WO2008044439A1 - Apparatus for determining bone salt content - Google Patents

Apparatus for determining bone salt content Download PDF

Info

Publication number
WO2008044439A1
WO2008044439A1 PCT/JP2007/068148 JP2007068148W WO2008044439A1 WO 2008044439 A1 WO2008044439 A1 WO 2008044439A1 JP 2007068148 W JP2007068148 W JP 2007068148W WO 2008044439 A1 WO2008044439 A1 WO 2008044439A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
bone mineral
subject
mineral content
rays
Prior art date
Application number
PCT/JP2007/068148
Other languages
French (fr)
Japanese (ja)
Inventor
Hiromu Ohara
Yuko Shinden
Original Assignee
Konica Minolta Medical & Graphic, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical & Graphic, Inc. filed Critical Konica Minolta Medical & Graphic, Inc.
Priority to JP2008538613A priority Critical patent/JPWO2008044439A1/en
Publication of WO2008044439A1 publication Critical patent/WO2008044439A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/484Diagnostic techniques involving phase contrast X-ray imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • A61B6/0478Chairs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/505Clinical applications involving diagnosis of bone

Definitions

  • the present invention relates to a bone mineral content measuring apparatus, and more particularly, to a bone mineral content measuring apparatus that measures bone mineral content using single energy X-rays.
  • bone mineral quantification methods used to measure this bone mineral content include the dual energy X-spring absorption method (Dual X-ray Absorptiometry: DXA method) and the quantitative ultrasonic bone density measurement method (Quantitative Ultrasound: QUS method). ), Quantitative X-ray CT (Quantitative Computed Tomography: QCT), single energy X-ray absorption (SXA method), etc. are currently known.
  • the heavy energy X-ray absorption method has become the standard method for bone mineral content measurement!
  • a difference signal is obtained by performing energy subtraction between a plurality of images obtained by irradiating radiations having different energy levels.
  • Image signal and subtracting between the correction image signal averaged in the main scanning direction and / or sub-scanning direction and the difference signal to obtain a correction difference signal, and this correction difference signal.
  • a method of performing bone mineral quantitative analysis by the method for example, see Patent Document 1.
  • the subject is irradiated with a single energy X-ray and the X-ray absorption value of the subject is measured.
  • the filter thickness, collimator diameter, tube voltage and current are optimized.
  • a bone mineral content measuring device that makes X-rays monochromatic with a simple configuration has been proposed (for example, see Patent Document 3).
  • Patent Document 1 Japanese Patent Laid-Open No. 5-1111480
  • Patent Document 2 JP-A-2005-192657
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-319236
  • Non-Patent Document 1 Toyofuku Inoue 7 "Bone salt quantitative measurement with phase contrast mammography (PCM) apparatus-Basic study with aluminum and water phantom" Jpn. J. Med. Phys., Vol. 26 supplement No. 3 , pp. 77—78, (2006)
  • osteoporosis increases with aging, and fractures of elderly people, particularly femoral neck fractures, are likely to be bedridden.
  • bone mineral content rapidly decreases, and fractures are more likely to occur when it is below 0.70 g / cm 2 .
  • Increasing the number of patients with osteoporosis is not only an obstacle to the lives of individual patients, but also a major problem in Japan, where the elderly population is increasing, which spurred an increase in medical expenses.
  • osteoporosis can be prevented by force by taking appropriate exercise and taking sufficient calcium from the diet. Therefore, it is important for individuals to accurately grasp their own bone mineral content at an early stage and strive to prevent osteoporosis. Therefore, today, bone mineral quantification is being examined.
  • the change in the amount of bone mineral is very small, and the measurement error of bone mineral content determination for osteoporosis prevention and early detection is required to be around 1%. Even if calcium is adequately consumed and appropriate exercise is continued, the increase in bone mineral density is considered to be about 0.5% per year, and appropriate prevention, early detection and treatment of osteoporosis are performed. In order to do this, it is preferable to regularly check the bone mineral content for a long period of at least several years and observe the progress. Therefore, bone mineral content can be easily measured for the prevention and early detection of osteoporosis. It is required to do so.
  • osteoporosis is a disease that affects a large number of elderly people. Therefore, it is preferable to measure the amount of bone mineral in such a way as to impose as little burden on the person undergoing the examination as possible.
  • the dual energy X-ray absorption method has excellent measurement accuracy but has a drawback that it takes time force S of several minutes or more for measurement. For this reason, it is not preferable as a method of screening regularly performed by elderly people.
  • information cannot be obtained as a high-resolution image simultaneously with the measurement of bone mineral content.
  • Quantitative X-ray CT examination has the disadvantage that it has a large power exposure dose that can obtain information in three dimensions, and is not suitable for examinations (especially, examinations that are performed regularly over a long period of time).
  • the quantitative ultrasonic bone density measurement method using an ultrasonic device has problems such as measurement accuracy. Not suitable.
  • the single energy X-ray absorption method can measure the amount of bone mineral by taking an image of the subject using an X-ray film, etc., and the bone mineral content can be determined most easily. It is a technique.
  • the X-rays emitted from the tungsten anode X-ray tube are multi-colored X-rays, and the normal bone scan is set to a tube voltage of 50 kVp or higher, so the measurement accuracy is extremely low! For this reason, the single energy X-ray absorption method now plays an auxiliary role for other methods! /, But this method alone can be used for medical purposes such as early detection of osteoporosis and confirmation of progress. Is unbearable! /.
  • Non-Patent Document 1 uses refraction contrast enhancement caused by X-ray refraction in order to diagnose a shadow caused by microcalcification or disease in the breast.
  • a molybdenum anode X-ray tube as a radiation source.
  • bone mineral content In order to measure accurately, it is preferable to perform quantification based on the absorption contrast image of the bone, but it is taken using a molybdenum anode X-ray tube with an emission line spectrum, which tends to cause refraction contrast enhancement.
  • an increase or decrease in X-ray dose due to refraction contrast appears near the edge of the bone. For example, when bone mineral content is measured by photographing a plurality of small bones such as fingers, there is a concern that some errors may occur in the measured value compared to bone mineral content measurement by other methods.
  • the present invention has been made to solve the above-described problems, and enables simple bone mineral quantification that can be used for a wide range of examinations with less burden even for elderly people. It is another object of the present invention to provide a bone mineral content measuring apparatus capable of realizing measurement accuracy usable for follow-up for early detection and treatment of osteoporosis.
  • the bone mineral content measuring device captures an X-ray image of a subject, and based on the obtained image data, the subject is measured.
  • a bone mineral content measuring device for measuring the bone mineral content of a specimen captures an X-ray image of a subject, and based on the obtained image data, the subject is measured.
  • An X-ray detector for recording an X-ray image corresponding to an X-ray dose irradiated from the X-ray source and a liquid substance holding member for holding a liquid substance containing the subject at the time of imaging;
  • the source is a tungsten anode X-ray tube with an intrinsic filtration of 2.5 mm thick aluminum or more,
  • the X-ray detector has a dynamic range of 3 digits or more and is arranged so that the distance from the subject is 15 cm or more! /.
  • the invention according to claim 2 is the bone mineral content measuring device according to claim 1.
  • the X-ray source has a tube voltage set to 20 kVp or more and 49 kVp or less.
  • the invention described in claim 3 is the bone mineral content measuring device described in claim 1 or claim 2!
  • the X-ray source is characterized in that the tube voltage is set to 25 kVp or more and 39 kVp or less.
  • the invention according to claim 4 is the bone mineral content measuring device according to any one of claims 1 to 3, wherein
  • the dynamic range of the X-ray detector is 7 digits or less.
  • the invention according to claim 5 is the bone mineral content measuring device according to any one of claims 1 to 4, wherein
  • the X-ray detector is arranged so as to have a distance force im or less with respect to the subject.
  • the invention according to claim 6 is the bone mineral content measuring device according to any one of claims 1 to 5, wherein
  • the dynamic range of the X-ray detector is as wide as 3 digits or more! / X-rays that greatly decrease at bones with high X-ray absorption when irradiated with low-energy X-rays are sufficient.
  • an image contrast capable of measuring the bone mineral content can be obtained, and the measurement accuracy of the bone mineral content can be improved.
  • the tube voltage exceeds 49kVp, the bremsstrahlung X-ray increases more than necessary and the measurement accuracy deteriorates.
  • the tube voltage is set to 49kVp or less, so the measurement accuracy It will not deteriorate.
  • the tube voltage is set to 25 kVp or more and 39 kVp or less, the transmitted X-ray dose necessary for measuring the bone mineral content is obtained and the bremsstrahlung X There is an effect that it is possible to appropriately prevent deterioration in measurement accuracy due to an increase in the number of lines more than necessary.
  • the apparatus can be downsized.
  • the subject since the subject is a human finger or foot, it is not necessary to take a picture in a lying position, for example, while sitting on a chair or the like on a subject table.
  • the amount of bone mineral can be measured by a simple method such as performing an examination while holding the hand. For this reason, the amount of bone mineral is low even when the burden on the subject is small, such as when the subject is an elderly person.
  • the effect of the fact that the measurement and measurement of the above can be easily and conveniently performed can be achieved. .
  • FIG. 11 Side side view showing the configuration of the main part of the bone and bone salinity measuring instrument mounting device according to the present embodiment. It is a figure. .
  • FIG. 22 Schematic diagram showing the internal / internal structure of the bone / salt salinity measuring / mounting apparatus in the present embodiment. It is. .
  • FIG. 33 Front view showing the main components of the bone / salt salinity measuring / mounting device in the present embodiment. It is a figure. .
  • FIG. 1 to FIG. 3 show a configuration example of the bone mineral content measuring apparatus 1 in the present embodiment.
  • the bone mineral content measuring device 1 is connected to a communication network (not shown; hereinafter simply referred to as “network”) such as a LAN (Local Area Network) via a switching hub (not shown), for example.
  • a communication network such as a LAN (Local Area Network)
  • LAN Local Area Network
  • Switch not shown
  • the film may be output from (not shown).
  • the configuration of the bone mineral content measuring device 1 is not limited to the one exemplified here.
  • the bone mineral content measuring device 1 outputs the measurement result (display or film output) of the bone mineral content. May also be configured.
  • a support base 3 is provided on an imaging main body 4 serving as a base so as to be movable up and down with respect to the support 2. Yes.
  • an imaging body 4 having a substantially rectangular parallelepiped shape is rotatably supported via a support shaft 5 in the CW direction and the CCW direction (see FIG. 3 (a)).
  • the bone mineral content measuring apparatus 1 is inclined when imaging is performed with the apparatus angle perpendicular to the ground during imaging. It can be used when shooting at an angle of about 45 degrees (see Fig. 3 (b)).
  • the support base 3 is provided with a drive device 6 that drives its elevation and rotation of the support shaft 5.
  • the drive device 6 includes a known drive motor (not shown) and the like, and the support base 3 and the imaging main body 4 are moved up and down according to the position of the subject H.
  • the bone mineral content measuring device 1 can perform imaging for performing bone mineral content measurement (bone mineral content determination) and general X-ray image imaging with a single device.
  • the support base 3 and the imaging main body 4 can be moved according to the position of the subject H suitable for each imaging.
  • the position of the subject H suitable for imaging is the vicinity of the chest of the subject sitting on the chair X or the chest. The position is adjusted so that it is less likely to get tired when the subject immerses his / her finger in a water tank 30 placed on the subject table 14 described later. It is possible.
  • the support base 3 and the imaging main body 4 are set in accordance with the position of the subject H so that the apparatus is in a state suitable for imaging the subject H.
  • the height and position can be adjusted.
  • the photographing main body 4 is provided with a holding member 7 along the vertical direction.
  • An X-ray source 8 that emits X-rays to the subject H is attached to the upper portion of the holding member 7.
  • a power supply unit 9 for applying a tube voltage and a tube current is connected to the X-ray source 8 via a support shaft 5, a support base 3 and an imaging main body unit 4.
  • An aperture 10 for adjusting the X-ray irradiation field is provided at the X-ray emission port of the X-ray source 8 so as to be freely opened and closed.
  • a tungsten anode X-ray tube is applied as the X-ray source 8.
  • a tungsten anode X-ray tube for example, UH-6RC-307EY type X-ray tube (Hitachi Medical DHF-155HII high-pressure generator) manufactured by Hitachi Medical Corporation can be used.
  • an additional filter 81 is attached to the X-ray source 8.
  • the attached calofilter 81 for example, molybdenum, rhodium, aluminum or the like can be used.
  • the thickness of the additional filter 81 can be equal to or greater than 2.5 mm of aluminum. At this time, it is preferable to narrow the X-ray energy width using a diffraction grating or the like.
  • Fig. 4 shows an X-ray spectrum obtained from an X-ray tube with a molybdenum anode and X obtained from an X-ray tube with a tungsten anode without an additional filter 81 when the applied tube voltage is 30 kVp.
  • the line spectrum W is shown.
  • the maximum X-ray intensity is 100, and the relative intensity is shown.
  • the X-ray spectrum Mo has a large effect on the human body. 17. Extremely strong X-rays with a peak near 8keV are generated.
  • the X-ray detector 11 is taken away from the subject H, The X-rays that are absorbed and attenuated by and are refracted and superimposed near the edge of the bone.
  • the X-ray spectrum W an emission line spectrum is generated in the vicinity of lOkeV. From 15keV to 30keV, the characteristic X-rays are distributed gently. However, the X-ray dose is attenuated when the X-rays are transmitted through the bone by removing the emission line spectrum near lOkeV by the additional filter 81. Can be relaxed, and the accuracy of bone mineral content measurement is improved.
  • the additional filter 81 By attaching the additional filter 81 to the X-ray tube of the tungsten anode, as shown in FIG. 5, X-rays in the low energy band V that adversely affect the human body are removed by the additional filter 81. As a result, the X-ray energy width of the X-rays emitted from the X-ray source 8 is reduced, and unnecessary portions of the multicolor X-rays emitted from the X-ray tube of the tungsten anode are removed to remove the X-rays. Can be monochromatic.
  • the X-ray source 8 is preferably a rotating anode X-ray tube!
  • X-rays are generated when an electron beam emitted from the cathode collides with the anode.
  • This is incoherent (incoherent) like natural light, and is not divergent X-rays but divergent light. If the electron beam continues to hit the place where the anode is fixed, the anode will be damaged by the generation of heat. Therefore, in a normal X-ray tube, the anode is rotated to prevent a decrease in the life of the anode! .
  • the rotating anode X-ray tube causes an electron beam to collide with a surface of a certain size of the anode, and the generated X-ray is emitted toward the subject H from the plane of the certain size of the anode.
  • the size of the plane viewed from this irradiation direction (subject direction) is called the focus.
  • the focus size D (11 m) is the length of one side when the focus is square, the length of the short side when the focus is rectangular or polygonal, and the diameter when the focus is circular. Point.
  • the larger the focal spot size D the more X-rays are emitted.
  • the focal spot size of the X-ray tube of the X-ray source 8 used in this embodiment is 1 ⁇ m force, preferably 500 ⁇ m force S. If it is less than 1 am, a sufficient amount of X-rays that pass through the subject H can be obtained within a few seconds. I can't. If it is longer than 500 m, the image will be blurred and the measurement accuracy will be reduced.
  • the bone mineral content measuring apparatus 1 can adjust the set value of the tube voltage of the power supply unit 9 so that the tube voltage is adjusted and applied to the X-ray source 8. It is now possible to irradiate X-rays with the desired amount of energy!
  • the bone mineral content measuring apparatus 1 can measure the bone mineral content and take a general X-ray image as described above, and measures the bone mineral content.
  • the tube voltage applied to the X-ray source 8 is 20 kVp or more and set to 49 kVp or less.
  • the more preferable setting tube voltage is 25 kVp or more and 39 kVp or less. If the tube voltage is too low, all of the irradiated X-rays are absorbed by the bone of subject H and the amount of transmitted X-rays required for measurement cannot be obtained! /. If the tube voltage is too high, the bremsstrahlung X-rays will increase more than necessary and the measurement accuracy will deteriorate.
  • the bone mineral content measuring apparatus 1 can measure the bone mineral content in a low energy band (15 keV to 4) called so-called soft X-ray with a tube voltage of 50 kVp or less. OkeV) X-ray images can be taken.
  • the tube voltage applied to the X-ray source 8 was set to 50 kVp or higher. Had gone. By setting the tube voltage as high as this, it is possible to obtain an image contrast that can withstand diagnosis and the like even when the dynamic range force is about three orders of magnitude.
  • the tube voltage applied to the X-ray source 8 is set lower than 50 kVp, the force that can provide an image contrast that can withstand diagnosis etc. for soft tissues such as skin S, the magnitude of X-ray absorption Sufficient contrast cannot be obtained at the bone.
  • a digital X-ray detector having a wide dynamic range is used as the X-ray detector 11 as will be described later, so that X-rays that greatly decrease in the bone can be sufficiently diagnosed.
  • a tolerable contrast can be obtained and bone mineral content can be measured.
  • the tube voltage applied to the X-ray source 8 is set to 50 kVp or more and 150 kVp or less.
  • general X-ray imaging both low-energy imaging and high-energy imaging are performed.
  • subtraction processing energy subtraction processing
  • a tube voltage of 60 kVp is applied in the case of shooting in the low energy band, and in the case of shooting in the high-engineering energy band.
  • a tube voltage of 120 kVp is applied to the.
  • tube voltage at the time of bone mineral content measurement and the tube voltage at the time of general X-ray imaging are not limited to the ranges exemplified here.
  • One end of a detector holding unit 12 that holds an X-ray detector 11 that detects X-rays that have passed through the subject H is attached to the lower part of the holding member 7.
  • the X-ray detector 11 can be pulled out from the detector holding portion 12 in the horizontal direction (FIG. 3 (a)). It is preferable that the X-ray detector 11 can be pulled out in both the left and right directions.
  • the X-ray detector 11 is fixed in the detector holding portion 12 by a fixing means (not shown) so as not to drop during oblique imaging.
  • a digital X-ray detector such as CR (Computed Radiography) force set or FPD (Flat panel X-ray detector) containing a stimulable phosphor sheet is applied.
  • the power to do S is applied.
  • a CR force set for example, a REGIUS force set for the REGIUS Vstage Model 190 can be used.
  • the X-ray detector 11 is not limited to CR or FPD as long as it is a digital X-ray detector.
  • Silver halide photographic light-sensitive materials have been widely used for conventional X-ray imaging.
  • the amount of X-ray transmitted through the subject is measured.
  • the dynamic range force is about an order of magnitude, and accurate measurement is impossible.
  • image data can be obtained directly as a digital image signal, which can be processed accurately and quickly.
  • the X-ray detector 11 has a dynamic range of three digits or more.
  • the density range of the image detected by the bone mineral content measuring apparatus 1 in this embodiment is 3 Corresponds to X-ray absorption coefficient of more than digits.
  • the X-rays irradiated to the subject H are attenuated (decreased) by several tenths by passing through the bone.
  • the X-ray intensity distribution on the surface of the two-dimensional X-ray detector 11 usually has a difference (variation) of about twice the maximum value and the minimum value of the X-ray intensity. Therefore, in order to accurately measure the bone mineral content, it is necessary to perform X-ray intensity correction (shading correction described later) on the X-ray detector 11 surface.
  • the dynamic range of the X-ray detector 11 needs to be at least three digits or more in order to accurately measure bone mineral density. Since the dynamic range is 3 digits or more, it is possible to achieve higher sensitivity and higher resolution than when shooting with X-ray film, etc., and the tube voltage applied to the X-ray source 8 is low! /, Even when taking images in the low energy band, it is possible to detect images with good contrast.
  • the dynamic range is not particularly limited as long as it is 3 digits or more, and the dynamic range is as wide as possible in consideration of measurement errors. However, if the dynamic range exceeds 7 digits, it takes time to process the image data and the equipment becomes expensive, so the dynamic range is preferably 7 digits or less! /.
  • the relative position of the X-ray source 8 and the detector holding unit 12 is fixed, and the distance is R.
  • the distance from X-ray source 8 to subject H is rl
  • the distance between subject H and the X-ray detector is r2.
  • both the distance from the X-ray source 8 to the subject and the distance from the subject to the X-ray detector 11 may be appropriately variable.
  • the distance from the subject H to the X-ray detector 11 is 15 cm or more.
  • the distance force m to the subject H-force X-ray detector 11 when the distance force m to the subject H-force X-ray detector 11 is exceeded, the apparatus becomes very large.
  • the X-ray dose to be detected by the X-ray detector 11 is greatly reduced by the distance square law, if the distance is too far, the image is not sharp. For this reason, the distance from the subject H to the X-ray detector 11 is preferably lm or less.
  • An X-ray dose detector 13 for detecting the irradiated X-ray dose is provided below the holding member 7 and on the lower surface of the detector holder 12.
  • a flat object table 14 is provided so that one end thereof is attached to the holding member 7.
  • the subject table 14 is provided with a motor or the like that changes the position relative to the holding member 7 in order to enable imaging magnification adjustment (position adjustment in the height direction) during phase contrast imaging in general X-ray imaging. Connected to device 15.
  • a water tank 30 for inserting the finger of the subject who is the subject H at the time of radiographing can be attached to and detached from the X-ray irradiation region irradiated from the X-ray source 8 on the subject table 14. It is placed.
  • the water tank 30 is a liquid material holding member that holds the liquid material 31 containing the subject H at the time of imaging, and the subject H is placed in the water tank 30 inside the water tank 30. At this time, the liquid material 31 is held in such an amount that the entire specimen H can be sufficiently immersed.
  • the subject H is submerged in the liquid material 31 having a certain depth, and X-ray imaging is performed with the subject H sufficiently immersed.
  • the depth (amount) of the liquid material 31 held in the water tank 30 varies depending on the subject H. For example, about 3 cm to 10 cm for fingers and about 5 cm to 15 cm for feet.
  • liquid substance 31 water is most convenient, inexpensive and safe because it is preferable. You may use the thing which added the fragrance
  • a liquid 31 that is closer to human flesh and body fluid than water.
  • a hyaluronic acid solution, a gelatin solution, a glycerin solution, a mannose solution, a rice juice, a starch solution, etc. alone or in a solution with water can be used.
  • the liquid material 31 may be held in the water tank 30 after being placed in a plastic bag or the like so that the subject H does not directly touch the liquid material 31.
  • the subject table 14 place the finger, which is the subject H, on the subject table 14 and then place the liquid 31 in a plastic bag on the finger during imaging, for example, using a compression plate. Then press liquid 31 from above. As a result, the thickness of the finger and the liquid material 31 can be made constant.
  • the subject table 14 that does not require the water tank 30 functions as a liquid material holding member that holds the liquid material 31 placed in a plastic bag or the like.
  • liquid 31 or the liquid 31 in a bag or the like may be heated to about body temperature.
  • a fixing tool (not shown) for fixing the subject's fingers can be attached to and removed from the subject table 14 by itself.
  • the bone mineral content measuring apparatus 1 is capable of taking a general X-ray image in addition to measuring the bone mineral content (bone mineral content) as described above.
  • the bone mineral content measuring apparatus 1 When taking general X-ray images, remove the aquarium 30 from the subject table 14, place a finger on the subject table 14 as the subject H, and fix the finger with a fixture. And then shoot.
  • the subject table 14 may be provided with a sensor or the like that detects the orientation of the fingers or the left and right.
  • An example of the bone mineral content measuring apparatus 1 in the present embodiment is as follows.
  • the entire apparatus height HI force S2200mm, the distance H2 between the X-ray tube 8 and the subject table 14 is manually in the range of 430mm to 650mm.
  • the distance H3 from the subject table 14 to the X-ray detector 11 can be manually adjusted within the range of 490 mm to 750 mm.
  • the apparatus width W is 780 mm and the apparatus depth Dl is 1160 mm
  • the limit of the distance A shown in FIG. 1 is preferably about 440 mm
  • the limit of the distance B is preferably about 470 mm.
  • the height of the subject table 14 (distance from the subject table 14 to the ground) H4 is preferably 900 mm or less (see FIG. 2).
  • X-rays are irradiated on the end of the imaging apparatus main body 4 above the subject table 14 so that X-rays emitted from the X-ray source 8 do not reach the subject.
  • a shielding face guard 21 is provided extending substantially in the vertical direction.
  • the subject should be at the shooting position on the lower surface of the subject table 14 without hitting the leg.
  • the protector 25 is provided so as to extend substantially in the vertical direction. As a result, the subject can reach the imaging position without hitting his / her leg on the detector holding unit 12.
  • fixing tool the face guard 21 and the protector 25 are not essential components, and the fixing tool, the compression plate 21 and the protector 25 may not be used.
  • the imaging main unit 4 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like (all not shown).
  • a control device 22 is provided.
  • An X-ray dose detection unit 13, a power supply unit 9, a drive device 6, and a position adjustment device 15 are connected to the control device 22 via a bus 23.
  • the control device 22 includes a keyboard touch panel (not shown) for inputting photographing conditions and the like, an input device 24a having a position adjusting switch for adjusting the position of the object table 14, and the CRT.
  • An operation device 24 having a display device 24b such as a display or a liquid crystal display is connected.
  • the ROM of the control device 22 stores a control program and various processing programs for controlling each part of the bone mineral content measuring device 1.
  • the CPU cooperates with the control program and the various processing programs.
  • the bone mineral content measuring device 1 controls the operation of each part in an integrated manner, performs X-ray imaging, and generates X-ray image data.
  • the CPU controls the driving device 6 on the basis of the imaging conditions of the subject, measurement of bone mineral content or general X-ray imaging! /, The type of imaging, and the like. Raise and lower 4 to a height that matches the height of the subject, and rotate support shaft 5 to adjust the X-ray irradiation angle. Then, the position adjustment device 15 adjusts the position of the subject table 14 and adjusts the magnification of phase contrast imaging in the case of general X-ray imaging. Thereafter, the imaging unit 4 performs imaging processing, and the power supply unit 9 applies a tube voltage and a tube current to the X-ray source 8 to irradiate the subject H with X-rays. When the X-ray dose input from 13 reaches the preset X-ray dose, the X-ray irradiation from the X-ray source 8 is stopped by controlling the power supply unit 9.
  • the ROM of the control device 22 includes various programs related to image processing and bone mineral quantification, such as an image processing program and bone mineral quantification program, as well as these processes. Stores various data used when executing physical programs.
  • the CPU of the control device 22 cooperates with these control programs and various processing programs to measure the bone mineral content based on the image processing of the acquired image data and the data subjected to the image processing. I do.
  • control device 22 performs the following processing.
  • the control device 22 performs X-rays using an aluminum step in order to correct the device characteristics when the bone mineral content measuring device 1 is shipped from the factory or when it is installed at the installation location. Take a picture and based on the obtained image data, find the shading correction value for the deviation of the X-ray dose on the 14th subject table. Then, shading correction is performed on the image data based on the obtained correction value.
  • X-ray imaging is performed using a bone mineral quantification phantom containing calcium carbonate.
  • the control device 22 transmits the bone mineral quantitative phantom from the X-ray amount detected by the X-ray detector 11 and transmitted through the bone mineral quantitative phantom and the calcium carbonate content in the bone mineral quantitative phantom. Determine the relationship between X-ray dose and calcium carbonate content.
  • the control device 22 calculates the relationship for each tube voltage of the X-ray source 8. Store in a storage unit (not shown) such as ROM. Then, when an image is taken to measure the bone mineral content of the subject H, it is stored in association with the tube voltage of the X spring source 8 at the time of imaging! /, X dose and carbonate content The bone mineral content is quantified based on the relationship. Note that the relationship between the X-ray dose stored in the storage unit of the control device 22 and the calcium carbonate content is not limited to this if the bone mineral content can be quantified. And the calcium carbonate content, or the X-ray dose detected by the X-ray detector 11 and the calcium equivalent amount.
  • control device 22 when performing general X-ray image capturing, the control device 22 performs gradation processing and density adjustment for adjusting the image contrast to the image data of the X-ray image acquired by the X-ray detector 11. Image processing such as adjustment processing and frequency processing for adjusting sharpness is performed. As a result, it is possible to perform image processing suitable for conditions such as an imaging region.
  • the aluminum step was used to determine the shearing correction value for the X-ray irradiation bias on the 14th surface of the subject table, and the X-ray image was taken using the bone mineral quantification phantom. Find the relationship between absorbed and attenuated X-ray dose and calcium carbonate content.
  • the height of the subject table 14 is adjusted to the position of the subject H of the subject, and the X-ray detector 11 and the subject H are separated by a distance of 15 cm or more and lm or less. Adjust as follows. Further, a water tank 30 holding an appropriate amount of liquid substance 31 is placed at a predetermined position on the subject table 14, and the subject H is immersed in the water tank 30. For example, when the subject H is a finger, the finger is sufficiently immersed in the liquid 31 in the water tank 30. Then, a predetermined amount of X-rays are irradiated from the X-ray source 8 with the fingers immersed in the liquid material 31 of the water tank 30, and X-ray images are taken.
  • the X-ray dose detected by the X-ray detector 11 is sent to the control device 22 as image data.
  • the control device 22 first determines the bone mineral content measurement target in the image data.
  • the bone mineral content is determined based on the relationship between the X-ray dose obtained and the calcium carbonate content.
  • X-ray images are shot by irradiating soft X-rays with low energy, so in the case of an original image that is not processed, the entire image is captured. It becomes ugly and the finger image cannot be clearly identified.
  • a quantitative image obtained by performing processing based on the correction coefficient the finger image can be clearly identified, and the bone mineral content is accurately measured based on this quantitative image. It becomes possible.
  • the control device 22 executes the following processing.
  • X-ray imaging using aluminum step-edge A1 detects X-ray dose that passes through aluminum step wedge A1 with different thickness and X-ray dose that passes through acrylic Ac. Obtain the attenuation coefficient of aluminum.
  • is a liquid such as water as described above.
  • is the bone of the finger that is the subject's heel.
  • L can be made constant by immersing your finger in the water tank 30 containing the liquid material 31 such as water and adjusting the amount of the liquid material 31.
  • the thickness of the object is set to “L”.
  • the X-ray dose incident on the object is “I”, and the X-ray dose attenuated by the object is “I”.
  • Equation (5) is obtained from Equation (4).
  • the energy (Eeff) corresponding to Lu is obtained based on the absorption coefficient database.
  • Equation (8) is obtained from Equation (6) and Equation (7).
  • the control device 22 then calculates the calculation result X and the actual aluminum step edge.
  • the correction coefficient in the bone mineral content measuring device 1 is obtained.
  • control device 22 performs quantitative measurement of aluminum using this correction coefficient.
  • the image density correlates with the X-ray dose detected by the X-ray detector 11
  • the X-ray dose and the X-ray attenuation rate are measured.
  • the theoretical thickness X of the aluminum step edge A1 as described above.
  • A1 can be calculated. Then, by correcting using the correction coefficient, the thickness X of the aluminum can be quantified.
  • the bone mineral content measuring device 1 in the present embodiment the bone mineral content is simply and accurately measured using an apparatus that can be used for general X-ray imaging. That power S.
  • bone mineral content can be measured at the time of regular medical examinations, etc., and measurement can be repeated over time. For this reason, prevention and early detection of osteoporosis that often occurs in the elderly can be performed with as little burden as possible on the elderly.
  • tungsten anode X-ray tube is used as the X-ray source 8 with a low tube voltage setting, X-rays with excellent monochromaticity can be obtained, and accurate bone mineral content can be measured. Can do.
  • the tungsten anode X-ray tube is extremely strong in the specified energy band like the molybdenum anode X-ray tube! /, And there is no characteristic X-ray that generates the emission line spectrum! /, So it is gentle over a certain energy band. Distributing characteristics X-rays can be used, and the attenuation of X-ray dose when X-rays pass through the bone is mitigated, and the accuracy of bone mineral content measurement is improved.
  • the tube voltage of the X-ray source 8 is 20 kVp or more, 49 kVp or less, more preferably 25 kVp or more, Therefore, the transmission X-ray dose necessary for bone mineral content measurement can be obtained, and the bremsstrahlung X-ray does not increase more than necessary, so the measurement accuracy is not deteriorated. .
  • the scattered X-rays can be reduced without reducing the primary X-ray dose due to the so-called Gradel effect. Can capture the transmitted X-ray dose from X-rays with better monochromaticity.
  • the distance force between the X-ray detector 11 and the subject H is less than Sim, the measurement accuracy of the bone mineral amount is increased so that the X-ray dose to be detected by the X-ray detector 11 does not greatly decrease. .
  • the size of the apparatus can be reduced.
  • the dynamic range of the X-ray detector 11 is as wide as 3 digits or more, X-rays that greatly decrease in the bone can be measured sufficiently, and the measurement accuracy of bone mineral content can be improved.
  • the dynamic range is 7 digits or less, the time spent on image data processing is short, and the device cost can be kept low.
  • subject H is a human finger or the like
  • the subject sat in chair X and dipped his hand into aquarium 30 placed on subject table 14 in front of the apparatus.
  • the bone mineral content can be measured by a simple method of photographing in a state.
  • the force S and the bone mineral content measuring device 1 configured so that the bone mineral content measuring device 1 can also serve as a general X-ray imaging apparatus are: It may be a dedicated machine for measuring bone mineral content.
  • the force subject H is not limited to the force H as an example of the human hand as the subject H, and the bone mineral content is measured using the foot or other body part as the subject H. May be.

Abstract

It is intended to provide an apparatus for determining bone salt content which is widely applicable to medical examinations because of enabling convenient determination of bone mass content while imposing little burden even on aged subjects and which can establish such a high accuracy as being usable in the early detection of osteoporosis and follow-up for treating the same.

Description

明 細 書  Specification
骨塩量測定装置  Bone mineral content measuring device
技術分野  Technical field
[0001] 本発明は、骨塩量測定装置に係り、特に、単一エネルギー X線を用いて骨塩量を 測定する骨塩量測定装置に関する。  [0001] The present invention relates to a bone mineral content measuring apparatus, and more particularly, to a bone mineral content measuring apparatus that measures bone mineral content using single energy X-rays.
背景技術  Background art
[0002] 従来、医療現場において、骨粗鬆症の診断を行うために、骨塩量の測定 (骨塩定 量)が行われている。この骨塩量の測定に用いられる骨塩定量法としては、例えば、 二重エネルギー X泉吸収法 (Dual X-ray Absorptiometry : DXA法)、定量的超音波骨 密度測定法(Quantitative Ultrasound: QUS法)、定量的 X線 CT検査法(Quantitativ e Computed Tomography: QCT法)、単一エネルギー X線吸収法(Single X-ray Abso rptiometry : SXA法)等が知られており、現在は、このうち二重エネルギー X線吸収法 が骨塩量の測定の標準的方法となって!/、る。  [0002] Conventionally, in the medical field, measurement of bone mineral content (bone mineral metering) has been performed in order to diagnose osteoporosis. Examples of bone mineral quantification methods used to measure this bone mineral content include the dual energy X-spring absorption method (Dual X-ray Absorptiometry: DXA method) and the quantitative ultrasonic bone density measurement method (Quantitative Ultrasound: QUS method). ), Quantitative X-ray CT (Quantitative Computed Tomography: QCT), single energy X-ray absorption (SXA method), etc. are currently known. The heavy energy X-ray absorption method has become the standard method for bone mineral content measurement!
[0003] 具体的には、例えば、二重エネルギー X線吸収法を用いるものとしては、エネルギ 一が異なる放射線を照射して得られた複数の画像間でエネルギーサブトラクシヨンを 行うことにより差信号の画像信号を取得し、主走査方向及び/又は副走査方向で平 均化処理した補正用の画像信号と前記差信号との間で引き算をして補正差分信号 を得て、この補正差分信号により骨塩定量分析を行う方法が知られている(例えば、 特許文献 1参照)。  [0003] Specifically, for example, in the case of using the dual energy X-ray absorption method, a difference signal is obtained by performing energy subtraction between a plurality of images obtained by irradiating radiations having different energy levels. Image signal, and subtracting between the correction image signal averaged in the main scanning direction and / or sub-scanning direction and the difference signal to obtain a correction difference signal, and this correction difference signal There is known a method of performing bone mineral quantitative analysis by the method (for example, see Patent Document 1).
[0004] また、定量的 X線 CT検査法を用いるものとしては、 CT断層画像を所得して、この C T断層画像から弁別抽出された特定骨組織における各画素ごとの CT値から骨密度 を演算する装置が提案されてレ、る (例えば、特許文献 2参照)。  [0004] In addition, as a method using quantitative X-ray CT examination, a CT tomographic image is obtained, and the bone density is calculated from the CT value for each pixel in a specific bone tissue that is discriminated and extracted from this CT tomographic image. An apparatus that performs this process has been proposed (see, for example, Patent Document 2).
[0005] また、単一エネルギー X線吸収法を用いて骨塩量を測定する手段としては、単一ェ ネルギ一の X線を被検体に照射して、被検体の X線吸収値を測定するにあたり、連 続 X線を単色化するのに単一の金属材料のみからなる 1種類のフィルタを用い、フィ ルタの厚さ、コリメータの径、管電圧及び電流の最適化を図ることによって、簡易な構 成で X線を単色化する骨塩量測定装置が提案されている(例えば、特許文献 3参照) [0006] さらに、水槽に入れた手指を被検体として乳房画像撮影装置で撮影し、得られた画 像データに基づいて被検体の骨塩量を測定することも提案されている(例えば、非特 許文献 1参照)。 [0005] As a means of measuring bone mineral density using the single energy X-ray absorption method, the subject is irradiated with a single energy X-ray and the X-ray absorption value of the subject is measured. In order to achieve this, by using a single type of filter made of only a single metal material to monochromatic continuous X-rays, the filter thickness, collimator diameter, tube voltage and current are optimized. A bone mineral content measuring device that makes X-rays monochromatic with a simple configuration has been proposed (for example, see Patent Document 3). [0006] Furthermore, it has been proposed that a finger placed in a water tank is photographed with a breast imaging apparatus as a subject and the bone mineral content of the subject is measured based on the obtained image data (for example, non-specialty). See Permissible Literature 1).
特許文献 1:特開平 5— 1 11480号公報  Patent Document 1: Japanese Patent Laid-Open No. 5-1111480
特許文献 2:特開 2005— 192657号公報  Patent Document 2: JP-A-2005-192657
特許文献 3 :特開 2005— 319236号公報  Patent Document 3: Japanese Patent Laid-Open No. 2005-319236
非特許文献 1:豊福不可依外 7名「位相コントラストマンモグラフィ (PCM)装置による 骨塩定量測定一アルミニウムと水ファントムによる基礎的検討 Jpn. J. Med. Ph ys. , Vol. 26 supplement No. 3, pp. 77— 78 , (2006)  Non-Patent Document 1: Toyofuku Inoue 7 "Bone salt quantitative measurement with phase contrast mammography (PCM) apparatus-Basic study with aluminum and water phantom" Jpn. J. Med. Phys., Vol. 26 supplement No. 3 , pp. 77—78, (2006)
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0007] ところで、骨粗鬆症は高齢化にともなって増加し、高齢者の骨折、とくに大腿骨頸 部骨折は、寝たきりに結びつく可能性が高い。特に 40歳以上の女性では急激に骨 塩量が低下し、 0. 70g/cm2以下になると骨折を起こし易くなるといわれている。骨粗 鬆症の患者が増加することは、個々の患者の生活に支障をきたすことはもちろん、高 齢者人口が増加する日本においては医療費の増加に拍車をかけることとなり大きな 問題である。 [0007] By the way, osteoporosis increases with aging, and fractures of elderly people, particularly femoral neck fractures, are likely to be bedridden. In particular, it is said that in women over 40 years old, bone mineral content rapidly decreases, and fractures are more likely to occur when it is below 0.70 g / cm 2 . Increasing the number of patients with osteoporosis is not only an obstacle to the lives of individual patients, but also a major problem in Japan, where the elderly population is increasing, which spurred an increase in medical expenses.
[0008] 骨粗鬆症は適当な運動を行い、食事から充分なカルシウムを摂取することにより、 力、なり予防できると言われている。そこで個々人が早期に自らの骨塩量を正確に把 握して、骨粗鬆症の予防に努めることが重要である。したがって今日骨塩定量の検 診が行われるようになりつつある。  [0008] It is said that osteoporosis can be prevented by force by taking appropriate exercise and taking sufficient calcium from the diet. Therefore, it is important for individuals to accurately grasp their own bone mineral content at an early stage and strive to prevent osteoporosis. Therefore, today, bone mineral quantification is being examined.
[0009] しかし、骨塩量の変化はごくわずかであり、骨粗鬆症の予防、早期発見のための骨 塩定量の測定誤差は 1 %前後が求められている。また、充分にカルシウムを摂取して 適切な運動を続けたとしても、骨塩量の増加は 1年に 0. 5%程度と考えられており、 骨粗鬆症の予防、早期発見及び治療を適切に行うためには、少なくとも数年におよ ぶ長期間にわたって定期的に骨塩定量の検診を行い、経過を観察することが好まし い。そこで、骨粗鬆症の予防、早期発見等のためには、簡便に骨塩量の測定を行え るようにすることカ求められる。 [0009] However, the change in the amount of bone mineral is very small, and the measurement error of bone mineral content determination for osteoporosis prevention and early detection is required to be around 1%. Even if calcium is adequately consumed and appropriate exercise is continued, the increase in bone mineral density is considered to be about 0.5% per year, and appropriate prevention, early detection and treatment of osteoporosis are performed. In order to do this, it is preferable to regularly check the bone mineral content for a long period of at least several years and observe the progress. Therefore, bone mineral content can be easily measured for the prevention and early detection of osteoporosis. It is required to do so.
[0010] また、骨粗鬆症は、前述のように高齢者が多く罹患する疾患であるため、できるだけ 検査を受ける者に負担をかけないようにして骨塩量の測定を行うことが好ましい。 [0010] Further, as mentioned above, osteoporosis is a disease that affects a large number of elderly people. Therefore, it is preferable to measure the amount of bone mineral in such a way as to impose as little burden on the person undergoing the examination as possible.
[0011] しかしながら、二重エネルギー X線吸収法は、測定精度は優れているが測定に数 分以上の時間力 Sかかるとの欠点がある。このため、高齢者が定期的に行う検診の手 法としては好ましくない。また、二重エネルギー X線吸収法の場合には、骨塩量の測 定と同時に高分解能の画像として情報を得ることはできない。  [0011] However, the dual energy X-ray absorption method has excellent measurement accuracy but has a drawback that it takes time force S of several minutes or more for measurement. For this reason, it is not preferable as a method of screening regularly performed by elderly people. In addition, in the case of the dual energy X-ray absorption method, information cannot be obtained as a high-resolution image simultaneously with the measurement of bone mineral content.
[0012] 定量的 X線 CT検査法は、立体的に情報を得ることができる力 被曝線量が多いと いう欠点があり、検診(特に長期間にわたって定期的に行う検診)には適していない。  [0012] Quantitative X-ray CT examination has the disadvantage that it has a large power exposure dose that can obtain information in three dimensions, and is not suitable for examinations (especially, examinations that are performed regularly over a long period of time).
[0013] さらに、超音波装置を用いる定量的超音波骨密度測定法については、測定精度な どの問題があり、検診利用の有効性の評価が始まったば力、りであり、未だ実用には適 さない。  Furthermore, the quantitative ultrasonic bone density measurement method using an ultrasonic device has problems such as measurement accuracy. Not suitable.
[0014] これらに対して、単一エネルギー X線吸収法は、 X線フィルム等を用いて被検体を 撮影することにより骨塩量の測定を行うことができ、もっとも簡便に骨塩定量が可能な 手法である。  [0014] On the other hand, the single energy X-ray absorption method can measure the amount of bone mineral by taking an image of the subject using an X-ray film, etc., and the bone mineral content can be determined most easily. It is a technique.
[0015] X線を用いて骨塩量を測定するためには、例えば放射光 X線源等から得られる単 色 X線を使用しなければならない。この点、非特許文献 1に記載の如く乳房画像撮影 装置等にぉレ、て用いられて!/、るモリブデン陽極 X線管では単色性に優れた X線を照 射すること力 Sできる力 人体に対する X線の影響が大きいとの問題がある。このため、 従来医療現場では、制動 X線が強!/、タングステン陽極 X線管が広く用いられて!/、る。 しかし、タングステン陽極 X線管から照射される X線は多色 X線であって、さらに通常 の骨撮影は 50kVp以上の管電圧設定であるため測定精度が極めて低!/、。このため 、現在では単一エネルギー X線吸収法は他の方法の補助的役割を担って!/、るにす ぎず、この手法単独では骨粗鬆症の早期発見、進行具合の確認といった医学的利 用には耐えられな!/、との問題がある。  [0015] In order to measure bone mineral content using X-rays, for example, monochromatic X-rays obtained from a synchrotron radiation X-ray source or the like must be used. In this regard, as described in Non-Patent Document 1, it is used in mammography devices, etc.! /, Molybdenum anode X-ray tube has the power to irradiate X-rays with excellent monochromaticity S There is a problem that the influence of X-rays on the human body is large. Therefore, in conventional medical practice, braking X-rays are strong! / And tungsten anode X-ray tubes are widely used! /. However, the X-rays emitted from the tungsten anode X-ray tube are multi-colored X-rays, and the normal bone scan is set to a tube voltage of 50 kVp or higher, so the measurement accuracy is extremely low! For this reason, the single energy X-ray absorption method now plays an auxiliary role for other methods! /, But this method alone can be used for medical purposes such as early detection of osteoporosis and confirmation of progress. Is unbearable! /.
[0016] また、非特許文献 1に記載の乳房画像撮影装置は、乳房における微小石灰化や病 変に起因する陰影を診断するために、 X線の屈折に起因する屈折コントラスト強調を 用いるものであり、線源にモリブデン陽極 X線管を使用するものである。一方、骨塩量 を正確に測定するためには、骨部の吸収コントラスト画像に基づく定量を行うのが好 ましいが、屈折コントラスト強調が発生しやすい、輝線スペクトルを有するモリブデン 陽極 X線管を使用して撮影された画像では、骨部の辺縁近傍に屈折コントラストによ る X線量の増減が表れる。例えば、手指の如く小さな複数の骨部を撮影して骨塩量 を測定する場合には、他方式による骨塩量測定に比べて測定値に若干の誤差が発 生することが懸念される。 In addition, the mammography apparatus described in Non-Patent Document 1 uses refraction contrast enhancement caused by X-ray refraction in order to diagnose a shadow caused by microcalcification or disease in the breast. Yes, it uses a molybdenum anode X-ray tube as a radiation source. Meanwhile, bone mineral content In order to measure accurately, it is preferable to perform quantification based on the absorption contrast image of the bone, but it is taken using a molybdenum anode X-ray tube with an emission line spectrum, which tends to cause refraction contrast enhancement. In the image, an increase or decrease in X-ray dose due to refraction contrast appears near the edge of the bone. For example, when bone mineral content is measured by photographing a plurality of small bones such as fingers, there is a concern that some errors may occur in the measured value compared to bone mineral content measurement by other methods.
[0017] 上述の如ぐ骨粗鬆症の予防、早期発見及び治療を適切に行うためには、長期間 にわたる骨塩定量が行われる力 必ずしも単一の方式で骨塩量の測定が行われると は限らない。そこで、測定方式によって生じる測定値の誤差は、既存の測定方式で の測定値に合わせる等の補正が必要であった力 測定方式が多岐に亘る場合には 、補正処理が極めて煩雑なものとなる可能性がある。  [0017] In order to appropriately carry out prevention, early detection and treatment of osteoporosis as described above, the ability to perform bone mineral quantification over a long period of time is not always performed in a single method. Absent. Therefore, the error in the measurement value caused by the measurement method becomes extremely complicated when there are a wide variety of force measurement methods that required correction such as matching with the measurement value in the existing measurement method. there is a possibility.
[0018] そこで、本発明は以上のような課題を解決するためになされたものであり、高齢者 等であっても負担が少なぐ広く検診に用いることができる簡便な骨塩定量が可能で あり、かつ、骨粗鬆症の早期発見及び治療のための経過観察に利用可能な測定精 度を実現することのできる骨塩量測定装置を提供することを目的とする。  [0018] Therefore, the present invention has been made to solve the above-described problems, and enables simple bone mineral quantification that can be used for a wide range of examinations with less burden even for elderly people. It is another object of the present invention to provide a bone mineral content measuring apparatus capable of realizing measurement accuracy usable for follow-up for early detection and treatment of osteoporosis.
課題を解決するための手段  Means for solving the problem
[0019] 前記課題を解決するために、請求の範囲第 1項に記載の骨塩量測定装置は、 被検体の X線画像を撮影し、得られた画像データに基づレ、て前記被検体の骨塩量 を測定する骨塩量測定装置であって、 [0019] In order to solve the above-mentioned problem, the bone mineral content measuring device according to claim 1 captures an X-ray image of a subject, and based on the obtained image data, the subject is measured. A bone mineral content measuring device for measuring the bone mineral content of a specimen,
前記被検体に対して X線を照射する X線源と、  An X-ray source for irradiating the subject with X-rays;
前記 X線源から照射され入射した X線量に応じた X線画像を記録する X線検出器と 撮影時に前記被検体を内包する液状物を保持する液状物保持部材と、を備え、 前記 X線源は、固有濾過が 2. 5mm厚アルミニウム以上のタングステン陽極 X線管 であり、  An X-ray detector for recording an X-ray image corresponding to an X-ray dose irradiated from the X-ray source and a liquid substance holding member for holding a liquid substance containing the subject at the time of imaging; The source is a tungsten anode X-ray tube with an intrinsic filtration of 2.5 mm thick aluminum or more,
前記 X線検出器は、ダイナミックレンジが 3桁以上であって、前記被写体との距離が 15cm以上離れるように配置されて!/、ることを特徴とする。  The X-ray detector has a dynamic range of 3 digits or more and is arranged so that the distance from the subject is 15 cm or more! /.
[0020] 請求の範囲第 2項に記載の発明は、請求の範囲第 1項に記載の骨塩量測定装置 において、 [0020] The invention according to claim 2 is the bone mineral content measuring device according to claim 1. In
前記 X線源は、管電圧が 20kVp以上、 49kVp以下に設定されていることを特徴と する。  The X-ray source has a tube voltage set to 20 kVp or more and 49 kVp or less.
[0021] 請求の範囲第 3項に記載の発明は、請求の範囲第 1項又は請求の範囲第 2項に記 載の骨塩量測定装置にお!/、て、  [0021] The invention described in claim 3 is the bone mineral content measuring device described in claim 1 or claim 2!
前記 X線源は、管電圧が 25kVp以上、 39kVp以下に設定されていることを特徴と する。  The X-ray source is characterized in that the tube voltage is set to 25 kVp or more and 39 kVp or less.
[0022] 請求の範囲第 4項に記載の発明は、請求の範囲第 1項から請求の範囲第 3項のい ずれか一項に記載の骨塩量測定装置にお!/、て、  [0022] The invention according to claim 4 is the bone mineral content measuring device according to any one of claims 1 to 3, wherein
前記 X線検出器のダイナミックレンジは、 7桁以下であることを特徴とする。  The dynamic range of the X-ray detector is 7 digits or less.
[0023] 請求の範囲第 5項に記載の発明は、請求の範囲第 1項から請求の範囲第 4項のい ずれか一項に記載の骨塩量測定装置にお!/、て、 [0023] The invention according to claim 5 is the bone mineral content measuring device according to any one of claims 1 to 4, wherein
前記 X線検出器は、前記被検体との距離力 im以下となるように配置されていること を特徴とする。  The X-ray detector is arranged so as to have a distance force im or less with respect to the subject.
[0024] 請求の範囲第 6項に記載の発明は、請求の範囲第 1項から請求の範囲第 5項のい ずれか一項に記載の骨塩量測定装置にお!/、て、  [0024] The invention according to claim 6 is the bone mineral content measuring device according to any one of claims 1 to 5, wherein
人体の手指又は足であることを特徴とする。 発明の効果  It is a human finger or foot. The invention's effect
[0025] 単一エネルギー X線吸収法によって骨塩量を測定する場合には、被検体に対して 単色 X線を照射する必要があるが、請求の範囲第 1項に記載の発明によれば、固有 濾過が 2. 5mm厚アルミニウム以上のタングステン陽極 X線管を X線源として用いる ので、不要な部分の X線を除去することができ、 X線を単色化することができ、さらに モリブデン陽極 X線管に比べて屈折コントラスト強調が生じにくいので、正確な骨塩 量の測定を行うことができる。  [0025] When measuring the amount of bone mineral by the single energy X-ray absorption method, it is necessary to irradiate the subject with monochromatic X-rays. According to the invention described in claim 1, Tungsten anode with an intrinsic filtration of 2.5 mm thick aluminum or more X-ray tube is used as an X-ray source, so unnecessary X-rays can be removed, X-rays can be monochromatic, and molybdenum anode Compared with X-ray tubes, refraction contrast enhancement is less likely to occur, so accurate bone mineral content can be measured.
[0026] また、 X線が物体 (被検体)を透過すると 2次 X線として色々なエネルギーをもつ散 乱 X線が生じ、この散乱 X線は X線画像においてノイズとなる。この点、被検体から X 線検出器を 15cm以上離すことにより、いわゆるグレーデル効果によって 1次 X線量 を減らすことなく散乱 X線を低減することができ、 X線検出器によってより単色性に優 れた X線による透過 X線量を捉えることができる。 [0026] Further, when X-rays pass through an object (subject), scattered X-rays having various energies are generated as secondary X-rays, and these scattered X-rays become noise in the X-ray image. In this regard, by separating the X-ray detector by 15 cm or more from the subject, the scattered X-rays can be reduced without reducing the primary X-ray dose due to the so-called Gradel effect, and the monochromaticity is further enhanced by the X-ray detector. X-ray transmitted X-ray dose can be captured.
[0027] また、 X線検出器のダイナミックレンジが 3桁以上と広!/、ため、低エネルギーの X線 を照射した場合に X線吸収の大きい骨部で大きく低下する X線についても、十分に 骨塩量を計測可能な画像コントラストを得ることができ、骨塩量の測定精度を上げるこ とができるとの効果を奏する。 [0027] In addition, because the dynamic range of the X-ray detector is as wide as 3 digits or more! / X-rays that greatly decrease at bones with high X-ray absorption when irradiated with low-energy X-rays are sufficient. In addition, an image contrast capable of measuring the bone mineral content can be obtained, and the measurement accuracy of the bone mineral content can be improved.
[0028] X線源の管電圧が低すぎると、被写体に X線を照射しても、 X線が骨部にほとんど 吸収されて骨塩量の測定に必要な透過 X線量が得られず、人体に対する悪影響の みが生ずる。 [0028] If the tube voltage of the X-ray source is too low, even if the subject is irradiated with X-rays, the X-rays are almost absorbed by the bone and the transmitted X-ray dose necessary for bone mineral content measurement cannot be obtained. Only adverse effects on the human body occur.
[0029] この点、請求の範囲第 2項に記載の発明によれば、管電圧が 20kVp以上であるた め、骨塩量の測定に必要な透過 X線量を得ることができるとの効果を奏する。  [0029] According to the invention described in claim 2 of this point, since the tube voltage is 20 kVp or more, there is an effect that a transmitted X-ray dose necessary for measuring the bone mineral content can be obtained. Play.
[0030] 他方で、管電圧が 49kVpを超えると制動放射 X線が必要以上に増加して測定精度 が劣化する力 本発明によれば、管電圧が 49kVp以下に設定されているので、測定 精度を劣化させることもない。  [0030] On the other hand, if the tube voltage exceeds 49kVp, the bremsstrahlung X-ray increases more than necessary and the measurement accuracy deteriorates. According to the present invention, the tube voltage is set to 49kVp or less, so the measurement accuracy It will not deteriorate.
[0031] 請求の範囲第 3項に記載の発明によれば、管電圧が 25kVp以上、 39kVp以下に 設定されているので、骨塩量の測定に必要な透過 X線量を得るとともに、制動放射 X 線が必要以上に増加することによる測定精度の劣化を適切に防止することができると の効果を奏する。  [0031] According to the invention described in claim 3, since the tube voltage is set to 25 kVp or more and 39 kVp or less, the transmitted X-ray dose necessary for measuring the bone mineral content is obtained and the bremsstrahlung X There is an effect that it is possible to appropriately prevent deterioration in measurement accuracy due to an increase in the number of lines more than necessary.
[0032] 請求の範囲第 4項に記載の発明によれば、 X線検出器のダイナミックレンジは 7桁 以下であるので、画像データ処理に費やす時間が短ぐまた、装置コストも安価に抑 えることができるとの ¾]果を奏する。  [0032] According to the invention described in claim 4, since the dynamic range of the X-ray detector is 7 digits or less, the time spent on image data processing is short, and the apparatus cost can be suppressed at a low cost. ¾] Play the fruit that you can.
[0033] 請求の範囲第 5項に記載の発明によれば、 X線検出器と被写体との間の距離が 1 m以下となっているため、 X線検出器が検出すべき X線量が大きく低下することがなく 、骨塩量の測定精度が高くなる。また、 X線検出器と被写体との間の距離が短いため 、装置の小型化を実現することができるとの効果を奏する。  [0033] According to the invention described in claim 5, since the distance between the X-ray detector and the subject is 1 m or less, the X-ray dose to be detected by the X-ray detector is large. Without decreasing, the bone mineral content measurement accuracy is increased. In addition, since the distance between the X-ray detector and the subject is short, the apparatus can be downsized.
[0034] 請求の範囲第 6項に記載の発明によれば、被検体が人体の手指又は足であるため 、臥位で撮影を行う等ではなぐ例えば椅子等に座ったまま被写体台の上に手をか ざして検査を行うような簡易な手法によって骨塩量の測定を行うことができる。このた め、被検者に対する負担が少なぐ例えば被検者が高齢者である場合等でも骨塩量 のの測測定定をを簡簡便便にに行行ううここととががででききるるととのの効効果果をを奏奏すするる。。 [0034] According to the invention described in claim 6, since the subject is a human finger or foot, it is not necessary to take a picture in a lying position, for example, while sitting on a chair or the like on a subject table. The amount of bone mineral can be measured by a simple method such as performing an examination while holding the hand. For this reason, the amount of bone mineral is low even when the burden on the subject is small, such as when the subject is an elderly person. The effect of the fact that the measurement and measurement of the above can be easily and conveniently performed can be achieved. .
図図面面のの簡簡単単なな説説明明 Simple and simple explanation on the drawing
[[図図 11]]本本実実施施形形態態ににおおけけるる骨骨塩塩量量測測定定装装置置のの要要部部構構成成をを示示すす側側面面図図ででああるる。。 [[Fig. 11]] Side side view showing the configuration of the main part of the bone and bone salinity measuring instrument mounting device according to the present embodiment. It is a figure. .
[[図図 22]]本本実実施施形形態態ににおおけけるる骨骨塩塩量量測測定定装装置置のの内内部部構構成成をを示示すす模模式式図図ででああるる。。 [[FIG. 22]] Schematic diagram showing the internal / internal structure of the bone / salt salinity measuring / mounting apparatus in the present embodiment. It is. .
[[図図 33]]本本実実施施形形態態ににおおけけるる骨骨塩塩量量測測定定装装置置のの要要部部構構成成をを示示すす正正面面図図ででああるる。。 [[FIG. 33]] Front view showing the main components of the bone / salt salinity measuring / mounting device in the present embodiment. It is a figure. .
[[図図 44]]付付加加フフィィルルタタをを装装着着ししなないいタタンンググスステテンン陽陽極極 XX線線管管ととモモリリブブデデンン陽陽極極 XX線線管管のの XX
Figure imgf000009_0001
[[Fig. 44]] Addition of an additional filter element with no additional attachment Tatungsugutensten anode XX line tube and molyribbudeden anode anodic electrode XX line tube XX
Figure imgf000009_0001
園 5]付加フィルタを装着した場合のタングステン陽極 X線管の X線スペクトルを示し たグラフである。 5] This is a graph showing the X-ray spectrum of a tungsten anode X-ray tube with an additional filter attached.
園 6]本実施形態における骨塩量測定装置の制御構成を示すブロック図である。 符号の説明 6] It is a block diagram showing a control configuration of the bone mineral content measuring apparatus in the present embodiment. Explanation of symbols
1 骨塩量測定装置  1 Bone mineral content measuring device
3 支持基台  3 Support base
4 撮影装置本体部  4 Camera unit
5 支持軸  5 Support shaft
7 保持部材  7 Holding member
8 X線源  8 X-ray source
9 電源部  9 Power supply
11 X線検出器  11 X-ray detector
12 検出器保持部  12 Detector holder
14 被写体台  14 Subject table
15 位置調整装置  15 Positioning device
21 フェイスガード  21 Face guard
22 制御装置  22 Control device
30 水槽  30 aquarium
31 液状物  31 Liquid
81 付加フィルタ  81 Additional filter
H 被検体 X 椅子 H Subject X chair
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0037] 以下に、図 1から図 6を参照しつつ、本発明に係る骨塩量測定装置 1の一実施形態 について説明する。ただし、発明の範囲を図示例に限定するものではない。  [0037] Hereinafter, an embodiment of a bone mineral content measuring apparatus 1 according to the present invention will be described with reference to FIGS. However, the scope of the invention is not limited to the illustrated examples.
[0038] 図 1から図 3に、本実施形態における骨塩量測定装置 1の構成例を示す。なお、骨 塩量測定装置 1は、例えば図示しないスイッチングハブ等を介して LAN (Local Area Network)等の通信ネットワーク(図示せず。以下単に「ネットワーク」という。)に接続さ れており、このネットワークに接続された端末装置(図示せず)のモニタ等に骨塩量測 定装置 1によって測定された骨塩量の測定結果を表示させたり、測定結果をネットヮ ークに接続された出力装置(図示せず)からフィルム出力させること等ができるように なっていてもよい。  FIG. 1 to FIG. 3 show a configuration example of the bone mineral content measuring apparatus 1 in the present embodiment. The bone mineral content measuring device 1 is connected to a communication network (not shown; hereinafter simply referred to as “network”) such as a LAN (Local Area Network) via a switching hub (not shown), for example. Display the measurement result of the bone mineral content measured by the bone mineral content measuring device 1 on the monitor of a terminal device (not shown) connected to the network, or output the measurement result to the network. The film may be output from (not shown).
[0039] なお、骨塩量測定装置 1の構成は、ここに例示したものに限定されず、例えば、骨 塩量測定装置 1によって骨塩量の測定結果の出力(表示又はフィルム出力等)をも行 うように構成してもよい。  [0039] The configuration of the bone mineral content measuring device 1 is not limited to the one exemplified here. For example, the bone mineral content measuring device 1 outputs the measurement result (display or film output) of the bone mineral content. May also be configured.
[0040] 図 1に示すように、本実施形態において骨塩量測定装置 1には、土台となる撮影本 体部 4に支持基台 3が、支持台 2に対して昇降自在に設けられている。支持基台 3に は、略直方体形状の撮影本体部 4が、支持軸 5を介して CW方向及び CCW方向(図 3 (a)参照)に回動自在に支持されて!/、る。  As shown in FIG. 1, in the bone mineral content measuring apparatus 1 in the present embodiment, a support base 3 is provided on an imaging main body 4 serving as a base so as to be movable up and down with respect to the support 2. Yes. On the support base 3, an imaging body 4 having a substantially rectangular parallelepiped shape is rotatably supported via a support shaft 5 in the CW direction and the CCW direction (see FIG. 3 (a)).
[0041] 撮影本体部 4が、支持軸 5を介して回動することにより、骨塩量測定装置 1は、撮影 時に装置角度を装置が地面に対して垂直になる状態で撮影する場合、斜め (最大 45 度程度)に傾けて撮影する場合等に対応可能となってレ、る (図 3 (b)参照)。  [0041] By rotating the imaging main body 4 via the support shaft 5, the bone mineral content measuring apparatus 1 is inclined when imaging is performed with the apparatus angle perpendicular to the ground during imaging. It can be used when shooting at an angle of about 45 degrees (see Fig. 3 (b)).
[0042] 支持基台 3には、その昇降及び支持軸 5の回動を駆動する駆動装置 6が備えられ ている。駆動装置 6は、図示しない公知の駆動モータ等を備えており、支持基台 3及 び撮影本体部 4は、被検体 Hの位置に応じて昇降するようになっている。  [0042] The support base 3 is provided with a drive device 6 that drives its elevation and rotation of the support shaft 5. The drive device 6 includes a known drive motor (not shown) and the like, and the support base 3 and the imaging main body 4 are moved up and down according to the position of the subject H.
[0043] 本実施形態において、骨塩量測定装置 1は、骨塩量の測定 (骨塩定量)を行うため の撮影と、一般の X線画像の撮影とを一台の装置で行うことができる構成となっており 、支持基台 3及び撮影本体部 4は、各撮影に適した被検体 Hの位置に応じて移動可 能である。 [0044] 例えば、骨塩量の測定 (骨塩定量)のために手指を撮影する場合には、撮影に適し た被検体 Hの位置は、椅子 Xに座った被検者の胸部付近又は胸部よりも低!/、位置で あって、被検者が手指を後述する被写体台 14の上に載置された水槽 30内に浸した ときに疲れにくい姿勢をとることができるような位置に調整可能となっている。 [0043] In the present embodiment, the bone mineral content measuring device 1 can perform imaging for performing bone mineral content measurement (bone mineral content determination) and general X-ray image imaging with a single device. The support base 3 and the imaging main body 4 can be moved according to the position of the subject H suitable for each imaging. [0044] For example, when taking a finger for bone mineral content measurement (quantity of bone mineral), the position of the subject H suitable for imaging is the vicinity of the chest of the subject sitting on the chair X or the chest. The position is adjusted so that it is less likely to get tired when the subject immerses his / her finger in a water tank 30 placed on the subject table 14 described later. It is possible.
[0045] また、一般の X線画像を撮影する場合には、装置が被検体 Hの撮影に適した状態 になるように、支持基台 3及び撮影本体部 4が被検体 Hの位置に応じて昇降し、その 高さ、位置を調整可能となっている。  [0045] When a general X-ray image is captured, the support base 3 and the imaging main body 4 are set in accordance with the position of the subject H so that the apparatus is in a state suitable for imaging the subject H. The height and position can be adjusted.
[0046] 図 2に示すように、撮影本体部 4には、上下方向に沿って保持部材 7が備えられて いる。保持部材 7の上部には、被検体 Hに X線を放射する X線源 8が取り付けられて いる。 X線源 8には、管電圧及び管電流を印加する電源部 9が、支持軸 5、支持基台 3及び撮影本体部 4を介して接続されている。 X線源 8の X線放射口には、 X線照射 野を調節する絞り 10が、開閉自在に設けられている。  As shown in FIG. 2, the photographing main body 4 is provided with a holding member 7 along the vertical direction. An X-ray source 8 that emits X-rays to the subject H is attached to the upper portion of the holding member 7. A power supply unit 9 for applying a tube voltage and a tube current is connected to the X-ray source 8 via a support shaft 5, a support base 3 and an imaging main body unit 4. An aperture 10 for adjusting the X-ray irradiation field is provided at the X-ray emission port of the X-ray source 8 so as to be freely opened and closed.
[0047] 本実施形態にお!/、て、 X線源 8としては、タングステン陽極 X線管が適用される。タ ングステン陽極 X線管としては、例えば日立メディコ製の UH-6RC-307EY型 X線管( 日立メディコ製 DHF— 155HII高圧発生器)を用いることができる。  In this embodiment, a tungsten anode X-ray tube is applied as the X-ray source 8. As the tungsten anode X-ray tube, for example, UH-6RC-307EY type X-ray tube (Hitachi Medical DHF-155HII high-pressure generator) manufactured by Hitachi Medical Corporation can be used.
[0048] また、 X線源 8には付加フィルタ 81が装着されている。付カロフィルタ 81は、例えばモ リブデン、ロジウム、アルミニウム等のものを用いることができる。付加フィルタ 81の厚 さはアルミニウム 2. 5mm等量か、それ以上とすることができる。このとき回折格子等 を用いて X線エネルギー幅を狭くすることが好ましレ、。  Further, an additional filter 81 is attached to the X-ray source 8. As the attached calofilter 81, for example, molybdenum, rhodium, aluminum or the like can be used. The thickness of the additional filter 81 can be equal to or greater than 2.5 mm of aluminum. At this time, it is preferable to narrow the X-ray energy width using a diffraction grating or the like.
[0049] 図 4は、印加する管電圧が 30kVpとしたときの、モリブデン陽極の X線管から得られ る X線スペクトル Moと付加フィルタ 81のない状態のタングステン陽極の X線管から得 られる X線スペクトル Wを示したものであり、いずれの X線スペクトルにおいても、最大 となる X線強度を 100としたときの相対強度で示している。 X線スペクトル Moにおいて は、人体に対する影響が大きい 17. 8keV近傍をピークとするきわめて強い特性 X線 を生じており、 X線検出器 11を被検体 Hから離して撮影した場合には、骨部で吸収さ れ減弱された X線に対して、骨部の辺縁近傍にぉレ、て屈折した X線が重畳されてし まうものである。  [0049] Fig. 4 shows an X-ray spectrum obtained from an X-ray tube with a molybdenum anode and X obtained from an X-ray tube with a tungsten anode without an additional filter 81 when the applied tube voltage is 30 kVp. The line spectrum W is shown. In any X-ray spectrum, the maximum X-ray intensity is 100, and the relative intensity is shown. The X-ray spectrum Mo has a large effect on the human body. 17. Extremely strong X-rays with a peak near 8keV are generated. When the X-ray detector 11 is taken away from the subject H, The X-rays that are absorbed and attenuated by and are refracted and superimposed near the edge of the bone.
[0050] 一方、 X線スペクトル Wにおいては、 lOkeV近傍に輝線スペクトルを生じるとともに 、 15keVから 30keVにおいては、なだらかに分布する特性 X線を生じるものであるが 、 lOkeV近傍の輝線スペクトルを付加フィルタ 81により除去することにより、骨部を X 線が透過したときの X線量の減弱を緩和することが可能となり、骨塩量の測定精度が 向上する。 [0050] On the other hand, in the X-ray spectrum W, an emission line spectrum is generated in the vicinity of lOkeV. From 15keV to 30keV, the characteristic X-rays are distributed gently. However, the X-ray dose is attenuated when the X-rays are transmitted through the bone by removing the emission line spectrum near lOkeV by the additional filter 81. Can be relaxed, and the accuracy of bone mineral content measurement is improved.
[0051] 前記では、付加フィルタを取り付けることを記載した力 実際の管球の構成としては 、付加フィルタを取り付けてもよいし、固有濾過という形で X線管球自体にフィルタの 効果を持たせてもよい。結果として、 X線管から照射される X線の特性がアルミニウム 2. 5mm相当以上であればよい。図 5は、固有濾過が 2. 5mm厚アルミニウムのタン ダステン陽極の X線管に装着した場合に得られる X線スペクトルを示したものであり、 印加する管電圧をそれぞれ 25kVp、 20kVp、 40kVpとしたときのものである。  [0051] In the above, the force described to attach an additional filter As an actual tube configuration, an additional filter may be attached, or the X-ray tube itself has a filter effect in the form of intrinsic filtration. May be. As a result, the X-ray characteristics emitted from the X-ray tube need only be equivalent to aluminum 2.5 mm or more. Figure 5 shows the X-ray spectrum obtained when the filter is mounted on an x-ray tube with a 2.5 mm thick aluminum tungsten anode. The applied tube voltages were 25 kVp, 20 kVp, and 40 kVp, respectively. It's time.
[0052] タングステン陽極の X線管に付加フィルタ 81を装着することによって、図 5に示すよ うに、人体に悪影響を及ぼす低エネルギー帯域 Vの X線が付加フィルタ 81により除 去される。そしてこれにより、 X線源 8から照射される X線の X線エネルギー幅が狭くな り、タングステン陽極の X線管から照射される多色 X線のうち不要な部分を除去して X 線を単色化することができる。  By attaching the additional filter 81 to the X-ray tube of the tungsten anode, as shown in FIG. 5, X-rays in the low energy band V that adversely affect the human body are removed by the additional filter 81. As a result, the X-ray energy width of the X-rays emitted from the X-ray source 8 is reduced, and unnecessary portions of the multicolor X-rays emitted from the X-ray tube of the tungsten anode are removed to remove the X-rays. Can be monochromatic.
[0053] また X線源 8は、回転陽極 X線管とすることが好まし!/、。この回転陽極 X線管にお!/ヽ ては、陰極から放射される電子線が陽極に衝突することで X線が発生する。これは自 然光のようにインコヒーレント(非干渉性)であり、また平行光 X線でもなく発散光であ る。電子線が陽極の固定した場所に当り続けると、熱の発生で陽極が傷むので、通 常用いられる X線管では陽極を回転して陽極の寿命の低下を防!/、で!/、る。回転陽極 X線管は、電子線を陽極の一定の大きさの面に衝突させ、発生した X線はその一定 の大きさの陽極の平面から被検体 Hに向けて放射される。この照射方向(被検体方 向)から見た平面の大きさを焦点 (フォーカス)と呼ぶ。  [0053] The X-ray source 8 is preferably a rotating anode X-ray tube! In this rotating anode X-ray tube, X-rays are generated when an electron beam emitted from the cathode collides with the anode. This is incoherent (incoherent) like natural light, and is not divergent X-rays but divergent light. If the electron beam continues to hit the place where the anode is fixed, the anode will be damaged by the generation of heat. Therefore, in a normal X-ray tube, the anode is rotated to prevent a decrease in the life of the anode! . The rotating anode X-ray tube causes an electron beam to collide with a surface of a certain size of the anode, and the generated X-ray is emitted toward the subject H from the plane of the certain size of the anode. The size of the plane viewed from this irradiation direction (subject direction) is called the focus.
[0054] 焦点サイズ D ( 11 m)は、焦点が正方形の場合はその一辺の長さを、焦点が長方形 や多角形の場合はその短辺の長さを、焦点が円形の場合はその直径をさす。焦点 サイズ Dは、大きくなるほど照射される X線量が多くなる。  [0054] The focus size D (11 m) is the length of one side when the focus is square, the length of the short side when the focus is rectangular or polygonal, and the diameter when the focus is circular. Point. The larger the focal spot size D, the more X-rays are emitted.
[0055] 本実施形態にぉレ、て使用する X線源 8の X線管の焦点サイズは 1 μ m力、ら 500 μ m 力 S好ましい。 1 a mより小さいと、被検体 Hを透過する十分な量の X線を数秒内で得る ことができない。また 500 mより大きいと画像のボケが大きくなり、測定精度が低下 する。 [0055] The focal spot size of the X-ray tube of the X-ray source 8 used in this embodiment is 1 μm force, preferably 500 μm force S. If it is less than 1 am, a sufficient amount of X-rays that pass through the subject H can be obtained within a few seconds. I can't. If it is longer than 500 m, the image will be blurred and the measurement accuracy will be reduced.
[0056] また、骨塩量測定装置 1は、管電圧を調整して X線源 8に印加するように、電源部 9 の管電圧の設定値を調整可能となっており、 X線源 8から所望のエネルギー量で X線 を照射させることが可能となって!/、る。  Further, the bone mineral content measuring apparatus 1 can adjust the set value of the tube voltage of the power supply unit 9 so that the tube voltage is adjusted and applied to the X-ray source 8. It is now possible to irradiate X-rays with the desired amount of energy!
[0057] 本実施形態において骨塩量測定装置 1は、前述のように、骨塩量の測定及び一般 の X線画像の撮影を行うことが可能となっており、骨塩量を測定する場合には、 X線 源 8に印加する管電圧が 20kVp以上であり 49kVp以下に設定されることが好ましぐ さらに好ましい設定管電圧は 25kVp以上であり 39kVp以下である。管電圧が低すぎ ると、照射された X線が被検体 Hの骨部にすべて吸収されて測定に必要な透過 X線 量が得られな!/、。また管電圧が高すぎると制動放射 X線が必要以上に増加して測定 精度が劣化する。  In the present embodiment, the bone mineral content measuring apparatus 1 can measure the bone mineral content and take a general X-ray image as described above, and measures the bone mineral content. For this, it is preferable that the tube voltage applied to the X-ray source 8 is 20 kVp or more and set to 49 kVp or less. The more preferable setting tube voltage is 25 kVp or more and 39 kVp or less. If the tube voltage is too low, all of the irradiated X-rays are absorbed by the bone of subject H and the amount of transmitted X-rays required for measurement cannot be obtained! /. If the tube voltage is too high, the bremsstrahlung X-rays will increase more than necessary and the measurement accuracy will deteriorate.
[0058] 管電圧をこのように設定することにより、骨塩量測定装置 1は、骨塩量の測定の際に は管電圧が 50kVp以下のいわゆる軟 X線と呼ばれる低エネルギー帯域(15keV〜4 OkeV)の X線による画像撮影を行うことができる。  [0058] By setting the tube voltage in this way, the bone mineral content measuring apparatus 1 can measure the bone mineral content in a low energy band (15 keV to 4) called so-called soft X-ray with a tube voltage of 50 kVp or less. OkeV) X-ray images can be taken.
[0059] 従来の骨部撮影は、 2桁程度のダイナミックレンジの従来のハロゲン化銀写真感光 材料を用いて行われていたため、 X線源 8に印加する管電圧を 50kVp以上に設定し て撮影を行っていた。管電圧をこのように高く設定することにより、ダイナミックレンジ 力 ¾桁程度の場合でも、診断等に耐え得る画像コントラストを得ることができる。これに 対して、 X線源 8に印加する管電圧の設定が 50kVpより低い場合は、皮膚のような軟 部組織については診断等に耐え得る画像コントラストが得られる力 S、X線吸収の大き い骨部では十分なコントラストが得られない。し力もながら、本実施形態においては、 後述するように、 X線検出器 11として、ダイナミックレンジの広いデジタル X線検出器 を用いるため、骨部で大きく低下する X線についても十分に診断等に耐え得るコント ラストを得ることができ、骨塩量の測定が可能となる。  [0059] Since conventional bone imaging was performed using a conventional silver halide photographic light-sensitive material with a dynamic range of about two digits, the tube voltage applied to the X-ray source 8 was set to 50 kVp or higher. Had gone. By setting the tube voltage as high as this, it is possible to obtain an image contrast that can withstand diagnosis and the like even when the dynamic range force is about three orders of magnitude. On the other hand, when the tube voltage applied to the X-ray source 8 is set lower than 50 kVp, the force that can provide an image contrast that can withstand diagnosis etc. for soft tissues such as skin S, the magnitude of X-ray absorption Sufficient contrast cannot be obtained at the bone. However, in this embodiment, a digital X-ray detector having a wide dynamic range is used as the X-ray detector 11 as will be described later, so that X-rays that greatly decrease in the bone can be sufficiently diagnosed. A tolerable contrast can be obtained and bone mineral content can be measured.
[0060] また、一般の X線画像の撮影を行う場合には、例えば X線源 8に印加する管電圧が 50kVp以上であり 150kVp以下に設定される。また、一般の X線画像撮影について 低エネルギー帯域での撮影と高エネルギー帯域での撮影とを行い、両画像の画像 減算処理 (エネルギーサブトラクシヨン処理)を行うことも可能であり、この場合には、 例えば低エネルギー帯域での撮影の場合に 60kVpの管電圧を印加し、高工ネルギ 一帯域での撮影の場合には 120kVpの管電圧を印加する。 [0060] When a general X-ray image is taken, for example, the tube voltage applied to the X-ray source 8 is set to 50 kVp or more and 150 kVp or less. For general X-ray imaging, both low-energy imaging and high-energy imaging are performed. It is also possible to perform subtraction processing (energy subtraction processing). In this case, for example, a tube voltage of 60 kVp is applied in the case of shooting in the low energy band, and in the case of shooting in the high-engineering energy band. A tube voltage of 120 kVp is applied to the.
[0061] なお、骨塩量の測定の際の管電圧及び一般の X線画像撮影の際の管電圧は、ここ に例示した範囲に限定されない。 Note that the tube voltage at the time of bone mineral content measurement and the tube voltage at the time of general X-ray imaging are not limited to the ranges exemplified here.
[0062] 保持部材 7の下部には、被検体 Hを透過した X線を検出する X線検出器 11を保持 する検出器保持部 12の一端が取り付けられている。 One end of a detector holding unit 12 that holds an X-ray detector 11 that detects X-rays that have passed through the subject H is attached to the lower part of the holding member 7.
[0063] なお、 X線検出器 11は、検出器保持部 12から横方向に引き出し可能となっている( 図 3 (a) )。 X線検出器 11は、左右両方向に引き出し可能となっていることが好ましぐ 斜め撮影時に落下しないよう、例えば図示しない固定手段によって検出器保持部 12 内に固定されている。 Note that the X-ray detector 11 can be pulled out from the detector holding portion 12 in the horizontal direction (FIG. 3 (a)). It is preferable that the X-ray detector 11 can be pulled out in both the left and right directions. For example, the X-ray detector 11 is fixed in the detector holding portion 12 by a fixing means (not shown) so as not to drop during oblique imaging.
[0064] X線検出器 11としては、例えば、輝尽性蛍光体シートを収納した CR (Computed Ra diography)力セッテや FPD(Flat panel X-ray detector)等のデジタル X線検出器を適 用すること力 Sできる。 CR力セッテとしては、例えば、ほぼ 4桁のダイナミックレンジを備 えるコニカミノルタェムジ一社製ダイレクトデイジタイザ一 REGIUS Vstage Model 190 用の REGIUS力セッテを使用することができる。  [0064] As the X-ray detector 11, for example, a digital X-ray detector such as CR (Computed Radiography) force set or FPD (Flat panel X-ray detector) containing a stimulable phosphor sheet is applied. The power to do S. As a CR force set, for example, a REGIUS force set for the REGIUS Vstage Model 190 can be used.
[0065] なお、 X線検出器 11はデジタル X線検出器であればよぐ CRや FPDに限定するも のではない。  Note that the X-ray detector 11 is not limited to CR or FPD as long as it is a digital X-ray detector.
[0066] 従来の X線画像撮影にはハロゲン化銀写真感光材料が広く用いられていたが、ノ、 ロゲン化銀写真感光材料を使用すると被検体を透過する X線の透過量を測定するた めに、まず現像処理後のフィルムの画像濃度を測定してから計算する等、工数がか 力、りかつ精度が低レ、。またハロゲン化銀写真感光材料の場合にはダイナミックレンジ 力 ¾桁程度であって、正確な測定を行うことが不可能である。これに対してデジタル X 線検出器を用いるとデジタル画像信号として直接に画像データを得ることができ、正 確でかつ迅速に処理することができる。  [0066] Silver halide photographic light-sensitive materials have been widely used for conventional X-ray imaging. However, when a silver halide photographic light-sensitive material is used, the amount of X-ray transmitted through the subject is measured. For this purpose, first, the image density of the film after development processing is measured and then calculated. Further, in the case of a silver halide photographic light-sensitive material, the dynamic range force is about an order of magnitude, and accurate measurement is impossible. On the other hand, if a digital X-ray detector is used, image data can be obtained directly as a digital image signal, which can be processed accurately and quickly.
[0067] 本実施形態において、 X線検出器 11は、 3桁以上のダイナミックレンジを備えてい  [0067] In the present embodiment, the X-ray detector 11 has a dynamic range of three digits or more.
[0068] ここで、本実施形態において骨塩量測定装置 1により検出する画像の濃度範囲は 3 桁以上の X線吸収係数に対応する。すなわち被検体 Hに照射された X線は、骨部を 透過することにより数十分の一に減弱(低下)する。また、 2次元の X線検出器 11面上 の X線強度分布は、 X線強度の最大値と最小値とで通常 2倍程度の差(ばらつき)が ある。このため、骨塩量の値を正確に測定するためには X線検出器 11面上での X線 強度補正(後述するシェーディング補正)を行う必要がある。このような X線の減弱や 補正の必要性等を考慮すると、骨塩量を正確に測定するためには X線検出器 11の ダイナミックレンジは少なくても 3桁以上である必要がある。ダイナミックレンジが 3桁以 上であることにより、 X線フィルム等で撮影を行う場合と比べて高感度、高分解能を実 現すること力 Sでき、 X線源 8に印加する管電圧の低!/、低エネルギー帯域での画像撮 影を行った場合でもコントラストのよい画像の検出を行うことができる。 Here, the density range of the image detected by the bone mineral content measuring apparatus 1 in this embodiment is 3 Corresponds to X-ray absorption coefficient of more than digits. In other words, the X-rays irradiated to the subject H are attenuated (decreased) by several tenths by passing through the bone. In addition, the X-ray intensity distribution on the surface of the two-dimensional X-ray detector 11 usually has a difference (variation) of about twice the maximum value and the minimum value of the X-ray intensity. Therefore, in order to accurately measure the bone mineral content, it is necessary to perform X-ray intensity correction (shading correction described later) on the X-ray detector 11 surface. Considering such X-ray attenuation and the necessity for correction, the dynamic range of the X-ray detector 11 needs to be at least three digits or more in order to accurately measure bone mineral density. Since the dynamic range is 3 digits or more, it is possible to achieve higher sensitivity and higher resolution than when shooting with X-ray film, etc., and the tube voltage applied to the X-ray source 8 is low! /, Even when taking images in the low energy band, it is possible to detect images with good contrast.
[0069] なお、ダイナミックレンジは 3桁以上であれば特に限定されず、測定誤差などを勘案 するとダイナミックレンジが広!/、ほど望ましレ、態様である。し力、しダイナミックレンジが 7 桁を超えると画像データ処理に時間を費やし、また装置が高価となるため、ダイナミツ クレンジは 7桁以下であることが好まし!/、。  [0069] It should be noted that the dynamic range is not particularly limited as long as it is 3 digits or more, and the dynamic range is as wide as possible in consideration of measurement errors. However, if the dynamic range exceeds 7 digits, it takes time to process the image data and the equipment becomes expensive, so the dynamic range is preferably 7 digits or less! /.
[0070] X線源 8と検出器保持部 12の相対位置は固定されており、その距離を Rとする。ま た図 2にお!/、て X線源 8から被検体 Hまでの距離を rl、被検体 Hと X線検出器との距 離を r2とする。  [0070] The relative position of the X-ray source 8 and the detector holding unit 12 is fixed, and the distance is R. In Fig. 2, the distance from X-ray source 8 to subject H is rl, and the distance between subject H and the X-ray detector is r2.
[0071] なお、 Rを一定とせずに、 X線源 8から被検体までの間の距離及び被検体から X線 検出器 11までの間の距離の両方を適宜可変としてもよい。  [0071] Note that, without making R constant, both the distance from the X-ray source 8 to the subject and the distance from the subject to the X-ray detector 11 may be appropriately variable.
[0072] また、被検体 Hから X線検出器 11までの距離は、 15cm以上離間している。 [0072] The distance from the subject H to the X-ray detector 11 is 15 cm or more.
[0073] X線が被検体 Hを透過する際には被検体 Hから 2次 X線として色々なエネルギーを もつ散乱 X線が生ずる力 このように被検体 Hから X線検出器 11までの距離を 15cm 以上離すことにより、いわゆるグレーデル効果によって 1次 X線量を減らすことなく散 乱 X線を低減することができる。このように被検体 Hと X線検出器 11の間の距離を離 すことによって、散乱 X線を取り除き、 X線検出器 11で検出する X線のエネルギー幅 が広くなることを防ぐことができるため、より単色性の高い X線を得ることができ、好ま しい。 [0073] When X-rays pass through the subject H, the force that generates scattered X-rays with various energies from the subject H as secondary X-rays. Thus, the distance from the subject H to the X-ray detector 11 By separating them by 15 cm or more, the scattered X-rays can be reduced without reducing the primary X-ray dose by the so-called Gradel effect. By separating the distance between the subject H and the X-ray detector 11 in this way, it is possible to remove scattered X-rays and prevent the energy width of the X-rays detected by the X-ray detector 11 from widening. Therefore, it is preferable because X-rays with higher monochromaticity can be obtained.
[0074] しかし、被検体 H力 X線検出器 11までの距離力 mを超えると、装置が非常に大 きくなり、また X線検出器 11が検出すべき X線量が距離 2乗則で大きく低下するため 、距離が離れすぎると画像の鮮鋭性に欠ける。このため、被検体 Hから X線検出器 1 1までの距離は、 lm以下であることが好ましい。 [0074] However, when the distance force m to the subject H-force X-ray detector 11 is exceeded, the apparatus becomes very large. In addition, since the X-ray dose to be detected by the X-ray detector 11 is greatly reduced by the distance square law, if the distance is too far, the image is not sharp. For this reason, the distance from the subject H to the X-ray detector 11 is preferably lm or less.
[0075] なお、散乱 X線を除去する方法としては、一般に X線グリッドを用いることが知られて V、る。本実施形態にお!/ヽても X線グリッドを使用することは可能である力 X線グリッド を使用すると 1次 X線が低下することから、使用しないことが好ましい。  [0075] As a method for removing scattered X-rays, it is generally known to use an X-ray grid. Even in this embodiment, it is possible to use an X-ray grid. If a force X-ray grid is used, it is preferable not to use it because primary X-rays are reduced.
[0076] 保持部材 7の下方であって検出器保持部 12の下面には、照射された X線量の検出 を行う X線量検出部 13が設けられている。  [0076] An X-ray dose detector 13 for detecting the irradiated X-ray dose is provided below the holding member 7 and on the lower surface of the detector holder 12.
[0077] X線源 8と検出器保持部 12の間には、平板状の被写体台 14が、その一端を保持 部材 7に取り付けるようにして備えられている。被写体台 14は、一般の X線画像撮影 における位相コントラスト撮影時の撮影倍率調整 (高さ方向の位置調整)を可能とす るために、保持部材 7に対する位置を変更するモータ等を備える位置調整装置 15と 接続されている。  [0077] Between the X-ray source 8 and the detector holding unit 12, a flat object table 14 is provided so that one end thereof is attached to the holding member 7. The subject table 14 is provided with a motor or the like that changes the position relative to the holding member 7 in order to enable imaging magnification adjustment (position adjustment in the height direction) during phase contrast imaging in general X-ray imaging. Connected to device 15.
[0078] 被写体台 14の上であって、 X線源 8から照射される X線の照射領域内には、撮影時 に被検体 Hである被検者の手指を入れる水槽 30が着脱可能に載置されている。本 実施形態にお!/、て水槽 30は、撮影時に被検体 Hを内包する液状物 31を保持する 液状物保持部材であり、水槽 30の内部には、被検体 Hを水槽 30に入れたとき、被検 体 H全体が十分に浸る量の液状物 31が保持されている。本実施形態においては、 被検体 Hを一定の深さの液状物 31の中に沈め、被検体 Hを十分に浸した状態で X 線撮影を行う。  [0078] A water tank 30 for inserting the finger of the subject who is the subject H at the time of radiographing can be attached to and detached from the X-ray irradiation region irradiated from the X-ray source 8 on the subject table 14. It is placed. In this embodiment, the water tank 30 is a liquid material holding member that holds the liquid material 31 containing the subject H at the time of imaging, and the subject H is placed in the water tank 30 inside the water tank 30. At this time, the liquid material 31 is held in such an amount that the entire specimen H can be sufficiently immersed. In this embodiment, the subject H is submerged in the liquid material 31 having a certain depth, and X-ray imaging is performed with the subject H sufficiently immersed.
[0079] なお、水槽 30に保持される液状物 31の深さ(量)は被検体 Hによって異なる力 例 えば手指の場合は 3cmから 10cm程度、足の場合は 5cmから 15cm程度が好ましい  [0079] The depth (amount) of the liquid material 31 held in the water tank 30 varies depending on the subject H. For example, about 3 cm to 10 cm for fingers and about 5 cm to 15 cm for feet.
[0080] また、この液状物 31は、水がもっとも簡便、安価、安全であり、好ましい。水に香料、 消毒薬、色素など添加して患者の安心感を増す工夫を施したものを用いてもよい。ま た、水ではなぐより人体の肉や体液に近い液状物 31を使用することは好ましい態様 である。例えばヒア口ルン酸溶液、ゼラチン溶液、グリセリン溶液、マンノース溶液、米 汁、片栗粉液等を単独で又は水との溶液としたものを使用することができる。 [0081] また、被検体 Hが直接に液状物 31に触れないように、上記液状物 31をビニール袋 等に入れた上で水槽 30内に保持してもよい。この場合には、撮影の際に、被検体 H である手指を被写体台 14の上に載せ、さらにビニール袋等に入れた液状物 31を手 指の上に載せて、例えば圧迫板等を使用して液状物 31を上から圧迫する。これによ り手指と液状物 31との厚さを一定にすることができる。この場合には、水槽 30を設け る必要がなぐ被写体台 14がビニール袋等に入れた液状物 31を保持する液状物保 持部材として機能する。 [0080] As the liquid substance 31, water is most convenient, inexpensive and safe because it is preferable. You may use the thing which added the fragrance | flavor, disinfectant, the pigment | dye, etc. to water, and gave the device which makes a patient feel safe. In addition, it is preferable to use a liquid 31 that is closer to human flesh and body fluid than water. For example, a hyaluronic acid solution, a gelatin solution, a glycerin solution, a mannose solution, a rice juice, a starch solution, etc., alone or in a solution with water can be used. [0081] Further, the liquid material 31 may be held in the water tank 30 after being placed in a plastic bag or the like so that the subject H does not directly touch the liquid material 31. In this case, place the finger, which is the subject H, on the subject table 14 and then place the liquid 31 in a plastic bag on the finger during imaging, for example, using a compression plate. Then press liquid 31 from above. As a result, the thickness of the finger and the liquid material 31 can be made constant. In this case, the subject table 14 that does not require the water tank 30 functions as a liquid material holding member that holds the liquid material 31 placed in a plastic bag or the like.
[0082] さらに、液状物 31又は液状物 31を袋等に入れたものを体温程度に加熱して用い てもよい。  [0082] Further, the liquid 31 or the liquid 31 in a bag or the like may be heated to about body temperature.
[0083] また、被写体台 14には、被験者の手指を固定する固定用具(図示せず)が着脱自 在に取り付け可能となって!/、る。  [0083] In addition, a fixing tool (not shown) for fixing the subject's fingers can be attached to and removed from the subject table 14 by itself.
[0084] 本実施形態において、骨塩量測定装置 1は、前述のように骨塩量の測定 (骨塩定 量)を行う他に一般の X線画像の撮影を行うことができるようになつており、一般の X線 画像を撮影する際には、被写体台 14上から水槽 30を外し、被写体台 14の上に被検 体 Hとして手指を載置し、手指を固定具によつて固定した上で撮影を行う。  [0084] In the present embodiment, the bone mineral content measuring apparatus 1 is capable of taking a general X-ray image in addition to measuring the bone mineral content (bone mineral content) as described above. When taking general X-ray images, remove the aquarium 30 from the subject table 14, place a finger on the subject table 14 as the subject H, and fix the finger with a fixture. And then shoot.
[0085] なお、被写体台 14に、手指の向きや左右の別を検出するセンサ等を設けてもよい It should be noted that the subject table 14 may be provided with a sensor or the like that detects the orientation of the fingers or the left and right.
Yes
[0086] 本実施形態における骨塩量測定装置 1の一例を示すと、例えば、装置全体高さ HI 力 S2200mm、 X線管 8と被写体台 14との距離 H2は手動で 430mm〜650mmの範 囲で可変であり、被写体台 14から X線検出器 11までの距離 H3は手動で 490mm〜 750mmの範囲で可変であるものが適用できる。また、例えば、装置幅 Wが 780mm 、装置奥行き Dlが 1160mmであり、図 1に示す距離 Aの制限としては、 440mm程 度、距離 Bの制限としては 470mm程度が好ましい。また、被写体台 14の高さ (被写 体台 14から地面までの距離) H4は 900mm以内が好ましい態様である(図 2参照)。  [0086] An example of the bone mineral content measuring apparatus 1 in the present embodiment is as follows. For example, the entire apparatus height HI force S2200mm, the distance H2 between the X-ray tube 8 and the subject table 14 is manually in the range of 430mm to 650mm. The distance H3 from the subject table 14 to the X-ray detector 11 can be manually adjusted within the range of 490 mm to 750 mm. Further, for example, the apparatus width W is 780 mm and the apparatus depth Dl is 1160 mm, and the limit of the distance A shown in FIG. 1 is preferably about 440 mm, and the limit of the distance B is preferably about 470 mm. The height of the subject table 14 (distance from the subject table 14 to the ground) H4 is preferably 900 mm or less (see FIG. 2).
[0087] また、本実施形態において、被写体台 14の上方であって、撮影装置本体部 4の端 部には、 X線源 8から照射される X線が被験者に到達しないように X線を遮蔽するフエ イスガード 21が、ほぼ鉛直方向に延在して設けられている。  [0087] In the present embodiment, X-rays are irradiated on the end of the imaging apparatus main body 4 above the subject table 14 so that X-rays emitted from the X-ray source 8 do not reach the subject. A shielding face guard 21 is provided extending substantially in the vertical direction.
[0088] また、被写体台 14の下面には、被験者が脚をぶつけることなく撮影位置につくこと ができるように、プロテクター 25が、ほぼ鉛直方向に延在して設けられている。これに より、被検者は、検出器保持部 12に脚をぶつけることなく撮影位置につくことができ るようになっている。 [0088] In addition, the subject should be at the shooting position on the lower surface of the subject table 14 without hitting the leg. The protector 25 is provided so as to extend substantially in the vertical direction. As a result, the subject can reach the imaging position without hitting his / her leg on the detector holding unit 12.
[0089] なお、前記固定用具、フェイスガード 21及びプロテクター 25は必須の構成要素で はなく、固定用具、圧迫板 21及びプロテクター 25を用いない構成としてもよい。  Note that the fixing tool, the face guard 21 and the protector 25 are not essential components, and the fixing tool, the compression plate 21 and the protector 25 may not be used.
[0090] 図 6に示すように、撮影本体部 4には、 CPU (Central Processing Unit)、 ROM(Rea d Only Memory), RAM (Random Access Memory)等(いずれも図示せず)を備えて 構成される制御装置 22が備えられている。制御装置 22には、 X線量検出部 13、電 源部 9、駆動装置 6、位置調整装置 15、がバス 23を介して接続されている。また、制 御装置 22には、撮影条件等の入力を行うキーボードゃタツチパネル(図示省略)、被 写体台 14の位置の調整を行うための位置調整スィッチ等を備える入力装置 24a、及 び CRTディスプレイや液晶ディスプレイ等の表示装置 24bを有する操作装置 24、等 が接続されている。  [0090] As shown in FIG. 6, the imaging main unit 4 includes a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), and the like (all not shown). A control device 22 is provided. An X-ray dose detection unit 13, a power supply unit 9, a drive device 6, and a position adjustment device 15 are connected to the control device 22 via a bus 23. The control device 22 includes a keyboard touch panel (not shown) for inputting photographing conditions and the like, an input device 24a having a position adjusting switch for adjusting the position of the object table 14, and the CRT. An operation device 24 having a display device 24b such as a display or a liquid crystal display is connected.
[0091] 制御装置 22の ROMには、骨塩量測定装置 1各部を制御するための制御プロダラ ム及び各種処理プログラムが記憶されており、 CPUは、この制御プログラム及び各種 処理プログラムとの協働により骨塩量測定装置 1各部の動作を統括的に制御し、 X線 画像撮影を行い、 X線画像の画像データを生成する。  [0091] The ROM of the control device 22 stores a control program and various processing programs for controlling each part of the bone mineral content measuring device 1. The CPU cooperates with the control program and the various processing programs. The bone mineral content measuring device 1 controls the operation of each part in an integrated manner, performs X-ray imaging, and generates X-ray image data.
[0092] 例えば、 CPUは、被検者の撮影条件、骨塩量の測定か一般の X線画像撮影かと!/、 つた撮影の種類等に基づいて、駆動装置 6を制御し、撮影本体部 4を被検者の身長 等に合わせた高さに昇降させるとともに、 X線照射角度を調節するために支持軸 5を 回動させる。そして、位置調整装置 15により被写体台 14の位置を調整し、一般の X 線画像撮影の場合には位相コントラスト撮影の拡大率を調整する。その後、撮影本 体部 4は、撮影処理を実行し、電源部 9により、 X線源 8に管電圧及び管電流を印加 して被検体 Hに対して X線を照射させ、 X線量検出部 13から入力された X線量が予 め設定された X線量に達すると、電源部 9を制御することにより X線源 8からの X線の 照射を停止させる。 [0092] For example, the CPU controls the driving device 6 on the basis of the imaging conditions of the subject, measurement of bone mineral content or general X-ray imaging! /, The type of imaging, and the like. Raise and lower 4 to a height that matches the height of the subject, and rotate support shaft 5 to adjust the X-ray irradiation angle. Then, the position adjustment device 15 adjusts the position of the subject table 14 and adjusts the magnification of phase contrast imaging in the case of general X-ray imaging. Thereafter, the imaging unit 4 performs imaging processing, and the power supply unit 9 applies a tube voltage and a tube current to the X-ray source 8 to irradiate the subject H with X-rays. When the X-ray dose input from 13 reaches the preset X-ray dose, the X-ray irradiation from the X-ray source 8 is stopped by controlling the power supply unit 9.
[0093] また、本実施形態において制御装置 22の ROMには、画像処理プログラム、骨塩 定量プログラム等、画像処理及び骨塩定量にかかる各種プログラムの他、これらの処 理プログラム実行時に使用される各種データが格納されている。制御装置 22の CP Uは、これらの制御プログラム及び各種処理プログラムとの協働により、取得した画像 データについての画像処理及び画像処理を施したデータに基づいて骨塩量を測定 する骨塩定量処理を行う。 In the present embodiment, the ROM of the control device 22 includes various programs related to image processing and bone mineral quantification, such as an image processing program and bone mineral quantification program, as well as these processes. Stores various data used when executing physical programs. The CPU of the control device 22 cooperates with these control programs and various processing programs to measure the bone mineral content based on the image processing of the acquired image data and the data subjected to the image processing. I do.
[0094] 具体的には、制御装置 22は、以下のような処理を行う。 Specifically, the control device 22 performs the following processing.
[0095] まず、制御装置 22は、骨塩量測定装置 1の工場出荷時又は設置場所に設置したと き等の一定の場合に、装置特性の補正を行うため、アルミニウムステップを用いた X 線撮影を行い、得られた画像データに基づ!/、て被写体台 14面上の X線照射量の偏 りのシェーディング補正値を求める。そして、求められた補正値に基づいて画像デー タにシェーディング補正を施す。  [0095] First, the control device 22 performs X-rays using an aluminum step in order to correct the device characteristics when the bone mineral content measuring device 1 is shipped from the factory or when it is installed at the installation location. Take a picture and based on the obtained image data, find the shading correction value for the deviation of the X-ray dose on the 14th subject table. Then, shading correction is performed on the image data based on the obtained correction value.
[0096] 次に、炭酸カルシウムを含む骨塩定量ファントムを用いて X線画像撮影を行う。そし て、制御装置 22は、 X線検出器 11で検出された、骨塩定量ファントムを透過した X線 量と、骨塩定量ファントムにおける炭酸カルシウムの含有量とから、骨塩定量ファント ムを透過した X線量と炭酸カルシウムの含有量との関係を求める。  [0096] Next, X-ray imaging is performed using a bone mineral quantification phantom containing calcium carbonate. Then, the control device 22 transmits the bone mineral quantitative phantom from the X-ray amount detected by the X-ray detector 11 and transmitted through the bone mineral quantitative phantom and the calcium carbonate content in the bone mineral quantitative phantom. Determine the relationship between X-ray dose and calcium carbonate content.
[0097] このようにして X線検出器 11で検出される X線量と炭酸カルシウムの含有量との関 係が求められると、制御装置 22は、当該関係を X線源 8の管電圧毎に ROM等の図 示しない記憶部に記憶する。そして、被検体 Hの骨塩量を測定するための撮影を行 つたときは、撮影時の X泉源 8の管電圧に対応付けて記憶されて!/、る X線量と炭酸力 ルシゥムの含有量との関係に基づいて骨塩量の定量を行う。なお、制御装置 22の記 憶部に記憶される X線量と炭酸カルシウムの含有量との関係は、骨塩量の定量を行 うことができればこれに限定されるものではなぐ X線量の減弱率と炭酸カルシウムの 含有量であってもよいし、 X線検出器 11で検出された X線量とカルシウム換算量であ つてもよい。  [0097] When the relationship between the X-ray dose detected by the X-ray detector 11 and the calcium carbonate content is obtained in this way, the control device 22 calculates the relationship for each tube voltage of the X-ray source 8. Store in a storage unit (not shown) such as ROM. Then, when an image is taken to measure the bone mineral content of the subject H, it is stored in association with the tube voltage of the X spring source 8 at the time of imaging! /, X dose and carbonate content The bone mineral content is quantified based on the relationship. Note that the relationship between the X-ray dose stored in the storage unit of the control device 22 and the calcium carbonate content is not limited to this if the bone mineral content can be quantified. And the calcium carbonate content, or the X-ray dose detected by the X-ray detector 11 and the calcium equivalent amount.
[0098] また、一般の X線画像撮影を行う場合には、制御装置 22は、 X線検出器 11により 取得された X線画像の画像データに画像のコントラストを調整する階調処理、濃度を 調整する処理、鮮鋭度を調整する周波数処理等の画像処理を施す。これにより、撮 影部位等の条件に適した画像処理を行うことができる。  In addition, when performing general X-ray image capturing, the control device 22 performs gradation processing and density adjustment for adjusting the image contrast to the image data of the X-ray image acquired by the X-ray detector 11. Image processing such as adjustment processing and frequency processing for adjusting sharpness is performed. As a result, it is possible to perform image processing suitable for conditions such as an imaging region.
[0099] 次に、本実施形態における骨塩量測定装置 1の作用について説明する。 [0100] まず、アルミステップを用いて被写体台 14面上の X線照射量の偏りのシエーデイン グ補正値をもとめ、骨塩定量ファントムを用いて X線画像撮影を行い、骨塩定量ファ ントムによって吸収され減弱した X線量と炭酸カルシウムの含有量との関係を求める。 Next, the operation of the bone mineral content measuring apparatus 1 in the present embodiment will be described. [0100] First, the aluminum step was used to determine the shearing correction value for the X-ray irradiation bias on the 14th surface of the subject table, and the X-ray image was taken using the bone mineral quantification phantom. Find the relationship between absorbed and attenuated X-ray dose and calcium carbonate content.
[0101] その後、被写体台 14の高さ等を被検者の被検体 Hの位置に合うようにするとともに 、X線検出器 1 1と被検体 Hとが 1 5cm以上 lm以下の距離だけ離れるように調整する 。さらに被写体台 14上の所定位置に適量の液状物 31を保持した水槽 30を載置し、 被検体 Hを水槽 30の中に浸す。例えば被検体 Hが手指である場合には、手指を水 槽 30の液状物 31の中に十分に浸すようにする。そして手指を水槽 30の液状物 31の 中に浸した状態で X線源 8から所定量の X線を照射し、 X線画像撮影を行う。  [0101] Thereafter, the height of the subject table 14 is adjusted to the position of the subject H of the subject, and the X-ray detector 11 and the subject H are separated by a distance of 15 cm or more and lm or less. Adjust as follows. Further, a water tank 30 holding an appropriate amount of liquid substance 31 is placed at a predetermined position on the subject table 14, and the subject H is immersed in the water tank 30. For example, when the subject H is a finger, the finger is sufficiently immersed in the liquid 31 in the water tank 30. Then, a predetermined amount of X-rays are irradiated from the X-ray source 8 with the fingers immersed in the liquid material 31 of the water tank 30, and X-ray images are taken.
[0102] X線検出器 1 1によって検出された X線量は、画像データとして制御装置 22に送ら れ、制御装置 22は、当該画像データのうち骨塩量の測定対象となる箇所について、 先に得られている X線量と炭酸カルシウムの含有量との関係に基づいて骨塩量の定 量を行う。  [0102] The X-ray dose detected by the X-ray detector 11 is sent to the control device 22 as image data. The control device 22 first determines the bone mineral content measurement target in the image data. The bone mineral content is determined based on the relationship between the X-ray dose obtained and the calcium carbonate content.
[0103] 本実施例にお!/、て、 X線画像の撮影は、低エネルギーの軟 X線を照射して行わ れているため、処理を施さない原画像の場合には、画像全体が喑くなり、手指の画像 を明確に判別することができない。これに対して、補正係数に基づく処理を施して得 られた定量画像の場合には、手指の画像を明確に識別することができ、この定量画 像に基づいて正確に骨塩量を測定することが可能となる。  [0103] In this embodiment, X-ray images are shot by irradiating soft X-rays with low energy, so in the case of an original image that is not processed, the entire image is captured. It becomes ugly and the finger image cannot be clearly identified. On the other hand, in the case of a quantitative image obtained by performing processing based on the correction coefficient, the finger image can be clearly identified, and the bone mineral content is accurately measured based on this quantitative image. It becomes possible.
[0104] なお、骨塩量をアルミニウムの厚さ当量 (mmAl)で測定する場合、制御装置 22は 下記の処理を実行する。  [0104] When the bone mineral content is measured by the aluminum thickness equivalent (mmAl), the control device 22 executes the following processing.
[0105] アルミニウムステップゥエッジ A1を用いた X線撮影によって、厚さを変えたアルミユウ ムステップゥェッジ A1を透過する X線量とアクリル Acを透過する X線量を検出し、制御 装置 22は、アルミニウムの減弱係数 を求める。  [0105] X-ray imaging using aluminum step-edge A1 detects X-ray dose that passes through aluminum step wedge A1 with different thickness and X-ray dose that passes through acrylic Ac. Obtain the attenuation coefficient of aluminum.
A1  A1
[0106] 例えば、 μと μ のそれぞれの X線吸収係数をもつ厚さがそれぞれ Xと Xの物質を  [0106] For example, a material with X-ray absorption coefficients of μ and μ and thicknesses of X and X, respectively.
1 2 1 2 重ね合わせた対象物がある場合に、対象物全体の厚さ「L」は、 x + x = Lとなる。そ  1 2 1 2 When there are superimposed objects, the thickness “L” of the entire object is x + x = L. So
1 2  1 2
して、この対象物に入射する X線量を「I」とし、厚さ「L」の対象物を透過したときの X  Then, let the X-ray dose incident on this object be "I", and the X-ray when it passes through the object of thickness "L"
0  0
線量を「I」とすると、以下の式(1 )が成立する。  When the dose is “I”, the following equation (1) is established.
[0107] 1=1 exp ( - μ χ - μ χ ) · · ·式(1 ) この式(1)を変形すると、以下の式(2)となる。 [0107] 1 = 1 exp (-μ χ-μ χ) · · · Equation (1) When this equation (1) is transformed, the following equation (2) is obtained.
[0108] μ + μ =ln(I /I) .··式(2)  [0108] μ + μ = ln (I / I) .. Formula (2)
1 1 2 2 0  1 1 2 2 0
また、このとき以下のような式(3)が導かれる。  At this time, the following equation (3) is derived.
[0109] χ={1η(Ι /!)- /(u - μ ) ···式(3)  [0109] χ = {1η (Ι /!)-/ (U-μ) ··· Equation (3)
1 0 2 1 2  1 0 2 1 2
これにより、 X線画像撮影により In (I /1)を求めることができる。このとき I と Lと力 S既  As a result, In (I / 1) can be obtained by X-ray imaging. At this time I and L and force S already
0 2  0 2
知であると、 II力 S求められれば Xの値を得ること力 Sできる。  If you know, you can get the value of X if you get II force S.
[0110] なお、骨塩量の測定を行う場合には、 μ については、前述のように水等の液状物 3  [0110] When measuring the amount of bone mineral, μ is a liquid such as water as described above.
2  2
1が用いられ、 μは被検体 Ηである手指の骨などである。水等の液状物 31を入れた 水槽 30の中に手指を浸し、液状物 31の量を調整することによって Lを一定にすること ができる。  1 is used, and μ is the bone of the finger that is the subject's heel. L can be made constant by immersing your finger in the water tank 30 containing the liquid material 31 such as water and adjusting the amount of the liquid material 31.
[0111] また、この μを正確に求めるには、例えば放射光 X線源などから得られる単色 X線 を使用する必要がある力 この点、固有濾過が 2.5mm厚アルミニウムで、低電圧設 定したタングステン陽極の X線管を用いた場合には、不要な部分の X線を除去して単 色性に優れた X線を得ることができるため、 μを正確に求めることが可能となる。  [0111] In addition, in order to accurately determine this μ, it is necessary to use monochromatic X-rays obtained from, for example, synchrotron radiation X-ray sources. When the tungsten anode X-ray tube is used, it is possible to obtain X-rays with excellent monochromaticity by removing unnecessary X-rays, so that μ can be accurately obtained.
[0112] そこで、アルミニウムの減弱係数 を求める場合には、対象物の厚さを「L」とし、  [0112] Therefore, when calculating the attenuation coefficient of aluminum, the thickness of the object is set to “L”.
A1  A1
対象物に入射する X線量を「I」とし、対象物によって減弱された X線量を「I」とし、厚  The X-ray dose incident on the object is “I”, and the X-ray dose attenuated by the object is “I”.
0 1 さ「L」の対象物を透過したときの X線量を「I」としたとき、まず、式 (4)より式(5)を求め  0 1 When the X-ray dose when passing through an object of “L” is “I”, first, Equation (5) is obtained from Equation (4).
[0113] I =1 θχρ(- X ) ···式(4) [0113] I = 1 θχρ (-X) Equation (4)
1 0 u u  1 0 u u
μ =ln(I /I )/X ···式(5)  μ = ln (I / I) / X Equation (5)
u 0 1 u  u 0 1 u
また、 Luに対応するエネルギー(Eeff)を、吸収係数データベースに基づいて求 める。  The energy (Eeff) corresponding to Lu is obtained based on the absorption coefficient database.
[0114] さらに、前記吸収係数データベースに基づいて、 Eeffに対応するアルミニウム (A1) の減弱係数 )を求める。  [0114] Further, based on the absorption coefficient database, an attenuation coefficient of aluminum (A1) corresponding to Eeff is obtained.
A1  A1
[0115] 算出されたこれらの値に基づいて、式(6)及び式(7)より式(8)を求め、アルミユウ  [0115] Based on these calculated values, Equation (8) is obtained from Equation (6) and Equation (7).
'厚さの理論値 (X )を算出する。  'Calculate the theoretical thickness (X).
[0116] X + = = ln(I /I)X +X •式 ½)  [0116] X + = = ln (I / I) X + X • Formula ½)
Al Al Lu Lu u  Al Al Lu Lu u
X +X =L '式 (7)  X + X = L 'Expression (7)
Al Lu X ={ln (I /!) - / ( u - ) · · ·式(8) Al Lu X = {ln (I /!)-/ (U-) · · · · Equation (8)
Al 0 Lu Al Lu  Al 0 Lu Al Lu
そして、制御装置 22は、この算出結果 X と実際のアルミニウムステップゥエッジの  The control device 22 then calculates the calculation result X and the actual aluminum step edge.
A1  A1
厚さの測定値 Xとを用いて、当該骨塩量測定装置 1における補正係数を求める。  Using the measured value X of the thickness, the correction coefficient in the bone mineral content measuring device 1 is obtained.
[0117] さらに、制御装置 22は、この補正係数を用いてアルミニウムの定量測定を行う。 [0117] Furthermore, the control device 22 performs quantitative measurement of aluminum using this correction coefficient.
[0118] 画像濃度は、 X線検出器 11で検出された X線量と相関するものであるので、画像濃 度プロファイル (b)における画像濃度を測定することにより、 X線量並びに X線の減弱 率を算出することができ、上述の如ぐアルミニウムステップゥエッジ A1の理論厚さ X [0118] Since the image density correlates with the X-ray dose detected by the X-ray detector 11, by measuring the image density in the image density profile (b), the X-ray dose and the X-ray attenuation rate are measured. And the theoretical thickness X of the aluminum step edge A1 as described above.
A1 を算出すること力できる。そして、前記補正係数を用いて補正することにより、アルミ二 ゥムの厚さ Xを定量することができる。  A1 can be calculated. Then, by correcting using the correction coefficient, the thickness X of the aluminum can be quantified.
[0119] すなわち、 CXD (Computed X-ray Densitometry)法においては、手指の X 線写真をアルミニウムステップゥエッジ A1とともに撮影し、例えば第 2中手骨の中間点 近傍 C1の濃度に相当するアルミニウムの厚さ Xを定量することで、骨塩量をアルミ二 ゥムの厚さ当量 (mmAl)で表すことが可能となる。  [0119] That is, in the CXD (Computed X-ray Densitometry) method, an X-ray photograph of a finger is taken together with an aluminum step edge A1, and for example, the aluminum corresponding to the density of C1 near the midpoint of the second metacarpal bone is taken. By quantifying the thickness X, the amount of bone mineral can be expressed by the thickness equivalent of aluminum (mmAl).
[0120] 以上より、本実施形態における骨塩量測定装置 1によれば、一般の X線画像撮影 による検診にも用いることのできる装置を用いて、簡易かつ正確に骨塩量の測定を 行うこと力 Sできる。これにより、定期検診の際等に併せて骨塩量の測定を行うことがで き、経年で測定を重ねることができる。このため、高齢者に多く発症する骨粗鬆症の 予防、早期発見を、高齢者にできるだけ負担をかけることなく行うことができる。  [0120] As described above, according to the bone mineral content measuring device 1 in the present embodiment, the bone mineral content is simply and accurately measured using an apparatus that can be used for general X-ray imaging. That power S. As a result, bone mineral content can be measured at the time of regular medical examinations, etc., and measurement can be repeated over time. For this reason, prevention and early detection of osteoporosis that often occurs in the elderly can be performed with as little burden as possible on the elderly.
[0121] また、低管電圧設定して、タングステン陽極 X線管を X線源 8として用いるので、単 色性に優れた X線を得ることができ、正確な骨塩量の測定を行うことができる。タンダ ステン陽極 X線管は、モリブデン陽極 X線管のように所定のエネルギー帯域にきわめ て強!/、輝線スペクトルを生じる特性 X線がな!/、ので、一定のエネルギー帯域に亘つて なだらかに分布する特性 X線を用いることができ、骨部を X線が透過したときの X線量 の減弱が緩和され、骨塩量の測定精度が向上する。そして、輝線スペクトルを有して いないので、 X線検出器 11を被検体 Hから離して撮影しても、吸収され減弱された X 線に骨部の辺縁近傍において屈折した X線が重畳されることがなぐ検出される X線 量に誤差が生じにくぐ長期間にわたる骨塩定量に好適である。  [0121] In addition, since a tungsten anode X-ray tube is used as the X-ray source 8 with a low tube voltage setting, X-rays with excellent monochromaticity can be obtained, and accurate bone mineral content can be measured. Can do. The tungsten anode X-ray tube is extremely strong in the specified energy band like the molybdenum anode X-ray tube! /, And there is no characteristic X-ray that generates the emission line spectrum! /, So it is gentle over a certain energy band. Distributing characteristics X-rays can be used, and the attenuation of X-ray dose when X-rays pass through the bone is mitigated, and the accuracy of bone mineral content measurement is improved. Since it does not have an emission line spectrum, even if the X-ray detector 11 is taken away from the subject H, X-rays refracted near the edge of the bone are superimposed on the absorbed and attenuated X-rays. This is suitable for bone mineral quantification over a long period of time when errors in the detected X-ray dose are unlikely to occur.
[0122] また、 X線源 8の管電圧が 20kVp以上、 49kVp以下、より好ましくは 25kVp以上、 39kVp以下に設定されて!/、るので、骨塩量の測定に必要な透過 X線量を得ることが できるとともに、制動放射 X線が必要以上に増加しないため測定精度を劣化させるこ とがない。 [0122] The tube voltage of the X-ray source 8 is 20 kVp or more, 49 kVp or less, more preferably 25 kVp or more, Therefore, the transmission X-ray dose necessary for bone mineral content measurement can be obtained, and the bremsstrahlung X-ray does not increase more than necessary, so the measurement accuracy is not deteriorated. .
[0123] また、 X線検出器 11を被検体 Hから 15cm以上離すことにより、いわゆるグレーデル 効果によつて 1次 X線量を減らすことなく散乱 X線を低減することができ、 X線検出器 11によってより単色性に優れた X線による透過 X線量を捉えることができる。また、 X 線検出器 11と被検体 Hとの距離力 Sim以下となっているため、 X線検出器 11が検出 すべき X線量が大きく低下することがなぐ骨塩量の測定精度が高くなる。また、 X線 検出器と被写体との間の距離が短いため、装置の小型化を実現することができる。  [0123] Further, by separating the X-ray detector 11 by 15 cm or more from the subject H, the scattered X-rays can be reduced without reducing the primary X-ray dose due to the so-called Gradel effect. Can capture the transmitted X-ray dose from X-rays with better monochromaticity. In addition, since the distance force between the X-ray detector 11 and the subject H is less than Sim, the measurement accuracy of the bone mineral amount is increased so that the X-ray dose to be detected by the X-ray detector 11 does not greatly decrease. . In addition, since the distance between the X-ray detector and the subject is short, the size of the apparatus can be reduced.
[0124] さらに、 X線検出器 11のダイナミックレンジが 3桁以上と広いため、骨部で大きく低 下する X線についても十分に計測可能となり、骨塩量の測定精度を上げることができ る。また、ダイナミックレンジが 7桁以下であるため、画像データ処理に費やす時間が 短ぐまた、装置コストも安価に抑えることができる。 [0124] Furthermore, since the dynamic range of the X-ray detector 11 is as wide as 3 digits or more, X-rays that greatly decrease in the bone can be measured sufficiently, and the measurement accuracy of bone mineral content can be improved. . In addition, since the dynamic range is 7 digits or less, the time spent on image data processing is short, and the device cost can be kept low.
[0125] また、被検体 Hが人体の手指等であるため、被検者は、椅子 Xに座って装置の前で 被写体台 14の上に載置された水槽 30の中に手を浸した状態で撮影を行うという簡 易な手法によって骨塩量の測定を行うことができる。 [0125] Since subject H is a human finger or the like, the subject sat in chair X and dipped his hand into aquarium 30 placed on subject table 14 in front of the apparatus. The bone mineral content can be measured by a simple method of photographing in a state.
[0126] なお、本実施形態にお!/、ては、骨塩量測定装置 1が一般の X線画像撮影装置を兼 ねることができるように構成した力 S、骨塩量測定装置 1は骨塩量を測定する専用機と してもよい。 [0126] In this embodiment, the force S and the bone mineral content measuring device 1 configured so that the bone mineral content measuring device 1 can also serve as a general X-ray imaging apparatus are: It may be a dedicated machine for measuring bone mineral content.
[0127] また、本実施形態においては、被検体 Hとして人体の手指を例とした力 被検体 H はこれに限定されず、足その他の身体の部位を被検体 Hとして骨塩量を測定しても よい。  [0127] In this embodiment, the force subject H is not limited to the force H as an example of the human hand as the subject H, and the bone mineral content is measured using the foot or other body part as the subject H. May be.

Claims

請求の範囲 The scope of the claims
[1] 被検体の X線画像を撮影し、得られた画像データに基づいて前記被検体の骨塩量 を測定する骨塩量測定装置であって、  [1] A bone mineral content measuring apparatus for taking an X-ray image of a subject and measuring the bone mineral content of the subject based on the obtained image data,
前記被検体に対して X線を照射する X線源と、  An X-ray source for irradiating the subject with X-rays;
前記 X線源から照射され入射した X線量に応じた X線画像を記録する X線検出器と 撮影時に前記被検体を内包する液状物を保持する液状物保持部材と、を備え、 前記 X線源は、固有濾過が 2. 5mm厚アルミニウム以上のタングステン陽極 X線 管であり、  An X-ray detector for recording an X-ray image corresponding to an X-ray dose irradiated from the X-ray source and a liquid substance holding member for holding a liquid substance containing the subject at the time of imaging; The source is a tungsten anode X-ray tube with an intrinsic filtration of 2.5 mm thick aluminum or more,
前記 X線検出器は、ダイナミックレンジが 3桁以上であって、前記被写体との距離が The X-ray detector has a dynamic range of 3 digits or more and a distance from the subject.
15cm以上離れるように配置されていることを特徴とする骨塩量測定装置。 A bone mineral content measuring device, which is arranged so as to be separated by 15 cm or more.
[2] 前記 X線源は、管電圧が 20kVp以上、 49kVp以下に設定されて!/ヽることを特徴と する請求の範囲第 1項に記載の骨塩量測定装置。 [2] The bone mineral content measuring device according to claim 1, wherein the X-ray source has a tube voltage set to 20 kVp or more and 49 kVp or less!
[3] 前記 X線源は、管電圧が 25kVp以上、 39kVp以下に設定されていることを特徴と する請求の範囲第 1項又は第 2項に記載の骨塩量測定装置。 [3] The bone mineral content measuring device according to claim 1 or 2, wherein the X-ray source has a tube voltage set to 25 kVp or more and 39 kVp or less.
[4] 前記 X線検出器のダイナミックレンジは、 7桁以下であることを特徴とする請求の範 囲第 1項から請求の範囲第 3項のいずれか一項に記載の骨塩量測定装置。 [4] The bone mineral content measuring device according to any one of claims 1 to 3, wherein the dynamic range of the X-ray detector is 7 digits or less. .
[5] 前記 X線検出器は、前記被写体との距離力 Sim以下となるように配置されていること を特徴とする請求の範囲第 1項から請求の範囲第 4項のいずれか一項に記載の骨塩 量測定装置。 [5] The X-ray detector according to any one of claims 1 to 4, wherein the X-ray detector is arranged so as to be less than or equal to a distance force Sim with respect to the subject. The bone mineral content measuring device described.
[6] 前記被検体は、人体の手指又は足であることを特徴とする請求の範囲第 1項から請 求の範囲第 5項のいずれか一項に記載の骨塩量測定装置。  [6] The bone mineral content measuring device according to any one of claims 1 to 5, wherein the subject is a human finger or foot.
PCT/JP2007/068148 2006-10-06 2007-09-19 Apparatus for determining bone salt content WO2008044439A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008538613A JPWO2008044439A1 (en) 2006-10-06 2007-09-19 Bone mineral content measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-275568 2006-10-06
JP2006275568 2006-10-06

Publications (1)

Publication Number Publication Date
WO2008044439A1 true WO2008044439A1 (en) 2008-04-17

Family

ID=39282647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068148 WO2008044439A1 (en) 2006-10-06 2007-09-19 Apparatus for determining bone salt content

Country Status (2)

Country Link
JP (1) JPWO2008044439A1 (en)
WO (1) WO2008044439A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012517313A (en) * 2009-02-12 2012-08-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Interface device, imaging system, and edge imaging method
WO2013005848A1 (en) * 2011-07-07 2013-01-10 株式会社東芝 Photon counting image detector, x-ray diagnosis apparatus, and x-ray computerized tomography apparatus
JP2014054301A (en) * 2012-09-11 2014-03-27 Hitachi Aloka Medical Ltd Medical x-ray measuring apparatus
JP2014079406A (en) * 2012-10-17 2014-05-08 Hitachi Aloka Medical Ltd Bone density measurement adapter
US8989346B2 (en) 2011-12-28 2015-03-24 Fujifilm Corporation Bone mineral density analysis method, bone mineral density analysis apparatus, and recording medium
US10101469B2 (en) 2011-01-25 2018-10-16 Hamamatsu Photonics K.K. Radiation image acquisition device
JP2018161417A (en) * 2017-03-27 2018-10-18 株式会社日立製作所 Bone density measurement device
US10234406B2 (en) 2012-07-20 2019-03-19 Hamamatsu Photonics K.K. Radiation image acquisition system
US10859715B2 (en) 2015-09-30 2020-12-08 Hamamatsu Photonics K.K. Radiation image acquisition system and radiation image acquisition method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179A (en) * 1992-06-22 1994-01-11 Aloka Co Ltd Method and instrument for measuring bone-salt quantity
JPH08503637A (en) * 1992-11-25 1996-04-23 アーノルド,ベン・エイ Device and method for quantifying calcium density
JP2003520115A (en) * 2000-01-24 2003-07-02 マメア イメイジング アクチボラゲット Method and mechanism for X-ray image generation device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179A (en) * 1992-06-22 1994-01-11 Aloka Co Ltd Method and instrument for measuring bone-salt quantity
JPH08503637A (en) * 1992-11-25 1996-04-23 アーノルド,ベン・エイ Device and method for quantifying calcium density
JP2003520115A (en) * 2000-01-24 2003-07-02 マメア イメイジング アクチボラゲット Method and mechanism for X-ray image generation device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012517313A (en) * 2009-02-12 2012-08-02 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Interface device, imaging system, and edge imaging method
US10101469B2 (en) 2011-01-25 2018-10-16 Hamamatsu Photonics K.K. Radiation image acquisition device
US10746884B2 (en) 2011-01-25 2020-08-18 Hamamatsu Photonics K.K. Radiation image acquisition device
WO2013005848A1 (en) * 2011-07-07 2013-01-10 株式会社東芝 Photon counting image detector, x-ray diagnosis apparatus, and x-ray computerized tomography apparatus
JP2013019698A (en) * 2011-07-07 2013-01-31 Toshiba Corp Photon count type image detector, x-ray diagnostic device, and x-ray computer tomographic device
US9213108B2 (en) 2011-07-07 2015-12-15 Kabushiki Kaisha Toshiba Photon counting type image detector, X-ray diagnosis apparatus and X-ray computed tomography apparatus
US8989346B2 (en) 2011-12-28 2015-03-24 Fujifilm Corporation Bone mineral density analysis method, bone mineral density analysis apparatus, and recording medium
US10234406B2 (en) 2012-07-20 2019-03-19 Hamamatsu Photonics K.K. Radiation image acquisition system
JP2014054301A (en) * 2012-09-11 2014-03-27 Hitachi Aloka Medical Ltd Medical x-ray measuring apparatus
JP2014079406A (en) * 2012-10-17 2014-05-08 Hitachi Aloka Medical Ltd Bone density measurement adapter
US10859715B2 (en) 2015-09-30 2020-12-08 Hamamatsu Photonics K.K. Radiation image acquisition system and radiation image acquisition method
US11237278B2 (en) 2015-09-30 2022-02-01 Hamamatsu Photonics K.K. Radiation image acquisition system and radiation image acquisition method
JP2018161417A (en) * 2017-03-27 2018-10-18 株式会社日立製作所 Bone density measurement device

Also Published As

Publication number Publication date
JPWO2008044439A1 (en) 2010-02-04

Similar Documents

Publication Publication Date Title
WO2008044439A1 (en) Apparatus for determining bone salt content
EP2002287B1 (en) Dynamic optimization of the signal-to-noise ratio of dual-energy attenuation data for reconstructing images
US7099428B2 (en) High spatial resolution X-ray computed tomography (CT) system
Zhang et al. Dosimetric characterization of a cone-beam O-arm™ imaging system
EP1420618B1 (en) X-Ray imaging apparatus
US7965813B2 (en) Bone mineral density assessment using mammography system
Inscoe et al. Characterization and preliminary imaging evaluation of a clinical prototype stationary intraoral tomosynthesis system
US20070058786A1 (en) System and method for computing oral bone mineral density with a panoramic x-ray system
Taibi et al. Dual-energy imaging in full-field digital mammography: a phantom study
JPWO2008132988A1 (en) X-ray image analysis system and program
Pani et al. Breast tomography with synchrotron radiation: preliminary results
JP2008206560A (en) Bone salt quantity measuring apparatus
CN104873213A (en) X-ray digital image based bone lesion assessment method and device
US7657000B2 (en) Method and apparatus for dual energy radiography
JP6755225B2 (en) Breast content calculator, method and program
KR20140090831A (en) THE REDUCTION METHOD OF X-ray SCATTER FROM DIGITAL RADIOGRAPHY IMAGE BY IMAGE PROCESSING AND DIGITAL RADIOGRAPHY SYSTEM USING THE SAME
JP2007268033A (en) Radiography system and radiography method
Merad et al. Comparison of two full field digital mammography systems: Image quality and radiation dose
Shkumat et al. Development and implementation of a high-performance cardiac-gated dual-energy imaging system
JP7161422B2 (en) Tomosynthesis Imaging Apparatus, Tomosynthesis Imaging Apparatus Operating Method, Tomosynthesis Imaging Apparatus Operating Program
WO2007113961A1 (en) X-ray imaging system and x-ray imaging method
Niu et al. Conebeam CT for Medical Imaging and Image-Guided Interventions
Brooks et al. Cone beam computed tomography in orthodontics: Perspectives on radiation risk
Tabakov et al. Introduction to Diagnostic Radiology (X-Ray and Computed Tomography Imaging)
JP2023125605A (en) Radiographic image analysis device, its operation method, and radiographic image analysis program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807534

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008538613

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07807534

Country of ref document: EP

Kind code of ref document: A1