WO2008042978A1 - Methods and apparatus for power measurement in a communication system - Google Patents

Methods and apparatus for power measurement in a communication system Download PDF

Info

Publication number
WO2008042978A1
WO2008042978A1 PCT/US2007/080338 US2007080338W WO2008042978A1 WO 2008042978 A1 WO2008042978 A1 WO 2008042978A1 US 2007080338 W US2007080338 W US 2007080338W WO 2008042978 A1 WO2008042978 A1 WO 2008042978A1
Authority
WO
WIPO (PCT)
Prior art keywords
power measurement
calculating
signal
mode
instructions
Prior art date
Application number
PCT/US2007/080338
Other languages
French (fr)
Inventor
Ashok Mantradavi
Phani Bhushan Avadhanam
Vinay Murthy
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to JP2009531588A priority Critical patent/JP2010506509A/en
Priority to EP07843766A priority patent/EP2078363A1/en
Priority to CN200780037180.9A priority patent/CN101523777B/en
Publication of WO2008042978A1 publication Critical patent/WO2008042978A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • H04B17/327Received signal code power [RSCP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/23Indication means, e.g. displays, alarms, audible means

Definitions

  • the present application relates generally to the operation of communication systems, and more particularly, to methods and apparatus for power measurement in a communication system.
  • Data networks such as wireless communication networks, have to trade off between services customized for a single terminal and services provided to a large number of terminals.
  • services customized for a single terminal For example, the distribution of multimedia content to a large number of resource limited portable devices (subscribers) is a complicated problem. Therefore, it is very important for network administrators, content retailers, and service providers to have a way to distribute content and/or other network services in a fast and efficient manner and in such a way as to increase bandwidth utilization and power efficiency.
  • a communication network may utilize Orthogonal Frequency Division Multiplexing (OFDM) to provide communications between a network server and one or more mobile devices.
  • OFDM Orthogonal Frequency Division Multiplexing
  • This technology provides a transmission frame having data slots that are packed with services to be delivered over a distribution network as a transmit waveform.
  • the performance of a communication system may depend on the performance of the communication channel between the network and a device. To characterize this performance, it is desirable to measure the power at a receiving device. For example, measuring the power received by a device over a selected frequency band may be used to facilitate field testing or other functions related to the operation or improved performance of the device or communication system.
  • conventional devices operate to acquire network signaling before being able to perform any type of power measurement.
  • it would be useful for a device to be able to perform power measurements without first acquiring network signaling. This would allow a device to perform power measurements without being required to register with a network or to meet other network pre-conditions.
  • a device For example, it would be useful for a device to be able to identify external interference in the field and/or noise and interference from within the device when the network is turned off. [0006] Therefore, it would be desirable to have a system that operates to allow a device that operates to communicate over a network to perform power measurements without having to acquire any network signaling structure.
  • a power measurement system operates to measure power in a communication system.
  • the system provides mode selection which allows operation in either an active mode or a power measurement mode.
  • the active mode the system operates to allow a device to acquire a network signaling structure to facilitate the device's operation on the network.
  • the power measurement mode the power of received signals is measured without regard to any network signaling structure.
  • the measured power comprises signal, noise, and interference power.
  • the system then operations to display, store, and/or transmit the measured power to any other entity as necessary.
  • a method for power measurement comprises selecting between a signal decoding mode and a power measurement mode, decoding an input signal if the signal decoding mode is selected, and calculating a power measurement associated with the input signal if the power measurement mode is selected.
  • an apparatus for power measurement.
  • the apparatus comprises control logic configured to select between an active mode and a power measurement mode, a decoder configured to decode an input signal if the active mode is selected, and power measurement logic configured to calculate a power measurement associated with the input signal if the power measurement mode is selected.
  • an apparatus for power measurement.
  • the apparatus comprises means for selecting between an active mode and a power measurement mode, means for decoding an input signal if the active mode is selected, and means for calculating a power measurement associated with the input signal if the power measurement mode is selected.
  • a computer-readable medium has a computer program comprising program instructions, which when executed, operate to provide for power measurement.
  • the computer program comprises instructions for selecting between an active mode and a power measurement mode, instructions for decoding an input signal if the active mode is selected, and instructions for calculating a power measurement associated with the input signal if the power measurement mode is selected.
  • At least one processor is provided that is configured to perform a method for power measurement.
  • the method comprises selecting between an active mode and a power measurement mode, decoding an input signal if the active mode is selected, and calculating a power measurement associated with the input signal if the power measurement mode is selected.
  • FIG. 1 shows a network that comprises an aspect of a power measurement system
  • FIG. 2 shows an aspect of a power measurement system
  • FIG. 3 shows a method for providing a power measurement system
  • FIG. 4 shows an aspect of a power measurement system.
  • a power measurement system that operates to measure power in a communication system.
  • aspects of the power measurement system are described herein with reference to a communication network that utilizes OFDM to provide communications between a network server and one or more mobile devices.
  • the power measurement system is suitable for use with virtually any communication system.
  • FIG. 1 shows a network 100 that comprises an aspect of a power measurement system.
  • the network 100 comprises mobile devices 102, 104, 106, a server 108, and a communication network 110.
  • the network 110 operates to provide communications with and one or more of the mobile devices using OFDM technology; however, aspects of the power measurement system are suitable for use with other transmission technologies as well.
  • the server 108 operates to provide services that may be subscribed to by devices in communication with the network 110.
  • the server 108 is coupled to the network 110 through the communication link 112 that comprises any suitable communication link.
  • the network 110 comprises any combination of wired and/or wireless networks that allows services to be delivered from the server 108 to devices in communication with the network 110, such as the device 102.
  • the devices 102, 104, and 106 in this aspect comprise mobile telephones that communicate with the network 110 through the wireless links 114.
  • the wireless links 114 comprises wireless communication links based on OFDM technology; however, in other aspects the wireless links 114 may comprise other suitable wireless technologies that operate to allow devices to communicate with the network 110.
  • aspects of the power measurement system are described with reference to the device 102; however, the aspects are equally applicable to the devices 104 and 106.
  • the network 110 may communicate with any number and/or types of devices within the scope of the aspects.
  • devices suitable for use in aspects of the power measurement system include, but are not limited to, a personal digital assistant (PDA), email device, pager, a notebook computer, mp3 player, video player, or a desktop computer.
  • PDA personal digital assistant
  • email device pager
  • notebook computer mp3 player
  • video player or a desktop computer.
  • the server 108 comprises content that includes real time and non real time services.
  • the services comprise multimedia content that includes news, sports, weather, financial information, movies, and/or applications, programs, scripts, or any other type of suitable content or service.
  • the services may comprise video, audio or other information formatted in any suitable format.
  • the content is input to transmission logic 116, which processes the content to produce a transmission frame.
  • the transmission logic 116 operates to transmit the transmission frame over the network 106 as a transmit waveform 118.
  • the transmission frame may be distributed over the network 110 using a broadcast channel.
  • the device 102 comprises mode selection (MS) logic 120 that operates to select between first and second operating modes.
  • the first operating mode is an active mode that allows the device 102 to decode a received signal using a network signaling structure to obtain transmitted data.
  • the second operating mode is a power measurement mode that operates to measure the power received at the device 102 without regard to any signaling structure.
  • user input is processed by the
  • MS logic 120 to determine the selected mode.
  • the MS logic 120 activates receiver/demodulator
  • the MS logic 120 selects the second operating mode (power measurement mode) so that the device operates to perform a power measurement. For example, in the second operating mode, the MS logic 120 operates to activate power measurement (PM) logic 124 to measure received power. It should be noted that the PM logic 124 performs a power measurement based on measuring signal energy in the time domain and does not use any specific properties of the received transmit waveform. Thus, the second operating mode (power measurement mode) is selected.
  • the MS logic 120 operates to activate power measurement (PM) logic 124 to measure received power.
  • PM power measurement
  • the PM logic 124 performs a power measurement based on measuring signal energy in the time domain and does not use any specific properties of the received transmit waveform.
  • PM logic 124 measures the power of a received signal without regard to whether the signal comprises signal, noise, and/or interference energy.
  • aspects of a power measurement system operate to measure power in a communication network by performing one or more of the following functions.
  • Aspects of a power measurement system operate to allow a multimedia device to efficiently measure power. It should be noted that the power measurement system is not limited to the implementations described with reference to FIG. 1, and that other implementations are possible.
  • FIG. 2 shows an aspect of a power measurement system 200.
  • the power measurement system 200 comprises power measurement logic 202, receiver/demodulator logic 204, and MS logic 208.
  • the power measurement system 200 is suitable for use with the device 102 shown in FIG. 1.
  • the power measurement system 200 is just one implementation and that other implementations are possible.
  • an input signal 206 is fed in parallel to the receiver/demodulator 204 and the power measurement logic 202.
  • the input signal 206 is fed to the power measurement logic 202 and its output is fed to the receiver/demodulator 204.
  • various implementations are possible within the scope of the aspects.
  • the MS logic 208 operates to select between two modes of operation.
  • the first mode of operation is an active mode and the second mode of operation is a power measurement mode.
  • the MS logic 208 operates to receive a selection signal 210 that is used to determine the mode of operation to be selected.
  • the selection signal 210 may be derived from a user input, or from the operation of hardware and/or software associated with the device 102.
  • the receiver 212 is activated by the MS logic 208 to process the input signal 206 based on a network signaling structure.
  • the input signal 206 comprises a transmission frame carrying transmitted content or services from a distribution server, and the receiver 212 operates to allow a device to search the input signal 206 for a preamble at the start of the transmission frame.
  • the receiver 212 converts the input signal 206 to base band and outputs the base band signal to a demodulator 214.
  • the demodulator 214 operates to demodulate the base band signal to obtain the transmitted data 216.
  • control logic if the power measurement mode is selected, the control logic
  • the control logic 222 is activated by the MS logic 208.
  • the control logic 222 operates to communicate with other functional elements of the power measurement logic 202 to facilitate power measurement.
  • the control logic 222 provides a filter control signal 220.
  • a filter 218 receives the filter control signal 220 and operates to filter the input signal 206 based on a selected frequency band.
  • the filter 218 is a surface acoustic wave (SAW) filter whose center frequency is selected by the filter control signal 220.
  • a filtered signal is output from the filter 218 and is input to a down converter 224 that down converts the filtered signal based on an
  • a resulting base band signal is input to first automatic gain control
  • the first AGC 226 operates to control the gain of the base band signal based on a first AGC scaling signal received from the control logic 222 through the link 244.
  • a scaling signal is also applied to the down converter 224, as shown at 242, and used during the down-conversion operation.
  • the output of the first AGC 226 is input to first DC offset logic 228.
  • the first DC offset logic 228 comprises any suitable logic operable to remove a DC offset from the output of the first AGC 226 to produce a first DC adjusted signal that is input to a first analog to digital (AJO) converter 230.
  • AJO analog to digital
  • the first A/D 230 comprises any suitable logic operable to digitize the signal at its input to produce a first digital output signal that is input to second DC offset logic
  • the second DC offset logic 232 comprises any suitable logic operable to remove a
  • the first DVGA 234 comprises second AGC logic and second A/D logic.
  • the first DVGA 234 receives a second scaling signal from the control logic 222 through the link 246 and performs gain control using this second scaling signal.
  • DVGA 234 also includes a first loop accumulator (Accl) that operates to accumulate error values associated with the gain control process.
  • the first loop accumulator Accl is output from the DVGA 234 to the control logic 222 using the link 246.
  • the output of the first DVGA 234 is input to a power detector 240 where power measurement is performed.
  • an optional narrowband canceller 236 and second DVGA 238 are utilized.
  • the output of the first DVGA 234 is input to the narrowband interference cancellation (NIC) logic 236 that comprises any suitable logic operable to cancel narrowband interference from its input signal.
  • the output of the NIC logic 236 is input to the second DVGA 238.
  • the second DVGA 238 comprises third AGC logic and third A/D logic.
  • the second DVGA 236 receives a third scaling signal from the control logic 222 through the link 248 and performs gain control using this third scaling signal.
  • the second DVGA 234 also includes a second loop accumulator (Acc2) that operates to accumulate error values associated with the gain control process.
  • the second loop accumulator Acc2 is output from the DVGA 238 to the control logic 222 using the link 248.
  • the power detector 240 comprises any suitable logic and operates to measure the power of the signal it receives and output a power measurement 250.
  • the power detector 240 operates to detect power according to the algorithm provided below.
  • the power measurement 250 is stored, displayed, and/or transmitted to a third party as necessary.
  • the power measurement system 200 comprises a CPU, processor, gate array, hardware logic, virtual machine, software, and/or any combination of hardware and software.
  • the power measurement system 200 may be implemented completely in hardware through the use of analog and/or digital circuitry.
  • the power measurement system 200 may be implemented using a combination of hardware and software through the use of programmable gate arrays, memories, and/or other programmable logic.
  • the power measurement system 200 may be implemented completely in software as a computer program comprising instructions that are executed by at least one processor.
  • the power measurement system comprises a computer program having one or more program instructions ("instructions") stored on a computer-readable medium, which when executed by at least one processor, provides the functions of the power measurement system 200 described herein.
  • instructions may be loaded into the power measurement system 200 from a computer-readable media, such as a floppy disk, CDROM, memory card, FLASH memory device, RAM, ROM, or any other type of memory device.
  • the instructions may be downloaded into the power measurement system 200 from an external device or network resource. The instructions, when executed by the power measurement system 200 operate to provide aspects of a power measurement system as described herein.
  • the power measurement system 200 operates to select between first and second operating modes and provide signal decoding or power measurements as necessary.
  • the determined power measurements are relative to a selected frequency range and are not based on any signaling structure. It should be noted that the power measurement system 200 is just one implementation and the other implementations are possible within the scope of the aspects.
  • power measurement is performed by configuring a multimedia device for operation in power measurement mode.
  • the multimedia device acts like a power meter.
  • the power measurement mode is initiated through a diagnostic command issued by a device user.
  • the diagnostic command to initiate the power measurement mode is issued by software. It would be apparent to one of ordinary skill in the art that the diagnostic command can also be implemented by hardware or a combination of hardware and software.
  • the power measurement system 200 is configured to perform the following functions when the power measurement mode is selected.
  • the RF front-end of a device is configured so that the power measurement occurs in a desired frequency band.
  • the configuration involves choosing the appropriate SAW filter parameters.
  • the control logic 222 selects parameters of the SAW filter 218.
  • the SAW filter 218 operates at RF and is intended to suppress adjacent channel energy. Because of the presence of the SAW filter, the power can be measured reliably in the band for which the SAW is designed and the adjacent bands on either side. Specifically, if the SAW filter is designed for channel 53 (i.e., 707 Mhz), power can be measured in channels 52, 53 and 54.
  • the receiver bandwidth can also be chosen (e.g. 6 Mhz or 8 Mhz) to measure the power in the bandwidth of interest. 2.
  • DC offset removal is provided so that any residual DC component in the base band signal is removed.
  • a DC component can appear due to self-mixing or bias in the A/D converters and cause an erroneous increase in the measured power.
  • the DC offset logic 228 and 232 operate to remove any DC component to produce DC adjusted signals. Removing any DC component facilitates looking for weak interference in the field.
  • Each AGC comprises a selected number of analog gain steps and a digital gain applied after the A/D.
  • the gain steps and digital gain are chosen so that the energy of the digital samples is at a constant value.
  • the DVGA 234 provides this function.
  • a periodic timer is started that expires every "T" ms.
  • the period T is configurable and determines the frequency of the power measurements.
  • hardware logic is turned off during the time that the power measurements are not being performed to save power.
  • An alternative mechanism utilizes hardware/software to generate periodic interrupts that cause the device software to measure power in the corresponding interrupt service routine.
  • the timer 252 is used to measure the periodic interval used to determine when power measurements are to be made. For example, the expiration of the timer 252 causes the control logic 222 to activate the power measurement function.
  • error registers associated with the operation of the gain control functions at the DVGA 234 and DVGA 238 are read, and the obtained values are stored in a log packet.
  • the DVGA 234, and DVGA 238 comprise error registers (i.e., Accl and Acc2, respectively) that contains AGC loop accumulator values.
  • the Accl and Acc2 values are obtained by the control logic through the links 246 and 248, respectively and stored in the log 254. 6.
  • the power detector 240 operates to calculate a received signal strength indicator (RSSI) that indicates the energy received by a device.
  • RSSI received signal strength indicator
  • the power detector 240 receives the Accl and Acc2 values from the control logic 222 through the link 256 and uses these values to calculate the RSSI according to the following.
  • the RSSI is calculated as follows;
  • Accl(n) is the loop accumulator value at the instant of measurement and the DVGAl SetptTable[] is obtained through factory calibration.
  • the power detector 240 operates to calculate the RSSI according to the following.
  • the measured power includes the power of any transmitted signal and/or any other signal present in the band.
  • no specific property of a transmit signal is used to measure power beyond the center frequency and the bandwidth.
  • a device can remain in the power measurement mode for an indefinitely long period. Another command code can be issued to disable power measurement mode and return the device to the active mode, or the device can be reset.
  • FIG. 3 shows an aspect of a method 300 for providing a power measurement system.
  • the power measurement system 200 is configured to perform the method 300 as describe below.
  • a mode selection is determined.
  • the mode selection logic 208 operates to determine the mode selection based on the selection signal 210.
  • the mode selection is a selection between an active mode and a power measurement mode.
  • a test is performed to determine if the power measurement mode has been selected.
  • the mode selection logic 208 operates to make this determination. If the power measurement mode has not been selected the method proceeds to block 306. If the power measurement mode has been selected, the method proceeds to block 308.
  • signal decoding is performed.
  • a device receives a transmitted waveform comprising content and/or services, and the signal decoding logic 204 operates to decode the transmitted waveform to obtain the transmitted data
  • filter parameters are set.
  • the control logic 222 operates to set parameters for the filter 218 using the filter control signal 220.
  • the filter may be a SAW filter and the filter parameters comprise a center frequency and bandwidth.
  • any DC offset is removed.
  • AGC acquisition is provided.
  • AGC acquisition is provided by the AGC logic of the DVGA 234 and the DVGA 238.
  • the control logic 222 operates to scale the gain control functions by providing scaling signals over the links 246 and 248.
  • Accl and Acc2 values are determined.
  • a timer is started.
  • the timer 244 is started and operates to measure time intervals that are used to determine when power measurements are to be made.
  • the timer 244 triggers the control logic 222 to cause a power measurement to be made.
  • a test is performed to determine if the timer has timed out.
  • the timer 244 signals the control logic 222 when a time out occurs. If a time out has not occurred, the method proceeds to back to block 316 to wait for a time out. If a timeout has occurred, the method proceeds to block 318.
  • error values are stored.
  • the error values associated with the AGC logic provided by the DVGA 234 and the DVGA 238 are stored in the log 254.
  • the control logic 222 operates to retrieve the error values and store them in the log 254.
  • a power measurement is computed.
  • the power measurement comprises a RSSI.
  • stored error values are transmitted to the power detector 240 through the link 256 and a power measurement 250 is computed by the power detector 240 according to the algorithm described above.
  • the measured power is stored and/or displayed.
  • the measured power is display on a device display, stored in a device memory, or transmitted to another entity, such as a network server. The method then ends at block 324.
  • FIG. 4 shows an aspect of a power measurement system 400.
  • the power measurement system 400 comprises means (402) for selecting between an active mode and a power measurement mode.
  • the means 402 comprises the control logic 222.
  • the power measurement system 400 also comprises means (404) for decoding an input signal if the active mode is selected.
  • the means 404 comprises the receiver/demodulator 204.
  • the power measurement system 400 also comprises means (406) for calculating a power measurement associated with the input signal if the power measurement mode is selected.
  • the means 406 comprises the power measurement logic 202.
  • the means 402, 404, and 406 are implemented by at least one processor configured to execute program instructions to provide aspects of a power measurement system as described herein.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, but, in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium.
  • the storage medium may be integral to the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may reside in a user terminal.
  • the processor and the storage medium may reside as discrete components in a user terminal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Circuits Of Receivers In General (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)
  • Telephone Function (AREA)

Abstract

Methods and apparatus for power measurement in a communication system. In an aspect, a method is provided for power measurement. The method includes selecting between a signal decoding mode and a power measurement mode, decoding an input signal if the signal decoding mode is selected, and calculating a power measurement associated with the input signal if the power measurement mode is selected. In another aspect, an apparatus is provided for power measurement. The apparatus includes means for selecting between an active mode and a power measurement mode, means for decoding an input signal if the active mode is selected, and means for calculating a power measurement associated with the input signal if the power measurement mode is selected.

Description

METHODS AND APPARATUS FOR POWER MEASUREMENT IN A COMMUNICATION SYSTEM
Claim of Priority under 35 U.S.C. §119
[0001] The present Application for Patent claims priority to Provisional Application No. 60/828,607 entitled "POWER MEASUREMENT" filed October 6, 2006, and assigned to the assignee hereof and hereby expressly incorporated by reference herein.
BACKGROUND Field
[0002] The present application relates generally to the operation of communication systems, and more particularly, to methods and apparatus for power measurement in a communication system.
Background
[0003] Data networks, such as wireless communication networks, have to trade off between services customized for a single terminal and services provided to a large number of terminals. For example, the distribution of multimedia content to a large number of resource limited portable devices (subscribers) is a complicated problem. Therefore, it is very important for network administrators, content retailers, and service providers to have a way to distribute content and/or other network services in a fast and efficient manner and in such a way as to increase bandwidth utilization and power efficiency.
[0004] In current content delivery/media distribution systems, real time and non real time services are packed into a transmission frame and delivered to devices on a network. For example, a communication network may utilize Orthogonal Frequency Division Multiplexing (OFDM) to provide communications between a network server and one or more mobile devices. This technology provides a transmission frame having data slots that are packed with services to be delivered over a distribution network as a transmit waveform.
[0005] The performance of a communication system may depend on the performance of the communication channel between the network and a device. To characterize this performance, it is desirable to measure the power at a receiving device. For example, measuring the power received by a device over a selected frequency band may be used to facilitate field testing or other functions related to the operation or improved performance of the device or communication system. Unfortunately, conventional devices operate to acquire network signaling before being able to perform any type of power measurement. However, it would be useful for a device to be able to perform power measurements without first acquiring network signaling. This would allow a device to perform power measurements without being required to register with a network or to meet other network pre-conditions. For example, it would be useful for a device to be able to identify external interference in the field and/or noise and interference from within the device when the network is turned off. [0006] Therefore, it would be desirable to have a system that operates to allow a device that operates to communicate over a network to perform power measurements without having to acquire any network signaling structure.
SUMMARY
[0007] In one or more aspects, a power measurement system is provided that operates to measure power in a communication system. In an aspect, the system provides mode selection which allows operation in either an active mode or a power measurement mode. In the active mode, the system operates to allow a device to acquire a network signaling structure to facilitate the device's operation on the network. In the power measurement mode, the power of received signals is measured without regard to any network signaling structure. Thus, the measured power comprises signal, noise, and interference power. The system then operations to display, store, and/or transmit the measured power to any other entity as necessary.
[0008] In an aspect, a method is provided for power measurement. The method comprises selecting between a signal decoding mode and a power measurement mode, decoding an input signal if the signal decoding mode is selected, and calculating a power measurement associated with the input signal if the power measurement mode is selected.
[0009] In another aspect, an apparatus is provided for power measurement. The apparatus comprises control logic configured to select between an active mode and a power measurement mode, a decoder configured to decode an input signal if the active mode is selected, and power measurement logic configured to calculate a power measurement associated with the input signal if the power measurement mode is selected.
[0010] In another aspect, an apparatus is provided for power measurement. The apparatus comprises means for selecting between an active mode and a power measurement mode, means for decoding an input signal if the active mode is selected, and means for calculating a power measurement associated with the input signal if the power measurement mode is selected.
[0011] In another aspect, a computer-readable medium is provided that has a computer program comprising program instructions, which when executed, operate to provide for power measurement. The computer program comprises instructions for selecting between an active mode and a power measurement mode, instructions for decoding an input signal if the active mode is selected, and instructions for calculating a power measurement associated with the input signal if the power measurement mode is selected.
[0012] In still another aspect, at least one processor is provided that is configured to perform a method for power measurement. The method comprises selecting between an active mode and a power measurement mode, decoding an input signal if the active mode is selected, and calculating a power measurement associated with the input signal if the power measurement mode is selected.
[0013] Other aspects will become apparent after review of the hereinafter set forth
Brief Description of the Drawings, Description, and the Claims.
BRIEF DESCRIPTION OF THE DRAWINGS
[0014] The foregoing aspects described herein will become more readily apparent by reference to the following description when taken in conjunction with the accompanying drawings wherein:
[0015] FIG. 1 shows a network that comprises an aspect of a power measurement system;
[0016] FIG. 2 shows an aspect of a power measurement system; [0017] FIG. 3 shows a method for providing a power measurement system; and [0018] FIG. 4 shows an aspect of a power measurement system. DETAILED DESCRIPTION
[0019] In one or more aspects, a power measurement system is provided that operates to measure power in a communication system. For the purpose of this description, aspects of the power measurement system are described herein with reference to a communication network that utilizes OFDM to provide communications between a network server and one or more mobile devices. However, it should be noted that the power measurement system is suitable for use with virtually any communication system.
[0020] FIG. 1 shows a network 100 that comprises an aspect of a power measurement system. The network 100 comprises mobile devices 102, 104, 106, a server 108, and a communication network 110. For the purpose of this description, it will be assumed that the network 110 operates to provide communications with and one or more of the mobile devices using OFDM technology; however, aspects of the power measurement system are suitable for use with other transmission technologies as well. [0021] In an aspect, the server 108 operates to provide services that may be subscribed to by devices in communication with the network 110. The server 108 is coupled to the network 110 through the communication link 112 that comprises any suitable communication link. The network 110 comprises any combination of wired and/or wireless networks that allows services to be delivered from the server 108 to devices in communication with the network 110, such as the device 102. [0022] The devices 102, 104, and 106 in this aspect comprise mobile telephones that communicate with the network 110 through the wireless links 114. The wireless links 114 comprises wireless communication links based on OFDM technology; however, in other aspects the wireless links 114 may comprise other suitable wireless technologies that operate to allow devices to communicate with the network 110. For the remainder of this description, aspects of the power measurement system are described with reference to the device 102; however, the aspects are equally applicable to the devices 104 and 106.
[0023] It should be noted that the network 110 may communicate with any number and/or types of devices within the scope of the aspects. For example, other devices suitable for use in aspects of the power measurement system include, but are not limited to, a personal digital assistant (PDA), email device, pager, a notebook computer, mp3 player, video player, or a desktop computer.
[0024] The server 108 comprises content that includes real time and non real time services. For example, the services comprise multimedia content that includes news, sports, weather, financial information, movies, and/or applications, programs, scripts, or any other type of suitable content or service. Thus, the services may comprise video, audio or other information formatted in any suitable format.
[0025] The content is input to transmission logic 116, which processes the content to produce a transmission frame. The transmission logic 116 operates to transmit the transmission frame over the network 106 as a transmit waveform 118. For example, the transmission frame may be distributed over the network 110 using a broadcast channel.
[0026] The device 102 comprises mode selection (MS) logic 120 that operates to select between first and second operating modes. The first operating mode is an active mode that allows the device 102 to decode a received signal using a network signaling structure to obtain transmitted data. The second operating mode is a power measurement mode that operates to measure the power received at the device 102 without regard to any signaling structure. In an aspect, user input is processed by the
MS logic 120 to determine the selected mode.
[0027] In the first operating mode, the MS logic 120 activates receiver/demodulator
(R/D) 122 to receive and demodulate the transmit waveform 118 to obtain the transmitted data (D).
[0028] The MS logic 120 selects the second operating mode (power measurement mode) so that the device operates to perform a power measurement. For example, in the second operating mode, the MS logic 120 operates to activate power measurement (PM) logic 124 to measure received power. It should be noted that the PM logic 124 performs a power measurement based on measuring signal energy in the time domain and does not use any specific properties of the received transmit waveform. Thus, the
PM logic 124 measures the power of a received signal without regard to whether the signal comprises signal, noise, and/or interference energy.
[0029] Therefore, aspects of a power measurement system operate to measure power in a communication network by performing one or more of the following functions. a. Select an operating mode (i.e., active or power measurement mode). b. Process a received waveform to recover transmitted data if the active operating mode is selected. c. Select a frequency range and measure received power if the power measurement operating mode is selected. d. Store, display, and/or transmit the power measurement.
[0030] Aspects of a power measurement system operate to allow a multimedia device to efficiently measure power. It should be noted that the power measurement system is not limited to the implementations described with reference to FIG. 1, and that other implementations are possible.
[0031] FIG. 2 shows an aspect of a power measurement system 200. The power measurement system 200 comprises power measurement logic 202, receiver/demodulator logic 204, and MS logic 208. For example, the power measurement system 200 is suitable for use with the device 102 shown in FIG. 1. [0032] It should be noted that the power measurement system 200 is just one implementation and that other implementations are possible. For example, in the system 200, an input signal 206 is fed in parallel to the receiver/demodulator 204 and the power measurement logic 202. However, in another aspect, the input signal 206 is fed to the power measurement logic 202 and its output is fed to the receiver/demodulator 204. Thus, various implementations are possible within the scope of the aspects.
[0033] The MS logic 208 operates to select between two modes of operation. The first mode of operation is an active mode and the second mode of operation is a power measurement mode. In an aspect, the MS logic 208 operates to receive a selection signal 210 that is used to determine the mode of operation to be selected. For example, the selection signal 210 may be derived from a user input, or from the operation of hardware and/or software associated with the device 102.
[0034] In an aspect, if the active mode is selected, the receiver 212 is activated by the MS logic 208 to process the input signal 206 based on a network signaling structure. For example, the input signal 206 comprises a transmission frame carrying transmitted content or services from a distribution server, and the receiver 212 operates to allow a device to search the input signal 206 for a preamble at the start of the transmission frame. The receiver 212 converts the input signal 206 to base band and outputs the base band signal to a demodulator 214. The demodulator 214 operates to demodulate the base band signal to obtain the transmitted data 216.
[0035] In an aspect, if the power measurement mode is selected, the control logic
222 is activated by the MS logic 208. The control logic 222 operates to communicate with other functional elements of the power measurement logic 202 to facilitate power measurement.
[0036] During power measurement mode, the control logic 222 provides a filter control signal 220. A filter 218 receives the filter control signal 220 and operates to filter the input signal 206 based on a selected frequency band. For example, in an aspect, the filter 218 is a surface acoustic wave (SAW) filter whose center frequency is selected by the filter control signal 220. A filtered signal is output from the filter 218 and is input to a down converter 224 that down converts the filtered signal based on an
RF carrier signal. A resulting base band signal is input to first automatic gain control
(AGC) logic 226. The first AGC 226 operates to control the gain of the base band signal based on a first AGC scaling signal received from the control logic 222 through the link 244. In an aspect, a scaling signal is also applied to the down converter 224, as shown at 242, and used during the down-conversion operation.
[0037] The output of the first AGC 226 is input to first DC offset logic 228. The first DC offset logic 228 comprises any suitable logic operable to remove a DC offset from the output of the first AGC 226 to produce a first DC adjusted signal that is input to a first analog to digital (AJO) converter 230.
[0038] The first A/D 230 comprises any suitable logic operable to digitize the signal at its input to produce a first digital output signal that is input to second DC offset logic
232. The second DC offset logic 232 comprises any suitable logic operable to remove a
DC offset from the output of the first A/D 230 to produce a second DC adjusted signal that is input to a first digital variable gain amplifier (DVGA) 234.
[0039] The first DVGA 234 comprises second AGC logic and second A/D logic.
The first DVGA 234 receives a second scaling signal from the control logic 222 through the link 246 and performs gain control using this second scaling signal. The first
DVGA 234 also includes a first loop accumulator (Accl) that operates to accumulate error values associated with the gain control process. The first loop accumulator Accl is output from the DVGA 234 to the control logic 222 using the link 246.
[0040] In an aspect, the output of the first DVGA 234 is input to a power detector 240 where power measurement is performed. In another aspect, an optional narrowband canceller 236 and second DVGA 238 are utilized. For example, the output of the first DVGA 234 is input to the narrowband interference cancellation (NIC) logic 236 that comprises any suitable logic operable to cancel narrowband interference from its input signal. The output of the NIC logic 236 is input to the second DVGA 238. The second DVGA 238 comprises third AGC logic and third A/D logic. The second DVGA 236 receives a third scaling signal from the control logic 222 through the link 248 and performs gain control using this third scaling signal. The second DVGA 234 also includes a second loop accumulator (Acc2) that operates to accumulate error values associated with the gain control process. The second loop accumulator Acc2 is output from the DVGA 238 to the control logic 222 using the link 248.
[0041] The power detector 240 comprises any suitable logic and operates to measure the power of the signal it receives and output a power measurement 250. In an aspect, the power detector 240 operates to detect power according to the algorithm provided below. In an aspect, the power measurement 250 is stored, displayed, and/or transmitted to a third party as necessary.
[0042] The power measurement system 200 comprises a CPU, processor, gate array, hardware logic, virtual machine, software, and/or any combination of hardware and software. For example, in an aspect, the power measurement system 200 may be implemented completely in hardware through the use of analog and/or digital circuitry. In another aspect, the power measurement system 200 may be implemented using a combination of hardware and software through the use of programmable gate arrays, memories, and/or other programmable logic. In another aspect, the power measurement system 200 may be implemented completely in software as a computer program comprising instructions that are executed by at least one processor. [0043] In an aspect, the power measurement system comprises a computer program having one or more program instructions ("instructions") stored on a computer-readable medium, which when executed by at least one processor, provides the functions of the power measurement system 200 described herein. For example, instructions may be loaded into the power measurement system 200 from a computer-readable media, such as a floppy disk, CDROM, memory card, FLASH memory device, RAM, ROM, or any other type of memory device. In another aspect, the instructions may be downloaded into the power measurement system 200 from an external device or network resource. The instructions, when executed by the power measurement system 200 operate to provide aspects of a power measurement system as described herein. [0044] Thus, the power measurement system 200 operates to select between first and second operating modes and provide signal decoding or power measurements as necessary. The determined power measurements are relative to a selected frequency range and are not based on any signaling structure. It should be noted that the power measurement system 200 is just one implementation and the other implementations are possible within the scope of the aspects.
Power Measurement Operation
[0045] In an aspect, power measurement is performed by configuring a multimedia device for operation in power measurement mode. When in power measurement mode, the multimedia device acts like a power meter. In an aspect, the power measurement mode is initiated through a diagnostic command issued by a device user. In another aspect, the diagnostic command to initiate the power measurement mode is issued by software. It would be apparent to one of ordinary skill in the art that the diagnostic command can also be implemented by hardware or a combination of hardware and software. Once the power measurement mode is activated, one or more of the following functions are performed. For example, the power measurement system 200 is configured to perform the following functions when the power measurement mode is selected.
1. Configure RF Front-End
[0046] In an aspect, the RF front-end of a device is configured so that the power measurement occurs in a desired frequency band. The configuration involves choosing the appropriate SAW filter parameters. For example, the control logic 222 selects parameters of the SAW filter 218. The SAW filter 218 operates at RF and is intended to suppress adjacent channel energy. Because of the presence of the SAW filter, the power can be measured reliably in the band for which the SAW is designed and the adjacent bands on either side. Specifically, if the SAW filter is designed for channel 53 (i.e., 707 Mhz), power can be measured in channels 52, 53 and 54. The receiver bandwidth can also be chosen (e.g. 6 Mhz or 8 Mhz) to measure the power in the bandwidth of interest. 2. Remove DC Offset
[0047] DC offset removal is provided so that any residual DC component in the base band signal is removed. A DC component can appear due to self-mixing or bias in the A/D converters and cause an erroneous increase in the measured power. For example, the DC offset logic 228 and 232 operate to remove any DC component to produce DC adjusted signals. Removing any DC component facilitates looking for weak interference in the field.
3. AGC Acquisition
[0048] To prevent receiver A/D saturation, AGC acquisition is provided. Each AGC comprises a selected number of analog gain steps and a digital gain applied after the A/D. The gain steps and digital gain are chosen so that the energy of the digital samples is at a constant value. For example, the DVGA 234 provides this function.
4. Start Periodic Timer
[0049] To save on battery life, a periodic timer is started that expires every "T" ms. The period T is configurable and determines the frequency of the power measurements. In an aspect, hardware logic is turned off during the time that the power measurements are not being performed to save power. An alternative mechanism utilizes hardware/software to generate periodic interrupts that cause the device software to measure power in the corresponding interrupt service routine. In an aspect, the timer 252 is used to measure the periodic interval used to determine when power measurements are to be made. For example, the expiration of the timer 252 causes the control logic 222 to activate the power measurement function.
5. Store Error Register Values
[0050] For each expiration of the timer 244, error registers associated with the operation of the gain control functions at the DVGA 234 and DVGA 238 are read, and the obtained values are stored in a log packet. For example, the DVGA 234, and DVGA 238 comprise error registers (i.e., Accl and Acc2, respectively) that contains AGC loop accumulator values. The Accl and Acc2 values are obtained by the control logic through the links 246 and 248, respectively and stored in the log 254. 6. Calculate RSSI
[0051] In an aspect, the power detector 240 operates to calculate a received signal strength indicator (RSSI) that indicates the energy received by a device. In an aspect, the power detector 240 receives the Accl and Acc2 values from the control logic 222 through the link 256 and uses these values to calculate the RSSI according to the following. In an aspect, when the NIC 236 and DVGA 238 are not used, the RSSI is calculated as follows;
RSSI = 3.01 * [8192 - Accl(n)] / 1024 +
DVGAl SetPtTable[AGCGainState] (dBm)
where Accl(n) is the loop accumulator value at the instant of measurement and the DVGAl SetptTable[] is obtained through factory calibration.
[0052] In another aspect, when the NIC 236 and DVGA 238 are included, the power detector 240 operates to calculate the RSSI according to the following.
RSSI = 3.01 * [8192 - Accl(n) - Acc2(n)] / 1024 +
DVGAl SetPtTable[AGCGainState] (dBm)
[0053] Note that the measured power includes the power of any transmitted signal and/or any other signal present in the band. In an aspect, no specific property of a transmit signal is used to measure power beyond the center frequency and the bandwidth.
[0054] In an aspect, a device can remain in the power measurement mode for an indefinitely long period. Another command code can be issued to disable power measurement mode and return the device to the active mode, or the device can be reset. [0055] FIG. 3 shows an aspect of a method 300 for providing a power measurement system. For example, in an aspect, the power measurement system 200 is configured to perform the method 300 as describe below.
[0056] At block 302, a mode selection is determined. In an aspect, the mode selection logic 208 operates to determine the mode selection based on the selection signal 210. The mode selection is a selection between an active mode and a power measurement mode. [0057] At block 304, a test is performed to determine if the power measurement mode has been selected. In an aspect, the mode selection logic 208 operates to make this determination. If the power measurement mode has not been selected the method proceeds to block 306. If the power measurement mode has been selected, the method proceeds to block 308.
[0058] At block 306, signal decoding is performed. For example, a device receives a transmitted waveform comprising content and/or services, and the signal decoding logic 204 operates to decode the transmitted waveform to obtain the transmitted data
216. The method then ends at block 324.
[0059] At block 308, filter parameters are set. In an aspect, the control logic 222 operates to set parameters for the filter 218 using the filter control signal 220. For example, the filter may be a SAW filter and the filter parameters comprise a center frequency and bandwidth.
[0060] At block 310, any DC offset is removed. In an aspect, the DC offset logic
228 and 232 operates to remove any DC offset to form DC adjusted signals.
[0061] At block 312, AGC acquisition is provided. In an aspect, AGC acquisition is provided by the AGC logic of the DVGA 234 and the DVGA 238. For example, the control logic 222 operates to scale the gain control functions by providing scaling signals over the links 246 and 248. As part of the AGC process, Accl and Acc2 values are determined.
[0062] At block 314, a timer is started. In an aspect, the timer 244 is started and operates to measure time intervals that are used to determine when power measurements are to be made. For example, the timer 244 triggers the control logic 222 to cause a power measurement to be made.
[0063] At block 316, a test is performed to determine if the timer has timed out. In an aspect, the timer 244 signals the control logic 222 when a time out occurs. If a time out has not occurred, the method proceeds to back to block 316 to wait for a time out. If a timeout has occurred, the method proceeds to block 318.
[0064] At block 318, error values are stored. In an aspect, the error values associated with the AGC logic provided by the DVGA 234 and the DVGA 238 are stored in the log 254. For example, the control logic 222 operates to retrieve the error values and store them in the log 254.
[0065] At block, 320, a power measurement is computed. For example, the power measurement comprises a RSSI. In an aspect, stored error values are transmitted to the power detector 240 through the link 256 and a power measurement 250 is computed by the power detector 240 according to the algorithm described above. [0066] At block 322, the measured power is stored and/or displayed. In an aspect, the measured power is display on a device display, stored in a device memory, or transmitted to another entity, such as a network server. The method then ends at block 324.
[0067] Thus, the method 300 operates to provide a power measurement system for use by a device in a communication system. It should be noted that the method 300 represents just one implementation and the changes, additions, deletions, combinations or other modifications of the method 300 are possible within the scope of the aspects. [0068] FIG. 4 shows an aspect of a power measurement system 400. The power measurement system 400 comprises means (402) for selecting between an active mode and a power measurement mode. For example, in an aspect, the means 402 comprises the control logic 222. The power measurement system 400 also comprises means (404) for decoding an input signal if the active mode is selected. For example, in an aspect, the means 404 comprises the receiver/demodulator 204. The power measurement system 400 also comprises means (406) for calculating a power measurement associated with the input signal if the power measurement mode is selected. For example, in an aspect, the means 406 comprises the power measurement logic 202. [0069] In an aspect, the means 402, 404, and 406 are implemented by at least one processor configured to execute program instructions to provide aspects of a power measurement system as described herein.
[0070] Therefore various illustrative logics, logical blocks, modules, and circuits described in connection with the aspects disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but, in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
[0071] The steps of a method or algorithm described in connection with the aspects disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. An exemplary storage medium is coupled to the processor, such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral to the processor. The processor and the storage medium may reside in an ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and the storage medium may reside as discrete components in a user terminal.
[0072] The description of the disclosed aspects is provided to enable any person skilled in the art to make or use the present invention. Various modifications to these aspects may be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects, e.g., in an instant messaging service or any general wireless data communication applications, without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the aspects shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein. The word "exemplary" is used exclusively herein to mean "serving as an example, instance, or illustration." Any aspect described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other aspects.
[0073] Accordingly, while aspects of a power measurement system have been illustrated and described herein, it will be appreciated that various changes can be made to the aspects without departing from their spirit or essential characteristics. Therefore, the disclosures and descriptions herein are intended to be illustrative, but not limiting, of the scope of the invention, which is set forth in the following claims.

Claims

CLAIMS WHAT IS CLAIMED IS:
1. A method for power measurement, comprising: selecting between an active mode and a power measurement mode; decoding an input signal if the active mode is selected; and calculating a power measurement associated with the input signal if the power measurement mode is selected.
2. The method of claim 1, wherein said selecting comprises selecting between the active mode and the power measurement mode based on user input.
3. The method of claim 1, wherein said calculating comprises: filtering the input signal based on a selected frequency range to produce a filtered signal; removing a DC component from the filtered signal to produce a DC compensated signal; controlling the gain of the DC compensated signal to produce a gain controlled signal; and calculating the power measurement based on the gain controlled signal.
4. The method of claim 3, wherein said filtering comprises filtering the input signal using a SAW filter.
5. The method of claim 3, wherein said calculating comprises calculating a RSSI value based on an expression comprising;
RSSI = 3.01 * [8192 - Accl(n)] / 1024 +
DVGAl SetPtTable[AGCGainState]
6. The method of claim 3, wherein said calculating comprises calculating a RSSI value based on an expression comprising;
RSSI = 3.01 * [8192 - Accl(n) - Acc2(n)] / 1024 +
DVGAl SetPtTable[AGCGainState]
7. The method of claim 1, further comprising performing at least one of displaying, storing, and transmitting the power measurement.
8. The method of claim 1, further comprising performing said calculating at selected time intervals.
9. An apparatus for power measurement, comprising: control logic configured to select between an active mode and a power measurement mode; a decoder configured to decode an input signal if the active mode is selected; and power measurement logic configured to calculate a power measurement associated with the input signal if the power measurement mode is selected.
10. The apparatus of claim 9, wherein said control logic is configured to select between the active mode and the power measurement mode based on user input.
11. The apparatus of claim 9, wherein said power measurement logic comprises: a filter configured to filter the input signal based on a selected frequency range to produce a filtered signal;
DC logic configured to remove a DC component from the filtered signal to produce a DC compensated signal; gain control logic configured to control the gain of the DC compensated signal to produce a gain controlled signal; and power detector logic configured to calculate the power measurement based on the gain controlled signal.
12. The apparatus of claim 11, wherein said filter comprises a SAW filter.
13. The apparatus of claim 11 , wherein said power detector logic is configured to calculate a RSSI value based on an expression comprising; RSSI = 3.01 * [8192 - Accl(n)] / 1024 +
DVGAl SetPtTable[AGCGainState]
14. The apparatus of claim 11 , wherein said power detector logic is configured to calculate a RSSI value based on an expression comprising;
RSSI = 3.01 * [8192 - Accl(n) - Acc2(n)] / 1024 +
DVGAl SetPtTable[AGCGainState]
15. The apparatus of claim 9, wherein said power measurement logic is further configured to perform at least one of displaying, storing, and transmitting the power measurement.
16. The apparatus of claim 9, further comprising a timer operable to cause the power measurement logic to calculate a power measurement at selected time intervals.
17. An apparatus for power measurement, comprising: means for selecting between an active mode and a power measurement mode; means for decoding an input signal if the active mode is selected; and means for calculating a power measurement associated with the input signal if the power measurement mode is selected.
18. The apparatus of claim 17, wherein said means for selecting comprises means for selecting between the active mode and the power measurement mode based on user input.
19. The apparatus of claim 17, wherein said means for calculating comprises: means for filtering the input signal based on a selected frequency range to produce a filtered signal; means for removing a DC component from the filtered signal to produce a DC compensated signal; means for controlling the gain of the DC compensated signal to produce a gain controlled signal; and means for calculating the power measurement based on the gain controlled signal.
20. The apparatus of claim 19, wherein said means for filtering comprises means for filtering the input signal using a SAW filter.
21. The apparatus of claim 19, wherein said means for calculating comprises means for calculating a RSSI value based on an expression comprising;
RSSI = 3.01 * [8192 - Accl(n)] / 1024 +
DVGAl SetPtTable[AGCGainState]
22. The apparatus of claim 19, wherein said means for calculating comprises means for calculating a RSSI value based on an expression comprising;
RSSI = 3.01 * [8192 - Accl(n) - Acc2(n)] / 1024 +
DVGAl SetPtTable[AGCGainState]
23. The apparatus of claim 17, further comprising means for performing at least one of displaying, storing, and transmitting the power measurement.
24. The apparatus of claim 17, further comprising means for performing said calculating at selected time intervals.
25. A computer-readable medium having a computer program comprising program instructions, which when executed, operate to provide for power measurement, the computer program comprising: instructions for selecting between an active mode and a power measurement mode; instructions for decoding an input signal if the active mode is selected; and instructions for calculating a power measurement associated with the input signal if the power measurement mode is selected.
26. The computer program of claim 25, wherein said instructions for selecting comprise instructions for selecting between the active mode and the power measurement mode based on user input.
27. The computer program of claim 25, wherein said instructions for calculating comprise: instructions for filtering the input signal based on a selected frequency range to produce a filtered signal; instructions for removing a DC component from the filtered signal to produce a DC compensated signal; instructions for controlling the gain of the DC compensated signal to produce a gain controlled signal; and instructions for calculating the power measurement based on the gain controlled signal.
28. The computer program of claim 27, wherein said instructions for filtering comprise instructions for filtering the input signal using a SAW filter.
29. The computer program of claim 27, wherein said instructions for calculating comprise instructions for calculating a RSSI value based on an expression comprising;
RSSI = 3.01 * [8192 - Accl(n)] / 1024 +
DVGAl SetPtTable[AGCGainState]
30. The computer program of claim 27, wherein said instructions for calculating comprise instructions for calculating a RSSI value based on an expression comprising;
RSSI = 3.01 * [8192 - Accl(n) - Acc2(n)] / 1024 +
DVGAl SetPtTable[AGCGainState]
31. The computer program of claim 25, further comprising instructions for performing at least one of displaying, storing, and transmitting the power measurement.
32. The computer program of claim 25, further comprising instructions for performing said calculating at selected time intervals.
33. At least one processor configured to perform a method for power measurement, the method comprising: selecting between an active mode and a power measurement mode; decoding an input signal if the active mode is selected; and calculating a power measurement associated with the input signal if the power measurement mode is selected.
34. The method of claim 33, wherein said selecting comprises selecting between the active mode and the power measurement mode based on user input.
35. The method of claim 33, wherein said calculating comprises: filtering the input signal based on a selected frequency range to produce a filtered signal; removing a DC component from the filtered signal to produce a DC compensated signal; controlling the gain of the DC compensated signal to produce a gain controlled signal; and calculating the power measurement based on the gain controlled signal.
36. The method of claim 35, wherein said filtering comprises filtering the input signal using a SAW filter.
37. The method of claim 35, wherein said calculating comprises calculating a RSSI value based on an expression comprising;
RSSI = 3.01 * [8192 - Accl(n)] / 1024 +
DVGAl SetPtTable[AGCGainState]
38. The method of claim 35, wherein said calculating comprises calculating a RSSI value based on an expression comprising; RSSI = 3.01 * [8192 - Accl(n) - Acc2(n)] / 1024 +
DVGAl SetPtTable[AGCGainState]
39. The method of claim 33, further comprising performing at least one of displaying, storing, and transmitting the power measurement.
40. The method of claim 33, further comprising performing said calculating at selected time intervals.
PCT/US2007/080338 2006-10-06 2007-10-03 Methods and apparatus for power measurement in a communication system WO2008042978A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009531588A JP2010506509A (en) 2006-10-06 2007-10-03 Method and apparatus for power measurement in a communication system
EP07843766A EP2078363A1 (en) 2006-10-06 2007-10-03 Methods and apparatus for power measurement in a communication system
CN200780037180.9A CN101523777B (en) 2006-10-06 2007-10-03 Methods and apparatus for power measurement in communication system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US82860706P 2006-10-06 2006-10-06
US60/828,607 2006-10-06
US11/624,644 2007-01-18
US11/624,644 US8615210B2 (en) 2006-10-06 2007-01-18 Methods and apparatus for power measurement in a communication system

Publications (1)

Publication Number Publication Date
WO2008042978A1 true WO2008042978A1 (en) 2008-04-10

Family

ID=38750748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/080338 WO2008042978A1 (en) 2006-10-06 2007-10-03 Methods and apparatus for power measurement in a communication system

Country Status (7)

Country Link
US (1) US8615210B2 (en)
EP (1) EP2078363A1 (en)
JP (1) JP2010506509A (en)
KR (1) KR101082632B1 (en)
CN (1) CN101523777B (en)
TW (1) TW200830748A (en)
WO (1) WO2008042978A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7840382B2 (en) * 2006-10-12 2010-11-23 Qualcomm Incorporated Methods and apparatus for network re-creation in controlled environments
WO2012072122A1 (en) * 2010-11-30 2012-06-07 Telefonaktiebolaget L M Ericsson (Publ) Receiver gain adjustment to reducing an influence of a dc offset
US9625559B2 (en) * 2012-10-08 2017-04-18 General Electric Company Correcting accumulated power in utility meters
CN105548678A (en) * 2015-12-14 2016-05-04 潘小胜 Electric power calculating device of computer machine room
CN105548679B (en) * 2015-12-18 2020-06-16 无锡小天鹅电器有限公司 Communication terminal power detection system and detection method
CN106501597A (en) * 2016-10-21 2017-03-15 成都前锋电子仪器有限责任公司 A kind of power reflection counts processing method and system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0722226A1 (en) * 1995-01-10 1996-07-17 Nokia Mobile Phones Ltd. A method and circuit for filtering disturbances in a radio receiver
DE10157864A1 (en) * 2001-11-26 2003-06-18 Infineon Technologies Ag Quadrature Amplitude Modulation receiver has integral measurement circuit for measuring received signal power density and can be changed between reception and measurement modes
US20050260962A1 (en) * 2004-05-20 2005-11-24 Shahbaz Nazrul Systems and methods for testing signal processing control

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5621767A (en) * 1994-09-30 1997-04-15 Hughes Electronics Method and device for locking on a carrier signal by dividing frequency band into segments for segment signal quality determination and selecting better signal quality segment
JP2001298398A (en) * 2000-04-13 2001-10-26 Sangikyou:Kk Device for monitoring speech communication quality of portabel telephone
US20020191685A1 (en) * 2001-06-14 2002-12-19 Sadowski Eric M. System and method for self-testing a QAM transceiver within a CATV system
GB2377837A (en) * 2001-07-20 2003-01-22 Univ Bristol Mixer linearisation using frequency retranslation
US7120410B2 (en) * 2001-09-28 2006-10-10 Broadcom Corporation LNA gain adjustment in an RF receiver to compensate for intermodulation interference
JP4648904B2 (en) * 2003-08-18 2011-03-09 スピードアーク リミティド. Data conversion methods and systems
KR100565313B1 (en) 2003-11-26 2006-03-30 엘지전자 주식회사 Method of time domain and code domain power measurement for combined tdma and cdma operated communication system
GB0516766D0 (en) * 2005-08-16 2005-09-21 Zarlink Semiconductor Ltd Frequency changer and tuner
GB2429349B (en) * 2005-08-16 2010-09-01 Zarlink Semiconductor Ltd Quadrature frequency changer, tuner and modulator
US7676206B2 (en) * 2005-12-05 2010-03-09 Sigmatel, Inc. Low noise, low distortion radio receiver front-end

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0722226A1 (en) * 1995-01-10 1996-07-17 Nokia Mobile Phones Ltd. A method and circuit for filtering disturbances in a radio receiver
DE10157864A1 (en) * 2001-11-26 2003-06-18 Infineon Technologies Ag Quadrature Amplitude Modulation receiver has integral measurement circuit for measuring received signal power density and can be changed between reception and measurement modes
US20050260962A1 (en) * 2004-05-20 2005-11-24 Shahbaz Nazrul Systems and methods for testing signal processing control

Also Published As

Publication number Publication date
KR101082632B1 (en) 2011-11-10
EP2078363A1 (en) 2009-07-15
JP2010506509A (en) 2010-02-25
KR20090086537A (en) 2009-08-13
CN101523777A (en) 2009-09-02
US8615210B2 (en) 2013-12-24
TW200830748A (en) 2008-07-16
US20080085685A1 (en) 2008-04-10
CN101523777B (en) 2014-03-12

Similar Documents

Publication Publication Date Title
US11695440B2 (en) Methods, circuits, systems and apparatus providing audio sensitivity enhancement in a wireless receiver, power management and other performances
US8615210B2 (en) Methods and apparatus for power measurement in a communication system
KR101013012B1 (en) Interoperability improvement in terminals having a transmitter interfering with a receiver
US8538365B2 (en) Performing power control in a receiver based on environmental noise
CN109756240B (en) Wireless communication receiver with gain control device and gain control method
CN102598808A (en) Adaptive digital baseband receiver
US20140119421A1 (en) Testing Radio-Frequency Performance of Wireless Communications Circuitry Using Fast Fourier Transforms
CN1212815A (en) Digital diversity receiver system
TW200947887A (en) Method and system for DC compensation and AGC
US20130065546A1 (en) Reducing Power Consumption Of A Filter
CN108155913B (en) FM signal squelch method, apparatus and system
JPH11187463A (en) Mobile radio receiver
US8804882B2 (en) Receiving apparatus, and computer readable memory medium that stores a program
US20070232219A1 (en) Methods and apparatus for digital jammer detection
AU778590B2 (en) Communication set radio communication system and automatic gain control method for radio communication set
US20130260707A1 (en) Controlling Filter Bandwidth Based On Blocking Signals
EP3000182B1 (en) Method and circuit for signal quality estimation and control
JP4735472B2 (en) Mobile communication system, mobile phone terminal, and low-noise amplifier switching threshold control method used therefor
JP4480915B2 (en) Digital wireless communication terminal device, wireless communication method, and wireless communication program
JP4629408B2 (en) Radio and its automatic gain control program
WO2011014435A1 (en) Method and apparatus for detecting a channel condition for a wireless communication device
CN115001603A (en) Sensitivity detection method, device, medium, circuit, equipment and system
JPH10512424A (en) Apparatus and method for filtering received signal

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780037180.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07843766

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1538/CHENP/2009

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2009531588

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2007843766

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: KR

Ref document number: 1020097009320

Country of ref document: KR