WO2008041684A1 - Vehicle storage device and system using same - Google Patents

Vehicle storage device and system using same Download PDF

Info

Publication number
WO2008041684A1
WO2008041684A1 PCT/JP2007/069227 JP2007069227W WO2008041684A1 WO 2008041684 A1 WO2008041684 A1 WO 2008041684A1 JP 2007069227 W JP2007069227 W JP 2007069227W WO 2008041684 A1 WO2008041684 A1 WO 2008041684A1
Authority
WO
WIPO (PCT)
Prior art keywords
power storage
voltage
control circuit
vehicle
power
Prior art date
Application number
PCT/JP2007/069227
Other languages
French (fr)
Japanese (ja)
Inventor
Yohsuke Mitani
Kazuki Morita
Takafumi Koike
Original Assignee
Panasonic Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006270390A external-priority patent/JP5250953B2/en
Priority claimed from JP2006325190A external-priority patent/JP5055984B2/en
Application filed by Panasonic Corporation filed Critical Panasonic Corporation
Publication of WO2008041684A1 publication Critical patent/WO2008041684A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/65Monitoring or controlling charging stations involving identification of vehicles or their battery types
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles
    • Y02T90/167Systems integrating technologies related to power network operation and communication or information technologies for supporting the interoperability of electric or hybrid vehicles, i.e. smartgrids as interface for battery charging of electric vehicles [EV] or hybrid vehicles [HEV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S30/00Systems supporting specific end-user applications in the sector of transportation
    • Y04S30/10Systems supporting the interoperability of electric or hybrid vehicles
    • Y04S30/14Details associated with the interoperability, e.g. vehicle recognition, authentication, identification or billing

Definitions

  • the present invention relates to a vehicle power storage device as an auxiliary power source that supplies power from a power storage unit when a voltage of a main power source drops, and a system using the same.
  • a starter is operated to start an engine.
  • a vehicle key is turned on
  • audio, car navigation, etc. are started before the starter, and power is supplied to these loads.
  • the starter starts.
  • the power supplied to the load is temporarily interrupted due to a decrease in battery voltage due to the starter operation.
  • the music is interrupted or the destination setting of the car navigation system is erased and needs to be reset.
  • Patent Document 1 proposes a vehicle power storage device as an auxiliary power source for supplying sufficient power to a load when the voltage of the battery is temporarily reduced.
  • FIG. 7 is a block circuit diagram of a conventional vehicle power storage device.
  • the vehicular power storage device 201 is provided with an auxiliary power supply unit 203 including an electric double layer capacitor for storing electric power.
  • a charging circuit 205 is connected to the auxiliary power source unit 203.
  • a stabilization circuit 207 that outputs power of the auxiliary power supply unit 203 is also connected.
  • a detection circuit 209 for detecting the voltage of the charging circuit 205 is connected to the input side of the charging circuit 205.
  • a power supply switching unit 211 that switches between the power supplied from the auxiliary power supply unit 203 and the power supply from the main power supply 215 according to the detection voltage of the detection circuit 209.
  • a main power supply unit 215 made of a battery is connected to the input side of the vehicle power storage device 201, that is, the input of the charging circuit 205, via the first switch 213. Further, one end of the second switch 217 is connected between the first switch 213 and the vehicle power storage device 201, and the other end is connected to a starter (not shown) built in the engine 219.
  • the first switch 213 and the second switch 217 are on / off controlled by a key mounting portion 221.
  • the key mounting part 221 has a lock mode, an accessory mode, an on mode, and a start mode. It has four modes of mode. In the lock mode, both the first switch 213 and the second switch 217 are turned off. In the accessory mode and the on mode, the first switch 213 is turned on and the second switch 217 is turned off. In the start mode, both the first switch 213 and the second switch 217 are turned on.
  • an in-vehicle device 223 such as audio or car navigation is connected to the output side of the vehicle power storage device 201, that is, the output of the power supply switching unit 211.
  • the operation of the vehicle power storage device 201 will be described.
  • the first switch 213 is turned on when the key is inserted into the key mounting portion 221 and the accessory mode is set.
  • the power of the main power supply unit 215 is supplied to the charging circuit 205, the detection circuit 209, and the power supply switching unit 211.
  • the charging circuit 205 charges the auxiliary power supply unit 203. Since the power supply switching unit 211 selects the main power supply unit 215 side as shown in FIG. 7, the power of the main power supply unit 215 is supplied to the in-vehicle device 223, and audio, car navigation, and the like operate.
  • the second switch 217 is also turned on.
  • the electric power of main power supply unit 215 is supplied to the starter built in engine 219, and the engine starts.
  • the detection circuit 209 detects this voltage change, and when it detects that the voltage of the main power supply unit 215 has become lower than a predetermined reference value, it switches the power supply switching unit 211 to the auxiliary power supply unit 203 side.
  • the in-vehicle device 223 can continue to operate.
  • the start of the engine 219 is completed, and the second switch 217 is turned off by setting the key to the on mode.
  • the voltage of the main power supply unit 215 becomes higher than a predetermined reference value.
  • the detection circuit 209 detects this voltage change and switches the power supply switching unit 211 to the main power supply unit 215 side. As a result, power is supplied to the in-vehicle device 223 from the main power supply unit 215.
  • the key of the key mounting portion 221 is set to the accessory mode, the key can be stopped within a short time.
  • the voltage of the main power supply unit 215 decreases immediately after the in-vehicle device 223 is activated.
  • charging of the auxiliary power supply unit 203 is started after the key is in the accessory mode, there is a possibility that charging of the auxiliary power supply unit 203 may be insufficient if the start mode is set within a short time.
  • the number of electric double layer capacitors constituting the auxiliary power supply unit 203 is reduced, and charging is performed by reducing the voltage of the main power supply unit 215 by the charging circuit 205.
  • the voltage of the auxiliary power supply unit 203 is boosted by a stabilization circuit 207 composed of a DC-DC converter and supplied to the in-vehicle device 223.
  • the full charge voltage of the auxiliary power supply unit 203 can be lowered, so that the charging can be completed earlier.
  • the DC-DC converter requires power for its operation. Therefore, when the starter is driven and power consumption due to the boosting operation of the DC-DC converter is further added, the loss of the main power supply unit 215 increases.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-64946
  • the present invention is a highly reliable power storage device for a vehicle that can be sufficiently charged before a starter operation when the vehicle is reused and that reduces loss of a main power source.
  • the vehicle power storage device of the present invention is connected between a main power supply and a load, and includes a power storage unit, a charge / discharge circuit, and a control circuit.
  • the power storage unit stores the power of the main power source.
  • the charge / discharge circuit is connected to the main power source, the load, and the power storage unit.
  • the control circuit is connected to the power storage unit and the charge / discharge circuit. At the end of use of the vehicle, the control circuit controls the charge / discharge circuit to discharge power until the voltage of the power storage unit reaches the predetermined holding voltage after the predetermined time has elapsed.
  • the control circuit controls the charge / discharge circuit to repeat the charging operation until the voltage of the power storage unit reaches the predetermined holding voltage.
  • the control circuit controls the charge / discharge circuit so that the power storage unit is fully charged.
  • FIG. 1 is a block diagram of a power storage device for a vehicle in a first embodiment of the present invention.
  • FIG. 2 is a flowchart showing the operation of the control circuit from when the vehicle power storage device shown in FIG. 1 is used to when the vehicle is reused.
  • FIG. 3 is a flowchart showing the operation of the control circuit during the starter operation of the vehicle power storage device shown in FIG.
  • FIG. 4 is a block circuit diagram showing a partial configuration of the vehicle power storage device according to Embodiment 2 of the present invention.
  • FIG. 5 is a block circuit diagram showing a partial configuration of the vehicle power storage device according to Embodiment 3 of the present invention.
  • FIG. 6A is a connection circuit diagram of a storage element of the power storage device for a vehicle according to Embodiment 3 of the present invention, and is a connection circuit diagram when the storage element is connected in parallel to the balance circuit
  • FIG. 6B is a connection circuit diagram of the power storage elements of the vehicle power storage device in Embodiment 3 of the present invention, and is a connection circuit diagram when the power storage elements are connected in series and parallel to the balance circuit.
  • FIG. 7 is a block circuit diagram of a conventional vehicle power storage device.
  • Vehicle side radio wave transmitter / receiver circuit (communication circuit)
  • Radio wave transmitter / receiver (key)
  • Isolated signal transmission unit for data transmission Isolated signal transmission unit for data reception 161 Idition switch for main power supply
  • FIG. 1 is a block diagram of a vehicle power storage device according to Embodiment 1 of the present invention.
  • FIG. 2 is a flowchart showing the operation of the control circuit from the end of use of the vehicle power storage device shown in FIG. 1 to the time of vehicle reuse.
  • Fig. 3 is a flowchart showing the operation of the control circuit during the starter operation.
  • bold lines indicate power system wiring
  • thin lines indicate signal system wiring.
  • a vehicle power storage device (hereinafter referred to as a power storage device) 11 is connected between a main power supply 15 connected via an innovation switch 13 and a load 17.
  • the idle switch 13 has the function of supplying the power of the main power supply 15 to the power storage device 11 and the function of supplying the power of the main power supply 15 to the starter 19 for starting the engine connected to the idance switch 13.
  • the main power source 15 is constituted by a battery
  • the load 17 is an auxiliary device such as audio, navigation, and audiovisual navigation.
  • the power storage device 11 includes a power storage unit 23, a charge / discharge circuit 21, and a control circuit 25. First, the related configuration of the power system wiring shown by the bold lines in Fig. 1 is explained.
  • a charge / discharge circuit 21 is connected to the output of the main power supply 15 via an idling switch 13.
  • a load 17 and a power storage unit 23 are connected to the charge / discharge circuit 21. Therefore, charging and discharging of the power storage unit 23 is controlled by the charge / discharge circuit 21.
  • the power storage unit 23 is preferably configured as a capacitor capable of rapid charge / discharge as a power storage element for storing the power of the main power supply 15.
  • an electric double layer capacitor having a full charge voltage of about 1.83 V and an initial capacity of 70 F is used. This is advantageous for completing the charging of the power storage unit 23 before the driver operates the starter 19 in particular.
  • the power storage unit 23 covers the power required by the load 17 when the starter 19 operates.
  • the combined capacity of the power storage unit 23 is 20F, and the full charge voltage is 12.8V.
  • the power storage unit 23 includes two multiplexers and a plurality of tolerance circuits (none of which are shown).
  • the first multiplexer is a selection switch for voltage monitoring, and is connected to a series connection portion of a plurality of power storage elements, and outputs a voltage of each connection portion. In this embodiment, seven voltages are output excluding ground.
  • the balance circuit is provided in order to balance the voltage at the serial connection portion of a plurality of power storage elements. As many balance circuits as the number of power storage elements in series are provided. In other words, seven balance circuits are provided in this embodiment.
  • the second multiplexer is a selection switch for a balance circuit, and selects one of a plurality of balance circuits and controls its operation on / off.
  • the charge / discharge circuit 21 controls the charging of the power storage unit 23 and controls the discharge from the power storage unit 23 to the load 17.
  • the charge / discharge circuit 21 has a function of switching the power supply source for the load 17 between the main power supply 15 and the power storage unit 23! /, And a function for on / off controlling the power supply to the load 17.
  • the charge / discharge circuit 21 is a function that discharges the electric power of the power storage unit 23 as heat inside the charge / discharge circuit 21, and detects the voltage Vb of the main power source, the voltage Vc of the power storage unit 23, and the voltage Vd of the load 17. It also has the ability. Note that a DC-DC converter is not used in the discharge path of the power storage unit 23.
  • a control circuit 25 composed of a microcomputer is connected to the power storage unit 23 and the charge / discharge circuit 21. Between the power storage unit 23 and the control circuit 25, the wiring of the selection signal SLV, the wiring of the storage element voltage input signal VNin, the wiring of the selection signal SLB, and the wiring of the on signal Lol are connected as signal system wiring. ing.
  • the selection signal SLV is a signal for selecting a voltage detection point for the voltage detection multiplexer of the storage element.
  • the storage element voltage input signal VNin is a signal for inputting the voltage at the selected voltage detection point.
  • the selection signal SLB is a signal transmitted to select the balance circuit to the second multiplexer for on / off control of the balance circuit.
  • ON signal Lol is a signal that turns on the selected balance circuit.
  • the control signal cont is a control signal that controls the overall operation of the charge / discharge circuit 21.
  • the voltage input signal Vin is a signal for inputting the voltages Vb, Vc and Vd detected by the charge / discharge circuit 21.
  • the force S which is the configuration of the power storage device 11, has been described above.
  • the control circuit 25 also inputs and outputs data with the external vehicle-side control circuit 27. Specifically, the control circuit 25 receives the input signal “in” transmitted from the vehicle side control circuit 27 and transmits the output signal “out” to the vehicle side control circuit 27.
  • the vehicle-side control circuit 27 is a power for controlling the entire vehicle. Here, only the parts necessary for describing the present embodiment will be described.
  • the vehicle-side control circuit 27 also has a microcomputer power.
  • data input / output to / from the control circuit 25 data input / output to / from the decision switch 13 and data transmitted / received to / from the vehicle-side radio wave transmission / reception circuit (hereinafter referred to as communication circuit) 29 I / O is performed.
  • the innovation switch 13 has four states (modes) as in the prior art.
  • the idle switch 13 outputs an idling signal IG indicating the current switch mode to the vehicle side control circuit 27. Further, the mode of the innovation switch 13 is switched by the innovation switch control signal IGcont output from the vehicle side control circuit 27. Therefore, the vehicle side control circuit 27 can confirm the switch mode by the ignition signal IG, and can switch the mode of the ignition switch 13 by the ignition switch control signal IGcont.
  • the communication circuit 29 has a function of transmitting and receiving radio waves for unlocking and locking the vehicle.
  • the communication circuit 29 is held by the driver and can be operated by the radio transmitter / receiver (hereinafter referred to as the key) 31.
  • the key 31 has a built-in battery 37 for supplying power necessary for transmitting and receiving radio waves.
  • the communication circuit 29 receives this signal.
  • the communication circuit 29 outputs the received signal RC to the vehicle side control circuit 27.
  • the vehicle-side control circuit 27 outputs data for requesting transmission of the unlock signal to the key 31 again to the communication circuit 29 by the transmission signal TR.
  • the communication circuit 29 transmits a transmission request signal corresponding to the transmission signal TR to the key 31 by radio waves.
  • the communication circuit 33 transmits the unlock signal to the communication circuit 29 again.
  • the communication circuit 29 outputs the received unlocking signal to the vehicle side control circuit 27 again.
  • the vehicle-side control circuit 27 compares the two unlocking signal data, and if they match, it authenticates that the driver is a legitimate driver. With this driver authentication method, the vehicle recognizes the driver. That is, the key 31, the vehicle-side control circuit 27, and the like are driver authentication units that transmit a signal for recognizing the driver to the power storage device 11.
  • the driver authentication unit may be configured. That is, the method for authenticating the driver is not particularly limited.
  • FIG. 2 is a flowchart showing the operation of the control circuit 25 from the end of vehicle use to the time of vehicle reuse.
  • the control circuit 25 executes the control according to the flowchart of FIG. 2 after a predetermined time has elapsed.
  • the control circuit 25 waits until the predetermined time elapses because the switch 13 may be put out of the lock mode to use the vehicle immediately. . Since it is assumed that the driver will not restart the engine immediately after entering the lock mode for more than 1 minute, the default time can be set to 1 minute, for example.
  • the control circuit 25 When the predetermined time has elapsed, the control circuit 25 outputs the operation prohibition signal of the starter 19 to the vehicle-side control circuit 27 as the output signal o ut (Sl). In response to this, the vehicle side control circuit 27 prohibits the operation of the starter 19.
  • the control circuit 25 instructs the charge / discharge circuit 21 to discharge the electric power of the power storage unit 23 (S 3).
  • the power storage unit 23 is discharged while being controlled by the balance circuit built in the power storage unit 23 so that the voltage across the power storage elements becomes equal.
  • the control circuit 25 is charged and discharged
  • the voltage Vc of the power storage unit 23 is fetched from the circuit 21 by the voltage input signal Vin and compared with the predetermined holding voltage Vk (S5).
  • the default holding voltage Vk is, for example, 10.5V.
  • the electricity storage elements are connected in series, the voltage of each electricity storage element is 1.5V.
  • This voltage is a voltage at which the life of the power storage element is equivalent to the life of the vehicle.
  • the vehicle life is assumed to be 15 years. Therefore, the life of power storage unit 23 when the vehicle is not used is equivalent to the life of the vehicle.
  • control circuit 25 In S5, if voltage Vc of power storage unit 23 is larger than predetermined holding voltage Vk (No), control returns to S5 and control circuit 25 waits until it becomes equal to or lower than predetermined holding voltage Vk. If the voltage Vc is equal to or lower than the predetermined holding voltage Vk (Yes), the control circuit 25 instructs the charge / discharge circuit 21 to stop discharging the power storage unit 23 (S7).
  • Control up to this point is executed immediately after the end of vehicle use. That is, the control circuit 25 discharges the power storage unit 23 until the voltage of the power storage unit 23 reaches the predetermined holding voltage Vk after the predetermined time has elapsed when the vehicle is finished using.
  • the control circuit 25 takes in the voltage Vc of the power storage unit 23 and compares it with the predetermined lower limit voltage Vcmin (S9).
  • the predetermined lower limit voltage Vcmin is defined as when the voltage across each storage element becomes 1.4V, for example. In this case, the default lower limit voltage Vcmin is 9.8V. If the voltage Vc is equal to or lower than the predetermined lower limit voltage Vcmin (Yes), the control circuit 25 instructs the charge / discharge circuit 21 to recharge the electric power that the power storage unit 23 has self-discharged (Sl l). .
  • the voltage Vb of the main power supply 15 is taken from the charge / discharge circuit 21 and compared with the predetermined limit voltage Vbmin (S 13).
  • the predetermined limit voltage Vbmin is the lower limit voltage for driving the load 17. In the first embodiment, it is set to 10.5V. If the voltage Vb is equal to or lower than the predetermined limit voltage Vbmin (Yes), it is considered that the main power supply 15 has deteriorated. Therefore, the control circuit 25 instructs the charging / discharging circuit 21 to stop charging the power storage unit 23 in order not to cause further voltage drop of the main power supply 15 (S15). Thereafter, the control jumps to S27 described later.
  • the control circuit 25 takes in the voltage Vc of the power storage unit 23 and compares it with the predetermined holding voltage Vk (10.5 V) (SI 7). If the electric If the voltage Vc is less than the predetermined holding voltage Vk (No), since the charging of the power storage unit 23 is not completed, the control returns to S13. On the other hand, if the voltage Vc is equal to or higher than the predetermined holding voltage Vk (Yes), it is considered that the storage unit 23 has been charged, and the control circuit 25 instructs the charging / discharging circuit 21 to stop charging the charging unit 23 ( S19). Thereafter, the control returns to S9, and the control circuit 25 again monitors the decrease in the voltage Vc of the power storage unit 23 due to self-discharge.
  • the control circuit 25 determines whether or not a full charge start signal of the power storage unit 23 is input from the vehicle-side control circuit 27 (S21). .
  • the full charge start signal is input from the vehicle side control circuit 27 to the control circuit 25 when the unlocking signal of the vehicle is transmitted from the key 31 or when communication between the key 31 and the vehicle becomes possible. . If the full charge start signal is not input (No), the vehicle continues to be in a non-use state, so the control returns to S9 and the control circuit 25 again decreases the voltage Vc of the power storage unit 23 due to self-discharge. To monitor.
  • control circuit 25 repeats the operation of charging until voltage Vc of power storage unit 23 reaches predetermined holding voltage Vk. Note that it takes about several tens of hours for the voltage Vc of the power storage unit 23 shown in S9 to become equal to or lower than the predetermined lower limit voltage Vcmin. If the control circuit 25 continues to operate during that time, power is consumed simply by repeating the operations of S9 and S21. Therefore, the comparison operation of S9 by the control circuit 25 may be intermittent, for example, once every several tens of hours. That is, the control circuit 25 may be in a power saving state until the comparison operation of S9 is performed. As a result, the power of the main power supply 15 can be reduced.
  • the vehicle-side control circuit 27 transmits the full charge start signal to the control circuit 25, and simultaneously transmits an idling switch control signal IGcont to the idance switch 13 so as to enter the accessory mode. As a result, the vehicle-side control circuit 27 supplies power to the power storage device 11. In addition, the control circuit 25 turns off the power supply to the load 17 in order to charge the power storage unit 23. And a control signal cont is transmitted to the charge / discharge circuit 21 so as to charge the power storage unit 23. In this way, charging of the power storage unit 23 is started.
  • the control circuit 25 instructs the charge / discharge circuit 21 to fully charge the power storage unit 23. That is, the power storage unit 23 is charged so as to always have the predetermined holding voltage Vk even when the vehicle is not used.
  • the control circuit 25 can rapidly charge the power storage unit 23 before the driver gets into the vehicle. Therefore, when the driver turns on the idle switch 13 to operate the starter 19, electric power can be supplied from the fully charged power storage unit 23 to the load 17. As a result, the possibility of power shortage in the power storage unit 23 is extremely reduced.
  • a conventional DC-DC converter is not used during discharge, so that there is no loss of the main power supply 15 due to its operation.
  • the power storage unit 23 is fully charged again after the starter 19 is operated at the time of starting the vehicle. This is to supply power to the load 17 during the operation of the starter 19 after the idling stop described below.
  • the vehicle-side control circuit 27 detects that the accessory mode has been set to the accessory mode IG. Then, the vehicle side control circuit 27 informs the control circuit 25 that the idance switch 13 is in the accessory mode by the output signal out. As a result, the control circuit 25 transmits a control signal cont to the charge / discharge circuit 21 so as to turn on the power supply to the load 17. As a result, power is supplied to the load 17, and the load 17 starts to operate.
  • the control circuit 25 is connected to the charge / discharge circuit 21 so that the power of the main power supply 15 is supplied to the load 17. Instruct (S31). Specifically, the control signal cont for switching the charging / discharging circuit 21 to supply the power of the main power supply 15 to the load 17 is transmitted to the charging / discharging circuit 21.
  • the control circuit 25 monitors the output of the voltage detection circuit (not shown) built in the charge / discharge circuit 21 and the output of the comparison circuit between the predetermined limit voltage Vbmin (10.5 V). Although not shown, this comparison circuit is built in the charge / discharge circuit 21. If the voltage Vb is equal to or higher than the predetermined limit voltage Vbmin (No), it means that the starter 19 is not operated after the idling stop, so the control returns to S33 and the control circuit 25 operates the starter 19 Continue judgment
  • the control circuit 25 determines that the starter 19 is operating and charges the power storage unit 23 to supply the load 17 with power.
  • the discharge circuit 21 is instructed (S35). Specifically, the control circuit 25 transmits to the charge / discharge circuit 21 a control signal cont for switching to supply the power of the power storage unit 23 to the load 17. As a result, while the voltage Vb of the main power supply 15 drops due to the operation of the starter 19, power is continuously supplied from the power storage unit 23 to the load 17.
  • the control circuit 25 takes in the voltage Vb of the main power supply 15 and compares it with the predetermined limit voltage Vbmin (S37). If the voltage Vb is less than the predetermined limit voltage Vbmin (No), the control returns to S37 and the control circuit 25 waits until the voltage Vb recovers to the predetermined limit voltage Vbmin or more. If the voltage Vb is equal to or higher than the predetermined limit voltage Vbmin (Yes), the control circuit 25 controls the charge / discharge circuit 21 to supply the power of the main power supply 15 to the load 17 (S39). This operation is the same as the operation of S31 described above. Next, the control circuit 25 instructs the charge / discharge circuit 21 to fully charge the power storage unit 23 (S41). This prepares for the next idling stop. By repeating such an operation, the voltage drop of the main power supply 15 after idling stop is compensated by the electric power of the power storage unit 23, and the load 17 is continuously driven.
  • the control circuit 25 controls the charge / discharge circuit 21 to negatively charge the power of the power storage unit 23. Supply to load 17.
  • the control circuit 25 controls the charge / discharge circuit 21 to supply the power of the main power supply 15 to the load 17 and to fully charge the power storage unit 23. Repeat the operation. [0051] With the above configuration and operation, the control circuit 25 stores power to some extent in the power storage unit 23 even when the vehicle is not in use, and fully charges the power storage unit 23 when the driver is authenticated. Therefore, the power storage unit 23 is fully charged early, and the loss of the main power supply 15 can be reduced because there is no DC-DC converter.
  • driver authentication including an alcohol detector may be used.
  • the vehicle side control circuit 27 causes the control circuit 25 to start charging the power storage unit 23 from the time when such an operation is started. Therefore, the control circuit 25 can fully charge the power storage unit 23 by the charge / discharge circuit 21 between the start of alcohol detection and the start of the vehicle is permitted. In this way, the driver authentication unit may be configured.
  • driver recognition method other recognition methods such as driver face image recognition, fingerprint recognition, vein recognition, iris recognition, and the like may be applied. Also in this case, these driver recognition methods can charge the power storage unit 23 immediately after the operation starts, so that the power can be fully charged during the authentication. In addition, the driver recognition methods described in this embodiment may be used alone or in any combination.
  • the force described for the idling stop vehicle may be applied at the time of starting in a general vehicle.
  • the control circuit 25 discharges the power storage unit 23 until the predetermined holding voltage Vk is reached. Thereafter, when voltage Vc of power storage unit 23 reaches predetermined lower limit voltage Vcmin, control circuit 25 repeats the operation of charging until voltage Vc reaches predetermined holding voltage Vk.
  • Vc voltage of power storage unit 23
  • Vcmin voltage of power storage unit 23
  • a force using an electric double layer capacitor as a power storage element other than this, a capacitor capable of rapid charge / discharge such as an electrochemical capacitor may be used.
  • FIG. 4 is a block circuit diagram of the vehicle power storage device according to Embodiment 2 of the present invention.
  • the power storage device for a vehicle in the present embodiment will be described focusing on a preferable function of the balance circuit, which is not described in the first embodiment.
  • the overall configuration including other vehicles is the same as that of the first embodiment.
  • the storage element 101 that charges and discharges electric power is an electric double layer capacitor, and a plurality of these are connected in series to form the storage element unit 102.
  • a balance circuit 103 is connected to each of the power storage elements 101 in parallel.
  • the balance circuit 103 is configured by connecting a transistor as the switching element 105 and a resistor 107 in series. For this reason, when the switching element 105 is turned on, the resistor 107 is connected to both ends of the power storage element 101. As a result of the discharge by the resistor 107, the voltage of the power storage element 101 decreases. That is, the voltage of the power storage element 101 can be controlled to be lowered by the on / off control of the switching element 105.
  • the balance circuit 103 is connected to a voltage monitor selection switch (hereinafter referred to as “switch”) 109 for selecting a voltage V;! To Vn (n is the number of the storage elements 101 + 1) at one end thereof.
  • the switch 109 is constituted by a multiplexer, for example.
  • the switch 109 is connected to a control circuit 113 which will be described later.
  • the switch 109 receives from the control circuit 113 a voltage selection signal SLV indicating which voltage V ;! to Vn is to be selected.
  • Switch 109 selects voltage V;! To Vn based on voltage selection signal SLV. Further, the switch 109 has a floating configuration in which any one of the voltages V;!
  • To Vn is not selected when the supply of the power supply voltage (for example, DC5V) is cut off.
  • the power source of the switch 109 is turned off at the time of stop, both ends of each balance circuit 103 are all insulated by the switch 109. That is, when the switch 109 is turned off, each balance circuit 103 is opened. Therefore, the storage element 101 is prevented from being discharged via the switch 109.
  • a balance circuit selection switch (hereinafter referred to as a switch) 111 is connected to the base terminal of the transistor, which is an on / off control terminal of each switching element 105.
  • the switch 111 is also composed of, for example, a multiplexer! Switch 111 is also connected to control circuit 113.
  • the switch 111 receives from the control circuit 113 a switching element selection signal SLB indicating which switching element 105 is selected.
  • Switch 111 is switching An arbitrary switching element 105 is selected based on the element selection signal SLB. Then, the ON signal Lo 1 generated by the control circuit 113 is transmitted to the selected switching element 105.
  • control circuit 113 can operate an arbitrary balance circuit 103 according to the voltage balance state of the power storage elements 101, and can individually balance the voltages of the power storage elements 101.
  • Power storage element unit 102, balance circuit 103, switch 109, and switch 111 correspond to power storage unit 23 of the first embodiment.
  • the control circuit 113 includes a microcomputer and peripheral circuits (not shown) that generate and transmit / receive various signals such as an ON signal Lol. As described above, the control circuit 113 transmits the voltage selection signal SLV to the switch 109, and the switching element selection signal SLB and the ON signal Lol to the switch 111. In addition, the control circuit 113 receives the midpoint voltage when the voltage selected by the switch 109 (V;! To Vn! /, Deviation) is divided by the two resistors 115 and 117 as the voltage signal Vin. To do. Therefore, the voltage signal Vin has a value proportional to the voltage Vi (l ⁇ i ⁇ n). The control circuit 113 has other terminals for transmitting and receiving force S, which will be described in order.
  • the driving power (for example, DC5V) of the switches 109 and 111 and the control circuit 113 is supplied when the switch element 119 is turned on.
  • the on / off operation of the switch element 119 is controlled by an activation signal Wake from the outside of the power storage device 157 or a power control signal Lo of the control circuit 113, which will be described later.
  • the switch element 119 is composed of, for example, a P-channel MOSFET.
  • the source terminal S is connected to the maximum voltage VI of the storage element 101.
  • the first resistor 121 is connected between the source terminal S and the gate terminal G.
  • the gate terminal G is connected to the control circuit 113 through the second resistor 123.
  • a regulator 127 for generating a constant voltage (DC5V) is connected to the drain terminal D via a diode 125 for preventing backflow.
  • DC5V constant voltage
  • An activation isolated signal transmission unit (hereinafter referred to as a transmission unit) 131 is connected to a connection point between the control circuit 113 and the second resistor 123.
  • the transmission unit 131 is configured by a photo power bra, for example, and the transmission unit 1
  • a connection point between the control circuit 113 and the second resistor 123 is connected to the collector side of the phototransistor 133 included in 31.
  • the emitter side of the phototransistor 133 is connected to the ground.
  • an external control circuit 137 is connected to the anode side of the light emitting diode 135 of the transmission unit 131. Similar to the control circuit 113, the external control circuit 137 includes a microcomputer and a peripheral circuit, and is used for vehicle control including charge / discharge control of the power storage element unit 102 and the like. The external control circuit 137 transmits a start signal Wake to the light emitting diode 135. The power sword side of light emitting diode 135 is connected to ground via resistor 139! / ⁇
  • the external control circuit 137 is driven at a constant voltage of DC5V, like the control circuit 113. This power is supplied by converting the output voltage of a battery 141 of a low voltage system (for example, DC 12 V) mounted on the vehicle to DC 5 V by a regulator 142. Therefore, the external control circuit 137 obtains power from a power source independent of the control circuit 113.
  • a low voltage load 144 is connected to the battery 141 via a notary idling switch 143.
  • the battery change-over switch 143 has a function of transmitting an turn-on signal IG indicating the turn-on / off state of the turn-on. As shown in FIG. 4, the battery innovation switch 143 transmits an innovation signal IG to an external control circuit 137 and a main power supply innovation switch 161 described later.
  • the external control circuit 137 and the control circuit 113 exchange data with each other.
  • transmission unit an isolated signal transmission unit for data transmission
  • the configuration of the transmission unit 145 is the same as the configuration of the transmission unit 131, but the positions of the phototransistor 147 and the light emitting diode 149 are reversed.
  • a specific data transmission method is as follows. First, voltage data and the like of the storage element 101 are transmitted from the control circuit 113 to the light emitting diode 149 as a data signal Dout. In response to this, the phototransistor 147 is turned on / off according to the data signal to return to the electric signal, and is input to the external control circuit 137 as the data signal Din.
  • reception from the external control circuit 137 to the control circuit 113 is performed by an isolated signal transmission unit for data reception (hereinafter, transmission unit) 151.
  • transmission unit for data reception
  • the structure of the transmitter 151 is the transmitter
  • the configuration is the same as 131.
  • a specific data receiving method is as follows. First, the external control circuit 137 transmits data such as a voltage data transmission request of the storage element 101 to the light emitting diode 153 as a data signal Dout. In response to this, the phototransistor 155 is turned on / off according to the data signal to return to the electric signal, and is input to the control circuit 113 as the data signal Din. Through such control, transmission and reception between the control circuit 113 and the external control circuit 137 are performed. That is, the control circuit 113, the switch element 119, the phototransistor 133 151, the light emitting diode 149, and the like correspond to the control circuit 25 in the first embodiment. The external control circuit 137, the light emitting diode 135 153, the phototransistor 147, and the like correspond to the vehicle side control circuit 27.
  • the vehicle power storage device includes the parts surrounded by the thick dotted line in FIG.
  • a main power source 15 that is a power source for charging the power storage element 101 is connected to the power storage device 157 via a main power generation switch 161 and a charge / discharge circuit 163.
  • the charge / discharge circuit 163 is a circuit for charging / discharging the storage element 101.
  • the main power supply 15 is composed of a high voltage secondary battery (for example, a nickel metal hydride battery or a lithium ion battery). Therefore, a high-voltage load 165 such as a starter or a vehicle driving motor of a hybrid vehicle is also connected to the output of the main power supply idler switch 161, for example.
  • the load 165 corresponds to the starter 19 and the load 17 in the first embodiment.
  • the external control circuit 137 Since the charge / discharge circuit 163 is controlled by the external control circuit 137, wiring for transmitting the charge / discharge control signal cont is connected between the two. Note that as in the first embodiment, the external control circuit 137 may control the charge / discharge circuit 163 via the control circuit 113.
  • the charge / discharge circuit 163 is completely turned off between the input and the output when stopped.
  • the main power ignition switch 161 is on / off controlled according to the ignition signal IG from the battery ignition switch 143, so that the wiring for that is connected between the two.
  • ground of power storage device 157 is independent of the ground of other components.
  • Figure 4 shows this by using a different ground symbol.
  • the transmission unit 13 Combined with the use of 1, 145, 151, the power storage device 157 is independent of other circuit configuration capabilities. As a result, for example, when the power storage device 157 fails, it can be replaced with a non-defective power storage device 157 very easily.
  • a configuration in which only one power storage device 157 is provided is shown.
  • a plurality of power storage devices 157 are provided according to the power specifications required by the load 165, and one external control circuit is provided. It may be controlled by the road 137.
  • the power storage device 157 is independent of other circuit configuration powers, a plurality of power storage devices 157 can be connected with an extremely simple configuration.
  • the driver turns on the battery idle switch 143.
  • the main power source Lee mite Chillon switch 161 also Ri Do ON, power is supplied to the load 165. Therefore, for example, the starter operates to drive the engine to start the vehicle.
  • the battery innovation switch 143 sends an external signal IG indicating an ON state to the external control circuit 137.
  • the external control circuit 137 transmits a charge / discharge control signal cont to the charge / discharge circuit 163, and commands to start charging the power storage element 101.
  • the external control circuit 137 transmits an activation signal Wake to the light emitting diode 135 in order to activate the power storage device 157.
  • the light emitting diode 135 of the transmission unit 131 is
  • the connection point between the second resistor 123 and the control circuit 113 is connected to the ground via the phototransistor 133.
  • the voltage at the gate terminal G with respect to the voltage VI at the source terminal S is the resistance value of the first resistor 121 and the second resistor 123.
  • the voltage is lower than the voltage VI.
  • an ON signal is input to the gate terminal G, so that the switch element 119 is turned on.
  • the voltage VI is applied to the regulator 127 via the diode 125, so that the regulator 127 outputs a constant voltage (DC5V). This voltage is supplied to control circuit 113 and switches 109 and 111, and power storage device 157 is activated.
  • the control circuit 113 always keeps the switch element 119 on and continues to supply a constant voltage. Therefore, the control circuit 113 sets the power control signal Lo to the ground level so that the voltage at the connection point between the second resistor 123 and the control circuit 113 maintains the ground level.
  • the storage element 101 is charged with the electric power of the main power supply 15 via the charge / discharge circuit 163.
  • the external control circuit 137 transmits a voltage data transmission request signal Dout to the power storage device 157.
  • the control circuit 113 transmits a voltage selection signal SLV to the switch 109.
  • the switch 109 selects the voltage specified by the voltage selection signal SLV (! / Of VI to Vn), and the control circuit 113 reads the voltage signal Vin.
  • the control circuit 113 reads data of all voltages V ;! to Vn. All voltage data is transmitted from the control circuit 113 to the external control circuit 137 via the transmission unit 145 as a data signal Dout.
  • the external control circuit 137 continues to charge the power storage element 101 while controlling the charge / discharge circuit 163 so as to satisfy the optimum condition from the obtained voltage data until the battery is fully charged.
  • the external control circuit 137 issues a command to the charging / discharging circuit 163 to stop charging. Thereby, activation of power storage device 157 is completed.
  • the main power supply 15 causes a voltage drop, and power cannot be supplied with a stable voltage other than the starter of the load 165. Therefore, the power of the storage element 101 is supplied to the load 165 via the charge / discharge circuit 163 so as to compensate for the voltage drop. As a result, a stable voltage can be continuously supplied to the load 165 even if a voltage drop occurs.
  • the control circuit 113 uses the switches 109 and 111 to switch the voltage of the storage element 101.
  • the lance is controlled to be constant.
  • the control circuit 113 since the control circuit 113 is still driven by the electric power of the storage element 101, the control circuit 113 sets the connection point between the second resistor 123 and the control circuit 113 in order to stop the control circuit 113. Float electrically. As a result, since the source voltage and the gate voltage of the switch element 119 become equal as described above, the switch element 119 is turned off, and the control circuit 113, the switches 109 and 111 are all turned off.
  • switch 109 Since switch 109 has a floating configuration, none of voltages V;! To Vn is selected. Further, none of the transmission units 131, 145, 151 is directly connected to the wiring system of the external control circuit 137. Because of these factors, the power storage element 101 is in an electrically floating state, so that it does not consume power unnecessarily.
  • the external control circuit 137 Since the external control circuit 137 is always operating, the external control circuit 137 measures a predetermined time. When the predetermined time elapses, the external control circuit 137 issues a start signal Wake. As a result, the control circuit 113 receives the activation signal Wake and activates the power storage device 157 described above. By performing the same operation as that at the time, the switch element 119 is turned on. As a result, the electric power of power storage element 101 is stabilized at a constant voltage (DC5V) by regulator 127, and power storage device 157 is activated.
  • DC5V constant voltage
  • the control circuit 113 controls the switch 109 to detect voltages V ;! to Vn. This method is also the same as that at the time of starting the power storage device 157 described above.
  • the control circuit 113 obtains the voltage data power obtained and the voltage across each storage element 101, and controls the switch 111 to operate the balance circuit 103 of the storage element 101 having a high voltage across both ends.
  • the control circuit 113 transmits a switch means selection signal SLB for selecting the switching element 105 of the target storage element 101 by the switch 111.
  • the switch 111 transmits a switching element ON signal Tri (l ⁇ i ⁇ n-1) to the selected switching element 105.
  • Tri a switching element ON signal
  • control circuit 113 completes the voltage balancing operation. At this time, as in the case of the end of use of the vehicle, the control circuit 113 turns off the switch element 119 by electrically floating the connection point with the second resistor 123. As a result, the operation of power storage device 157 is stopped, and the state is the same as when stopped.
  • the control circuit 113 transmits an overdischarge signal to the external control circuit 137 via the transmission unit 145. At the same time, the control circuit 113 stops the voltage balancing operation to avoid shortening the life of the power storage element 101. By receiving the overdischarge signal, the external control circuit 137 does not transmit a start signal Wake for each predetermined time thereafter, and warns the driver that the vehicle is overdischarged when the vehicle is started. This improves reliability.
  • FIG. 5 is a block circuit diagram of the vehicle power storage device according to Embodiment 3 of the present invention.
  • a vehicle power storage device (hereinafter referred to as power storage device) 157A according to the present embodiment is the same as vehicle power storage device 157 according to the second embodiment, except for the following points. Therefore, the same components as those in FIG.
  • a power storage component 173 provided separately from the power storage element unit 102 is connected to the drive voltage input terminal 129 of the control circuit 113A.
  • the control circuit 113A maintains the power saving state when stopped by the power of the power storage component 173.
  • the power storage component 173 has a capacity that allows the control circuit 113A to maintain a power saving state, for example, for about one month.
  • the start signal Wake generated from the external control circuit 137 is transmitted to the start terminal 175 of the control circuit 113 A.
  • the collector terminal of the phototransistor 133 is connected to the output of the S regulator 127.
  • a resistor 177 is connected to the emitter terminal of the phototransistor 133. Further, the connection point between the emitter terminal and the resistor 177 is connected to the start terminal 175 of the control circuit 113A.
  • Power storage component 173 may be a capacitor or a secondary battery, but in this embodiment, a capacitor with a capacitance value of several farads is used!
  • vehicle power storage device 157 having such a configuration will be described with a focus on differences from the second embodiment.
  • main power idling switch 161 is turned on by starting the vehicle.
  • main power idling switch 161 is turned on.
  • the engine is driven, and the external control circuit 137 transmits a charge / discharge control signal cont to the charge / discharge circuit 163 to instruct to start charging the power storage element 101.
  • This operation is the same as in the second embodiment.
  • the external control circuit 137 uses the start signal W to start the power storage device 157 for the vehicle. Send ake.
  • the light emitting diode 135 of the start-up insulated signal transmission unit 131 is
  • the control circuit 113A is in the power saving state until the phototransistor 133 is turned on.
  • the drive voltage to the control circuit 113A at this time is supplied from the power storage component 173.
  • the control circuit 113A in the power saving state has a very small current consumption, the power storage component 173 having a capacity of several farads can be sufficiently driven.
  • the control circuit 113A turns off the switch element 119 and the power switch 179 for the selection switch, and the phototransistors 133 and 155 are off. Therefore, the electric power of power storage component 173 is supplied only to control circuit 113A.
  • the power storage component 173 can drive the control circuit 113A for a long period (approximately one month).
  • control circuit 113A transmits the selection switch power signal SP to turn on the selection switch power switch 179. As a result, power is supplied to the power monitor selection switch 109 and switch 111.
  • power storage device 157A is activated.
  • the subsequent operation is the same as in the second embodiment. That is, the control circuit 113A controls the charging / discharging circuit 163 while monitoring the voltage of each storage element 101 to charge the storage element 101.
  • the external control circuit 137 issues a command to the charging / discharging circuit 163 to stop charging. Thereby, activation of power storage device 157A is completed.
  • the load 165 that consumes a large current operates, the power of the power storage device 101 is supplied to the load 165 via the charge / discharge circuit 163 so as to compensate for the voltage drop of the main power supply 15.
  • a stable voltage can be continuously supplied to the load 165 even if a voltage drop occurs.
  • the voltage of the main power supply 15 returns, and then the power storage element 101 is fully charged again to prepare for the next voltage drop compensation.
  • the control circuit 113A controls the charging so that the voltage balance of the storage element 101 becomes constant by the switch 109 and the switch 111.
  • Turning battery idling switch 143 off also turns main power idling switch 161 off.
  • the power supply to the load 165 is cut off, and an idling signal IG indicating the idling off state is transmitted to the external control circuit 137.
  • the external control circuit 137 transmits the charge / discharge control signal cont and issues a command to completely turn off the input / output of the charge / discharge circuit 163.
  • the power storage element 101 becomes independent from the wiring system of the main power supply 15. Therefore, unnecessary discharge of the power storage element 101 is suppressed.
  • the control circuit 113A is still driven by the electric power of the power storage element 101. Therefore, the control circuit 113A turns off the switch element 119 by setting the power control signal Lo to be electrically floated. At the same time, the control circuit 113A turns off the power switch 179 for the selection switch. As a result, as in Embodiment 2, the power storage element 101 is in an electrically floating state, so that unnecessary discharge is not performed. Thereafter, the control circuit 113A enters the power saving state while receiving the power supply from the power storage component 173, and maintains this state.
  • the external control circuit 137 generates a start signal Wake when a predetermined time elapses.
  • the control circuit 113A receives the activation signal Wake and returns to the normal operation mode by performing the same operation as when the vehicle power storage device 157 is activated.
  • the control circuit 113A turns on the switch element 119 and the power switch 179 for the selection switch.
  • the storage element 10 The electric power of 1 is stabilized at a constant voltage (DC5V) by the regulator 127, and the power storage device 157A is activated.
  • the control circuit 113A controls the switch 109 in the same manner as in the second embodiment to detect the voltages V ;! to Vn. Then, the control circuit 113A controls the switch 111 to operate the balance circuit 103 of the power storage element 101 having a high voltage across both ends. As a result, the electric power of the target storage element 101 is discharged and the voltage decreases. Such an operation is repeated, and when the voltage balance becomes constant, the control circuit 113A completes the voltage balance operation. The subsequent operation is the same as when the vehicle has been used. As a result, the control circuit 113A enters a power saving state, and the vehicle power storage device 157 enters the same state as when stopped.
  • the voltage of the storage element 101 is balanced intermittently. Therefore, it is possible to reduce the possibility of overvoltage of power storage element 101 due to charging in a state where the voltage balance is lost when the vehicle is started, and the reliability is improved.
  • control circuit 113A detects overdischarge of the power storage element 101, the control circuit 113A transmits an overdischarge signal to the external control circuit 137 as in the second embodiment. Also stops the voltage balancing operation. Therefore, reliability is improved.
  • Power storage device 157A requires power storage component 173, power switch 179 for the selection switch, and the like, and is slightly complicated in configuration as compared with vehicle power storage device 157 of the second embodiment. However, since the control circuit 113A is not completely turned off as in the second embodiment and maintains the power saving state at the time of stop, it can be quickly started by the start signal Wake.
  • the force with which a plurality of power storage elements 101 are connected in series is not limited to this.
  • a series-parallel connection may be used according to the required power specifications.
  • 6A and 6B show connection circuit diagrams of the storage element 101 and the balance circuit 103 in this case.
  • FIG. 6A shows a case where three power storage elements 101 are connected in parallel to the balance circuit 103.
  • the power storage element 101 is connected in series and parallel, but the voltage across the three power storage elements 101 in the parallel connection portion is equal, so that the balance circuit 103 is It is not necessary to connect to each power storage element 101. That is, it may be connected to any one of the power storage elements 101 whose voltages at both ends are equal by parallel connection.
  • FIG. 6B shows a case where two storage elements 101 connected in parallel to the balance circuit 103 are connected in series in two stages. In this case, among the series-parallel connections of the entire storage element 101, the voltage across the storage element 101 is different in the series connection part. Become. Therefore, it is not necessary to connect the balance circuit 103 to each power storage element 101. Therefore, as shown in FIG. 6B, for example, every six balance circuits 103 may be connected.
  • the balance circuit 103 is not necessarily connected to each power storage element 101, and the balance circuit 103 may be connected to each of the plurality of power storage elements 101 as a group.
  • the power storage device for vehicles as an auxiliary power source for vehicles has been described as an example, but the present invention can be applied not only to vehicles but also to general emergency backup power sources.
  • the specific control using the balance circuit 103 shown in the second and third embodiments may be applied independently of the control that is characteristic in the vehicle power storage device of the first embodiment.
  • the control that is characteristic in the first embodiment is the discharge control up to the predetermined holding voltage (Vk) of the power storage unit at the end of use, the holding control at the predetermined holding voltage (Vk), and It means full charge control using driver authentication. That is, the control using the balance circuit 103 described in the second and third embodiments may be applied to the vehicle power storage device that does not perform the above-described control, which is a feature of the first embodiment.
  • Embodiment 1 shows a configuration in which power storage device 11 is connected in series between main power supply 15 and load 17.
  • Embodiments 2 and 3 show a configuration in which power storage devices 157 and 157A are connected in parallel between main power supply 15 and load 165. That is, power storage devices 157 and 157A are connected to the connection portion between main power supply 15 and load 165. However, this may be a reverse connection method. Therefore, power storage device 11 and power storage devices 157 and 157A may be connected between main power supply 15 and loads 17 and 165 by either a serial or parallel connection method.
  • the vehicle power storage device can fully charge the power storage unit at an early stage, and can suppress unnecessary discharge of the main power source and the power storage element. Reliability is improved by automatically performing intermittent voltage balancing. Therefore, it is particularly useful as a vehicle power storage device or the like as an auxiliary power source that supplies power from the power storage unit when the voltage of the main power source drops.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

A vehicle storage device connected between a main power supply and a load comprises a storage portion, a charging/discharging circuit, and a control circuit. The storage portion stores the power of the main power supply. The charging/discharging circuit is connected to the main power supply, the load, and the storage portion. The control circuit is connected to the storage portion and the charging/discharging circuit. The control circuit controls the charging/discharging circuit so that the storage portion discharges the power until the voltage of the storage portion reaches a predetermined hold voltage after a lapse of a predetermined time at the end of the use of the vehicle. If the voltage of the storage portion reaches a predetermined lower limit voltage when the vehicle is not in use, the control circuit controls the charging/discharging circuit so as to repeat the charging operation until the voltage of the storage portion reaches the predetermined hold voltage. Furthermore, if receiving a signal for recognizing the driver from the outside of the vehicle storage device, the control circuit controls the charging/discharging circuit so as to fully charge the storage portion.

Description

明 細 書  Specification
車両用蓄電装置とそれを用いたシステム  Power storage device for vehicle and system using the same
技術分野  Technical field
[0001] 本発明は、主電源の電圧低下時に蓄電部から電力を供給する補助電源としての車 両用蓄電装置とそれを用いたシステムに関する。  TECHNICAL FIELD [0001] The present invention relates to a vehicle power storage device as an auxiliary power source that supplies power from a power storage unit when a voltage of a main power source drops, and a system using the same.
背景技術  Background art
[0002] 一般に自動車 (以下、車両)を使用する際には、エンジンを始動するためにスタータ を動作させる。この際、例えば車両のキーをオンにするとスタータより先にオーディオ やカーナビゲーシヨン等が起動し、これらの負荷に電力が供給される。その後、スタ ータが起動する。すると負荷に供給される電力は、スタータ動作によるバッテリ電圧の 低下により一旦途切れる。その結果、音楽が中断したり、カーナビゲーシヨンの目的 地設定等が消去され再設定が必要になったりする。  In general, when using an automobile (hereinafter referred to as a vehicle), a starter is operated to start an engine. At this time, for example, when a vehicle key is turned on, audio, car navigation, etc. are started before the starter, and power is supplied to these loads. After that, the starter starts. Then, the power supplied to the load is temporarily interrupted due to a decrease in battery voltage due to the starter operation. As a result, the music is interrupted or the destination setting of the car navigation system is erased and needs to be reset.
[0003] このような一時的なバッテリの電圧低下時に負荷に充分な電力を供給するための 補助電源としての車両用蓄電装置が、例えば特許文献 1に提案されている。図 7は 従来の車両用蓄電装置のブロック回路図である。車両用蓄電装置 201には、蓄電す るための電気二重層キャパシタからなる補助電源部 203が設けられている。補助電 源部 203には充電回路 205が接続されている。また、補助電源部 203の電力を出力 する安定化回路 207も接続されている。充電回路 205の入力側には、充電回路 205 の電圧を検出するための検出回路 209が接続されている。また、検出回路 209の検 出電圧に応じて電力を補助電源部 203から供給する力、、主電源 215から供給するか を切り替える電源切替部 211が設けられて!/、る。  [0003] For example, Patent Document 1 proposes a vehicle power storage device as an auxiliary power source for supplying sufficient power to a load when the voltage of the battery is temporarily reduced. FIG. 7 is a block circuit diagram of a conventional vehicle power storage device. The vehicular power storage device 201 is provided with an auxiliary power supply unit 203 including an electric double layer capacitor for storing electric power. A charging circuit 205 is connected to the auxiliary power source unit 203. In addition, a stabilization circuit 207 that outputs power of the auxiliary power supply unit 203 is also connected. A detection circuit 209 for detecting the voltage of the charging circuit 205 is connected to the input side of the charging circuit 205. Further, there is provided a power supply switching unit 211 that switches between the power supplied from the auxiliary power supply unit 203 and the power supply from the main power supply 215 according to the detection voltage of the detection circuit 209.
[0004] 車両用蓄電装置 201の入力側、すなわち充電回路 205の入力には第 1スィッチ 21 3を介してバッテリからなる主電源部 215が接続されている。また、第 1スィッチ 213と 車両用蓄電装置 201の間には第 2スィッチ 217の一端が接続され、その他端はェン ジン 219に内蔵されたスタータ(図示せず)に接続されている。  A main power supply unit 215 made of a battery is connected to the input side of the vehicle power storage device 201, that is, the input of the charging circuit 205, via the first switch 213. Further, one end of the second switch 217 is connected between the first switch 213 and the vehicle power storage device 201, and the other end is connected to a starter (not shown) built in the engine 219.
[0005] 第 1スィッチ 213と第 2スィッチ 217はキー装着部 221によりオンオフ制御される。な お、キー装着部 221はロックモード、アクセサリモード、オンモード、およびスタートモ ードの 4つのモードを有する。ロックモードの場合は第 1スィッチ 213と第 2スィッチ 21 7の両方がオフになり、アクセサリモードとオンモードの場合は第 1スィッチ 213がオン に、第 2スィッチ 217がオフになる。スタートモードの場合は第 1スィッチ 213と第 2スィ ツチ 217の両方がオンになる。また、車両用蓄電装置 201の出力側、すなわち電源 切替部 211の出力にはオーディオやカーナビゲーシヨン等の車載機器 223が接続さ れている。 The first switch 213 and the second switch 217 are on / off controlled by a key mounting portion 221. The key mounting part 221 has a lock mode, an accessory mode, an on mode, and a start mode. It has four modes of mode. In the lock mode, both the first switch 213 and the second switch 217 are turned off. In the accessory mode and the on mode, the first switch 213 is turned on and the second switch 217 is turned off. In the start mode, both the first switch 213 and the second switch 217 are turned on. In addition, an in-vehicle device 223 such as audio or car navigation is connected to the output side of the vehicle power storage device 201, that is, the output of the power supply switching unit 211.
[0006] 次に、車両用蓄電装置 201の動作について説明する。まず、車両再使用時にキー 装着部 221にキーが差し込まれ、アクセサリモードになると、第 1スィッチ 213がオン になる。その結果、主電源部 215の電力が充電回路 205、検出回路 209、電源切替 部 211に供給される。これにより、充電回路 205は補助電源部 203を充電する。また 電源切替部 211は図 7に示すように主電源部 215側を選択しているので、車載装置 223には主電源部 215の電力が供給され、オーディオやカーナビゲーシヨン等が動 作する。  Next, the operation of the vehicle power storage device 201 will be described. First, when the vehicle is reused, the first switch 213 is turned on when the key is inserted into the key mounting portion 221 and the accessory mode is set. As a result, the power of the main power supply unit 215 is supplied to the charging circuit 205, the detection circuit 209, and the power supply switching unit 211. As a result, the charging circuit 205 charges the auxiliary power supply unit 203. Since the power supply switching unit 211 selects the main power supply unit 215 side as shown in FIG. 7, the power of the main power supply unit 215 is supplied to the in-vehicle device 223, and audio, car navigation, and the like operate.
[0007] この状態で、エンジンを始動するためにキー装着部 221のキーをスタートモードに すると、第 2スィッチ 217もオンになる。その結果、主電源部 215の電力がエンジン 21 9に内蔵されたスタータに供給されるので、エンジンが始動する。この時、スタータに は大電流が流れるので、それに伴い主電源部 215の電圧は大きく低下する。検出回 路 209はこの電圧変化を検出し、所定の基準値より主電源部 215の電圧が低くなつ たことを検出すると、電源切替部 211を補助電源部 203側に切り替える。これにより、 スタータ動作中は補助電源部 203から車載装置 223に電力が供給されるので、車載 装置 223は動作し続けること力 Sできる。  [0007] In this state, when the key of the key mounting portion 221 is set to the start mode in order to start the engine, the second switch 217 is also turned on. As a result, the electric power of main power supply unit 215 is supplied to the starter built in engine 219, and the engine starts. At this time, since a large current flows through the starter, the voltage of the main power supply unit 215 greatly decreases accordingly. The detection circuit 209 detects this voltage change, and when it detects that the voltage of the main power supply unit 215 has become lower than a predetermined reference value, it switches the power supply switching unit 211 to the auxiliary power supply unit 203 side. As a result, since electric power is supplied from the auxiliary power supply unit 203 to the in-vehicle device 223 during the starter operation, the in-vehicle device 223 can continue to operate.
[0008] その後、エンジン 219の始動が完了し、キーをオンモードにすることで第 2スィッチ 2 17がオフになる。その結果、主電源部 215の電圧は所定の基準値より高くなる。検 出回路 209はこの電圧変化を検出し、電源切替部 211を主電源部 215側に切り替え る。これにより、車載装置 223には主電源部 215から電力が供給される。  [0008] Thereafter, the start of the engine 219 is completed, and the second switch 217 is turned off by setting the key to the on mode. As a result, the voltage of the main power supply unit 215 becomes higher than a predetermined reference value. The detection circuit 209 detects this voltage change and switches the power supply switching unit 211 to the main power supply unit 215 side. As a result, power is supplied to the in-vehicle device 223 from the main power supply unit 215.
[0009] 以上のような動作により、車載装置 223にはスタータ動作時も安定した電力が供給 され続け、音楽の中断や設定の消去等が回避できる。  [0009] By the operation as described above, stable power is continuously supplied to the in-vehicle device 223 even during the starter operation, so that interruption of music, deletion of settings, and the like can be avoided.
[0010] しかしながらキー装着部 221のキーをアクセサリモードにしてから短時間の内にスタ 一トモードにすると、車載装置 223が起動してすぐに主電源部 215の電圧が下がる。 この時、キーがアクセサリモードになつてから補助電源部 203への充電を開始するの で、短時間の内にスタートモードにすると補助電源部 203への充電が不充分になる 可能性がある。 [0010] However, after the key of the key mounting portion 221 is set to the accessory mode, the key can be stopped within a short time. In the first mode, the voltage of the main power supply unit 215 decreases immediately after the in-vehicle device 223 is activated. At this time, since charging of the auxiliary power supply unit 203 is started after the key is in the accessory mode, there is a possibility that charging of the auxiliary power supply unit 203 may be insufficient if the start mode is set within a short time.
[0011] これに対し、上記従来の車両用蓄電装置では、次のような対策が講じられている。  On the other hand, the following measures are taken in the conventional vehicle power storage device.
すなわち、補助電源部 203を構成する電気二重層キャパシタの数量を減らし、充電 回路 205で主電源部 215の電圧を降圧して充電する。放電時には補助電源部 203 の電圧を DC— DCコンバータからなる安定化回路 207で昇圧して車載装置 223に 供給する。これにより、補助電源部 203の満充電電圧を下げることができるので、そ の分早く充電を完了することができる。  That is, the number of electric double layer capacitors constituting the auxiliary power supply unit 203 is reduced, and charging is performed by reducing the voltage of the main power supply unit 215 by the charging circuit 205. At the time of discharging, the voltage of the auxiliary power supply unit 203 is boosted by a stabilization circuit 207 composed of a DC-DC converter and supplied to the in-vehicle device 223. As a result, the full charge voltage of the auxiliary power supply unit 203 can be lowered, so that the charging can be completed earlier.
[0012] し力、し、 DC— DCコンバータは、その動作に電力を必要とする。そのためスタータ 駆動時に、さらに DC— DCコンバータの昇圧動作による電力消費が加わると、主電 源部 215の損失が大きくなる。  [0012] The DC-DC converter requires power for its operation. Therefore, when the starter is driven and power consumption due to the boosting operation of the DC-DC converter is further added, the loss of the main power supply unit 215 increases.
特許文献 1 :特開 2002— 64946号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 2002-64946
発明の開示  Disclosure of the invention
[0013] 本発明は、車両再使用時のスタータ動作前に充分に充電を行うことができ、かつ主 電源の損失を低減する信頼性の高い車両用蓄電装置である。  [0013] The present invention is a highly reliable power storage device for a vehicle that can be sufficiently charged before a starter operation when the vehicle is reused and that reduces loss of a main power source.
[0014] 本発明の車両用蓄電装置は、主電源と負荷の間に接続され、蓄電部と、充放電回 路と、制御回路とを有する。蓄電部は主電源の電力を蓄える。充放電回路は主電源 、負荷、蓄電部にそれぞれ接続されている。制御回路は蓄電部と充放電回路とに接 続されている。車両使用終了時に、制御回路は既定時間経過後に、蓄電部の電圧 が既定保持電圧に至るまで電力を放電するよう充放電回路を制御する。車両非使用 時に蓄電部の電圧が既定下限電圧に至れば、制御回路は蓄電部の電圧が既定保 持電圧になるまで充電する動作を繰り返すよう充放電回路を制御する。また車両用 蓄電装置の外部から運転者を認識する信号を受け取れば、制御回路は蓄電部を満 充電にするよう充放電回路を制御する。  [0014] The vehicle power storage device of the present invention is connected between a main power supply and a load, and includes a power storage unit, a charge / discharge circuit, and a control circuit. The power storage unit stores the power of the main power source. The charge / discharge circuit is connected to the main power source, the load, and the power storage unit. The control circuit is connected to the power storage unit and the charge / discharge circuit. At the end of use of the vehicle, the control circuit controls the charge / discharge circuit to discharge power until the voltage of the power storage unit reaches the predetermined holding voltage after the predetermined time has elapsed. If the voltage of the power storage unit reaches the predetermined lower limit voltage when the vehicle is not used, the control circuit controls the charge / discharge circuit to repeat the charging operation until the voltage of the power storage unit reaches the predetermined holding voltage. When receiving a signal for recognizing the driver from the outside of the vehicle power storage device, the control circuit controls the charge / discharge circuit so that the power storage unit is fully charged.
[0015] この構成では、キーをアクセサリモードにするよりも以前から、蓄電部の満充電まで の不足分が充電される。そのため車両再使用時には蓄電部の電圧が低下することが 抑制される。さらに蓄電部のみで負荷に電力を供給するので DC— DCコンバータに よる主電源の損失を回避することができる。 [0015] With this configuration, the shortage until the full charge of the power storage unit is charged before the key is set to the accessory mode. Therefore, the voltage of the power storage unit may decrease when the vehicle is reused. It is suppressed. In addition, since power is supplied to the load only by the power storage unit, loss of the main power source due to the DC-DC converter can be avoided.
図面の簡単な説明  Brief Description of Drawings
[0016] [図 1]図 1は本発明の実施の形態 1における車両用蓄電装置のブロック図である。  FIG. 1 is a block diagram of a power storage device for a vehicle in a first embodiment of the present invention.
[図 2]図 2は図 1に示す車両用蓄電装置の車両使用終了時から車両再使用時までの 制御回路の動作を示すフローチャートである。  FIG. 2 is a flowchart showing the operation of the control circuit from when the vehicle power storage device shown in FIG. 1 is used to when the vehicle is reused.
[図 3]図 3は図 1に示す車両用蓄電装置のスタータ動作時の制御回路の動作を示す フローチャートである。  FIG. 3 is a flowchart showing the operation of the control circuit during the starter operation of the vehicle power storage device shown in FIG.
[図 4]図 4は本発明の実施の形態 2における車両用蓄電装置の一部の構成を示すブ ロック回路図である。  FIG. 4 is a block circuit diagram showing a partial configuration of the vehicle power storage device according to Embodiment 2 of the present invention.
[図 5]図 5は本発明の実施の形態 3における車両用蓄電装置の一部の構成を示すブ ロック回路図である。  FIG. 5 is a block circuit diagram showing a partial configuration of the vehicle power storage device according to Embodiment 3 of the present invention.
[図 6A]図 6Aは本発明の実施の形態 3における車両用蓄電装置の蓄電素子の接続 回路図であり、バランス回路に対し蓄電素子を並列接続した場合の接続回路図であ  [FIG. 6A] FIG. 6A is a connection circuit diagram of a storage element of the power storage device for a vehicle according to Embodiment 3 of the present invention, and is a connection circuit diagram when the storage element is connected in parallel to the balance circuit
[図 6B]図 6Bは本発明の実施の形態 3における車両用蓄電装置の蓄電素子の接続 回路図であり、バランス回路に対し蓄電素子を直並列接続した場合の接続回路図で ある。 [FIG. 6B] FIG. 6B is a connection circuit diagram of the power storage elements of the vehicle power storage device in Embodiment 3 of the present invention, and is a connection circuit diagram when the power storage elements are connected in series and parallel to the balance circuit.
[図 7]図 7は従来の車両用蓄電装置のブロック回路図である。  FIG. 7 is a block circuit diagram of a conventional vehicle power storage device.
符号の説明  Explanation of symbols
[0017] 11 , 157, 157A 車両用蓄電装置(蓄電装置)  [0017] 11, 157, 157A Power storage device for vehicle (power storage device)
13 ィグニシヨンスィッチ  13 ignition switch
15 主電源  15 Main power
17, 165 負荷  17, 165 load
19 スタータ  19 Starter
21 , 163 充放電回路  21, 163 Charge / discharge circuit
23 蓄電部  23 Power storage unit
25, 113, 113A 制御回路 車両側制御回路 25, 113, 113A Control circuit Vehicle side control circuit
車両側電波送受信回路(通信回路) 電波送受信機 (キー)  Vehicle side radio wave transmitter / receiver circuit (communication circuit) Radio wave transmitter / receiver (key)
キー側電波送受信回路(通信回路) アンテナ  Key side radio wave transmission / reception circuit (communication circuit) Antenna
電池  Battery
蓄電素子  Electricity storage element
蓄電素子ユニット  Power storage element unit
バランス回路  Balance circuit
スイッチング素子 Switching element
, 115, 117, 139, 177 抵抗器 電圧モニタ用選択スィッチ ノ ランス回路用選択スィッチ スィッチ素子 , 115, 117, 139, 177 Resistor Selector switch for voltage monitor Selector switch for non-sense circuit Switch element
第 1抵抗器  1st resistor
第 2抵抗器  Second resistor
ダイオード diode
, 142 レギユレータ , 142 Regulator
駆動電圧入力端子  Drive voltage input terminal
起動用絶縁型信号伝達部 Insulated signal transmitter for startup
, 147, 155 フォト卜ランジスタ, 149, 153 発光ダイオード , 147, 155 Photo diode, 149, 153 Light emitting diode
外部制御回路  External control circuit
バッテリ  Battery
バッテリ用ィグニシヨンスィッチ 低電圧負荷  Battery ignition switch Low voltage load
データ送信用絶縁型信号伝達部 データ受信用絶縁型信号伝達部 161 主電源用イダニシヨンスィッチ Isolated signal transmission unit for data transmission Isolated signal transmission unit for data reception 161 Idition switch for main power supply
173 蓄電部品  173 Power storage components
175 起動端子  175 Start terminal
179 選択スィッチ用電源スィッチ  179 Power switch for selection switch
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0018] (実施の形態 1)  [0018] (Embodiment 1)
図 1は本発明の実施の形態 1における車両用蓄電装置のブロック図である。図 2は 図 1に示す車両用蓄電装置の車両使用終了時から車両再使用時までの制御回路の 動作を示すフローチャートである。図 3は、同スタータ動作時の制御回路の動作を示 すフローチャートである。なお、図 1において、太線は電力系配線を、細線は信号系 配線をそれぞれ示す。また、本実施の形態では車両用蓄電装置をアイドリングストツ プ車に適用した場合について述べる。  FIG. 1 is a block diagram of a vehicle power storage device according to Embodiment 1 of the present invention. FIG. 2 is a flowchart showing the operation of the control circuit from the end of use of the vehicle power storage device shown in FIG. 1 to the time of vehicle reuse. Fig. 3 is a flowchart showing the operation of the control circuit during the starter operation. In Fig. 1, bold lines indicate power system wiring, and thin lines indicate signal system wiring. In this embodiment, the case where the power storage device for a vehicle is applied to an idling stop vehicle will be described.
[0019] 図 1に示すように、車両用蓄電装置(以下、蓄電装置) 11はイダニシヨンスィッチ 13 を介して接続された主電源 15と、負荷 17との間に接続されている。イダニシヨンスイツ チ 13は主電源 15の電力を蓄電装置 11に供給する機能と、イダニシヨンスィッチ 13 に接続されたエンジン始動用のスタータ 19に主電源 15の電力を供給する機能を併 せ持つ。ここで、主電源 15はバッテリで構成され、負荷 17はオーディオ、ナビゲーシ ヨン、オーディオビジュアルナビゲーシヨン等の補機である。  As shown in FIG. 1, a vehicle power storage device (hereinafter referred to as a power storage device) 11 is connected between a main power supply 15 connected via an innovation switch 13 and a load 17. The idle switch 13 has the function of supplying the power of the main power supply 15 to the power storage device 11 and the function of supplying the power of the main power supply 15 to the starter 19 for starting the engine connected to the idance switch 13. Have. Here, the main power source 15 is constituted by a battery, and the load 17 is an auxiliary device such as audio, navigation, and audiovisual navigation.
[0020] 蓄電装置 11は、蓄電部 23と、充放電回路 21と、制御回路 25とを有する。まず図 1 の太線で示した電力系配線の関連構成を説明する。  The power storage device 11 includes a power storage unit 23, a charge / discharge circuit 21, and a control circuit 25. First, the related configuration of the power system wiring shown by the bold lines in Fig. 1 is explained.
[0021] 主電源 15の出力にはイダニシヨンスィッチ 13を介して充放電回路 21が接続されて いる。充放電回路 21には負荷 17と蓄電部 23が接続されている。したがって、蓄電部 23の充電と放電は充放電回路 21によって制御される。なお、蓄電部 23は主電源 15 の電力を蓄える蓄電素子として、急速充放電が可能なキャパシタで構成することが望 ましい。本実施の形態では満充電電圧が約 1. 83V、初期容量が 70Fの電気二重層 キャパシタを用いている。これにより、特に運転者がスタータ 19を動作させるまでの間 に蓄電部 23の充電を完了するのに有利となる。この電気二重層キャパシタを 2個並 列に接続し、この並列接続組をさらに 7組直列に接続して蓄電部 23が構成されてい る。この構成により、蓄電部 23はスタータ 19の動作時に負荷 17が必要とする電力を 賄っている。この場合の蓄電部 23の合成容量は 20Fとなり、満充電電圧は 12. 8Vと なる。 [0021] A charge / discharge circuit 21 is connected to the output of the main power supply 15 via an idling switch 13. A load 17 and a power storage unit 23 are connected to the charge / discharge circuit 21. Therefore, charging and discharging of the power storage unit 23 is controlled by the charge / discharge circuit 21. The power storage unit 23 is preferably configured as a capacitor capable of rapid charge / discharge as a power storage element for storing the power of the main power supply 15. In this embodiment, an electric double layer capacitor having a full charge voltage of about 1.83 V and an initial capacity of 70 F is used. This is advantageous for completing the charging of the power storage unit 23 before the driver operates the starter 19 in particular. Two electric double layer capacitors are connected in parallel, and seven parallel connection sets are connected in series to form a power storage unit 23. The With this configuration, the power storage unit 23 covers the power required by the load 17 when the starter 19 operates. In this case, the combined capacity of the power storage unit 23 is 20F, and the full charge voltage is 12.8V.
[0022] なお、蓄電部 23は蓄電素子(図示せず)以外にも、 2つのマルチプレクサと複数の ノ ランス回路(いずれも図示せず)とを内蔵している。第 1のマルチプレクサは、電圧 モニタ用の選択スィッチであり、複数の蓄電素子の直列接続部分に接続され、各接 続部分の電圧をそれぞれ出力する。本実施の形態ではグランドを除く 7ケ所の電圧を 出力する。バランス回路は複数の蓄電素子の直列接続部分の電圧バランスを取るた めに設けられている。バランス回路は蓄電素子の直列数と同じだけ設けられている。 すなわち本実施の形態では 7個のバランス回路が設けられて!/、る。第 2のマルチプレ クサは、バランス回路用の選択スィッチであり、複数のバランス回路から 1つを選択し 、その動作をオンオフ制御する。  [0022] In addition to the power storage element (not shown), the power storage unit 23 includes two multiplexers and a plurality of tolerance circuits (none of which are shown). The first multiplexer is a selection switch for voltage monitoring, and is connected to a series connection portion of a plurality of power storage elements, and outputs a voltage of each connection portion. In this embodiment, seven voltages are output excluding ground. The balance circuit is provided in order to balance the voltage at the serial connection portion of a plurality of power storage elements. As many balance circuits as the number of power storage elements in series are provided. In other words, seven balance circuits are provided in this embodiment. The second multiplexer is a selection switch for a balance circuit, and selects one of a plurality of balance circuits and controls its operation on / off.
[0023] 充放電回路 21は蓄電部 23の充電を制御し、蓄電部 23から負荷 17への放電を制 御する。充放電回路 21は負荷 17への電力供給源を主電源 15と蓄電部 23の!/、ずれ かに切り替える機能、負荷 17への電力供給をオンオフ制御する機能を有する。さら に充放電回路 21は充放電回路 21の内部で蓄電部 23の電力を熱として放電する機 能、主電源の電圧 Vb、蓄電部 23の電圧 Vc、および負荷 17の電圧 Vdを検出する機 能も有する。なお、蓄電部 23の放電経路には DC— DCコンバータを用いていない。  The charge / discharge circuit 21 controls the charging of the power storage unit 23 and controls the discharge from the power storage unit 23 to the load 17. The charge / discharge circuit 21 has a function of switching the power supply source for the load 17 between the main power supply 15 and the power storage unit 23! /, And a function for on / off controlling the power supply to the load 17. In addition, the charge / discharge circuit 21 is a function that discharges the electric power of the power storage unit 23 as heat inside the charge / discharge circuit 21, and detects the voltage Vb of the main power source, the voltage Vc of the power storage unit 23, and the voltage Vd of the load 17. It also has the ability. Note that a DC-DC converter is not used in the discharge path of the power storage unit 23.
[0024] 次に、図 1の細線で示した信号系配線の関連構成を説明する。蓄電部 23と充放電 回路 21にはマイクロコンピュータからなる制御回路 25が接続されている。蓄電部 23 と制御回路 25との間には、選択信号 SLVの配線と、蓄電素子電圧入力信号 VNin の配線と、選択信号 SLBの配線と、オン信号 Lolの配線とが信号系配線として接続 されている。選択信号 SLVは蓄電素子の電圧検出用のマルチプレクサに対して電 圧検出点を選択するための信号である。蓄電素子電圧入力信号 VNinは選択された 電圧検出点の電圧を入力するための信号である。選択信号 SLBはバランス回路の オンオフ制御用の第 2のマルチプレクサに対してバランス回路を選択するために送 信される信号である。オン信号 Lolは選択されたバランス回路をオンにする信号であ [0025] 充放電回路 21と制御回路 25との間には、制御信号 contの配線と、電圧入力信号 Vinの配線とが信号系配線として接続されて!/、る。制御信号 contは充放電回路 21 の動作全般を制御する制御信号である。電圧入力信号 Vinは充放電回路 21で検出 された電圧 Vb、 Vc、 Vdを入力するための信号である。 Next, a related configuration of the signal system wiring indicated by the thin line in FIG. 1 will be described. A control circuit 25 composed of a microcomputer is connected to the power storage unit 23 and the charge / discharge circuit 21. Between the power storage unit 23 and the control circuit 25, the wiring of the selection signal SLV, the wiring of the storage element voltage input signal VNin, the wiring of the selection signal SLB, and the wiring of the on signal Lol are connected as signal system wiring. ing. The selection signal SLV is a signal for selecting a voltage detection point for the voltage detection multiplexer of the storage element. The storage element voltage input signal VNin is a signal for inputting the voltage at the selected voltage detection point. The selection signal SLB is a signal transmitted to select the balance circuit to the second multiplexer for on / off control of the balance circuit. ON signal Lol is a signal that turns on the selected balance circuit. [0025] Between the charge / discharge circuit 21 and the control circuit 25, the wiring of the control signal cont and the wiring of the voltage input signal Vin are connected as signal system wirings. The control signal cont is a control signal that controls the overall operation of the charge / discharge circuit 21. The voltage input signal Vin is a signal for inputting the voltages Vb, Vc and Vd detected by the charge / discharge circuit 21.
[0026] 以上が蓄電装置 11の構成である力 S、制御回路 25は外部の車両側制御回路 27とも データの入出力を行っている。具体的には、制御回路 25は車両側制御回路 27から 送信された入力信号 inを受け付け、車両側制御回路 27に出力信号 outを送信する [0026] The force S, which is the configuration of the power storage device 11, has been described above. The control circuit 25 also inputs and outputs data with the external vehicle-side control circuit 27. Specifically, the control circuit 25 receives the input signal “in” transmitted from the vehicle side control circuit 27 and transmits the output signal “out” to the vehicle side control circuit 27.
Yes
[0027] 車両側制御回路 27は車両全体の制御を司る力 ここでは本実施の形態を説明す るのに必要な部分についてのみ述べる。車両側制御回路 27はマイクロコンピュータ 力もなり、制御回路 25とのデータ入出力以外に、イダニシヨンスィッチ 13とのデータ 入出力や、車両側電波送受信回路 (以下、通信回路) 29との送受信データの入出力 を行っている。  [0027] The vehicle-side control circuit 27 is a power for controlling the entire vehicle. Here, only the parts necessary for describing the present embodiment will be described. The vehicle-side control circuit 27 also has a microcomputer power. In addition to data input / output to / from the control circuit 25, data input / output to / from the decision switch 13 and data transmitted / received to / from the vehicle-side radio wave transmission / reception circuit (hereinafter referred to as communication circuit) 29 I / O is performed.
[0028] ここで、イダニシヨンスィッチ 13は、従来と同様に 4つの状態(モード)を有している。  Here, the innovation switch 13 has four states (modes) as in the prior art.
またイダニシヨンスィッチ 13は、車両側制御回路 27に現在のスィッチのモードを示す イダニシヨン信号 IGを出力する。さらに、車両側制御回路 27から出力されたイダニシ ヨンスィッチ制御信号 IGcontによりイダニシヨンスィッチ 13のモードを切り替える。し たがって、車両側制御回路 27はイダニシヨン信号 IGによりスィッチのモードを確認し 、ィグニシヨンスィッチ制御信号 IGcontによりィグニシヨンスィッチ 13のモードを切り 替えること力 Sできる。  Further, the idle switch 13 outputs an idling signal IG indicating the current switch mode to the vehicle side control circuit 27. Further, the mode of the innovation switch 13 is switched by the innovation switch control signal IGcont output from the vehicle side control circuit 27. Therefore, the vehicle side control circuit 27 can confirm the switch mode by the ignition signal IG, and can switch the mode of the ignition switch 13 by the ignition switch control signal IGcont.
[0029] 通信回路 29は車両を開錠、施錠する電波を送受信する機能を有する。そして通信 回路 29は運転者が保持し、操作可能な電波送受信機 (以下、キー) 31に内蔵された キー側電波送受信回路(以下、通信回路) 33との間でアンテナ 35を介して信号を交 信する。なお、キー 31には電波の送受信に必要な電力を供給する電池 37も内蔵さ れている。  [0029] The communication circuit 29 has a function of transmitting and receiving radio waves for unlocking and locking the vehicle. The communication circuit 29 is held by the driver and can be operated by the radio transmitter / receiver (hereinafter referred to as the key) 31. Communicate. The key 31 has a built-in battery 37 for supplying power necessary for transmitting and receiving radio waves.
[0030] 次に通信回路 29、 33を用いた具体的な動作を説明する。運転者がキー 31を操作 して例えば車両の開錠を行う信号を通信回路 33から送信すると、通信回路 29がこの 信号を受信する。通信回路 29は受信した信号 RCを車両側制御回路 27に出力する 。車両側制御回路 27は再度キー 31に開錠信号を送信する要求を行うデータを送信 信号 TRによって通信回路 29に出力する。通信回路 29は送信信号 TRに相当する 送信要求信号を電波でキー 31に送信する。これを受け、通信回路 33は再度開錠信 号を通信回路 29に送信する。通信回路 29は受信した開錠信号を再び車両側制御 回路 27に出力する。車両側制御回路 27は 2回の開錠信号データを比較して、一致 すれば正規の運転者であると認証する。このような運転者認証方法により、車両は運 転者を認識する。すなわち、キー 31、車両側制御回路 27等は蓄電装置 11に運転者 を認識する信号を送信する運転者認証部である。 Next, a specific operation using the communication circuits 29 and 33 will be described. When the driver operates the key 31 to transmit, for example, a signal for unlocking the vehicle from the communication circuit 33, the communication circuit 29 receives this signal. The communication circuit 29 outputs the received signal RC to the vehicle side control circuit 27. . The vehicle-side control circuit 27 outputs data for requesting transmission of the unlock signal to the key 31 again to the communication circuit 29 by the transmission signal TR. The communication circuit 29 transmits a transmission request signal corresponding to the transmission signal TR to the key 31 by radio waves. In response to this, the communication circuit 33 transmits the unlock signal to the communication circuit 29 again. The communication circuit 29 outputs the received unlocking signal to the vehicle side control circuit 27 again. The vehicle-side control circuit 27 compares the two unlocking signal data, and if they match, it authenticates that the driver is a legitimate driver. With this driver authentication method, the vehicle recognizes the driver. That is, the key 31, the vehicle-side control circuit 27, and the like are driver authentication units that transmit a signal for recognizing the driver to the power storage device 11.
[0031] なお、運転者がキー 31を開錠操作することで認識する構成の例を説明した。しかし ながら運転者が開錠操作をしなくても一定の距離以内に車両に接近するだけで開錠 信号の送受信が行われる運転者認証方法などでもよレ、。このように運転者認証部を 構成してもよい。すなわち、運転者を認証する方法は特に限定されない。  [0031] Note that an example of a configuration in which the driver recognizes the key 31 by performing the unlocking operation has been described. However, it is possible to use a driver authentication method in which the unlocking signal is transmitted and received just by approaching the vehicle within a certain distance even if the driver does not perform the unlocking operation. In this way, the driver authentication unit may be configured. That is, the method for authenticating the driver is not particularly limited.
[0032] 次に、蓄電装置 11の動作について説明する。まず、本実施の形態の特徴となる動 作について図 2を参照しながら説明する。図 2は車両使用終了時から車両再使用時 までの制御回路 25の動作を示すフローチャートである。車両の使用を終了して運転 者がイダニシヨンスィッチ 13をロックモードにすると、既定時間が経過した後に、制御 回路 25は図 2のフローチャートに沿った制御を実行する。なお運転者がイダニシヨン スィッチ 13をロックモードにしたものの、すぐに車両を使用するためにイダニシヨンス イッチ 13をロックモード以外にする可能性があるため、制御回路 25は既定時間が経 過するまで待機する。ロックモードにしてから 1分以上経過すると、運転者がすぐにェ ンジン再始動を行わな!/、と想定されるため、既定時間は例えば 1分に設定することが できる。  Next, the operation of power storage device 11 will be described. First, the operation that characterizes this embodiment will be described with reference to FIG. FIG. 2 is a flowchart showing the operation of the control circuit 25 from the end of vehicle use to the time of vehicle reuse. When the use of the vehicle is finished and the driver sets the idle switch 13 to the lock mode, the control circuit 25 executes the control according to the flowchart of FIG. 2 after a predetermined time has elapsed. Although the driver puts the switch 13 in the lock mode, the control circuit 25 waits until the predetermined time elapses because the switch 13 may be put out of the lock mode to use the vehicle immediately. . Since it is assumed that the driver will not restart the engine immediately after entering the lock mode for more than 1 minute, the default time can be set to 1 minute, for example.
[0033] 既定時間が経過すると、制御回路 25は、スタータ 19の動作禁止信号を出力信号 o utとして車両側制御回路 27へ出力する(Sl)。これを受け、車両側制御回路 27はス タータ 19の動作を禁止する。  [0033] When the predetermined time has elapsed, the control circuit 25 outputs the operation prohibition signal of the starter 19 to the vehicle-side control circuit 27 as the output signal o ut (Sl). In response to this, the vehicle side control circuit 27 prohibits the operation of the starter 19.
[0034] 次に、制御回路 25は蓄電部 23の電力を放電するよう充放電回路 21に指示する(S 3)。この際、蓄電部 23に内蔵されたバランス回路により、各蓄電素子の両端電圧が 等しくなるように制御しながら蓄電部 23を放電する。その後、制御回路 25は充放電 回路 21から電圧入力信号 Vinにより蓄電部 23の電圧 Vcを取り込み、既定保持電圧 Vkと比較する(S5)。ここで、既定保持電圧 Vkは例えば 10. 5Vとする。これにより、 蓄電素子は 7直列に接続されているため、各蓄電素子の電圧は 1. 5Vとなる。この電 圧は蓄電素子の寿命が車両の寿命と同等になる電圧である。ここでは車両の寿命が 15年と想定している。したがって、車両を使用しない時における蓄電部 23の寿命が 車両の寿命と同等になる。 Next, the control circuit 25 instructs the charge / discharge circuit 21 to discharge the electric power of the power storage unit 23 (S 3). At this time, the power storage unit 23 is discharged while being controlled by the balance circuit built in the power storage unit 23 so that the voltage across the power storage elements becomes equal. After that, the control circuit 25 is charged and discharged The voltage Vc of the power storage unit 23 is fetched from the circuit 21 by the voltage input signal Vin and compared with the predetermined holding voltage Vk (S5). Here, the default holding voltage Vk is, for example, 10.5V. As a result, since the electricity storage elements are connected in series, the voltage of each electricity storage element is 1.5V. This voltage is a voltage at which the life of the power storage element is equivalent to the life of the vehicle. Here, the vehicle life is assumed to be 15 years. Therefore, the life of power storage unit 23 when the vehicle is not used is equivalent to the life of the vehicle.
[0035] S5において、蓄電部 23の電圧 Vcが既定保持電圧 Vkより大きければ(No)、制御 は S5に戻って制御回路 25は既定保持電圧 Vk以下になるまで待つ。電圧 Vcが既定 保持電圧 Vk以下になれば (Yes)、制御回路 25は、蓄電部 23の放電を停止するよう 充放電回路 21に指示する(S7)。  In S5, if voltage Vc of power storage unit 23 is larger than predetermined holding voltage Vk (No), control returns to S5 and control circuit 25 waits until it becomes equal to or lower than predetermined holding voltage Vk. If the voltage Vc is equal to or lower than the predetermined holding voltage Vk (Yes), the control circuit 25 instructs the charge / discharge circuit 21 to stop discharging the power storage unit 23 (S7).
[0036] ここまでの制御が車両使用終了直後に実行される。すなわち、制御回路 25は車両 使用終了時、既定時間経過後に蓄電部 23の電圧が既定保持電圧 Vkに至るまで蓄 電部 23を放電させる。  [0036] Control up to this point is executed immediately after the end of vehicle use. That is, the control circuit 25 discharges the power storage unit 23 until the voltage of the power storage unit 23 reaches the predetermined holding voltage Vk after the predetermined time has elapsed when the vehicle is finished using.
[0037] S9以降は車両非使用時の制御である。制御回路 25は蓄電部 23の電圧 Vcを取り 込み、既定下限電圧 Vcminと比較する(S9)。既定下限電圧 Vcminは、各蓄電素子 の両端電圧が例えば 1. 4Vになった時と既定する。この場合、既定下限電圧 Vcmin は 9. 8Vである。もし、電圧 Vcが既定下限電圧 Vcmin以下になれば (Yes)、制御回 路 25は、蓄電部 23が自己放電した分の電力を再度充電するよう充放電回路 21に指 示する(Sl l)。  [0037] After S9, the control is performed when the vehicle is not used. The control circuit 25 takes in the voltage Vc of the power storage unit 23 and compares it with the predetermined lower limit voltage Vcmin (S9). The predetermined lower limit voltage Vcmin is defined as when the voltage across each storage element becomes 1.4V, for example. In this case, the default lower limit voltage Vcmin is 9.8V. If the voltage Vc is equal to or lower than the predetermined lower limit voltage Vcmin (Yes), the control circuit 25 instructs the charge / discharge circuit 21 to recharge the electric power that the power storage unit 23 has self-discharged (Sl l). .
[0038] その後、主電源 15の電圧 Vbを充放電回路 21から取り込んで、既定限界電圧 Vbm inと比較する(S 13)。既定限界電圧 Vbminは負荷 17を駆動するための下限電圧で ある。本実施の形態 1では 10. 5Vとしている。もし、電圧 Vbが既定限界電圧 Vbmin 以下であれば (Yes)、主電源 15が劣化していると考えられる。そのため、主電源 15 の電圧低下をこれ以上招かないために、制御回路 25は蓄電部 23への充電を停止 するように充放電回路 21に指示する(S15)。その後、制御は後述する S27にジヤン プする。  After that, the voltage Vb of the main power supply 15 is taken from the charge / discharge circuit 21 and compared with the predetermined limit voltage Vbmin (S 13). The predetermined limit voltage Vbmin is the lower limit voltage for driving the load 17. In the first embodiment, it is set to 10.5V. If the voltage Vb is equal to or lower than the predetermined limit voltage Vbmin (Yes), it is considered that the main power supply 15 has deteriorated. Therefore, the control circuit 25 instructs the charging / discharging circuit 21 to stop charging the power storage unit 23 in order not to cause further voltage drop of the main power supply 15 (S15). Thereafter, the control jumps to S27 described later.
[0039] 一方、電圧 Vbが既定限界電圧 Vbminより大きければ (No)、制御回路 25は蓄電 部 23の電圧 Vcを取り込み、既定保持電圧 Vk (10. 5V)と比較する(S I 7)。もし、電 圧 Vcが既定保持電圧 Vk未満であれば(No)、蓄電部 23の充電が完了していない ので、制御は S13に戻る。一方、電圧 Vcが既定保持電圧 Vk以上であれば (Yes)、 蓄電部 23の充電が完了したと見なし、制御回路 25は充電部 23の充電を停止するよ うに充放電回路 21に指示する(S19)。その後、制御は S9に戻って、制御回路 25は 再び自己放電による蓄電部 23の電圧 Vcの低下を監視する。 On the other hand, if the voltage Vb is larger than the predetermined limit voltage Vbmin (No), the control circuit 25 takes in the voltage Vc of the power storage unit 23 and compares it with the predetermined holding voltage Vk (10.5 V) (SI 7). If the electric If the voltage Vc is less than the predetermined holding voltage Vk (No), since the charging of the power storage unit 23 is not completed, the control returns to S13. On the other hand, if the voltage Vc is equal to or higher than the predetermined holding voltage Vk (Yes), it is considered that the storage unit 23 has been charged, and the control circuit 25 instructs the charging / discharging circuit 21 to stop charging the charging unit 23 ( S19). Thereafter, the control returns to S9, and the control circuit 25 again monitors the decrease in the voltage Vc of the power storage unit 23 due to self-discharge.
[0040] S9において電圧 Vcが既定下限電圧 Vcminより大きければ(No)、制御回路 25は 車両側制御回路 27から蓄電部 23の満充電開始信号が入力されたか否かを判断す る(S21)。なお、満充電開始信号は、キー 31から車両の開錠信号が送信された時、 あるいはキー 31と車両との交信が可能になった時に車両側制御回路 27から制御回 路 25に入力される。もし、満充電開始信号が入力されなければ (No)、車両が引き続 き非使用状態であるので、制御は S9に戻って、制御回路 25は再び自己放電による 蓄電部 23の電圧 Vcの低下を監視する。  [0040] If the voltage Vc is larger than the predetermined lower limit voltage Vcmin in S9 (No), the control circuit 25 determines whether or not a full charge start signal of the power storage unit 23 is input from the vehicle-side control circuit 27 (S21). . The full charge start signal is input from the vehicle side control circuit 27 to the control circuit 25 when the unlocking signal of the vehicle is transmitted from the key 31 or when communication between the key 31 and the vehicle becomes possible. . If the full charge start signal is not input (No), the vehicle continues to be in a non-use state, so the control returns to S9 and the control circuit 25 again decreases the voltage Vc of the power storage unit 23 due to self-discharge. To monitor.
[0041] ここまでの動作が車両非使用時の動作である。すなわち、制御回路 25は蓄電部 23 の電圧 Vcが既定下限電圧 Vcminに至れば、蓄電部 23の電圧 Vcが既定保持電圧 Vkになるまで充電する動作を繰り返す。なお、 S9に示した蓄電部 23の電圧 Vcが既 定下限電圧 Vcmin以下になるまでには数十時間程度かかる。その間も制御回路 25 を動作させ続けると、 S9と S21の動作を繰り返すだけで電力が消費される。そこで、 制御回路 25による S9の比較動作は例えば数十時間毎に 1回というように間欠動作を するようにしてもよい。すなわち、 S9の比較動作を行うまでの間、制御回路 25が省電 力状態となるようにしてもよい。これにより、主電源 15の電力が消費を低減することが できる。  [0041] The operation so far is the operation when the vehicle is not used. That is, when voltage Vc of power storage unit 23 reaches predetermined lower limit voltage Vcmin, control circuit 25 repeats the operation of charging until voltage Vc of power storage unit 23 reaches predetermined holding voltage Vk. Note that it takes about several tens of hours for the voltage Vc of the power storage unit 23 shown in S9 to become equal to or lower than the predetermined lower limit voltage Vcmin. If the control circuit 25 continues to operate during that time, power is consumed simply by repeating the operations of S9 and S21. Therefore, the comparison operation of S9 by the control circuit 25 may be intermittent, for example, once every several tens of hours. That is, the control circuit 25 may be in a power saving state until the comparison operation of S9 is performed. As a result, the power of the main power supply 15 can be reduced.
[0042] 次に、車両再使用時の動作について説明する。 S21において満充電開始信号が 入力されれば、制御回路 25は直ちに蓄電部 23の充電を開始する(S23)。この動作 を以下に詳しく説明する。  [0042] Next, an operation when the vehicle is reused will be described. If the full charge start signal is input in S21, the control circuit 25 immediately starts charging the power storage unit 23 (S23). This operation is described in detail below.
[0043] 車両側制御回路 27は制御回路 25に満充電開始信号を送信すると同時に、イダ二 シヨンスィッチ 13に対してアクセサリモードになるようにイダニシヨンスィッチ制御信号 I Gcontを送信する。これにより車両側制御回路 27は蓄電装置 11に電力を供給させ る。また、制御回路 25は蓄電部 23を充電するために、負荷 17への電力供給をオフ にするとともに蓄電部 23を充電するよう、充放電回路 21に対し制御信号 contを送信 する。このようにして、蓄電部 23の充電が開始される。 [0043] The vehicle-side control circuit 27 transmits the full charge start signal to the control circuit 25, and simultaneously transmits an idling switch control signal IGcont to the idance switch 13 so as to enter the accessory mode. As a result, the vehicle-side control circuit 27 supplies power to the power storage device 11. In addition, the control circuit 25 turns off the power supply to the load 17 in order to charge the power storage unit 23. And a control signal cont is transmitted to the charge / discharge circuit 21 so as to charge the power storage unit 23. In this way, charging of the power storage unit 23 is started.
[0044] 次に、蓄電部 23が満充電に至っていなければ(No)、制御は S25に戻り、制御回 路 25は満充電に至るまで待機する。満充電になれば (Yes)、制御回路 25は車両側 制御回路 27にスタータ 19の動作許可信号を送信する(S27)。これにより、車両始動 時にスタータ 19が動作して主電源 15の電圧 Vbが低下しても、スタータ 19が動作し ている間は蓄電部 23から負荷 17に電力が供給される。そのため負荷 17は動作し続 けること力 Sでさる。 [0044] Next, if the power storage unit 23 has not reached full charge (No), the control returns to S25, and the control circuit 25 waits until full charge is reached. If the battery is fully charged (Yes), the control circuit 25 transmits an operation permission signal for the starter 19 to the vehicle-side control circuit 27 (S27). As a result, even if the starter 19 operates at the time of starting the vehicle and the voltage Vb of the main power supply 15 decreases, power is supplied from the power storage unit 23 to the load 17 while the starter 19 is operating. Therefore, load 17 can be kept operating by force S.
[0045] このように、車両が運転者を認識すれば、制御回路 25が蓄電部 23を満充電するよ ぅ充放電回路 21に指示する。すなわち、蓄電部 23は車両を使用しない時でも常に 既定保持電圧 Vkになるように充電されている。その上、運転者を認識する信号を前 記車両から受け取れば、制御回路 25は、運転者が車両に乗り込む前から蓄電部 23 を急速満充電できる。そのため、運転者がイダニシヨンスィッチ 13をオンにしてスター タ 19を動作させた時には、満充電の蓄電部 23から負荷 17へ電力供給ができる。そ の結果、蓄電部 23の電力不足が起こる可能性が極めて低減される。この回路構成で は放電時に従来のような DC— DCコンバータを使用していないので、その動作によ る主電源 15の損失が発生しない。  Thus, when the vehicle recognizes the driver, the control circuit 25 instructs the charge / discharge circuit 21 to fully charge the power storage unit 23. That is, the power storage unit 23 is charged so as to always have the predetermined holding voltage Vk even when the vehicle is not used. In addition, if a signal for recognizing the driver is received from the vehicle, the control circuit 25 can rapidly charge the power storage unit 23 before the driver gets into the vehicle. Therefore, when the driver turns on the idle switch 13 to operate the starter 19, electric power can be supplied from the fully charged power storage unit 23 to the load 17. As a result, the possibility of power shortage in the power storage unit 23 is extremely reduced. In this circuit configuration, a conventional DC-DC converter is not used during discharge, so that there is no loss of the main power supply 15 due to its operation.
[0046] なお、図 2には示していないが、車両始動時のスタータ 19の動作後は、蓄電部 23 を再度満充電にしておくことが好ましい。これは、次に述べるアイドリングストップ後の スタータ 19の動作時に負荷 17へ電力を供給するためである。また、運転者がイダ二 シヨンスィッチ 13をアクセサリモードにすれば、車両側制御回路 27がイダニシヨン信 号 IGによりアクセサリモードになったことを検出する。そして車両側制御回路 27は出 力信号 outで制御回路 25にイダニシヨンスィッチ 13がアクセサリモードであることを知 らせる。これにより、制御回路 25は負荷 17への電力供給をオンにするよう、充放電回 路 21に制御信号 contを送信する。その結果、負荷 17に電力が供給され、負荷 17は 動作を開始する。  [0046] Although not shown in FIG. 2, it is preferable that the power storage unit 23 is fully charged again after the starter 19 is operated at the time of starting the vehicle. This is to supply power to the load 17 during the operation of the starter 19 after the idling stop described below. Further, when the driver sets the idle switch 13 to the accessory mode, the vehicle-side control circuit 27 detects that the accessory mode has been set to the accessory mode IG. Then, the vehicle side control circuit 27 informs the control circuit 25 that the idance switch 13 is in the accessory mode by the output signal out. As a result, the control circuit 25 transmits a control signal cont to the charge / discharge circuit 21 so as to turn on the power supply to the load 17. As a result, power is supplied to the load 17, and the load 17 starts to operate.
[0047] 次に、車両使用時の動作について、図 3を用いて説明する。通常のエンジン動作 中は、制御回路 25が主電源 15の電力を負荷 17に供給するように充放電回路 21に 指示する(S31)。具体的には、充放電回路 21が主電源 15の電力を負荷 17に供給 するよう切り替えるための制御信号 contを充放電回路 21に送信する。次に、制御回 路 25は充放電回路 21に内蔵された電圧検出回路(図示せず)の出力と、既定限界 電圧 Vbmin (10. 5V)との比較回路の出力を監視する。なお図示していないがこの 比較回路は充放電回路 21に内蔵されている。もし電圧 Vbが既定限界電圧 Vbmin 以上であれば(No)、アイドリングストップ後のスタータ 19の動作が行われていないこ とになるので、制御は S33に戻って、制御回路 25はスタータ 19の動作判断を継続す Next, the operation when using the vehicle will be described with reference to FIG. During normal engine operation, the control circuit 25 is connected to the charge / discharge circuit 21 so that the power of the main power supply 15 is supplied to the load 17. Instruct (S31). Specifically, the control signal cont for switching the charging / discharging circuit 21 to supply the power of the main power supply 15 to the load 17 is transmitted to the charging / discharging circuit 21. Next, the control circuit 25 monitors the output of the voltage detection circuit (not shown) built in the charge / discharge circuit 21 and the output of the comparison circuit between the predetermined limit voltage Vbmin (10.5 V). Although not shown, this comparison circuit is built in the charge / discharge circuit 21. If the voltage Vb is equal to or higher than the predetermined limit voltage Vbmin (No), it means that the starter 19 is not operated after the idling stop, so the control returns to S33 and the control circuit 25 operates the starter 19 Continue judgment
[0048] 一方、電圧 Vbが既定限界電圧 Vbmin未満になれば (Yes)、制御回路 25はスター タ 19が動作していると判断し、蓄電部 23の電力を負荷 17に供給するように充放電回 路 21に指示する(S35)。具体的には、制御回路 25は、蓄電部 23の電力を負荷 17 に供給するよう切り替えるための制御信号 contを充放電回路 21に送信する。これに より、スタータ 19の動作により主電源 15の電圧 Vbが落ち込んでいる間、蓄電部 23か ら負荷 17に電力が供給され続ける。 [0048] On the other hand, if the voltage Vb becomes less than the predetermined limit voltage Vbmin (Yes), the control circuit 25 determines that the starter 19 is operating and charges the power storage unit 23 to supply the load 17 with power. The discharge circuit 21 is instructed (S35). Specifically, the control circuit 25 transmits to the charge / discharge circuit 21 a control signal cont for switching to supply the power of the power storage unit 23 to the load 17. As a result, while the voltage Vb of the main power supply 15 drops due to the operation of the starter 19, power is continuously supplied from the power storage unit 23 to the load 17.
[0049] 次に、制御回路 25は主電源 15の電圧 Vbを取り込み、既定限界電圧 Vbminと比 較する(S37)。電圧 Vbが既定限界電圧 Vbmin未満であれば(No)、制御は S37に 戻り、制御回路 25は電圧 Vbが既定限界電圧 Vbmin以上に回復するまで待機する。 電圧 Vbが既定限界電圧 Vbmin以上になれば (Yes)、制御回路 25は充放電回路 2 1を制御して、主電源 15の電力を負荷 17に供給させる(S39)。この動作は前述の S 31の動作と同じである。次に、制御回路 25は蓄電部 23を満充電にするよう充放電 回路 21に指示する(S41)。これにより、次のアイドリングストップに備える。このような 動作を繰り返すことで、アイドリングストップ後の主電源 15の電圧降下が蓄電部 23の 電力で補われ、負荷 17が連続して駆動される。  [0049] Next, the control circuit 25 takes in the voltage Vb of the main power supply 15 and compares it with the predetermined limit voltage Vbmin (S37). If the voltage Vb is less than the predetermined limit voltage Vbmin (No), the control returns to S37 and the control circuit 25 waits until the voltage Vb recovers to the predetermined limit voltage Vbmin or more. If the voltage Vb is equal to or higher than the predetermined limit voltage Vbmin (Yes), the control circuit 25 controls the charge / discharge circuit 21 to supply the power of the main power supply 15 to the load 17 (S39). This operation is the same as the operation of S31 described above. Next, the control circuit 25 instructs the charge / discharge circuit 21 to fully charge the power storage unit 23 (S41). This prepares for the next idling stop. By repeating such an operation, the voltage drop of the main power supply 15 after idling stop is compensated by the electric power of the power storage unit 23, and the load 17 is continuously driven.
[0050] すなわち、制御回路 25は蓄電部 23を満充電にした状態で、主電源 15の電圧 Vb が既定限界電圧 Vbminを下回ると、充放電回路 21を制御して蓄電部 23の電力を負 荷 17に供給させる。そして主電源 15の電圧 Vbが既定限界電圧 Vbmin以上に戻る と、制御回路 25は充放電回路 21を制御して主電源 15の電力を負荷 17に供給させ るとともに、蓄電部 23を満充電にさせる動作を繰り返す。 [0051] 以上の構成、動作により、制御回路 25は車両非使用時にも蓄電部 23にある程度 電力を蓄えておき、運転者が認証されれば蓄電部 23を満充電にする。そのため、早 期に蓄電部 23が満充電になるとともに、 DC— DCコンバータがない構成なので主電 源 15の損失を低減することができる。 That is, when the voltage Vb of the main power supply 15 falls below the predetermined limit voltage Vbmin in a state where the power storage unit 23 is fully charged, the control circuit 25 controls the charge / discharge circuit 21 to negatively charge the power of the power storage unit 23. Supply to load 17. When the voltage Vb of the main power supply 15 returns to the predetermined limit voltage Vbmin or more, the control circuit 25 controls the charge / discharge circuit 21 to supply the power of the main power supply 15 to the load 17 and to fully charge the power storage unit 23. Repeat the operation. [0051] With the above configuration and operation, the control circuit 25 stores power to some extent in the power storage unit 23 even when the vehicle is not in use, and fully charges the power storage unit 23 when the driver is authenticated. Therefore, the power storage unit 23 is fully charged early, and the loss of the main power supply 15 can be reduced because there is no DC-DC converter.
[0052] 本実施の形態では運転者を認証する方法として、運転者によるキー 31の車両開錠 操作や、運転者の保持するキー 31の車両への接近検知を挙げている。これ以外に、 例えばアルコール検知器が含まれる運転者認証を利用してもよい。この場合、運転 者がアルコール検知器に息を吹きかける等の動作を行うことにより車両が運転者の 飲酒を判断し、飲酒していなければ車両起動を許可する。このような動作を開始した 時点から車両側制御回路 27が制御回路 25に蓄電部 23への充電を開始させる。し たがって、アルコール検知を開始し、車両の起動が許可されるまでの間に制御回路 2 5は充放電回路 21により蓄電部 23を満充電にすることができる。このように運転者認 証部を構成してもよい。  In the present embodiment, as a method for authenticating the driver, the vehicle unlocking operation of the key 31 by the driver and the approach detection of the key 31 held by the driver to the vehicle are cited. In addition to this, for example, driver authentication including an alcohol detector may be used. In this case, when the driver performs an action such as blowing on the alcohol detector, the vehicle determines that the driver has drunk, and if it is not drunk, the vehicle is allowed to start. The vehicle side control circuit 27 causes the control circuit 25 to start charging the power storage unit 23 from the time when such an operation is started. Therefore, the control circuit 25 can fully charge the power storage unit 23 by the charge / discharge circuit 21 between the start of alcohol detection and the start of the vehicle is permitted. In this way, the driver authentication unit may be configured.
[0053] また、運転者認識方法として、運転者の顔面画像認識、指紋認識、静脈認識、虹 彩認識等の他の認識方法を適用してもよい。この場合も、これらの運転者認識方法 が動作開始直後から蓄電部 23を充電することで、認証している間に満充電にするこ と力 Sできる。また、本実施の形態で述べた運転者認識方法はそれぞれ単独で用いて もよいし、任意に組み合わせて用いてもよい。  [0053] Further, as the driver recognition method, other recognition methods such as driver face image recognition, fingerprint recognition, vein recognition, iris recognition, and the like may be applied. Also in this case, these driver recognition methods can charge the power storage unit 23 immediately after the operation starts, so that the power can be fully charged during the authentication. In addition, the driver recognition methods described in this embodiment may be used alone or in any combination.
[0054] また、本実施の形態ではアイドリングストップ車について説明した力 これは一般の 車両における起動時に適用してもよい。この場合、車両使用中は蓄電部 23の電力を 使用する必要がないので、満充電状態にしておかなくてもよい。したがって、制御回 路 25は蓄電部 23を既定保持電圧 Vkに至るまで放電させる。その後、制御回路 25 は蓄電部 23の電圧 Vcが既定下限電圧 Vcminに至れば、電圧 Vcが既定保持電圧 Vkになるまで充電する動作を繰り返させる。これにより、蓄電部 23が満充電状態に ある時間を短くすることができるので、蓄電部 23の寿命を延ばすことができる。  [0054] Further, in the present embodiment, the force described for the idling stop vehicle may be applied at the time of starting in a general vehicle. In this case, since it is not necessary to use the electric power stored in the power storage unit 23 while the vehicle is in use, it may not be fully charged. Therefore, the control circuit 25 discharges the power storage unit 23 until the predetermined holding voltage Vk is reached. Thereafter, when voltage Vc of power storage unit 23 reaches predetermined lower limit voltage Vcmin, control circuit 25 repeats the operation of charging until voltage Vc reaches predetermined holding voltage Vk. As a result, the time during which the power storage unit 23 is in a fully charged state can be shortened, so that the life of the power storage unit 23 can be extended.
[0055] また、本実施の形態では蓄電素子に電気二重層キャパシタを用いた力 これ以外 に電気化学キャパシタ等の急速充放電が可能なキャパシタを用いてもよい。  Further, in the present embodiment, a force using an electric double layer capacitor as a power storage element, other than this, a capacitor capable of rapid charge / discharge such as an electrochemical capacitor may be used.
[0056] (実施の形態 2) 図 4は、本発明の実施の形態 2における車両用蓄電装置のブロック回路図である。 本実施の形態における車両用蓄電装置は、実施の形態 1で説明を省略したバランス 回路の好ましい機能を中心に説明する。それ以外の車両を含む全体構成は実施の 形態 1と同様である。 [Embodiment 2] FIG. 4 is a block circuit diagram of the vehicle power storage device according to Embodiment 2 of the present invention. The power storage device for a vehicle in the present embodiment will be described focusing on a preferable function of the balance circuit, which is not described in the first embodiment. The overall configuration including other vehicles is the same as that of the first embodiment.
[0057] 電力を充放電する蓄電素子 101は電気二重層キャパシタからなり、これを複数個 直列に接続して蓄電素子ユニット 102を構成している。蓄電素子 101にはそれぞれ 並列にバランス回路 103が接続されている。バランス回路 103はスイッチング素子 10 5であるトランジスタと抵抗器 107とを直列に接続して構成されている。このため、スィ ツチング素子 105をオンにすると蓄電素子 101の両端に抵抗器 107が接続され、抵 抗器 107による放電の結果、蓄電素子 101の電圧が低下する。すなわちスィッチン グ素子 105のオンオフ制御により蓄電素子 101の電圧を下げるように制御することが できる。  The storage element 101 that charges and discharges electric power is an electric double layer capacitor, and a plurality of these are connected in series to form the storage element unit 102. A balance circuit 103 is connected to each of the power storage elements 101 in parallel. The balance circuit 103 is configured by connecting a transistor as the switching element 105 and a resistor 107 in series. For this reason, when the switching element 105 is turned on, the resistor 107 is connected to both ends of the power storage element 101. As a result of the discharge by the resistor 107, the voltage of the power storage element 101 decreases. That is, the voltage of the power storage element 101 can be controlled to be lowered by the on / off control of the switching element 105.
[0058] バランス回路 103には、その一端の電圧 V;!〜 Vn (nは蓄電素子 101の数 + 1)を 選択する電圧モニタ用選択スィッチ(以下、スィッチ) 109が接続されている。スィッチ 109は例えばマルチプレクサで構成されている。スィッチ 109は後述する制御回路 1 13に接続されている。スィッチ 109は、制御回路 113からどの電圧 V;!〜 Vnを選択 するかを示す電圧選択信号 SLVを受ける。スィッチ 109は電圧選択信号 SLVに基 づき、電圧 V;!〜 Vnのいずれかを選択する。さらに、スィッチ 109は電源電圧(例え ば DC5V)の供給が断たれると、電圧 V;!〜 Vnのいずれも選択しない状態となるフロ 一ティング構成を有する。これにより、停止時にスィッチ 109の電源がオフになると、 各バランス回路 103の両端は全てスィッチ 109で絶縁される。すなわち、スィッチ 10 9はオフになると各バランス回路 103を開く。そのため、スィッチ 109を経由して蓄電 素子 101が放電されることが防止される。  The balance circuit 103 is connected to a voltage monitor selection switch (hereinafter referred to as “switch”) 109 for selecting a voltage V;! To Vn (n is the number of the storage elements 101 + 1) at one end thereof. The switch 109 is constituted by a multiplexer, for example. The switch 109 is connected to a control circuit 113 which will be described later. The switch 109 receives from the control circuit 113 a voltage selection signal SLV indicating which voltage V ;! to Vn is to be selected. Switch 109 selects voltage V;! To Vn based on voltage selection signal SLV. Further, the switch 109 has a floating configuration in which any one of the voltages V;! To Vn is not selected when the supply of the power supply voltage (for example, DC5V) is cut off. Thus, when the power source of the switch 109 is turned off at the time of stop, both ends of each balance circuit 103 are all insulated by the switch 109. That is, when the switch 109 is turned off, each balance circuit 103 is opened. Therefore, the storage element 101 is prevented from being discharged via the switch 109.
[0059] それぞれのスイッチング素子 105のオンオフ制御端子であるトランジスタのベース 端子にはバランス回路用選択スィッチ(以下、スィッチ) 111が接続されている。スイツ チ 111も例えばマルチプレクサで構成されて!/、る。スィッチ 111も制御回路 113に接 続されている。スィッチ 111は、制御回路 113からどのスイッチング素子 105を選択 する力、を示すスイッチング素子選択信号 SLBを受ける。スィッチ 111はスイッチング 素子選択信号 SLBに基づき任意のスイッチング素子 105を選択する。そして選択さ れたスイッチング素子 105に制御回路 113で作られたオン信号 Lo 1を伝達する。これ により制御回路 113は、蓄電素子 101の電圧バランス状態に応じて任意のバランス 回路 103を動作させ、個別に各蓄電素子 101の電圧をバランスさせることができる。 蓄電素子ユニット 102、バランス回路 103、スィッチ 109、スィッチ 111は、実施の形 態 1の蓄電部 23に相当する。 A balance circuit selection switch (hereinafter referred to as a switch) 111 is connected to the base terminal of the transistor, which is an on / off control terminal of each switching element 105. The switch 111 is also composed of, for example, a multiplexer! Switch 111 is also connected to control circuit 113. The switch 111 receives from the control circuit 113 a switching element selection signal SLB indicating which switching element 105 is selected. Switch 111 is switching An arbitrary switching element 105 is selected based on the element selection signal SLB. Then, the ON signal Lo 1 generated by the control circuit 113 is transmitted to the selected switching element 105. Thus, the control circuit 113 can operate an arbitrary balance circuit 103 according to the voltage balance state of the power storage elements 101, and can individually balance the voltages of the power storage elements 101. Power storage element unit 102, balance circuit 103, switch 109, and switch 111 correspond to power storage unit 23 of the first embodiment.
[0060] 制御回路 113は、マイクロコンピュータ、及びオン信号 Lol等の各種信号を生成し たり送受信を行ったりする周辺回路(レ、ずれも図示せず)で構成されて!/、る。前述の ように制御回路 113はスィッチ 109へ電圧選択信号 SLVを、スィッチ 111ヘスイッチ ング素子選択信号 SLB、オン信号 Lolを送信する。また制御回路 113は、スィッチ 1 09が選択した電圧 (V;!〜 Vnの!/、ずれか)を 2個の抵抗器 115, 117で抵抗分割した 際の中点電圧を電圧信号 Vinとして受信する。したがって、電圧信号 Vinは電圧 Vi ( l≤i≤n)に比例した値となる。制御回路 113には他にも送受信のための端子が設け られている力 S、それらについては順次説明する。  [0060] The control circuit 113 includes a microcomputer and peripheral circuits (not shown) that generate and transmit / receive various signals such as an ON signal Lol. As described above, the control circuit 113 transmits the voltage selection signal SLV to the switch 109, and the switching element selection signal SLB and the ON signal Lol to the switch 111. In addition, the control circuit 113 receives the midpoint voltage when the voltage selected by the switch 109 (V;! To Vn! /, Deviation) is divided by the two resistors 115 and 117 as the voltage signal Vin. To do. Therefore, the voltage signal Vin has a value proportional to the voltage Vi (l≤i≤n). The control circuit 113 has other terminals for transmitting and receiving force S, which will be described in order.
[0061] スィッチ 109、 111、制御回路 113の駆動電力(例えば DC5V)は、スィッチ素子 11 9がオン動作を行うことにより供給される。スィッチ素子 119のオンオフ動作は後述す る、蓄電装置 157の外部からの起動信号 Wake、または制御回路 113の電力制御信 号 Loによって制御される。  The driving power (for example, DC5V) of the switches 109 and 111 and the control circuit 113 is supplied when the switch element 119 is turned on. The on / off operation of the switch element 119 is controlled by an activation signal Wake from the outside of the power storage device 157 or a power control signal Lo of the control circuit 113, which will be described later.
[0062] スィッチ素子 119は例えば Pチャネル MOSFETから構成されている。そのソース端 子 Sは蓄電素子 101の最高電圧 VIに接続されている。さらに、ソース端子 Sとゲート 端子 Gとの間には第 1抵抗器 121が接続されている。また、ゲート端子 Gは第 2抵抗 器 123を介して制御回路 113に接続されている。一方、ドレイン端子 Dには逆流防止 用のダイオード 125を介して一定電圧(DC5V)を生成するレギユレータ 127が接続 されている。これにより、電圧 VIから DC5Vの定電圧が得られ、スィッチ 109、 111、 制御回路 113の駆動電圧入力端子 129に供給される。すなわち、 DC5Vの電圧供 給はスィッチ素子 119のオンオフにより制御される。  The switch element 119 is composed of, for example, a P-channel MOSFET. The source terminal S is connected to the maximum voltage VI of the storage element 101. Further, the first resistor 121 is connected between the source terminal S and the gate terminal G. The gate terminal G is connected to the control circuit 113 through the second resistor 123. On the other hand, a regulator 127 for generating a constant voltage (DC5V) is connected to the drain terminal D via a diode 125 for preventing backflow. As a result, a constant voltage of 5 VDC is obtained from the voltage VI and supplied to the switches 109 and 111 and the drive voltage input terminal 129 of the control circuit 113. That is, the DC5V voltage supply is controlled by turning on and off the switch element 119.
[0063] 制御回路 113と第 2抵抗器 123の接続点には起動用絶縁型信号伝達部(以下、伝 達部) 131が接続されている。伝達部 131は例えばフォト力ブラで構成され、伝達部 1 31に含まれるフォトトランジスタ 133のコレクタ側に制御回路 113と第 2抵抗器 123と の接続点が接続されている。また、フォトトランジスタ 133のェミッタ側はグランドに接 続されている。 [0063] An activation isolated signal transmission unit (hereinafter referred to as a transmission unit) 131 is connected to a connection point between the control circuit 113 and the second resistor 123. The transmission unit 131 is configured by a photo power bra, for example, and the transmission unit 1 A connection point between the control circuit 113 and the second resistor 123 is connected to the collector side of the phototransistor 133 included in 31. The emitter side of the phototransistor 133 is connected to the ground.
[0064] 一方、伝達部 131の発光ダイオード 135のアノード側には外部制御回路 137が接 続されている。外部制御回路 137は制御回路 113と同様にマイクロコンピュータと周 辺回路から構成され、蓄電素子ユニット 102の充放電制御等を含む車両制御に用い られる。外部制御回路 137は発光ダイオード 135へ起動信号 Wakeを送信する。な お、発光ダイォード 135の力ソード側は抵抗器 139を介してグランドに接続されて!/ヽ  On the other hand, an external control circuit 137 is connected to the anode side of the light emitting diode 135 of the transmission unit 131. Similar to the control circuit 113, the external control circuit 137 includes a microcomputer and a peripheral circuit, and is used for vehicle control including charge / discharge control of the power storage element unit 102 and the like. The external control circuit 137 transmits a start signal Wake to the light emitting diode 135. The power sword side of light emitting diode 135 is connected to ground via resistor 139! / ヽ
[0065] 外部制御回路 137は制御回路 113と同様に DC5Vの定電圧で駆動する。この電 源は車両に搭載された低電圧系(例えば DC 12 V)のバッテリ 141の出力電圧をレギ ユレータ 142で DC5Vに変換することで供給されている。したがって、外部制御回路 137は制御回路 113とは独立した電源から電力を得ている。なお、バッテリ 141には ノ ッテリ用イダニシヨンスィッチ 143を介して低電圧負荷 144が接続されている。バッ テリ用イダニシヨンスィッチ 143はイダニシヨンのオンオフ状態を示すイダニシヨン信号 IGを送信する機能を有する。図 4に示すように、バッテリ用イダニシヨンスィッチ 143 は外部制御回路 137と後述する主電源用イダニシヨンスィッチ 161にイダニシヨン信 号 IGを送信する。 The external control circuit 137 is driven at a constant voltage of DC5V, like the control circuit 113. This power is supplied by converting the output voltage of a battery 141 of a low voltage system (for example, DC 12 V) mounted on the vehicle to DC 5 V by a regulator 142. Therefore, the external control circuit 137 obtains power from a power source independent of the control circuit 113. Note that a low voltage load 144 is connected to the battery 141 via a notary idling switch 143. The battery change-over switch 143 has a function of transmitting an turn-on signal IG indicating the turn-on / off state of the turn-on. As shown in FIG. 4, the battery innovation switch 143 transmits an innovation signal IG to an external control circuit 137 and a main power supply innovation switch 161 described later.
[0066] 外部制御回路 137と制御回路 113は相互にデータの送受信を行っている。まず、 制御回路 113から外部制御回路 137への送信は、データ送信用絶縁型信号伝達部 (以下、伝達部) 145により行われている。伝達部 145の構成は伝達部 131の構成と 同じであるが、フォトトランジスタ 147と発光ダイオード 149の位置が反転している。  [0066] The external control circuit 137 and the control circuit 113 exchange data with each other. First, transmission from the control circuit 113 to the external control circuit 137 is performed by an isolated signal transmission unit for data transmission (hereinafter, transmission unit) 145. The configuration of the transmission unit 145 is the same as the configuration of the transmission unit 131, but the positions of the phototransistor 147 and the light emitting diode 149 are reversed.
[0067] 具体的なデータ送信方法は次の通りである。まず、制御回路 113から蓄電素子 10 1の電圧データ等をデータ信号 Doutとして発光ダイオード 149に送信する。これを 受け、フォトトランジスタ 147がデータ信号に応じてオンオフすることで電気信号に戻 し、データ信号 Dinとして外部制御回路 137に入力される。  [0067] A specific data transmission method is as follows. First, voltage data and the like of the storage element 101 are transmitted from the control circuit 113 to the light emitting diode 149 as a data signal Dout. In response to this, the phototransistor 147 is turned on / off according to the data signal to return to the electric signal, and is input to the external control circuit 137 as the data signal Din.
[0068] 同様に、制御回路 113への外部制御回路 137からの受信は、データ受信用絶縁 型信号伝達部(以下、伝達部) 151により行われている。伝達部 151の構成は伝達部 131の構成と同じである。 Similarly, reception from the external control circuit 137 to the control circuit 113 is performed by an isolated signal transmission unit for data reception (hereinafter, transmission unit) 151. The structure of the transmitter 151 is the transmitter The configuration is the same as 131.
[0069] 具体的なデータ受信方法は次の通りである。まず、外部制御回路 137が、蓄電素 子 101の電圧データ送信要求等のデータをデータ信号 Doutとして発光ダイオード 1 53に送信する。これを受け、フォトトランジスタ 155がデータ信号に応じてオンオフす ることで電気信号に戻し、データ信号 Dinとして制御回路 113に入力される。このよう な制御により、制御回路 113と外部制御回路 137の送受信を行っている。すなわち、 制御回路 113、スィッチ素子 119、フォトトランジスタ 133 151、発光ダイオード 149 などは実施の形態 1における制御回路 25に対応する。また外部制御回路 137、発光 ダイオード 135 153、フォトトランジスタ 147などは車両側制御回路 27に対応する。  [0069] A specific data receiving method is as follows. First, the external control circuit 137 transmits data such as a voltage data transmission request of the storage element 101 to the light emitting diode 153 as a data signal Dout. In response to this, the phototransistor 155 is turned on / off according to the data signal to return to the electric signal, and is input to the control circuit 113 as the data signal Din. Through such control, transmission and reception between the control circuit 113 and the external control circuit 137 are performed. That is, the control circuit 113, the switch element 119, the phototransistor 133 151, the light emitting diode 149, and the like correspond to the control circuit 25 in the first embodiment. The external control circuit 137, the light emitting diode 135 153, the phototransistor 147, and the like correspond to the vehicle side control circuit 27.
[0070] 以上説明した構成部品の内、図 4の太点線で囲まれた部品により車両用蓄電装置  [0070] Among the component parts described above, the vehicle power storage device includes the parts surrounded by the thick dotted line in FIG.
(以下、蓄電装置) 157が構成される。蓄電装置 157には、蓄電素子 101への充電電 力源である主電源 15が、主電源用イダニシヨンスィッチ 161、充放電回路 163を介し て接続されている。充放電回路 163は蓄電素子 101を充放電するための回路である  (Hereafter, power storage device) 157 is configured. A main power source 15 that is a power source for charging the power storage element 101 is connected to the power storage device 157 via a main power generation switch 161 and a charge / discharge circuit 163. The charge / discharge circuit 163 is a circuit for charging / discharging the storage element 101.
[0071] 主電源 15は高電圧系の二次電池(例えばニッケル水素電池やリチウムイオン電池 )で構成されている。したがって、主電源用イダニシヨンスィッチ 161の出力には、例 えばスタータゃ、ハイブリッド自動車の車両駆動用モーター等の高電圧系の負荷 16 5も接続されている。また負荷 165は実施の形態 1におけるスタータ 19と負荷 17とに 相当する。 The main power supply 15 is composed of a high voltage secondary battery (for example, a nickel metal hydride battery or a lithium ion battery). Therefore, a high-voltage load 165 such as a starter or a vehicle driving motor of a hybrid vehicle is also connected to the output of the main power supply idler switch 161, for example. The load 165 corresponds to the starter 19 and the load 17 in the first embodiment.
[0072] 充放電回路 163は外部制御回路 137により制御されるので、充放電制御信号 cont を送信するための配線が両者間に接続されている。なお、実施の形態 1と同様に、外 部制御回路 137が制御回路 113を介して充放電回路 163を制御してもよい。  Since the charge / discharge circuit 163 is controlled by the external control circuit 137, wiring for transmitting the charge / discharge control signal cont is connected between the two. Note that as in the first embodiment, the external control circuit 137 may control the charge / discharge circuit 163 via the control circuit 113.
[0073] なお、充放電回路 163は停止時には入出力間が完全にオフになる。また、主電源 用ィグニシヨンスィッチ 161はバッテリ用ィグニシヨンスィッチ 143からのィグニシヨン信 号 IGに応じてオンオフ制御されるので、そのための配線が両者間に接続されている  Note that the charge / discharge circuit 163 is completely turned off between the input and the output when stopped. In addition, the main power ignition switch 161 is on / off controlled according to the ignition signal IG from the battery ignition switch 143, so that the wiring for that is connected between the two.
[0074] なお、蓄電装置 157のグランドは、それ以外の構成部品のグランドと独立している。 [0074] Note that the ground of power storage device 157 is independent of the ground of other components.
図 4では別のグランド記号を用いることでこのことを示している。これにより、伝達部 13 1、 145、 151の使用と相まって、蓄電装置 157は他の回路構成力も独立している。 その結果、例えば蓄電装置 157が故障した時に、極めて容易に良品の蓄電装置 15 7との交換が可能となる。 Figure 4 shows this by using a different ground symbol. As a result, the transmission unit 13 Combined with the use of 1, 145, 151, the power storage device 157 is independent of other circuit configuration capabilities. As a result, for example, when the power storage device 157 fails, it can be replaced with a non-defective power storage device 157 very easily.
[0075] さらに、本実施の形態では蓄電装置 157を 1つだけ設けた構成を示したが、負荷 1 65が必要とする電力仕様に応じて蓄電装置 157を複数個設け、 1つの外部制御回 路 137で制御してもよい。この場合、蓄電装置 157は他の回路構成力 独立している ので、極めて容易な構成で複数の蓄電装置 157を接続することができる。  Furthermore, in the present embodiment, a configuration in which only one power storage device 157 is provided is shown. However, a plurality of power storage devices 157 are provided according to the power specifications required by the load 165, and one external control circuit is provided. It may be controlled by the road 137. In this case, since the power storage device 157 is independent of other circuit configuration powers, a plurality of power storage devices 157 can be connected with an extremely simple configuration.
[0076] 次に、このような蓄電装置 157の動作について説明する。まず、車両を起動するた めに、運転者がバッテリ用イダニシヨンスィッチ 143をオンにする。これにより、低電圧 負荷 144に電力が供給されるとともに、主電源用イダニシヨンスィッチ 161もオンにな り、負荷 165に電力が供給される。そのため、例えばスタータが動作してエンジンを 駆動することにより車両が起動する。これと同時にバッテリ用イダニシヨンスィッチ 143 は外部制御回路 137にオン状態を示すイダニシヨン信号 IGを送信する。これにより、 外部制御回路 137は充放電制御信号 contを充放電回路 163に送信し、蓄電素子 1 01への充電を開始するよう指令する。 Next, the operation of such power storage device 157 will be described. First, in order to start the vehicle, the driver turns on the battery idle switch 143. Thus, power is supplied to the low voltage load 14 4, the main power source Lee mite Chillon switch 161 also Ri Do ON, power is supplied to the load 165. Therefore, for example, the starter operates to drive the engine to start the vehicle. At the same time, the battery innovation switch 143 sends an external signal IG indicating an ON state to the external control circuit 137. As a result, the external control circuit 137 transmits a charge / discharge control signal cont to the charge / discharge circuit 163, and commands to start charging the power storage element 101.
[0077] さらに、外部制御回路 137は蓄電装置 157を起動するために、起動信号 Wakeを 発光ダイオード 135に送信する。これにより、伝達部 131の発光ダイオード 135がォ  Furthermore, the external control circuit 137 transmits an activation signal Wake to the light emitting diode 135 in order to activate the power storage device 157. As a result, the light emitting diode 135 of the transmission unit 131 is
[0078] フォトトランジスタ 133がオンになるまでは、充放電回路 163の入出力間が完全にォ フのため、スィッチ素子 119のソース端子 Sには蓄電素子 101の最高電圧 VIが印加 されている。ソース端子 Sは第 1抵抗器 121を介してゲート端子 Gに接続されるととも に、ゲート端子 Gは第 2抵抗器 123を介して制御回路 113に接続されている。制御回 路 113が駆動して!/、な!/、時は、第 2抵抗器 123と制御回路 113との接続点が電気的 に浮いた状態になっている。したがって、ソース端子 Sとゲート端子 Gとが等電圧 VIと なるので、スィッチ素子 119はオフの状態である。 [0078] Until the phototransistor 133 is turned on, the input / output of the charge / discharge circuit 163 is completely turned off, so that the highest voltage VI of the storage element 101 is applied to the source terminal S of the switch element 119. . The source terminal S is connected to the gate terminal G via the first resistor 121, and the gate terminal G is connected to the control circuit 113 via the second resistor 123. When the control circuit 113 is driven! /,! /, The connection point between the second resistor 123 and the control circuit 113 is in an electrically floating state. Therefore, since the source terminal S and the gate terminal G have the equal voltage VI, the switch element 119 is in an off state.
[0079] この時にフォトトランジスタ 133がオンになると、第 2抵抗器 123と制御回路 113との 接続点はフォトトランジスタ 133を介してグランドに接続される。その結果、ソース端子 Sの電圧 VIに対しゲート端子 Gの電圧は第 1抵抗器 121と第 2抵抗器 123の抵抗値 に応じた電圧、すなわち電圧 VIより低い電圧になる。これにより、ゲート端子 Gにォ ン信号が入力されるので、スィッチ素子 119はオンになる。その結果、電圧 VIがダイ オード 125を介してレギユレータ 127に印加されるので、レギユレータ 127は一定電 圧(DC5V)を出力する。この電圧は制御回路 113、スィッチ 109、 111に供給され、 蓄電装置 157が起動する。これにより、制御回路 113はスィッチ素子 119を常時オン にして一定電圧を供給し続ける。そのため、第 2抵抗器 123と制御回路 113との接続 点の電圧がグランドレベルを維持するように、制御回路 113は電力制御信号 Loをグ ランドレベルにする。 When the phototransistor 133 is turned on at this time, the connection point between the second resistor 123 and the control circuit 113 is connected to the ground via the phototransistor 133. As a result, the voltage at the gate terminal G with respect to the voltage VI at the source terminal S is the resistance value of the first resistor 121 and the second resistor 123. The voltage is lower than the voltage VI. As a result, an ON signal is input to the gate terminal G, so that the switch element 119 is turned on. As a result, the voltage VI is applied to the regulator 127 via the diode 125, so that the regulator 127 outputs a constant voltage (DC5V). This voltage is supplied to control circuit 113 and switches 109 and 111, and power storage device 157 is activated. As a result, the control circuit 113 always keeps the switch element 119 on and continues to supply a constant voltage. Therefore, the control circuit 113 sets the power control signal Lo to the ground level so that the voltage at the connection point between the second resistor 123 and the control circuit 113 maintains the ground level.
[0080] その後、蓄電素子 101は充放電回路 163を介して主電源 15の電力で充電される。  Thereafter, the storage element 101 is charged with the electric power of the main power supply 15 via the charge / discharge circuit 163.
この際に外部制御回路 137は電圧データ送信要求信号 Doutを蓄電装置 157に送 信する。これに応じ、制御回路 113はスィッチ 109に電圧選択信号 SLVを送信する 。スィッチ 109は電圧選択信号 SLVで指定された電圧(VI〜 Vnの内の!/、ずれか)を 選択し、その電圧信号 Vinを制御回路 113が読み込む。このような動作を繰り返し、 制御回路 113は全ての電圧 V;!〜 Vnのデータを読み込む。全ての電圧データは制 御回路 113からデータ信号 Doutとして伝達部 145を介して外部制御回路 137に送 信される。外部制御回路 137は得られた電圧データから、満充電になるまで最適な 条件になるように充放電回路 163を制御しながら蓄電素子 101を充電し続ける。  At this time, the external control circuit 137 transmits a voltage data transmission request signal Dout to the power storage device 157. In response to this, the control circuit 113 transmits a voltage selection signal SLV to the switch 109. The switch 109 selects the voltage specified by the voltage selection signal SLV (! / Of VI to Vn), and the control circuit 113 reads the voltage signal Vin. By repeating such an operation, the control circuit 113 reads data of all voltages V ;! to Vn. All voltage data is transmitted from the control circuit 113 to the external control circuit 137 via the transmission unit 145 as a data signal Dout. The external control circuit 137 continues to charge the power storage element 101 while controlling the charge / discharge circuit 163 so as to satisfy the optimum condition from the obtained voltage data until the battery is fully charged.
[0081] 蓄電素子 101が満充電になれば、外部制御回路 137は充放電回路 163に充電を 停止する指令を出す。これにより、蓄電装置 157の起動が完了する。  When the power storage element 101 is fully charged, the external control circuit 137 issues a command to the charging / discharging circuit 163 to stop charging. Thereby, activation of power storage device 157 is completed.
[0082] 次に、負荷 165のうち大電流を消費するスタータなどが動作した場合について説明 する。この際、主電源 15は電圧降下を起こし、負荷 165のうちのスタータ以外に安定 した電圧で電力を供給できなくなる。そこで、電圧降下の分を補償するように蓄電素 子 101の電力が充放電回路 163を介して負荷 165に供給される。その結果、電圧降 下が発生しても負荷 165には安定した電圧を供給し続けることができる。  Next, a case where a starter that consumes a large current in the load 165 operates will be described. At this time, the main power supply 15 causes a voltage drop, and power cannot be supplied with a stable voltage other than the starter of the load 165. Therefore, the power of the storage element 101 is supplied to the load 165 via the charge / discharge circuit 163 so as to compensate for the voltage drop. As a result, a stable voltage can be continuously supplied to the load 165 even if a voltage drop occurs.
[0083] 大電流の消費が終了すると、主電源 15の電圧は復帰するので、その後、制御回路  [0083] When the consumption of the large current is completed, the voltage of the main power supply 15 is restored.
113は再度蓄電素子 101を満充電にして次の電圧降下の補償に備える。  113 prepares for the compensation of the next voltage drop by recharging the storage element 101 again.
[0084] このように、蓄電装置 157の動作中において充放電回路 163により蓄電素子ュニッ ト 102を充電する際に、制御回路 113はスィッチ 109、 111で蓄電素子 101の電圧バ ランスが一定になるように制御する。 In this way, when the storage element unit 102 is charged by the charge / discharge circuit 163 during the operation of the storage device 157, the control circuit 113 uses the switches 109 and 111 to switch the voltage of the storage element 101. The lance is controlled to be constant.
[0085] 次に、車両の使用を終了し、ノ ッテリ用イダニシヨンスィッチ 143をオフにした場合 について説明する。この際、主電源用イダニシヨンスィッチ 161もオフになるので、負 荷 165への電力供給が断たれるとともに、イダニシヨンのオフ状態を示すイダニシヨン 信号 IGが外部制御回路 137に送信される。なお、外部制御回路 137は停止時にお いても必要最低限の制御を行うために、バッテリ 141の電力がレギユレータ 142を通 して常に供給されている。これにより、外部制御回路 137は充放電制御信号 contを 送信して、充放電回路 163の入出力間を完全にオフにするよう指令を出す。その結 果、蓄電素子 101は主電源 15の配線系統とは独立した状態になる。したがって、蓄 電素子 101の不要放電が抑制される。  [0085] Next, a case will be described in which the use of the vehicle is ended and the notch idling switch 143 is turned off. At this time, since the main power generation switch 161 is also turned off, the power supply to the load 165 is cut off, and an idling signal IG indicating the idling off state is transmitted to the external control circuit 137. Note that the electric power of the battery 141 is always supplied through the regulator 142 in order to perform the minimum necessary control even when the external control circuit 137 is stopped. As a result, the external control circuit 137 transmits a charge / discharge control signal cont and issues a command to completely turn off the input / output of the charge / discharge circuit 163. As a result, the storage element 101 becomes independent from the wiring system of the main power supply 15. Therefore, unnecessary discharge of the storage element 101 is suppressed.
[0086] この時点では、制御回路 113は蓄電素子 101の電力によりまだ駆動し続けている ので、制御回路 113を停止させるために制御回路 113は第 2抵抗器 123と制御回路 113の接続点を電気的に浮かせる。その結果、前述のようにスィッチ素子 119のソー ス電圧とゲート電圧が等しくなるので、スィッチ素子 119がオフになり、制御回路 113 、スィッチ 109、 111カ全てオフになる。  [0086] At this time, since the control circuit 113 is still driven by the electric power of the storage element 101, the control circuit 113 sets the connection point between the second resistor 123 and the control circuit 113 in order to stop the control circuit 113. Float electrically. As a result, since the source voltage and the gate voltage of the switch element 119 become equal as described above, the switch element 119 is turned off, and the control circuit 113, the switches 109 and 111 are all turned off.
[0087] またスィッチ 109はフローティング構成であるので、電圧 V;!〜 Vnのいずれも選択し ない。さらに、伝達部 131、 145、 151はいずれも外部制御回路 137の配線系統と直 接接続されていない。これらのこと力、ら、蓄電素子 101は電気的に浮いた状態になる ので、不要に電力を消費しない。  Since switch 109 has a floating configuration, none of voltages V;! To Vn is selected. Further, none of the transmission units 131, 145, 151 is directly connected to the wiring system of the external control circuit 137. Because of these factors, the power storage element 101 is in an electrically floating state, so that it does not consume power unnecessarily.
[0088] この状態で車両を放置すると、蓄電素子 101に接続された回路からの放電は極め て抑制されているものの、蓄電素子 101の内部抵抗に起因した自己放電が起こる。こ れにより、蓄電素子 101の両端電圧は徐々に低下していく。この時、蓄電素子 101の 内部抵抗バラツキにより電圧低下速度に差が発生し、蓄電素子 101の両端電圧値に バラツキが発生する。そこで、バラツキを低減するために、以下の電圧バランス動作 を既定条件毎 (例えば 1日 1回毎など)に自動的に行うことが好ましい。  If the vehicle is left in this state, discharge from the circuit connected to power storage element 101 is extremely suppressed, but self-discharge due to the internal resistance of power storage element 101 occurs. As a result, the voltage across the storage element 101 gradually decreases. At this time, a difference occurs in the voltage drop speed due to the internal resistance variation of the power storage element 101, and the voltage value across the power storage element 101 varies. Therefore, in order to reduce variation, it is preferable to automatically perform the following voltage balance operation for each predetermined condition (for example, once a day).
[0089] 外部制御回路 137は常に動作しているので、外部制御回路 137が既定時間の計 測を行う。既定時間が経過すると、外部制御回路 137は起動信号 Wakeを発する。こ れにより、制御回路 113は起動信号 Wakeを受信し、前述した蓄電装置 157の起動 時と同じ動作を行うことにより、スィッチ素子 119がオンになる。その結果、蓄電素子 1 01の電力がレギユレータ 127により一定電圧(DC5V)に安定化され、蓄電装置 157 が起動する。 Since the external control circuit 137 is always operating, the external control circuit 137 measures a predetermined time. When the predetermined time elapses, the external control circuit 137 issues a start signal Wake. As a result, the control circuit 113 receives the activation signal Wake and activates the power storage device 157 described above. By performing the same operation as that at the time, the switch element 119 is turned on. As a result, the electric power of power storage element 101 is stabilized at a constant voltage (DC5V) by regulator 127, and power storage device 157 is activated.
[0090] 次に、制御回路 113はスィッチ 109を制御して電圧 V;!〜 Vnを検出する。その方法 も前述の蓄電装置 157の起動時と同じである。制御回路 113は得られた電圧データ 力、ら各蓄電素子 101の両端電圧を求め、スィッチ 111を制御して両端電圧が高い蓄 電素子 101のバランス回路 103を動作させる。具体的には、まず制御回路 113はス イッチ 111で対象となる蓄電素子 101のスイッチング素子 105を選択するためのスィ ツチ手段選択信号 SLBを送信する。これにより、スィッチ 111は選択されたスィッチン グ素子 105にスイッチング素子オン信号 Tri (l≤i≤n— 1)を送信する。その結果、選 択されたスイッチング素子 105がオンになり、抵抗器 107を通して対応する蓄電素子 101の電力が放電され電圧が低下する。  Next, the control circuit 113 controls the switch 109 to detect voltages V ;! to Vn. This method is also the same as that at the time of starting the power storage device 157 described above. The control circuit 113 obtains the voltage data power obtained and the voltage across each storage element 101, and controls the switch 111 to operate the balance circuit 103 of the storage element 101 having a high voltage across both ends. Specifically, first, the control circuit 113 transmits a switch means selection signal SLB for selecting the switching element 105 of the target storage element 101 by the switch 111. As a result, the switch 111 transmits a switching element ON signal Tri (l≤i≤n-1) to the selected switching element 105. As a result, the selected switching element 105 is turned on, the power of the corresponding storage element 101 is discharged through the resistor 107, and the voltage decreases.
[0091] このような動作を繰り返し、全ての蓄電素子 101の両端電圧が等しくなれば電圧バ ランスが一定となるので、制御回路 113は電圧バランス動作を完了する。この時も前 述の車両使用終了時と同様に、制御回路 113が第 2抵抗器 123との接続点を電気 的に浮かすことでスィッチ素子 119をオフにする。これにより、蓄電装置 157の動作を 停止し、停止時と同じ状態になる。  [0091] Such an operation is repeated, and the voltage balance becomes constant when the voltages across all the power storage elements 101 become equal. Therefore, the control circuit 113 completes the voltage balancing operation. At this time, as in the case of the end of use of the vehicle, the control circuit 113 turns off the switch element 119 by electrically floating the connection point with the second resistor 123. As a result, the operation of power storage device 157 is stopped, and the state is the same as when stopped.
[0092] このようにして間欠的に蓄電素子 101の電圧バランスが一定になるので、車両の起 動時に電圧バランスが崩れた状態で充電することによる蓄電素子 101への過電圧の 可能性が低減される。その結果、蓄電装置 157の信頼性が向上する。  [0092] Since the voltage balance of power storage element 101 is intermittently constant in this way, the possibility of overvoltage to power storage element 101 due to charging in a state where the voltage balance is lost when the vehicle is started is reduced. The As a result, the reliability of the power storage device 157 is improved.
[0093] なお、電圧検出動作により蓄電素子 101が過放電になれば、制御回路 113は伝達 部 145を介して過放電信号を外部制御回路 137に送信する。同時に、蓄電素子 10 1の寿命が短くなるのを避けるため、制御回路 113は電圧バランス動作を停止する。 外部制御回路 137は過放電信号を受信することにより、以後の既定時間毎の起動信 号 Wakeを送信せず、車両起動時に過放電であることを運転者に警告する。これによ り信頼性が向上する。  Note that if the storage element 101 is overdischarged by the voltage detection operation, the control circuit 113 transmits an overdischarge signal to the external control circuit 137 via the transmission unit 145. At the same time, the control circuit 113 stops the voltage balancing operation to avoid shortening the life of the power storage element 101. By receiving the overdischarge signal, the external control circuit 137 does not transmit a start signal Wake for each predetermined time thereafter, and warns the driver that the vehicle is overdischarged when the vehicle is started. This improves reliability.
[0094] 以上の構成、動作により、停止時の蓄電素子 101の不要放電が極力抑制される。  [0094] With the above configuration and operation, unnecessary discharge of power storage element 101 at the time of stop is suppressed as much as possible.
また自動的に間欠的な電圧モニタ動作、及び電圧バランス動作が行われることにより 、過電圧や過放電の可能性が低下し、信頼性の高い蓄電装置 157が実現できる。 In addition, automatic intermittent voltage monitoring and voltage balancing operations are performed. Thus, the possibility of overvoltage and overdischarge is reduced, and a highly reliable power storage device 157 can be realized.
[0095] (実施の形態 3) [0095] (Embodiment 3)
図 5は、本発明の実施の形態 3における車両用蓄電装置のブロック回路図である。 本実施の形態による車両用蓄電装置 (以下、蓄電装置) 157Aは、以下の点を除き 実施の形態 2による車両用蓄電装置 157と同様である。したがって、図 4と同じ構成 要素には同じ番号を付して詳細な説明は省略する。  FIG. 5 is a block circuit diagram of the vehicle power storage device according to Embodiment 3 of the present invention. A vehicle power storage device (hereinafter referred to as power storage device) 157A according to the present embodiment is the same as vehicle power storage device 157 according to the second embodiment, except for the following points. Therefore, the same components as those in FIG.
[0096] 1)制御回路 113Aの駆動電圧入力端子 129に、蓄電素子ユニット 102とは別個に 設けられた蓄電部品 173が接続されている。 1) A power storage component 173 provided separately from the power storage element unit 102 is connected to the drive voltage input terminal 129 of the control circuit 113A.
[0097] 2)蓄電部品 173の電力により、制御回路 113Aは停止時に省電力状態を維持する[0097] 2) The control circuit 113A maintains the power saving state when stopped by the power of the power storage component 173.
。なお、蓄電部品 173は制御回路 113Aが省電力状態を例えば約 1ヶ月維持できる 容量を有する。 . The power storage component 173 has a capacity that allows the control circuit 113A to maintain a power saving state, for example, for about one month.
[0098] 3)それに伴い、外部制御回路 137から発せられた起動信号 Wakeが制御回路 113 Aの起動端子 175に伝達される。そのために、フォトトランジスタ 133のコレクタ端子 力 Sレギユレータ 127の出力に接続されている。またフォトトランジスタ 133のェミッタ端 子に抵抗器 177が接続されている。さらにェミッタ端子と抵抗器 177の接続点が制御 回路 113Aの起動端子 175に接続されている。  3) Along with this, the start signal Wake generated from the external control circuit 137 is transmitted to the start terminal 175 of the control circuit 113 A. For this purpose, the collector terminal of the phototransistor 133 is connected to the output of the S regulator 127. A resistor 177 is connected to the emitter terminal of the phototransistor 133. Further, the connection point between the emitter terminal and the resistor 177 is connected to the start terminal 175 of the control circuit 113A.
[0099] 4)制御回路 113Aが電圧モニタ用選択スィッチ 109とバランス回路用選択スィッチ 111 (以下、レ、ずれもスィッチ)への電力供給をオンオフ制御するための選択スィッチ  [0099] 4) Selection switch for the control circuit 113A to turn on / off the power supply to the voltage monitor selection switch 109 and the balance circuit selection switch 111 (hereinafter referred to as “l” and “shift”).
[0100] なお、蓄電部品 173はコンデンサでも二次電池でもよいが、本実施の形態では容 量値が数ファラッドのコンデンサを用いて!/、る。 [0100] Power storage component 173 may be a capacitor or a secondary battery, but in this embodiment, a capacitor with a capacitance value of several farads is used!
[0101] 次に、このような構成の車両用蓄電装置 157の動作について、実施の形態 2と異な る点を中心に説明する。  Next, the operation of vehicle power storage device 157 having such a configuration will be described with a focus on differences from the second embodiment.
[0102] まず、車両起動によりバッテリ用イダニシヨンスィッチ 143をオンにすると、主電源用 イダニシヨンスィッチ 161がオンになる。これによりエンジンが駆動するとともに、外部 制御回路 137が充放電制御信号 contを充放電回路 163に送信し、蓄電素子 101へ の充電を開始するよう指令する。この動作は実施の形態 2と同じである。  First, when battery idling switch 143 is turned on by starting the vehicle, main power idling switch 161 is turned on. As a result, the engine is driven, and the external control circuit 137 transmits a charge / discharge control signal cont to the charge / discharge circuit 163 to instruct to start charging the power storage element 101. This operation is the same as in the second embodiment.
[0103] さらに、外部制御回路 137は車両用蓄電装置 157を起動するために、起動信号 W akeを送信する。これにより、起動用絶縁型信号伝達部 131の発光ダイオード 135が
Figure imgf000026_0001
[0103] Furthermore, the external control circuit 137 uses the start signal W to start the power storage device 157 for the vehicle. Send ake. As a result, the light emitting diode 135 of the start-up insulated signal transmission unit 131 is
Figure imgf000026_0001
[0104] ここで、フォトトランジスタ 133がオンになるまでは、制御回路 113Aは省電力状態 にある。この時の制御回路 113Aへの駆動電圧は蓄電部品 173から供給されている 。すなわち、省電力状態の制御回路 113Aは消費電流が極めて小さいので、容量ィ直 が数ファラッドの蓄電部品 173でも充分駆動できる。また、省電力状態の時は、制御 回路 113Aはスィッチ素子 119と選択スィッチ用電源スィッチ 179とをオフにしている 上、フォトトランジスタ 133、 155はオフである。そのため、蓄電部品 173の電力は制 御回路 113Aにのみ供給される。これにより、蓄電部品 173で長期間(約 1ヶ月)に亘 り、制御回路 113Aを駆動できる。  Here, the control circuit 113A is in the power saving state until the phototransistor 133 is turned on. The drive voltage to the control circuit 113A at this time is supplied from the power storage component 173. In other words, since the control circuit 113A in the power saving state has a very small current consumption, the power storage component 173 having a capacity of several farads can be sufficiently driven. In the power saving state, the control circuit 113A turns off the switch element 119 and the power switch 179 for the selection switch, and the phototransistors 133 and 155 are off. Therefore, the electric power of power storage component 173 is supplied only to control circuit 113A. As a result, the power storage component 173 can drive the control circuit 113A for a long period (approximately one month).
[0105] この時にフォトトランジスタ 133がオンになると、蓄電部品 173からの電流が抵抗器  [0105] At this time, when the phototransistor 133 is turned on, the current from the power storage component 173 is
177を通してグランドへ流れるので、フォトトランジスタ 133のェミッタ端子に電圧が発 生する。これが起動信号 Wakeに相当する。この電圧が制御回路 113Aの起動端子 175に入力されることにより、制御回路 113Aは省電力状態から通常動作モードに戻 り起動する。これにより、制御回路 113Aは実施の形態 2と同様に電力制御信号 Loを グランドレベルにして直ちにスィッチ素子 119をオンにする。その結果、電圧 VIがレ ギユレータ 127で DC5Vに変換されて制御回路 113Aの駆動電圧入力端子 129に 入力される。したがって、以降は安定した電圧が供給される。これと同時に、蓄電部 品 173にも制御回路 113Aの省電力状態により消費された電力が蓄えられ満充電に なるので、次の省電力状態に備えることができる。  Since it flows to ground through 177, a voltage is generated at the emitter terminal of the phototransistor 133. This corresponds to the start signal Wake. When this voltage is input to the start terminal 175 of the control circuit 113A, the control circuit 113A returns from the power saving state to the normal operation mode and starts. As a result, the control circuit 113A sets the power control signal Lo to the ground level and immediately turns on the switch element 119 as in the second embodiment. As a result, voltage VI is converted to DC5V by regulator 127 and input to drive voltage input terminal 129 of control circuit 113A. Therefore, a stable voltage is supplied thereafter. At the same time, since the power consumed by the power saving state of the control circuit 113A is stored in the power storage component 173 and is fully charged, it is possible to prepare for the next power saving state.
[0106] さらに、制御回路 113Aは選択スィッチ電源信号 SPを送信することで、選択スイツ チ用電源スィッチ 179をオンにする。その結果、電源モニタ用選択スィッチ 109とスィ ツチ 111に電源が供給される。  Further, the control circuit 113A transmits the selection switch power signal SP to turn on the selection switch power switch 179. As a result, power is supplied to the power monitor selection switch 109 and switch 111.
[0107] このような動作により、蓄電装置 157Aが起動する。その後の動作は実施の形態 2と 同じである。すなわち、制御回路 113Aは各蓄電素子 101の電圧をモニタしながら充 放電回路 163を制御して蓄電素子 101を充電する。蓄電素子 101が満充電になれ ば、外部制御回路 137は充放電回路 163に充電を停止する指令を出す。これにより 、蓄電装置 157Aの起動が完了する。 [0108] 次に、大電流を消費する負荷 165が動作すると、主電源 15の電圧降下を補償する ように蓄電素子 101の電力が充放電回路 163を介して負荷 165に供給される。その 結果、電圧降下が発生しても負荷 165には安定した電圧を供給し続けることができる 。大電流の消費が終了すると、主電源 15の電圧は戻るので、その後、蓄電素子 101 を再度満充電にして次の電圧降下の補償に備える。 [0107] With this operation, power storage device 157A is activated. The subsequent operation is the same as in the second embodiment. That is, the control circuit 113A controls the charging / discharging circuit 163 while monitoring the voltage of each storage element 101 to charge the storage element 101. When the storage element 101 is fully charged, the external control circuit 137 issues a command to the charging / discharging circuit 163 to stop charging. Thereby, activation of power storage device 157A is completed. Next, when the load 165 that consumes a large current operates, the power of the power storage device 101 is supplied to the load 165 via the charge / discharge circuit 163 so as to compensate for the voltage drop of the main power supply 15. As a result, a stable voltage can be continuously supplied to the load 165 even if a voltage drop occurs. When the consumption of the large current is finished, the voltage of the main power supply 15 returns, and then the power storage element 101 is fully charged again to prepare for the next voltage drop compensation.
[0109] このような充放電回路 163による蓄電素子ユニット 102の充電時に、制御回路 113 Aはスィッチ 109、スィッチ 111により蓄電素子 101の電圧バランスが一定になるよう に充電を制御する。  [0109] When the storage element unit 102 is charged by the charge / discharge circuit 163, the control circuit 113A controls the charging so that the voltage balance of the storage element 101 becomes constant by the switch 109 and the switch 111.
[0110] 次に、車両の使用終了時について説明する。バッテリ用イダニシヨンスィッチ 143を オフにすると、主電源用イダニシヨンスィッチ 161もオフになる。そのため負荷 165へ の電力供給が断たれるとともに、イダニシヨンのオフ状態を示すイダニシヨン信号 IGが 外部制御回路 137に送信される。これにより、外部制御回路 137は充放電制御信号 contを送信して、充放電回路 163の入出力間を完全にオフにするよう指令を出す。 その結果、蓄電素子 101は主電源 15の配線系統とは独立した状態になる。したがつ て、蓄電素子 101の不要放電が抑制される。  [0110] Next, the end of use of the vehicle will be described. Turning battery idling switch 143 off also turns main power idling switch 161 off. As a result, the power supply to the load 165 is cut off, and an idling signal IG indicating the idling off state is transmitted to the external control circuit 137. As a result, the external control circuit 137 transmits the charge / discharge control signal cont and issues a command to completely turn off the input / output of the charge / discharge circuit 163. As a result, the power storage element 101 becomes independent from the wiring system of the main power supply 15. Therefore, unnecessary discharge of the power storage element 101 is suppressed.
[0111] この時点では、制御回路 113Aは蓄電素子 101の電力によりまだ駆動し続けている 。そこで制御回路 113Aは電力制御信号 Loを電気的に浮かせるように設定すること でスィッチ素子 119をオフにする。同時に制御回路 113Aは選択スィッチ用電源スィ ツチ 179もオフにする。その結果、実施の形態 2と同様に蓄電素子 101は電気的に 浮いた状態になるので、不要な放電が行われない。その後、制御回路 113Aは蓄電 部品 173の電力供給を受けながら省電力状態に入り、その状態を維持する。  [0111] At this time, the control circuit 113A is still driven by the electric power of the power storage element 101. Therefore, the control circuit 113A turns off the switch element 119 by setting the power control signal Lo to be electrically floated. At the same time, the control circuit 113A turns off the power switch 179 for the selection switch. As a result, as in Embodiment 2, the power storage element 101 is in an electrically floating state, so that unnecessary discharge is not performed. Thereafter, the control circuit 113A enters the power saving state while receiving the power supply from the power storage component 173, and maintains this state.
[0112] この状態で車両を放置すると、実施の形態 2で説明した理由により蓄電素子 101の 両端電圧値にバラツキが発生する。このバラツキを低減するために、以下の電圧バラ ンス動作が既定条件毎 (例えば 1日 1回毎など)に自動的に行われる。  [0112] If the vehicle is left in this state, the voltage value at both ends of power storage element 101 varies due to the reason described in the second embodiment. In order to reduce this variation, the following voltage balancing operation is automatically performed for each predetermined condition (for example, once a day).
[0113] 外部制御回路 137は既定時間が経過すると起動信号 Wakeを発する。これにより、 制御回路 113Aは起動信号 Wakeを受信し、前述の車両用蓄電装置 157の起動時 と同じ動作を行うことにより、通常動作モードに戻る。そして制御回路 113Aはスイツ チ素子 119と選択スィッチ用電源スィッチ 179をオンにする。その結果、蓄電素子 10 1の電力がレギユレータ 127により一定電圧(DC5V)に安定化され、蓄電装置 157A が起動する。 [0113] The external control circuit 137 generates a start signal Wake when a predetermined time elapses. As a result, the control circuit 113A receives the activation signal Wake and returns to the normal operation mode by performing the same operation as when the vehicle power storage device 157 is activated. Then, the control circuit 113A turns on the switch element 119 and the power switch 179 for the selection switch. As a result, the storage element 10 The electric power of 1 is stabilized at a constant voltage (DC5V) by the regulator 127, and the power storage device 157A is activated.
[0114] 次に、制御回路 113Aは実施の形態 2と同じ方法でスィッチ 109を制御して電圧 V ;!〜 Vnを検出する。そして制御回路 113Aはスィッチ 111を制御して両端電圧が高 い蓄電素子 101のバランス回路 103を動作させる。これにより、対象の蓄電素子 101 の電力が放電され電圧が低下する。このような動作を繰り返し、電圧バランスが一定 になれば制御回路 113Aは電圧バランス動作を完了する。その後の動作は前述の車 両使用終了時と同様である。これにより、制御回路 113Aが省電力状態となり、車両 用蓄電装置 157は停止時と同じ状態になる。  [0114] Next, the control circuit 113A controls the switch 109 in the same manner as in the second embodiment to detect the voltages V ;! to Vn. Then, the control circuit 113A controls the switch 111 to operate the balance circuit 103 of the power storage element 101 having a high voltage across both ends. As a result, the electric power of the target storage element 101 is discharged and the voltage decreases. Such an operation is repeated, and when the voltage balance becomes constant, the control circuit 113A completes the voltage balance operation. The subsequent operation is the same as when the vehicle has been used. As a result, the control circuit 113A enters a power saving state, and the vehicle power storage device 157 enters the same state as when stopped.
[0115] このようにして間欠的に蓄電素子 101の電圧がバランスされる。そのため、車両の 起動時に電圧バランスが崩れた状態で充電することによる蓄電素子 101の過電圧の 可能性を低減することができ、信頼性が向上する。  In this way, the voltage of the storage element 101 is balanced intermittently. Therefore, it is possible to reduce the possibility of overvoltage of power storage element 101 due to charging in a state where the voltage balance is lost when the vehicle is started, and the reliability is improved.
[0116] なお、制御回路 113Aが蓄電素子 101の過放電を検出すれば、実施の形態 2と同 様に制御回路 113Aが過放電信号を外部制御回路 137に送信する。また、電圧バラ ンス動作を停止する。そのため信頼性が向上する。  Note that if the control circuit 113A detects overdischarge of the power storage element 101, the control circuit 113A transmits an overdischarge signal to the external control circuit 137 as in the second embodiment. Also stops the voltage balancing operation. Therefore, reliability is improved.
[0117] 以上の構成、動作により、停止時の蓄電素子 101の不要放電が極力抑制される。  [0117] With the above configuration and operation, unnecessary discharge of power storage element 101 during stoppage is suppressed as much as possible.
また自動的に間欠的な電圧モニタ動作、及び電圧バランス動作が行われることにより 、過電圧や過放電の可能性が低下し、信頼性の高い蓄電装置 157Aが実現できる。  Further, by automatically performing intermittent voltage monitoring operation and voltage balancing operation, the possibility of overvoltage and overdischarge is reduced, and the highly reliable power storage device 157A can be realized.
[0118] なお、蓄電装置 157Aは実施の形態 2の車両用蓄電装置 157に比べ、蓄電部品 1 73や選択スィッチ用電源スィッチ 179等が必要となり若干構成が複雑になる。しかし ながら、停止時に制御回路 113Aが実施の形態 2のように完全にオフにならず省電 力状態を維持しているので、起動信号 Wakeにより迅速に起動することができる。  [0118] Power storage device 157A requires power storage component 173, power switch 179 for the selection switch, and the like, and is slightly complicated in configuration as compared with vehicle power storage device 157 of the second embodiment. However, since the control circuit 113A is not completely turned off as in the second embodiment and maintains the power saving state at the time of stop, it can be quickly started by the start signal Wake.
[0119] また、実施の形態 2、 3では複数の蓄電素子 101が直列に接続されている力、これ に限定されない。必要とされる電力仕様に応じて、直並列接続としてもよい。この場 合の蓄電素子 101とバランス回路 103の接続回路図を図 6A、図 6Bに示す。  [0119] Further, in Embodiments 2 and 3, the force with which a plurality of power storage elements 101 are connected in series is not limited to this. A series-parallel connection may be used according to the required power specifications. 6A and 6B show connection circuit diagrams of the storage element 101 and the balance circuit 103 in this case.
[0120] まず、図 6Aはバランス回路 103に対して蓄電素子 101を 3個並列に接続した場合 を示す。この場合、蓄電素子 101は全体に直並列接続であるが、そのうちの並列接 続部分の 3個の蓄電素子 101の両端電圧は等しくなるので、バランス回路 103はそ れぞれの蓄電素子 101に接続する必要はない。すなわち、並列接続により両端電圧 が等しくなる蓄電素子 101のいずれかに接続すればよい。 First, FIG. 6A shows a case where three power storage elements 101 are connected in parallel to the balance circuit 103. In this case, the power storage element 101 is connected in series and parallel, but the voltage across the three power storage elements 101 in the parallel connection portion is equal, so that the balance circuit 103 is It is not necessary to connect to each power storage element 101. That is, it may be connected to any one of the power storage elements 101 whose voltages at both ends are equal by parallel connection.
[0121] 図 6Bはバランス回路 103に対して蓄電素子 101を 3個並列に接続したものを 2段 直列に接続した場合を示す。この場合、蓄電素子 101全体の直並列接続の内、直列 接続部分で蓄電素子 101の両端電圧が異なるものの、蓄電素子 101のバラツキが少 なければ直列接続して用いた場合においてもバラツキ幅が小さくなる。そのため、そ れぞれの蓄電素子 101にバランス回路 103を接続する必要はない。したがって、図 6 Bに示すように例えば 6個毎にバランス回路 103を接続してもよい。  FIG. 6B shows a case where two storage elements 101 connected in parallel to the balance circuit 103 are connected in series in two stages. In this case, among the series-parallel connections of the entire storage element 101, the voltage across the storage element 101 is different in the series connection part. Become. Therefore, it is not necessary to connect the balance circuit 103 to each power storage element 101. Therefore, as shown in FIG. 6B, for example, every six balance circuits 103 may be connected.
[0122] このようにバランス回路 103は必ずしも各々の蓄電素子 101に接続する必要はなく 、複数の蓄電素子 101を 1つのまとまりとしてそれごとにバランス回路 103を接続して あよい。  As described above, the balance circuit 103 is not necessarily connected to each power storage element 101, and the balance circuit 103 may be connected to each of the plurality of power storage elements 101 as a group.
[0123] また、実施の形態 2、 3では車両用の補助電源としての車両用蓄電装置を例に説明 したが、車両用に限らず一般の非常用バックアップ電源等にも適用可能である。さら に、実施の形態 2、 3で示したバランス回路 103を用いた特有の制御は、実施の形態 1の車両用蓄電装置において特徴となる制御とは独立して適用してもよい。ここで実 施の形態 1にお!/、て特徴となる制御とは、使用終了時の蓄電部の既定保持電圧 (Vk )までの放電制御と既定保持電圧 (Vk)での保持制御、および運転者認証を用いた 満充電制御を意味する。すなわち、実施の形態 1の特徴となる上述の制御を行わな い車両用蓄電装置に、実施の形態 2、 3で示したバランス回路 103を用いた制御を適 用してもよい。  Further, in Embodiments 2 and 3, the power storage device for vehicles as an auxiliary power source for vehicles has been described as an example, but the present invention can be applied not only to vehicles but also to general emergency backup power sources. Furthermore, the specific control using the balance circuit 103 shown in the second and third embodiments may be applied independently of the control that is characteristic in the vehicle power storage device of the first embodiment. Here, the control that is characteristic in the first embodiment is the discharge control up to the predetermined holding voltage (Vk) of the power storage unit at the end of use, the holding control at the predetermined holding voltage (Vk), and It means full charge control using driver authentication. That is, the control using the balance circuit 103 described in the second and third embodiments may be applied to the vehicle power storage device that does not perform the above-described control, which is a feature of the first embodiment.
[0124] また、実施の形態 1では蓄電装置 11を主電源 15と負荷 17の間に直列に接続した 構成を示している。一方、実施の形態 2、 3では蓄電装置 157、 157Aを主電源 15と 負荷 165の間にこれらと並列に接続した構成を示している。すなわち主電源 15と負 荷 165との間の接続部分に蓄電装置 157、 157Aが接続されている。しかしながらこ れは互いに逆の接続方法でもよい。したがって、蓄電装置 11や蓄電装置 157、 157 Aは、主電源 15と負荷 17、 165の間に直列、または並列のいずれかの接続方法で 接続すればよい。  Further, Embodiment 1 shows a configuration in which power storage device 11 is connected in series between main power supply 15 and load 17. On the other hand, Embodiments 2 and 3 show a configuration in which power storage devices 157 and 157A are connected in parallel between main power supply 15 and load 165. That is, power storage devices 157 and 157A are connected to the connection portion between main power supply 15 and load 165. However, this may be a reverse connection method. Therefore, power storage device 11 and power storage devices 157 and 157A may be connected between main power supply 15 and loads 17 and 165 by either a serial or parallel connection method.
産業上の利用可能性 本発明による車両用蓄電装置は、蓄電部を早期に満充電にできるとともに、主電源 、蓄電素子の不要放電を抑制することができる。また自動的に間欠的な電圧バランス 動作を行うことで信頼性が向上する。そのため、特に主電源の電圧低下時に蓄電部 から電力を供給する補助電源としての車両用蓄電装置等として有用である。 Industrial applicability The vehicle power storage device according to the present invention can fully charge the power storage unit at an early stage, and can suppress unnecessary discharge of the main power source and the power storage element. Reliability is improved by automatically performing intermittent voltage balancing. Therefore, it is particularly useful as a vehicle power storage device or the like as an auxiliary power source that supplies power from the power storage unit when the voltage of the main power source drops.

Claims

請求の範囲 The scope of the claims
[1] 主電源と負荷の間に接続される車両用蓄電装置であって、  [1] A power storage device for a vehicle connected between a main power source and a load,
前記主電源の電力を蓄える蓄電部と、  A power storage unit for storing the power of the main power source;
前記主電源、前記負荷、前記蓄電部にそれぞれ接続された充放電回路と、 前記蓄電部と前記充放電回路とに接続された制御回路と、を備え、  A charge / discharge circuit connected to each of the main power supply, the load, and the power storage unit; and a control circuit connected to the power storage unit and the charge / discharge circuit;
車両使用終了時には、前記制御回路は既定時間経過後に、前記蓄電部の電圧が 既定保持電圧に至るまで電力を放電するよう前記充放電回路を制御し、 前記車両の非使用時に、前記蓄電部の電圧が既定下限電圧に至れば、前記制御 回路は前記蓄電部の電圧が前記既定保持電圧になるまで充電する動作を繰り返す よう前記充放電回路を制御し、  At the end of use of the vehicle, the control circuit controls the charge / discharge circuit to discharge power until the voltage of the power storage unit reaches a predetermined holding voltage after a predetermined time has elapsed, and when the vehicle is not used, When the voltage reaches a predetermined lower limit voltage, the control circuit controls the charge / discharge circuit to repeat the operation of charging until the voltage of the power storage unit reaches the predetermined holding voltage,
運転者を認識する信号を前記車両用蓄電装置の外部から受け取れば、前記制御回 路は前記蓄電部を満充電にするよう前記充放電回路を制御する、  If a signal for recognizing the driver is received from the outside of the vehicle power storage device, the control circuit controls the charge / discharge circuit to fully charge the power storage unit.
車両用蓄電装置。  Power storage device for vehicles.
[2] 前記車両の非使用時に前記蓄電部の電圧が前記既定保持電圧になるように前記蓄 電部を充電している間に、前記主電源の電圧が既定限界電圧以下になると、前記制 御回路は、前記蓄電部の充電を停止する、  [2] When the voltage of the main power source becomes equal to or lower than the predetermined limit voltage while charging the power storage unit so that the voltage of the power storage unit becomes the predetermined holding voltage when the vehicle is not used, the control is performed. The control circuit stops charging the power storage unit,
請求項 1記載の車両用蓄電装置。  The vehicle power storage device according to claim 1.
[3] 前記既定保持電圧は、前記車両の非使用時における前記蓄電部の寿命が前記車 両の寿命と同等になる電圧に設定されている、 [3] The predetermined holding voltage is set to a voltage at which a life of the power storage unit when the vehicle is not used is equal to a life of the vehicle.
請求項 1記載の車両用蓄電装置。  The vehicle power storage device according to claim 1.
[4] 前記車両の非使用時に前記蓄電部の電圧が前記既定下限電圧に至るまでに、前記 制御回路は間欠的に前記蓄電部の電圧と前記既定下限電圧を比較する、 請求項 1記載の車両用蓄電装置。 [4] The control circuit according to claim 1, wherein the control circuit intermittently compares the voltage of the power storage unit and the predetermined lower limit voltage until the voltage of the power storage unit reaches the predetermined lower limit voltage when the vehicle is not used. Power storage device for vehicles.
[5] 前記蓄電部はキャパシタで構成された、 [5] The power storage unit includes a capacitor.
請求項 1記載の車両用蓄電装置。  The vehicle power storage device according to claim 1.
[6] 前記車両の使用中において、前記制御回路は前記蓄電部の電力を既定保持電圧 に至るまで放電し、その後前記蓄電部の電圧が既定下限電圧に至れば、前記蓄電 部の電圧が前記既定保持電圧になるまで充電する動作を繰り返す、 請求項 1記載の車両用蓄電装置。 [6] During use of the vehicle, the control circuit discharges the power of the power storage unit to a predetermined holding voltage, and if the voltage of the power storage unit reaches a predetermined lower limit voltage, the voltage of the power storage unit is Repeat the charging operation until the preset holding voltage is reached. The vehicle power storage device according to claim 1.
[7] 前記蓄電部は、 [7] The power storage unit includes:
複数の蓄電素子から構成された蓄電素子ユニットと、  A power storage element unit composed of a plurality of power storage elements;
前記複数の蓄電素子の電圧をバランスさせる複数のバランス回路と、 前記複数のバランス回路に接続された電圧モニタ用選択スィッチと、 前記複数のバランス回路に接続されたバランス回路用選択スィッチと、を有し、 前記制御回路は前記電圧モニタ用選択スィッチと前記バランス回路用選択スィッチ を介して前記蓄電素子の電圧を制御し、かつスィッチ素子をさらに含み、前記車両 用蓄電装置の外部から受信した起動信号に基づいて前記スィッチ素子を制御して 前記電圧モニタ用選択スィッチと前記バランス回路用選択スィッチと前記制御回路 への電源供給をオンオフ制御し、  A plurality of balance circuits for balancing the voltages of the plurality of power storage elements; a voltage monitor selection switch connected to the plurality of balance circuits; and a balance circuit selection switch connected to the plurality of balance circuits. The control circuit controls the voltage of the power storage element via the voltage monitor selection switch and the balance circuit selection switch, and further includes a switch element, and the start signal received from the outside of the vehicle power storage device The switch element is controlled based on the on-off control of power supply to the voltage monitor selection switch, the balance circuit selection switch, and the control circuit,
前記車両用蓄電装置の動作中、前記制御回路は、前記充放電回路により前記蓄電 素子ユニットを充電する際に、前記蓄電素子の電圧バランスが一定になるように前記 電圧モニタ用選択スィッチと前記バランス回路用選択スィッチとを制御し、 前記車両用蓄電装置が停止した時は、前記制御回路は、前記起動信号を受けて前 記スィッチ素子をオンにし、前記電圧モニタ用選択スィッチと前記バランス回路用選 択スィッチとを制御して前記蓄電素子の電圧バランスを一定にし、  During the operation of the power storage device for the vehicle, the control circuit and the voltage monitor selection switch and the balance so that a voltage balance of the power storage element becomes constant when the power storage element unit is charged by the charge / discharge circuit. When the vehicle power storage device stops, the control circuit receives the start signal and turns on the switch element, and controls the voltage monitor selection switch and the balance circuit. The selection switch is controlled to make the voltage balance of the storage element constant,
前記蓄電素子の電圧バランスが一定になれば、前記制御回路は前記スィッチ素子を オフにする、  When the voltage balance of the storage element becomes constant, the control circuit turns off the switch element.
請求項 1記載の車両用蓄電装置。  The vehicle power storage device according to claim 1.
[8] 前記制御回路の駆動電圧入力端子に接続され、前記蓄電素子ユニットとは別個に 設けられた蓄電部品と、 [8] A power storage component connected to the drive voltage input terminal of the control circuit and provided separately from the power storage element unit;
前記電圧モニタ用選択スィッチと前記バランス回路用選択スィッチへの電力供給を オンオフ制御する選択スィッチ用電源スィッチと、をさらに備え、  A power switch for a selection switch that controls on / off of power supply to the voltage monitor selection switch and the balance circuit selection switch;
前記車両用蓄電装置が停止した時に、前記蓄電部品は前記制御回路に電力を供 When the vehicle power storage device stops, the power storage component supplies power to the control circuit.
^口し、 Speak,
前記起動信号を受けると前記制御回路は前記スィッチ素子と前記選択スィッチ用電 源スィッチをオンにして、前記電圧モニタ用選択スィッチと前記バランス回路用選択 スィッチとを制御して前記蓄電素子ユニットの電圧バランスを一定にし、 前記電圧バランスが一定になれば前記制御回路は前記スィッチ素子と前記選択スィ ツチ用電源スィッチとをオフにする、 Upon receiving the activation signal, the control circuit turns on the switch element and the power switch for the selection switch, and selects the voltage monitor selection switch and the balance circuit selection. Controlling the switch to make the voltage balance of the storage element unit constant, and when the voltage balance becomes constant, the control circuit turns off the switch element and the power switch for the selected switch.
請求項 7記載の車両用蓄電装置。  The power storage device for a vehicle according to claim 7.
[9] 前記電圧モニタ用選択スィッチはオフになると前記バランス回路を開ぐ [9] When the voltage monitor selection switch is turned off, the balance circuit is opened.
請求項 7記載の車両用蓄電装置。  The power storage device for a vehicle according to claim 7.
[10] 前記制御回路は、前記車両用蓄電装置の外部から前記起動信号を受信する絶縁型 信号伝達部をさらに有する、 [10] The control circuit further includes an insulated signal transmission unit that receives the activation signal from the outside of the vehicle power storage device.
請求項 7記載の車両用蓄電装置。  The power storage device for a vehicle according to claim 7.
[11] 前記制御回路は、前記蓄電素子の電圧から前記蓄電素子が過放電になっているこ とを検知すれば、外部へ過放電信号を送信する、 [11] When the control circuit detects from the voltage of the power storage element that the power storage element is overdischarged, the control circuit transmits an overdischarge signal to the outside.
請求項 7記載の車両用蓄電装置。  The power storage device for a vehicle according to claim 7.
[12] 前記制御回路は、前記過放電信号を送信する絶縁型信号伝達部をさらに有する、 請求項 11記載の車両用蓄電装置。 12. The vehicle power storage device according to claim 11, wherein the control circuit further includes an insulating signal transmission unit that transmits the overdischarge signal.
[13] 主電源と負荷の間に接続され、 [13] Connected between main power source and load,
前記主電源の電力を蓄える蓄電部と、  A power storage unit for storing the power of the main power source;
前記主電源、前記負荷、前記蓄電部にそれぞれ接続された充放電回路と、 前記蓄電部と前記充放電回路とに接続された制御回路と、を有し、 車両使用終了時には、前記制御回路は既定時間経過後に、前記蓄電部の電圧 が既定保持電圧に至るまで電力を放電するよう前記充放電回路を制御し、  A charge / discharge circuit connected to each of the main power supply, the load, and the power storage unit; and a control circuit connected to the power storage unit and the charge / discharge circuit. Controlling the charge / discharge circuit to discharge power until the voltage of the power storage unit reaches a predetermined holding voltage after a predetermined time has elapsed;
前記車両の非使用時に、前記蓄電部の電圧が既定下限電圧に至れば、前記制 御回路は前記蓄電部の電圧が前記既定保持電圧になるまで充電する動作を繰り返 すよう前記充放電回路を制御する車両用蓄電装置と、  When the vehicle is not in use, if the voltage of the power storage unit reaches a predetermined lower limit voltage, the control circuit repeats the operation of charging until the voltage of the power storage unit reaches the predetermined holding voltage. A vehicle power storage device for controlling
前記車両用蓄電装置に運転者を認識する信号を送信する運転者認証部と、を備え 前記運転者認証部から運転者を認識する前記信号を受け取れば、前記制御回路は 前記蓄電部を満充電にするよう前記充放電回路を制御する、  A driver authentication unit that transmits a signal for recognizing the driver to the vehicle power storage device, and when the signal for recognizing the driver is received from the driver authentication unit, the control circuit fully charges the power storage unit. Controlling the charge / discharge circuit to
システム。 前記運転者認証部は、 system. The driver authentication unit
前記運転者が保持し操作可能な電波送受信機と、  A radio transceiver that the driver can hold and operate;
前記電波送受信機と交信する車両側電波送受信回路と、を含む、 請求項 13記載のシステム。  14. The system according to claim 13, further comprising a vehicle-side radio wave transmission / reception circuit that communicates with the radio wave transceiver.
前記運転者認証部はアルコール検知器を含む、 The driver authentication unit includes an alcohol detector,
請求項 13記載のシステム。 The system of claim 13.
PCT/JP2007/069227 2006-10-02 2007-10-02 Vehicle storage device and system using same WO2008041684A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006270390A JP5250953B2 (en) 2006-10-02 2006-10-02 Power storage circuit
JP2006-270390 2006-10-02
JP2006-325190 2006-12-01
JP2006325190A JP5055984B2 (en) 2006-12-01 2006-12-01 Power storage device

Publications (1)

Publication Number Publication Date
WO2008041684A1 true WO2008041684A1 (en) 2008-04-10

Family

ID=39268539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/069227 WO2008041684A1 (en) 2006-10-02 2007-10-02 Vehicle storage device and system using same

Country Status (1)

Country Link
WO (1) WO2008041684A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040256A (en) * 2008-08-01 2010-02-18 Toyota Motor Corp Controlling method for lithium-ion secondary battery, and lithium-ion secondary battery system
CN105246750A (en) * 2013-05-29 2016-01-13 日产自动车株式会社 Control device for plug-in hybrid vehicle
US11447108B1 (en) * 2017-10-30 2022-09-20 Creed Monarch, Inc. Braking control system and method to sysnchronize the operation of the braking of a towed vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001145275A (en) * 1999-11-16 2001-05-25 Toyota Motor Corp Power supply circuit for vehicle
JP2002354703A (en) * 2001-05-25 2002-12-06 Toyota Motor Corp Secondary battery control device for vehicles
JP2003348769A (en) * 2002-05-27 2003-12-05 Hitachi Eng Co Ltd Power source circuit for on-vehicle system
JP2005318751A (en) * 2004-04-30 2005-11-10 Shin Kobe Electric Mach Co Ltd Multi-serial battery control system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001145275A (en) * 1999-11-16 2001-05-25 Toyota Motor Corp Power supply circuit for vehicle
JP2002354703A (en) * 2001-05-25 2002-12-06 Toyota Motor Corp Secondary battery control device for vehicles
JP2003348769A (en) * 2002-05-27 2003-12-05 Hitachi Eng Co Ltd Power source circuit for on-vehicle system
JP2005318751A (en) * 2004-04-30 2005-11-10 Shin Kobe Electric Mach Co Ltd Multi-serial battery control system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040256A (en) * 2008-08-01 2010-02-18 Toyota Motor Corp Controlling method for lithium-ion secondary battery, and lithium-ion secondary battery system
KR101167801B1 (en) 2008-08-01 2012-07-25 도요타지도샤가부시키가이샤 Control method for lithium ion secondary battery, and lithium ion secondary battery system
US8384345B2 (en) 2008-08-01 2013-02-26 Toyota Jidosha Kabushiki Kaisha Control method for lithium ion secondary battery, and lithium ion secondary battery system
CN105246750A (en) * 2013-05-29 2016-01-13 日产自动车株式会社 Control device for plug-in hybrid vehicle
US11447108B1 (en) * 2017-10-30 2022-09-20 Creed Monarch, Inc. Braking control system and method to sysnchronize the operation of the braking of a towed vehicle

Similar Documents

Publication Publication Date Title
JP5055984B2 (en) Power storage device
US6930404B1 (en) Power supply for an automotive vehicle
US6577026B1 (en) Circuit arrangement for supplying electric power to a network comprising a fuel cell and an accumulator system
US7042115B2 (en) Power supply control system for vehicle and method
KR101617292B1 (en) Electric vehicles and method for sub-battery charging control thereof
US20140070608A1 (en) Motor vehicle with a multi-voltage onboard electrical system and associated method
CN107599852B (en) Battery management system for vehicle
US20060137918A1 (en) Power supply circuit for a motor vehicle electric system
WO2007026495A1 (en) Auxiliary electric power supply for vehicle and charger/discharger for vehicle
JP2010110192A (en) Vehicle power supply unit
JPH11266549A (en) Voltage supplying device
JP2008110700A (en) Power supply system of hybrid vehicle
JP2008290513A (en) Power control device and on-vehicle electronic equipment system
JP2008114678A (en) Vehicular power source device
US6812672B2 (en) Electric charge control device and load driving device using the same
US11942812B2 (en) Battery control method and battery system enabling battery control method
WO2008041684A1 (en) Vehicle storage device and system using same
CN110979221A (en) Power supply control method and device for vehicle and vehicle
JP2008172908A (en) Vehicular power supply unit
JP4835551B2 (en) Power supply
JP5250953B2 (en) Power storage circuit
JP2020182317A (en) Backup power supply device
KR20040074783A (en) Power apparatus of hybrid electric vehicle and method controlling thereof
CN113632356A (en) Vehicle-mounted power supply device
JP3911131B2 (en) Vehicle power supply

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07828967

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07828967

Country of ref document: EP

Kind code of ref document: A1