WO2008044458A1 - Temperature detector - Google Patents

Temperature detector Download PDF

Info

Publication number
WO2008044458A1
WO2008044458A1 PCT/JP2007/068499 JP2007068499W WO2008044458A1 WO 2008044458 A1 WO2008044458 A1 WO 2008044458A1 JP 2007068499 W JP2007068499 W JP 2007068499W WO 2008044458 A1 WO2008044458 A1 WO 2008044458A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
temperature
spacer
temperature detector
wire
Prior art date
Application number
PCT/JP2007/068499
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroshi Nozue
Original Assignee
Kurabe Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurabe Industrial Co., Ltd. filed Critical Kurabe Industrial Co., Ltd.
Priority to JP2008538620A priority Critical patent/JPWO2008044458A1/en
Publication of WO2008044458A1 publication Critical patent/WO2008044458A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/06Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using melting, freezing, or softening
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • G01K1/143Supports; Fastening devices; Arrangements for mounting thermometers in particular locations for measuring surface temperatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K3/00Thermometers giving results other than momentary value of temperature
    • G01K3/005Circuits arrangements for indicating a predetermined temperature
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K11/00Methods or arrangements for graph-reading or for converting the pattern of mechanical parameters, e.g. force or presence, into electrical signal
    • G06K11/06Devices for converting the position of a manually-operated writing or tracing member into an electrical signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H37/00Thermally-actuated switches
    • H01H37/74Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
    • H01H37/76Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
    • H01H37/767Normally open

Definitions

  • the present invention relates to a temperature detecting body that can be electrically connected to a target temperature such as an abnormally high temperature to detect a predetermined temperature, and is particularly thin and excellent in flexibility. Therefore, the present invention relates to a device that can be mounted on detection objects of various shapes and has excellent operation reliability.
  • an element-shaped temperature fuse or thermistor is used as a safety device.
  • multiple temperature fuses and thermistors are connected and used to improve safety.
  • thermoplastic resin film is interposed between a film sheet-like flat electrode and a film-like heat detection electrode having a concavo-convex shape or a plurality of holes, and these are polyethylene terephthalate films. What was covered with is mentioned.
  • the thermoplastic resin film melts and flows into the concave and convex recesses or holes formed on the surface of the heat detection electrode, and the heat detection electrode and the flat electrode are in contact with each other.
  • the technique relates to the technique.
  • Patent Document 3 a pair of PTC heating element layers are paired on the outer surface. It is known that a spiral electrode wire is formed, a heat-melting polymer layer is formed so as to contact the electrode wire and the PTC heating element layer, and a conductor wire is further formed on the outer surface of the heat-melting polymer layer. Yes. Patent Document 3 relates to a technique in which a meltable polymer layer melts against abnormal overheating, the spiral electrode wire contacts the outermost conductor wire, and overheating is prevented.
  • Patent Document 4 As a technique related to the present application, Patent Document 4 has been filed by the patent applicant.
  • Patent Document 1 Japanese Patent Laid-Open No. 6-229839
  • Patent Document 2 JP-A-9 145164
  • Patent Document 3 Japanese Patent Application Laid-Open No. 59-207586
  • Patent Document 4 Japanese Patent Application No. 2006—81339 Specification
  • Patent Document 2 does not have a space for the molten electrically insulating material to move, and therefore remains between the two electrode plates in a molten state. It is conceivable that contact cannot be achieved. Further, Patent Document 2 discloses the use of a material in which solder particles are mixed in a flux as an electrically insulating material. As a result, when the temperature is abnormal, the flux melts and disappears, and the solder particles overlap or are fused to bridge the two electrode plates. However, in this case, due to the effect of the flux, the molten solder is separated into small spheres during detection. It is conceivable that the two electrode plates cannot conduct. In addition, when used in a high temperature environment for a long time, the flux may be dissipated due to thermal deterioration. In this case, even if the temperature does not reach the abnormal temperature, the two electrode plates become conductive. It will malfunction.
  • the spiral electrode wire was simply wound around the PTC heating element layer, and the outermost conductor wire was simply wound around the hot-melt polymer layer. It is only a configuration. Therefore, even if abnormal overheating occurs locally and the heat-meltable polymer layer melts, the force that changes the distance between the spiral electrode wire and the conductor wire does not work. May not reach the contact.
  • the present invention has been made on the basis of these points, and the object of the present invention is to conduct electricity by partially exposing to a target temperature such as an abnormally high temperature and detect the temperature. It solves the problem of providing a temperature detector that can be mounted on sensing objects of various shapes because it is thin and flexible, and has excellent operational reliability. Means to do
  • a temperature detector has a panel-like long first electrode and a long electrode disposed adjacent to the first electrode. And a spacer arranged to insulate the first electrode made of an insulating material and biased in one direction from the second electrode, at a predetermined temperature. By exposure, the insulation of the first electrode and the second electrode by the spacer is released, and thereby the first electrode and the second electrode are brought into contact with each other and are electrically connected to each other at a predetermined temperature. This is characterized by the fact that it is detected.
  • the temperature detector according to claim 2 is the temperature detector according to claim 1, wherein at least one of the first electrode and the second electrode is covered with the spacer. It is characterized by this.
  • the temperature detector according to claim 3 is the temperature detector according to claim 1 or 2, wherein the first electrode and the second electrode are installed in an intertwined state. ⁇ ⁇ .
  • a temperature detection body is the temperature detection according to any one of claims 1 to 3.
  • at least one of the first electrode and the second electrode has a stranded wire structure!
  • the temperature detector according to claim 5 is the temperature detector according to claim 4, wherein the first electrode and the second electrode both have a stranded wire structure, and the twist direction is opposite. It is characterized by that.
  • the temperature detection body according to claim 6 is the temperature detection body according to claim 2, wherein a space holding member is provided on the outer periphery of the first electrode, the second electrode, and the spacer. That is ⁇ ⁇ .
  • a temperature detector according to claim 7 is the temperature detector according to claim 6, wherein the space holding member is made of a conductive material.
  • the temperature detecting body according to claim 8 is the temperature detecting body according to claim 2, wherein the first electrode, the second electrode, and the outer periphery of the spacer are coated with another spacer. It is characterized by this.
  • the temperature detection body according to claim 9 is the temperature detection body according to any one of claims 1 to 8, wherein the spacer is melted at a predetermined temperature. It is a characteristic.
  • the long first electrode having a panel property and the long first electrode disposed adjacent to the first electrode are provided.
  • the insulation between the first electrode and the second electrode by the spacer is released, so that the first electrode and the second electrode are brought into contact with each other and are brought into conduction so that a predetermined temperature is reached. Since it is configured to detect, the first electrode is positively brought into contact with the second electrode by releasing the insulation between the first electrode and the second electrode by the spacer.
  • the temperature detector according to claim 2 is the temperature detector according to claim 1, wherein at least one of the first electrode and the second electrode is covered with the spacer. Therefore, it is possible to obtain a structure in which the insulation between the first electrode and the second electrode biased in one direction by the spacer is reliably maintained with a relatively simple configuration.
  • the temperature detector according to claim 3 is the temperature detector according to claim 1 or claim 2, wherein the first electrode and the second electrode are installed in an intertwined state. As a result, the first electrode is in a sufficiently energized state, and the temperature can be detected in all the tangled and crossed portions, thereby improving the detection accuracy.
  • a temperature detector according to claim 4 is the temperature detector according to any one of claims 1 to 3, wherein at least one of the first electrode and the second electrode has a stranded wire structure. Therefore, the contact between the first electrode and the second electrode during temperature detection can be made more reliable and quick.
  • the temperature detector according to claim 5 is the temperature detector according to claim 4, wherein the first electrode and the second electrode both have a stranded wire structure, and the twist direction is opposite. Therefore, the contact between the first electrode and the second electrode at the time of temperature detection can be made more reliable and quick.
  • the temperature detector according to claim 6 is the temperature detector according to claim 2, wherein a space holding member is provided on the outer periphery of the first electrode, the second electrode, and the spacer. Therefore, the insulation release operation by the spacer is performed more smoothly.
  • the temperature detection body according to claim 7 is the temperature detection body according to claim 6, wherein the space holding member is made of a conductive material.
  • the power S can be demonstrated.
  • the temperature detecting body according to claim 8 is the temperature detecting body according to claim 2, wherein the first electrode, the second electrode, and the outer periphery of the spacer are coated with another spacer. Since it is configured, the first electrode and the second electrode can be held more reliably.
  • the temperature detection body according to claim 9 is the temperature detection body according to any one of claims 1 to 8, wherein the spacer is configured to melt at a predetermined temperature. Since it becomes the same as the melting temperature of the spacer, the detection temperature can be easily set. Moreover, the detection temperature can be freely set by appropriately selecting spacers having various melting points.
  • FIG. 1 is a diagram showing a first embodiment of the present invention and is a partially cutaway perspective view of a temperature detector.
  • FIG. 2 is a diagram showing a first embodiment of the present invention and a circuit diagram showing a circuit configuration of a temperature detector.
  • FIG. 3 is a diagram showing a first embodiment of the present invention, and is a perspective view showing a state in which a temperature detector is attached to a thermal device.
  • FIG. 4 is a diagram showing a second embodiment of the present invention, in which FIG. 3 (a) is a partially cutaway perspective view showing the state of the temperature detector before temperature detection, and FIG. FIG. 4 is a partially cutaway perspective view showing a state of a temperature detection body after detection.
  • FIG. 5 is a diagram showing a third embodiment of the present invention, in which FIG. 4 (a) is a partially cutaway perspective view showing the state of the temperature detector before temperature detection, and FIG. FIG. 4 is a partially cutaway perspective view showing a state of a temperature detection body after detection.
  • FIG. 6 is a diagram showing a fourth embodiment of the present invention, and is a partially cutaway perspective view of a temperature detector.
  • FIG. 7 is a diagram showing a fifth embodiment of the present invention, and is a partially cutaway perspective view showing an enlarged main part of a temperature detector.
  • FIG. 8 is a diagram showing a sixth embodiment of the present invention, and is a partially cutaway perspective view in which a main part of a temperature detector is enlarged.
  • FIG. 9 is a diagram showing a seventh embodiment of the present invention, and is a partially cutaway perspective view showing an enlarged main part of a temperature detector.
  • FIG. 10 is a diagram showing an eighth embodiment of the present invention, and is a partially cutaway perspective view in which a main part of a temperature detector is enlarged.
  • FIG. 11 is a diagram showing an eighth embodiment of the present invention, in which a part of an enlarged main part of a temperature detector is shown. It is a notch perspective view.
  • FIG. 12 shows the ninth embodiment of the present invention, and is a partially cutaway perspective view in which the main part of the temperature detector is enlarged.
  • the planar temperature detector according to the present embodiment is configured to detect a temperature near 85 ° C.
  • the temperature detector 10 As shown in FIG. 1, on the outer periphery of the first electrode 1 made of SUS304 stainless steel wire, on the outer periphery of a hot melt adhesive (melting point 85 ° C) and solid wax (melting point 85 ° C). Spacer 3 is extrusion coated.
  • the first electrode 1 and the second electrode 2 made of a copper twisted wire are twisted together and placed on a substrate 4 made of a PET nonwoven fabric.
  • a film 5 made of PET force having an adhesive applied on one side is attached to protect the electrode. In this way, the temperature detector 10 according to the present embodiment is configured.
  • the temperature detector 10 having the above-described configuration is installed at a predetermined position on the outer periphery of an arbitrary thermal device 11. Accordingly, the abnormal temperature in the thermal equipment 11 is detected.
  • test circuit configuration of the temperature detector 10 is as shown in FIG.
  • reference numeral 6 is a power source
  • reference numeral 7 is an ammeter.
  • the circuit diagram shown in FIG. 2 when the spacer 3 is not melted, the circuit is shut off. On the other hand, when the spacer 3 is melted at a predetermined temperature, the first electrode 1 and the second electrode 2 come into contact with each other. That As a result, a current flows through the circuit, and it is detected that a predetermined temperature has been reached.
  • FIG. 2 is merely a diagram showing a test circuit configuration as described above, and a different circuit configuration is used when actually implemented.
  • the temperature detector 10 thus obtained is placed in a heating tank (not shown). Increase the temperature in CZ minutes.
  • the temperature at which the spacer 3 was melted and the first electrode 1 and the second electrode 2 contacted and energized was measured as the detected temperature.
  • the number of samples was 5. As a result, all samples were detected at 85 to 90 ° C, and it was confirmed that they could be reliably detected at the target temperature.
  • the first electrode 1 before reaching the target temperature, the first electrode 1 is energized with a twisting force applied thereto, and the first electrode 1
  • the spacer 3 is placed at a distance from the second electrode 2 by the spacer 3 covered with the first electrode 2, that is, the first electrode is energized and fixed and held by the spacer. ing.
  • the fixed holding in the energized state is released by melting the spacer 3, and the first electrode 1 is positively Since the second electrode 2 is contacted, the first electrode 1 and the second electrode 2 are surely connected to each other, and the force S can be detected.
  • the first electrode 1, the second electrode 2, the spacer 3, the base material 4, and the film 5 are all excellent in flexibility than those having a thickness. As a whole, it can be made thin and excellent in flexibility.
  • the spacer 3 is extrusion coated on the outer periphery of the first electrode 1, the first electrode 1 and the spacer 3 can be handled as a single linear body. Handling during manufacturing facilitates placement on the substrate and improves productivity. Furthermore, since the spacer 3 completely covers the first electrode 1, conduction in a state where the target temperature has not been reached, that is, malfunction can be reliably prevented.
  • the temperature detector 10 is not limited to the above-described embodiment.
  • the first electrode 1 is not particularly limited as long as it is a conductor having panel properties, such as a hard steel wire, a piano wire, an oil tempered wire, and a stainless steel wire.
  • panel properties such as a hard steel wire, a piano wire, an oil tempered wire, and a stainless steel wire.
  • an insulating material having a panel property in which a conductive wire is wound horizontally may be considered.
  • the shape is not particularly limited as long as it does not prevent positive contact with the second electrode when the fixed holding in the biased state is released.
  • the first electrode 1 may be composed of a plurality of conductors rather than a single conductor.
  • a plurality of linear conductors may be formed in a net-like shape.
  • One electrode 1 may be used.
  • the second electrode 2 is not limited as long as it is a conductive material.
  • the second electrode 2 is a single wire made of conductive organic fibers such as iron, copper, aluminum, alloys thereof, carbon fibers, or the like. It may be a linear one such as a twisted one, or a so-called belt-like one having a predetermined width. Moreover, it is good also as a sensor wire which wound the temperature detection wire around the outer periphery of the tensile strength body. Moreover, it does not have to be linear, for example, it may be constituted by a foil or a plurality of linear conductors formed in a net shape.
  • the second electrode 2 when the second electrode 2 is disposed, it is possible to easily assemble without requiring frequent wiring, and thus productivity can be improved.
  • the foil-like second electrode 2 include aluminum foil, copper foil, copper-PET film, conductive organic film, etc., and appropriately selected one having a thickness that does not decrease flexibility. If you use it!
  • the second electrode 2 has a strip shape or a foil shape, the number of contact points with the first electrode 1 can be increased as described above.
  • linear electrodes are superior in workability. Therefore, by using the band-shaped second electrode and the linear second electrode in combination, the contact point between the first electrode and the second electrode can be increased and the workability of the terminal processing can be improved. Can do.
  • the first electrode 1 can be fixedly held in an energized state before reaching the target temperature, and when the target temperature is reached.
  • the shape and arrangement of the first electrode 1 and the second electrode 2 such as those that melt at a predetermined temperature, those that vaporize, those that shrink, those that reduce viscosity, or the spacer 3 itself What is necessary is just to select suitably according to a shape and arrangement
  • those that melt at a predetermined temperature are preferred because they can be most easily used and the detection temperature can be easily set.
  • Examples of the material that melts at a predetermined temperature include, for example, polyethylene resin, ethylene acetate butyl copolymer resin, polyester resin, polyamide resin, polybutyl alcohol copolymer resin, polyvinylidene chloride resin, polychlorinated butyl resin, and polyurethane resin.
  • Thermoplastic resins such as polypropylene resins, thermoplastic elastomers such as olefin-based elastomers, organic waxes, natural waxes such as plant-based, animal-based and ore-based materials, petroleum-based waxes such as paraffin, microwax and petratum wax , Wax products, resin products, asphalt products and other synthetic waxes, fatty acids, fatty acid salts, etc., and mixtures thereof, and those with melting points that match the target temperature are selected appropriately. Just do it.
  • the force obtained by twisting the first electrode 1 and the second electrode 2 is the force arranged in a meandering shape.
  • a twisted combination of the first electrode 1 and the second electrode 2 is arranged in a straight line. It is good as a thing.
  • the surface of the thermal device 11 is arranged in a meandering shape as shown in FIG. 1, even if the surface of the thermal device 11 is a curved surface or an intricate shape, it is possible to easily follow the shape. That is, when arranged in a meandering shape, the electrode is arranged obliquely with respect to a curved surface or an intricate shape, so that the bending radius of the electrode itself is increased, and as a result, adhesion is improved. is there. In addition, even when an external force such as tension or bending is applied to the temperature detector 10 during the placement, the first electrode 1 and the second electrode 1 are difficult to apply excessive force to the first electrode 1 and the second electrode 2. This is preferable because the disconnection of the second electrode 2 can be prevented.
  • the present invention is not limited to this.
  • the spacer 3 is arranged to insulate the first electrode 1 from the second electrode 2 and the first electrode 1
  • the first electrode 1 is fixed and held by the spacer 3 when exposed to the target temperature. It is sufficient that the first electrode 1 and the second electrode 2 are in contact with each other after being released.
  • FIG. 4 a configuration in which the coiled first electrode 1 is covered with a spacer 3 in a reduced diameter state and the second electrode 2 is arranged on the outer periphery thereof ⁇ FIG.
  • Fig. 4 (a) shows the state before detection
  • Fig. 4 (b) shows the state after detection.
  • the rectangular portion of the first electrode 1 that has stood upward is forcibly placed between the spacer 3 and the base material 4 in the state in which the sleeping force is forced.
  • second and third embodiments are also within the scope of the present invention, but preferably one or both of the first electrode 1 and the second electrode 2 as in the first embodiment.
  • the spacer 3 is covered with the first electrode 1 and the second electrode 2 are entangled with each other.
  • the “entangled state” here includes not only the form of twisting as described above, but also includes the form of the first electrode 1 laterally wound around the outer periphery of the second electrode 2, for example. .
  • the base material 4 shown in the first to third embodiments is not particularly required, but as a preferred form when the spacer 3 is melted at a predetermined temperature, as a form, It is sufficient that the melted spacer 3 has a shape and a configuration that can move, that is, can flow. For example, it is possible to consider a sheet provided with unevenness or a hole, a net made of various linear materials, or the like. In particular, it is preferable that the molten spacer 3 can be absorbed. This is because the contact between the first electrode 1 and the second electrode 2 can be performed more quickly by effectively absorbing the molten spacer 3. Examples of the base material 4 capable of absorbing such a melted spacer 3 include a mesh cloth, sponge, woven fabric, paper, and the like which are not limited to the nonwoven fabric described in the above embodiment.
  • the material constituting the substrate 4 There are no particular limitations on the material constituting the substrate 4. Of course, PET film or the like may be used in the same manner as film 5. Also, the shape is not limited to a sheet shape. For example, as shown in FIG. 6, the first electrode 1, the second electrode 2, and the spacer 3 are covered, A covering material may be used as the base material 4.
  • the film 5 shown in the first to fourth embodiments may be provided if necessary, and may not be provided unless particularly necessary.
  • the first electrode coated with the spacer 3 A braid 21 made of various fiber materials, fine metal wires, or the like may be applied to the outer periphery where the 1 and the second electrode 2 are twisted together. As a result, a space can be provided around the first electrode 1 and the second electrode 2 coated with the spacer 3, so that the molten spacer 3 can easily move to the substrate 4. Become. Further, if the braid 21 is made of a conductive material such as a metal fine wire, the braid 21 can also function in the same manner as the second electrode 2.
  • FIG. 7 When the first electrode 1 covered with the spacer 3 and the second electrode 2 are twisted together, as shown in FIG. 7, the first electrode 1 covered with the spacer 3 A lateral winding 22 made of various fiber materials or fine metal wires may be applied to the outer periphery of the second electrode 2 twisted together. As a result, a space can be provided around the first electrode 1 and the second electrode 2 coated with the spacer 3, so that the molten spacer 3 can easily move to the substrate 4. . Further, if the horizontal winding 22 is made of a conductive material such as a fine metal wire, the horizontal winding 22 can function in the same manner as the second electrode 2.
  • the first electrode 1 in the first embodiment has a twisted wire structure.
  • the same effect as in the case of the first embodiment can be obtained.
  • the first electrode 1 has a twisted wire structure
  • the spacer 3 is melted at the time of temperature detection, both the untwisting of the entire first electrode 1 and the untwisting of the twisted wire are performed. Since it works, the first electrode 1 and the second electrode 2 are easy to approach each other, thereby enabling more reliable and quick detection.
  • a stainless steel wire and an annealed copper wire may be appropriately twisted. By doing so, the panel property and flexibility can be adjusted so that the arrangement of the first electrode 1 and the terminal attaching process to the terminal are facilitated.
  • both the first electrode 1 and the second electrode 2 in the first embodiment have a twisted wire structure, and the first electrode 1 and the second electrode 2 Both electrodes 2 are covered with spacers 3 and 3, respectively.
  • the twisting directions of the stranded wires of the first electrode 1 and the second electrode 2 are reversed.
  • the same effect as in the case of the first embodiment can be obtained.
  • the first electrode 1 Since both the untwisting action and the untwisting action of the stranded wire work and the return directions of the stranded wires are close to each other, the first electrode 1 and the second electrode 2 are It is easy to get close to each other, which enables more reliable and quick detection.
  • both the spacer 3 and the spacer T are melted so that the first electrode 1 and the second electrode 2 are in contact with each other. become.
  • a tenth embodiment of the present invention will be described with reference to FIG.
  • the second electrode 2 in the first embodiment is covered with a solid spacer 3.
  • the first electrode 1 or the second electrode 2 may have a heater function. Thereby, it can have a heating function and a temperature detection function. As a specific mode, for example, it can be considered that either the first electrode 1 or the second electrode 2 is used as a heater wire.
  • the heater wire can be heated while normally controlling the temperature with the sensor wire, and the heater wire and the sensor wire are in contact with each other at the time of abnormality. Because it conducts, it can detect the potential difference that changes greatly and cut off the current.
  • the heater wire examples include a resistance wire such as a nichrome wire and a Kanthal wire, and those wound around an outer periphery of a tensile body such as a Kepler core.
  • a temperature detection wire such as a Ni wire is wound around the outer periphery of a tensile body such as a Kepler core. If the first electrode is a heater wire or a sensor wire, it is good to use a material with elasticity as the strength member.
  • a combination of the sensor wire and the heater wire may be considered.
  • the outer periphery of the sensor wire is covered with an insulator and a resistance wire is wound around the outer periphery.
  • an insulator is coated on the outer periphery and a temperature detection wire is wound around the outer periphery, and a resistance wire and a temperature detection wire are wound around the outer periphery of the tensile body so as not to contact each other.
  • a heater spring may be provided.
  • a heater wire is arranged between the first electrode 1 and the second electrode 2. You may do it.
  • the present invention relates to a temperature detecting body that can conduct even when exposed to a target temperature such as an abnormally high temperature and can detect the temperature, and is thin and excellent in flexibility. Therefore, it can be mounted on detection objects of various shapes, and a temperature detection body having excellent operation reliability can be obtained.
  • secondary batteries water heaters, refrigerators, air conditioner indoor / outdoor units, clothes dryers, jar rice cookers, hot plates, coffee makers, water heaters, ceramic heaters, petroleum heaters, vending machines, It can be used for heating futons, floor heating panel heaters, copiers, facsimiles, tableware dryers, fryer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Artificial Intelligence (AREA)
  • Computer Hardware Design (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Fuses (AREA)

Abstract

Intended is to provide a temperature detector, which can be made conductive, when exposed even partially to a target temperature such as an abnormally high temperature, to detect the temperature, which is made so thin and flexible that it can be mounted on detection objects of various shapes and which has an excellent operation reliability. The temperature detector comprises a first long electrode having a spring property, a second long electrode arranged adjacent to the first electrode, and a spacer made of an insulating material and arranged to insulate the first electrode and the second electrode biased in one direction. When the temperature detector is exposed to a predetermined temperature, the insulation by the spacer between the first electrode and the second electrode is released so that the first electrode and the second electrode are made to contact and conduct with each other thereby to detect the predetermined temperature.

Description

明 細 書  Specification
温度検知体  Temperature detector
技術分野  Technical field
[0001] 本発明は、異常な高温等の目的とする温度に一部分でも晒されることにより導通し て所定の温度を検知することができる温度検知体に係り、特に、薄型で可撓性に優 れることから様々な形状の検知対象にも装着することができ、更に、優れた動作信頼 性を有しているものに関する。  [0001] The present invention relates to a temperature detecting body that can be electrically connected to a target temperature such as an abnormally high temperature to detect a predetermined temperature, and is particularly thin and excellent in flexibility. Therefore, the present invention relates to a device that can be mounted on detection objects of various shapes and has excellent operation reliability.
背景技術  Background art
[0002] 従来から、熱機器やリチウム二次電池等における異常温度の検知をするために、 安全装置として素子状の温度ヒューズゃサーミスタが用いられている。又、異常温度 になる可能性のある場所が広範囲で存在する場合には、安全性向上のために複数 個の温度ヒューズゃサーミスタが連結されて用いられてレ、た。  Conventionally, in order to detect an abnormal temperature in a thermal device, a lithium secondary battery, or the like, an element-shaped temperature fuse or thermistor is used as a safety device. In addition, when there is a wide range of places where there is a possibility of abnormal temperatures, multiple temperature fuses and thermistors are connected and used to improve safety.
し力、しながら、このような構成では、異常温度を検知する部分が点であり局部的に発 生する異常温度に対し、確実に作用するか定かではないという問題がある。又、温度 ヒューズゃサーミスタの使用量が増大するため、部品コストが上昇するばかりか、その 連結工程にも多大な工数がかかるため、作業コストが非常に高くなるという問題があ つた。  However, in such a configuration, there is a problem in that it is not certain that the abnormal temperature is detected reliably, and that it acts reliably on the abnormal temperature that occurs locally. In addition, the amount of use of the thermal fuse increases the thermistor, which not only increases the cost of parts, but also requires a great amount of man-hours for the connecting process, resulting in a very high working cost.
[0003] このような問題を解決するものとして、従来種々の面状の温度ヒューズが知られてい る。例えば、特許文献 1のように、フィルムシート状の平面電極と、凹凸状又は複数の 穴の形成されたフィルム状の熱検知電極との間に熱可塑性樹脂フィルムを介在させ 、これらをポリエチレンテレフタレートフィルムで被覆したものが挙げられる。この特許 文献 1は、異常高温が発生すると、熱可塑性樹脂フィルムが溶融し熱検知電極の表 面に形成されている凹凸の凹部又は複数の穴の中に流れ込み、熱検知電極と平面 電極が接触して導通することで、異常温度を検知するとレ、う技術に係るものである。  [0003] Various surface-shaped thermal fuses are conventionally known as means for solving such problems. For example, as in Patent Document 1, a thermoplastic resin film is interposed between a film sheet-like flat electrode and a film-like heat detection electrode having a concavo-convex shape or a plurality of holes, and these are polyethylene terephthalate films. What was covered with is mentioned. In Patent Document 1, when an abnormally high temperature occurs, the thermoplastic resin film melts and flows into the concave and convex recesses or holes formed on the surface of the heat detection electrode, and the heat detection electrode and the flat electrode are in contact with each other. Thus, when an abnormal temperature is detected by conducting, the technique relates to the technique.
[0004] 又、特許文献 2のように、板状電極板を 2枚向かい合わせ、その間の全域にわたつ て所定値以上の温度で溶融する電気的絶縁性物質を圧接狭持する構成のものが挙 げられる。この特許文献 2は、過熱によって電気的絶縁性物質が溶融して両電極板 が接触し、電気的に導通して異常を検知するという技術に係るものである。 [0004] Also, as in Patent Document 2, two plate-like electrode plates face each other, and an electrically insulating substance that melts at a temperature of a predetermined value or more across the entire area between them is pressed and sandwiched Are listed. This patent document 2 discloses that both electrode plates are melted when an electrically insulating material is melted by overheating. Are in contact with each other and electrically connected to detect an abnormality.
[0005] 又、本件出願とは直接関係しな!/、が、発熱線の分野にお!/、ては、例えば、特許文 献 3のように、 PTC発熱体層の外表面に一対のスパイラル電極線を形成し、この電極 線及び PTC発熱体層に接するように熱溶融性高分子層を形成し、熱溶融性高分子 層の外表面にさらに導体線を形成したものが知られている。この特許文献 3は、異常 な過熱に対して、溶融性高分子層が溶融し、スパイラル電極線と最外部の導体線と が接触し、過熱を阻止するとレ、う技術に係るものである。 [0005] Although not directly related to the present application! /, But in the field of heating wires! /, For example, as in Patent Document 3, a pair of PTC heating element layers are paired on the outer surface. It is known that a spiral electrode wire is formed, a heat-melting polymer layer is formed so as to contact the electrode wire and the PTC heating element layer, and a conductor wire is further formed on the outer surface of the heat-melting polymer layer. Yes. Patent Document 3 relates to a technique in which a meltable polymer layer melts against abnormal overheating, the spiral electrode wire contacts the outermost conductor wire, and overheating is prevented.
[0006] 尚、本件出願に関連した技術として、本件特許出願人より特許文献 4が出願されて いる。 [0006] As a technique related to the present application, Patent Document 4 has been filed by the patent applicant.
[0007] 特許文献 1 :特開平 6— 229839号公報  [0007] Patent Document 1: Japanese Patent Laid-Open No. 6-229839
特許文献 2:特開平 9 145164号公報  Patent Document 2: JP-A-9 145164
特許文献 3 :特開昭 59— 207586号公報  Patent Document 3: Japanese Patent Application Laid-Open No. 59-207586
特許文献 4 :特願 2006— 81339明細書  Patent Document 4: Japanese Patent Application No. 2006—81339 Specification
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] ここで、上記特許文献 1に開示された面状温度ヒューズの場合、熱検知電極の凹部 又は穴部に十分な深さを設けないと、熱検知電極と平面電極の間に熱可塑性樹脂 フィルムの一部が残存してしまい、熱検知電極と平面電極とを確実に接触させること ができない。し力、しながら、熱検知電極の凹部又は穴部を十分な深さとすると、熱検 知電極の厚さが増大してしまい、面状温度ヒューズとしての可撓性が得られなくなつ てしまう。 [0008] Here, in the case of the planar thermal fuse disclosed in the above-mentioned Patent Document 1, unless a sufficient depth is provided in the recess or hole of the heat detection electrode, thermoplasticity is provided between the heat detection electrode and the planar electrode. A part of the resin film remains, and the heat detection electrode and the flat electrode cannot be reliably brought into contact with each other. However, if the recess or hole of the heat detection electrode is made sufficiently deep, the thickness of the heat detection electrode increases, and flexibility as a planar temperature fuse cannot be obtained. .
[0009] 又、特許文献 2に開示された面状温度ヒューズは、溶融した電気的絶縁性物質 が移動する空間がないため、溶融した状態で両電極板間に残存してしまい、両電極 板の接触が図れないことが考えられる。又、この特許文献 2には、電気的絶縁性物質 として、フラックスに半田の粒を混入したものを使用することが開示されている。これに より、異常温度時には、フラックスが溶融して無くなり、半田の粒が重なって、又は、融 合して両電極板間を橋渡しするという作用を呈している。し力、しながら、この場合、フ ラックスの効果によって検知時には溶融した半田が小さな球状になって分離してしま い、両電極板間が導通し得ないことが考えられる。又、高温環境下で長期間使用す ると、フラックスが熱劣化で消散してしまうことが考えられ、この場合は、異常温度に達 していなくても両電極板間が導通してしまい、誤動作することになる。 [0009] Further, the planar thermal fuse disclosed in Patent Document 2 does not have a space for the molten electrically insulating material to move, and therefore remains between the two electrode plates in a molten state. It is conceivable that contact cannot be achieved. Further, Patent Document 2 discloses the use of a material in which solder particles are mixed in a flux as an electrically insulating material. As a result, when the temperature is abnormal, the flux melts and disappears, and the solder particles overlap or are fused to bridge the two electrode plates. However, in this case, due to the effect of the flux, the molten solder is separated into small spheres during detection. It is conceivable that the two electrode plates cannot conduct. In addition, when used in a high temperature environment for a long time, the flux may be dissipated due to thermal deterioration. In this case, even if the temperature does not reach the abnormal temperature, the two electrode plates become conductive. It will malfunction.
[0010] 又、特許文献 3記載の発熱線においては、スパイラル電極線は PTC発熱体層に単 に巻き付けられたのみであり、最外部の導体線は熱溶融性高分子層に単に巻き付け られたのみの構成である。そのため、局部的に異常な過熱が生じて熱溶融性高分子 層が溶融したとしても、スパイラル電極線と導体線との距離を変動させる力は働かな いことから、スパイラル電極線と導体線とが接触に至らないことが考えられる。  [0010] In addition, in the heating wire described in Patent Document 3, the spiral electrode wire was simply wound around the PTC heating element layer, and the outermost conductor wire was simply wound around the hot-melt polymer layer. It is only a configuration. Therefore, even if abnormal overheating occurs locally and the heat-meltable polymer layer melts, the force that changes the distance between the spiral electrode wire and the conductor wire does not work. May not reach the contact.
[0011] 本発明はこのような点に基づいてなされたもので、その目的とするところは、異常な 高温等の目的とする温度に一部分でも晒されることにより導通し、温度検知をするこ とができるとともに、薄型で可撓性に優れることから様々な形状の検知対象にも装着 すること力 Sでき、更に、優れた動作信頼性を有した温度検知体を提供することにある 課題を解決するための手段  [0011] The present invention has been made on the basis of these points, and the object of the present invention is to conduct electricity by partially exposing to a target temperature such as an abnormally high temperature and detect the temperature. It solves the problem of providing a temperature detector that can be mounted on sensing objects of various shapes because it is thin and flexible, and has excellent operational reliability. Means to do
[0012] 上記目的を達成するべく本発明の請求項 1による温度検知体は、パネ性を有し長 尺な第一の電極と、上記第一の電極に対して隣接 '配置された長尺な第二の電極と 、絶縁材料からなり一方向に付勢された上記第一の電極と第二の電極とを絶縁する ように配置されるスぺーサと、を具備し、所定の温度に晒されることにより上記スぺー サによる上記第一の電極と第二電極の絶縁が解除され、それによつて、上記第一の 電極と上記第二の電極とが接触 ·導通することにより所定の温度を検知するようにし たことを特徴とするものである。  [0012] In order to achieve the above object, a temperature detector according to claim 1 of the present invention has a panel-like long first electrode and a long electrode disposed adjacent to the first electrode. And a spacer arranged to insulate the first electrode made of an insulating material and biased in one direction from the second electrode, at a predetermined temperature. By exposure, the insulation of the first electrode and the second electrode by the spacer is released, and thereby the first electrode and the second electrode are brought into contact with each other and are electrically connected to each other at a predetermined temperature. This is characterized by the fact that it is detected.
又、請求項 2による温度検知体は、請求項 1記載の温度検知体において、上記第一 の電極及び上記第二の電極の内の少なくとも一方は上記スぺーサによって被覆され て!/、ることを特徴とするものである。  The temperature detector according to claim 2 is the temperature detector according to claim 1, wherein at least one of the first electrode and the second electrode is covered with the spacer. It is characterized by this.
又、請求項 3による温度検知体は、請求項 1又は請求項 2記載の温度検知体におい て、上記第一の電極及び上記第二の電極は互いに絡み合った状態で設置されてい ることを特 ί毁とするものである。  The temperature detector according to claim 3 is the temperature detector according to claim 1 or 2, wherein the first electrode and the second electrode are installed in an intertwined state. ί 毁.
又、請求項 4による温度検知体は、請求項 1〜請求項 3の何れかに記載の温度検知 体において、上記第一の電極及び上記第二の電極の内の少なくとも一方は撚り線構 造をなして!/、ることを特 ί毁とするものである。 A temperature detection body according to claim 4 is the temperature detection according to any one of claims 1 to 3. In the body, at least one of the first electrode and the second electrode has a stranded wire structure!
又、請求項 5による温度検知体は、請求項 4記載の温度検知体において、上記第一 の電極及び上記第二の電極はともに撚り線構造をなしていて、その撚り方向が逆向 きになつていることを特徴とするものである。 The temperature detector according to claim 5 is the temperature detector according to claim 4, wherein the first electrode and the second electrode both have a stranded wire structure, and the twist direction is opposite. It is characterized by that.
又、請求項 6による温度検知体は、請求項 2記載の温度検知体において、上記第 1 の電極、第 2の電極、スぺーサの外周には空間保持部材が設けられていることを特 ί毁とするあのである。 The temperature detection body according to claim 6 is the temperature detection body according to claim 2, wherein a space holding member is provided on the outer periphery of the first electrode, the second electrode, and the spacer. That is ί 毁.
又、請求項 7による温度検知体は、請求項 6記載の温度検知体において、上記空間 保持部材は導電性材料から構成されていることを特徴とするものである。 A temperature detector according to claim 7 is the temperature detector according to claim 6, wherein the space holding member is made of a conductive material.
又、請求項 8による温度検知体は、請求項 2記載の温度検知体において、上記第 1 の電極、第 2の電極、スぺーサの外周にはさらに別のスぺーサが被覆されていること を特徴とするものである。 Further, the temperature detecting body according to claim 8 is the temperature detecting body according to claim 2, wherein the first electrode, the second electrode, and the outer periphery of the spacer are coated with another spacer. It is characterized by this.
又、請求項 9による温度検知体は、請求項 1〜請求項 8の何れかに記載の温度検知 体にお!/、て、上記スぺーサが所定の温度で溶融するものであることを特徴とするもの である。 In addition, the temperature detection body according to claim 9 is the temperature detection body according to any one of claims 1 to 8, wherein the spacer is melted at a predetermined temperature. It is a characteristic.
発明の効果 The invention's effect
以上述べたように本発明の請求項 1による温度検知体によれば、パネ性を有し長尺 な第一の電極と、上記第一の電極に対して隣接 ·配置された長尺な第二の電極と、 絶縁材料からなり一方向に付勢された上記第一の電極と第二の電極とを絶縁するよ うに配置されるスぺーサと、を具備し、所定の温度に晒されることにより上記スぺーサ による上記第一の電極と第二電極の絶縁が解除され、それによつて、上記第一の電 極と上記第二の電極とが接触 ·導通することにより所定の温度を検知するように構成 されているので、スぺーサによる第一の電極と第二の電極との間の絶縁が解除される ことで、第一の電極が積極的に第二の電極へ接触しにいく構成であるため、第一の 電極と第二の電極とが確実に接触して導通し、局所的に発生する異常温度等の目 的とする温度に対して確実に検知することが可能であり、安全性を向上させることが できる。又、電極の厚さを増大させることもないため、温度検知体として薄型で可撓性 に優れたものとすることができ、様々な形状の検知対象にも装着することができる。 又、請求項 2による温度検知体は、請求項 1記載の温度検知体において、上記第一 の電極及び上記第二の電極の内の少なくとも一方は上記スぺーサによって被覆され ている構成になっているので、比較的簡単な構成でスぺーサによって一方向に付勢 された第一の電極と第二の電極との間の絶縁を確実に保持した構造を得ることがで きる。 As described above, according to the temperature detector according to claim 1 of the present invention, the long first electrode having a panel property and the long first electrode disposed adjacent to the first electrode are provided. Two electrodes, and a spacer that is arranged to insulate the first electrode and the second electrode made of an insulating material and biased in one direction, and is exposed to a predetermined temperature. As a result, the insulation between the first electrode and the second electrode by the spacer is released, so that the first electrode and the second electrode are brought into contact with each other and are brought into conduction so that a predetermined temperature is reached. Since it is configured to detect, the first electrode is positively brought into contact with the second electrode by releasing the insulation between the first electrode and the second electrode by the spacer. Therefore, the first electrode and the second electrode are in reliable contact with each other and are electrically connected. It is possible to reliably detect the target temperature such as temperature, and to improve safety. In addition, since it does not increase the thickness of the electrode, it is thin and flexible as a temperature detector. And can be attached to detection objects of various shapes. The temperature detector according to claim 2 is the temperature detector according to claim 1, wherein at least one of the first electrode and the second electrode is covered with the spacer. Therefore, it is possible to obtain a structure in which the insulation between the first electrode and the second electrode biased in one direction by the spacer is reliably maintained with a relatively simple configuration.
又、請求項 3による温度検知体は、請求項 1又は請求項 2記載の温度検知体におい て、上記第一の電極及び上記第二の電極は互いに絡み合った状態で設置されてい る構成になっているので、第一の電極は充分に付勢された状態になるとともに、絡み 合い交差した部分全てにおいて温度検知が可能となり、検知精度が向上することに なる。 The temperature detector according to claim 3 is the temperature detector according to claim 1 or claim 2, wherein the first electrode and the second electrode are installed in an intertwined state. As a result, the first electrode is in a sufficiently energized state, and the temperature can be detected in all the tangled and crossed portions, thereby improving the detection accuracy.
又、請求項 4による温度検知体は、請求項 1〜請求項 3の何れかに記載の温度検知 体において、上記第一の電極及び上記第二の電極の内の少なくとも一方は撚り線構 造をなしている構成になっているので、温度検知時における第一の電極と第二の電 極との接触をより確実且つ迅速なものとすることができる。 A temperature detector according to claim 4 is the temperature detector according to any one of claims 1 to 3, wherein at least one of the first electrode and the second electrode has a stranded wire structure. Therefore, the contact between the first electrode and the second electrode during temperature detection can be made more reliable and quick.
又、請求項 5による温度検知体は、請求項 4記載の温度検知体において、上記第一 の電極及び上記第二の電極はともに撚り線構造をなしていて、その撚り方向が逆向 きになつている構成になっているので、温度検知時における第一の電極と第二の電 極との接触をさらに確実且つ迅速なものとすることができる。 The temperature detector according to claim 5 is the temperature detector according to claim 4, wherein the first electrode and the second electrode both have a stranded wire structure, and the twist direction is opposite. Therefore, the contact between the first electrode and the second electrode at the time of temperature detection can be made more reliable and quick.
又、請求項 6による温度検知体は、請求項 2記載の温度検知体において、上記第 1 の電極、第 2の電極、スぺーサの外周には空間保持部材が設けられている構成にな つているので、スぺーサによる絶縁解除動作がより円滑に行われることになる。 The temperature detector according to claim 6 is the temperature detector according to claim 2, wherein a space holding member is provided on the outer periphery of the first electrode, the second electrode, and the spacer. Therefore, the insulation release operation by the spacer is performed more smoothly.
又、請求項 7による温度検知体は、請求項 6記載の温度検知体において、上記空間 保持部材は導電性材料から構成されてレ、るので、空間保持部材に対しても第二の電 極としての機倉を発揮させること力 Sできる。 The temperature detection body according to claim 7 is the temperature detection body according to claim 6, wherein the space holding member is made of a conductive material. The power S can be demonstrated.
又、請求項 8による温度検知体は、請求項 2記載の温度検知体において、上記第 1 の電極、第 2の電極、スぺーサの外周にはさらに別のスぺーサが被覆されている構 成になっているので、第 1の電極、第 2の電極の保持がより確実なものとなる。 又、請求項 9による温度検知体は、請求項 1〜請求項 8の何れかに記載の温度検知 体において、上記スぺーサが所定の温度で溶融する構成になっているので、検知温 度がスぺーサの溶融温度と同一になるため、検知温度の設定が容易となる。又、種 々の融点を有するスぺーサを適宜選択することで、検知温度を自由に設定すること ができる。 Further, the temperature detecting body according to claim 8 is the temperature detecting body according to claim 2, wherein the first electrode, the second electrode, and the outer periphery of the spacer are coated with another spacer. Since it is configured, the first electrode and the second electrode can be held more reliably. Further, the temperature detection body according to claim 9 is the temperature detection body according to any one of claims 1 to 8, wherein the spacer is configured to melt at a predetermined temperature. Since it becomes the same as the melting temperature of the spacer, the detection temperature can be easily set. Moreover, the detection temperature can be freely set by appropriately selecting spacers having various melting points.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明の第 1の実施の形態を示す図で、温度検知体の一部切欠斜視図である FIG. 1 is a diagram showing a first embodiment of the present invention and is a partially cutaway perspective view of a temperature detector.
[図 2]本発明の第 1の実施の形態を示す図で、温度検知体の回路構成を示す回路図 である。 FIG. 2 is a diagram showing a first embodiment of the present invention and a circuit diagram showing a circuit configuration of a temperature detector.
[図 3]本発明の第 1の実施の形態を示す図で、温度検知体を熱機器に取り付けた状 態を示す斜視図である。  FIG. 3 is a diagram showing a first embodiment of the present invention, and is a perspective view showing a state in which a temperature detector is attached to a thermal device.
[図 4]本発明の第 2の実施の形態を示す図で、図 3 (a)は温度検知前の温度検知体 の状態を示す一部切欠斜視図であり、図 3 (b)は温度検知後の温度検知体の状態を 示す一部切欠斜視図である。  FIG. 4 is a diagram showing a second embodiment of the present invention, in which FIG. 3 (a) is a partially cutaway perspective view showing the state of the temperature detector before temperature detection, and FIG. FIG. 4 is a partially cutaway perspective view showing a state of a temperature detection body after detection.
[図 5]本発明の第 3の実施の形態を示す図で、図 4 (a)は温度検知前の温度検知体 の状態を示す一部切欠斜視図であり、図 4 (b)は温度検知後の温度検知体の状態を 示す一部切欠斜視図である。  FIG. 5 is a diagram showing a third embodiment of the present invention, in which FIG. 4 (a) is a partially cutaway perspective view showing the state of the temperature detector before temperature detection, and FIG. FIG. 4 is a partially cutaway perspective view showing a state of a temperature detection body after detection.
[図 6]本発明の第 4の形態を示す図で、温度検知体の一部切欠斜視図である。  FIG. 6 is a diagram showing a fourth embodiment of the present invention, and is a partially cutaway perspective view of a temperature detector.
[図 7]本発明の第 5の実施の形態を示す図で、温度検知体の要部を拡大した一部切 欠斜視図である。  FIG. 7 is a diagram showing a fifth embodiment of the present invention, and is a partially cutaway perspective view showing an enlarged main part of a temperature detector.
[図 8]本発明の第 6の実施の形態を示す図で、温度検知体の要部を拡大した一部切 欠斜視図である。  FIG. 8 is a diagram showing a sixth embodiment of the present invention, and is a partially cutaway perspective view in which a main part of a temperature detector is enlarged.
[図 9]本発明の第 7の実施の形態を示す図で、温度検知体の要部を拡大した一部切 欠斜視図である。  FIG. 9 is a diagram showing a seventh embodiment of the present invention, and is a partially cutaway perspective view showing an enlarged main part of a temperature detector.
[図 10]本発明の第 8の実施の形態を示す図で、温度検知体の要部を拡大した一部 切欠斜視図である。  FIG. 10 is a diagram showing an eighth embodiment of the present invention, and is a partially cutaway perspective view in which a main part of a temperature detector is enlarged.
[図 11]本発明の第 8の実施の形態を示す図で、温度検知体の要部を拡大した一部 切欠斜視図である。 FIG. 11 is a diagram showing an eighth embodiment of the present invention, in which a part of an enlarged main part of a temperature detector is shown. It is a notch perspective view.
[図 12]本発明の第 9の実施の形態を示す図で、温度検知体の要部を拡大した一部 切欠斜視図である。  FIG. 12 shows the ninth embodiment of the present invention, and is a partially cutaway perspective view in which the main part of the temperature detector is enlarged.
符号の説明  Explanation of symbols
[0015] 1 第一の電極 [0015] 1 First electrode
2 第二の電極  2 Second electrode
3 スぺーサ  3 Spacer
4 基材  4 Base material
5 フイノレム  5 Huinolem
10 温度検知体  10 Temperature detector
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下、図 1乃至図 3を参照して、本発明の第 1の実施の形態を説明する。 The first embodiment of the present invention will be described below with reference to FIGS. 1 to 3.
尚、本実施の形態による面状温度検知体は、 85°C近傍の温度を検知するべく構成 されるものである。  The planar temperature detector according to the present embodiment is configured to detect a temperature near 85 ° C.
[0017] 図 1に示すように、 SUS304ステンレス鋼線からなる第一の電極 1の外周には、ホッ トメルト接着剤(融点 85°C)と固形ワックス(融点 85°C)の混合物からなるスぺーサ 3が 押出被覆されている。この第一の電極 1と、銅撚線からなる第二の電極 2とを撚り合わ せたものが PETの不織布からなる基材 4の上に配置されて!/、る。上記第一の電極 1 及び第二の電極 2の上には、電極の保護のため、片面に粘着剤が塗布された PET 力、らなるフィルム 5が貼付されている。このようにして、本実施の形態による温度検知 体 10が構成される。  [0017] As shown in FIG. 1, on the outer periphery of the first electrode 1 made of SUS304 stainless steel wire, on the outer periphery of a hot melt adhesive (melting point 85 ° C) and solid wax (melting point 85 ° C). Spacer 3 is extrusion coated. The first electrode 1 and the second electrode 2 made of a copper twisted wire are twisted together and placed on a substrate 4 made of a PET nonwoven fabric. On the first electrode 1 and the second electrode 2, a film 5 made of PET force having an adhesive applied on one side is attached to protect the electrode. In this way, the temperature detector 10 according to the present embodiment is configured.
そして、上記構成をなす温度検知体 10を、例えば、図 3に示すように、任意の熱機 器 11の外周の所定位置に設置する。それによつて、熱機器 11における異常温度の 検知を行うものである。  Then, for example, as shown in FIG. 3, the temperature detector 10 having the above-described configuration is installed at a predetermined position on the outer periphery of an arbitrary thermal device 11. Accordingly, the abnormal temperature in the thermal equipment 11 is detected.
又、上記温度検知体 10の試験用の回路構成は図 2に示すようなものとなっている。 図中符号 6は電源であり、符号 7は電流計である。図 2に示す回路図において、スぺ ーサ 3が溶融していない場合には回路が遮断されている。これに対して、所定の温度 によりスぺーサ 3が溶融した場合には、第一の電極 1と第 2の電極 2が接触する。それ によって、回路に電流が流れることになり、所定の温度に達したことを検知するもので ある。 Further, the test circuit configuration of the temperature detector 10 is as shown in FIG. In the figure, reference numeral 6 is a power source, and reference numeral 7 is an ammeter. In the circuit diagram shown in FIG. 2, when the spacer 3 is not melted, the circuit is shut off. On the other hand, when the spacer 3 is melted at a predetermined temperature, the first electrode 1 and the second electrode 2 come into contact with each other. That As a result, a current flows through the circuit, and it is detected that a predetermined temperature has been reached.
尚、図 2は上記したようにあくまで試験用の回路構成を示す図であり、実際に実施 する場合には異なる回路構成になる。  Note that FIG. 2 is merely a diagram showing a test circuit configuration as described above, and a different circuit configuration is used when actually implemented.
[0018] このようにして得られた温度検知体 10を図示しない加熱槽の中に設置し、 1。CZ分 で昇温させていく。そして、図 2に示す試験用の回路図において、スぺーサ 3が溶融 して第一の電極 1と第 2の電極 2が接触'通電した時の温度を検知温度として測定し た。 [0018] 1. The temperature detector 10 thus obtained is placed in a heating tank (not shown). Increase the temperature in CZ minutes. In the test circuit diagram shown in FIG. 2, the temperature at which the spacer 3 was melted and the first electrode 1 and the second electrode 2 contacted and energized was measured as the detected temperature.
尚、サンプル数は 5とした。その結果、何れのサンプルも 85〜90°Cで検知しており、 目的とする温度に対して確実に検知することが可能であることが確認された。  The number of samples was 5. As a result, all samples were detected at 85 to 90 ° C, and it was confirmed that they could be reliably detected at the target temperature.
[0019] 上記実施の形態によれば、 目的とする温度に達する前は、第一の電極 1には撚り 戻しの力が加わって付勢された状態となっているとともに、第一の電極 1に被覆され たスぺーサ 3により第二の電極 2と距離を隔てた状態に設置され、即ち、上記第一の 電極が付勢された状態で上記スぺーサによって固定保持された状態となっている。 温度検知体の一部でも目的とする温度となった際には、スぺーサ 3が溶融することで 付勢された状態での固定保持が解放され、積極的に第一の電極 1は第二の電極 2に 接触しに行くことになるため、第一の電極 1と第二の電極 2とが確実に導通して、温度 検知をすること力 Sできる。又、第一の電極 1、第二の電極 2、スぺーサ 3、基材 4、フィ ルム 5の何れも厚さを有するものではなぐ可撓性に優れるものであるため、温度検知 体 10全体としても、薄型で可撓性に優れたものとすることができる。  [0019] According to the above-described embodiment, before reaching the target temperature, the first electrode 1 is energized with a twisting force applied thereto, and the first electrode 1 The spacer 3 is placed at a distance from the second electrode 2 by the spacer 3 covered with the first electrode 2, that is, the first electrode is energized and fixed and held by the spacer. ing. When even a part of the temperature sensing body reaches the target temperature, the fixed holding in the energized state is released by melting the spacer 3, and the first electrode 1 is positively Since the second electrode 2 is contacted, the first electrode 1 and the second electrode 2 are surely connected to each other, and the force S can be detected. In addition, the first electrode 1, the second electrode 2, the spacer 3, the base material 4, and the film 5 are all excellent in flexibility than those having a thickness. As a whole, it can be made thin and excellent in flexibility.
[0020] 又、第一の電極 1の外周にスぺーサ 3を押出被覆したことから、第一の電極 1とスぺ ーサ 3とを一本の線状体として扱うことができるため、製造時の取扱ゃ基材への配置 が容易となり、生産性を向上させることができる。更に、スぺーサ 3が第一の電極 1を 完全に覆う形態となるため、 目的とする温度に達していない状態での導通、即ち、誤 動作を確実に防止することができる。  [0020] Since the spacer 3 is extrusion coated on the outer periphery of the first electrode 1, the first electrode 1 and the spacer 3 can be handled as a single linear body. Handling during manufacturing facilitates placement on the substrate and improves productivity. Furthermore, since the spacer 3 completely covers the first electrode 1, conduction in a state where the target temperature has not been reached, that is, malfunction can be reliably prevented.
[0021] 尚、本発明による温度検知体 10は、上記の実施の形態に限定されるものではない 。第一の電極 1としては、パネ性を有する導電体であれば良ぐ材質としては、例えば 、硬鋼線、ピアノ線、オイルテンパ線、ステンレス鋼線等、限定はない。他には、例え ば、パネ性を有する絶縁材料に導電線を横巻きしたもの等も考えられる。又、形状と しては、付勢された状態での固定保持が解放された際に、積極的に第二の電極に接 触しにいくことを妨げるものでなければ、特に限定はなぐ例えば、単線のものゃ撚線 のもののような線状のもの、所定の幅を有する所謂帯状のもの等が挙げられ、これら を蛇行形状や直線状等の種々の形状にて基材 4上に配置することが考えられる。こ の際、第一の電極 1は一本の導電体で構成するのではなぐ複数本の導電体で構成 しても良ぐ例えば、複数本の線状の導電体を網状に形成し、第一の電極 1としても 良い。 Note that the temperature detector 10 according to the present invention is not limited to the above-described embodiment. The first electrode 1 is not particularly limited as long as it is a conductor having panel properties, such as a hard steel wire, a piano wire, an oil tempered wire, and a stainless steel wire. Other examples For example, an insulating material having a panel property in which a conductive wire is wound horizontally may be considered. In addition, the shape is not particularly limited as long as it does not prevent positive contact with the second electrode when the fixed holding in the biased state is released. In addition, a single wire, a wire such as a twisted wire, a so-called belt-like one having a predetermined width, and the like are arranged on the substrate 4 in various shapes such as a meandering shape and a linear shape. It is possible to do. In this case, the first electrode 1 may be composed of a plurality of conductors rather than a single conductor. For example, a plurality of linear conductors may be formed in a net-like shape. One electrode 1 may be used.
[0022] 次に、第二の電極 2としては、導電性の材料であれば限定はなぐ例えば、鉄、銅、 アルミニウムやこれらの合金、カーボンファイバ等の導電性有機繊維等による、単線 のものゃ撚線のもののような線状のもの、所定の幅を有する所謂帯状のものであって も良い。又、抗張力体の外周に温度検知線を巻回したセンサ線としても良い。又、線 状のものでなくても良ぐ例えば、箔状のものや、複数本の線状の導電体を網状に形 成したものにより構成されていても良い。こうすれば、第二の電極 2を配置する際に、 頻雑な配線を必要とせず、容易に組立てが可能となるため、生産性を向上させること ができる。箔状の第二の電極 2としては、例えば、アルミニウム箔、銅箔、銅— PETフ イルム、導電性有機フィルム等が挙げられ、可撓性が低下しない程度の厚さのものを 適宜に選択して使用すれば良!/、。  Next, the second electrode 2 is not limited as long as it is a conductive material. For example, the second electrode 2 is a single wire made of conductive organic fibers such as iron, copper, aluminum, alloys thereof, carbon fibers, or the like. It may be a linear one such as a twisted one, or a so-called belt-like one having a predetermined width. Moreover, it is good also as a sensor wire which wound the temperature detection wire around the outer periphery of the tensile strength body. Moreover, it does not have to be linear, for example, it may be constituted by a foil or a plurality of linear conductors formed in a net shape. In this way, when the second electrode 2 is disposed, it is possible to easily assemble without requiring frequent wiring, and thus productivity can be improved. Examples of the foil-like second electrode 2 include aluminum foil, copper foil, copper-PET film, conductive organic film, etc., and appropriately selected one having a thickness that does not decrease flexibility. If you use it!
[0023] 尚、第二の電極 2を帯状ゃ箔状のものにすれば、上記したように、第一の電極 1との 接触点を増加させることが可能となる。し力もながら、電極をリード線等と接続する際 の端子加工においては、線状の電極の方が作業性に優れている。そのため、帯状の 第二の電極と線状の第二の電極とを併用することで、第一の電極と第二の電極との 接触点を増加させるとともに、端子加工の作業性を向上させることができる。  [0023] If the second electrode 2 has a strip shape or a foil shape, the number of contact points with the first electrode 1 can be increased as described above. However, in terms of terminal processing when connecting electrodes to lead wires, etc., linear electrodes are superior in workability. Therefore, by using the band-shaped second electrode and the linear second electrode in combination, the contact point between the first electrode and the second electrode can be increased and the workability of the terminal processing can be improved. Can do.
[0024] 次に、スぺーサ 3としては、 目的とする温度に達する前は、第一の電極 1を付勢され た状態で固定保持することができ、 目的とする温度となったときにこの固定保持を解 除できるものであれば特に限定はない。例えば、所定の温度で溶融するもの、気化 するもの、収縮するもの、粘度が低下するもの等、第一の電極 1や第二の電極 2の形 状や配置、或いは、スぺーサ 3自身の形状や配置に応じて適宜選定すれば良い。こ れらの中でも所定の温度で溶融するものは最も簡便に使用でき、検知温度の設定も 容易であるため好ましい。所定の温度で溶融するものの材質としては、例えば、ポリ エチレン樹脂、エチレン 酢酸ビュル共重合樹脂、ポリエステル樹脂、ポリアミド樹脂 、ポリビュルアルコール共重合体樹脂、ポリ塩化ビニリデン樹脂、ポリ塩化ビュル樹脂 、ポリウレタン樹脂、ポリプロピレン樹脂等の熱可塑性樹脂、ォレフィン系エラストマ一 等の熱可塑性エラストマ一、有機塩、植物系、動物系、鉱石系などの天然系ワックス 、パラフィン、マイクロワックス、ペトラタムワックス等の石油系ワックス、ワックス生成物 、レジン生成物、アスファルト生成物等の合成ワックス、脂肪酸、脂肪酸塩等やこれら を混合したものが挙げられ、これらの中から目的とする温度に合わせた融点のものを 適宜に選択すれば良い。 Next, as the spacer 3, the first electrode 1 can be fixedly held in an energized state before reaching the target temperature, and when the target temperature is reached. There is no particular limitation as long as this fixed holding can be released. For example, the shape and arrangement of the first electrode 1 and the second electrode 2 such as those that melt at a predetermined temperature, those that vaporize, those that shrink, those that reduce viscosity, or the spacer 3 itself What is necessary is just to select suitably according to a shape and arrangement | positioning. This Among these, those that melt at a predetermined temperature are preferred because they can be most easily used and the detection temperature can be easily set. Examples of the material that melts at a predetermined temperature include, for example, polyethylene resin, ethylene acetate butyl copolymer resin, polyester resin, polyamide resin, polybutyl alcohol copolymer resin, polyvinylidene chloride resin, polychlorinated butyl resin, and polyurethane resin. , Thermoplastic resins such as polypropylene resins, thermoplastic elastomers such as olefin-based elastomers, organic waxes, natural waxes such as plant-based, animal-based and ore-based materials, petroleum-based waxes such as paraffin, microwax and petratum wax , Wax products, resin products, asphalt products and other synthetic waxes, fatty acids, fatty acid salts, etc., and mixtures thereof, and those with melting points that match the target temperature are selected appropriately. Just do it.
[0025] 上記図 1においては、第一の電極 1と第二の電極 2とを撚り合わせたもの力 蛇行形 状に配置されたものとなっている力 このような形状に配置されたものに限定されるこ とはない。熱機器 11等の形状や種々使用条件に応じて適宜設計した形状に配置さ れれば良ぐ例えば、第一の電極 1と第二の電極 2とを撚り合わせたものが直線に配 置されたものとしても良い。 [0025] In Fig. 1 above, the force obtained by twisting the first electrode 1 and the second electrode 2 is the force arranged in a meandering shape. There is no limit. For example, a twisted combination of the first electrode 1 and the second electrode 2 is arranged in a straight line. It is good as a thing.
但し、図 1のように蛇行形状に配置されたものであれば、熱機器 11の表面が曲面や 入り組んだ形状であっても、その形状に追随し易く密着させることができる。すなわち 、蛇行形状に配置した場合には、曲面や入り組んだ形状に対して電極が斜めに配置 されることになるために電極自身の曲げ半径が大きくなり、その結果、密着性が向上 するものである。又、配置する際に温度検知体 10に引張りや屈曲等の外力が加わつ ても、第一の電極 1や第二の電極 2には無理な力が加わり難ぐ第一の電極 1と第二 の電極 2の断線を防止することができるため好ましい。  However, if the surface of the thermal device 11 is arranged in a meandering shape as shown in FIG. 1, even if the surface of the thermal device 11 is a curved surface or an intricate shape, it is possible to easily follow the shape. That is, when arranged in a meandering shape, the electrode is arranged obliquely with respect to a curved surface or an intricate shape, so that the bending radius of the electrode itself is increased, and as a result, adhesion is improved. is there. In addition, even when an external force such as tension or bending is applied to the temperature detector 10 during the placement, the first electrode 1 and the second electrode 1 are difficult to apply excessive force to the first electrode 1 and the second electrode 2. This is preferable because the disconnection of the second electrode 2 can be prevented.
[0026] 次に、図 4を参照して本発明の第 2の実施の形態を説明する。前記第 1の実施の形 態では、スぺーサ 3で被覆された第一の電極 1と第二の電極 2とが撚り合わされた構 成となっていたが、これに限定されるものではない。要は目的とする温度に達する前 は、スぺーサ 3が第一の電極 1と第二の電極 2とを絶縁するように配置されているとと もに、第一の電極 1は、付勢された状態で上記スぺーサ 3によって固定保持されてお り、 目的とする温度に晒されることにより、スぺーサ 3による第一の電極 1の固定保持 が解除されて、第一の電極 1と第二の電極 2とが接触する構成であれば良い。 Next, a second embodiment of the present invention will be described with reference to FIG. In the first embodiment, the first electrode 1 and the second electrode 2 covered with the spacer 3 are twisted together. However, the present invention is not limited to this. . In short, before reaching the target temperature, the spacer 3 is arranged to insulate the first electrode 1 from the second electrode 2 and the first electrode 1 The first electrode 1 is fixed and held by the spacer 3 when exposed to the target temperature. It is sufficient that the first electrode 1 and the second electrode 2 are in contact with each other after being released.
具体的な他の例としては、図 4のように、コイル状の第一の電極 1を縮径した状態でス ぺーサ 3により覆い、その外周に第二の電極 2を配置する構成 {図 4中、図 4 (a)は検 知前、図 4 (b)は検知後の状態を示す }が考えられる。  As another specific example, as shown in FIG. 4, a configuration in which the coiled first electrode 1 is covered with a spacer 3 in a reduced diameter state and the second electrode 2 is arranged on the outer periphery thereof {FIG. In Fig. 4, Fig. 4 (a) shows the state before detection, and Fig. 4 (b) shows the state after detection.
[0027] 次に、図 5を参照して本発明の第 3の実施の形態を説明する。この場合には、前記第 Next, a third embodiment of the present invention will be described with reference to FIG. In this case, the first
2の実施の形態の場合と同様であり、第一の電極 1における上方に起立していた矩 形部分を無理やり寝力、した状態でスぺーサ 3と基材 4により挟持し、スぺーサ 3の上部 に第二の電極 2を配置する構成 {図 5中、図 5 (a)は検知前、図 5 (b)は検知後の状態 を示す }等が挙げられる。  As in the case of the second embodiment, the rectangular portion of the first electrode 1 that has stood upward is forcibly placed between the spacer 3 and the base material 4 in the state in which the sleeping force is forced. A configuration in which the second electrode 2 is arranged on the top of 3 {in Fig. 5, Fig. 5 (a) shows a state before detection, Fig. 5 (b) shows a state after detection}, and the like.
これら第 2、第 3の実施の形態も本願発明の範囲であるが、好ましくは、前記第 1の実 施の形態のように、第一の電極 1及び第二の電極 2の何れか又は両方にスぺーサ 3 が被覆されているとともに、第一の電極 1と第二の電極 2とが互いに絡みあった構成 である。  These second and third embodiments are also within the scope of the present invention, but preferably one or both of the first electrode 1 and the second electrode 2 as in the first embodiment. The spacer 3 is covered with the first electrode 1 and the second electrode 2 are entangled with each other.
尚、ここでいう「絡み合った状態」とは、上記のような撚り合わせの形態のみならず、例 えば、第二の電極 2の外周に第一の電極 1を横巻きした形態等も含まれる。  Note that the “entangled state” here includes not only the form of twisting as described above, but also includes the form of the first electrode 1 laterally wound around the outer periphery of the second electrode 2, for example. .
[0028] 次に、図 6を参照して本発明の第 4の実施の形態を説明する。前記第 1〜第 3の実 施の形態で示した基材 4は特に設ける必要はないが、スぺーサ 3を所定の温度で溶 融するものとした際の好ましレ、形態としては、溶融したスぺーサ 3が移動してくることが できるような、即ち、流れ込めるような形状や構成となっていればよい。例えば、凹凸 や穴部が設けられたシートや各種線状材からなる網等も考えられる力 特に、溶融し たスぺーサ 3を吸収できるものであることが好ましい。これは、溶融したスぺーサ 3を効 果的に吸収することにより、第一の電極 1と第二の電極 2との接触をより迅速に行うこ とができるからである。このような溶融したスぺーサ 3を吸収できる基材 4としては、例 えば、上記実施の形態に記載した不織布のみでなぐメッシュクロス、スポンジ、織布 、紙等も考えられる。 Next, a fourth embodiment of the present invention will be described with reference to FIG. The base material 4 shown in the first to third embodiments is not particularly required, but as a preferred form when the spacer 3 is melted at a predetermined temperature, as a form, It is sufficient that the melted spacer 3 has a shape and a configuration that can move, that is, can flow. For example, it is possible to consider a sheet provided with unevenness or a hole, a net made of various linear materials, or the like. In particular, it is preferable that the molten spacer 3 can be absorbed. This is because the contact between the first electrode 1 and the second electrode 2 can be performed more quickly by effectively absorbing the molten spacer 3. Examples of the base material 4 capable of absorbing such a melted spacer 3 include a mesh cloth, sponge, woven fabric, paper, and the like which are not limited to the nonwoven fabric described in the above embodiment.
尚、基材 4を構成する材質については特に限定はない。勿論、フィルム 5と同様に PE Tフィルム等を使用しても差し支えない。又、形状もシート状に限られるものではなぐ 例えば、図 6のように、第一の電極 1、第二の電極 2、及び、スぺーサ 3を被覆し、この 被覆材を基材 4としても良い。 There are no particular limitations on the material constituting the substrate 4. Of course, PET film or the like may be used in the same manner as film 5. Also, the shape is not limited to a sheet shape. For example, as shown in FIG. 6, the first electrode 1, the second electrode 2, and the spacer 3 are covered, A covering material may be used as the base material 4.
[0029] 次に、図 7を参照して本発明の第 5の実施の形態を説明する。前記第 1〜第 4の実 施の形態で示したフィルム 5も基材 4と同様、必要に応じて設ければ良ぐ特に必要 がなければ設けなくても良い。  Next, a fifth embodiment of the present invention will be described with reference to FIG. Similarly to the substrate 4, the film 5 shown in the first to fourth embodiments may be provided if necessary, and may not be provided unless particularly necessary.
[0030] スぺーサ 3が被覆された第一の電極 1と第二の電極 2とを撚り合わせた形態の場合 、図 7に示すように、スぺーサ 3が被覆された第一の電極 1と第二の電極 2とを撚り合 わせた外周に、各種繊維材料や金属細線等からなる編組 21を施しても良い。これに より、スぺーサ 3が被覆された第一の電極 1と第二の電極 2の周囲に空間を持たせる ことができるため、溶融したスぺーサ 3が基材 4へと移動し易くなる。又、編組 21を金 属細線等の導電性材料とすれば、この編組 21を第二の電極 2と同様に機能させるこ ともできる。  [0030] In the case where the first electrode 1 and the second electrode 2 coated with the spacer 3 are twisted together, as shown in FIG. 7, the first electrode coated with the spacer 3 A braid 21 made of various fiber materials, fine metal wires, or the like may be applied to the outer periphery where the 1 and the second electrode 2 are twisted together. As a result, a space can be provided around the first electrode 1 and the second electrode 2 coated with the spacer 3, so that the molten spacer 3 can easily move to the substrate 4. Become. Further, if the braid 21 is made of a conductive material such as a metal fine wire, the braid 21 can also function in the same manner as the second electrode 2.
[0031] 次に、図 8を参照して本発明の第 6の実施の形態を説明する。スぺーサ 3が被覆さ れた第一の電極 1と第二の電極 2とを撚り合わせた形態の場合、図 7に示すように、ス ぺーサ 3が被覆された第一の電極 1と第二の電極 2とを撚り合わせた外周に、各種繊 維材料や金属細線等からなる横巻 22を施しても良い。これにより、スぺーサ 3が被覆 された第一の電極 1と第二の電極 2の周囲に空間を持たせることができるため、溶融 したスぺーサ 3が基材 4へと移動し易くなる。又、横巻 22を金属細線等の導電性材料 とすれば、この横巻 22を第二の電極 2と同様に機能させることもできる。  Next, a sixth embodiment of the present invention will be described with reference to FIG. When the first electrode 1 covered with the spacer 3 and the second electrode 2 are twisted together, as shown in FIG. 7, the first electrode 1 covered with the spacer 3 A lateral winding 22 made of various fiber materials or fine metal wires may be applied to the outer periphery of the second electrode 2 twisted together. As a result, a space can be provided around the first electrode 1 and the second electrode 2 coated with the spacer 3, so that the molten spacer 3 can easily move to the substrate 4. . Further, if the horizontal winding 22 is made of a conductive material such as a fine metal wire, the horizontal winding 22 can function in the same manner as the second electrode 2.
[0032] 次に、図 9を参照して本発明の第 7の実施の形態を説明する。この第 7の実施の形態 の場合には、前記第 1の実施の形態における第一の電極 1を撚線構造としたもので ある。  Next, a seventh embodiment of the present invention will be described with reference to FIG. In the case of the seventh embodiment, the first electrode 1 in the first embodiment has a twisted wire structure.
尚、その他の構成は前記第 1の実施の形態の場合と同様であり、同一部分には同一 符号を付して示しその説明は省略する。  The other configurations are the same as those in the first embodiment, and the same parts are denoted by the same reference numerals and the description thereof is omitted.
この場合にも前記第 1の実施の形態の場合と同様の効果を奏することができるもので ある。又、第一の電極 1を撚線構造としているので、温度検知時において、スぺーサ 3が溶融した場合に、第一の電極 1全体の撚り戻しと撚り線の撚り戻しの両方の作用 が働くことになるので、第一の電極 1と第二の電極 2が相互に接近し易くなつており、 それによつて、より確実且つ迅速な検知が可能になる。 また、このような撚線構造とする場合、ステンレス鋼線と軟銅線を適宜撚り合せて構成 してもよい。こうすることで、第一の電極 1の配置や端末への端子取付加工が容易に なるように、パネ性と可撓性の調整を図ることもできる。特にステンレス鋼線と軟銅線 を撚り合せて構成する場合は、中心をステンレス鋼線とし、その外周に軟銅線を配置 する構成とすれば、撚りが潰れ難くなるとともに、端末での端子との接触抵抗が低くな るため好ましい。 Also in this case, the same effect as in the case of the first embodiment can be obtained. In addition, since the first electrode 1 has a twisted wire structure, when the spacer 3 is melted at the time of temperature detection, both the untwisting of the entire first electrode 1 and the untwisting of the twisted wire are performed. Since it works, the first electrode 1 and the second electrode 2 are easy to approach each other, thereby enabling more reliable and quick detection. Further, when such a stranded wire structure is used, a stainless steel wire and an annealed copper wire may be appropriately twisted. By doing so, the panel property and flexibility can be adjusted so that the arrangement of the first electrode 1 and the terminal attaching process to the terminal are facilitated. In particular, when a stainless steel wire and an annealed copper wire are twisted together, if the center is made of a stainless steel wire and an annealed copper wire is placed on the outer periphery, the twist will not be easily crushed and the terminal will contact the terminal. This is preferable because the resistance is low.
[0033] 次に、図 10を参照して本発明の第 8の実施の形態を説明する。この第 8の実施の形 態の場合には、前記第 1の実施の形態における第一の電極 1と第二の電極 2をともに 撚線構造とし、且つ、第一の電極 1と第二の電極 2の両方をスぺーサ 3、 3によって夫 々被覆したものである。又、この場合には、第一の電極 1と第二の電極 2の撚線の撚 り方向が逆向きになっている。  Next, an eighth embodiment of the present invention will be described with reference to FIG. In the case of the eighth embodiment, both the first electrode 1 and the second electrode 2 in the first embodiment have a twisted wire structure, and the first electrode 1 and the second electrode 2 Both electrodes 2 are covered with spacers 3 and 3, respectively. In this case, the twisting directions of the stranded wires of the first electrode 1 and the second electrode 2 are reversed.
尚、その他の構成は前記第 1の実施の形態の場合と同様であり、同一部分には同一 符号を付して示しその説明は省略する。  The other configurations are the same as those in the first embodiment, and the same parts are denoted by the same reference numerals and the description thereof is omitted.
この場合にも前記第 1の実施の形態の場合と同様の効果を奏することができるもので ある。又、第一の電極 1と第二の電極 2の撚線の撚り方向が逆向きになっているので 、温度検知時において、スぺーサ 3、 3が溶融した場合に、第一の電極 1全体の撚り 戻しと撚り線の撚り戻しの両方の作用が働くことになるとともに撚り線同士の戻りの方 向が相互に近接する方向になるので、第一の電極 1と第二の電極 2が相互に接近し 易くなつており、それによつて、より確実且つ迅速な検知が可能になる。  Also in this case, the same effect as in the case of the first embodiment can be obtained. In addition, since the twist directions of the first electrode 1 and the second electrode 2 are opposite to each other, when the spacers 3 and 3 are melted during temperature detection, the first electrode 1 Since both the untwisting action and the untwisting action of the stranded wire work and the return directions of the stranded wires are close to each other, the first electrode 1 and the second electrode 2 are It is easy to get close to each other, which enables more reliable and quick detection.
[0034] 次に、図 11を参照して本発明の第 9の実施の形態を説明する。この第 9の実施の形 態の場合には、前記第 1の実施の形態の構成において、基材 4とフィルム 5をなくすと もに、全体を別のスぺーサ 3Ίこよって被覆したものである。 Next, a ninth embodiment of the present invention will be described with reference to FIG. In the case of the ninth embodiment, in the configuration of the first embodiment, the base 4 and the film 5 are eliminated and the whole is covered with another spacer 3. is there.
尚、その他の構成は前記第 1の実施の形態の場合と同様であり、同一部分には同一 符号を付して示しその説明は省略する。  The other configurations are the same as those in the first embodiment, and the same parts are denoted by the same reference numerals and the description thereof is omitted.
この場合にも前記第 1の実施の形態の場合と同様の効果を奏することができるととも に、基材 4とフィルム 5をなくすことにより構成の簡略化を図ることができる。  In this case as well, the same effects as in the case of the first embodiment can be obtained, and the structure can be simplified by eliminating the base material 4 and the film 5.
尚、この実施の形態の場合には、温度検知時には、スぺーサ 3、スぺーサ; Tの両方 が溶融し、それによつて、第一の電極 1と第二の電極 2が接触することになる。 [0035] 次に、図 12を参照して本発明の第 10実施の形態を説明する。この第 10の実施の形 態の場合には、前記第 1の実施の形態における第二の電極 2を中実状のスぺーサ 3 によって被覆したものである。 In this embodiment, at the time of temperature detection, both the spacer 3 and the spacer T are melted so that the first electrode 1 and the second electrode 2 are in contact with each other. become. Next, a tenth embodiment of the present invention will be described with reference to FIG. In the case of the tenth embodiment, the second electrode 2 in the first embodiment is covered with a solid spacer 3.
尚、その他の構成は前記第 1の実施の形態の場合と同様であり、同一部分には同一 符号を付して示しその説明は省略する。  The other configurations are the same as those in the first embodiment, and the same parts are denoted by the same reference numerals and the description thereof is omitted.
この場合にも前記第 1の実施の形態の場合と同様の効果を奏することができるもので ある。  Also in this case, the same effect as in the case of the first embodiment can be obtained.
[0036] 尚、本発明は前記第 1〜第 10の実施の形態に限定されるものではない。  Note that the present invention is not limited to the first to tenth embodiments.
例えば、第一の電極 1又は第二の電極 2は、ヒータ機能を有するものであっても良い 。これにより、加熱機能と温度検知機能を兼ね備えるものとすることができる。具体的 な態様としては、例えば、第一の電極 1又は第二の電極 2の何れかをヒータ線とする ことが考えられる。この際、もう一方の電極を上記したセンサ線とすれば、通常時はセ ンサ線で温度管理をしながらヒータ線で加熱を行うことができ、異常時にはヒータ線と センサ線とが接触して導通するため、大きく変化する電位差を検知して通電を遮断 すること力 Sできる。ヒータ線としては、ニクロム線、カンタル線等の抵抗線や、これらを ケプラー芯等の抗張力体の外周に巻回したもの等が挙げられる。センサ線としては、 例えば、ケプラー芯等抗張力体の外周に、 Ni線等の温度検知線を巻回したもの等 が考えられる。第一の電極をヒータ線やセンサ線をする場合は、抗張力体としてにバ ネ性を有する材料を使用すれば良レ、。  For example, the first electrode 1 or the second electrode 2 may have a heater function. Thereby, it can have a heating function and a temperature detection function. As a specific mode, for example, it can be considered that either the first electrode 1 or the second electrode 2 is used as a heater wire. At this time, if the other electrode is the above-described sensor wire, the heater wire can be heated while normally controlling the temperature with the sensor wire, and the heater wire and the sensor wire are in contact with each other at the time of abnormality. Because it conducts, it can detect the potential difference that changes greatly and cut off the current. Examples of the heater wire include a resistance wire such as a nichrome wire and a Kanthal wire, and those wound around an outer periphery of a tensile body such as a Kepler core. As the sensor wire, for example, a temperature detection wire such as a Ni wire is wound around the outer periphery of a tensile body such as a Kepler core. If the first electrode is a heater wire or a sensor wire, it is good to use a material with elasticity as the strength member.
但し、抗張力体に導電性の材料を使用する場合は、その外周に絶縁被覆を施す必 要がある。  However, when using a conductive material for the tensile body, it is necessary to apply an insulation coating to the outer periphery.
又、別の態様としては、上記したセンサ線とヒータ線を複合したものも考えられ、例え ば、センサ線の外周に絶縁体を被覆し、その外周に抵抗線を巻回したもの、ヒータ線 の外周に絶縁体を被覆し、その外周に温度検知線を巻回したもの、抗張力体の外周 に抵抗線と温度検知線とを互いに接触しないように巻回したもの、等が挙げられる。  As another embodiment, a combination of the sensor wire and the heater wire may be considered. For example, the outer periphery of the sensor wire is covered with an insulator and a resistance wire is wound around the outer periphery. In this case, an insulator is coated on the outer periphery and a temperature detection wire is wound around the outer periphery, and a resistance wire and a temperature detection wire are wound around the outer periphery of the tensile body so as not to contact each other.
[0037] 又、第一の電極 1や第二の電極 2とは別に、ヒータ泉を備えていても良い。例えば、 第一の電極 1及び第二の電極 2と目的とする温度以下の温度で絶縁されている状態 であれば、第一の電極 1と第二の電極 2との間にヒータ線を配置しても良い。 産業上の利用可能性 [0037] In addition to the first electrode 1 and the second electrode 2, a heater spring may be provided. For example, if the first electrode 1 and the second electrode 2 are insulated at a temperature lower than the target temperature, a heater wire is arranged between the first electrode 1 and the second electrode 2. You may do it. Industrial applicability
以上詳述したように、本発明は、異常な高温等の目的とする温度に一部分でも晒さ れることにより導通し、温度検知をすることができる温度検知体に係り、薄型で可撓性 に優れることから様々な形状の検知対象にも装着することができ、更に、優れた動作 信頼性を有している温度検知体を得ることができるものである。又、その用途としては 、例えば、二次電池、給湯器、冷蔵庫、エアコン室内外機、衣服乾燥機、ジャー炊飯 器、ホットプレート、コーヒーメーカ、温水器、セラミックヒータ、石油ヒータ、自動販売 機、温熱布団、床暖房パネルヒータ、複写機、ファクシミリ、食器乾燥機、フライヤ等 への使用が考えられる。  As described in detail above, the present invention relates to a temperature detecting body that can conduct even when exposed to a target temperature such as an abnormally high temperature and can detect the temperature, and is thin and excellent in flexibility. Therefore, it can be mounted on detection objects of various shapes, and a temperature detection body having excellent operation reliability can be obtained. In addition, for example, secondary batteries, water heaters, refrigerators, air conditioner indoor / outdoor units, clothes dryers, jar rice cookers, hot plates, coffee makers, water heaters, ceramic heaters, petroleum heaters, vending machines, It can be used for heating futons, floor heating panel heaters, copiers, facsimiles, tableware dryers, fryer.

Claims

請求の範囲 The scope of the claims
[1] パネ性を有し長尺な第一の電極と、上記第一の電極に対して隣接 ·配置された長尺 な第二の電極と、絶縁材料からなり一方向に付勢された上記第一の電極と第二の電 極とを絶縁するように配置されるスぺーサと、を具備し、  [1] A panel-like long first electrode, a long second electrode adjacent to the first electrode and an insulating material, and urged in one direction A spacer disposed to insulate the first electrode from the second electrode,
所定の温度に晒されることにより上記スぺーサによる上記第一の電極と第二電極の 絶縁が解除され、それによつて、上記第一の電極と上記第二の電極とが接触 ·導通 することにより所定の温度を検知するようにしたことを特徴とする温度検知体。  By exposing to the predetermined temperature, the insulation between the first electrode and the second electrode by the spacer is released, so that the first electrode and the second electrode are brought into contact / conduction. A temperature detecting body characterized in that a predetermined temperature is detected by the above.
[2] 請求項 1記載の温度検知体において、  [2] In the temperature sensing element according to claim 1,
上記第一の電極及び上記第二の電極の内の少なくとも一方は上記スぺーサによつ て被覆されてレ、ることを特徴とする温度検知体。  A temperature detector, wherein at least one of the first electrode and the second electrode is covered with the spacer.
[3] 請求項 1又は請求項 2記載の温度検知体において、 [3] In the temperature sensing element according to claim 1 or claim 2,
上記第一の電極及び上記第二の電極は互いに絡み合った状態で設置されて!/、るこ とを特徴とする温度検知体。  The temperature detection body, wherein the first electrode and the second electrode are installed in an intertwined state! /.
[4] 請求項 1〜請求項 3の何れかに記載の温度検知体において、 [4] In the temperature detector according to any one of claims 1 to 3,
上記第一の電極及び上記第二の電極の内の少なくとも一方は撚り線構造をなしてい ることを特徴とする温度検知体。  At least one of the first electrode and the second electrode has a stranded structure.
[5] 請求項 4記載の温度検知体において、 [5] The temperature sensing element according to claim 4,
上記第一の電極及び上記第二の電極はともに撚り線構造をなしていて、その撚り方 向が逆向きになっていることを特徴とする温度検知体。  The temperature detector according to claim 1, wherein both the first electrode and the second electrode have a stranded wire structure, and the twist directions are opposite to each other.
[6] 請求項 2記載の温度検知体において、 [6] The temperature sensing element according to claim 2,
上記第 1の電極、第 2の電極、スぺーサの外周には空間保持部材が設けられてい ることを特徴とする温度検知体。  A temperature detector, wherein a space holding member is provided on the outer periphery of the first electrode, the second electrode, and the spacer.
[7] 請求項 6記載の温度検知体において、 [7] The temperature sensing element according to claim 6,
上記空間保持部材は導電性材料力 構成されていることを特徴とする温度検知体  The temperature holding member is characterized in that the space holding member has a conductive material force.
[8] 請求項 2記載の温度検知体において、 [8] In the temperature sensing element according to claim 2,
上記第 1の電極、第 2の電極、スぺーサの外周にはさらに別のスぺーサが被覆されて V、ることを特徴とする温度検知体。 請求項 1〜請求項 8の何れかに記載の温度検知体において、 A temperature detector, wherein the outer periphery of the first electrode, the second electrode, and the spacer is further coated with another spacer V. In the temperature detection body according to any one of claims 1 to 8,
上記スぺーサが所定の温度で溶融するものであることを特徴とする温度検知体。  A temperature detector, wherein the spacer is melted at a predetermined temperature.
PCT/JP2007/068499 2006-10-06 2007-09-25 Temperature detector WO2008044458A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008538620A JPWO2008044458A1 (en) 2006-10-06 2007-09-25 Temperature detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006275332 2006-10-06
JP2006-275332 2006-10-06

Publications (1)

Publication Number Publication Date
WO2008044458A1 true WO2008044458A1 (en) 2008-04-17

Family

ID=39282663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068499 WO2008044458A1 (en) 2006-10-06 2007-09-25 Temperature detector

Country Status (4)

Country Link
JP (1) JPWO2008044458A1 (en)
KR (1) KR20090063221A (en)
CN (1) CN101523538A (en)
WO (1) WO2008044458A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270892A (en) * 2008-05-02 2009-11-19 Kurabe Ind Co Ltd Method for manufaxcturing of temperature detector
JP2013512321A (en) * 2009-12-01 2013-04-11 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Reinforced polymer composite
US9068399B2 (en) 2006-10-20 2015-06-30 Drillroc Pneumatic Pty Ltd Down-the-hole hammer drill
US11408780B2 (en) * 2019-08-16 2022-08-09 Kidde Technologies, Inc. Thermal sensor and method of manufacture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113921333A (en) * 2021-10-28 2022-01-11 江苏常胜电器股份有限公司 Wide temperature range self-sustaining formula protector

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4610994Y1 (en) * 1967-10-07 1971-04-16
JPS58164125U (en) * 1982-04-27 1983-11-01 秋本 強治 temperature sensing cable
JPS619726U (en) * 1984-06-25 1986-01-21 古河電気工業株式会社 Electrical cable with built-in temperature detection wire
JPH0432039U (en) * 1990-07-12 1992-03-16
JPH0447215U (en) * 1990-08-29 1992-04-22
JPH0896630A (en) * 1994-09-26 1996-04-12 Furukawa Electric Co Ltd:The Fire detecting wire
JP2001076545A (en) * 1999-09-03 2001-03-23 Sumitomo Electric Ind Ltd High-voltage lead wire

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4610994Y1 (en) * 1967-10-07 1971-04-16
JPS58164125U (en) * 1982-04-27 1983-11-01 秋本 強治 temperature sensing cable
JPS619726U (en) * 1984-06-25 1986-01-21 古河電気工業株式会社 Electrical cable with built-in temperature detection wire
JPH0432039U (en) * 1990-07-12 1992-03-16
JPH0447215U (en) * 1990-08-29 1992-04-22
JPH0896630A (en) * 1994-09-26 1996-04-12 Furukawa Electric Co Ltd:The Fire detecting wire
JP2001076545A (en) * 1999-09-03 2001-03-23 Sumitomo Electric Ind Ltd High-voltage lead wire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9068399B2 (en) 2006-10-20 2015-06-30 Drillroc Pneumatic Pty Ltd Down-the-hole hammer drill
JP2009270892A (en) * 2008-05-02 2009-11-19 Kurabe Ind Co Ltd Method for manufaxcturing of temperature detector
JP2013512321A (en) * 2009-12-01 2013-04-11 ナムローゼ・フェンノートシャップ・ベーカート・ソシエテ・アノニム Reinforced polymer composite
US11408780B2 (en) * 2019-08-16 2022-08-09 Kidde Technologies, Inc. Thermal sensor and method of manufacture

Also Published As

Publication number Publication date
KR20090063221A (en) 2009-06-17
CN101523538A (en) 2009-09-02
JPWO2008044458A1 (en) 2010-02-04

Similar Documents

Publication Publication Date Title
JP3037525B2 (en) Fever sheet
KR100786679B1 (en) Electrical Heating Devices And Resettable Fuses
JP5562678B2 (en) Heat sensitive wire and method for producing the same
US7067776B2 (en) Monitoring device for flexible heating elements
WO2008044458A1 (en) Temperature detector
WO2012061323A1 (en) Thermal interlock for battery pack, device, system and method
JP5164625B2 (en) Temperature detector
JP4740005B2 (en) Surface temperature detector
JP5297686B2 (en) Manufacturing method of temperature detector
JP6771975B2 (en) Capacitance detection line and its applications
JP5562677B2 (en) Cord heater and surface heater with temperature detection function
CN103179703A (en) Wire type heating wire device
JP2012132904A (en) Temperature detecting device and safety device for hot water supplier
JP7563738B2 (en) Thermal sensor wire and method
CN116018878A (en) String-shaped heater and planar heater
JP2010165652A (en) Temperature detector
JPS6032958B2 (en) heat sensitive body
US20240322403A1 (en) Fuse Device, Rechargeable Battery Pack with a Fuse Device and Method for Manufacturing a Fuse Device
CN213397419U (en) Temperature measuring device, steam generator and household appliance
JP2024080415A (en) Wiring sheet for heat sensor
JP2011003328A (en) Polymer heating element
JPH0684587A (en) Thermosensitive heater
KR20240152293A (en) Code-shaped heater and surface-shaped heater
JPS61267286A (en) Heater
JPS61248385A (en) Heater unit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780037504.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807821

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008538620

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020097006041

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07807821

Country of ref document: EP

Kind code of ref document: A1