系 SEにより非点収差が付加され、光検出器 PD の受光面上に収束する。光検出器 PDの出力信号を用いて DVDに記録された情報 を読み取ることができる。 [0073] The reflected light beam modulated by the information pits on the information recording surface RL2 is transmitted again through the objective optical element unit OL, then reflected by the rising mirror ML, and is reflected as a convergent light beam when passing through the collimating optical system CL. Become. Thereafter, after passing through the third prism P3, the second prism P2 and the first prism P1 in order, astigmatism is added by the sensor optical system SE and converges on the light receiving surface of the photodetector PD. The information recorded on the DVD can be read using the output signal of the photodetector PD.
[0074] また、光ピックアップ装置 PUにお!/、て、 CDに対して情報の記録/再生を行う場合 には、コリメート光学系 CLから赤外レーザ光束が平行光束の状態で射出されるように 、 1軸ァクチユエータ AC2によりコリメート光学系 CLの位置を光軸方向に調整した後 、赤外半導体レーザ LD3を発光させる。赤外半導体レーザ LD3から射出された発散 光束は、図 4において一点鎖線でその光線経路を描いたように、第 3プリズム P3によ り反射された後、コリメート光学系 CLにより平行光束に変換される。その後、立上げミ ラー MLにより反射された後、対物光学素子ユニット OLによって CDの保護基板 PL3 を介して情報記録面 RL3上に形成される集光スポットとなる。対物光学素子ユニット OLは、その周辺に配置された 2軸ァクチユエータ AC1によってフォーカシングゃトラ ッキングを fiう。 [0074] Further, when recording / reproducing information to / from the optical pickup device PU, the infrared laser beam is emitted in the state of a parallel beam from the collimating optical system CL. In addition, after adjusting the position of the collimating optical system CL in the direction of the optical axis by the uniaxial actuator AC2, the infrared semiconductor laser LD3 is caused to emit light. The divergent light beam emitted from the infrared semiconductor laser LD3 is reflected by the third prism P3 and then converted into a parallel light beam by the collimating optical system CL, as shown by the dashed line in FIG. The After that, after being reflected by the rising mirror ML, it becomes a focused spot formed on the information recording surface RL3 by the objective optical element unit OL via the CD protective substrate PL3. The objective optical element unit OL is focused by a two-axis actuator AC1 arranged around it. Fi.
[0075] 情報記録面 RL2で情報ピットにより変調された反射光束は、再び対物光学素子ュ ニット OLを透過した後、立上げミラー MLにより反射され、コリメート光学系 CLを通過 する際に収斂光束となる。その後、第 3プリズム P3、第 2プリズム P2及び第 1プリズム P1を順に透過した後、センサー光学系 SEにより非点収差が付加され、光検出器 PD の受光面上に収束する。光検出器 PDの出力信号を用いて CDに記録された情報を 読み取ることができる。  [0075] The reflected light beam modulated by the information pits on the information recording surface RL2 is transmitted again through the objective optical element unit OL, then reflected by the rising mirror ML, and is reflected as a convergent light beam when passing through the collimating optical system CL. Become. Thereafter, after passing through the third prism P3, the second prism P2 and the first prism P1 in order, astigmatism is added by the sensor optical system SE and converges on the light receiving surface of the photodetector PD. The information recorded on the CD can be read using the output signal of the photodetector PD.
[0076] 光ピックアップ装置 PUでは、コリメート光学系 CLを 1軸ァクチユエータ AC2により光 軸方向に駆動させることで、 BD使用時の球面収差を補正できる。かかる球面収差補 正機構により、青紫色半導体レーザ LD1の製造誤差による波長ばらつき、温度変化 に伴う対物光学系の屈折率変化や屈折率分布、多層ディスクの情報記録層間のフ オーカスジャンプ、保護基板 PL1の製造誤差による厚さばらつきや厚み分布等に起 因する球面収差を補正可能である。尚、この球面収差補正機構により、 DVD使用時 や CD使用時の球面収差を補正しても良い。  In the optical pickup device PU, the spherical aberration when using the BD can be corrected by driving the collimating optical system CL in the optical axis direction by the uniaxial actuator AC2. This spherical aberration correction mechanism enables wavelength variations due to manufacturing errors of the blue-violet semiconductor laser LD1, changes in the refractive index and refractive index distribution of the objective optical system due to temperature changes, focus jumps between information recording layers of multilayer discs, protective substrate PL1 It is possible to correct spherical aberration caused by thickness variation and thickness distribution due to manufacturing errors. Note that this spherical aberration correction mechanism may correct spherical aberration when using a DVD or CD.
[0077] 次に、対物光学素子ユニット OLの構成について説明する。図 5に、本発明による対 物光学素子ユニット OLの構成を概略的に示す。対物光学素子ユニット OLは、レー ザ光源側から順に配置された収差補正素子(第 1の光学素子) L1と集光素子(第 2の 光学素子) L2が、鏡筒 (保持部材) HLを介して光軸 Xを中心とした同軸となるように 保持された構成を有する。  Next, the configuration of the objective optical element unit OL will be described. FIG. 5 schematically shows the configuration of the object optical element unit OL according to the present invention. The objective optical element unit OL has an aberration correction element (first optical element) L1 and a condensing element (second optical element) L2 arranged in order from the laser light source side through a lens barrel (holding member) HL. In other words, the optical axis X is held so as to be coaxial.
[0078] 収差補正素子 L1はアッベ数 50以上 60以下のプラスチック製であって、光ディスク 側の光学面は、開口数 NA3内に相当する中央領域 C1と、開口数 NA3〜開口数 N A1に相当する周辺領域 C2とに分割されており、レーザ光源側の光学面は、開口数 NA2内に相当する中央領域 C3と、開口数 NA2〜開口数 NA1に相当する周辺領 域 C4とに分割されている。  [0078] The aberration correction element L1 is made of plastic having an Abbe number of 50 or more and 60 or less, and the optical surface on the optical disk side corresponds to the central region C1 corresponding to the numerical aperture NA3 and the numerical aperture NA3 to the numerical aperture NA1. The optical surface on the laser light source side is divided into a central region C3 corresponding to the numerical aperture NA2 and a peripheral region C4 corresponding to the numerical aperture NA2 to numerical aperture NA1. Yes.
[0079] 光ディスク側の光学面の中央領域 C1には、第 1回折構造 DOE1が形成されており 、周辺領域 C2には、第 3回折構造 DOE3が形成されている。第 1回折構造 DOE1は 第 1位相構造と第 3位相構造の重畳構造力 なり、第 3回折構造 DOE3は第 3位相 構造のみからなる。第 1位相構造は温度変化に起因する集光スポットの収差劣化を 抑制するものであり、第 3位相構造は保護基板 PL1と保護基板 PL3の厚さの違いに 起因する球面収差を補正するためのものである。 [0079] The first diffractive structure DOE1 is formed in the central region C1 of the optical surface on the optical disc side, and the third diffractive structure DOE3 is formed in the peripheral region C2. The first diffractive structure DOE1 is a superposed structural force of the first phase structure and the third phase structure, and the third diffractive structure DOE3 consists only of the third phase structure. The first phase structure reduces aberrations in the focused spot due to temperature changes. The third phase structure is for correcting the spherical aberration caused by the difference in thickness between the protective substrate PL1 and the protective substrate PL3.
[0080] また、レーザ光源側の光学面の中央領域 C3には、第 2回折構造 (光路差付与構造 ともいう) DOE2が形成されており、周辺領域 C4は、回折構造や位相構造などの微 細構造が形成されない平面となっている。第 2回折構造 DOE2は、保護基板 PL1と 保護基板 PL2の厚さの違い及び青紫色レーザ光と赤色レーザ光の波長差に起因す る球面収差を補正する第 2位相構造からなる。第 1位相構造と、第 2位相構造と、第 3 位相構造の具体的な回折次数は、それぞれ(10, 6, 5)、 (0, 1 , 0)、 (0, 0、 1)であ [0080] In addition, a second diffractive structure (also referred to as an optical path difference providing structure) DOE2 is formed in the central region C3 of the optical surface on the laser light source side, and the peripheral region C4 includes fine structures such as a diffractive structure and a phase structure. The plane is such that no fine structure is formed. The second diffractive structure DOE2 is composed of a second phase structure that corrects the spherical aberration caused by the difference in thickness between the protective substrate PL1 and the protective substrate PL2 and the wavelength difference between the blue-violet laser beam and the red laser beam. The specific diffraction orders of the first phase structure, the second phase structure, and the third phase structure are (10, 6, 5), (0, 1, 0), (0, 0, 1), respectively.
[0081] 尚、第 1位相構造と第 3位相構造とを重畳した第 1回折構造 DOE1を設けることなく 、第 1回折構造 DOE1の領域に第 1位相構造のみを設け、第 2回折構造 DOE2で第 2位相構造と第 3位相構造とを重畳させて 3つの異なる光ディスクの保護基板厚の差 に起因する球面収差を補正する場合、その第 1位相構造として、波長 λ 1の光束が 通過したとき、 5 ( = u)次回折光が最も光強度が高くなり、波長え 2の光束が通過した とき、 3 (=v)次回折光が最も光強度が高くなり、波長え 3の光束が通過したとき、 2 ( =w)次回折光が最も光強度が高くなるように、段差 Dの値、及び一つのブレーズの 光軸直交方向の寸法(ピッチ幅 P)を決定すればよい。又、第 1回折構造 DOE1を、 第 2回折構造 DOE2に重畳しても良い。 [0081] Note that without providing the first diffractive structure DOE1 in which the first phase structure and the third phase structure are superimposed, only the first phase structure is provided in the region of the first diffractive structure DOE1, and the second diffractive structure DOE2 When correcting the spherical aberration caused by the difference in the protective substrate thickness of three different optical discs by superimposing the second phase structure and the third phase structure, when the light beam with wavelength λ1 passes as the first phase structure , 5 (= u) When the diffracted light has the highest light intensity and the light beam with wavelength 2 passes, 3 (= v) When the diffracted light with the highest light intensity passes and the light beam with wavelength 3 passes The value of the step D and the dimension of one blaze in the direction perpendicular to the optical axis (pitch width P) may be determined so that the light intensity of the 2 (= w) order diffracted light is the highest. The first diffractive structure DOE1 may be superimposed on the second diffractive structure DOE2.
[0082] また、第 1位相構造は、収差補正素子 L1の光源側の光学面に設けても良いし、光 ディスク側の光学面に設けても良い。また第 1位相構造は、波長 λ 1の光束が通過し たとき、 2次( = u)回折光が最も光強度が高くなり、波長え 2の光束が通過したとき、 1 次(=v)回折光が最も光強度が高くなり、波長え 3の光束が通過したとき、 1次(=w) 回折光が最も光強度が高くなるようにしても良ぐ以上のように、(u, V, w)は、(10, 6, 5)、 (5, 3, 2)、 (2, 1 , 1)のいずれであっても良い。  Further, the first phase structure may be provided on the optical surface on the light source side of the aberration correction element L1, or may be provided on the optical surface on the optical disk side. The first phase structure has the second-order (= u) diffracted light having the highest light intensity when the light beam with wavelength λ 1 passes, and the first-order (= v) when the light beam with wavelength 2 passes. When the diffracted light has the highest light intensity and a light beam with a wavelength of 3 has passed, the first-order (= w) diffracted light has the highest light intensity. , w) may be (10, 6, 5), (5, 3, 2), or (2, 1, 1).
[0083] また更に、第 1位相構造と第 2位相構造とは、収差補正素子 L1の光源側の光学面 に重畳することがより好ましい。第 2位相構造の回折次数としては、波長 λ 1の光束が 通過したとき、 0次回折光が最も光強度が高くなり、波長え 2の光束が通過したとき、 1 次回折光が最も光強度が高くなり、波長 λ 3の光束が通過したとき、 0次回折光が最 も光強度が高くなる(0, 1 , 0)であることが好ましい。 [0083] Furthermore, it is more preferable that the first phase structure and the second phase structure overlap with the optical surface on the light source side of the aberration correction element L1. As the diffraction order of the second phase structure, when the light beam having the wavelength λ 1 passes, the 0th order diffracted light has the highest light intensity, and when the light beam having the wavelength 2 passes, the first order diffracted light has the highest light intensity. When the light beam with wavelength λ3 passes, Also, it is preferable that the light intensity is high (0, 1, 0).
[0084] 第 1位相構造の光軸を含む断面形状は、光軸から所定の高さまでは、光軸から離 れるに従って光路長が長くなり、光軸から所定の高さ以降は、光軸から離れるに従つ て光路長が短くなる位相差付与構造、或いは、光軸から所定の高さまでは、光軸から 離れるに従って光路長が短くなり、光軸から所定の高さ以降は、光軸から離れるに従 つて光路長が長くなる位相差付与構造であると好ましい。 [0084] In the cross-sectional shape including the optical axis of the first phase structure, the optical path length increases as the distance from the optical axis increases from the optical axis at a predetermined height, and from the optical axis after the predetermined height from the optical axis. A phase difference providing structure in which the optical path length is shortened as the distance is increased, or at a predetermined height from the optical axis, the optical path length is decreased as the distance from the optical axis is increased. A phase difference providing structure in which the optical path length increases as the distance increases is preferable.
[0085] 第 1位相構造の所定の高さの位置での位相と同位相となる領域力 波長 λ 1の光 束の有効光束径の 70%の位置を含むと好ましい。 [0085] It is preferable that the position includes 70% of the effective light beam diameter of the light flux having the region force wavelength λ 1 in the same phase as the phase at the position of the predetermined height of the first phase structure.
[0086] 第 2位相構造は、波長 λ 1光束及び波長 λ 3の光束を回折せず、波長 λ 2の光束 を回折する回折構造であることが好ましい。この具体的な回折次数としては、(0, 1 ,The second phase structure is preferably a diffractive structure that does not diffract a light beam having a wavelength λ 1 and a light beam having a wavelength λ 3 but diffracts a light beam having a wavelength λ 2. The specific diffraction orders are (0, 1,
0)であることが好ましい。 0) is preferred.
[0087] 第 2位相構造は、光軸を含む断面形状が階段状とされたパターンが同心円状に配 列された構造であって、所定のレベル面の個数 Α毎に、そのレベル面数に対応した 段数分の高さだけ段をシフトさせた構造であると好ましい。 [0087] The second phase structure is a structure in which patterns whose cross-sectional shape including the optical axis is stepped are arranged concentrically, and the number of level planes is equal to the number of level planes every predetermined number of level planes. A structure in which the steps are shifted by a height corresponding to the number of steps is preferable.
[0088] 所定のレベル面の個数 Aは、 4、 5、 6の何れかであると好ましい。 [0088] The number A of the predetermined level surfaces is preferably 4, 5, or 6.
[0089] 階段の 1つの段差により生じる光路差は波長 λ 1の 2倍であると好ましい。 [0089] The optical path difference caused by one step of the staircase is preferably twice the wavelength λ1.
[0090] 第 3位相構造は、波長 λ 1の光束及び波長 λ 2の光束を回折せず、第 3光束を回 折する回折構造であると好ましい。この具体的な回折次数としては、(0, 0、 1)である ことが好ましい。 [0090] The third phase structure is preferably a diffractive structure that diffracts the third light beam without diffracting the light beam having the wavelength λ1 and the light beam having the wavelength λ2. The specific diffraction order is preferably (0, 0, 1).
[0091] 第 3位相構造は、光軸を含む断面形状が階段状とされたパターンが同心円状に配 列された構造であって、所定のレベル面の個数 Β毎に、そのレベル面数に対応した 段数分の高さだけ段をシフトさせた構造であると好ましい。  [0091] The third phase structure is a structure in which patterns whose cross-sectional shape including the optical axis is stepped are arranged concentrically, and the number of level planes is the number of level planes every predetermined number of level planes. A structure in which the steps are shifted by a height corresponding to the number of steps is preferable.
[0092] 階段の 1つの段差により生じる光路差は波長 λ 1の 5倍であると好ましい。  [0092] The optical path difference caused by one step of the staircase is preferably 5 times the wavelength λ1.
実施例  Example
[0093] 図 4の光ピックアップ装置に用いることができる実施例について説明する。以下の実 施例 1 , 2は何れも第 1位相構造と第 2位相構造とを第 1光学素子の光源側の光学面 に重畳した例である。また第 3位相構造は第 1光学素子の光ディスク側の光学面に形 成した例である。なお、これ以降において、 10のべき乗数(例えば、 2. 5 X 1CT3)を、 E (例えば、 2· 5E— 3)を用いて表すものとする。 An example that can be used in the optical pickup device of FIG. 4 will be described. Examples 1 and 2 below are examples in which the first phase structure and the second phase structure are superimposed on the light source side optical surface of the first optical element. The third phase structure is an example formed on the optical surface of the first optical element on the optical disc side. In the following, a power of 10 (for example, 2.5 X 1CT 3 ) It shall be expressed using E (for example, 2 · 5E−3).
[0094] 対物レンズの光学面は、それぞれ数 1式に、表に示す係数を代入した数式で規定 される、光軸の周りに軸対称な非球面に形成されている。 The optical surface of the objective lens is formed as an aspherical surface that is symmetric about the optical axis and is defined by a mathematical formula in which the coefficients shown in Table 1 are substituted into Equation (1).
[0095] [数 1] A2 2 i[0095] [Equation 1] A 2 2 i
[0096] ここで、 X (h)は光軸方向の非球面の座標軸(光の進行方向を正とする)、 κは円錐 係数、 Α は非球面係数、 hは光軸からの高さ、 rは非球面の光軸上の曲率半径であ [0096] where X (h) is the coordinate axis of the aspherical surface in the optical axis direction (the light traveling direction is positive), κ is the conic coefficient, Α is the aspherical coefficient, h is the height from the optical axis, r is the radius of curvature on the optical axis of the aspheric surface
2i  2i
[0097] また、回折構造により各波長の光束に対して与えられる光路長は、数 2式の光路差 関数に、表に示す係数を代入した数式で規定される。 Further, the optical path length given to the light flux of each wavelength by the diffractive structure is defined by an equation in which the coefficient shown in the table is substituted into the optical path difference function of Formula 2.
[0098] [数 2] [0098] [Equation 2]
[0099] 尚、 λは入射光束の波長、 λ Βは製造波長(ブレーズ化波長)、 dorは回折次数、 C は光路差関数の係数である。 [0099] where λ is the wavelength of the incident light beam, λ 製造 is the manufacturing wavelength (blazed wavelength), dor is the diffraction order, and C is the coefficient of the optical path difference function.
2i  2i
(実施例 1)  (Example 1)
以下の表 1及び表 2に、実施例 1のレンズデータを示す。実施例 1においては、設 計波長である λ l =408nmに対して、第 1の光学素子はパワーを持っていない。実 施例 1において、温度が設計基準温度である 25°Cから 30°C上昇した場合の収差変 化量は、 10次 /6次 /5次回折構造のない比較例の場合は 165m rmsなのに対し て、 10次 /6次 /5次回折構造のある本実施例の場合は 38m rmsとなる。但し、 温度変化によるレーザ波長シフト量を + 0. 05nm/°Cとし、材料屈折率変化量を— 9 X 10— 5/°Cとしている。 Tables 1 and 2 below show the lens data of Example 1. In Example 1, the first optical element has no power with respect to the design wavelength λ l = 408 nm. In Example 1, the amount of aberration change when the temperature rises from the design reference temperature of 25 ° C to 30 ° C is 165m rms for the comparative example without the 10th / 6th / 5th diffraction structures. On the other hand, in the case of the present embodiment having the 10th / 6th / 5th diffraction structures, it is 38 m rms. However, the laser wavelength shift due to temperature change + and 0. 05nm / ° C, the material refractive index variation - are a 9 X 10- 5 / ° C.
[0100] [表 1] 設計波長 λ 1: 408nra λ 2: 658nm λ 3: 785nm 対物レンズの焦点距離 fl : 2.20mm f2 : 2.23mm f3 : 2.47mm 像面側開口数 Ml: 0.85 NA2: 0.61 NA3: 0.46 pi (第 1素子の近軸パワー) 0.000 [0100] [Table 1] Design wavelength λ1: 408nra λ2: 658nm λ3: 785nm Focal length of objective lens fl: 2.20mm f2: 2.23mm f3: 2.47mm Image surface side numerical aperture Ml: 0.85 NA2: 0.61 NA3: 0.46 pi (first element Of paraxial power) 0.000
p2(第 2素子の近軸パワー) 0.455 p2 (Paraxial power of the second element) 0.455
pl/p2 0.000 pl / p2 0.000
【近軸デ [Paraxial axis
【第 2面、 第 3面データ】 [2nd and 3rd data]
(実施例 2) (Example 2)
以下の表 3及び表 4に、実施例 2のレンズデータを示す。実施例 2においては、設 計波長である λ l =408nmに対して、第 1の光学素子はパワーを持っている。実施 例 2において、温度が設計基準温度である 25°Cよりも 30°C上昇した場合の収差変化 量は、 10次 /6次 /5次回折構造のない比較例の場合は 87 rmsなのに対して、 1 0次 /6次 /5次回折構造のある本実施例の場合は 9m rmsとなる。但し、温度変 設計波長 λ 1 : 408nm 2 : 658nm 3 : 785 Tables 3 and 4 below show the lens data of Example 2. In Example 2, the first optical element has power with respect to the design wavelength λ l = 408 nm. In Example 2, the amount of aberration change when the temperature rose by 30 ° C from the design reference temperature of 25 ° C was 87 rms for the comparative example without the 10th / 6th / 5th diffraction structures. In the case of the present embodiment having a 10th order / 6th order / 5th order diffraction structure, 9 m rms is obtained. However, temperature change Design wavelength λ 1: 408 nm 2: 658 nm 3: 785
対物レンズの焦点距離 fl : 2.20mm f2 : 2.27ram f3 : 2.51mm Focal length of objective lens fl: 2.20mm f2: 2.27ram f3: 2.51mm
像面側開口数 NA1: 0.85 NA2 : 0.60 NA3 : 0.45 Image side numerical aperture NA1: 0.85 NA2: 0.60 NA3: 0.45
pi (第 1素子の近軸パワー) 0.028 pi (Paraxial power of the first element) 0.028
p2(第 2素子の近軸パワー) 0.435 pl/p2 0.064 p2 (Paraxial power of the second element) 0.435 pl / p2 0.064
【近軸データ】 [Paraxial data]
〕 D¾〕 〔30301 ] D¾] (30301)
90— Z69'9 90— 3S9S96S' ー ozv 90— Z69'9 90— 3S9S96S 'ー ozv
50-38ΖΕ5 9·ΐ- S0-36809S9" 8TV 50-38ΖΕ5 9 · ΐ- S0-36809S9 "8TV
ο— as 9·" 91V  ο— as 9 · "91V
eo-aeeszzs'T- to— szo o  eo-aeeszzs'T- to— szo o
Ζ0-38Ζ6ΤΪ0·! tO— ΖΙ  Ζ0-38Ζ6ΤΪ0 ·! TO— ΖΙ
20-3S8Z86T-S- εθ— 380 ΟΙΟ'ΐ— 01V  20-3S8Z86T-S- εθ— 380 ΟΙΟ'ΐ— 01V
8V  8V
τθ— 38SSW)0't— εθ-391Ι80ΐ'Ι 9V  τθ-38SSW) 0't- εθ-391Ι80ΐ'Ι9V
Ϊ0-3Ζ96990-Ϊ V  Ϊ0-3Ζ96990-Ϊ V
ΐο-39οεετε'9- ¾  ΐο-39οεετε'9- ¾
29S09^'T  29S09 ^ 'T
e f  e f
【 一 、迪 蚩】  [I, 迪 蚩]
S6Z,890/.00Zdf/X3d LZ SZ.1-1-1-0/800Z OAV S6Z, 890 / .00Zdf / X3d LZ SZ.1-1-1-0 / 800Z OAV

Claims

請求の範囲 The scope of the claims
[1] 波長 λ ΐの光束を出射する第 1光源と、波長え 2 ( λ 1 < λ 2)の光束を出射する第 2 光源と、波長え 3 ( λ 2< λ 3)の光束を出射する第 3光源と、対物光学素子ユニットを 含む集光光学系とを有し、前記集光光学系が、前記第 1光源力もの光束を、厚さ tl の保護基板を介して第 1光情報記録媒体の情報記録面に集光させることによって、 情報の記録及び/又は再生を行うことが可能となっており、また前記第 2光源からの 光束を、厚さ t2 (tl <t2)の保護基板を介して第 2光情報記録媒体の情報記録面に 集光させることによって、情報の記録及び/又は再生を行うことが可能となっており、 更に前記第 3光源からの光束を、厚さ t3 (t2<t3)の保護基板を介して第 3光情報記 録媒体の情報記録面に集光させることによって、情報の記録及び/又は再生を行う ことが可能となっている光ピックアップ装置の対物光学素子ユニットであって、 それぞれプラスチックを素材とする単一の第 1の光学素子と第 2の光学素子とを有 し、  [1] A first light source that emits a light beam of wavelength λλ, a second light source that emits a light beam of wavelength 2 (λ 1 <λ 2), and a light beam of wavelength 3 (λ 2 <λ 3) And a condensing optical system including an objective optical element unit, and the condensing optical system transmits the light beam having the first light source power via the protective substrate having a thickness of tl to the first optical information. By focusing on the information recording surface of the recording medium, it is possible to record and / or reproduce information, and protect the light flux from the second light source with a thickness t2 (tl <t2). It is possible to record and / or reproduce information by condensing on the information recording surface of the second optical information recording medium through the substrate, and further, the light flux from the third light source is Information is recorded and / or reproduced by focusing on the information recording surface of the third optical information recording medium via the protective substrate of t3 (t2 <t3). A objective optical element unit of an optical pickup apparatus has become possible, have a respectively single first optical element to the material of plastic and a second optical element,
前記第 1の光学素子は、前記波長 λ 1の光束に対して温度変化に起因する集光ス ポットの収差劣化を抑制する第 1位相構造と、保護基板の厚さ tl , t2の差に起因して 生じる球面収差劣化を抑制する第 2位相構造と、保護基板の厚さ tl , t3の差に起因 して生じる球面収差劣化を抑制する第 3位相構造とを有することを特徴とする対物光 学素子ユニット。  The first optical element is caused by a difference between a first phase structure that suppresses aberration deterioration of a condensing spot caused by a temperature change with respect to the light beam having the wavelength λ1, and a thickness tl, t2 of the protective substrate. Objective light, comprising: a second phase structure that suppresses spherical aberration degradation that occurs as a result; and a third phase structure that suppresses spherical aberration degradation caused by the difference between the thicknesses tl and t3 of the protective substrate. Scientific element unit.
[2] 波長 λ ΐの光束を出射する第 1光源と、波長え 2 ( λ 1 < λ 2)の光束を出射する第 2 光源と、波長え 3 ( λ 2< λ 3)の光束を出射する第 3光源と、対物光学素子ユニットを 含む集光光学系とを有し、前記集光光学系が、前記第 1光源力もの光束を、厚さ tl の保護基板を介して第 1光情報記録媒体の情報記録面に集光させることによって、 情報の記録及び/又は再生を行うことが可能となっており、また前記第 2光源からの 光束を、厚さ t2 (tl <t2)の保護基板を介して第 2光情報記録媒体の情報記録面に 集光させることによって、情報の記録及び/又は再生を行うことが可能となっており、 更に前記第 3光源からの光束を、厚さ t3 (t2<t3)の保護基板を介して第 3光情報記 録媒体の情報記録面に集光させることによって、情報の記録及び/又は再生を行う ことが可能となっている光ピックアップ装置の対物光学素子ユニットであって、 それぞれプラスチックを素材とする単一の第 1の光学素子と第 2の光学素子とを有 し、 [2] A first light source that emits a light beam of wavelength λλ, a second light source that emits a light beam of wavelength 2 (λ 1 <λ 2), and a light beam of wavelength 3 (λ 2 <λ 3) And a condensing optical system including an objective optical element unit, and the condensing optical system transmits the light beam having the first light source power via the protective substrate having a thickness of tl to the first optical information. By focusing on the information recording surface of the recording medium, it is possible to record and / or reproduce information, and protect the light flux from the second light source with a thickness t2 (tl <t2). It is possible to record and / or reproduce information by condensing on the information recording surface of the second optical information recording medium through the substrate, and further, the light flux from the third light source is Information is recorded and / or reproduced by focusing on the information recording surface of the third optical information recording medium via the protective substrate of t3 (t2 <t3). A objective optical element unit of an optical pickup apparatus has become possible, Each has a single first optical element and second optical element made of plastic,
前記第 1の光学素子は、温度が 25°Cより 30°C上昇した際に前記波長 λ 1の光束に 対して前記第 1光情報記録媒体の情報記録面上での波面収差の変化量を 0. 1 λ lr ms以下に抑制する第 1位相構造と、保護基板の厚さ tl , t2の差に起因して生じる球 面収差劣化を抑制する第 2位相構造と、保護基板の厚さ tl , t3の差に起因して生じ る球面収差劣化を抑制する第 3位相構造とを有することを特徴とする対物光学素子 ユニット。  The first optical element changes the amount of change in wavefront aberration on the information recording surface of the first optical information recording medium with respect to the light beam having the wavelength λ 1 when the temperature rises by 30 ° C. from 25 ° C. The first phase structure that suppresses 0.1 λ lr ms or less and the second phase structure that suppresses spherical aberration deterioration caused by the difference between the thickness tl and t2 of the protective substrate and the thickness tl of the protective substrate , a third phase structure that suppresses spherical aberration deterioration caused by the difference in t3.
[3] 前記第 1位相構造と、前記第 2位相構造と、前記第 3位相構造とのうち少なくとも 2 つは、一つの光学面に重畳されていることを特徴とする請求の範囲第 1項又は第 2項 に記載の対物光学素子ユニット。  [3] The first aspect of the invention is characterized in that at least two of the first phase structure, the second phase structure, and the third phase structure are superimposed on one optical surface. Alternatively, the objective optical element unit according to Item 2.
[4] 前記第 1位相構造と前記第 2位相構造とは、前記第 1の光学素子の光源側の光学 面に重畳されていることを特徴とする請求の範囲第 3項に記載の対物光学素子ュニ ッ卜。 [4] The objective optical according to claim 3, wherein the first phase structure and the second phase structure are superimposed on an optical surface on the light source side of the first optical element. Element unit.
[5] 前記第 3の光情報記録媒体に対するワーキングディスタンス WD3は、以下の(1) 式を満足し、更に前記波長 λ 1の光束に対する前記第 1の光学素子の近軸パワーを piとし、前記波長 λ 1の光束に対する前記第 2の光学素子の近軸パワーを p2とした ときに、以下の(2)式を満足することを特徴とする請求の範囲第 1項〜第 4項のいず れかに記載の対物光学素子ユニット。  [5] The working distance WD3 for the third optical information recording medium satisfies the following expression (1), and further, the paraxial power of the first optical element with respect to the light beam having the wavelength λ 1 is pi, and Any one of claims 1 to 4, wherein the following expression (2) is satisfied, where p2 is a paraxial power of the second optical element with respect to a light beam having a wavelength λ1: An objective optical element unit as described above.
0. 20 (mm)≤WD3≤0. 50 (mm) (1)  0. 20 (mm) ≤WD3≤0.50 (mm) (1)
0 < pl/p2≤0. 30 (2)  0 <pl / p2≤0. 30 (2)
[6] 前記波長 λ 1の光束に対する前記第 1の光学素子の近軸パワーを piとし、前記波 長 λ 1の光束に対する前記第 2の光学素子の近軸パワーを ρ2としたときに、以下の( 3)式を満足することを特徴とする請求の範囲第 1項〜第 4項のいずれかに記載の対 物光学素子ユニット。 [6] When the paraxial power of the first optical element with respect to the light flux with wavelength λ1 is pi and the paraxial power of the second optical element with respect to the light flux with wavelength λ1 is ρ2, The object optical element unit according to any one of claims 1 to 4, wherein the following expression (3) is satisfied.
pl/p2 = 0 (3)  pl / p2 = 0 (3)
[7] 前記第 2の光学素子の光学面は屈折面のみからなることを特徴とする請求の範囲 第 1項〜第 6項のいずれかに記載の対物光学素子ユニット。 [7] The objective optical element unit according to any one of [1] to [6], wherein the optical surface of the second optical element comprises only a refractive surface.
[8] 前記第 1位相構造の光軸を含む断面形状は、光軸から所定の高さまでは、光軸か ら離れるに従って光路長が長くなり、前記光軸から所定の高さ以降は、光軸から離れ るに従って光路長が短くなる位相差付与構造、或いは、光軸から所定の高さまでは、 光軸から離れるに従って光路長が短くなり、前記光軸から所定の高さ以降は、光軸 力 離れるに従って光路長が長くなる位相差付与構造であることを特徴とする請求の 範囲第 1項〜第 7項のいずれかに記載の対物光学素子ユニット。 [8] The cross-sectional shape including the optical axis of the first phase structure has an optical path length that increases as it is away from the optical axis at a predetermined height from the optical axis. A phase difference providing structure in which the optical path length is shortened as it is away from the axis, or at a predetermined height from the optical axis, the optical path length is shortened as it is away from the optical axis, and after the predetermined height from the optical axis, the optical axis 8. The objective optical element unit according to any one of claims 1 to 7, wherein the objective optical element unit has a phase difference providing structure in which an optical path length is increased as the force is separated.
[9] 前記第 1位相構造の前記所定の高さの位置での位相と同位相となる領域が、前記 第 1光束の有効光束径の 70%の位置を含むことを特徴とする請求の範囲第 8項に記 載の対物光学素子ユニット。  [9] The region having the same phase as the phase at the position of the predetermined height of the first phase structure includes a position of 70% of the effective light beam diameter of the first light beam. Objective optical element unit as described in item 8.
[10] 前記第 1位相構造は、前記波長 λ 1の光束が入射したときに、 X次の出射光の光強 度を他のいかなる次数の出射光の光強度よりも大きくし、前記波長え 2の光束が入射 したときに、 y次の出射光の光強度を他のいかなる次数の出射光の光強度よりも大き くする位相構造であり、下記の式 (4)を満たすことを特徴とする請求の範囲第 1項〜 第 9項の!/、ずれかに記載の対物光学素子ユニット。  [10] The first phase structure makes the light intensity of the X-order outgoing light larger than the light intensity of any other order of outgoing light when the light flux having the wavelength λ1 is incident, This is a phase structure that makes the light intensity of the y-order outgoing light larger than the light intensity of any other order of outgoing light when the second luminous flux is incident, and satisfies the following formula (4). The objective optical element unit according to any one of claims 1 to 9 of claim 1.
0. 9 · (χ · λ l) / (nl - l)≤ (y λ 2) / (η2 - 1)≤1. 2 · (χ· λ l) / (nl - l)  0.9 (χlλl) / (nl-l) ≤ (yλ2) / (η2-1) ≤1.22 (χlλl) / (nl-l)
(4)  (Four)
但し、 χは 0以外の整数を指し、 yは 0以外の整数を指し、 nlは前記第 1の光学素子 の前記波長 λ 1における屈折率を指し、 η2は前記第 1の光学素子の前記波長 λ 2に おける屈折率を指す。  Where χ represents an integer other than 0, y represents an integer other than 0, nl represents the refractive index at the wavelength λ 1 of the first optical element, and η2 represents the wavelength of the first optical element. Refractive index at λ 2.
[11] 前記第 2位相構造は、前記第 1光束及び前記第 3光束を回折せず、前記第 2光束 を回折する回折構造であることを特徴とする請求の範囲第 1項〜第 10項のいずれか に記載の対物光学素子ユニット。  11. The second phase structure according to claim 1, wherein the second phase structure is a diffractive structure that does not diffract the first light flux and the third light flux but diffracts the second light flux. The objective optical element unit according to any one of the above.
[12] 前記第 2位相構造は、光軸を含む断面形状が階段状とされたパターンが同心円状 に配列された階段構造であって、所定のレベル面の個数 Α毎に、それぞれのレベル 面に対応した段数分の高さだけ段をシフトさせた構造であることを特徴とする請求の 範囲第 11項に記載の対物光学素子ユニット。  [12] The second phase structure is a staircase structure in which a pattern whose cross-sectional shape including the optical axis is a staircase pattern is concentrically arranged, and for each predetermined number of level surfaces, each level surface 12. The objective optical element unit according to claim 11, wherein the objective optical element unit has a structure in which the steps are shifted by a height corresponding to the number of steps.
[13] 前記所定のレベル面の個数 Aは、 4、 5、 6の何れかであることを特徴とする請求の 範囲第 12項に記載の対物光学素子ユニット。 13. The objective optical element unit according to claim 12, wherein the number A of the predetermined level surfaces is any one of 4, 5, and 6.
[14] 前記階段構造の 1つの段差により生じる光路差は前記波長 λ 1の 1. 9倍以上 2. 1 倍以下であることを特徴とする請求の範囲第 12項又は第 13項に記載の対物光学素 子ユニット。 [14] The optical path difference produced by one step of the staircase structure is not less than 1.9 times and not more than 2.1 times the wavelength λ1. Objective optical element unit.
[15] 前記第 3位相構造は、前記第 1光束及び前記第 2光束を回折せず、前記第 3光束 を回折する回折構造であることを特徴とする請求の範囲第 1項〜第 14項のいずれか に記載の対物光学素子ユニット。  15. The third phase structure according to any one of claims 1 to 14, wherein the third phase structure is a diffractive structure that does not diffract the first light flux and the second light flux but diffracts the third light flux. The objective optical element unit according to any one of the above.
[16] 前記第 3位相構造は、光軸を含む断面形状が階段状とされたパターンが同心円状 に配列された階段構造であって、所定のレベル面の個数 Β毎に、それぞれのレベル 面に対応した段数分の高さだけ段をシフトさせた構造であることを特徴とする請求の 範囲第 15項に記載の対物光学素子ユニット。 [16] The third phase structure is a staircase structure in which patterns whose cross-sectional shapes including the optical axis are stepped are arranged concentrically, and each level plane is provided for each predetermined number of level planes. 16. The objective optical element unit according to claim 15, wherein the objective optical element unit has a structure in which the steps are shifted by a height corresponding to the number of steps.
[17] 前記階段構造の 1つの段差により生じる光路差は前記波長 λ 1の 4. 9倍以上 5. 1 倍以下であることを特徴とする請求の範囲第 15項又は第 16項に記載の対物光学素 子ユニット。 [17] The optical path difference produced by one step of the step structure is not less than 4.9 times and not more than 5.1 times the wavelength λ1. Objective optical element unit.
[18] 前記第 1位相構造を通過した前記波長 λ 1の光束は、 10次回折光の光強度が最も 高くなり、前記第 1位相構造を通過した前記波長 λ 2の光束は、 6次回折光の光強度 が最も高くなり、前記第 1位相構造を通過した前記波長 λ 3の光束は、 5次回折光の 光強度が最も高くなり、  [18] The light beam with the wavelength λ 1 that has passed through the first phase structure has the highest light intensity of the 10th-order diffracted light, and the light beam with the wavelength λ 2 that has passed through the first phase structure has The light beam with the wavelength λ 3 that has the highest light intensity and has passed through the first phase structure has the highest light intensity of the fifth-order diffracted light,
前記第 2位相構造を通過した前記波長 λ 1の光束は、 2次回折光の光強度が最も 高くなり、前記第 2位相構造を通過した前記波長 λ 2の光束は、 1次回折光の光強度 が最も高くなり、前記第 2位相構造を通過した前記波長え 3の光束は、 1次回折光の 光強度が最も高くなり、  The light beam having the wavelength λ 1 that has passed through the second phase structure has the highest light intensity of the second-order diffracted light, and the light beam having the wavelength λ 2 that has passed through the second phase structure has the light intensity of the first-order diffracted light. The light beam having the wavelength 3 that has passed through the second phase structure has the highest light intensity of the first-order diffracted light,
前記第 3位相構造を通過した前記波長 λ 1の光束は、 0次回折光の光強度が最も 高くなり、前記第 3位相構造を通過した前記波長 λ 2の光束は、 0次回折光の光強度 が最も高くなり、前記第 3位相構造を通過した前記波長え 3の光束は、 1次回折光の 光強度が最も高くなることを特徴とする請求の範囲第 1項〜第 7項のいずれかに記載 の対物光学素子ユニット。  The light beam having the wavelength λ 1 that has passed through the third phase structure has the highest light intensity of the 0th-order diffracted light, and the light beam having the wavelength λ 2 that has passed through the third phase structure has the light intensity of the 0th-order diffracted light. 8. The light beam of wavelength 3 having the highest value and having passed through the third phase structure has the highest light intensity of the first-order diffracted light. 8. Objective optical element unit.
[19] 前記第 2位相構造は、保護基板の厚さ tl , t2の差に起因して生じる球面収差劣化 及び波長 λ 1 , λ 2の差に基づく球面収差劣化を抑制する構造であることを特徴とす る請求の範囲第 1項〜第 18項のいずれかに記載の対物光学素子ユニット。 [19] The second phase structure is a structure that suppresses spherical aberration deterioration caused by the difference between the thicknesses tl and t2 of the protective substrate and spherical aberration deterioration based on the difference between the wavelengths λ 1 and λ 2. Features The objective optical element unit according to any one of claims 1 to 18, wherein:
[20] 波長 λ ΐの光束を出射する第 1光源と、波長え 2 ( λ 1 < λ 2)の光束を出射する第 2 光源と、波長え 3 ( λ 2< λ 3)の光束を出射する第 3光源と、請求の範囲第 1項〜第 19項のいずれかに記載の対物光学素子ユニットを含む集光光学系とを有し、前記 集光光学系が、前記第 1光源力 の光束を、厚さ tlの保護基板を介して第 1光情報 記録媒体の情報記録面に集光させることによって、情報の記録及び/又は再生を行 うことが可能となっており、また前記第 2光源からの光束を、厚さ t2 (tl <t2)の保護 基板を介して第 2光情報記録媒体の情報記録面に集光させることによって、情報の 記録及び/又は再生を行うことが可能となっており、更に前記第 3光源からの光束を 、厚さ t3 (t2<t3)の保護基板を介して第 3光情報記録媒体の情報記録面に集光さ せることによって、情報の記録及び/又は再生を行うことが可能となっていることを特 徴とする光ピックアップ装置。 [20] A first light source that emits a light beam of wavelength λ と, a second light source that emits a light beam of wavelength 2 (λ 1 <λ 2), and a light beam of wavelength 3 (λ 2 <λ 3) And a condensing optical system including the objective optical element unit according to any one of claims 1 to 19, wherein the condensing optical system has the first light source power Information can be recorded and / or reproduced by focusing the light beam on the information recording surface of the first optical information recording medium via a protective substrate having a thickness of tl. (2) Information can be recorded and / or reproduced by focusing the light beam from the light source on the information recording surface of the second optical information recording medium via a protective substrate with a thickness t2 (tl <t2). Further, the light beam from the third light source is condensed on the information recording surface of the third optical information recording medium through a protective substrate having a thickness t3 (t2 <t3). Thus, the optical pickup device according to feature that it is possible to perform recording and / or reproducing information.
PCT/JP2007/068795 2006-10-12 2007-09-27 Objective optical element unit and optical pickup device WO2008044475A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008538630A JPWO2008044475A1 (en) 2006-10-12 2007-09-27 Objective optical element unit and optical pickup device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006278381 2006-10-12
JP2006-278381 2006-10-12

Publications (1)

Publication Number Publication Date
WO2008044475A1 true WO2008044475A1 (en) 2008-04-17

Family

ID=39282686

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068795 WO2008044475A1 (en) 2006-10-12 2007-09-27 Objective optical element unit and optical pickup device

Country Status (2)

Country Link
JP (1) JPWO2008044475A1 (en)
WO (1) WO2008044475A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132691A1 (en) * 2010-04-23 2011-10-27 コニカミノルタオプト株式会社 Objective lens for optical pickup device, optical pickup device, and optical information recording/reproduction device
WO2011132696A1 (en) * 2010-04-23 2011-10-27 コニカミノルタオプト株式会社 Objective lens for an optical pickup device, optical pickup device, and optical information recording/reading device
WO2011136096A1 (en) * 2010-04-28 2011-11-03 コニカミノルタオプト株式会社 Objective lens for optical pickup device, optical pickup device, and optical information record/play device
EP2428953A1 (en) * 2009-05-07 2012-03-14 Konica Minolta Opto, Inc. Objective, optical pick-up device, and optical information recording/reproducing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174416A (en) * 2003-12-09 2005-06-30 Konica Minolta Opto Inc Diffraction optical element, objective optical system, optical pickup device and optical information recording reproducing device
JP2005353240A (en) * 2004-06-14 2005-12-22 Konica Minolta Opto Inc Optical pickup optical system, optical pickup device, and optical disk drive
JP2006092720A (en) * 2004-08-25 2006-04-06 Konica Minolta Opto Inc Objective optical device, optical pickup device, and optical disk driving device
WO2006085452A1 (en) * 2005-02-10 2006-08-17 Konica Minolta Opto, Inc. Objective lens, optical pickup device and optical information recording/reproducing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005174416A (en) * 2003-12-09 2005-06-30 Konica Minolta Opto Inc Diffraction optical element, objective optical system, optical pickup device and optical information recording reproducing device
JP2005353240A (en) * 2004-06-14 2005-12-22 Konica Minolta Opto Inc Optical pickup optical system, optical pickup device, and optical disk drive
JP2006092720A (en) * 2004-08-25 2006-04-06 Konica Minolta Opto Inc Objective optical device, optical pickup device, and optical disk driving device
WO2006085452A1 (en) * 2005-02-10 2006-08-17 Konica Minolta Opto, Inc. Objective lens, optical pickup device and optical information recording/reproducing device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2428953A1 (en) * 2009-05-07 2012-03-14 Konica Minolta Opto, Inc. Objective, optical pick-up device, and optical information recording/reproducing device
EP2428953A4 (en) * 2009-05-07 2014-08-06 Konica Minolta Opto Inc Objective, optical pick-up device, and optical information recording/reproducing device
WO2011132691A1 (en) * 2010-04-23 2011-10-27 コニカミノルタオプト株式会社 Objective lens for optical pickup device, optical pickup device, and optical information recording/reproduction device
WO2011132696A1 (en) * 2010-04-23 2011-10-27 コニカミノルタオプト株式会社 Objective lens for an optical pickup device, optical pickup device, and optical information recording/reading device
WO2011136096A1 (en) * 2010-04-28 2011-11-03 コニカミノルタオプト株式会社 Objective lens for optical pickup device, optical pickup device, and optical information record/play device

Also Published As

Publication number Publication date
JPWO2008044475A1 (en) 2010-02-04

Similar Documents

Publication Publication Date Title
JP4830855B2 (en) Objective optical system, optical pickup device, and optical information recording / reproducing device
JPWO2005101393A1 (en) Objective optical system for optical pickup device, optical pickup device, drive device for optical information recording medium, condensing lens, and optical path synthesis element
JP5136810B2 (en) Optical pickup device
WO2010013616A1 (en) Objective lens and optical pickup device
WO2007145202A1 (en) Optical element designing method, optical element and optical pickup device
JP5071883B2 (en) Optical pickup device and objective optical element
JP5024041B2 (en) Objective optical element for optical pickup device, optical element for optical pickup device, objective optical element unit for optical pickup device, and optical pickup device
WO2008044475A1 (en) Objective optical element unit and optical pickup device
JP4329608B2 (en) Objective lens, optical pickup device, and optical information recording / reproducing device
JPWO2007123112A1 (en) Optical pickup device, optical element, optical information recording / reproducing apparatus, and optical element design method
JP4370619B2 (en) Optical element, optical pickup device and drive device
JP2009110591A (en) Objective lens and optical pickup device
JP2009129515A (en) Objective optical element and optical pickup device
JPWO2005088625A1 (en) Objective optical element and optical pickup device
JP4385902B2 (en) Objective optical element and optical pickup device
JP4400326B2 (en) Optical pickup optical system, optical pickup device, and optical disk drive device
JP2010055683A (en) Objective optical element and optical pickup device
JP2009037718A (en) Optical pickup device, and objective optical element
JP2001338431A (en) Optical element and optical pickup device
JPWO2008126562A1 (en) Objective optical element unit for optical pickup device and optical pickup device
JP2010055732A (en) Objective optical element and optical pickup device
JPWO2008146675A1 (en) Objective optical element for optical pickup device and optical pickup device
WO2011040225A1 (en) Diffraction element and optical pickup device
JPWO2009057415A1 (en) Objective lens and optical pickup device
JPWO2009051019A1 (en) Optical pickup device, objective optical element for optical pickup device, and optical information recording / reproducing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828541

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008538630

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828541

Country of ref document: EP

Kind code of ref document: A1