WO2008041405A1 - Double shell structure tank unit equipped with displacement measuring device, and tank facility - Google Patents

Double shell structure tank unit equipped with displacement measuring device, and tank facility Download PDF

Info

Publication number
WO2008041405A1
WO2008041405A1 PCT/JP2007/064568 JP2007064568W WO2008041405A1 WO 2008041405 A1 WO2008041405 A1 WO 2008041405A1 JP 2007064568 W JP2007064568 W JP 2007064568W WO 2008041405 A1 WO2008041405 A1 WO 2008041405A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
pipe
inner tank
displacement measuring
laser
Prior art date
Application number
PCT/JP2007/064568
Other languages
French (fr)
Japanese (ja)
Inventor
Daisuke Goto
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Publication of WO2008041405A1 publication Critical patent/WO2008041405A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D90/00Component parts, details or accessories for large containers
    • B65D90/48Arrangements of indicating or measuring devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0678Concrete
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2250/00Accessories; Control means; Indicating, measuring or monitoring of parameters
    • F17C2250/04Indicating or measuring of parameters as input values
    • F17C2250/0404Parameters indicated or measured
    • F17C2250/0469Constraints, e.g. by gauges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength

Definitions

  • Double shell structure tank device with displacement measuring device and tank equipment Double shell structure tank device with displacement measuring device and tank equipment
  • the present invention relates to a double-shell structure tank device including a tank displacement measuring device in a large-capacity double-shell structure tank that stores, for example, liquefied natural gas (LNG) and the like, and a tank facility. .
  • LNG liquefied natural gas
  • Tanks of various structures have been proposed and manufactured as tanks for storing LPG (liquefied petroleum gas), LNG (liquefied natural gas), and the like.
  • Patent Document 1 what is described in Patent Document 1 is that if a large earthquake occurs around a low-temperature liquefied gas tank with a double shell structure consisting of an outer tank and an inner tank, the low temperature Even if the liquefied gas tank breaks and the leakage of low-temperature liquefied gas occurs, a breakwater is provided to prevent secondary disasters such as contamination of the surrounding environment.
  • Patent Document 2 receives an inner tank made of a metal plate that can store a low-temperature liquefied gas in an outer tank made of concrete, and a low-temperature liquefied gas leaked from the inner tank. And a metal plate receiving tank.
  • Patent Document 1 a concrete outer tub or a breakwater is installed to prevent low temperature liquefied gas from leaking out in the event of a large earthquake. There is no means to detect the movement S, the displacement (slide), rotation, etc. of the inner tank caused by a large earthquake!
  • Patent Document 3 Although the one described in Patent Document 3 also monitors the damage state of a storage tank such as an oil tank due to an earthquake or the like, it is a means for detecting whether the storage tank is displaced or rotated regardless of whether it is damaged or not damaged. What is provided! / ,!
  • Patent Document 1 Japanese Patent Application Laid-Open No. 11 63393
  • Patent Document 2 JP 2003 240197
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-340741
  • outer and inner tanks of the low-temperature liquefied gas tank having a double shell structure are made of, for example, a cryogenic metal and further provided with a concrete breakwater on the outside thereof, relative displacement or It is conceivable to install a device to monitor the rotation so as to penetrate the side of the outer tank.
  • the present invention is intended to solve the problems of the above-described configuration, and is a low-temperature liquefied gas tank having a double shell structure, particularly an inner tank made of a cryogenic metal and an outer tank made of concrete. Double shell structure equipped with a displacement measuring device that can monitor the relative displacement or rotation of the inner tank relative to the outer tank! The purpose is to provide tank equipment and tank equipment.
  • a pipe for measuring radial displacement passing through the upper part of the outer tub
  • a shut-off valve provided outside the outer tub of the radial displacement measuring pipe, and a laser transmitter / receiver mounting seat provided at an upper end of the radial displacement measuring pipe.
  • the second means is the double shell tank device of the first means
  • a mirror body that is attached to a lower end of the radial displacement measuring pipe and reflects laser light emitted from a laser-type distance measuring device connected to the laser transmitter / receiver seating in the direction of the inner tank;
  • the third means is the double shell structure tank device of the second means
  • the inner tank has an inner tank bottom plate and an inner tank side wall, and an inner tank upper lid provided to be movable relative to the inner tank side wall,
  • the radial displacement measuring pipe extends in a vertical direction and penetrates the inner tank upper lid.
  • the fourth means is the double shell structure tank device of the third means! /
  • the radial displacement measuring pipe and the mirror body are made of the same material.
  • the fifth means is a double shell structure tank device of the third or fourth means! / Two pipes for measuring radial displacement facing the inner tank are provided,
  • Irradiation directions of the laser beams reflected by the mirror body are 90 ° ⁇ 20 with respect to each other in a horizontal plane.
  • the specular body is installed so as to open within a range of%.
  • the sixth means is a double-shell structure tank device of the third or fourth means! /
  • At least three radial displacement measuring pipes facing the inner tank are provided,
  • the mirror body is installed such that the irradiation direction of the laser beam reflected by the mirror body opens at an equal angle in a horizontal plane.
  • the seventh means is a double shell structure tank device of the third or fourth means! /
  • the specular body has a polygonal pyramid shape
  • the laser beam is irradiated to a plurality of locations.
  • the eighth means is a double-shell structure tank device of the third or fourth means! /
  • the specular body has a polygonal pyramid shape
  • the irradiation direction of the laser beam can be changed.
  • the ninth means is a double shell structure tank device of the third to eighth! /, Any means! /, A vertical member attached to the inner tank side wall,
  • a rotational displacement measuring pipe extending in the vertical direction and penetrating the upper part of the outer tank and the upper cover of the inner tank and facing the vertical member;
  • a shut-off valve provided outside the outer tub of the rotational displacement measuring pipe, a laser transmitter / receiver seat provided at the upper end of the rotational displacement measuring pipe, and a lower end of the rotational displacement measuring pipe
  • a second mirror body that is attached and reflects laser light emitted from a laser-type distance measuring device connected to the laser transmitter / receiver seat, in the direction of the vertical member;
  • the tenth means is the double-shell structure tank device of the ninth means
  • the rotational displacement measuring pipe and the second mirror body are made of the same material. It is a sign.
  • the eleventh means is the double-shell structure tank device of any one of the third to tenth means,
  • a pipe for measuring the displacement in the height direction of the inner tub extending vertically and penetrating the upper portion of the outer tub and the upper lid of the inner tub and facing the horizontal member;
  • a shutoff valve provided outside the outer tank of the height direction displacement measuring pipe of the inner tank, and a laser transmitter / receiver seating provided at the upper end of the height direction displacement measuring pipe of the inner tank, It is provided with.
  • the twelfth means is the double shell tank device according to any one of the third to eleventh means.
  • a pipe contraction correcting pipe extending in the vertical direction and penetrating the upper part of the outer tank and the upper cover of the inner tank;
  • a shut-off valve provided outside the outer tub of the pipe contraction correction pipe; a laser transmitter / receiver seat provided at an upper end of the pipe contraction correction pipe; and a lower end of the pipe contraction correction pipe.
  • the thirteenth means is a double shell structure tank device according to any one of the third to eighth means,
  • a temperature sensor is provided at a predetermined interval in the radial displacement measuring pipe or the pipe penetrating the inner tank upper lid.
  • the fourteenth means is characterized in that, in the double-shell structure tank device of the ninth or tenth means, a temperature sensor is provided at a predetermined interval on the rotational direction displacement measuring pipe.
  • a temperature sensor is provided at predetermined intervals on the pipe for measuring displacement in the height direction of the inner tank.
  • the sixteenth means is the double-shell structure tank apparatus according to the second,
  • the radial displacement measuring pipe extends in a vertical direction and extends between the inner tank and the outer tank.
  • the seventeenth means is the double shell structure tank device according to the sixteenth aspect,
  • At least three radial displacement measuring pipes facing the inner tank are provided,
  • the mirror body is installed such that the irradiation direction of the laser beam reflected by the mirror body opens at an equal angle in a horizontal plane.
  • the eighteenth means is the double-shell structure tank device according to the sixteenth or seventeenth aspect, wherein the vertical member attached to the inner tank side wall;
  • a rotational displacement measuring pipe extending in the vertical direction and extending between the inner tank and the outer tank;
  • a shutoff valve provided outside the outer tub of the rotational direction displacement measuring pipe, a laser transmitter / receiver seat provided at the upper end of the rotational direction displacement measuring pipe, and a lower end of the rotational direction displacement measuring pipe
  • a second mirror body that reflects laser light emitted from a laser-type distance measuring device connected to the laser transmitter / receiver seat in the direction of the vertical member;
  • the nineteenth means is the double shell structure tank device according to any one of the sixteenth to eighteenth aspects,
  • a pipe for measuring the displacement in the height direction of the inner tub extending in the vertical direction and facing the horizontal member
  • a shutoff valve provided outside the outer tank of the height direction displacement measuring pipe of the inner tank, and a laser transmitter / receiver seating provided at the upper end of the height direction displacement measuring pipe of the inner tank, It is provided with.
  • the twentieth means is the double-shell structure tank device according to any one of the first to nineteenth aspects.
  • a laser-type distance measuring device is connected to each of the laser transmitter / receiver seats.
  • the twenty-first means is the double-shell structure tank device according to any one of the ninth to thirteenth, eighteenth and nineteenth aspects,
  • a tank monitoring device for calculating and displaying radial displacement and rotational displacement in the double-shell structure tank device
  • the measured value of the radial displacement measured by the laser type distance measuring instrument connected to the radial displacement measuring pipe and the measured value of the laser type distance measuring instrument connected to the rotational direction displacement measuring pipe is subtracted from the measured value of the displacement in the rotational direction to obtain the radial distance and the rotational distance.
  • a center position calculator for calculating the center position of the inner tank side wall based on the position of the inner tank side wall from the inner tank side wall position calculator;
  • a radial displacement calculator for calculating a displacement amount of the center position of the inner tank side wall based on the center position from the center position calculator;
  • a vertical member position calculator for calculating the position of the vertical member based on the rotational direction distance from the pipe length corrector
  • a center position corrector that calculates the true position of the vertical member based on the position of the vertical member from the vertical member position calculator
  • a rotation direction displacement calculator for calculating a rotation angle of the inner tank side wall based on the true position of the vertical member from the center position corrector
  • a display for displaying the amount of displacement of the center position from the radial displacement calculator and the rotation angle from the rotational displacement calculator;
  • a shut-off valve provided outside the outer tub of each radial displacement measuring pipe, and a laser transceiver attaching / detaching seat provided at an upper end of each radial displacement measuring pipe,
  • a shutoff valve provided outside the outer tub of each rotational direction displacement measuring pipe, a laser transmitter / receiver seating provided at an upper end of each rotational direction displacement measuring pipe, and each rotational direction.
  • Each laser beam emitted from each laser type distance measuring device attached to the lower end of each displacement measuring pipe and connected to each laser transmitter / receiver seat is reflected in the direction of each vertical member.
  • a second mirror body
  • a pipe contraction correction pipe that extends vertically and passes through the upper part of the outer tub, a shutoff valve provided outside the outer tub of the pipe contraction correction pipe, and an upper end of the pipe contraction correction pipe.
  • a horizontal member at the bottom of the horizontal pipe attached to the bottom of the laser transceiver mounting and detaching seat and the pipe contraction correction pipe;
  • a tank monitoring device for calculating and displaying radial displacement and rotational displacement in the double-shell structure tank device
  • a rotation direction calculator for calculating the rotation angle of the inner tank side wall based on the rotation direction distance from the pipe length corrector and the center position calculated by the center position calculator, and these measured values and calculated values Display to display and
  • a shut-off valve provided outside the outer tub of each radial displacement measuring pipe, and a laser transceiver attaching / detaching seat provided at an upper end of each radial displacement measuring pipe,
  • a shutoff valve provided outside the outer tub of each rotational direction displacement measuring pipe, a laser transmitter / receiver seating provided at an upper end of each rotational direction displacement measuring pipe, and each rotational direction.
  • Each laser beam emitted from each laser type distance measuring device attached to the lower end of each displacement measuring pipe and connected to each laser transmitter / receiver seat is reflected in the direction of each vertical member.
  • a second mirror body
  • a temperature sensor attached to any of the measurement pipes;
  • a tank monitoring device for calculating and displaying radial displacement and rotational displacement in the double-shell structure tank device;
  • the tank apparatus of the twenty-fourth means is the double-shell structure tank device according to any one of the twenty-first to twenty-third aspects
  • a plurality of the double shell structure tanks are installed,
  • Each of the tank monitoring devices is provided in a central monitoring center.
  • the invention according to each claim described in the claims employs each of the above-described means, and in a double-shell structure tank having an outer tank and an inner tank, the upper part of the outer tank is penetrated.
  • the displacement measuring device that measures the rotational displacement of the inner tub can be The position can be specified.
  • FIG. 1 is an overall plan view of a double-shell structure tank according to a first embodiment of the present invention.
  • FIG. 2 is a horizontal sectional view of the double-shell structure tank according to the first embodiment of the present invention.
  • FIG. 3 is an end view taken along the line AA in FIG.
  • FIG. 4 is a detailed side end view of the radial displacement measuring device of FIG. 1.
  • FIG. 5 is a detailed side end view of the rotational direction displacement measuring device in FIG. 1.
  • FIG. 6 is a detailed side end view of the height direction displacement measuring device for the inner tank of FIG. 1.
  • FIG. 7 is a detailed side end view of the pipe contraction correction amount measuring apparatus of FIG. 1.
  • FIG. 8 is a detailed side view of a radial displacement measuring device or a rotational displacement measuring device of a double-shell structure tank according to a second embodiment of the present invention.
  • FIG. 9 is a detailed side view of a radial displacement measuring device for a double-shell structure tank according to a third embodiment of the present invention.
  • FIG. 10 is a detailed side view of a radial displacement measuring device for a double-shell structure tank according to a fourth embodiment of the present invention.
  • FIG. 11 is a detailed side view of a radial displacement measuring device for a double-shell structure tank according to a fifth embodiment of the present invention.
  • FIG. 12 is a detailed side view of a radial / rotational direction displacement measuring apparatus for a double-shell structure tank according to a sixth embodiment of the present invention.
  • FIG. 13 is a detailed side view of a radial displacement and pipe contraction correction amount measuring apparatus of a double-shell structure tank according to a seventh embodiment of the present invention.
  • FIG. 14 is a partial sectional side view of a radial displacement measuring device for a double-shell structure tank according to a ninth embodiment of the present invention.
  • FIG. 15 is an enlarged view of part A in FIG.
  • FIG. 16 is a plan view of a rotational direction displacement measuring device for a double-shell structure tank according to a ninth embodiment of the present invention.
  • FIG. 17 is a partial sectional side view of a height direction displacement measuring device for an inner tank of a double-shell structure tank according to a ninth embodiment of the present invention.
  • FIG. 18 is an enlarged view of part B in FIG.
  • FIG. 20 is an enlarged view of part C in FIG.
  • FIG. 21 is a block diagram of a first example of a tank monitoring device in each embodiment of the present invention.
  • FIG. 22 is an explanatory diagram showing a measurement principle of a second example of the tank monitoring device in each embodiment of the present invention.
  • FIG. 23 It is a block diagram of a tank monitoring apparatus of a second example of the tank monitoring apparatus in each embodiment of the present invention.
  • FIG. 24 is an overall schematic diagram of a tank facility in which a plurality of double-shell structured tanks according to each embodiment of the present invention are installed.
  • FIG. 1 is an overall plan view of a double-shell structure tank according to a first embodiment of the present invention.
  • FIG. 2 is a horizontal sectional view of the double-shell structure tank according to the first embodiment of the present invention.
  • FIG. 2 is also a BB end view in FIG. 3 below.
  • FIG. 3 is an end view taken along the line AA in FIG.
  • FIG. 4 is a detailed side end view of the radial displacement measuring device 26 of FIG.
  • FIG. 5 is a detailed side end view of the rotational direction displacement measuring device 27 of FIG.
  • FIG. 6 is a detailed side end view of the inner tank height direction displacement measuring device 28 of FIG.
  • FIG. 7 is a detailed side end view of the pipe contraction correction amount measuring device 29 of FIG.
  • FIG. 24 is an overall schematic diagram of a tank facility in which a plurality of double-shell structure tanks according to each embodiment of the present invention are installed.
  • the tank displacement measuring device according to the first embodiment of the present invention includes four (at least two) radial displacement measuring devices 26 and two (at least one) rotational displacement measuring devices 27. It consists of one inner tank height direction displacement measuring device 28, one pipe contraction correction amount measuring device 29 and tank monitoring device 70 (70a).
  • a horizontal member 20 for measuring the displacement in the height direction of the inner tank, and two (at least one) vertical member 21 for measuring the tank rotation are attached.
  • tank monitoring device 70 (70a) Details of the tank monitoring device 70 (70a) will be described later.
  • the double shell tank is composed of an outer tank 5 made of reinforced concrete and an inner tank 1 made of ultra-low temperature resistant metal installed in the outer tank 5. Yes.
  • the outer tub 5 is made of reinforced concrete, no further concrete enclosure is required.
  • the outer tank 5 includes a disc-shaped outer tank bottom plate 6, a cylindrical outer tank side wall 7 that is airtightly fixed on the outer tank bottom plate 6, and an outer tank side wall 7. It consists of a dome-shaped outer tub upper lid 8 which is airtightly fixed to the upper end.
  • cryogenic fluid loading / unloading piping 15 and piping for each measuring device which will be described later, all pass through the outer tank upper lid 8 and reach the inner tank 1 or the inner tank 1 and the outer tank 5.
  • an airtight metal plate 48 is attached or pasted over the entire inner surface of the outer tank bottom plate 6, the outer tank side wall 7, and the outer tank upper lid 8 of the outer tank 5 as illustrated in FIG. It has been.
  • a tank support member / heat insulating material 10 is laid on the airtight metal plate 48 (see FIG. 4) of the outer tank bottom plate 6 in the outer tank 5, as shown in FIG. 3, a tank support member / heat insulating material 10 is laid. An inner tank 1 is placed on the tank support member / heat insulating material 10.
  • Inner tank 1 for example, has a diameter of 80m and a height of 40m, and can store cryogenic liquid, 9%
  • the outer diameter of the outer tub 5 is about 82 to 84 m.
  • a gap of about ⁇ 2 m is provided between the outer surface of the inner tub 1 and the inner surface of the outer tub 5 in order to lay the cold insulation material.
  • the inner tank 1 includes a disk-shaped inner tank bottom plate 2, a cylindrical inner tank side wall 3 fixed on the inner tank bottom plate 2 by welding or the like, and a disk shape that covers the upper surface of the inner tank side wall 3. And an inner tank upper lid 4.
  • the diameter of the inner tank upper lid 4 is formed larger than the diameter of the inner tank side wall 3, and the inner tank upper lid 4 is provided with a short cylindrical ridge extending downward on the outer periphery thereof.
  • the inner tank upper lid 4 is suspended and supported from the outer tank upper lid 8 by a number of inner tank upper lid suspension fittings 9.
  • the inner tank upper lid 4 is fixed to the metal plate 48 on the inner surface of the outer tank 5 by the inner tank upper lid suspension metal fitting 9 so that the inner tank upper lid 4 and the inner tank side wall 3 are not mechanically in contact with each other.
  • the tank upper lid 4 is not affected by the displacement of the inner tank side wall 3.
  • a heat insulating material 11 such as glass wool is attached or attached to the entire outer periphery of the inner tank side wall 3.
  • particulates such as pearlite Insulation 12 is filled and stored.
  • the short cylindrical bowl on the outer periphery of the inner tank upper lid 4 does not allow the particulate heat insulating material 12 such as pearlite to enter the inner tank 1 through the gap between the inner tank upper lid 4 and the upper end of the inner tank side wall 3. It is set to such a height.
  • a nitrogen gas supply pipe 24 is connected to the outer tank upper lid 8 in order to inject the nitrogen gas 14 cooled to a cryogenic temperature.
  • the nitrogen gas supply pipe 24 passes between the outer surface of the inner tank side wall 3 and the inner surface of the outer tank 5, and is open below the inner tank bottom plate 2.
  • nitrogen gas is purged from the nitrogen gas supply pipe 24, and methane gas, air, and the like between the inner tank 1 and the outer tank 5 are purged.
  • a cryogenic fluid inlet / outlet pipe 15 is provided so as to penetrate the outer tank upper lid 8, the airtight metal plate 48 and the inner tank upper lid 4.
  • a discharge pump 16 and a bell mouth 17 are attached to the lower end of the cryogenic fluid carry-in / out pipe 15.
  • the lower end of the cryogenic fluid loading / unloading pipe 15 is connected to the inner tank bottom plate 2 by a support 18 in order to suppress shaking, vibration and the like!
  • a barrel (not shown) having a diameter larger than that of the cryogenic fluid carry-in / out pipe 15 is fixed on the inner tank upper lid 4 by welding or the like.
  • the cryogenic fluid carry-in / out pipe 15 extends into the inner tank 1 through this barrel.
  • the height of this barrel is set to such a height that particulate heat insulating material 12 such as pearlite does not enter the inner tank 1 through the gap between this barrel and the cryogenic fluid carry-in / out pipe 15! Being! /
  • a seal member (not shown) is provided in a through portion of the outer tank upper lid 8.
  • the pipe for the pipe shrinkage correction amount measuring device 29 is also attached so as to penetrate the outer tank upper lid 8 (upper part of the outer tank 5) and the inner tank upper lid 4 (upper part of the inner tank 1).
  • a vaporized gas recovery pipe 25 is attached near the top of the outer tank upper lid 8 as shown in FIG.
  • the natural gas (methane gas or the like) that has vaporized and stays near the top of the outer tank upper lid 8 is recovered by the vaporized gas recovery pipe 25, liquefied again by a known reliquefaction device, and returned to the inner tank 1. It has become.
  • the double-shell tank shown in FIGS. 1 and 2 has a tank facility 9 as shown in FIG. 1 /! Multiple units (for example, 6 units) are installed!
  • a breakwater such as that described in Patent Document 1 on the outer periphery of the tank facility 91.
  • a fence such as a wire mesh or the like is provided with other normal entry prevention enclosures.
  • a remote control monitoring center (building) in which a central computer having a tank monitoring device 70 (70a) is installed is installed.
  • the remote control monitoring center includes not only the tank monitoring device 70 (70a), but also the discharge pump control device 90, various circuits for monitoring the tank temperature and LNG level (circuits are subprograms, sequences, etc.). It also includes the form of blocks, processing cards, units, etc.), or a computer, storage device 78, display device 79, etc., which gather information and operation devices necessary for tank monitoring and operation. /!
  • radial displacement measuring pipes 30a, 30b, 30c, 30d laser set distance measuring instruments 38a, 38b, 38c, 38d, etc.
  • a device 26 is mounted at an equal angle in the same horizontal plane near the periphery of the outer tank upper lid 8 and the inner tank side wall 3.
  • This equal angle is 90 ° (allowable range: ⁇ 20%) when there are four radial displacement measuring devices 26, 120 ° (allowable range: ⁇ 20%) when three, and five It shall mean a predetermined angle of 72 ° (allowable range: ⁇ 20%).
  • the two irradiation angles of the laser light are 90 ° (allowable range: ⁇ 20%) in the horizontal plane. It is also possible to use only the laser type distance measuring devices 38a and 38b.
  • each radial displacement measuring device 26 is located at a position where the distance Dp from the center of the outer tank upper lid 8 is 38 to 39 m. It is preferable to attach it as close as possible to the inner surface.
  • the distance Dp from the center is such that the inner tank 1 contracts and the inner tank 1 Even if it is deformed in the radial direction or rotational direction, the radial displacement measuring device 26 and the inner surface of the inner tank 1 are not in contact with each other!
  • the measuring force can be measured even with weak reflected light irregularly reflected on the inner surface of the inner tank side wall 3.
  • the tangential direction of the inner surface of the inner tank side wall 3 at the irradiation point of the inner surfaces of the inner tank side walls 3 of laser beams 39a, 39b, 39c, 39d described later is not necessarily the optical axis of the laser beams 39a, 39b, 39c, 39d. This is because it is not always right-angled.
  • the inner surface of the inner tank side wall 3 is not mirror-like! /, More preferred! /.
  • the difference between the inner diameter Dt of the inner tank side wall 3 and the distance Dp from the center of the outer tank upper lid 8 is such that the mirror enclosure 36 does not hit the inner tank side wall 3 even if the inner tank 1 is displaced.
  • each radial displacement measuring device 26 includes a displacement measuring instrument storage box 34, laser-type distance measuring instruments 38a, 38b, 38c, 38d, and a radial displacement measuring pipe 30a.
  • the mirror body 37, the outlet tube 40, the purge discharge pipe 22, the purge nitrogen gas supply pipe 23, and the like are included.
  • exit tube 40 is not necessarily required, and may be one in which holes for the laser beams 39a, 39b, 39c, and 39d are formed on the surface of the mirror body housing enclosure 36 that faces the inner tank side wall 3.
  • Pipes 30a, 30b, 30c and 30d for radial displacement measurement are provided vertically through the outer tank upper lid 8, the airtight metal plate 48 and the inner tank upper lid 4.
  • Radial displacement measuring pipes 30a, 30b, 30c, 30d are not shown in the part that penetrates the outer tank top lid 8 and the airtight metal plate 48 so that natural gas that should keep airtightness does not leak to the outside.
  • the seal material is provided!
  • the radial displacement measuring pipes 30a, 30b, 30c, 30d are supported by a pipe support 19 attached to the lower surface of the metal plate 48 of the outer tank upper lid 8.
  • shutoff valve 35 is interposed in each of the radial displacement measuring pipes 30a, 30b, 30c, and 30d between the outer tank upper lid 8 and the pipe-side flange 41.
  • a purge discharge pipe 22 having a shut-off valve is connected to the radial displacement measuring pipes 30a, 30b, 30c, 30d between the shut-off valve 35 and the pipe-side flange 41.
  • a displacement measuring device storage box 34 is detachably connected to the upper portion of each pipe side flange 41 by a displacement measuring device storage box side flange 45 and a mounting bolt nut 44.
  • the displacement measuring instrument storage box 34 are stored laser distance measuring instruments 38a, 38b, 38c, 38d for radial displacement measurement of an intrinsically safe explosion-proof type, a pressure-proof explosion-proof type or an internal pressure explosion-proof type.
  • the displacement measuring instrument storage box 34 and the laser distance measuring instruments 38a, 38b, 38c, 38d for measuring displacement stored in the displacement measuring instrument storage box 34 are intrinsically safe, explosion proof or internal pressure explosion proof. It has a structure with the performance of the mold.
  • measured values of the existing radial displacement La, Lb, Lc, Ld (or measured values of the new radial displacement) measured by the laser distance measuring instrument 38a, 38b, 38c, 38d for measuring the radial displacement.
  • Lma, Lmb, Lmc, and Lmd are transmitted to the tank monitoring device 70 (70a) as described later.
  • a purge nitrogen gas supply pipe 23 provided with a shut-off valve is connected above the displacement measuring instrument storage box 34 to discharge oxygen, carbon dioxide and the like.
  • the displacement measuring instrument storage box 34 containing the laser distance measuring instruments 38a, 38b, 38c, 38d is connected to the pipe side flange 41 with the mounting bolt nut 44 to supply nitrogen gas for purge.
  • nitrogen gas is press-fitted from the pipe 23, and the purge discharge pipe 22 is displaced to discharge oxygen, carbon dioxide, etc. in the measuring instrument storage box 34, and then the shut-off valve 35 is opened.
  • laser distance measuring instruments 38a, 38b, 38c, 38d may be permanently installed in each displacement measuring instrument storage box 34.
  • the laser distance measuring instruments 38a, 38b, 38c, 38d may be stored in a remote control monitoring center or the like and stored in each displacement measuring instrument storage box 34 only during measurement. Yes.
  • the laser type distance measuring instruments 38a, 38b, 38c, 38d can be shared by attaching and detaching one measuring instrument as appropriate, thereby making the necessary measurements.
  • the number of vessels can be reduced.
  • the inner tank upper lid 4 through which each of the radial displacement measuring pipes 30a, 30b, 30c, 30d penetrates has a large hole (diameter D2).
  • a barrel 46 having a predetermined height for guiding the radial displacement measuring pipes 30a, 30b, 30c, 30d is attached by welding or the like.
  • the height of the barrel 46 is set such that the particulate heat insulating material 12 filled on the inner tank upper lid 4 does not enter the inner tank 1.
  • the hole D of the interior upper lid 4 and the inner diameter D2 of the barrel 46 are the radial displacement measuring pipes 30a extending through the inner tank upper lid 4 and extending to the inner side of the inner tank 1 even if the inner layer upper lid 4 contracts during the cool down. Designed in consideration of the gap so as not to contact 30b, 30c, 30d.
  • the diameter D1 of the outer diameter of the diameter displacement measuring nozzles 30a, 30b, 30c, 30d is 100 m ⁇ ⁇
  • the amount of contraction of the inner tank top cover 4 during cool-down is 60 mm
  • the diameter D2 of the inner diameter of the barrel 46 D2 Is about 800mm ⁇ .
  • the diameter D2 of the inner diameter of the barrel 46 is the radial displacement measuring pipes 30a, 30b, 30c, 30d force S, and is positioned on the radial center side of the inner tank top cover 4 in the barrel 46 before cooling down. It is preferable to make the diameter as small as possible so as to be positioned radially outward of the inner tank upper lid 4 in the barrel 46 after down.
  • a ring-shaped movable lid 47 is placed so as to be movable in the front, rear, left, right, and up directions.
  • this movable lid 47 In the center hole of this movable lid 47, radial displacement measuring pipes 30a, 30b, 30c, 30d force S are passed, and the movable lid 47 is not fixed to the measuring pipe or the barrel 46 and is free. Have a degree.
  • the diameter of the outer diameter of the movable lid 47 is about 1600 ⁇ ⁇ so that no gap is generated when the radial displacement measuring pipes 30a, 30b, 30c, 30d are moved to any position of the barrel 46.
  • Figure 4 shows the gap between the radial displacement measurement type 30a, 30b, 30c, 30d and the nore 46.
  • the pipes for radial displacement measurement 30a, 30b, 30c, and 30d have a diameter Dli up to 100 mm and a diameter 46 of the inner diameter 46. 2 is about 800mm ⁇ .
  • a mirror body enclosure 36 is attached to the lower ends of the radial displacement measuring pipes 30a, 30b, 30c, 30d.
  • a first mirror body 37 inclined by about 45 ° with respect to the vertical or horizontal direction is stored.
  • the inclination angle of the first mirror body 37 can be within a range of 45 ° ⁇ 10%.
  • the first mirror body 37 is made of stainless steel or the like, and the reflecting surface is polished in a mirror shape in order to improve the reflectivity of the laser beam.
  • a cylindrical outlet tube 40 is attached at a position facing the inner tank side wall 3 on the side surface of the mirror body housing enclosure 36 so as to face the radial direction of the inner tank 1.
  • the mirror body enclosure! /, 36 and the outlet tube 40 can be located at the middle or bottom of the inner tank side wall 3 but, as shown in FIG. It is preferable to be located above the highest liquid level of the cryogenic liquid 13 in the inner tank 1 that is preferably located.
  • the radial displacement measuring pipes 30a, 30b, 30c, 30d, the mirror body enclosure 36, and the outlet cylinder 40 are opened in the inner tank 1, and the cryogenic liquid 13 is vaporized during the measurement. However, it enters the radial displacement measuring pipes 30a, 30b, 30c, 30d.
  • Each radial displacement measuring device 26 is configured as described above, and laser light 39a, 39b, 39c, 39d irradiated with each laser type distance measuring instrument 38a, 38b, 38c, 38d is Reflected by the first mirror body 37 and reaches the inner tank side wall 3.
  • each laser type gyroscope J device 38a, 38b, 38c, 38d force, etc.
  • Measured values of displacement in the radial direction which is the distance to the inner tank side wall 3 via, La, Lb, Lc, Ld (or the first mirror surface from each laser type distance measuring device 38a, 38b, 38c, 38d
  • the measured values of the displacement in the new radial direction which is the distance from the body 37 to the inner tank side wall 3 (Lma, Lmb, Lmc, Lmd) are measured.
  • the inner surfaces of the radial displacement measuring pipes 30a, 30b, 30c, 30d, the mirror body housing enclosure 36, and the outlet tube 40 may be treated or coated with a substance so as to absorb laser light. desirable.
  • the radial displacement measurement pipes 30a, 30b, 30c, 30d, the mirror body enclosure 36, the first mirror body 37, and the outlet tube 40 are made of the same material so that they do not deform due to shrinkage differences during cool-down. It is preferable that
  • the portion irradiated with the laser light 39a, 39b, 39c, 39d on the inner tank side wall 3 need not be specially processed or treated if it is irregularly reflected! /.
  • two rotational direction displacement measuring devices 27 composed of rotational direction displacement measuring pipes 31a, 31b, laser distance measuring instruments 38e, 38f, etc. Near the periphery of the inner tank side wall 3, it is attached at an equal angle in the same horizontal plane. This equi-angle means 180 ° ⁇ 20% when there are two rotational displacement measuring devices 27.
  • the inner tank 1 is not distorted (not deformed into an ellipse or the like), it is possible to provide only one laser type distance measuring device 38e.
  • the distance Dp from the center of the outer tub upper lid 8 of each rotational direction displacement measuring device 27 is preferably the same as the mounting position of the radial direction displacement measuring device 26.
  • each rotational direction displacement measuring device 27 includes the radial direction displacement meter shown in FIG. The same shape and size as the measuring device 26, displacement measuring instrument storage box 34, laser distance measuring instruments 38e, 38f, rotational displacement measuring pipes 31a, 31b (diameter D1), pipe side flange 41, mounting bolt nut 44, Displacement measuring instrument storage box side flange 45, shutoff valve 35, mirror body storage enclosure 36, second mirror body 37 for measuring rotation direction, outlet tube 40, purge discharge pipe 22, nitrogen gas supply pipe for purge It consists of 23 mag.
  • rotational displacement measuring pipes 31a and 31b are supported by a pipe support 19 attached to the lower surface of the metal plate 48 of the outer tank upper lid 8.
  • the distance L from the lower end of the laser type distance measuring device 38e, 38f (or the pipe side flange 41) to the second mirror body 37 is the laser type distance measuring device 38e of the radial displacement measuring device 26 shown in FIG.
  • the distance L from the lower end of 38f (or! / Is the pipe side flange 41) to the mirror body 37 is the same.
  • the inner tank upper lid 4 through which each of the rotational direction displacement measuring pipes 31a and 31b penetrates has a large hole formed above the large hole.
  • a barrel 46 (diameter D2) having a predetermined height for guiding the rotational displacement measuring pipes 31a and 31b is attached by welding or the like.
  • the height of the barrel 46 is set so that the particulate heat insulating material 12 filled on the inner tank upper lid 4 does not enter the inner tank 1, as in the radial displacement measuring device 26.
  • a ring-shaped movable lid 47 having the same shape as that of the radial displacement measuring device 26 is placed so as to be movable in the front-rear direction, the left-right direction, and the up-down direction.
  • the difference from the radial displacement measuring device 26 is that the mirror body is attached so that the irradiation direction of the reflected laser light is directed to the circumferential direction of the inner tank side wall 3.
  • a vertical member 21 extending in the radial direction and the vertical direction of the inner tank side wall 3 is attached to the inner tank side wall 3 at a position facing the outlet tube 40 for each rotational direction displacement measuring device 27. .
  • Each rotational direction displacement measuring device 27 is configured as described above, and the laser beams 39e and 39f emitted from the laser distance measuring devices 38e and 38f are reflected by the second mirror bodies 37, respectively. Thus, the vertical member 21 is reached.
  • a part of the laser beams 39e and 39f irregularly reflected by the vertical member 21 passes through the exit tube 40. Then, it is reflected again by each second specular body 37 and returned to each laser type distance measuring device 38e, 38f.Thus, each laser type distance measuring device 38e, 38f passes through the first specular body 37.
  • Measured value of displacement in the rotational direction which is the distance to the vertical member 21 Le, Lf (or from each laser type distance measuring device 38a, 38b, 38c, 38d to the vertical member 21 via the first mirror body 37
  • the measured values Le and Lf of the existing rotational displacement measured by the laser distance measuring instruments 38e and 38f are stored in a tank monitoring device 70 (70a described later). ).
  • the inner tank height direction displacement measuring device 28 composed of the inner tank height direction displacement measuring pipe 32, laser type distance measuring device 38g, etc. It is attached near the periphery of the outer tank upper lid 8 and the inner tank side wall 3.
  • the distance Dp from the center of the outer tank upper lid 8 of the inner tank height direction displacement measuring device 28 is preferably the same as the mounting position of the radial direction displacement measuring device 26.
  • the inner tank height direction displacement measuring device 28 has the radial direction shown in FIG. 4 except that the mirror body housing enclosure 36, the mirror body 37 and the outlet tube 40 are not provided.
  • the pipe 32 for measuring the displacement in the height direction of the inner tank is supported by a pipe support 19 attached to the lower surface of the metal plate 48 of the outer tank upper lid 8.
  • the inner tank upper lid 4 through which the inner tank height direction displacement measuring pipe 32 penetrates has large holes, respectively.
  • the barrel 46 (diameter D having a predetermined height) that guides the pipe 32 for measuring the displacement of the inner tank in the height direction. 2) is attached by welding or the like.
  • the height of the barrel 46 is set so that the particulate heat insulating material 12 filled on the inner tank upper lid 4 does not enter the inner tank 1, as in the radial displacement measuring device 26.
  • a ring-shaped movable lid 47 having the same shape as that of the radial displacement measuring device 26 is placed so as to be movable in the front-rear and left-right directions.
  • the difference from the radial displacement measuring device 26 is that the mirror body housing enclosure! /, 36, the mirror body 37 and the exit tube 40 shown in FIG.
  • the inner tank side wall 3 includes a horizontal member 20 for measuring the displacement in the height direction of the inner tank extending in the radial direction and the horizontal direction of the inner tank side wall 3 and a pipe 32 for measuring the height displacement of the inner tank. It is attached at the opposite position.
  • the inner tank height direction displacement measuring device 28 is configured as described above, and the laser light 39 g emitted from each laser-type distance measuring device 38 g reaches the horizontal member 20.
  • a part of the laser beam 39g irregularly reflected by the horizontal member 20 returns to the laser distance meter 38g.
  • the measurement value Lg of the displacement in the height direction of the existing inner tank from each laser type distance measuring device 38g to the horizontal member 20 (or the measurement value Lmg of the displacement in the height direction of the new inner tank) is measured.
  • the measured value Lg of the displacement in the height direction of the existing inner tank measured by the laser distance measuring device 38g (or the measured value Lmg of the displacement in the height direction of the new inner tank) is stored in a tank monitoring device 70 (described later). 70a) is sent!
  • one pipe contraction correction amount measuring device 29 composed of pipe contraction correction pipe 33, laser type distance measuring instrument 38h, etc. is connected to outer tank upper lid 8 and inner tank side wall. Installed near the periphery of 3! /
  • the distance Dp from the center of the outer tub upper lid 8 of the pipe shrinkage correction amount measuring device 29 is also set to the same mounting position of the radial direction displacement measuring device 26 and the rotational direction displacement measuring device 27.
  • the pipe contraction correction amount measuring device 29 is used for correcting pipe contraction.
  • the pipe contraction correcting pipe 33 is supported by a pipe support 19 attached to the lower surface of the metal plate 48 of the outer tank upper lid 8.
  • each of the inner tank upper lids 4 through which the pipe contraction correcting pipe 33 passes has a large hole, and this Above the large hole, a barrel 46 (diameter D2) having a predetermined height for guiding the pipe contraction correcting pipe 33 is attached by welding or the like.
  • the height of the barrel 46 is the same as that of the radial displacement measuring device 26 or the rotational displacement measuring device 27 so that the particulate heat insulating material 12 filled on the inner tank upper lid 4 does not enter the inner tank 1. With a height.
  • a ring-shaped movable lid 47 having the same shape as that of the radial direction displacement measuring device 26 or the rotational direction displacement measuring device 27 is movably mounted.
  • a horizontal member 37d is placed at the lower end of the pipe in the mirror body enclosure 36 as shown in FIG. It is in the point attached to the flat.
  • the surface of the horizontal member 37d at the lower end of the pipe is reflected by a laser beam 39h that is not mirror-like.
  • the distance L from the lower end (or pipe side flange 41) of the laser distance measuring device 38h to the horizontal member 37d at the lower end of the pipe is the same as the distance L shown in FIG. 4 and the distance L shown in FIG. To do.
  • the pipe contraction correction amount measuring device 29 is configured as described above, and the laser light 39h emitted from each laser distance measuring device 38h reaches the horizontal member 37d at the lower end of the pipe. A part of the laser beam 39h irregularly reflected by the horizontal member 37d at the lower end of the pipe returns to the laser set distance measuring device 38h.
  • the measured length Lh (or the measured value Lmh of the new pipe length) from each laser type distance measuring device 38h to the horizontal member 37d at the lower end of the pipe is measured.
  • the pipe length measurement value Lh (or the new pipe length measurement value Lmh) measured by the laser distance measuring device 38h is transmitted to the tank monitoring device 70 (70a) described later. .
  • the pipe shrinkage correction amount measuring device 29 the displacement of the inner tank 1 before and after the cool-down (not only shrinkage but also radial displacement and rotational displacement) can be reliably measured. Can do.
  • FIG. 8 is a detailed side view of the radial displacement measuring device 26a or the rotational displacement measuring device 27a of the double-shell structure tank according to the second embodiment of the present invention.
  • the tank displacement measuring device includes four (at least two) radial displacement measuring devices 26a, two (at least one) rotational displacement measuring devices 27a, and In the same manner as in the first and second embodiments of the present invention, it is composed of one inner tank height direction displacement measuring device 28, one pipe contraction correction amount measuring device 29 and a tank monitoring device 70 (70a). ing.
  • the inner tank side wall 3 is provided with a horizontal member 20 for measuring the displacement of the inner tank in the height direction and two (at least one) vertical member 21 for measuring the tank rotation.
  • tank monitoring device 70 (70a) Details of the tank monitoring device 70 (70a) will be described later.
  • a radial displacement measuring apparatus 26 and a rotational displacement measuring apparatus 27 shown in FIGS. 4 and 5 are shown in FIG.
  • the radial direction displacement measuring device 26a and the rotational direction displacement measuring device 27a are omitted.
  • each radial displacement measuring device 26a includes a displacement measuring device storage box 34, laser type distance measuring devices 38a , 38b, 38c, 38d, a radial displacement measuring pipe 30a, 30 b, 30c, 30d (D1 diameter), pipe side flange 41, mounting bolt nut 44, displacement measuring instrument storage side flange 45, shut-off valve 35, mirror body 37, outlet cylinder 40, purge discharge pipe 22, purge It is composed of a nitrogen gas supply pipe 23 and the like.
  • Each rotational direction displacement measuring device 27 has the same shape and size as the radial direction displacement measuring device 26, and includes a displacement measuring device storage box 34, laser distance measuring devices 38e and 38f, and a rotational direction displacement measuring pipe 31a. 31b, pipe side flange 41, mounting bolt nut 44, displacement measuring instrument storage box side flange 45, shutoff valve 35, mirror body 37, outlet tube 40, purge discharge pipe 22, purge nitrogen gas supply pipe 23, etc. Has been.
  • the radial displacement measuring pipes 30a, 30b, 30c, 30d and the rotational displacement measuring pipes 31a, 31b are supported by a pipe support 19 attached to the lower surface of the metal plate 48 of the outer tank upper lid 8. Has been.
  • the radial displacement measuring pipes 30a, 30b, 30c, 30d and the rotational displacement measuring pipes 3la, 31b have the mirror body 37 directly at 45 ° ⁇ 20% diagonally with respect to the vertical or horizontal direction.
  • the radial displacement measuring device 26a and the rotational displacement measuring device 27a have the mirror body 37 directly at 45 ° ⁇ 20% diagonally with respect to the vertical or horizontal direction.
  • An outlet tube 40 is attached to the hole.
  • outlet tube 40 is not necessarily required, but may simply be a hole.
  • the radial displacement measuring pipes 30a, 30b, 30c, 30d, the mirror body 37, and the outlet tube 40 are preferably made of the same material so that they do not deform due to a shrinkage difference during cool-down. Yes.
  • the first embodiment of the present invention is used.
  • the structures of the radial displacement measuring pipes 30a, 30b, 30c, 30d and the rotational displacement measuring pipes 31a, 3 lb can be simplified.
  • FIG. 9 is a detailed side view of the radial displacement measuring device 26b of the double-shell structure tank according to the third embodiment of the present invention.
  • the tank displacement measuring device includes one radial displacement measuring device 26b, two (at least one) rotational displacement measuring devices 27, 27a, and one inner tank.
  • the height direction displacement measuring device 28, one pipe contraction correction amount measuring device 29 and a tank monitoring device 70 are included.
  • the inner tank side wall 3 is provided with a horizontal member 20 for measuring the displacement of the inner tank in the height direction and two (at least one) vertical member 21 for measuring the tank rotation.
  • tank monitoring device 70 Details of the tank monitoring device 70 will be described later.
  • the difference from the tank displacement measuring apparatus according to the first and second embodiments of the present invention is that the radial displacement measuring apparatus 26 is used to measure a plurality of radial displacements as shown in FIG.
  • One radial displacement measuring device 26b is possible.
  • the force is described in the case of measuring four directions as an example.
  • the measurement can be similarly performed in the case of measuring in two directions, three directions or more than five directions.
  • rotational direction displacement measuring device 27, 27a (see Fig. 5 and Fig. 9), inner tank height direction displacement measuring device 28 (see Fig. 6), pipe shrinkage correction amount measuring device 29 (see Fig. 7) ) And the like are the same as those in the first and second embodiments of the present invention.
  • the radial displacement measuring device 26b has one displacement measuring instrument storage box.
  • the radial displacement measuring pipe 30 is supported by a pipe support 19 attached to the lower surface of the metal plate 48 of the outer tank upper lid 8.
  • the four laser-type distance measuring instruments 38a, 36b, 36c, 36d are stored in one displacement measuring instrument storage box 34.
  • the four mirror bodies 37 are also attached in the shape of a quadrangular pyramid in one mirror body housing enclosure 36.
  • Outlet tubes 40 are attached to the four side surfaces of the mirror body storage enclosure 36, respectively.
  • the outlet tube 40 is not necessarily required, but may simply be a hole.
  • the radial displacement measuring device 26b has the laser light 39a, 39b, 39c, 39d force emitted from the outlet tube 40, respectively, and the cryogenic fluid loading / unloading pipe 15 shown in FIGS. Installed at a position where it does not interfere with the measurement pipe.
  • the diameter D3 of the radial displacement measuring pipe 30 is preferably about 200 mm.
  • the inner diameter D4 of the barrel 46 is about 900 mm ⁇ .
  • the radial displacement measurement is performed 1 for the first and second embodiments of the present invention. Since it can be integrated into the individual radial displacement measuring device 26b, there is an advantage that the mounting becomes easy.
  • FIG. 10 is a detailed side view of the radial displacement measuring device 26c of the double-shell structure tank according to the fourth embodiment of the present invention.
  • the tank displacement measuring device includes one radial displacement measuring device 26c, two (at least one) rotational displacement measuring devices 27, 27a, and one inner tank.
  • the height direction displacement measuring device 28, one pipe contraction correction amount measuring device 29 and a tank monitoring device 70 are included.
  • the radial displacement measuring pipe 30 is supported by a pipe support 19 attached to the lower surface of the metal plate 48 of the outer tank upper lid 8.
  • the inner tank side wall 3 is provided with a horizontal member 20 for measuring the displacement of the inner tank in the height direction and two (at least one) vertical member 21 for measuring the tank rotation.
  • tank monitoring device 70 Details of the tank monitoring device 70 will be described later.
  • a difference from the tank displacement measuring apparatus (see FIG. 9) according to the third embodiment of the present invention is that the radial displacement measuring apparatus 26 is replaced with a displacement measuring instrument storage box as shown in FIG. 34 is a point where one laser set distance measuring device 38 and a laser beam path changing device 43 are accommodated.
  • the radial displacement measuring device 26c includes one displacement measuring device storage box 34, one laser distance measuring device 38, a laser beam path changing device 43, a radial displacement.
  • Pipe 30 for measurement Nove side flange 41, Mounting bolt nut 44, Displacement measuring instrument storage box side flange 45, Shut-off valve 35,
  • a laser light transmission pressure-resistant plate 42 capable of transmitting laser light is attached by a mounting bolt nut 44.
  • a displacement measuring instrument storage box 34 having a displacement measuring instrument storage box side flange 45 is connected to the upper surface of the laser light transmission pressure-resistant plate 42.
  • one laser distance measuring instrument 38 and a laser beam path changing instrument 43 for changing the optical path of the laser beam emitted from the laser distance measuring instrument 38 are stored.
  • the laser beam path changer 43 may be constituted by, for example, two reflecting plates, and the two reflecting plates may be turned by a turning device (not shown).
  • the laser type distance measuring device 38 may have a structure in which the direction of the laser type distance measuring device 38 is changed by a driving device (not shown).
  • the laser type is further different from that of the third embodiment (see Fig. 9) of the present invention.
  • the number of distance measuring devices 38 can be reduced.
  • FIG. 11 is a detailed side view of the radial displacement measuring device 26d for the double-shell structure tank according to the fifth embodiment of the present invention.
  • the tank displacement measuring device includes one radial displacement measuring device 26d, two (at least one) rotational displacement measuring devices 27, 27a, and one inner tank.
  • the height direction displacement measuring device 28, one pipe contraction correction amount measuring device 29 and a tank monitoring device 70 are included.
  • the inner tank side wall 3 is provided with a horizontal member 20 for measuring the displacement of the inner tank in the height direction and two (at least one) vertical member 21 for measuring the tank rotation.
  • tank monitoring device 70 Details of the tank monitoring device 70 will be described later.
  • the difference from the tank displacement measuring device (see FIG. 9) according to the third embodiment of the present invention is that the radial displacement measuring device 26d is replaced with a displacement measuring device storage box as shown in FIG.
  • One laser distance measuring instrument 38 is eccentrically stored in 34.
  • the radial displacement measuring device 26d includes one displacement measuring device storage box 34 and one laser type distance measuring device 38, and the third embodiment of the present invention.
  • the outlet tube 40 is not necessarily required, and it may be a simple hole.
  • a displacement measuring instrument storage box 34 is attached by a mounting bolt nut 44.
  • one laser type distance measuring instrument 38 is stored eccentrically.
  • the displacement measuring instrument storage box side flange 45 of the displacement measuring instrument storage box 34 is attached to the pipe side flange 41 by the mounting bolt nut 44 at the positions of 0 °, 90 °, 180 ° and 270 °. Has become possible.
  • the laser beam path is further changed from that of the fourth embodiment (see Fig. 10) of the present invention. There is an advantage that it is possible to omit the vessel 43.
  • FIG. 12 is a detailed side view of the radial and rotational displacement measuring device 26e of the double-shell structure tank according to the sixth embodiment of the present invention.
  • the tank displacement measuring device includes two radial displacement measuring devices 26e that also serve to measure two rotational displacements, and two rotational displacement measuring devices 27, 27a, and one The inner tank height direction displacement measuring device 28, one pipe contraction correction amount measuring device 29, and a tank monitoring device 70 (70a).
  • a horizontal member 20 for measuring the displacement in the height direction of the inner tank and two vertical members 21 for measuring the rotation of the tank are attached to the inner tank side wall 3.
  • tank monitoring device 70 (70a) Details of the tank monitoring device 70 (70a) will be described later.
  • the difference from the tank displacement measuring devices (see Figs. 1 to 8) according to the first and second embodiments of the present invention is that four radial displacement measuring devices 26a, 26b, 26c, 26d Of these, for example, two radial displacement measuring devices 26 can be used to measure the rotational displacement as shown in FIG. The direction and rotation direction displacement measuring device 26e is used.
  • the radial direction displacement measuring device 26 e which is also a rotational direction displacement measuring type, includes one displacement measuring instrument storage box 34 and one laser type distance measuring instrument 38.
  • radial / rotational displacement measuring pipe 30e is supported by a pipe support 19 attached to the lower surface of the metal plate 48 of the outer tank upper lid 8.
  • the outlet tube 40 is not necessarily required, but may simply be a hole.
  • the diameter D5 of the radial / rotational displacement measuring pipe 30e is preferably about 150 mm.
  • the inner diameter D6 of the barrel 46 can be about 850 mm ⁇ .
  • a displacement measuring instrument storage box 34 is attached to the upper surface of the nove side flange 41 with mounting bolts and nuts 44.
  • one laser type distance measuring instrument 38 is stored eccentrically.
  • the displacement measuring instrument storage box side flange 45 of the displacement measuring instrument storage box 34 is positioned at 0 °, 90 ° (or 0 °, 180 °) with respect to the pipe side flange 41 by the mounting bolt nut 44. It can be attached.
  • the displacement measuring instrument storage box side flange 45 When the displacement measuring instrument storage box side flange 45 is connected to the pipe side flange 41 at a position of 90 ° (or 180 °), the laser beam 39e reflected by the mirror body 37b Since the vertical member 21 for measuring the rotation of the shaft is irradiated, the displacement in the rotational direction is measured.
  • the measured values Lb and Ld of the existing radial displacement, the measured values Le and Lf of the existing rotational displacement, or the new radial direction Displacement measurement (Lmb, Lmd, Lme, Lmf) is measured.
  • the measured values La, Lc of the existing radial displacement are the same as in the first embodiment. Is measured. These measured values are transmitted to a tank monitoring device 70 (70a) described later.
  • the rotation measuring device 27 dedicated to the rotational direction displacement measuring apparatus 27 is different from that of the third embodiment of the present invention
  • Direction Displacement measurement pipes 31a and 31b have the advantage that they can be omitted.
  • FIG. 13 is a detailed side view of the radial displacement and pipe contraction correction amount measuring apparatus of the double-shell structure tank according to the seventh embodiment of the present invention.
  • the tank displacement measuring device includes a radial displacement / pipe shrinkage correction amount measuring device 26f that also serves to measure one pipe shrinkage correction amount, and three rotational direction displacement measuring devices. 27, 27a, It consists of one inner tank height direction displacement measuring device 28 and tank monitoring device 70.
  • a horizontal member 20 for measuring the displacement in the height direction of the inner tank and two vertical members 21 for measuring the rotation of the tank are attached to the inner tank side wall 3.
  • tank monitoring device 70 Details of the tank monitoring device 70 will be described later.
  • the difference from the tank displacement measuring devices (see Figs. 1 to 8) according to the first and second embodiments of the present invention is that four radial displacement measuring devices 26a, 26b, 26c, 26d Among them, for example, one radial displacement measuring device 26d is used as a radial displacement and pipe shrinkage correction amount measuring device 26f that also serves to measure the pipe shrinkage correction amount as shown in FIG.
  • the displacement measuring device 28 (see FIG. 6) and the like are the same as those in the first and second embodiments of the present invention.
  • the radial displacement measuring device 26f that also measures the pipe contraction correction amount includes one displacement measuring device storage box 34, one laser type distance measuring device 38, and The laser beam path changer 43 shown in Fig. 10, the radial displacement and pipe contraction correction amount measuring pipe 30 f, the pipe side flange 41, the mounting bolt nut 44, the displacement measuring instrument storage box side flange 45, the cutoff valve 35, 1
  • radial displacement and pipe contraction correction amount measuring pipe 30f is supported by a pipe support 19 attached to the lower surface of the metal plate 48 of the outer tank upper lid 8.
  • the outlet tube 40 is not necessarily required, but may simply be a hole.
  • the diameter D5 of the radial displacement and pipe contraction correction amount measuring pipe 30f is preferably about 150 mm.
  • the inner diameter D6 of the barrel 46 can be about 850 mm ⁇ .
  • the laser light 39d positioned on the right side of the radial displacement and pipe contraction correction amount measuring pipe 30f is reflected by the mirror body 37c at the lower end of the inclined pipe and applied to the inner tank side wall 3. Therefore, the radial displacement is measured.
  • the other three radial displacement measuring devices 26 measure the measured values La, Lb, and Lc of the existing radial displacement (or the measured values Lma, Lmb, and Lmc of the new radial displacement).
  • the pipe contraction correction amount measuring apparatus 29 is different from that of the first and second embodiments of the present invention. There is an advantage that the dedicated pipe shrinkage compensation pipe 33 can be omitted.
  • the pipe contraction correction amount measurement is performed by providing a dedicated laser-type distance measuring device 38h before and after the cool-down. Correct the amount of expansion / contraction of the pipe contraction correction pipe 33!
  • thermometer instead of the laser-type distance measuring device 38h, a multi-pair thermometer is installed on the inner surface of the pipe contraction correction pipe 33 for each lm, and the constant The temperature of the interval is monitored, and the pipe contraction amount is corrected by calculating the contraction amount of the pipe contraction correction pipe 33 in the vicinity of each thermometer based on the measured temperature of each thermometer. Is.
  • FIG. 14 is a partial cross-sectional side view of a radial displacement measuring device for a double-shell structure tank according to a ninth embodiment of the present invention.
  • FIG. 15 is an enlarged view of part A in FIG.
  • FIG. 16 is a plan view of a rotational direction displacement measuring device for a double-shell structure tank according to a ninth embodiment of the present invention.
  • FIG. 17 is a partial cross-sectional side view of the height direction displacement measuring device for the inner tank of the double-shell structure tank according to the ninth embodiment of the present invention.
  • FIG. 18 is an enlarged view of part B in FIG.
  • the tank displacement measuring device has four (at least two) radial displacement measuring devices 50 as in the first embodiment of the present invention. 2 (at least 1) rotational direction displacement measuring device 51, 1 inner tank height direction displacement measuring device 52 and Consists of tank monitoring device 70 (70a)!
  • the pipe for each measuring device is located between the inner tank side wall 3 and the outer tank 5 (the outer surface side of the inner tank side wall 3).
  • the particulate heat insulating material 12 etc. is filled between the inner tank side wall 3 and the outer tank 5, the temperature around each pipe is negligible for the contraction amount of the pipe where the temperature difference is almost the same as the temperature of the outside air. it can.
  • the pipe contraction correction amount measuring device 29 in the first embodiment of the present invention is not necessary.
  • connection pipe that connects each measurement position and the measurement pipe is provided.
  • the overall structure of the double-shell structure tank is the same as that of the first embodiment of the present invention.
  • radial displacement measuring device 50 As shown in FIG. 14, four radial displacement measuring devices 50 constituted by radial displacement measuring pipes 55a, 55b, 55c, 55d, laser distance measuring instruments 38a, 38b, 38c, 38d, etc. However, the metal plate 48 on the inner surface of the outer tank 5 and the inner tank side wall 3 are attached at equal angles on the same horizontal plane.
  • Each radial displacement measuring device 50 includes a displacement measuring instrument storage box 34, laser distance measuring instruments 38a, 38b, 38c, 38d, radial displacement measuring type 55a, 55b, 55c, 55d, laser transmission / reception.
  • Each of the radial displacement measuring pipes 55a, 55b, 55c, 55d extends through the outer tank upper lid 8 and the airtight metal plate 48, extends in the vertical direction, and the metal plate 48 on the inner surface of the outer tank 5 And the inner tank side wall 3 so as to pass between the inner tank side wall 3 and the inner tank side wall 3.
  • seals (not shown) are installed so that natural gas that should keep airtightness does not leak to the outside where the outer tank top lid 8 and the airtight metal plate 48 penetrate. Materials are provided!
  • the lower part of the radial displacement measuring pipe 55a, 55b, 55c, 55d is supported by a pipe plate 61 that extends horizontally in the direction of the center of the tank.
  • the tank center side of the mirror body enclosure 59 is fixed to the outlet pipe 62 fixed to the side surface of the mirror body enclosure 59, and both ends are fixed to the outlet pipe 62 and the outer surface of the inner tank side wall 3 as the connection pipe described above.
  • the inner tank wall connecting bellows 63 is connected to the outer surface of the inner tank side wall 3 so that it can cope with the deformation of the inner tank 1 in the radial direction and the rotation direction.
  • Each radial displacement measuring device 50 is configured as described above, and each laser type distance measuring device 38a, 38b, 38c, 38d is irradiated with laser light 39a, 39b, 39c, 39d.
  • the light is reflected by the mirror body 60, passes through the outlet pipe 62 and the inner tank wall connecting bellows 63, and reaches the outer surface of the inner tank side wall 3.
  • the radial displacement measurement values measured by the laser-type distance measuring devices 38a, 38b, 38c, and 38d for radial displacement measurement are transmitted to the tank monitoring device 70 (70a) as described later. It has become.
  • two rotational direction displacement measuring devices 51 constituted by a rotational direction displacement measuring pipe (not shown), laser type distance measuring devices 38e, 38f, etc. are connected to a metal plate on the inner surface of the outer tub 5.
  • 48 and the inner tank side wall 3 are mounted at the same angle (180 ° ⁇ 20%) in the same horizontal plane.
  • two vertical members 69 for tank rotation measurement are attached to the outer surface of the inner tank side wall 3.
  • the other configuration is the same as that of the radial displacement measuring device 50 except that one end of the inner tank wall connecting bellows is fixed to the vertical member 69.
  • Each rotational direction displacement measuring device 51 is configured as described above, and the laser beams 39e and 39f emitted from the laser type distance measuring devices 38e and 38f are reflected by the mirror bodies to be a vertical member. Reach 69.
  • the measurement value of the rotational displacement measured by the laser type distance measuring devices 38e and 38f is transmitted to a tank monitoring device 70 (70a) described later.
  • the inner tank height direction displacement measuring device 52 composed of the inner tank height direction displacement measuring pipe 57, the laser distance measuring device 38g, etc. And through the metal plate 48 and attached along the inside of the outer tank side wall 7.
  • the distance from the center of the outer tank upper lid 8 of the inner tank height direction displacement measuring device 52 is preferably the same as the mounting position of the radial direction displacement measuring device 50.
  • Inner tank height direction displacement measuring device 52 is composed of a displacement measuring instrument storage box 34, a laser type distance measuring device 38g, an inner tank height direction displacement measuring pipe 57, a pipe side flange 41, and a mounting bolt nut 44.
  • a horizontal member support leg 64 extending upward is attached to the outer upper portion of the inner tank side wall 3, and a horizontal member 65 for measuring the displacement in the height direction of the inner tank is attached to the upper end of the horizontal member support leg 64. Is installed.
  • the inner tank height direction displacement measuring pipe 57 and the inner tank height direction displacement measuring pipe 57 The member 65 is connected by a horizontal member connecting bellows 66.
  • the inner tank height direction displacement measuring device 52 is configured as described above, and the laser light emitted from each laser-type distance measuring device 38g is a horizontal member for measuring the inner tank height direction displacement. Reach 65.
  • the measured value Lg of the displacement in the height direction of the inner tank from the laser type distance measuring device 38g to the horizontal member 65 for measuring the displacement in the height direction of the inner tank is measured.
  • the measurement Lg of the displacement in the height direction of the existing tank measured by the laser distance measuring device 38g is transmitted to the tank monitoring device 70 (70a) described later.
  • FIG. 19 is a partial sectional side view of a radial displacement measuring device for a double-shell structure tank according to a tenth embodiment of the present invention.
  • FIG. 20 is an enlarged view of part A in FIG.
  • the tank displacement measuring device includes two (at least two) radial displacement measuring devices 50a and 2 in the same manner as the ninth embodiment of the present invention. It consists of one (at least one) rotation direction displacement measuring device 51, one inner tank height direction displacement measuring device 52, and tank monitoring device 70 (70a).
  • the pipe for each measuring device is connected between the inner tank side wall 3 and the outer tank 5 as the aforementioned connecting pipe (
  • the outer tank 5 is provided near the outer tank 5 on the outer surface side of the inner tank side wall 3.
  • radial displacement measuring devices 50a composed of radial displacement measuring pipes 55a, 55b, 55c, 55d, laser-type distance measuring instruments 38a, 38b, 38c, 38d, etc.
  • radial displacement measuring pipes 55a, 55b, 55c, 55d laser-type distance measuring instruments 38a, 38b, 38c, 38d, etc.
  • Each radial displacement measuring device 50a includes a displacement measuring instrument storage box 34, a laser distance measuring instrument 3 8a, 38b, 38c, 38d, radial displacement measurement type 55a, 55b, 55c, 55d, pipe side flange 41, mounting bolt nut 44, displacement measuring instrument storage box side flange 45 , A shutoff valve 35, a mirror body enclosure 59, a mirror body 60 for displacement measurement, an outlet pipe 62, an inner tank wall side thick pipe 67, a seal rubber 68, and the like.
  • Each of the radial displacement measuring pipes 55a, 55b, 55c, 55d extends vertically through the outer tank upper lid 8 and the airtight metal plate 48, and the metal plate 48 on the inner surface of the outer tank 5 And the inner tank side wall 3 so as to pass between the outer tank side wall 7 and the inner tank side wall 3.
  • seals are installed so that natural gas that should keep airtightness does not leak to the outside where the outer tank top lid 8 and the airtight metal plate 48 penetrate. Materials are provided!
  • the lower part of the radial displacement measuring pipe 55a, 55b, 55c, 55d is supported by a pipe plate 61 that extends horizontally in the direction of the center of the tank.
  • the tank central side surface of the mirror body storage enclosure 59 has an outlet pipe 62 fixed to the side surface of the mirror body storage enclosure 59, an inner tank side wall 3 having a diameter larger than the inner tank side wall 3 and fixed to the outer surface. It is connected to the outer surface of the inner tank side wall 3 by a wall-side thick pipe 67 so that it can cope with the deformation of the inner tank 1 in the radial direction and the rotation direction.
  • a cylindrical seal rubber 68 is interposed between the outlet pipe 62 and the inner tank wall side thick pipe 67.
  • FIG. 21 is a block diagram of a first example of the tank monitoring device in each embodiment of the present invention.
  • the tank monitoring device of the first example includes the first embodiment (see FIGS. 1 to 7), the second embodiment (see FIG. 8), and the sixth embodiment (see FIG. 12).
  • the seventh embodiment see FIG. 13
  • the eighth embodiment the ninth embodiment
  • the tenth embodiment see FIGS. 19 and 20 Applicable to
  • radial displacement measuring devices 26, 26a, 26e, 26f, 50, 50a installed at four equal intervals (90 ° ⁇ several%), two equal intervals (180 ° ⁇ several) %)
  • Rotational direction displacement meter Measuring device 27, 26e, 51, one inner tank height direction displacement measuring device 28, 52, and one pipe shrinkage correction amount measuring device 29 (or! / Or thermometer) are required. .
  • the tank monitoring device 70a includes an expansion / contraction amount calculator 82, a center position calculator.
  • each laser type distance measuring device 38a, 38b, 38c, 38d The distance from each laser type distance measuring device 38a, 38b, 38c, 38d to the inner tank side wall 3 via the first specular body 37 at each laser type distance measuring device 38a, 38b, 38c, 38d of 26d
  • the measured values La, Lb, Lc, and Ld of the radial displacement are measured.
  • the measured values La, Lb, Lc, and Ld of the four measured radial displacements are displayed on the machine-side display 81, as well as the center position calculator 83, the abnormal value detector 85, and the display of the tank monitoring device 70a.
  • the measured values La and Lc of the radial displacement are assumed to be the y direction, and the measured values Lb and Ld of the radial displacement are assumed to be the x direction.
  • the center position calculator 83 the X direction displacement and the y direction displacement of the center O of the inner tank 1 are calculated by the following equations.
  • the calculated radial displacement ( ⁇ , Ay) is transmitted to the rotation direction calculator 84, the abnormal value detector 85, and the display / recorder 87.
  • the abnormal value detector 85 when the displacement of the center O ( ⁇ , Ay) becomes an allowable value abnormality, it is determined as abnormal and the alarm indicator lamp 86 is turned on.
  • the measured values La, Lb, Lc, and Ld of each radial displacement are from the laser distance measuring instruments 38a, 38b, 38c, 38d to the inner tank side wall 3 via the first mirror body 37 as described above.
  • the distance from each laser set distance measuring device 38a, 38b, 38c, 38d to each first mirror body 37 The distance to each other is canceled out, and only the difference in distance from each first mirror body 37 to each inner tank side wall 3 is obtained.
  • each laser of the two rotational direction displacement measuring devices 27 shown in Fig. 1, Fig. 2, Fig. 3, and Fig. 5 The set distance measuring instruments 38e and 38f measure the rotational displacements Le and Lf, which are the distances from the laser distance measuring instruments 38e and 38f to the vertical members 21 via the first mirror 37. It is measured.
  • the measured values Le and Lf of the two measured rotational displacements are displayed on the machine-side display 81 and transmitted to the pipe length corrector 71 of the tank monitoring device 70a.
  • the pipe length measurement value Lh is measured by the laser distance measuring device 38h of the pipe contraction correction amount measuring device 29 shown in FIGS. 1, 2, and 7.
  • the measurement value Lh of the measured pipe length is displayed on the machine-side display 81 and is transmitted to the pipe length corrector 71 and the display / recorder 87 of the tank monitoring device 70a.
  • the temperature measured by the multi-pair thermometer 80 installed for each lm on the inner surface of the pipe contraction correction pipe 33 is displayed on the machine-side display 81 and tank monitoring It is transmitted to the expansion / contraction amount calculator 82 and the display / recorder 87 of the device 70a.
  • the expansion / contraction amount calculator 82 calculates the pipe length measurement value Lh of the rotational direction displacement measurement pipes 31a and 31b based on the measured temperature, and transmits it to the pipe length corrector 71 and the display / recorder 87. .
  • the Neupe length corrector 71 calculates two rotational displacements A Le and A Lf according to the following equation.
  • the calculated rotational displacements A Le and A Lf are transmitted to the rotation direction calculator 84, the abnormal value detector 85, and the display / recorder 87.
  • the rotational direction displacement amount ⁇ (rotational angle) is calculated by the following equation based on the rotational displacement A Le and the rotational displacement A Lf
  • the Rotational displacement ⁇ ⁇ tan _ 1 ((A Le + A Lf) / Dt) (Equation 3)
  • the calculated rotational displacement ⁇ is transmitted to the abnormal value detector 85 and the display / recorder 87.
  • FIG. 22 is an explanatory diagram showing the measurement principle of the second example of the tank monitoring device in each embodiment of the present invention.
  • FIG. 23 is a block diagram of a tank monitoring apparatus of a second example of the tank monitoring apparatus in each embodiment of the present invention.
  • the second example of the tank monitoring device 70 can be applied to the first to tenth embodiments.
  • the tank monitoring device for automatic calculation will be described below.
  • the tank monitoring device 70 includes a pipe length corrector 71, an inner tank side wall position calculator 72, a center position calculator 73, a radial displacement calculator 74, and a vertical member position calculator. 75, a center position corrector 76, a rotation direction displacement calculator 77, a storage device 78a, a recording device 78b, and a display device 79.
  • the storage device 78a, the recording device 78b, and the display device 79 can be shared with the discharge pump control device 90, the tank temperature, and various circuits for monitoring the LNG level.
  • At least the following common data is input to the storage device 78a in advance by input means (not shown) for measuring the displacement of the double-shell structure tank, and stored in a predetermined memory area of the storage device 78a. It is.
  • Each laser type distance measuring instrument 38, 38a, 38b, 38c, 38d, 38e, 38f, 38g, 38h Laser light 39a, 39b, 39c, 39d, 39e, 39f, 39g, 39h (Coordinate)
  • the common data described above may be set in advance as a constant in a program or the like.
  • the origin of the coordinates may be the existing center point 0 of the inner tank side wall 3 or the center point of the outer tank 5.
  • the above ;;) to 6) data are before the cool-down (when the construction of the double-shell structure tank is completed).
  • the recorder 78b is provided with a memory area for storing a plurality of sets of the following measurement data.
  • the measured value Lh of the existing pipe length or the measured value Lmh of the new pipe length is transmitted to the pipe length corrector 71 shown in FIG.
  • the pipe temperature is input to the pipe length calculator 88, and the measured value Lh of the existing pipe length or the measured value Lmh of the new pipe length is calculated by the noise length calculator 88, and the pipe length corrector 7 1 Sent to.
  • the radial displacement measuring devices 26, 26a, 26b, 26c, and 26d shown in FIGS. 1, 2, 3, and 4 are each a laser type ij device 38a, 38b, 38c , 38di trowel, Fig. 22 ⁇ Measured values of radial displacement at the measured positions Pa, Pb, Pc, Pd La, Lb, Lc, Ld or new diameters at the new measured positions Pma, Pmb, Pmc, Pmd Measured values of directional displacement Lma, Lmb, L mc, and Lmd are measured.
  • the measured values La, Lb, Lc, Ld of the measured radial displacement or the measured values Lma, Lmb, Lmc, Lmd of the new radial displacement are transmitted to the pipe length corrector 71 shown in FIG.
  • the inner tank side wall position calculator 72 includes the storage device 78a, the center positions (coordinates) of the laser beams 39a, 39b, 39c, and 39d of the laser distance measuring devices 38a, 38b, 38c, and 38d, First mirror Data of the irradiation direction (irradiation angle) of each laser beam 39a, 39b, 39c, and 39d reflected by the face 37 is input.
  • the measured positions Pa, Pb, and the like in the inner tank side wall 3 irradiated with the respective laser beams 39a, 39b, 39c, and 39d by a geometric calculation method based on these various data.
  • the calculated measurement positions Pa, Pb, Pc, Pd (coordinates) or new measurement positions Pma, Pmb, Pmc, Pmd (coordinates) are transmitted to the center position calculator 73.
  • the calculated measurement positions Pa, Pb, Pc, Pd (coordinates) or the new measurement positions Pma, Pmb, Pmc, Pmd (coordinates) are recorded directly or via the center position calculator 73 described later. It is also sent and recorded in device 78b.
  • the center position calculator 73 uses a geometric calculation method based on the received measured positions Pa, Pb, Pc, Pd (coordinates) or the new measured positions Pma, Pmb, Pmc, Pmd (coordinates).
  • the existing center position O (coordinates) or new center position Om (coordinates) of the tank side wall 3 is calculated.
  • the calculated center position O or! / Of the inner tank side wall 3 and the new center position Om are transmitted to the radial displacement calculator 74.
  • the calculated center position O or new center position Om of the inner tank side wall 3 is also transmitted to and recorded in the recorder 78b via the direct or radial displacement calculator 74.
  • the existing center position 0 (coordinates) is calculated, transmitted to the recorder 78b, and terminated when stored together with the measurement date.
  • the measured values and measured positions are the previous or first ones. Which measurement date is used as the measured values and measured positions? This is input by the tank monitoring device 70.
  • the radial displacement calculator 74 compares the existing center position 0 (coordinates) transmitted from the storage device 78a with the new center position Om (coordinates) transmitted from the center position calculator 73 to obtain the center.
  • the amount of position change ⁇ Om (direction and displacement) is calculated.
  • the calculated center position change amount ⁇ is transmitted to the recorder 78b and recorded.
  • the calculated center position change amount A Om is also transmitted to the center position corrector 76 described later. Is done.
  • the pipe length compensator 71 includes the laser type distance measuring devices 38e and 38f of the rotational direction displacement measuring devices 27 shown in FIGS. 1, 2, 3, and 5, respectively.
  • the measured values Le and Lf of the existing rotational direction displacement at the existing measured positions Pe and Pf shown in Fig. 5 or the measured values Lme and Lmf of the new rotational direction displacement at the new measured positions Pme and Pmf are measured.
  • the measured values Le and Lf of the measured rotational direction displacement or the measured values Lme and Lmf of the new rotational direction displacement are transmitted to the pipe length corrector 71 shown in FIG.
  • the measured value Le, Lf of each existing rotational direction displacement or the measured value Lme, Lmf of the new rotational direction displacement is used to calculate the measured value Lh of the existing pipe length or the measured value L mh of the new pipe length.
  • the already-rotated direction distances A Le, A Lf or new rotation direction distances A Lme, A Lm f which are the distances from each second mirror body 37 to the vertical member 21 for tank rotation measurement, are calculated.
  • the calculated rotation direction distances A Le and A Lf or the new rotation direction distances A Lme and A Lmf are transmitted to the vertical member position calculator 75.
  • the measured values Le, Lf or the measured values of the new rotational direction displacement Lme, Lmf, the calculated rotational direction distances ⁇ Le, ⁇ Lf, or the new rotational direction distances ⁇ Lme, A Lmf are Then, the data is transmitted and recorded in the storage device 78b via the direct or vertical member position calculator 75 or the like.
  • the vertical member position calculator 75 includes, from the storage device 78a, the center positions (coordinates) of the laser beams 39e and 39f of the laser distance measuring devices 38e and 38f shown in FIG. Data on the irradiation direction (irradiation angle) of each reflected laser beam 39e, 39f is input.
  • the vertical member position calculator 75 uses the geometric calculation method based on these data to perform the apparent rotation shown in FIG. 22 in the vertical member 21 for measuring the tank rotation irradiated with the laser beams 39e and 39f.
  • the measurement positions Pe and Pf (coordinates) or the apparent new measurement positions Pme and Pmf (coordinates) are calculated.
  • the me and Pmf (coordinates) are also transmitted and recorded to the recorder 78b via the direct or center position corrector 76 and the like.
  • the process ends when it is stored together with the date of measurement.
  • the apparent measured positions Pe and Pf (coordinates) or the apparent new measured positions Pme and Pmf (coordinates) transmitted from the vertical member position calculator 75 are calculated by radial displacement.
  • the true existing measurement positions Pe and Pf (coordinates) or the true new measurement positions Pme and Pmf (coordinates) are calculated.
  • the calculated true measured positions Pe and Pf (coordinates) or the true new measured positions Pme and Pmf (coordinates) are transmitted to the rotational direction displacement calculator 77.
  • the calculated true measured position Pe, Pf (coordinate) or the true new measured position Pme, Pmf (coordinate) is also sent directly to the recorder 78b via the rotational displacement calculator 77 or the like. And recorded.
  • the rotational direction displacement calculator 77 calculates (rotation angle).
  • the calculated rotational displacement ⁇ (rotation angle) is transmitted to the recorder 78b and recorded.
  • the radial displacement, the rotational displacement, and the like of the inner tank side wall 3 are displayed digitally or graphically based on the above-mentioned various measured values and calculated values.
  • the diameter of the inner tank side wall 3 is 80 m (80000 mm), whereas the radial displacement and the rotational displacement are several hundred mm.
  • the amount when the amount is displayed graphically, it is possible to visually confirm that the amount has changed by displaying the amount of displacement in the radial direction and the amount of displacement in the rotational direction by, for example, enlarging the amount by 10 times.
  • a pressure-resistant double shell tank for storing pressure fluid other than for storing cryogenic liquefied natural gas (LNG).
  • LNG cryogenic liquefied natural gas
  • the liquefied natural gas storage facility may be provided with a plurality of storage tanks, a force S in which a re-liquefaction device for vaporized natural gas is installed, and tank monitoring devices 70 in a distributed manner for each tank. It can also be used in underground double shell tanks.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

[PROBLEMS] A problem with a conventional double sell structure tank unit is that relative displacement or rotation of the inner tank with respect to the outer tank cannot be monitored upon occurrence of a big earthquake. [MEANS FOR SOLVING PROBLEMS] The double shell structure tank unit is provided, in a double shell structure tank having an outer tank and an inner tank, with a device for measuring radial displacement penetrating the upper portion of the outer tank, a shut-off valve provided at the device for measuring radial displacement on the outside of the outer tank, and an attachment/detachment seat for a laser transmitter/receiver provided at the upper end of the device for measuring radial displacement. Upon occurrence of a big earthquake, displacement of the inner tank with respect to the outer tank is measured and the position of the inner tank after displacement can be specified.

Description

明 細 書  Specification
変位計測装置を備えた二重殻構造タンク装置、及びタンク設備  Double shell structure tank device with displacement measuring device and tank equipment
技術分野  Technical field
[0001] 本発明は、例えば液化天然ガス (LNG)等を貯蔵する大容量の二重殻構造タンク におけるタンクの変位計測装置を備えた二重殻構造タンク装置、及びタンク設備に 関するものである。  TECHNICAL FIELD [0001] The present invention relates to a double-shell structure tank device including a tank displacement measuring device in a large-capacity double-shell structure tank that stores, for example, liquefied natural gas (LNG) and the like, and a tank facility. .
背景技術  Background art
[0002] LPG (liquefied petroleum gas:液化石油ガス)、 LNG (liquefied natural g as :液化天然ガス)等を貯蔵するタンクとして、種々の構造のものが提案、製造されて いる。  [0002] Tanks of various structures have been proposed and manufactured as tanks for storing LPG (liquefied petroleum gas), LNG (liquefied natural gas), and the like.
例えば、特許文献 1に記載されたものは、外槽と内槽とから成る二重殻構造とした低 温液化ガスタンクの周囲に、大型の地震が発生したような場合に、万一、前記低温液 化ガスタンクが破損して低温液化ガスの漏出が発生したとしても、周辺環境の汚染等 の二次災害を未然に防止し得るよう防液堤が設けられている。  For example, what is described in Patent Document 1 is that if a large earthquake occurs around a low-temperature liquefied gas tank with a double shell structure consisting of an outer tank and an inner tank, the low temperature Even if the liquefied gas tank breaks and the leakage of low-temperature liquefied gas occurs, a breakwater is provided to prevent secondary disasters such as contamination of the surrounding environment.
また、特許文献 2に記載されたものは、コンクリート製の外槽内に、低温液化ガスを貯 留し得るようにした金属板製の内槽と、該内槽から漏洩した低温液化ガスを受けるた めの金属板製の受け槽とを備えている。  In addition, what is described in Patent Document 2 receives an inner tank made of a metal plate that can store a low-temperature liquefied gas in an outer tank made of concrete, and a low-temperature liquefied gas leaked from the inner tank. And a metal plate receiving tank.
このような二重殻構造のタンク装置において、大型の地震が発生し、外槽に対し内槽 が相対的に変位、或いは回転した場合、正常な運転ができなくなる可能性があり、槽 に対する内槽の相対的な変位、或いは回転を監視することが望まれている。  In such a double-shell tank device, if a large earthquake occurs and the inner tank is displaced or rotated relative to the outer tank, there is a possibility that normal operation cannot be performed. It is desirable to monitor the relative displacement or rotation of the tank.
し力、しながら、特許文献 1、特許文献 2に記載のものは、いずれも大型の地震が発生 したような場合に、低温液化ガスが漏出しないようにコンクリート製の外槽或いは防液 堤が設けられている力 S、大型の地震等による内槽の変位 (スライド)、回転等の挙動を 検出する手段は何等設けられて!/、な!/、。  However, in both cases described in Patent Document 1 and Patent Document 2, a concrete outer tub or a breakwater is installed to prevent low temperature liquefied gas from leaking out in the event of a large earthquake. There is no means to detect the movement S, the displacement (slide), rotation, etc. of the inner tank caused by a large earthquake!
[0003] また、 LPG、 LNG等を貯蔵するタンクではないが、図 25に図示のように、地震等に よる石油タンク等貯蔵タンクの損傷状態を監視し、重大損傷に至る前に予知するもの として、貯蔵タンクの底端板 101に接合された側板 102の該接合部近傍の全周およ び前記底端板 101から適宜高さ位置の全周に亘つて光ファイバ 103を布設し、該光 ファイバ 103を介して前記側板 102の周方向歪を全周に亘つて計測する歪計測装置 、歪データ処理装置を具備し、前記接合部近傍の側板 102の周方向歪計測値から 前記接合部における側板 102の前記底端板 101に対する傾斜角を推定し、前記底 端板 101から適宜高さ位置における側板 102の周方向歪計測値、座屈により発生す る塑性歪値と併せて前記接合部に発生する局部的塑性歪値、亀裂の発生、前記底 端板 1下基礎の陥没、側板 102の座屈等を監視するようにしたものが提案されている (例えば、特許文献 3。)。 [0003] Also, it is not a tank that stores LPG, LNG, etc., but as shown in Fig. 25, it monitors the damage status of storage tanks such as oil tanks due to earthquakes, etc., and predicts them before serious damage occurs. As shown in the figure, the entire circumference of the side plate 102 joined to the bottom end plate 101 of the storage tank A strain measuring device that lays out an optical fiber 103 from the bottom end plate 101 over the entire circumference at an appropriate height, and measures the circumferential strain of the side plate 102 through the optical fiber 103 over the entire circumference; A strain data processing device, and an inclination angle of the side plate 102 at the joint with respect to the bottom end plate 101 is estimated from a circumferential strain measurement value of the side plate 102 in the vicinity of the joint, and an appropriate height from the bottom end plate 101 The circumferential strain measurement value of the side plate 102 at the position, the local plastic strain value generated in the joint together with the plastic strain value generated by buckling, the occurrence of cracks, the bottom end plate 1 the depression of the lower foundation, the side plate One that monitors the buckling of 102 has been proposed (for example, Patent Document 3).
特許文献 3に記載のものも、地震等による石油タンク等貯蔵タンクの損傷状態を監視 しているものの、貯蔵タンクが損傷する或いは損傷しないにかかわらず変位、或いは 回転したか否かを検出する手段は何等設けられて!/、な!/、。  Although the one described in Patent Document 3 also monitors the damage state of a storage tank such as an oil tank due to an earthquake or the like, it is a means for detecting whether the storage tank is displaced or rotated regardless of whether it is damaged or not damaged. What is provided! / ,!
[0004] 特許文献 1 :特開平 11 63393号公報 Patent Document 1: Japanese Patent Application Laid-Open No. 11 63393
特許文献 2 :特開 2003 240197公報  Patent Document 2: JP 2003 240197
特許文献 3:特開 2002— 340741公報  Patent Document 3: Japanese Patent Laid-Open No. 2002-340741
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] このような二重殻構造の低温液化ガスタンクにお!/、て、大型の地震が発生し、外槽 に対し内槽が相対的に変位、或いは回転した場合、正常な運転ができなくなる可能 性があり、外槽に対する内槽の相対的な変位、或いは回転を監視することが望まれ ている。 [0005] In such a double-shell structure low-temperature liquefied gas tank! / When a large earthquake occurs and the inner tank is displaced or rotated relative to the outer tank, normal operation can be performed. Therefore, it is desirable to monitor the relative displacement or rotation of the inner tank relative to the outer tank.
[0006] また、二重殻構造の低温液化ガスタンクの外槽と内槽とを例えば耐極低温金属製と し、更にその外側にコンクリート製の防液堤を設ける場合、相対的な変位、或いは回 転を監視する装置を、外槽の側面を貫通するように設置することが考えられる。  [0006] Further, when the outer and inner tanks of the low-temperature liquefied gas tank having a double shell structure are made of, for example, a cryogenic metal and further provided with a concrete breakwater on the outside thereof, relative displacement or It is conceivable to install a device to monitor the rotation so as to penetrate the side of the outer tank.
しかしながら、二重殻構造の低温液化ガスタンクを、耐極低温金属製の内槽とコンク リート製の外槽とで構成する場合、安全上、コンクリート製の外槽の側面及び底面に は孔を設けることができなレ、。  However, when a low-temperature liquefied gas tank with a double-shell structure is composed of a cryogenic metal inner tank and a concrete outer tank, for safety reasons, holes will be provided in the side and bottom of the concrete outer tank. I can't.
さらに、タンク内部を開放しない限り、内部に人が立ち入ることは不可能であるため、 タンク内に監視装置を設置すると、これらのメインテナンスが困難となる。 したがって、タンク外槽の上部より、タンク内槽の径方向、回転方向、高さ方向の 3次 元変位を監視する装置が必要となる。 Furthermore, since it is impossible for people to enter the tank unless the inside of the tank is opened, it is difficult to maintain these if a monitoring device is installed in the tank. Therefore, a device that monitors the three-dimensional displacement in the radial, rotational, and height directions of the tank inside the tank from the top of the tank outside the tank is required.
[0007] 本発明は、上述の構成が有していた問題を解決しょうとするものであり、二重殻構 造の低温液化ガスタンク、特に耐極低温金属製の内槽とコンクリート製の外槽とで構 成された二重殻構造の低温液化ガスタンクにお!/、て、外槽に対する内槽の相対的な 変位、或いは回転を監視することができる変位計測装置を備えた二重殻構造タンク 装置、及びタンク設備を提供することを目的とするものである。 [0007] The present invention is intended to solve the problems of the above-described configuration, and is a low-temperature liquefied gas tank having a double shell structure, particularly an inner tank made of a cryogenic metal and an outer tank made of concrete. Double shell structure equipped with a displacement measuring device that can monitor the relative displacement or rotation of the inner tank relative to the outer tank! The purpose is to provide tank equipment and tank equipment.
課題を解決するための手段  Means for solving the problem
[0008] 上記の問題点に対し本発明は、以下の各手段を以つて課題の解決を図る。 [0008] The present invention solves the above problems by using the following means.
[0009] (1)第 1の手段の二重殻構造タンク装置は、 [0009] (1) The double shell structure tank device of the first means,
外槽と内槽とを有する二重殻構造タンクにおいて、  In a double-shell structure tank having an outer tank and an inner tank,
前記外槽の上部を貫通する径方向変位計測用パイプと、  A pipe for measuring radial displacement passing through the upper part of the outer tub,
前記径方向変位計測用パイプの前記外槽の外部に設けられた遮断弁と、 前記径方向変位計測用パイプの上端に設けられたレーザー送受信器用着脱座と、 を備えたことを特 ί毁とする。  A shut-off valve provided outside the outer tub of the radial displacement measuring pipe, and a laser transmitter / receiver mounting seat provided at an upper end of the radial displacement measuring pipe. To do.
[0010] (2)第 2の手段は、第 1の手段の二重殻構造タンク装置において、 [0010] (2) The second means is the double shell tank device of the first means,
前記径方向変位計測用パイプの下端に取り付けられ、前記レーザー送受信器用着 脱座に連結されるレーザー式距離計測器から照射されたレーザー光を前記内槽の 方向に反射させる鏡面体と、  A mirror body that is attached to a lower end of the radial displacement measuring pipe and reflects laser light emitted from a laser-type distance measuring device connected to the laser transmitter / receiver seating in the direction of the inner tank;
を備えたことを特 ί毁とする。  A special feature is that
[0011] (3)第 3の手段は、第 2の手段の二重殻構造タンク装置において、 [0011] (3) The third means is the double shell structure tank device of the second means,
前記内槽は、内槽底板及び内槽側壁と、前記内槽側壁に対し相対的に移動可能に 設けられた内槽上蓋とを有し、  The inner tank has an inner tank bottom plate and an inner tank side wall, and an inner tank upper lid provided to be movable relative to the inner tank side wall,
前記径方向変位計測用パイプは、垂直方向に延びて前記内槽上蓋も貫通している ことを特徴とする。  The radial displacement measuring pipe extends in a vertical direction and penetrates the inner tank upper lid.
[0012] (4)第 4の手段は、第 3の手段の二重殻構造タンク装置にお!/、て、  (4) The fourth means is the double shell structure tank device of the third means! /
前記径方向変位計測用パイプと前記鏡面体とは、同じ材質であることを特徴とする。  The radial displacement measuring pipe and the mirror body are made of the same material.
[0013] (5)第 5の手段は、第 3又は 4の手段の二重殻構造タンク装置にお!/、て、 前記内槽に対峙する前記径方向変位計測用パイプを 2本備え、 [0013] (5) The fifth means is a double shell structure tank device of the third or fourth means! / Two pipes for measuring radial displacement facing the inner tank are provided,
前記鏡面体で反射した前記レーザー光の照射方向が水平面内で互いに 90° ± 20 Irradiation directions of the laser beams reflected by the mirror body are 90 ° ± 20 with respect to each other in a horizontal plane.
%の範囲内で開くように前記鏡面体が設置されたことを特徴とする。 The specular body is installed so as to open within a range of%.
[0014] (6)第 6の手段は、第 3又は 4の手段の二重殻構造タンク装置にお!/、て、  (6) The sixth means is a double-shell structure tank device of the third or fourth means! /
前記内槽に対峙する径方向変位計測用パイプを少なくとも 3本備え、  At least three radial displacement measuring pipes facing the inner tank are provided,
前記鏡面体で反射した前記レーザー光の照射方向が水平面内で等角度に開くよう に前記鏡面体が設置されたことを特徴とする。  The mirror body is installed such that the irradiation direction of the laser beam reflected by the mirror body opens at an equal angle in a horizontal plane.
[0015] (7)第 7の手段は、第 3又は 4の手段の二重殻構造タンク装置にお!/、て、  (7) The seventh means is a double shell structure tank device of the third or fourth means! /
前記内槽に対峙する前記径方向変位計測用パイプを 1本とし、  One radial displacement measuring pipe facing the inner tank,
前記鏡面体は多角錐状にし、  The specular body has a polygonal pyramid shape,
前記レーザー光を複数箇所に照射することを特徴とする。  The laser beam is irradiated to a plurality of locations.
[0016] (8)第 8の手段は、第 3又は 4の手段の二重殻構造タンク装置にお!/、て、 (8) The eighth means is a double-shell structure tank device of the third or fourth means! /
前記内槽に対峙する前記径方向変位計測用パイプを 1本とし、  One radial displacement measuring pipe facing the inner tank,
前記鏡面体は多角錐状にし、  The specular body has a polygonal pyramid shape,
前記レーザー光の照射方向が変更可能なようになつていることを特徴とする。  The irradiation direction of the laser beam can be changed.
[0017] (9)第 9の手段は、第 3乃至 8の!/、ずれかの手段の二重殻構造タンク装置にお!/、て 、前記内槽側壁に取り付けられた垂直部材と、 [0017] (9) The ninth means is a double shell structure tank device of the third to eighth! /, Any means! /, A vertical member attached to the inner tank side wall,
垂直方向に延びて前記外槽の上部及び前記内槽上蓋を貫通すると共に前記垂直 部材に対峙する回転方向変位計測用パイプと、  A rotational displacement measuring pipe extending in the vertical direction and penetrating the upper part of the outer tank and the upper cover of the inner tank and facing the vertical member;
前記回転方向変位計測用パイプの前記外槽の外部に設けられた遮断弁と、 前記回転方向変位計測用パイプの上端に設けられたレーザー送受信器用着脱座と 前記回転方向変位計測用パイプの下端に取り付けられ、前記レーザー送受信器用 着脱座に連結されるレーザー式距離計測器から照射されたレーザー光を前記垂直 部材の方向に反射させる第 2の鏡面体と、  A shut-off valve provided outside the outer tub of the rotational displacement measuring pipe, a laser transmitter / receiver seat provided at the upper end of the rotational displacement measuring pipe, and a lower end of the rotational displacement measuring pipe A second mirror body that is attached and reflects laser light emitted from a laser-type distance measuring device connected to the laser transmitter / receiver seat, in the direction of the vertical member;
を備えたことを特 ί毁とする。  A special feature is that
[0018] (10)第 10の手段は、第 9の手段の二重殻構造タンク装置において、 [0018] (10) The tenth means is the double-shell structure tank device of the ninth means,
前記回転方向変位計測用パイプと前記第 2の鏡面体とは、同じ材質であることを特 徴とする。 The rotational displacement measuring pipe and the second mirror body are made of the same material. It is a sign.
[0019] (11)第 11の手段は、第 3乃至 10のいずれかの手段の二重殻構造タンク装置にお いて、  (11) The eleventh means is the double-shell structure tank device of any one of the third to tenth means,
内槽側壁に取り付けられた水平部材と、  A horizontal member attached to the inner tank side wall;
垂直方向に延びて前記外槽の上部及び前記内槽上蓋を貫通すると共に前記水平 部材に対峙する内槽の高さ方向変位計測用パイプと、  A pipe for measuring the displacement in the height direction of the inner tub extending vertically and penetrating the upper portion of the outer tub and the upper lid of the inner tub and facing the horizontal member;
前記内槽の高さ方向変位計測用パイプの前記外槽の外部に設けられた遮断弁と、 前記内槽の高さ方向変位計測用パイプの上端に設けられたレーザー送受信器用着 脱座と、を備えたことを特徴とする。  A shutoff valve provided outside the outer tank of the height direction displacement measuring pipe of the inner tank, and a laser transmitter / receiver seating provided at the upper end of the height direction displacement measuring pipe of the inner tank, It is provided with.
[0020] (12)第 12の手段は、第 3乃至 11のいずれかの手段の二重殻構造タンク装置にお いて、 [0020] (12) The twelfth means is the double shell tank device according to any one of the third to eleventh means.
を備えたことを特 ί毁とする。  A special feature is that
垂直方向に延びて前記外槽の上部及び前記内槽上蓋を貫通するパイプ収縮補正 用パイプと、  A pipe contraction correcting pipe extending in the vertical direction and penetrating the upper part of the outer tank and the upper cover of the inner tank;
前記パイプ収縮補正用パイプの前記外槽の外部に設けられた遮断弁と、 前記パイプ収縮補正用パイプの上端に設けられたレーザー送受信器用着脱座と、 前記パイプ収縮補正用パイプの下端に取り付けられた水平なパイプ下端の水平部 材と、  A shut-off valve provided outside the outer tub of the pipe contraction correction pipe; a laser transmitter / receiver seat provided at an upper end of the pipe contraction correction pipe; and a lower end of the pipe contraction correction pipe. Horizontal parts at the bottom of the horizontal pipe,
を備えたことを特 ί毁とする。  A special feature is that
[0021] (13)第 13の手段は、第 3乃至 8のいずれかの手段の二重殻構造タンク装置にお いて、 (13) The thirteenth means is a double shell structure tank device according to any one of the third to eighth means,
前記径方向変位計測用パイプ、或いは前記内槽上蓋を貫通するパイプに所定の間 隔で温度センサを設けたことを特徴とする。  A temperature sensor is provided at a predetermined interval in the radial displacement measuring pipe or the pipe penetrating the inner tank upper lid.
[0022] (14)第 14の手段は、第 9又は 10の手段の二重殻構造タンク装置において、 前記回転方向変位計測用パイプに所定の間隔で温度センサを設けたことを特徴と する。 [0022] (14) The fourteenth means is characterized in that, in the double-shell structure tank device of the ninth or tenth means, a temperature sensor is provided at a predetermined interval on the rotational direction displacement measuring pipe.
[0023] (15)第 15の手段は、第 11の手段の二重殻構造タンク装置において、  (15) In the fifteenth means, the double-shell structure tank device of the eleventh means,
前記内槽の高さ方向変位計測用パイプに所定の間隔で温度センサを設けたことを 特徴とする。 A temperature sensor is provided at predetermined intervals on the pipe for measuring displacement in the height direction of the inner tank. Features.
[0024] (16)第 16の手段は、第 2に記載の二重殻構造タンク装置において、  (16) The sixteenth means is the double-shell structure tank apparatus according to the second,
前記径方向変位計測用パイプは、垂直方向に延びて前記内槽と前記外槽との間に 延在して!/ヽることを特徴とする。  The radial displacement measuring pipe extends in a vertical direction and extends between the inner tank and the outer tank.
[0025] (17)第 17の手段は、第 16に記載の二重殻構造タンク装置において、  (17) The seventeenth means is the double shell structure tank device according to the sixteenth aspect,
前記内槽に対峙する径方向変位計測用パイプを少なくとも 3本備え、  At least three radial displacement measuring pipes facing the inner tank are provided,
前記鏡面体で反射した前記レーザー光の照射方向が水平面内で等角度に開くよう に前記鏡面体が設置されたことを特徴とする。  The mirror body is installed such that the irradiation direction of the laser beam reflected by the mirror body opens at an equal angle in a horizontal plane.
[0026] (18)第 18の手段は、第 16又は 17に記載の二重殻構造タンク装置において、 前記内槽側壁に取り付けられた垂直部材と、  (18) The eighteenth means is the double-shell structure tank device according to the sixteenth or seventeenth aspect, wherein the vertical member attached to the inner tank side wall;
垂直方向に延びて前記内槽と前記外槽との間に延在する回転方向変位計測用パイ プと、  A rotational displacement measuring pipe extending in the vertical direction and extending between the inner tank and the outer tank;
前記回転方向変位計測用パイプの前記外槽外部に設けられた遮断弁と、 前記回転方向変位計測用パイプの上端に設けられたレーザー送受信器用着脱座と 前記回転方向変位計測用パイプの下端に取り付けられ、前記レーザー送受信器用 着脱座に連結されるレーザー式距離計測器から照射されたレーザー光を前記垂直 部材の方向に反射させる第 2の鏡面体と、  A shutoff valve provided outside the outer tub of the rotational direction displacement measuring pipe, a laser transmitter / receiver seat provided at the upper end of the rotational direction displacement measuring pipe, and a lower end of the rotational direction displacement measuring pipe A second mirror body that reflects laser light emitted from a laser-type distance measuring device connected to the laser transmitter / receiver seat in the direction of the vertical member;
を備えたことを特 ί毁とする。  A special feature is that
[0027] (19)第 19の手段は、第 16乃至 18のいずれかに記載の二重殻構造タンク装置に おいて、 [0027] (19) The nineteenth means is the double shell structure tank device according to any one of the sixteenth to eighteenth aspects,
内槽側壁に取り付けられた水平部材と、  A horizontal member attached to the inner tank side wall;
垂直方向に延びると共に前記水平部材に対峙する内槽の高さ方向変位計測用パイ プと、  A pipe for measuring the displacement in the height direction of the inner tub extending in the vertical direction and facing the horizontal member;
前記内槽の高さ方向変位計測用パイプの前記外槽の外部に設けられた遮断弁と、 前記内槽の高さ方向変位計測用パイプの上端に設けられたレーザー送受信器用着 脱座と、を備えたことを特徴とする。  A shutoff valve provided outside the outer tank of the height direction displacement measuring pipe of the inner tank, and a laser transmitter / receiver seating provided at the upper end of the height direction displacement measuring pipe of the inner tank, It is provided with.
[0028] (20)第 20の手段は、第 1乃至 19のいずれかに記載の二重殻構造タンク装置にお いて、 [0028] (20) The twentieth means is the double-shell structure tank device according to any one of the first to nineteenth aspects. And
前記各レーザー送受信器用着脱座にレーザー式距離計測器を連結したことを特徴 とする。 A laser-type distance measuring device is connected to each of the laser transmitter / receiver seats.
(21)第 21の手段は、第 9乃至 13、 18、 19のいずれかに記載の二重殻構造タンク 装置において、  (21) The twenty-first means is the double-shell structure tank device according to any one of the ninth to thirteenth, eighteenth and nineteenth aspects,
前記二重殻構造タンク装置に径方向変位及び回転方向変位を演算し表示するタン ク監視装置とを備え、 A tank monitoring device for calculating and displaying radial displacement and rotational displacement in the double-shell structure tank device;
前記タンク監視装置は、 The tank monitoring device
前記径方向変位計測用パイプに連結された前記レーザー式距離計測器にて計測さ れた径方向変位の計測値及び前記回転方向変位計測用パイプに連結された前記 レーザー式距離計測器にて計測された回転方向変位の計測値から、前記パイプ収 縮補正用パイプに連結された前記レーザー式距離計測器にて計測されたパイプ長 の計測値を減算して、径方向距離及び回転方向距離を演算するパイプ長補正器と、 前記パイプ長補正器力、らの前記径方向距離力、ら前記内槽側壁の位置を演算する内 槽側壁位置演算器と、 The measured value of the radial displacement measured by the laser type distance measuring instrument connected to the radial displacement measuring pipe and the measured value of the laser type distance measuring instrument connected to the rotational direction displacement measuring pipe. The measured value of the pipe length measured by the laser-type distance measuring instrument connected to the pipe contraction correction pipe is subtracted from the measured value of the displacement in the rotational direction to obtain the radial distance and the rotational distance. A pipe length corrector for calculating, an inner tank side wall position calculator for calculating the radial distance force of the pipe length corrector, and the position of the inner tank side wall;
前記内槽側壁位置演算器からの前記内槽側壁の位置に基づき前記内槽側壁の中 心位置を演算する中心位置演算器と、 A center position calculator for calculating the center position of the inner tank side wall based on the position of the inner tank side wall from the inner tank side wall position calculator;
前記中心位置演算器からの前記中心位置に基づき前記内槽側壁の中心位置の変 位量を演算する径方向変位演算器と、 A radial displacement calculator for calculating a displacement amount of the center position of the inner tank side wall based on the center position from the center position calculator;
前記パイプ長補正器からの前記回転方向距離に基づき前記垂直部材の位置を演算 する垂直部材位置演算器と、 A vertical member position calculator for calculating the position of the vertical member based on the rotational direction distance from the pipe length corrector;
前記垂直部材位置演算器からの前記垂直部材の位置に基づき真の前記垂直部材 の位置を演算する中心位置補正器と、 A center position corrector that calculates the true position of the vertical member based on the position of the vertical member from the vertical member position calculator;
前記中心位置補正器からの前記真の前記垂直部材の位置に基づき前記内槽側壁 の回転角度を演算する回転方向変位演算器と、 A rotation direction displacement calculator for calculating a rotation angle of the inner tank side wall based on the true position of the vertical member from the center position corrector;
前記径方向変位演算器からの前記中心位置の変位量及び前記回転方向変位演算 器からの前記回転角度を表示する表示器と、 A display for displaying the amount of displacement of the center position from the radial displacement calculator and the rotation angle from the rotational displacement calculator;
を備えたことを特 ί毁とする。 (22)第 22の手段の二重殻構造タンク装置は、 A special feature is that (22) The double-shell structure tank device of the 22nd means is
外槽と内槽とを有する二重殻構造タンクにおいて、 In a double-shell structure tank having an outer tank and an inner tank,
前記外槽の上部を貫通すると共に等間隔に取付けられた 4本の径方向変位計測用 パイプと、 Four radial displacement measuring pipes that penetrate the upper part of the outer tank and are attached at equal intervals;
前記各径方向変位計測用パイプの前記外槽の外部に各々設けられた遮断弁と、 前記各径方向変位計測用パイプの上端に各々設けられたレーザー送受信器用着脱 座と、 A shut-off valve provided outside the outer tub of each radial displacement measuring pipe, and a laser transceiver attaching / detaching seat provided at an upper end of each radial displacement measuring pipe,
前記各径方向変位計測用パイプの下端に各々取り付けられ、前記各レーザー送受 信器用着脱座に連結される各レーザー式距離計測器から照射された各レーザー光 を前記内槽の方向に反射させる鏡面体と、 Mirror surface that reflects each laser beam emitted from each laser-type distance measuring instrument attached to the lower end of each radial displacement measuring pipe and connected to each laser transmitter / receiver seat to the inner tank. Body,
前記内槽側壁に前記内槽の中心に対して対象に取り付けられた 2枚の垂直部材と、 垂直方向に延びて前記外槽の上部及び前記内槽上蓋を貫通すると共に前記各垂 直部材に各々対峙する回転方向変位計測用パイプと、 Two vertical members attached to the inner tank side wall with respect to the center of the inner tank, and extending in the vertical direction through the upper part of the outer tank and the inner tank upper lid, and to each vertical member Pipes for measuring rotational displacement that face each other,
前記各回転方向変位計測用パイプの前記外槽の外部に各々設けられた遮断弁と、 前記各回転方向変位計測用パイプの上端に各々設けられたレーザー送受信器用着 脱座と、前記各回転方向変位計測用パイプの下端に各々取り付けられ、前記各レー ザ一送受信器用着脱座に連結される各レーザー式距離計測器から照射された各レ 一ザ一光を前記各垂直部材の方向に反射させる第 2の鏡面体と、 A shutoff valve provided outside the outer tub of each rotational direction displacement measuring pipe, a laser transmitter / receiver seating provided at an upper end of each rotational direction displacement measuring pipe, and each rotational direction. Each laser beam emitted from each laser type distance measuring device attached to the lower end of each displacement measuring pipe and connected to each laser transmitter / receiver seat is reflected in the direction of each vertical member. A second mirror body,
垂直方向に延びて前記外槽の上部を貫通するパイプ収縮補正用パイプ、前記パイ プ収縮補正用パイプの前記外槽の外部に設けられた遮断弁、前記パイプ収縮補正 用パイプの上端に設けられたレーザー送受信器用着脱座及び前記パイプ収縮補正 用パイプの下端に取り付けられた水平なパイプ下端の水平部材と、 A pipe contraction correction pipe that extends vertically and passes through the upper part of the outer tub, a shutoff valve provided outside the outer tub of the pipe contraction correction pipe, and an upper end of the pipe contraction correction pipe. A horizontal member at the bottom of the horizontal pipe attached to the bottom of the laser transceiver mounting and detaching seat and the pipe contraction correction pipe;
前記二重殻構造タンク装置に径方向変位及び回転方向変位を演算し表示するタン ク監視装置とを備え、 A tank monitoring device for calculating and displaying radial displacement and rotational displacement in the double-shell structure tank device;
前記タンク監視装置は、 The tank monitoring device
前記径方向変位計測用パイプに連結された前記レーザー式距離計測器にて計測さ れた径方向変位の計測値力 前記内槽側壁の中心位置を演算する中心位置演算 器と、 前記回転方向変位計測用パイプに連結された前記レーザー式距離計測器にて計測 された回転方向変位の計測値から、前記パイプ収縮補正用パイプに連結された前記 レーザー式距離計測器にて計測されたパイプ長の計測値を減算して、回転方向距 離を演算するパイプ長補正器と、 A measured force of the radial displacement measured by the laser-type distance measuring instrument connected to the radial displacement measuring pipe; a central position calculator for calculating a central position of the inner tank side wall; Measured by the laser distance measuring instrument connected to the pipe contraction correction pipe from the measured value of the rotational displacement measured by the laser distance measuring instrument connected to the rotational displacement measuring pipe. A pipe length corrector that subtracts the measured pipe length and calculates the distance in the rotational direction;
前記パイプ長補正器からの前記回転方向距離及び前記中心位置演算器にて演算 された中心位置とに基づき前記内槽側壁の回転角度を演算する回転方向演算器と これらの計測値及び演算値を表示する表示器と A rotation direction calculator for calculating the rotation angle of the inner tank side wall based on the rotation direction distance from the pipe length corrector and the center position calculated by the center position calculator, and these measured values and calculated values Display to display and
を備えたことを特 ί毁とする。 A special feature is that
(23)第 23の手段の二重殻構造タンク装置は、  (23) The double-shell structure tank device of the 23rd means is
外槽と内槽とを有する二重殻構造タンクにおいて、 In a double-shell structure tank having an outer tank and an inner tank,
前記外槽の上部を貫通すると共に等間隔に取付けられた 4本の径方向変位計測用 パイプと、 Four radial displacement measuring pipes that penetrate the upper part of the outer tank and are attached at equal intervals;
前記各径方向変位計測用パイプの前記外槽の外部に各々設けられた遮断弁と、 前記各径方向変位計測用パイプの上端に各々設けられたレーザー送受信器用着脱 座と、 A shut-off valve provided outside the outer tub of each radial displacement measuring pipe, and a laser transceiver attaching / detaching seat provided at an upper end of each radial displacement measuring pipe,
前記各径方向変位計測用パイプの下端に各々取り付けられ、前記各レーザー送受 信器用着脱座に連結される各レーザー式距離計測器から照射された各レーザー光 を前記内槽の方向に反射させる鏡面体と、 Mirror surface that reflects each laser beam emitted from each laser-type distance measuring instrument attached to the lower end of each radial displacement measuring pipe and connected to each laser transmitter / receiver seat to the inner tank. Body,
前記内槽側壁に前記内槽の中心に対して対象に取り付けられた 2枚の垂直部材と、 垂直方向に延びて前記外槽の上部及び前記内槽上蓋を貫通すると共に前記各垂 直部材に各々対峙する回転方向変位計測用パイプと、 Two vertical members attached to the inner tank side wall with respect to the center of the inner tank, and extending in the vertical direction through the upper part of the outer tank and the inner tank upper lid, and to each vertical member Pipes for measuring rotational displacement that face each other,
前記各回転方向変位計測用パイプの前記外槽の外部に各々設けられた遮断弁と、 前記各回転方向変位計測用パイプの上端に各々設けられたレーザー送受信器用着 脱座と、前記各回転方向変位計測用パイプの下端に各々取り付けられ、前記各レー ザ一送受信器用着脱座に連結される各レーザー式距離計測器から照射された各レ 一ザ一光を前記各垂直部材の方向に反射させる第 2の鏡面体と、 A shutoff valve provided outside the outer tub of each rotational direction displacement measuring pipe, a laser transmitter / receiver seating provided at an upper end of each rotational direction displacement measuring pipe, and each rotational direction. Each laser beam emitted from each laser type distance measuring device attached to the lower end of each displacement measuring pipe and connected to each laser transmitter / receiver seat is reflected in the direction of each vertical member. A second mirror body,
前記のいずれかの計測用パイプに取付けられた温度センサと、 前記二重殻構造タンク装置に径方向変位及び回転方向変位を演算し表示するタン ク監視装置とを備え、 A temperature sensor attached to any of the measurement pipes; A tank monitoring device for calculating and displaying radial displacement and rotational displacement in the double-shell structure tank device;
前記タンク監視装置は、  The tank monitoring device
前記径方向変位計測用パイプに連結された前記レーザー式距離計測器にて計測さ れた径方向変位の計測値力 前記内槽側壁の中心位置を演算する中心位置演算 器と、  A measured force of the radial displacement measured by the laser-type distance measuring instrument connected to the radial displacement measuring pipe; a central position calculator for calculating a central position of the inner tank side wall;
前記回転方向変位計測用パイプに連結された前記レーザー式距離計測器にて計測 された回転方向変位の計測値から、前記温度センサにて計測された温度に基づき演 算されたパイプ長の計測値を減算して、回転方向距離を演算するパイプ長補正器と 前記パイプ長補正器からの前記回転方向距離及び前記中心位置演算器にて演算 された中心位置とに基づき前記内槽側壁の回転角度を演算する回転方向演算器と これらの計測値及び演算値を表示する表示器と  Pipe length measurement value calculated based on the temperature measured by the temperature sensor from the rotation direction displacement measurement value measured by the laser distance measuring instrument connected to the rotation direction displacement measurement pipe. And a rotation angle of the inner tank side wall based on the rotation direction distance from the pipe length correction unit and the center position calculated by the center position calculator. Rotation direction computing unit that computes these, and a display that displays these measured and computed values,
を備えたことを特 ί毁とする。  A special feature is that
[0032] (24)第 24の手段のタンク設備は、第 21乃至 23のいずれかに記載の二重殻構造 タンク装置において、 [0032] (24) The tank apparatus of the twenty-fourth means is the double-shell structure tank device according to any one of the twenty-first to twenty-third aspects
前記二重殻構造タンクが複数台設置されると共に、  A plurality of the double shell structure tanks are installed,
前記各タンク監視装置は中央監視センターに設けられたことを特徴とする。  Each of the tank monitoring devices is provided in a central monitoring center.
発明の効果  The invention's effect
[0033] 特許請求の範囲に記載の各請求項に係る発明は、上記の各手段を採用しており、 外槽と内槽とを有する二重殻構造タンクにおいて、前記外槽の上部を貫通する径方 向変位計測用と、前記径方向変位計測用の前記外槽の外部に設けられた遮断弁と 、前記径方向変位計測用の上端に設けられたレーザー送受信器用着脱座と、を備 えたことにより、大型の地震が発生した場合等において、外槽に対する内槽の変位( スライド)量を計測し、内槽の変位後の位置を特定することができる。  [0033] The invention according to each claim described in the claims employs each of the above-described means, and in a double-shell structure tank having an outer tank and an inner tank, the upper part of the outer tank is penetrated. A radial displacement measurement, a shut-off valve provided outside the outer tank for the radial displacement measurement, and a laser transceiver attaching / detaching seat provided at an upper end for the radial displacement measurement. As a result, when a large earthquake occurs, the amount of displacement (slide) of the inner tank relative to the outer tank can be measured, and the position after displacement of the inner tank can be specified.
また、内槽側壁が座屈変形を起こした否力、も検知することができる。  Further, it is also possible to detect the force of the inner tank side wall causing buckling deformation.
更には、内槽の回転変位を計測する変位計測装置により、内槽の回転変位後の位 置を特定することができる。 Furthermore, the displacement measuring device that measures the rotational displacement of the inner tub can be The position can be specified.
図面の簡単な説明 Brief Description of Drawings
[図 1]本発明の第 1の実施の形態に係る二重殻構造タンクの全体平面図である。 FIG. 1 is an overall plan view of a double-shell structure tank according to a first embodiment of the present invention.
[図 2]本発明の第 1の実施の形態に係る二重殻構造タンクの水平断面図である。 FIG. 2 is a horizontal sectional view of the double-shell structure tank according to the first embodiment of the present invention.
[図 3]図 1の A— A矢視端面図である。 FIG. 3 is an end view taken along the line AA in FIG.
[図 4]図 1の径方向変位計測装置の詳細側端面図である。 4 is a detailed side end view of the radial displacement measuring device of FIG. 1.
[図 5]図 1の回転方向変位計測装置の詳細側端面図である。 FIG. 5 is a detailed side end view of the rotational direction displacement measuring device in FIG. 1.
[図 6]図 1の内槽の高さ方向変位計測装置の詳細側端面図である。 FIG. 6 is a detailed side end view of the height direction displacement measuring device for the inner tank of FIG. 1.
[図 7]図 1のパイプ収縮補正量計測装置の詳細側端面図である。 FIG. 7 is a detailed side end view of the pipe contraction correction amount measuring apparatus of FIG. 1.
[図 8]本発明の第 2の実施の形態に係る二重殻構造タンクの径方向変位計測装置又 は回転方向変位計測装置の詳細側面図である。 FIG. 8 is a detailed side view of a radial displacement measuring device or a rotational displacement measuring device of a double-shell structure tank according to a second embodiment of the present invention.
[図 9]本発明の第 3の実施の形態に係る二重殻構造タンクの径方向変位計測装置の 詳細側面図である。  FIG. 9 is a detailed side view of a radial displacement measuring device for a double-shell structure tank according to a third embodiment of the present invention.
[図 10]本発明の第 4の実施の形態に係る二重殻構造タンクの径方向変位計測装置 の詳細側面図である。  FIG. 10 is a detailed side view of a radial displacement measuring device for a double-shell structure tank according to a fourth embodiment of the present invention.
[図 11]本発明の第 5の実施の形態に係る二重殻構造タンクの径方向変位計測装置 の詳細側面図である。  FIG. 11 is a detailed side view of a radial displacement measuring device for a double-shell structure tank according to a fifth embodiment of the present invention.
[図 12]本発明の第 6の実施の形態に係る二重殻構造タンクの径方向兼回転方向変 位計測装置の詳細側面図である。  FIG. 12 is a detailed side view of a radial / rotational direction displacement measuring apparatus for a double-shell structure tank according to a sixth embodiment of the present invention.
[図 13]本発明の第 7の実施の形態に係る二重殻構造タンクの径方向変位兼パイプ収 縮補正量計測装置の詳細側面図である。  FIG. 13 is a detailed side view of a radial displacement and pipe contraction correction amount measuring apparatus of a double-shell structure tank according to a seventh embodiment of the present invention.
[図 14]本発明の第 9の実施の形態に係る二重殻構造タンクの径方向変位計測装置 の部分側断面図である。  FIG. 14 is a partial sectional side view of a radial displacement measuring device for a double-shell structure tank according to a ninth embodiment of the present invention.
[図 15]図 14の A部拡大図である。  FIG. 15 is an enlarged view of part A in FIG.
[図 16]本発明の第 9の実施の形態に係る二重殻構造タンクの回転方向変位計測装 置の平面図である。  FIG. 16 is a plan view of a rotational direction displacement measuring device for a double-shell structure tank according to a ninth embodiment of the present invention.
[図 17]本発明の第 9の実施の形態に係る二重殻構造タンクの内槽の高さ方向変位計 測装置の部分側断面図である。 [図 18]図 17の B部拡大図である。 FIG. 17 is a partial sectional side view of a height direction displacement measuring device for an inner tank of a double-shell structure tank according to a ninth embodiment of the present invention. FIG. 18 is an enlarged view of part B in FIG.
園 19]本発明の第 10の実施の形態に係る二重殻構造タンクの径方向変位計測装置 の部分側断面図である。 19] It is a partial side sectional view of a radial displacement measuring device for a double-shell structure tank according to a tenth embodiment of the present invention.
[図 20]図 19の C部拡大図である。  FIG. 20 is an enlarged view of part C in FIG.
園 21]本発明の各実施の形態におけるタンク監視装置の第 1例のブロック図である。 FIG. 21] is a block diagram of a first example of a tank monitoring device in each embodiment of the present invention.
[図 22]本発明の各実施の形態におけるタンク監視装置の第 2例の計測原理を示す 説明図である。 FIG. 22 is an explanatory diagram showing a measurement principle of a second example of the tank monitoring device in each embodiment of the present invention.
園 23]本発明の各実施の形態におけるタンク監視装置の第 2例のタンク監視装置の ブロック図である。 FIG. 23] It is a block diagram of a tank monitoring apparatus of a second example of the tank monitoring apparatus in each embodiment of the present invention.
園 24]本発明の各実施の形態に係る二重殻構造タンクが複数設置されたタンク設備 の全体概略図である。 FIG. 24] is an overall schematic diagram of a tank facility in which a plurality of double-shell structured tanks according to each embodiment of the present invention are installed.
園 25]従来の光ファイバを用いた貯蔵タンクの損傷予知システムである。 25] This is a storage tank damage prediction system using conventional optical fiber.
符号の説明 Explanation of symbols
1 内槽  1 Inner tank
2 内槽底板  2 Inner tank bottom plate
3 内槽側壁  3 Inner tank side wall
4 内槽上蓋  4 Inner tank top cover
5 外槽  5 Outer tank
6 外槽底板  6 Outer tank bottom plate
7 外槽側壁  7 Outer tank side wall
8 外槽上蓋  8 Outer tank top lid
9 内槽上蓋吊り金具  9 Inner tank top lid hanging bracket
10 タンク支持部材兼用断熱材  10 Insulation material for tank support member
11 断熱材  11 Insulation
12 粒子状断熱材  12 Particulate insulation
13 極低温液体  13 Cryogenic liquid
14 窒素ガス  14 Nitrogen gas
15 極低温流体搬出入配管 排出ポンプ 15 Cryogenic fluid loading / unloading piping Discharge pump
ベルマウス  Bellmouth
サポート  Support
パイプサポート  Pipe support
内槽の高さ方向変位計測用の水平部材 タンク回転計測用の垂直部材  Horizontal member for measuring the height displacement of the inner tank Vertical member for measuring the tank rotation
パージ排出管  Purge discharge pipe
パージ用窒素ガス供給管  Nitrogen gas supply pipe for purging
窒素ガス供給管  Nitrogen gas supply pipe
気化ガス回収管  Vaporized gas recovery pipe
、 26a〜26d 径方向変位計測装置e 径方向兼回転方向変位計測装置f 径方向変位兼パイプ収縮補正量計測装, 27a 回転方向変位計測装置 26a-26d Radial displacement measuring device e Radial and rotational displacement measuring device f Radial displacement and pipe contraction correction measuring device, 27a Rotational displacement measuring device
内槽の高さ方向変位計測装置 パイプ収縮補正量計測装置  Inner tank height direction displacement measuring device Pipe shrinkage correction amount measuring device
、 30a〜30d 径方向変位計測用パイプe 径方向兼回転方向変位計測用パイプf 径方向変位兼パイプ収縮補正量計測用ノa, 31b 回転方向変位計測用パイプ 30a-30d Pipe for measuring radial displacement e Pipe for measuring radial and rotational displacement f Measuring pipe for radial displacement and shrinkage correction amount a, 31b Pipe for measuring rotational displacement
内槽の高さ方向変位計測用パイプ パイプ収縮補正用パイプ  Pipe for measuring displacement in the height direction of the inner tank Pipe for pipe contraction correction
変位計測器収納箱  Displacement measuring instrument storage box
遮断弁  Shut-off valve
鏡面体収納囲い  Mirror body storage enclosure
、 37a〜37c、 60 鏡面体37a-37c, 60 mirror bodies
d 水平部材 d Horizontal member
、 38a〜38h レーザー式距離計測器 a〜39h レーザー光 38a ~ 38h Laser type distance measuring instrument a ~ 39h laser light
出口筒 40  Outlet tube 40
ノ イブ側フランジ 41 (レーザー送受信器用着脱座) レーザー光透過耐圧板  Nove side flange 41 (Removable seat for laser transmitter / receiver) Laser light transmission pressure plate
レーザー光路変更器  Laser beam path changer
取付ボルトナット  Mounting bolt nut
変位計測器収納箱側フランジ  Displacement measuring instrument storage box side flange
バレル  Barrel
可動蓋  Movable lid
金属板  Metal plate
、 50a 径方向変位計測装置 50a Radial displacement measuring device
回転方向変位計測装置  Rotational displacement measuring device
内槽の高さ方向変位計測装置  Inner tank height direction displacement measuring device
内槽の高さ方向変位計測用の水平部材  Horizontal member for measuring the displacement of the inner tank in the height direction
タンク回転計測用の垂直部材 Vertical member for tank rotation measurement
a〜55d 径方向変位計測用パイプa ~ 55d Pipe for radial displacement measurement
a, 56b 回転方向変位計測用パイプ a, 56b Pipe for measuring rotational displacement
内槽の高さ方向変位計測用パイプ  Pipe for measuring the displacement of the inner tank in the height direction
変位計測器収納箱  Displacement measuring instrument storage box
鏡面体収納囲い  Mirror body storage enclosure
パイプサポート  Pipe support
出口管  Outlet pipe
内槽壁接続用蛇腹  Bellows for connecting inner tank wall
水平部材支持脚  Horizontal member support legs
内槽の高さ方向変位計測用の水平部材  Horizontal member for measuring the displacement of the inner tank in the height direction
水平部材接続用蛇腹  Bellows for connecting horizontal members
内槽壁側太管  Inner tank wall side thick pipe
シールゴム 69 タンク回転計測用の垂直部材 Seal rubber 69 Vertical member for tank rotation measurement
70、 70a タンク監視装置  70, 70a Tank monitoring device
71 パイプ長補正器  71 Pipe length compensator
72 内槽側壁位置演算器  72 Inner tank side wall position calculator
73 中心位置演算器  73 Center position calculator
74 径方向変位演算器  74 Radial displacement calculator
75 垂直部材位置演算器  75 Vertical member position calculator
76 中心位置補正器  76 Center position compensator
77 回転方向変位演算器  77 Rotational direction displacement calculator
78a E5己恼、 ¾f  78a E5 selfish, ¾f
78b 記録器  78b recorder
79 表示器  79 Display
80 温度計  80 thermometer
81 機側表示器  81 Aircraft side indicator
82 伸縮量演算器  82 Stretch amount calculator
83 中心位置演算器  83 Center position calculator
84 回転方向演算器  84 Rotation direction calculator
85 異常値検出器  85 Outlier detector
86 警報表示灯  86 Warning indicator
87 表示器/記録器  87 Display / Recorder
88 パイプ長演算器 88  88 Pipe length calculator 88
91 タンク設備 91  91 Tank equipment 91
90 排出ポンプ制御装置 90  90 Discharge pump controller 90
Pa〜Ph 既計測位置  Pa to Ph Measurement position
Pma〜Pmh 新計測位置  Pma ~ Pmh New measurement position
Pa〜Ph 既計測位置  Pa to Ph Measurement position
Pma〜Pmh 新計測位置  Pma ~ Pmh New measurement position
La〜Ld 既径方向変位の計測値 Lma〜Lmd 新径方向変位の計測値 La to Ld Measured value of radial displacement Lma ~ Lmd New radial displacement measurement
A La~ A Ld 既径方向距離  A La ~ A Ld Radial direction distance
A Lma〜A Lmd 新径方向距離  A Lma to A Lmd New radial direction distance
Le、 Lf 既回転方向変位の計測値  Le, Lf Measured value of displacement in the previous rotation direction
Lme、 Lmf 新回転方向変位の計測値  Lme, Lmf New rotation direction displacement measurement
A Le、 A Lf 既回転方向距離  A Le, A Lf Distance in previous rotation direction
A Lme、 A Lmf 新回転方向距離  A Lme, A Lmf New rotation direction distance
Lg 既内槽の高さ方向変位の計測値  Lg Measured value of displacement in the height direction of the existing tank
Lmg 新内槽の高さ方向変位の計測値  Measured value of Lmg displacement in the new inner tank
A Lg 内槽の高さ方向変位  A Lg Inner tank height direction displacement
Lh 既パイプ長の計測値  Lh Measured value of existing pipe length
Lmh 新パイプ長の計測値  Lmh New pipe length measurement
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0036] 以下、本発明の各実施の形態に係る変位計測装置を備えた二重殻構造タンク装 置、タンクの変位計測装置及びタンク設備につき説明する。  [0036] Hereinafter, a double-shell structure tank apparatus, a tank displacement measurement apparatus, and a tank facility provided with a displacement measurement apparatus according to each embodiment of the present invention will be described.
[0037] (本発明の第 1の実施の形態)  [0037] (First embodiment of the present invention)
先ず、図 1〜図 7及び図 24を参照して本発明の第 1の実施の形態に係る変位計測装 置を備えた二重殻構造タンク装置、及びタンク設備につき説明する。  First, with reference to FIGS. 1 to 7 and FIG. 24, a double-shell structure tank apparatus and a tank facility provided with a displacement measuring apparatus according to a first embodiment of the present invention will be described.
図 1は、本発明の第 1の実施の形態に係る二重殻構造タンクの全体平面図である。 図 2は、本発明の第 1の実施の形態に係る二重殻構造タンクの水平断面図である。 なお、図 2は、下記の図 3における B— B端面図でもある。  FIG. 1 is an overall plan view of a double-shell structure tank according to a first embodiment of the present invention. FIG. 2 is a horizontal sectional view of the double-shell structure tank according to the first embodiment of the present invention. FIG. 2 is also a BB end view in FIG. 3 below.
図 3は、図 1の A— A矢視端面図である。  3 is an end view taken along the line AA in FIG.
図 4は、図 1の径方向変位計測装置 26の詳細側端面図である。  FIG. 4 is a detailed side end view of the radial displacement measuring device 26 of FIG.
図 5は、図 1の回転方向変位計測装置 27の詳細側端面図である。  FIG. 5 is a detailed side end view of the rotational direction displacement measuring device 27 of FIG.
図 6は、図 1の内槽の高さ方向変位計測装置 28の詳細側端面図である。  FIG. 6 is a detailed side end view of the inner tank height direction displacement measuring device 28 of FIG.
図 7は、図 1のパイプ収縮補正量計測装置 29の詳細側端面図である。  FIG. 7 is a detailed side end view of the pipe contraction correction amount measuring device 29 of FIG.
図 24は、本発明の各実施の形態に係る二重殻構造タンクが複数設置されたタンク設 備の全体概略図である。 [0038] 本発明の第 1の実施の形態に係るタンクの変位計測装置は、 4個(少なくとも 2個) の径方向変位計測装置 26、 2個(少なくとも 1個)の回転方向変位計測装置 27、 1個 の内槽の高さ方向変位計測装置 28、 1個のパイプ収縮補正量計測装置 29及びタン ク監視装置 70 (70a)により構成されて!/、る。 FIG. 24 is an overall schematic diagram of a tank facility in which a plurality of double-shell structure tanks according to each embodiment of the present invention are installed. [0038] The tank displacement measuring device according to the first embodiment of the present invention includes four (at least two) radial displacement measuring devices 26 and two (at least one) rotational displacement measuring devices 27. It consists of one inner tank height direction displacement measuring device 28, one pipe contraction correction amount measuring device 29 and tank monitoring device 70 (70a).
また、内槽側壁 3の内面には、内槽の高さ方向変位計測用の水平部材 20、 2枚 (少 なくとも 1枚)のタンク回転計測用の垂直部材 21が取り付けられている。  On the inner surface of the inner tank side wall 3, a horizontal member 20 for measuring the displacement in the height direction of the inner tank, and two (at least one) vertical member 21 for measuring the tank rotation are attached.
なお、タンク監視装置 70 (70a)の詳細につ!/、ては後述する。  Details of the tank monitoring device 70 (70a) will be described later.
[0039] (二重殻構造タンクの全体の構成) [0039] (Overall configuration of double-shell structure tank)
図 1、図 2、図 3に図示のように、二重殻構造タンクは、鉄筋コンクリート製の外槽 5と、 外槽 5内に設置された超低温耐性金属製の内槽 1とにより構成されている。  As shown in Fig. 1, Fig. 2 and Fig. 3, the double shell tank is composed of an outer tank 5 made of reinforced concrete and an inner tank 1 made of ultra-low temperature resistant metal installed in the outer tank 5. Yes.
一般的に、内槽 1と外槽 5が金属製の場合、金属が破損した場合に備えて外槽の外 側に更に別途コンクリート製の囲い壁等を設ける必要がある。  Generally, when the inner tub 1 and the outer tub 5 are made of metal, it is necessary to provide a separate concrete enclosure on the outside of the outer tub in case the metal is damaged.
し力、しながら、本実施の形態に係る二重殻構造タンクにおいては、外槽 5が鉄筋コン クリート製であるため、更なるコンクリート製の囲い壁等は不要となっている。  However, in the double-shell structure tank according to the present embodiment, since the outer tub 5 is made of reinforced concrete, no further concrete enclosure is required.
[0040] 外槽 5は、図 3に図示のように、円盤状の外槽底板 6と、外槽底板 6上に気密に固定 された円筒状の外槽側壁 7と、外槽側壁 7の上端に気密に固定されたドーム状の外 槽上蓋 8とにより構成されている。 As shown in FIG. 3, the outer tank 5 includes a disc-shaped outer tank bottom plate 6, a cylindrical outer tank side wall 7 that is airtightly fixed on the outer tank bottom plate 6, and an outer tank side wall 7. It consists of a dome-shaped outer tub upper lid 8 which is airtightly fixed to the upper end.
この場合、鉄筋コンクリート製の外槽底板 6及び外槽側壁 7には、孔等を穿設すること ができない。  In this case, holes or the like cannot be formed in the outer tank bottom plate 6 and the outer tank side wall 7 made of reinforced concrete.
鉄筋コンクリート製の外槽底板 6及び外槽側壁 7に孔を明けた場合、内槽より貯蔵液 が漏洩した際に外部へ流出する危険性が高くなる。  If holes are made in the outer tank bottom plate 6 and the outer tank side wall 7 made of reinforced concrete, there is a high risk that the stored liquid leaks out from the inner tank.
そこで、後述する極低温流体搬出入配管 15、各計測機器用の配管等は、全て外槽 上蓋 8を貫通して内槽 1内、或いは内槽 1と外槽 5との間に達するように設けられてい また、外槽 5の外槽底板 6、外槽側壁 7、外槽上蓋 8の内面には、全面に亘つて図 4 に例示するように気密な金属板 48が取り付け、或いは貼り付けられている。  Therefore, the cryogenic fluid loading / unloading piping 15 and piping for each measuring device, which will be described later, all pass through the outer tank upper lid 8 and reach the inner tank 1 or the inner tank 1 and the outer tank 5. Also, an airtight metal plate 48 is attached or pasted over the entire inner surface of the outer tank bottom plate 6, the outer tank side wall 7, and the outer tank upper lid 8 of the outer tank 5 as illustrated in FIG. It has been.
[0041] 外槽 5内の外槽底板 6の気密な金属板 48 (図 4参照)上には、図 3に図示のように、 タンク支持部材兼用断熱材 10が布設されている。 タンク支持部材兼用断熱材 10上には、内槽 1が載置されている。 On the airtight metal plate 48 (see FIG. 4) of the outer tank bottom plate 6 in the outer tank 5, as shown in FIG. 3, a tank support member / heat insulating material 10 is laid. An inner tank 1 is placed on the tank support member / heat insulating material 10.
内槽 1は、例えば、大きさが直径 80m、高さ 40mの、極低温液体が貯蔵可能な、 9% Inner tank 1, for example, has a diameter of 80m and a height of 40m, and can store cryogenic liquid, 9%
Ni鋼板等の超低温耐性金属製のタンクである。 It is a tank made of ultra low temperature resistant metal such as Ni steel plate.
なお、外槽 5の内径の直径は、約 82〜84mである。  The outer diameter of the outer tub 5 is about 82 to 84 m.
従って、内槽 1の外面と外槽 5の内面との間には、保冷材を敷設するために、約 〜 2 mの隙間が設けられている。  Therefore, a gap of about ˜2 m is provided between the outer surface of the inner tub 1 and the inner surface of the outer tub 5 in order to lay the cold insulation material.
[0042] 内槽 1は、円盤状の内槽底板 2と、内槽底板 2上に気密に溶接等により固定された 円筒状の内槽側壁 3と、内槽側壁 3の上面を塞ぐ円盤状の内槽上蓋 4とにより構成さ れている。 [0042] The inner tank 1 includes a disk-shaped inner tank bottom plate 2, a cylindrical inner tank side wall 3 fixed on the inner tank bottom plate 2 by welding or the like, and a disk shape that covers the upper surface of the inner tank side wall 3. And an inner tank upper lid 4.
内槽上蓋 4の直径は、内槽側壁 3の直径より大きく形成されており、内槽上蓋 4は、そ の外周に下方に延在する短円筒状の袴を備えて!/、る。  The diameter of the inner tank upper lid 4 is formed larger than the diameter of the inner tank side wall 3, and the inner tank upper lid 4 is provided with a short cylindrical ridge extending downward on the outer periphery thereof.
内槽上蓋 4は、多数の内槽上蓋吊り金具 9により外槽上蓋 8から吊り下げ支持されて いる。  The inner tank upper lid 4 is suspended and supported from the outer tank upper lid 8 by a number of inner tank upper lid suspension fittings 9.
なお、多数の内槽上蓋吊り金具 9の上端は、外槽 5内面の気密な金属板 48に接続さ れている。  Note that the upper ends of a number of inner tank upper lid suspension fittings 9 are connected to an airtight metal plate 48 on the inner surface of the outer tank 5.
このように内槽上蓋 4を内槽上蓋吊り金具 9により外槽 5内面の金属板 48に固定し、 内槽上蓋 4と内槽側壁 3とが機械的に接触しないようにしているので、内槽上蓋 4は 内槽側壁 3の変位に影響されない。  In this way, the inner tank upper lid 4 is fixed to the metal plate 48 on the inner surface of the outer tank 5 by the inner tank upper lid suspension metal fitting 9 so that the inner tank upper lid 4 and the inner tank side wall 3 are not mechanically in contact with each other. The tank upper lid 4 is not affected by the displacement of the inner tank side wall 3.
[0043] 内槽側壁 3の外周の全面には、グラスウール等の断熱材 11が取り付け、或いは貼り 付けられている。 [0043] A heat insulating material 11 such as glass wool is attached or attached to the entire outer periphery of the inner tank side wall 3.
更に、グラスウール等の断熱材 11と外槽側壁 7との間隙、及び内槽上蓋 4の上面の 空間には、気体の対流による冷熱の伝達、漏洩を防止するために、例えばパーライト 等の粒子状断熱材 12が充填、収納されている。  Furthermore, in the space between the heat insulating material 11 such as glass wool and the outer tank side wall 7 and the space on the upper surface of the inner tank upper lid 4, in order to prevent transmission of cold heat and leakage due to gas convection, for example, particulates such as pearlite Insulation 12 is filled and stored.
なお、内槽上蓋 4の外周の短円筒状の袴は、パーライト等の粒子状断熱材 12が、内 槽上蓋 4と内槽側壁 3の上端との隙間を通って内槽 1内に進入しないような高さに設 定されている。  In addition, the short cylindrical bowl on the outer periphery of the inner tank upper lid 4 does not allow the particulate heat insulating material 12 such as pearlite to enter the inner tank 1 through the gap between the inner tank upper lid 4 and the upper end of the inner tank side wall 3. It is set to such a height.
[0044] 極低温に冷却された窒素ガス 14を注入するために、外槽上蓋 8に、窒素ガス供給 管 24が接続されている。 この窒素ガス供給管 24は、内槽側壁 3の外面と外槽 5の内面との間を通り、内槽底 板 2の下方に開放している。 A nitrogen gas supply pipe 24 is connected to the outer tank upper lid 8 in order to inject the nitrogen gas 14 cooled to a cryogenic temperature. The nitrogen gas supply pipe 24 passes between the outer surface of the inner tank side wall 3 and the inner surface of the outer tank 5, and is open below the inner tank bottom plate 2.
そして、メインテナンス等においては、窒素ガス供給管 24から窒素ガスをパージして 、内槽 1、外槽 5間のメタンガス、空気等をパージするようになっている。  In maintenance and the like, nitrogen gas is purged from the nitrogen gas supply pipe 24, and methane gas, air, and the like between the inner tank 1 and the outer tank 5 are purged.
[0045] 外槽上蓋 8、気密な金属板 48及び内槽上蓋 4を貫通するように、極低温流体搬出 入配管 15が設けられている。 A cryogenic fluid inlet / outlet pipe 15 is provided so as to penetrate the outer tank upper lid 8, the airtight metal plate 48 and the inner tank upper lid 4.
極低温流体搬出入配管 15の下端には、排出ポンプ 16、ベルマウス 17が取り付けら れている。  A discharge pump 16 and a bell mouth 17 are attached to the lower end of the cryogenic fluid carry-in / out pipe 15.
極低温流体搬出入配管 15の下端は、その揺れ、振動等を抑制するために、サポート 18により内槽底板 2に連結されて!/、る。  The lower end of the cryogenic fluid loading / unloading pipe 15 is connected to the inner tank bottom plate 2 by a support 18 in order to suppress shaking, vibration and the like!
なお、内槽上蓋 4上には、極低温流体搬出入配管 15より大きな径の図示略のバレル が溶接等により固定されている。  A barrel (not shown) having a diameter larger than that of the cryogenic fluid carry-in / out pipe 15 is fixed on the inner tank upper lid 4 by welding or the like.
そして、極低温流体搬出入配管 15は、このバレルを通って内槽 1内に延在している。 このバレルの高さは、このバレルと極低温流体搬出入配管 15との隙間を通ってパー ライト等の粒子状断熱材 12が内槽 1内に進入しな!/、ような高さに設定されて!/、る。  The cryogenic fluid carry-in / out pipe 15 extends into the inner tank 1 through this barrel. The height of this barrel is set to such a height that particulate heat insulating material 12 such as pearlite does not enter the inner tank 1 through the gap between this barrel and the cryogenic fluid carry-in / out pipe 15! Being! /
[0046] 極低温流体搬出入配管 15には、外槽上蓋 8の貫通部分に、図示略のシール部材 が設けられている。 In the cryogenic fluid carry-in / out pipe 15, a seal member (not shown) is provided in a through portion of the outer tank upper lid 8.
その他、各種の計測用の図示略の配管も設けられている。  In addition, unillustrated piping for various measurements is also provided.
[0047] 更に、図 1、図 2に図示のように、 4個の径方向変位計測装置 26、 2個の回転方向 変位計測装置 27、 1個の内槽の高さ方向変位計測装置 28、及び 1個のパイプ収縮 補正量計測装置 29用のパイプも、外槽上蓋 8 (外槽 5の上部)及び内槽上蓋 4 (内槽 1の上部)を貫通するように取り付けられている。 Further, as shown in FIGS. 1 and 2, four radial displacement measuring devices 26, two rotational displacement measuring devices 27, one inner tank height displacement measuring device 28, The pipe for the pipe shrinkage correction amount measuring device 29 is also attached so as to penetrate the outer tank upper lid 8 (upper part of the outer tank 5) and the inner tank upper lid 4 (upper part of the inner tank 1).
なお、外槽上蓋 8の頂上付近には、図 3に図示のように、気化ガス回収管 25が取り付 けられている。  A vaporized gas recovery pipe 25 is attached near the top of the outer tank upper lid 8 as shown in FIG.
そして、気化し外槽上蓋 8の頂上付近に滞留した天然ガス (メタンガス等)は、気化ガ ス回収管 25により回収され、周知の再液化装置により再度液化されて、内槽 1に戻さ れるようになっている。  Then, the natural gas (methane gas or the like) that has vaporized and stays near the top of the outer tank upper lid 8 is recovered by the vaporized gas recovery pipe 25, liquefied again by a known reliquefaction device, and returned to the inner tank 1. It has become.
[0048] そして、図 1、図 2に図示の二重殻構造タンクは、図 24に図示のように、タンク設備 9 1にお!/、て複数基 (例えば 6基)設置されて!/、る。 [0048] The double-shell tank shown in FIGS. 1 and 2 has a tank facility 9 as shown in FIG. 1 /! Multiple units (for example, 6 units) are installed!
なお、タンク設備 91の外周には、特許文献 1に記載されたもののような防液堤を設け る必要はなぐ例えば、金網等のフェンス等、その他通常の進入防止囲いが設けられ ている。  In addition, it is not necessary to provide a breakwater such as that described in Patent Document 1 on the outer periphery of the tank facility 91. For example, a fence such as a wire mesh or the like is provided with other normal entry prevention enclosures.
そして、タンク設備 91の外に、タンク監視装置 70 (70a)を有する中央コンピュータが 設置された遠隔制御監視センター(建築物)が設置されて!/、る。  In addition to the tank facility 91, a remote control monitoring center (building) in which a central computer having a tank monitoring device 70 (70a) is installed is installed!
なお、遠隔制御監視センターには、タンク監視装置 70 (70a)のみならず、排出ボン プ制御装置 90、タンクの温度、 LNGのレベルを監視する各種の回路(回路とは、サ ブプログラム、シーケンスブロック、演算処理カード、ユニット等の形態も含むものとす る)、或いはコンピュータ、記憶器 78、表示器 79等も備えられており、タンクの監視、 運転に必要な情報や操作装置が集約されて!/、る。  The remote control monitoring center includes not only the tank monitoring device 70 (70a), but also the discharge pump control device 90, various circuits for monitoring the tank temperature and LNG level (circuits are subprograms, sequences, etc.). It also includes the form of blocks, processing cards, units, etc.), or a computer, storage device 78, display device 79, etc., which gather information and operation devices necessary for tank monitoring and operation. /!
[0049] (径方向変位計測装置の構成) [0049] (Configuration of radial displacement measuring device)
次に、図 1〜図 4を参照して、径方向変位計測装置 26の詳細な構成につき説明する Next, a detailed configuration of the radial displacement measuring device 26 will be described with reference to FIGS.
Yes
図 1、図 2に図示のように、径方向変位計測用パイプ 30a、 30b、 30c、 30d、レーザ 一式距離計測器 38a、 38b、 38c、 38d等により構成された、 4個の径方向変位計測 装置 26が、外槽上蓋 8及び内槽側壁 3の周縁付近に同一水平面において等角度に 取り付けられている。  As shown in Fig. 1 and Fig. 2, four radial displacement measurements are made up of radial displacement measuring pipes 30a, 30b, 30c, 30d, laser set distance measuring instruments 38a, 38b, 38c, 38d, etc. A device 26 is mounted at an equal angle in the same horizontal plane near the periphery of the outer tank upper lid 8 and the inner tank side wall 3.
この等角度とは、径方向変位計測装置 26が 4個の場合は 90° (許容範囲: ± 20%) 、 3個の場合は 120° (許容範囲: ± 20%)、 5個の場合は 72° (許容範囲: ± 20% )である所定の角度を意味するものとする。  This equal angle is 90 ° (allowable range: ± 20%) when there are four radial displacement measuring devices 26, 120 ° (allowable range: ± 20%) when three, and five It shall mean a predetermined angle of 72 ° (allowable range: ± 20%).
[0050] なお、内槽 1が歪まない (楕円等に変形しない)ことを前提にすれば、レーザー光の 照射角度がお互いに水平面内で 90° (許容範囲: ± 20%)開いた 2個のレーザー 式距離計測器 38a、 38bのみとすることも可能である。 [0050] If it is assumed that the inner tank 1 is not distorted (not deformed into an ellipse, etc.), the two irradiation angles of the laser light are 90 ° (allowable range: ± 20%) in the horizontal plane. It is also possible to use only the laser type distance measuring devices 38a and 38b.
このとき、内槽側壁 3の内径 Dt (半径)が 40mとすると、各径方向変位計測装置 26は 、外槽上蓋 8の中心からの距離 Dpが 38〜39mとなる位置に、内槽側壁 3の内面に できるだけ近接して取り付けることが好ましい。  At this time, if the inner diameter Dt (radius) of the inner tank side wall 3 is 40 m, each radial displacement measuring device 26 is located at a position where the distance Dp from the center of the outer tank upper lid 8 is 38 to 39 m. It is preferable to attach it as close as possible to the inner surface.
[0051] 即ち、この中心からの距離 Dpは、クールダウン時に内槽 1が収縮し、且つ内槽 1が 径方向或いは回転方向に変形しても、径方向変位計測装置 26と内槽 1内面とが接 触することがな!/、よう設計されて!/、る。 [0051] That is, the distance Dp from the center is such that the inner tank 1 contracts and the inner tank 1 Even if it is deformed in the radial direction or rotational direction, the radial displacement measuring device 26 and the inner surface of the inner tank 1 are not in contact with each other!
し力、も、内槽側壁 3の内面にて乱反射した弱い反射光でも計測できる。  The measuring force can be measured even with weak reflected light irregularly reflected on the inner surface of the inner tank side wall 3.
即ち、後述するレーザー光 39a、 39b、 39c、 39dの内槽側壁 3の内面への照射点に おける内槽側壁 3の内面の接線方向が、必ずしもレーザー光 39a、 39b、 39c、 39d の光軸と正確に直角になるとは限らなレ、からである。  That is, the tangential direction of the inner surface of the inner tank side wall 3 at the irradiation point of the inner surfaces of the inner tank side walls 3 of laser beams 39a, 39b, 39c, 39d described later is not necessarily the optical axis of the laser beams 39a, 39b, 39c, 39d. This is because it is not always right-angled.
従って、内槽側壁 3の内面は鏡面状でな!/、方が好まし!/、。  Therefore, the inner surface of the inner tank side wall 3 is not mirror-like! /, More preferred! /.
また、内槽側壁 3の内径 Dtと外槽上蓋 8の中心からの距離 Dpとの差は、内槽 1が変 位しても鏡面体収納囲い 36等が内槽側壁 3に当たらないように、例えば l〜2mとす  In addition, the difference between the inner diameter Dt of the inner tank side wall 3 and the distance Dp from the center of the outer tank upper lid 8 is such that the mirror enclosure 36 does not hit the inner tank side wall 3 even if the inner tank 1 is displaced. E.g. l ~ 2m
[0052] 各径方向変位計測装置 26は、図 3、図 4に図示のように、変位計測器収納箱 34、 レーザー式距離計測器 38a、 38b、 38c、 38d、径方向変位計測用パイプ 30a、 30b 、 30c、 30d、レーザー送受信器用着脱座としてのパイプ側フランジ 41、取付ボルト ナット 44、変位計測器収納箱側フランジ 45、遮断弁 35、鏡面体収納囲い 36、変位 計測用の第 1の鏡面体 37、出口筒 40、パージ排出管 22、パージ用窒素ガス供給管 23等により構成されている。 [0052] As shown in FIGS. 3 and 4, each radial displacement measuring device 26 includes a displacement measuring instrument storage box 34, laser-type distance measuring instruments 38a, 38b, 38c, 38d, and a radial displacement measuring pipe 30a. 30b, 30c, 30d, pipe side flange 41, mounting bolt nut 44 , displacement measuring instrument storage box side flange 45, shut-off valve 35, mirror body storage enclosure 36, first for displacement measurement The mirror body 37, the outlet tube 40, the purge discharge pipe 22, the purge nitrogen gas supply pipe 23, and the like are included.
なお、出口筒 40は必ずしも必要なものではなぐ鏡面体収納囲い 36の内槽側壁 3と 対峙する面にレーザー光 39a、 39b、 39c、 39dが通る孔を明けただけのものでも良 い。  Note that the exit tube 40 is not necessarily required, and may be one in which holes for the laser beams 39a, 39b, 39c, and 39d are formed on the surface of the mirror body housing enclosure 36 that faces the inner tank side wall 3.
[0053] 次に、図 3、図 4に基づき、径方向変位計測装置 26の詳細な構成につき説明する。  Next, a detailed configuration of the radial displacement measuring device 26 will be described with reference to FIGS. 3 and 4.
径方向変位計測用パイプ 30a、 30b、 30c、 30dが、外槽上蓋 8、気密な金属板 48及 び内槽上蓋 4を貫通して、垂直方向に設けられている。  Pipes 30a, 30b, 30c and 30d for radial displacement measurement are provided vertically through the outer tank upper lid 8, the airtight metal plate 48 and the inner tank upper lid 4.
径方向変位計測用パイプ 30a、 30b、 30c、 30dが外槽上蓋 8及び気密な金属板 48 を貫通する部分には、気密性を保持すベぐ天然ガスが外部に漏洩しないように図 示略のシール材が設けられて!/、る。  Radial displacement measuring pipes 30a, 30b, 30c, 30d are not shown in the part that penetrates the outer tank top lid 8 and the airtight metal plate 48 so that natural gas that should keep airtightness does not leak to the outside. The seal material is provided!
そして、径方向変位計測用パイプ 30a、 30b、 30c、 30dは、外槽上蓋 8の金属板 48 の下面に取付けられたパイプサポート 19等により支持されている。  The radial displacement measuring pipes 30a, 30b, 30c, 30d are supported by a pipe support 19 attached to the lower surface of the metal plate 48 of the outer tank upper lid 8.
[0054] 外槽上蓋 8より上方(外槽 5の外部)の径方向変位計測用パイプ 30a、 30b、 30c、 3 Odの上端には、各々、レーザー式距離計測器 38a、 38b、 38c、 38dを連結するため のパイプ側フランジ 41が形成されている。 [0054] Pipes for measuring radial displacement above the outer tank upper lid 8 (outside the outer tank 5) 30a, 30b, 30c, 3 At the upper end of Od, a pipe side flange 41 for connecting the laser type distance measuring instruments 38a, 38b, 38c, 38d is formed.
また、外槽上蓋 8とパイプ側フランジ 41との間の径方向変位計測用パイプ 30a、 30b 、 30c、 30dには、各々、遮断弁 35が介装されている。  In addition, a shutoff valve 35 is interposed in each of the radial displacement measuring pipes 30a, 30b, 30c, and 30d between the outer tank upper lid 8 and the pipe-side flange 41.
なお、遮断弁 35とパイプ側フランジ 41との間の径方向変位計測用パイプ 30a、 30b 、 30c、 30dには、遮断弁が介装されたパージ排出管 22が接続されている。  A purge discharge pipe 22 having a shut-off valve is connected to the radial displacement measuring pipes 30a, 30b, 30c, 30d between the shut-off valve 35 and the pipe-side flange 41.
[0055] 各パイプ側フランジ 41の上部には、変位計測器収納箱 34が、変位計測器収納箱 側フランジ 45及び取付ボルトナット 44により着脱可能に連結できるようになつている。 この変位計測器収納箱 34内には、本質安全防爆型、耐圧防爆型或いは内圧防爆 型の径方向変位計測用のレーザー式距離計測器 38a、 38b、 38c、 38dが収納され ている。 A displacement measuring device storage box 34 is detachably connected to the upper portion of each pipe side flange 41 by a displacement measuring device storage box side flange 45 and a mounting bolt nut 44. In the displacement measuring instrument storage box 34 are stored laser distance measuring instruments 38a, 38b, 38c, 38d for radial displacement measurement of an intrinsically safe explosion-proof type, a pressure-proof explosion-proof type or an internal pressure explosion-proof type.
この変位計測器収納箱 34及び変位計測器収納箱 34内に収納された変位計測用の レーザー式距離計測器 38a、 38b、 38c、 38dは、本質安全防爆型、耐圧防爆型或 いは内圧防爆型の性能を備えた構成をしてレ、る。  The displacement measuring instrument storage box 34 and the laser distance measuring instruments 38a, 38b, 38c, 38d for measuring displacement stored in the displacement measuring instrument storage box 34 are intrinsically safe, explosion proof or internal pressure explosion proof. It has a structure with the performance of the mold.
そして、径方向変位計測用のレーザー式距離計測器 38a、 38b、 38c、 38dにて計 測された既径方向変位の計測値 La、 Lb、 Lc、 Ld (或いは、新径方向変位の計測値 Lma、 Lmb、 Lmc、 Lmd)は、後述するようにタンク監視装置 70 (70a)に送信される ようになつている。  Then, measured values of the existing radial displacement La, Lb, Lc, Ld (or measured values of the new radial displacement) measured by the laser distance measuring instrument 38a, 38b, 38c, 38d for measuring the radial displacement. Lma, Lmb, Lmc, and Lmd) are transmitted to the tank monitoring device 70 (70a) as described later.
[0056] 変位計測器収納箱 34の上方には、酸素、二酸化炭素等を排出するために、遮断 弁が介装されたパージ用窒素ガス供給管 23が接続されている。  A purge nitrogen gas supply pipe 23 provided with a shut-off valve is connected above the displacement measuring instrument storage box 34 to discharge oxygen, carbon dioxide and the like.
そして、計測する場合、レーザー式距離計測器 38a、 38b、 38c、 38dが収納された 変位計測器収納箱 34を、パイプ側フランジ 41に取付ボルトナット 44により連結し、パ ージ用窒素ガス供給管 23から常温の窒素ガスを圧入し、パージ排出管 22から変位 計測器収納箱 34内の酸素、二酸化炭素等を排出し、その後に、遮断弁 35を開く。  When measuring, the displacement measuring instrument storage box 34 containing the laser distance measuring instruments 38a, 38b, 38c, 38d is connected to the pipe side flange 41 with the mounting bolt nut 44 to supply nitrogen gas for purge. At room temperature, nitrogen gas is press-fitted from the pipe 23, and the purge discharge pipe 22 is displaced to discharge oxygen, carbon dioxide, etc. in the measuring instrument storage box 34, and then the shut-off valve 35 is opened.
[0057] なお、レーザー式距離計測器 38a、 38b、 38c、 38dは、各変位計測器収納箱 34 内に常設しておいても良い。  It should be noted that the laser distance measuring instruments 38a, 38b, 38c, 38d may be permanently installed in each displacement measuring instrument storage box 34.
或いは、レーザー式距離計測器 38a、 38b、 38c、 38dを遠隔制御監視センター等に 収納しておき、計測時にのみ、各変位計測器収納箱 34内に収納するようにしても良 い。 Alternatively, the laser distance measuring instruments 38a, 38b, 38c, 38d may be stored in a remote control monitoring center or the like and stored in each displacement measuring instrument storage box 34 only during measurement. Yes.
計測時にのみ、各変位計測器収納箱 34内に収納する場合は、レーザー式距離計 測器 38a、 38b、 38c、 38dを 1つの計測器を適宜着脱することで共有し、これにより 必要な計測器の数を少なくすることができる。  When storing in each displacement measuring instrument storage box 34 only at the time of measurement, the laser type distance measuring instruments 38a, 38b, 38c, 38d can be shared by attaching and detaching one measuring instrument as appropriate, thereby making the necessary measurements. The number of vessels can be reduced.
[0058] 各径方向変位計測用パイプ 30a、 30b、 30c、 30dが貫通する内槽上蓋 4には、各 々大きな孔(直径 D2)が明けられており、この大きな孔の上方には、各径方向変位計 測用パイプ 30a、 30b、 30c、 30dを案内する所定の高さのバレル 46が溶接等により 取り付けられている。 [0058] The inner tank upper lid 4 through which each of the radial displacement measuring pipes 30a, 30b, 30c, 30d penetrates has a large hole (diameter D2). A barrel 46 having a predetermined height for guiding the radial displacement measuring pipes 30a, 30b, 30c, 30d is attached by welding or the like.
このバレル 46の高さは、内槽上蓋 4上に充填された粒子状断熱材 12が内槽 1内に 進入しないような高さとする。  The height of the barrel 46 is set such that the particulate heat insulating material 12 filled on the inner tank upper lid 4 does not enter the inner tank 1.
また、内装上蓋 4の孔及びバレル 46の内径 D2は、クールダウン時に内層上蓋 4が収 縮しても、内槽上蓋 4を貫通し内槽 1内側へ伸びる各径方向変位計測用パイプ 30a、 30b、 30c、 30dと接触しないよう、間隙を考慮して設計されている。  Also, the hole D of the interior upper lid 4 and the inner diameter D2 of the barrel 46 are the radial displacement measuring pipes 30a extending through the inner tank upper lid 4 and extending to the inner side of the inner tank 1 even if the inner layer upper lid 4 contracts during the cool down. Designed in consideration of the gap so as not to contact 30b, 30c, 30d.
例えば、径方向変位計測用ノイプ 30a、 30b、 30c、 30dの外径の直径 D1を 100m πι φ、クールダウン時の内槽上蓋 4の収縮量を 60mmの場合、バレル 46の内径の直 径 D2は約 800mm φとなる。  For example, if the diameter D1 of the outer diameter of the diameter displacement measuring nozzles 30a, 30b, 30c, 30d is 100 m πι φ, and the amount of contraction of the inner tank top cover 4 during cool-down is 60 mm, the diameter D2 of the inner diameter of the barrel 46 D2 Is about 800mmφ.
なお、バレル 46の内径の直径 D2は、各径方向変位計測用パイプ 30a、 30b、 30c、 30d力 S、クールダウン前にはバレル 46における内槽上蓋 4の半径方向中心側に位置 し、クールダウン後にはバレル 46における内槽上蓋 4の半径方向外側に位置するよ うにするように、できる限り小径とすることが好ましい。  The diameter D2 of the inner diameter of the barrel 46 is the radial displacement measuring pipes 30a, 30b, 30c, 30d force S, and is positioned on the radial center side of the inner tank top cover 4 in the barrel 46 before cooling down. It is preferable to make the diameter as small as possible so as to be positioned radially outward of the inner tank upper lid 4 in the barrel 46 after down.
[0059] バレル 46の上面には、リング状の可動蓋 47が前後左右上下に移動可能に載置さ れている。 [0059] On the upper surface of the barrel 46, a ring-shaped movable lid 47 is placed so as to be movable in the front, rear, left, right, and up directions.
この可動蓋 47の中心孔には、径方向変位計測用パイプ 30a、 30b、 30c、 30d力 S通 されており、可動蓋 47は、計測パイプやバレル 46に対して固定されておらず、自由 度を持っている。  In the center hole of this movable lid 47, radial displacement measuring pipes 30a, 30b, 30c, 30d force S are passed, and the movable lid 47 is not fixed to the measuring pipe or the barrel 46 and is free. Have a degree.
可動蓋 47の外径の直径は、径方向変位計測用パイプ 30a、 30b、 30c、 30dがバレ ル 46のどの位置に移動しても隙間が生じないように、約 1600πιιη φとなる。  The diameter of the outer diameter of the movable lid 47 is about 1600πιιη φ so that no gap is generated when the radial displacement measuring pipes 30a, 30b, 30c, 30d are moved to any position of the barrel 46.
なお、図 4には、径方向変位計測用ノ イプ 30a、 30b、 30c、 30dとノ レノレ 46との隙 間は殆どないように図示しているが、実際は、上述のごとぐ径方向変位計測用パイ プ 30a、 30b、 30c、 30dの外径の直径 Dl iま 100mm 、ノ レノレ 46の内径の直径 D 2は約 800mm φである。 Figure 4 shows the gap between the radial displacement measurement type 30a, 30b, 30c, 30d and the nore 46. Actually, the pipes for radial displacement measurement 30a, 30b, 30c, and 30d have a diameter Dli up to 100 mm and a diameter 46 of the inner diameter 46. 2 is about 800mmφ.
[0060] 径方向変位計測用パイプ 30a、 30b、 30c、 30dの下端には、鏡面体収納囲い 36 が取り付けられている。 [0060] A mirror body enclosure 36 is attached to the lower ends of the radial displacement measuring pipes 30a, 30b, 30c, 30d.
鏡面体収納囲い 36内には、垂直或いは水平方向に対し約 45° 傾斜した第 1の鏡面 体 37が収納されている。  In the mirror body storage enclosure 36, a first mirror body 37 inclined by about 45 ° with respect to the vertical or horizontal direction is stored.
第 1の鏡面体 37の傾斜角度は、 45° ± 10%の範囲内とすることができる。  The inclination angle of the first mirror body 37 can be within a range of 45 ° ± 10%.
この傾斜角度であれば、内槽側壁 3で乱反射して戻ってきたレーサー光の強度を計 測可能なものとすることができる。  With this inclination angle, it is possible to measure the intensity of the racer light that has been diffusely reflected by the inner tank side wall 3 and returned.
第 1の鏡面体 37は、ステンレス性等であり、レーザー光の反射性を良くするために反 射面が鏡状に研磨されてレ、る。  The first mirror body 37 is made of stainless steel or the like, and the reflecting surface is polished in a mirror shape in order to improve the reflectivity of the laser beam.
[0061] 更に、円筒状の出口筒 40が、鏡面体収納囲い 36の側面の内槽側壁 3に対峙する 位置に、内槽 1の半径方向に向くように取り付けられている。 Further, a cylindrical outlet tube 40 is attached at a position facing the inner tank side wall 3 on the side surface of the mirror body housing enclosure 36 so as to face the radial direction of the inner tank 1.
鏡面体収納囲!/、36及び出口筒 40の位置は内槽側壁 3の中腹あるいは底部でも可 であるが、図 4に図示のように、クールダウン後において、内槽側壁 3の上部付近に 位置することが好ましぐ内槽 1内の極低温液体 13の最も高い液面より上方に位置し ていることが好ましい。  The mirror body enclosure! /, 36 and the outlet tube 40 can be located at the middle or bottom of the inner tank side wall 3 but, as shown in FIG. It is preferable to be located above the highest liquid level of the cryogenic liquid 13 in the inner tank 1 that is preferably located.
[0062] 径方向変位計測用パイプ 30a、 30b、 30c、 30d、鏡面体収納囲い 36、出口筒 40 は、内槽 1内に開放されており、計測時には極低温液体 13が気化した極低温気体が 、径方向変位計測用パイプ 30a、 30b、 30c、 30d内に進入する。  [0062] The radial displacement measuring pipes 30a, 30b, 30c, 30d, the mirror body enclosure 36, and the outlet cylinder 40 are opened in the inner tank 1, and the cryogenic liquid 13 is vaporized during the measurement. However, it enters the radial displacement measuring pipes 30a, 30b, 30c, 30d.
[0063] 各径方向変位計測装置 26は、上述のごとく構成されており、各レーザー式距離計 測器 38a、 38b、 38c、 38d力も照射されたレーザー光 39a、 39b、 39c、 39dは、各 第 1の鏡面体 37で反射されて、内槽側壁 3に到達する。  [0063] Each radial displacement measuring device 26 is configured as described above, and laser light 39a, 39b, 39c, 39d irradiated with each laser type distance measuring instrument 38a, 38b, 38c, 38d is Reflected by the first mirror body 37 and reaches the inner tank side wall 3.
そして、内槽側壁 3にて乱反射したレーザー光 39a、 39b、 39c、 39dの一部は、出 口筒 40を通過し、再び各第 1の鏡面体 37で反射されて各レーザー式距離計測器 3 8a、 38b、 38c、 38dに戻る。  A part of the laser beams 39a, 39b, 39c, 39d diffusely reflected by the inner tank side wall 3 passes through the outlet tube 40 and is reflected again by the first mirror bodies 37 to be reflected by each laser distance measuring device. 3 Return to 8a, 38b, 38c, 38d.
このようにして、各レーザー式 £巨離計彻 J器 38a、 38b、 38c、 38d力、ら第 1の鏡面体 37 を経由して内槽側壁 3迄の距離である既径方向変位の計測値 La、 Lb、 Lc、 Ld (或 いは、各レーザー式距離計測器 38a、 38b、 38c、 38dから第 1の鏡面体 37を経由し て内槽側壁 3迄の距離である新径方向変位の計測値 Lma、 Lmb、 Lmc、 Lmd)が計 測される。 In this way, each laser type gyroscope J device 38a, 38b, 38c, 38d force, etc. Measured values of displacement in the radial direction, which is the distance to the inner tank side wall 3 via, La, Lb, Lc, Ld (or the first mirror surface from each laser type distance measuring device 38a, 38b, 38c, 38d The measured values of the displacement in the new radial direction, which is the distance from the body 37 to the inner tank side wall 3 (Lma, Lmb, Lmc, Lmd) are measured.
[0064] なお、径方向変位計測用パイプ 30a、 30b、 30c、 30d、鏡面体収納囲い 36、出口 筒 40の内面は、レーザー光を吸収するように処理、或いは物質を塗布しておくことが 望ましい。  [0064] Note that the inner surfaces of the radial displacement measuring pipes 30a, 30b, 30c, 30d, the mirror body housing enclosure 36, and the outlet tube 40 may be treated or coated with a substance so as to absorb laser light. desirable.
また、径方向変位計測用パイプ 30a、 30b、 30c、 30d、鏡面体収納囲い 36、第 1の 鏡面体 37及び出口筒 40は、クールダウン時に収縮差が生じて変形しないように、同 じ材質とすることが好ましい。  Also, the radial displacement measurement pipes 30a, 30b, 30c, 30d, the mirror body enclosure 36, the first mirror body 37, and the outlet tube 40 are made of the same material so that they do not deform due to shrinkage differences during cool-down. It is preferable that
また、内槽側壁 3のレーザー光 39a、 39b、 39c、 39dが照射される部分は、乱反射 するものであれば特別な加工、処理をする必要はな!/、。  In addition, the portion irradiated with the laser light 39a, 39b, 39c, 39d on the inner tank side wall 3 need not be specially processed or treated if it is irregularly reflected! /.
しかしながら、レーサー光 39a、 39b、 39c、 39dの距離が長くなる等、測定が不安定 になるような場合は、レーザー光 39a、 39b、 39c、 39dが十分に乱反射するような部 材を設置しても良い。  However, if the measurement becomes unstable, such as when the distance between the racer lights 39a, 39b, 39c, and 39d becomes long, install a material that sufficiently reflects the laser beams 39a, 39b, 39c, and 39d. May be.
[0065] (回転方向変位計測装置の構成) [0065] (Configuration of rotational direction displacement measuring device)
次に、図 1、図 2及び図 5を参照して、回転方向変位計測装置 27の詳細な構成につ き説明する。  Next, the detailed configuration of the rotational direction displacement measuring device 27 will be described with reference to FIG. 1, FIG. 2, and FIG.
図 1、図 2に図示のように、回転方向変位計測用パイプ 31a、 31b,レーザー式距離 計測器 38e、 38f等により構成された 2個の回転方向変位計測装置 27が、外槽上蓋 8及び内槽側壁 3の周縁付近に同一水平面において等角度に取り付けられている。 この等角度とは、回転方向変位計測装置 27が 2個の場合は 180° ± 20%を意味す るあのとする。  As shown in Fig. 1 and Fig. 2, two rotational direction displacement measuring devices 27 composed of rotational direction displacement measuring pipes 31a, 31b, laser distance measuring instruments 38e, 38f, etc. Near the periphery of the inner tank side wall 3, it is attached at an equal angle in the same horizontal plane. This equi-angle means 180 ° ± 20% when there are two rotational displacement measuring devices 27.
なお、内槽 1が歪まない (楕円等に変形しない)ことを前提にすれば、 1個のレーザー 式距離計測器 38eのみとすることも可能である。  If it is assumed that the inner tank 1 is not distorted (not deformed into an ellipse or the like), it is possible to provide only one laser type distance measuring device 38e.
このとき、各回転方向変位計測装置 27の外槽上蓋 8の中心からの距離 Dpは、径方 向変位計測装置 26の取り付け位置と同じにすることが好ましい。  At this time, the distance Dp from the center of the outer tub upper lid 8 of each rotational direction displacement measuring device 27 is preferably the same as the mounting position of the radial direction displacement measuring device 26.
[0066] 図 5に図示のように、各回転方向変位計測装置 27は、図 4に図示の径方向変位計 測装置 26と同じ形状、大きさであり、変位計測器収納箱 34、レーザー式距離計測器 38e、 38f、回転方向変位計測用パイプ 31a、 31b (直径 D1)、パイプ側フランジ 41、 取付ボルトナット 44、変位計測器収納箱側フランジ 45、遮断弁 35、鏡面体収納囲い 36、回転方向計測用としての第 2の鏡面体 37、出口筒 40、パージ排出管 22、パー ジ用窒素ガス供給管 23等により構成されている。 [0066] As shown in FIG. 5, each rotational direction displacement measuring device 27 includes the radial direction displacement meter shown in FIG. The same shape and size as the measuring device 26, displacement measuring instrument storage box 34, laser distance measuring instruments 38e, 38f, rotational displacement measuring pipes 31a, 31b (diameter D1), pipe side flange 41, mounting bolt nut 44, Displacement measuring instrument storage box side flange 45, shutoff valve 35, mirror body storage enclosure 36, second mirror body 37 for measuring rotation direction, outlet tube 40, purge discharge pipe 22, nitrogen gas supply pipe for purge It consists of 23 mag.
また、回転方向変位計測用パイプ 31a、 31bは、外槽上蓋 8の金属板 48の下面に取 付けられたパイプサポート 19等により支持されている。  Further, the rotational displacement measuring pipes 31a and 31b are supported by a pipe support 19 attached to the lower surface of the metal plate 48 of the outer tank upper lid 8.
従って、レーザー式距離計測器 38e、 38fの下端(或いはパイプ側フランジ 41)から 第 2の鏡面体 37迄の距離 Lは、図 4に図示の径方向変位計測装置 26のレーザー式 距離計測器 38e、 38fの下端(或!/、はパイプ側フランジ 41)から鏡面体 37迄の距離 L と同じとなっている。  Therefore, the distance L from the lower end of the laser type distance measuring device 38e, 38f (or the pipe side flange 41) to the second mirror body 37 is the laser type distance measuring device 38e of the radial displacement measuring device 26 shown in FIG. The distance L from the lower end of 38f (or! / Is the pipe side flange 41) to the mirror body 37 is the same.
[0067] また、径方向変位計測装置 26と同様に、各回転方向変位計測用パイプ 31a、 31b が貫通する内槽上蓋 4には、各々大きな孔が明けられており、この大きな孔の上方に は、各回転方向変位計測用パイプ 31a、 31bを案内管する所定の高さのバレル 46 ( 直径 D2)が溶接等により取り付けられている。  [0067] Similarly to the radial direction displacement measuring device 26, the inner tank upper lid 4 through which each of the rotational direction displacement measuring pipes 31a and 31b penetrates has a large hole formed above the large hole. A barrel 46 (diameter D2) having a predetermined height for guiding the rotational displacement measuring pipes 31a and 31b is attached by welding or the like.
このバレル 46の高さは、径方向変位計測装置 26のものと同様に、内槽上蓋 4上に充 填された粒子状断熱材 12が内槽 1内に進入しないような高さとする。  The height of the barrel 46 is set so that the particulate heat insulating material 12 filled on the inner tank upper lid 4 does not enter the inner tank 1, as in the radial displacement measuring device 26.
バレル 46の上面には、径方向変位計測装置 26のものと同一形状のリング状の可動 蓋 47が、前後左右上下に移動可能に載置されている。  On the upper surface of the barrel 46, a ring-shaped movable lid 47 having the same shape as that of the radial displacement measuring device 26 is placed so as to be movable in the front-rear direction, the left-right direction, and the up-down direction.
[0068] 径方向変位計測装置 26と異なる点は、反射したレーザー光の照射方向が内槽側 壁 3の周方向に向くように鏡面体が取り付けられている点にある。 [0068] The difference from the radial displacement measuring device 26 is that the mirror body is attached so that the irradiation direction of the reflected laser light is directed to the circumferential direction of the inner tank side wall 3.
そして、内槽側壁 3には、内槽側壁 3の径方向且つ垂直方向に延在する垂直部材 2 1が、各回転方向変位計測装置 27用の出口筒 40と対峙する位置に取り付けられて いる。  Further, a vertical member 21 extending in the radial direction and the vertical direction of the inner tank side wall 3 is attached to the inner tank side wall 3 at a position facing the outlet tube 40 for each rotational direction displacement measuring device 27. .
[0069] 各回転方向変位計測装置 27は、上述のごとく構成されており、各レーザー式距離 計測器 38e、 38fから照射されたレーザー光 39e、 39fは、各第 2の鏡面体 37で反射 されて、垂直部材 21に到達する。  [0069] Each rotational direction displacement measuring device 27 is configured as described above, and the laser beams 39e and 39f emitted from the laser distance measuring devices 38e and 38f are reflected by the second mirror bodies 37, respectively. Thus, the vertical member 21 is reached.
そして、垂直部材 21にて乱反射したレーザー光 39e、 39fの一部は、出口筒 40を通 過し、再び各第 2の鏡面体 37で反射されて各レーザー式距離計測器 38e、 38fに戻 このようにして、各レーザー式距離計測器 38e、 38fから第 1の鏡面体 37を経由して 垂直部材 21迄の距離である既回転方向変位の計測値 Le、 Lf (或いは、各レーザー 式距離計測器 38a、 38b、 38c、 38dから第 1の鏡面体 37を経由して垂直部材 21迄 の距離である新回転方向変位の計測値 Lme、 Lmf)が計測される。 A part of the laser beams 39e and 39f irregularly reflected by the vertical member 21 passes through the exit tube 40. Then, it is reflected again by each second specular body 37 and returned to each laser type distance measuring device 38e, 38f.Thus, each laser type distance measuring device 38e, 38f passes through the first specular body 37. Measured value of displacement in the rotational direction, which is the distance to the vertical member 21 Le, Lf (or from each laser type distance measuring device 38a, 38b, 38c, 38d to the vertical member 21 via the first mirror body 37 Measured values (Lme, Lmf) of the new rotational displacement, which is the distance of.
そして、レーザー式距離計測器 38e、 38fにて計測された既回転方向変位の計測値 Le、 Lf (或いは、新回転方向変位の計測値 Lme、 Lmf)は、後述するタンク監視装 置 70 (70a)に送信されるようになっている。  The measured values Le and Lf of the existing rotational displacement measured by the laser distance measuring instruments 38e and 38f (or the measured values Lme and Lmf of the new rotational displacement) are stored in a tank monitoring device 70 (70a described later). ).
[0070] (内槽の高さ方向変位計測装置の構成) [0070] (Configuration of inner tank height direction displacement measuring device)
次に、図 1、図 2、図 6を参照して、内槽の高さ方向変位計測装置 28の詳細な構成に つき説明する。  Next, the detailed configuration of the inner tank height direction displacement measuring device 28 will be described with reference to FIG. 1, FIG. 2, and FIG.
図 1、図 2に図示のように、内槽の高さ方向変位計測用パイプ 32、レーザー式距離計 測器 38g等により構成された 1個の内槽の高さ方向変位計測装置 28が、外槽上蓋 8 及び内槽側壁 3の周縁付近に取り付けられている。  As shown in Fig. 1 and Fig. 2, the inner tank height direction displacement measuring device 28 composed of the inner tank height direction displacement measuring pipe 32, laser type distance measuring device 38g, etc. It is attached near the periphery of the outer tank upper lid 8 and the inner tank side wall 3.
このとき、内槽の高さ方向変位計測装置 28の外槽上蓋 8の中心からの距離 Dpも、径 方向変位計測装置 26の取り付け位置と同じにすることが好ましい。  At this time, the distance Dp from the center of the outer tank upper lid 8 of the inner tank height direction displacement measuring device 28 is preferably the same as the mounting position of the radial direction displacement measuring device 26.
[0071] 図 6に図示のように、内槽の高さ方向変位計測装置 28は、鏡面体収納囲い 36、鏡 面体 37及び出口筒 40が無い点を除けば、図 4に図示の径方向変位計測装置 26と 同じ形状、大きさであり、変位計測器収納箱 34、レーザー式距離計測器 38g、内槽 の高さ方向変位計測用パイプ 32 (直径 D1)、パイプ側フランジ 41、取付ボルトナット 44、変位計測器収納箱側フランジ 45、遮断弁 35、パージ排出管 22、パージ用窒素 ガス供給管 23等により構成されている。 [0071] As shown in FIG. 6, the inner tank height direction displacement measuring device 28 has the radial direction shown in FIG. 4 except that the mirror body housing enclosure 36, the mirror body 37 and the outlet tube 40 are not provided. The same shape and size as the displacement measuring device 26, displacement measuring instrument storage box 34, laser distance measuring instrument 38g, inner tank height direction displacement measuring pipe 32 (diameter D1), pipe side flange 41, mounting bolt It consists of a nut 44, a displacement measuring instrument storage box side flange 45, a shutoff valve 35, a purge discharge pipe 22, a purge nitrogen gas supply pipe 23, and the like.
また、内槽の高さ方向変位計測用パイプ 32は、外槽上蓋 8の金属板 48の下面に取 付けられたパイプサポート 19等により支持されている。  The pipe 32 for measuring the displacement in the height direction of the inner tank is supported by a pipe support 19 attached to the lower surface of the metal plate 48 of the outer tank upper lid 8.
[0072] また、径方向変位計測装置 26と同様に、内槽の高さ方向変位計測用パイプ 32が 貫通する内槽上蓋 4には、各々大きな孔が明けられており、この大きな孔の上方には 、内槽の高さ方向変位計測用パイプ 32を案内管する所定の高さのバレル 46 (直径 D 2)が溶接等により取り付けられている。 [0072] Similarly to the radial direction displacement measuring device 26, the inner tank upper lid 4 through which the inner tank height direction displacement measuring pipe 32 penetrates has large holes, respectively. The barrel 46 (diameter D having a predetermined height) that guides the pipe 32 for measuring the displacement of the inner tank in the height direction. 2) is attached by welding or the like.
このバレル 46の高さは、径方向変位計測装置 26のものと同様に、内槽上蓋 4上に充 填された粒子状断熱材 12が内槽 1内に進入しないような高さとする。  The height of the barrel 46 is set so that the particulate heat insulating material 12 filled on the inner tank upper lid 4 does not enter the inner tank 1, as in the radial displacement measuring device 26.
バレル 46の上面には、径方向変位計測装置 26のものと同一形状のリング状の可動 蓋 47が、前後左右に移動可能に載置されている。  On the upper surface of the barrel 46, a ring-shaped movable lid 47 having the same shape as that of the radial displacement measuring device 26 is placed so as to be movable in the front-rear and left-right directions.
[0073] 径方向変位計測装置 26と異なる点は、上述のごとぐ図 4等に図示の鏡面体収納 囲!/、36、鏡面体 37及び出口筒 40が無!/、。 [0073] The difference from the radial displacement measuring device 26 is that the mirror body housing enclosure! /, 36, the mirror body 37 and the exit tube 40 shown in FIG.
そして、内槽側壁 3には、内槽側壁 3の径方向且つ水平方向に延在する内槽の高さ 方向変位計測用の水平部材 20が、内槽の高さ方向変位計測用パイプ 32と対峙する 位置に取り付けられている。  The inner tank side wall 3 includes a horizontal member 20 for measuring the displacement in the height direction of the inner tank extending in the radial direction and the horizontal direction of the inner tank side wall 3 and a pipe 32 for measuring the height displacement of the inner tank. It is attached at the opposite position.
[0074] 内槽の高さ方向変位計測装置 28は、上述のごとく構成されており、各レーザー式 距離計測器 38gから照射されたレーザー光 39gは、水平部材 20に到達する。 The inner tank height direction displacement measuring device 28 is configured as described above, and the laser light 39 g emitted from each laser-type distance measuring device 38 g reaches the horizontal member 20.
そして、水平部材 20にて乱反射したレーザー光 39gの一部は、レーザー式距離計 測器 38gに戻る。  A part of the laser beam 39g irregularly reflected by the horizontal member 20 returns to the laser distance meter 38g.
このようにして、各レーザー式距離計測器 38gから水平部材 20迄の既内槽の高さ方 向変位の計測値 Lg (或いは、新内槽の高さ方向変位の計測値 Lmg)が計測される。 そして、レーザー式距離計測器 38gにて計測された既内槽の高さ方向変位の計測 値 Lg (或いは、新内槽の高さ方向変位の計測値 Lmg)は、後述するタンク監視装置 70 (70a)に送信されるようになって!/、る。  In this way, the measurement value Lg of the displacement in the height direction of the existing inner tank from each laser type distance measuring device 38g to the horizontal member 20 (or the measurement value Lmg of the displacement in the height direction of the new inner tank) is measured. The The measured value Lg of the displacement in the height direction of the existing inner tank measured by the laser distance measuring device 38g (or the measured value Lmg of the displacement in the height direction of the new inner tank) is stored in a tank monitoring device 70 (described later). 70a) is sent!
[0075] (パイプ収縮補正量計測装置の構成) [0075] (Configuration of pipe shrinkage correction amount measuring device)
次に、図 1、図 2、図 7を参照して、ノイブ収縮補正量計測装置 29の詳細な構成につ き説明する。  Next, the detailed configuration of the Neuve contraction correction amount measuring device 29 will be described with reference to FIGS. 1, 2, and 7. FIG.
図 1、図 2に図示のように、パイプ収縮補正用パイプ 33、レーザー式距離計測器 38h 等により構成された 1個のパイプ収縮補正量計測装置 29が、外槽上蓋 8及び内槽側 壁 3の周縁付近に取り付けられて!/、る。  As shown in Fig. 1 and Fig. 2, one pipe contraction correction amount measuring device 29 composed of pipe contraction correction pipe 33, laser type distance measuring instrument 38h, etc. is connected to outer tank upper lid 8 and inner tank side wall. Installed near the periphery of 3! /
このとき、パイプ収縮補正量計測装置 29の外槽上蓋 8の中心からの距離 Dpも、径方 向変位計測装置 26及び回転方向変位計測装置 27の取り付け位置と同じにする。  At this time, the distance Dp from the center of the outer tub upper lid 8 of the pipe shrinkage correction amount measuring device 29 is also set to the same mounting position of the radial direction displacement measuring device 26 and the rotational direction displacement measuring device 27.
[0076] 図 7に図示のように、パイプ収縮補正量計測装置 29は、パイプ収縮補正用としてパ イブ下端に、水平部材 37dが水平に取り付けられており、出口筒 40が無い点を除け ば、図 4、 5に図示の径方向変位計測装置 26及び回転方向変位計測装置 27と同じ 形状、大きさであり、変位計測器収納箱 34、レーザー式距離計測器 38h、パイプ収 縮補正用パイプ 33 (直径 D1)、パイプ側フランジ 41、取付ボルトナット 44、変位計測 器収納箱側フランジ 45、遮断弁 35、パージ排出管 22、パージ用窒素ガス供給管 23 等により構成されている。 [0076] As shown in Fig. 7, the pipe contraction correction amount measuring device 29 is used for correcting pipe contraction. The same shape and size as the radial displacement measuring device 26 and the rotational displacement measuring device 27 shown in FIGS. 4 and 5, except that the horizontal member 37d is horizontally attached to the lower end of the eve and there is no outlet tube 40. The displacement measuring instrument storage box 34, laser distance measuring instrument 38h, pipe compression pipe 33 (diameter D1), pipe side flange 41, mounting bolt nut 44, displacement measuring instrument storage box side flange 45, shut off It consists of a valve 35, a purge discharge pipe 22, a purge nitrogen gas supply pipe 23, and the like.
また、パイプ収縮補正用パイプ 33は、外槽上蓋 8の金属板 48の下面に取付けられた パイプサポート 19等により支持されている。  The pipe contraction correcting pipe 33 is supported by a pipe support 19 attached to the lower surface of the metal plate 48 of the outer tank upper lid 8.
[0077] また、径方向変位計測装置 26及び回転方向変位計測装置 27と同様に、パイプ収 縮補正用パイプ 33が貫通する内槽上蓋 4には、各々大きな孔が明けられており、こ の大きな孔の上方には、パイプ収縮補正用パイプ 33を案内管する所定の高さのバレ ノレ 46 (直径 D2)が溶接等により取り付けられている。 [0077] Similarly to the radial direction displacement measuring device 26 and the rotational direction displacement measuring device 27, each of the inner tank upper lids 4 through which the pipe contraction correcting pipe 33 passes has a large hole, and this Above the large hole, a barrel 46 (diameter D2) having a predetermined height for guiding the pipe contraction correcting pipe 33 is attached by welding or the like.
このバレル 46の高さは、径方向変位計測装置 26又は回転方向変位計測装置 27の ものと同様に、内槽上蓋 4上に充填された粒子状断熱材 12が内槽 1内に進入しない ような高さとする。  The height of the barrel 46 is the same as that of the radial displacement measuring device 26 or the rotational displacement measuring device 27 so that the particulate heat insulating material 12 filled on the inner tank upper lid 4 does not enter the inner tank 1. With a height.
バレル 46の上面には、径方向変位計測装置 26又は回転方向変位計測装置 27のも のと同一形状のリング状の可動蓋 47が、前後左右に移動可能に載置されている。  On the upper surface of the barrel 46, a ring-shaped movable lid 47 having the same shape as that of the radial direction displacement measuring device 26 or the rotational direction displacement measuring device 27 is movably mounted.
[0078] 径方向変位計測装置 26又は回転方向変位計測装置 27と異なる点は、上述のごと く、図 7等に図示のように、鏡面体収納囲い 36内のパイプ下端に水平部材 37dが水 平に取り付けられている点にある。 [0078] As described above, the difference between the radial displacement measuring device 26 and the rotational displacement measuring device 27 is that a horizontal member 37d is placed at the lower end of the pipe in the mirror body enclosure 36 as shown in FIG. It is in the point attached to the flat.
このパイプ下端の水平部材 37dの表面は、鏡面状ではなぐレーザー光 39hが乱反 射するようになっている。  The surface of the horizontal member 37d at the lower end of the pipe is reflected by a laser beam 39h that is not mirror-like.
このとき、レーザー式距離計測器 38hの下端(或いはパイプ側フランジ 41)からパイ プ下端の水平部材 37d迄の距離 Lは、図 4に図示の距離 L及び図 5に図示の距離 L と同じにする。  At this time, the distance L from the lower end (or pipe side flange 41) of the laser distance measuring device 38h to the horizontal member 37d at the lower end of the pipe is the same as the distance L shown in FIG. 4 and the distance L shown in FIG. To do.
[0079] パイプ収縮補正量計測装置 29は、上述のごとく構成されており、各レーザー式距 離計測器 38hから照射されたレーザー光 39hは、パイプ下端の水平部材 37dに到達 する。 そして、パイプ下端の水平部材 37dにて乱反射したレーザー光 39hの一部は、レー ザ一式距離計測器 38hに戻る。 The pipe contraction correction amount measuring device 29 is configured as described above, and the laser light 39h emitted from each laser distance measuring device 38h reaches the horizontal member 37d at the lower end of the pipe. A part of the laser beam 39h irregularly reflected by the horizontal member 37d at the lower end of the pipe returns to the laser set distance measuring device 38h.
このようにして、各レーザー式距離計測器 38hからパイプ下端の水平部材 37d迄の ノ イプ長の計測値 Lh (或いは、新パイプ長の計測値 Lmh)が計測される。  In this way, the measured length Lh (or the measured value Lmh of the new pipe length) from each laser type distance measuring device 38h to the horizontal member 37d at the lower end of the pipe is measured.
そして、レーザー式距離計測器 38hにて計測されたパイプ長の計測値 Lh (或いは、 新パイプ長の計測値 Lmh)は、後述するタンク監視装置 70 (70a)に送信されるよう になっている。  Then, the pipe length measurement value Lh (or the new pipe length measurement value Lmh) measured by the laser distance measuring device 38h is transmitted to the tank monitoring device 70 (70a) described later. .
[0080] なお、クールダウン前後における内槽 1の変位(主に収縮)を計測する必要がない 場合、或いはクールダウン前後における内槽 1の変位(主に収縮)が推定できる場合 には、必ずしもパイプ収縮補正量計測装置 29は必要が無!/、。  [0080] If it is not necessary to measure the displacement (mainly contraction) of the inner tank 1 before and after the cool-down, or if the displacement (mainly contraction) of the inner tank 1 before and after the cool-down can be estimated, it is not always necessary. Pipe shrinkage correction measuring device 29 is not necessary!
し力、しながら、パイプ収縮補正量計測装置 29を設けることにより、クールダウン前後 における内槽 1の変位(単なる収縮のみならず、径方向の変位及び回転方向の変位 )を確実に計測することができる。  However, by providing the pipe shrinkage correction amount measuring device 29, the displacement of the inner tank 1 before and after the cool-down (not only shrinkage but also radial displacement and rotational displacement) can be reliably measured. Can do.
[0081] (本発明の第 2の実施の形態)  [0081] (Second Embodiment of the Present Invention)
次に、図 8を参照して本発明の第 2の実施の形態に係る二重殻構造タンク装置、タン クの変位計測装置及びタンク設備につき説明する。  Next, a double-shell structure tank device, a tank displacement measuring device, and tank equipment according to a second embodiment of the present invention will be described with reference to FIG.
図 8は、本発明の第 2の実施の形態に係る二重殻構造タンクの径方向変位計測装置 26 a又は回転方向変位計測装置 27aの詳細側面図である。  FIG. 8 is a detailed side view of the radial displacement measuring device 26a or the rotational displacement measuring device 27a of the double-shell structure tank according to the second embodiment of the present invention.
本発明の第 2の実施の形態に係るタンクの変位計測装置は、 4個(少なくとも 2個)の 径方向変位計測装置 26a、 2個(少なくとも 1個)の回転方向変位計測装置 27a、及 び、本発明の第 1、 2の実施の形態と同様の 1個の内槽の高さ方向変位計測装置 28 、 1個のパイプ収縮補正量計測装置 29及びタンク監視装置 70 (70a)により構成され ている。  The tank displacement measuring device according to the second embodiment of the present invention includes four (at least two) radial displacement measuring devices 26a, two (at least one) rotational displacement measuring devices 27a, and In the same manner as in the first and second embodiments of the present invention, it is composed of one inner tank height direction displacement measuring device 28, one pipe contraction correction amount measuring device 29 and a tank monitoring device 70 (70a). ing.
また、内槽側壁 3には、内槽の高さ方向変位計測用の水平部材 20、 2枚 (少なくとも 1 枚)のタンク回転計測用の垂直部材 21が取り付けられている。  The inner tank side wall 3 is provided with a horizontal member 20 for measuring the displacement of the inner tank in the height direction and two (at least one) vertical member 21 for measuring the tank rotation.
なお、タンク監視装置 70 (70a)の詳細につ!/、ては後述する。  Details of the tank monitoring device 70 (70a) will be described later.
[0082] 本発明の第 1の実施の形態に係るタンクの変位計測装置と異なる点は、図 4、 5に 図示の径方向変位計測装置 26及び回転方向変位計測装置 27を、図 8に図示のよう に、鏡面体収納囲い 36を省略した径方向変位計測装置 26a、回転方向変位計測装 置 27aとした点にある。 The difference from the tank displacement measuring apparatus according to the first embodiment of the present invention is that a radial displacement measuring apparatus 26 and a rotational displacement measuring apparatus 27 shown in FIGS. 4 and 5 are shown in FIG. As In addition, the radial direction displacement measuring device 26a and the rotational direction displacement measuring device 27a are omitted.
その他の構成である、内槽の高さ方向変位計測装置 28 (図 6参照)、パイプ収縮補 正量計測装置 29 (図 7参照)等については、本発明の第 1の実施の形態のものと同じ ものを備えている。  Other configurations such as the inner tank height direction displacement measuring device 28 (see FIG. 6), the pipe shrinkage correction amount measuring device 29 (see FIG. 7), etc. are those of the first embodiment of the present invention. The same thing is provided.
[0083] 即ち、図 8に図示のように、各径方向変位計測装置 26aは、変位計測器収納箱 34 、レーザー式距離計測器 38a、 38b, 38c、 38d、径方向変位計測用パイプ 30a、 30 b、 30c、 30d (直径 D1)、パイプ側フランジ 41、取付ボルトナット 44、変位計測器収 納箱側フランジ 45、遮断弁 35、鏡面体 37、出口筒 40、パージ排出管 22、パージ用 窒素ガス供給管 23等により構成されている。 That is, as shown in FIG. 8, each radial displacement measuring device 26a includes a displacement measuring device storage box 34, laser type distance measuring devices 38a , 38b, 38c, 38d, a radial displacement measuring pipe 30a, 30 b, 30c, 30d (D1 diameter), pipe side flange 41, mounting bolt nut 44, displacement measuring instrument storage side flange 45, shut-off valve 35, mirror body 37, outlet cylinder 40, purge discharge pipe 22, purge It is composed of a nitrogen gas supply pipe 23 and the like.
また、各回転方向変位計測装置 27は、径方向変位計測装置 26と同じ形状、大きさ であり、変位計測器収納箱 34、レーザー式距離計測器 38e、 38f、回転方向変位計 測用パイプ 31a、 31b,パイプ側フランジ 41、取付ボルトナット 44、変位計測器収納 箱側フランジ 45、遮断弁 35、鏡面体 37、出口筒 40、パージ排出管 22、パージ用窒 素ガス供給管 23等により構成されている。  Each rotational direction displacement measuring device 27 has the same shape and size as the radial direction displacement measuring device 26, and includes a displacement measuring device storage box 34, laser distance measuring devices 38e and 38f, and a rotational direction displacement measuring pipe 31a. 31b, pipe side flange 41, mounting bolt nut 44, displacement measuring instrument storage box side flange 45, shutoff valve 35, mirror body 37, outlet tube 40, purge discharge pipe 22, purge nitrogen gas supply pipe 23, etc. Has been.
また、径方向変位計測用パイプ 30a、 30b、 30c、 30d、及び回転方向変位計測用パ ィプ 31a、 31bは、外槽上蓋 8の金属板 48の下面に取付けられたパイプサポート 19 等により支持されている。  Also, the radial displacement measuring pipes 30a, 30b, 30c, 30d and the rotational displacement measuring pipes 31a, 31b are supported by a pipe support 19 attached to the lower surface of the metal plate 48 of the outer tank upper lid 8. Has been.
[0084] 径方向変位計測用パイプ 30a、 30b、 30c、 30d及び回転方向変位計測用パイプ 3 la、 31bの下端部は、垂直或いは水平方向に対し斜め 45° ± 20%に鏡面体 37を 直接に取り付けて、径方向変位計測装置 26a、回転方向変位計測装置 27aとしてい [0084] The radial displacement measuring pipes 30a, 30b, 30c, 30d and the rotational displacement measuring pipes 3la, 31b have the mirror body 37 directly at 45 ° ± 20% diagonally with respect to the vertical or horizontal direction. The radial displacement measuring device 26a and the rotational displacement measuring device 27a
[0085] 径方向変位計測用パイプ 30a、 30b、 30c、 30d及び回転方向変位計測用パイプ 3 la、 31bの下部側面には、レーザー光を通すための孔が明けられている。 [0085] On the lower side surfaces of the radial direction displacement measuring pipes 30a, 30b, 30c, 30d and the rotational direction displacement measuring pipes 3la, 31b, holes for passing laser light are formed.
この孔の箇所に、出口筒 40が取り付けられている。  An outlet tube 40 is attached to the hole.
なお、出口筒 40は必ずしも必要なものではなぐ単に孔を明けただけのものでも良い 。また、径方向変位計測用パイプ 30a、 30b、 30c、 30d、鏡面体 37及び出口筒 40 は、クールダウン時に収縮差が生じて変形しないように、同じ材質とすることが好まし い。 Note that the outlet tube 40 is not necessarily required, but may simply be a hole. In addition, the radial displacement measuring pipes 30a, 30b, 30c, 30d, the mirror body 37, and the outlet tube 40 are preferably made of the same material so that they do not deform due to a shrinkage difference during cool-down. Yes.
[0086] 上述の本発明の第 2の実施の形態に係る二重殻構造タンク装置、タンクの変位計 測装置、或いはタンク設備によれば、本発明の第 1の実施の形態のものに対し、径方 向変位計測用パイプ 30a、 30b、 30c、 30d及び回転方向変位計測用パイプ 31a、 3 lbの構造を簡素にすることができる。  [0086] According to the above-described double-shell structure tank device, tank displacement measuring device, or tank facility according to the second embodiment of the present invention, the first embodiment of the present invention is used. The structures of the radial displacement measuring pipes 30a, 30b, 30c, 30d and the rotational displacement measuring pipes 31a, 3 lb can be simplified.
[0087] (本発明の第 3の実施の形態)  [0087] (Third embodiment of the present invention)
次に、図 9を参照して本発明の第 3の実施の形態に係る二重殻構造タンク装置、タン クの変位計測装置及びタンク設備につき説明する。  Next, a double-shell structure tank device, a tank displacement measuring device, and tank equipment according to a third embodiment of the present invention will be described with reference to FIG.
図 9は、本発明の第 3の実施の形態に係る二重殻構造タンクの径方向変位計測装置 26bの詳細側面図である。  FIG. 9 is a detailed side view of the radial displacement measuring device 26b of the double-shell structure tank according to the third embodiment of the present invention.
本発明の第 3の実施の形態に係るタンクの変位計測装置は、 1個の径方向変位計測 装置 26b、 2個(少なくとも 1個)の回転方向変位計測装置 27、 27a、 1個の内槽の高 さ方向変位計測装置 28、 1個のパイプ収縮補正量計測装置 29及びタンク監視装置 70により構成されている。  The tank displacement measuring device according to the third embodiment of the present invention includes one radial displacement measuring device 26b, two (at least one) rotational displacement measuring devices 27, 27a, and one inner tank. The height direction displacement measuring device 28, one pipe contraction correction amount measuring device 29 and a tank monitoring device 70 are included.
また、内槽側壁 3には、内槽の高さ方向変位計測用の水平部材 20、 2枚 (少なくとも 1 枚)のタンク回転計測用の垂直部材 21が取り付けられている。  The inner tank side wall 3 is provided with a horizontal member 20 for measuring the displacement of the inner tank in the height direction and two (at least one) vertical member 21 for measuring the tank rotation.
なお、タンク監視装置 70の詳細については後述する。  Details of the tank monitoring device 70 will be described later.
[0088] 本発明の第 1、 2の実施の形態に係るタンクの変位計測装置と異なる点は、径方向 変位計測装置 26を、図 9に図示のように、複数方向の径方向変位の計測が可能な 1 個の径方向変位計測装置 26bとした点にある。 The difference from the tank displacement measuring apparatus according to the first and second embodiments of the present invention is that the radial displacement measuring apparatus 26 is used to measure a plurality of radial displacements as shown in FIG. One radial displacement measuring device 26b is possible.
以下では 4方向を計測する場合を例として説明する力 2方向、 3方向あるいは 5方向 以上の計測の場合も同様に計測可能である。  In the following, the force is described in the case of measuring four directions as an example. The measurement can be similarly performed in the case of measuring in two directions, three directions or more than five directions.
その他の構成である、回転方向変位計測装置 27、 27a (図 5、図 9参照)、内槽の高 さ方向変位計測装置 28 (図 6参照)、パイプ収縮補正量計測装置 29 (図 7参照)等に ついては、本発明の第 1、 2の実施の形態のものと同じものを備えている。  Other configurations, rotational direction displacement measuring device 27, 27a (see Fig. 5 and Fig. 9), inner tank height direction displacement measuring device 28 (see Fig. 6), pipe shrinkage correction amount measuring device 29 (see Fig. 7) ) And the like are the same as those in the first and second embodiments of the present invention.
[0089] 即ち、図 9に図示のように、径方向変位計測装置 26bは、 1個の変位計測器収納箱 That is, as shown in FIG. 9, the radial displacement measuring device 26b has one displacement measuring instrument storage box.
34、 1個の変位計測器収納箱 34内に収納された 4個のレーザー式距離計測器 38a 、 38b、 38c、 38d、径方向変位計測用パイプ 30、パイプ側フランジ 41、取付ボルト ナット 44、変位計測器収納箱側フランジ 45、遮断弁 35、 1個の鏡面体収納囲い 36 内に四角錐状に収納された鏡面体 37、出口筒 40、パージ排出管 22、パージ用窒 素ガス供給管 23等により構成されている。 34, 1 displacement measuring instrument storage box 4 laser-type distance measuring instruments 38a, 38b, 38c, 38d, radial displacement measuring pipe 30, pipe side flange 41, mounting bolt Nut 44, Displacement measuring instrument storage box side flange 45, shutoff valve 35, one mirror body storage enclosure 36 in the shape of a quadrangular pyramid 37, outlet cylinder 40, purge discharge pipe 22, purge nitrogen It consists of a gas supply pipe 23 and the like.
また、径方向変位計測用パイプ 30は、外槽上蓋 8の金属板 48の下面に取付けられ たパイプサポート 19等により支持されている。  The radial displacement measuring pipe 30 is supported by a pipe support 19 attached to the lower surface of the metal plate 48 of the outer tank upper lid 8.
[0090] 4個のレーザー式距離計測器 38a、 36b、 36c、 36dは、 1個の変位計測器収納箱 34内に収納されている。 [0090] The four laser-type distance measuring instruments 38a, 36b, 36c, 36d are stored in one displacement measuring instrument storage box 34.
4枚の鏡面体 37も、 1個の鏡面体収納囲い 36内に、四角錐状に取り付けられている 。鏡面体収納囲い 36の 4方の側面には、各々出口筒 40が取り付けられている。 なお、出口筒 40は必ずしも必要なものではなぐ単に孔を明けただけのものでも良い 。また、径方向変位計測装置 26bは、各々出口筒 40から照射されるレーザー光 39a 、 39b、 39c、 39d力 図 1、図 2、図 3に図示の極低温流体搬出入配管 15及びその 他の計測用配管と干渉しない位置に取り付けられる。  The four mirror bodies 37 are also attached in the shape of a quadrangular pyramid in one mirror body housing enclosure 36. Outlet tubes 40 are attached to the four side surfaces of the mirror body storage enclosure 36, respectively. Note that the outlet tube 40 is not necessarily required, but may simply be a hole. In addition, the radial displacement measuring device 26b has the laser light 39a, 39b, 39c, 39d force emitted from the outlet tube 40, respectively, and the cryogenic fluid loading / unloading pipe 15 shown in FIGS. Installed at a position where it does not interfere with the measurement pipe.
なお、径方向変位計測用パイプ 30の直径 D3は、約 200mm程度とすることが好まし い。  The diameter D3 of the radial displacement measuring pipe 30 is preferably about 200 mm.
また、バレル 46の内径 D4は、約 900mm φである。  The inner diameter D4 of the barrel 46 is about 900 mmφ.
[0091] 本発明の第 3の実施の形態に係る二重殻構造タンクの変位計測装置によれば、本 発明の第 1、 2の実施の形態のものに対し、径方向変位の計測を 1個の径方向変位 計測装置 26bに集約できるので、取り付けが容易になるという利点がある。 [0091] According to the displacement measuring apparatus for the double-shell structure tank according to the third embodiment of the present invention, the radial displacement measurement is performed 1 for the first and second embodiments of the present invention. Since it can be integrated into the individual radial displacement measuring device 26b, there is an advantage that the mounting becomes easy.
[0092] (本発明の第 4の実施の形態) [0092] (Fourth embodiment of the present invention)
次に、図 10を参照して本発明の第 4の実施の形態に係る二重殻構造タンク装置、タ ンクの変位計測装置及びタンク設備につき説明する。  Next, a double-shell structure tank device, a tank displacement measuring device, and tank equipment according to a fourth embodiment of the present invention will be described with reference to FIG.
図 10は、本発明の第 4の実施の形態に係る二重殻構造タンクの径方向変位計測装 置 26cの詳細側面図である。  FIG. 10 is a detailed side view of the radial displacement measuring device 26c of the double-shell structure tank according to the fourth embodiment of the present invention.
本発明の第 4の実施の形態に係るタンクの変位計測装置は、 1個の径方向変位計測 装置 26c、 2個(少なくとも 1個)の回転方向変位計測装置 27、 27a、 1個の内槽の高 さ方向変位計測装置 28、 1個のパイプ収縮補正量計測装置 29及びタンク監視装置 70により構成されている。 また、径方向変位計測用パイプ 30は、外槽上蓋 8の金属板 48の下面に取付けられ たパイプサポート 19等により支持されている。 The tank displacement measuring device according to the fourth embodiment of the present invention includes one radial displacement measuring device 26c, two (at least one) rotational displacement measuring devices 27, 27a, and one inner tank. The height direction displacement measuring device 28, one pipe contraction correction amount measuring device 29 and a tank monitoring device 70 are included. The radial displacement measuring pipe 30 is supported by a pipe support 19 attached to the lower surface of the metal plate 48 of the outer tank upper lid 8.
また、内槽側壁 3には、内槽の高さ方向変位計測用の水平部材 20、 2枚 (少なくとも 1 枚)のタンク回転計測用の垂直部材 21が取り付けられている。  The inner tank side wall 3 is provided with a horizontal member 20 for measuring the displacement of the inner tank in the height direction and two (at least one) vertical member 21 for measuring the tank rotation.
なお、タンク監視装置 70の詳細については後述する。  Details of the tank monitoring device 70 will be described later.
[0093] 本発明の第 3の実施の形態に係るタンクの変位計測装置(図 9参照)と異なる点は、 径方向変位計測装置 26を、図 10に図示のように、変位計測器収納箱 34に 1個のレ 一ザ一式距離計測器 38及びレーザー光路変更器 43を収納した点にある。  A difference from the tank displacement measuring apparatus (see FIG. 9) according to the third embodiment of the present invention is that the radial displacement measuring apparatus 26 is replaced with a displacement measuring instrument storage box as shown in FIG. 34 is a point where one laser set distance measuring device 38 and a laser beam path changing device 43 are accommodated.
その他の構成である、回転方向変位計測装置 27、 27a (図 5、図 8参照)、内槽の高 さ方向変位計測装置 28 (図 6参照)、パイプ収縮補正量計測装置 29 (図 7参照)等に ついては、本発明の第 1、 2、 3の実施の形態のものと同じものを備えている。  Other configurations, rotational displacement measuring devices 27, 27a (see Fig. 5 and Fig. 8), inner tank height displacement measuring device 28 (see Fig. 6), pipe shrinkage correction measuring device 29 (see Fig. 7) ) Etc. are the same as those of the first, second and third embodiments of the present invention.
[0094] 即ち、図 10に図示のように、径方向変位計測装置 26cは、 1個の変位計測器収納 箱 34、 1個のレーザー式距離計測器 38、レーザー光路変更器 43、径方向変位計測 用パイプ 30、 ノイブ側フランジ 41、取付ボルトナット 44、変位計測器収納箱側フラン ジ 45、遮断弁 35、 1個の鏡面体収納囲い 36内に四角錐状に収納された鏡面体 37、 出口筒 40、パージ排出管 22、パージ用窒素ガス供給管 23等により構成されている なお、出口筒 40は必ずしも必要なものではなぐ単に孔を明けただけのものでも良い  That is, as shown in FIG. 10, the radial displacement measuring device 26c includes one displacement measuring device storage box 34, one laser distance measuring device 38, a laser beam path changing device 43, a radial displacement. Pipe 30 for measurement, Nove side flange 41, Mounting bolt nut 44, Displacement measuring instrument storage box side flange 45, Shut-off valve 35, One mirror body storage enclosure 36 Specular body 37 stored in a square pyramid shape, It is composed of the outlet tube 40, the purge discharge pipe 22, the purge nitrogen gas supply pipe 23, etc. Note that the outlet tube 40 is not necessarily required, but may be a simple hole.
[0095] パイプ側フランジ 41の上面には、レーザー光が透過可能なレーザー光透過耐圧板 42が取付ボルトナット 44により取り付けられている。 On the upper surface of the pipe-side flange 41, a laser light transmission pressure-resistant plate 42 capable of transmitting laser light is attached by a mounting bolt nut 44.
このレーザー光透過耐圧板 42の上面に、変位計測器収納箱側フランジ 45を有する 変位計測器収納箱 34が接続されて!/、る。  A displacement measuring instrument storage box 34 having a displacement measuring instrument storage box side flange 45 is connected to the upper surface of the laser light transmission pressure-resistant plate 42.
変位計測器収納箱 34内には、 1個のレーザー式距離計測器 38と、レーザー式距離 計測器 38から照射されたレーザー光の光路を変更するレーザー光路変更器 43が 収納されている。  In the displacement measuring instrument storage box 34, one laser distance measuring instrument 38 and a laser beam path changing instrument 43 for changing the optical path of the laser beam emitted from the laser distance measuring instrument 38 are stored.
[0096] このレーザー光路変更器 43は、例えば、 2枚の反射板で構成され、この 2枚の反射 板を図示略の旋回装置により旋回させる構造のものとすることができる。 或いは、レーザー式距離計測器 38の向きを、図示略の駆動装置により変更する構 造のものとしても良い。 [0096] The laser beam path changer 43 may be constituted by, for example, two reflecting plates, and the two reflecting plates may be turned by a turning device (not shown). Alternatively, the laser type distance measuring device 38 may have a structure in which the direction of the laser type distance measuring device 38 is changed by a driving device (not shown).
[0097] 本発明の第 4の実施の形態に係る二重殻構造タンクの変位計測装置によれば、本 発明の第 3の実施の形態(図 9参照)のものに対し、更に、レーザー式距離計測器 38 の個数を少なくすることができる。  [0097] According to the displacement measuring apparatus for a double-shell structure tank according to the fourth embodiment of the present invention, the laser type is further different from that of the third embodiment (see Fig. 9) of the present invention. The number of distance measuring devices 38 can be reduced.
[0098] (本発明の第 5の実施の形態) [0098] (Fifth embodiment of the present invention)
次に、図 11を参照して本発明の第 5の実施の形態に係る二重殻構造タンク装置、タ ンクの変位計測装置及びタンク設備につき説明する。  Next, a double-shell structure tank device, a tank displacement measuring device, and tank equipment according to a fifth embodiment of the present invention will be described with reference to FIG.
図 11は、本発明の第 5の実施の形態に係る二重殻構造タンクの径方向変位計測装 置 26dの詳細側面図である。  FIG. 11 is a detailed side view of the radial displacement measuring device 26d for the double-shell structure tank according to the fifth embodiment of the present invention.
本発明の第 5の実施の形態に係るタンクの変位計測装置は、 1個の径方向変位計測 装置 26d、 2個(少なくとも 1個)の回転方向変位計測装置 27、 27a、 1個の内槽の高 さ方向変位計測装置 28、 1個のパイプ収縮補正量計測装置 29及びタンク監視装置 70により構成されている。  The tank displacement measuring device according to the fifth embodiment of the present invention includes one radial displacement measuring device 26d, two (at least one) rotational displacement measuring devices 27, 27a, and one inner tank. The height direction displacement measuring device 28, one pipe contraction correction amount measuring device 29 and a tank monitoring device 70 are included.
また、内槽側壁 3には、内槽の高さ方向変位計測用の水平部材 20、 2枚 (少なくとも 1 枚)のタンク回転計測用の垂直部材 21が取り付けられている。  The inner tank side wall 3 is provided with a horizontal member 20 for measuring the displacement of the inner tank in the height direction and two (at least one) vertical member 21 for measuring the tank rotation.
なお、タンク監視装置 70の詳細については後述する。  Details of the tank monitoring device 70 will be described later.
[0099] 本発明の第 3の実施の形態に係るタンクの変位計測装置(図 9参照)と異なる点は、 径方向変位計測装置 26dを、図 11に図示のように、変位計測器収納箱 34に 1個の レーザー式距離計測器 38を偏心させて収納した点にある。 [0099] The difference from the tank displacement measuring device (see FIG. 9) according to the third embodiment of the present invention is that the radial displacement measuring device 26d is replaced with a displacement measuring device storage box as shown in FIG. One laser distance measuring instrument 38 is eccentrically stored in 34.
その他の構成である、回転方向変位計測装置 27、 27a (図 5、図 8参照)、内槽の高 さ方向変位計測装置 28 (図 6参照)、パイプ収縮補正量計測装置 29 (図 7参照)等に ついては、本発明の第 1、 2、 3の実施の形態のものと同じものを備えている。  Other configurations, rotational displacement measuring devices 27, 27a (see Fig. 5 and Fig. 8), inner tank height displacement measuring device 28 (see Fig. 6), pipe shrinkage correction measuring device 29 (see Fig. 7) ) Etc. are the same as those of the first, second and third embodiments of the present invention.
[0100] 即ち、図 11に図示のように、径方向変位計測装置 26dは、 1個の変位計測器収納 箱 34及び 1個のレーザー式距離計測器 38と、本発明の第 3の実施の形態のものと 同様の径方向変位計測用パイプ 30、パイプ側フランジ 41、取付ボルトナット 44、変 位計測器収納箱側フランジ 45、遮断弁 35、 1個の鏡面体収納囲い 36内に四角錐状 に収納された鏡面体 37、出口筒 40、パージ排出管 22及びパージ用窒素ガス供給 管 23とにより構成されている。 That is, as shown in FIG. 11, the radial displacement measuring device 26d includes one displacement measuring device storage box 34 and one laser type distance measuring device 38, and the third embodiment of the present invention. The same radial displacement measurement pipe 30, pipe side flange 41, mounting bolt nut 44, displacement measuring instrument storage box side flange 45, shut-off valve 35, one mirror body storage enclosure 36 with a square pyramid Mirror body 37, outlet tube 40, purge discharge pipe 22, and supply of purge nitrogen gas It consists of tube 23.
なお、出口筒 40は必ずしも必要なものではなぐ単に孔を明けただけのものでも良い The outlet tube 40 is not necessarily required, and it may be a simple hole.
Yes
[0101] ノイブ側フランジ 41の上面には、変位計測器収納箱 34が取付ボルトナット 44によ り取り付けられている。  [0101] On the upper surface of the nove side flange 41, a displacement measuring instrument storage box 34 is attached by a mounting bolt nut 44.
この変位計測器収納箱 34内に、 1個のレーザー式距離計測器 38が偏心して収納さ れている。  In this displacement measuring instrument storage box 34, one laser type distance measuring instrument 38 is stored eccentrically.
この場合、変位計測器収納箱 34の変位計測器収納箱側フランジ 45は、パイプ側フ ランジ 41に対し、 0° 、 90° 、 180° 、 270° の位置において取付ボルトナット 44に より取り付けることが可能なようになつている。  In this case, the displacement measuring instrument storage box side flange 45 of the displacement measuring instrument storage box 34 is attached to the pipe side flange 41 by the mounting bolt nut 44 at the positions of 0 °, 90 °, 180 ° and 270 °. Has become possible.
[0102] 本発明の第 5の実施の形態に係る二重殻構造タンクの変位計測装置によれば、本 発明の第 4の実施の形態(図 10参照)のものに対し、更にレーザー光路変更器 43を 省略すること力 Sできるとレ、う利点がある。 [0102] According to the displacement measuring apparatus for the double-shell structure tank according to the fifth embodiment of the present invention, the laser beam path is further changed from that of the fourth embodiment (see Fig. 10) of the present invention. There is an advantage that it is possible to omit the vessel 43.
[0103] (本発明の第 6の実施の形態) [Sixth Embodiment of the Present Invention]
次に、図 12を参照して本発明の第 6の実施の形態に係る二重殻構造タンク装置、タ ンクの変位計測装置及びタンク設備につき説明する。  Next, a double-shell structure tank device, a tank displacement measuring device, and tank equipment according to a sixth embodiment of the present invention will be described with reference to FIG.
図 12は、本発明の第 6の実施の形態に係る二重殻構造タンクの径方向兼回転方向 変位計測装置 26eの詳細側面図である。  FIG. 12 is a detailed side view of the radial and rotational displacement measuring device 26e of the double-shell structure tank according to the sixth embodiment of the present invention.
本発明の第 6の実施の形態に係るタンクの変位計測装置は、 2個の回転方向変位の 計測も兼ねる径方向変位計測装置 26eと、 2個の回転方向変位計測装置 27、 27a、 1個の内槽の高さ方向変位計測装置 28、 1個のパイプ収縮補正量計測装置 29及び タンク監視装置 70 (70a)とにより構成されている。  The tank displacement measuring device according to the sixth embodiment of the present invention includes two radial displacement measuring devices 26e that also serve to measure two rotational displacements, and two rotational displacement measuring devices 27, 27a, and one The inner tank height direction displacement measuring device 28, one pipe contraction correction amount measuring device 29, and a tank monitoring device 70 (70a).
また、内槽側壁 3には、内槽の高さ方向変位計測用の水平部材 20、 2枚のタンク回 転計測用の垂直部材 21が取り付けられている。  Further, a horizontal member 20 for measuring the displacement in the height direction of the inner tank and two vertical members 21 for measuring the rotation of the tank are attached to the inner tank side wall 3.
なお、タンク監視装置 70 (70a)の詳細につ!/、ては後述する。  Details of the tank monitoring device 70 (70a) will be described later.
[0104] 本発明の第 1、 2の実施の形態に係るタンクの変位計測装置(図 1〜図 8参照)と異 なる点は、 4個の径方向変位計測装置 26a、 26b、 26c、 26dの内、例えば、 2個の径 方向変位計測装置 26を、図 12に図示のように、回転方向変位の計測も兼ねる径方 向兼回転方向変位計測装置 26eとした点にある。 [0104] The difference from the tank displacement measuring devices (see Figs. 1 to 8) according to the first and second embodiments of the present invention is that four radial displacement measuring devices 26a, 26b, 26c, 26d Of these, for example, two radial displacement measuring devices 26 can be used to measure the rotational displacement as shown in FIG. The direction and rotation direction displacement measuring device 26e is used.
その他の構成である、他の 2個の径方向変位計測装置 26、内槽の高さ方向変位計 測装置 28 (図 6参照)、パイプ収縮補正量計測装置 29 (図 7参照)等については、本 発明の第 1、 2の実施の形態のものと同じものを備えている。  For other configurations, the other two radial displacement measuring devices 26, inner tank height direction measuring device 28 (see Fig. 6), pipe shrinkage compensation measuring device 29 (see Fig. 7), etc. The same as those of the first and second embodiments of the present invention are provided.
[0105] 即ち、図 12に図示のように、回転方向変位計測兼用型の径方向変位計測装置 26 eは、 1個の変位計測器収納箱 34及び 1個のレーザー式距離計測器 38と、径方向兼 回転方向変位計測用パイプ 30e、パイプ側フランジ 41、取付ボルトナット 44、変位計 測器収納箱側フランジ 45、遮断弁 35、 1個の鏡面体収納囲い 36内に四角錐状に収 納された 2枚の鏡面体 37b、出口筒 40、パージ排出管 22及びパージ用窒素ガス供 給管 23とにより構成されている。 That is, as shown in FIG. 12, the radial direction displacement measuring device 26 e, which is also a rotational direction displacement measuring type, includes one displacement measuring instrument storage box 34 and one laser type distance measuring instrument 38. Pipe for radial and rotational displacement measurement 30e, pipe side flange 41, mounting bolt nut 44, displacement measuring instrument storage box side flange 45, shut-off valve 35, one mirror body storage enclosure 36 in a square pyramid shape It consists of two stored mirror bodies 37b, an outlet tube 40, a purge discharge pipe 22 and a purge nitrogen gas supply pipe 23.
また、径方向兼回転方向変位計測用パイプ 30eは、外槽上蓋 8の金属板 48の下面 に取付けられたパイプサポート 19等により支持されている。  Further, the radial / rotational displacement measuring pipe 30e is supported by a pipe support 19 attached to the lower surface of the metal plate 48 of the outer tank upper lid 8.
なお、出口筒 40は必ずしも必要なものではなぐ単に孔を明けただけのものでも良い 。この場合、径方向兼回転方向変位計測用パイプ 30eの直径 D5は、約 150mm程 度とすることが好ましい。  Note that the outlet tube 40 is not necessarily required, but may simply be a hole. In this case, the diameter D5 of the radial / rotational displacement measuring pipe 30e is preferably about 150 mm.
また、バレル 46の内径 D6は、約 850mm φとすることができる。  The inner diameter D6 of the barrel 46 can be about 850 mmφ.
[0106] ノイブ側フランジ 41の上面には、変位計測器収納箱 34が取付ボルトナット 44によ り取り付けられている。 A displacement measuring instrument storage box 34 is attached to the upper surface of the nove side flange 41 with mounting bolts and nuts 44.
この変位計測器収納箱 34内に、 1個のレーザー式距離計測器 38が偏心して収納さ れている。  In this displacement measuring instrument storage box 34, one laser type distance measuring instrument 38 is stored eccentrically.
この場合、変位計測器収納箱 34の変位計測器収納箱側フランジ 45は、パイプ側フ ランジ 41に対し、 0° 、 90° (或いは、 0° 、 180° )の位置において取付ボルトナット 44により取り付けることが可能なようになつている。  In this case, the displacement measuring instrument storage box side flange 45 of the displacement measuring instrument storage box 34 is positioned at 0 °, 90 ° (or 0 °, 180 °) with respect to the pipe side flange 41 by the mounting bolt nut 44. It can be attached.
[0107] 変位計測器収納箱側フランジ 45を、パイプ側フランジ 41に対し、 0° の位置に連 結したときは、鏡面体 37bにて反射したレーザー光 39b、 39dは、内槽側壁 3に照射 されるため径方向変位を計測する。 [0107] When the displacement measuring instrument storage box side flange 45 is connected to the pipe side flange 41 at a position of 0 °, the laser beams 39b and 39d reflected by the mirror body 37b are applied to the inner tank side wall 3. Because it is irradiated, the radial displacement is measured.
また、変位計測器収納箱側フランジ 45を、パイプ側フランジ 41に対し、 90° (或いは 、 180° )の位置に連結したときは、鏡面体 37bにて反射したレーザー光 39eは、タン ク回転計測用の垂直部材 21に照射されるため回転方向変位を計測する。 When the displacement measuring instrument storage box side flange 45 is connected to the pipe side flange 41 at a position of 90 ° (or 180 °), the laser beam 39e reflected by the mirror body 37b Since the vertical member 21 for measuring the rotation of the shaft is irradiated, the displacement in the rotational direction is measured.
[0108] このようにして、 2個の径方向兼回転方向変位計測装置 26eからは、既径方向変位 の計測値 Lb、 Ld、既回転方向変位の計測値 Le、 Lf (或いは、新径方向変位の計測 ィ直 Lmb、 Lmd、 Lme、 Lmf)が計測される。 In this way, from the two radial / rotational displacement measuring devices 26e, the measured values Lb and Ld of the existing radial displacement, the measured values Le and Lf of the existing rotational displacement, or the new radial direction Displacement measurement (Lmb, Lmd, Lme, Lmf) is measured.
他の 2個の径方向変位計測装置 26からは、第 1の実施の形態のものと同様に既径方 向変位の計測値 La、 Lc (或いは、新径方向変位の計測値 Lma、 Lmc)が計測される 。そして、これらの計測値は、後述するタンク監視装置 70 (70a)に送信されるようにな つている。  From the other two radial displacement measuring devices 26, the measured values La, Lc of the existing radial displacement (or the measured values Lma, Lmc of the new radial displacement) are the same as in the first embodiment. Is measured. These measured values are transmitted to a tank monitoring device 70 (70a) described later.
[0109] 本発明の第 6の実施の形態に係る二重殻構造タンクの変位計測装置によれば、本 発明の第 3の実施の形態のものに対し、回転方向変位計測装置 27専用の回転方向 変位計測用パイプ 31a、 31bを省略できるという利点がある。  [0109] According to the displacement measuring apparatus for the double-shell structure tank according to the sixth embodiment of the present invention, the rotation measuring device 27 dedicated to the rotational direction displacement measuring apparatus 27 is different from that of the third embodiment of the present invention Direction Displacement measurement pipes 31a and 31b have the advantage that they can be omitted.
[0110] (本発明の第 7の実施の形態) [0110] (Seventh embodiment of the present invention)
次に、図 13を参照して本発明の第 7の実施の形態に係る二重殻構造タンク装置、タ ンクの変位計測装置及びタンク設備につき説明する。  Next, a double-shell structure tank device, a tank displacement measuring device, and tank equipment according to a seventh embodiment of the present invention will be described with reference to FIG.
図 13は、本発明の第 7の実施の形態に係る二重殻構造タンクの径方向変位兼パイ プ収縮補正量計測装置の詳細側面図である。  FIG. 13 is a detailed side view of the radial displacement and pipe contraction correction amount measuring apparatus of the double-shell structure tank according to the seventh embodiment of the present invention.
本発明の第 7の実施の形態に係るタンクの変位計測装置は、 1個のパイプ収縮補正 量の計測を兼ねる径方向変位兼パイプ収縮補正量計測装置 26fと、 3個の回転方向 変位計測装置 27、 27a、 1個の内槽の高さ方向変位計測装置 28及びタンク監視装 置 70とにより構成されている。  The tank displacement measuring device according to the seventh embodiment of the present invention includes a radial displacement / pipe shrinkage correction amount measuring device 26f that also serves to measure one pipe shrinkage correction amount, and three rotational direction displacement measuring devices. 27, 27a, It consists of one inner tank height direction displacement measuring device 28 and tank monitoring device 70.
また、内槽側壁 3には、内槽の高さ方向変位計測用の水平部材 20、 2枚のタンク回 転計測用の垂直部材 21が取り付けられている。  Further, a horizontal member 20 for measuring the displacement in the height direction of the inner tank and two vertical members 21 for measuring the rotation of the tank are attached to the inner tank side wall 3.
なお、タンク監視装置 70の詳細については後述する。  Details of the tank monitoring device 70 will be described later.
[0111] 本発明の第 1、 2の実施の形態に係るタンクの変位計測装置(図 1〜図 8参照)と異 なる点は、 4個の径方向変位計測装置 26a、 26b、 26c、 26dの内、例えば 1個の径 方向変位計測装置 26dを、図 13に図示のように、パイプ収縮補正量の計測を兼ねる 径方向変位兼パイプ収縮補正量計測装置 26fとした点にある。 [0111] The difference from the tank displacement measuring devices (see Figs. 1 to 8) according to the first and second embodiments of the present invention is that four radial displacement measuring devices 26a, 26b, 26c, 26d Among them, for example, one radial displacement measuring device 26d is used as a radial displacement and pipe shrinkage correction amount measuring device 26f that also serves to measure the pipe shrinkage correction amount as shown in FIG.
その他の構成である、 3個の径方向変位計測装置 26a、 26b、 26c,内槽の高さ方向 変位計測装置 28 (図 6参照)等については、本発明の第 1、 2の実施の形態のものと 同じものを備えている。 Three other radial displacement measuring devices 26a, 26b, 26c, the height direction of the inner tank The displacement measuring device 28 (see FIG. 6) and the like are the same as those in the first and second embodiments of the present invention.
[0112] 即ち、図 13に図示のように、パイプ収縮補正量の計測を兼ねる径方向変位計測装 置 26fは、 1個の変位計測器収納箱 34、 1個のレーザー式距離計測器 38及び図 10 に図示のレーザー光路変更器 43と、径方向変位兼パイプ収縮補正量計測パイプ 30 f、パイプ側フランジ 41、取付ボルトナット 44、変位計測器収納箱側フランジ 45、遮 断弁 35、 1個の鏡面体収納囲い 36内に収納された傾斜したパイプ下端の鏡面体 37 c及び水平な水平部材 37d、鏡面体 37、出口筒 40、パージ排出管 22及びパージ用 窒素ガス供給管 23とにより構成されている。  That is, as shown in FIG. 13, the radial displacement measuring device 26f that also measures the pipe contraction correction amount includes one displacement measuring device storage box 34, one laser type distance measuring device 38, and The laser beam path changer 43 shown in Fig. 10, the radial displacement and pipe contraction correction amount measuring pipe 30 f, the pipe side flange 41, the mounting bolt nut 44, the displacement measuring instrument storage box side flange 45, the cutoff valve 35, 1 The mirror body 37c and the horizontal horizontal member 37d at the lower end of the inclined pipe housed in the mirror body housing enclosure 36, the mirror body 37, the outlet tube 40, the purge discharge pipe 22 and the purge nitrogen gas supply pipe 23 It is configured.
また、径方向変位兼パイプ収縮補正量計測パイプ 30fは、外槽上蓋 8の金属板 48の 下面に取付けられたパイプサポート 19等により支持されている。  Further, the radial displacement and pipe contraction correction amount measuring pipe 30f is supported by a pipe support 19 attached to the lower surface of the metal plate 48 of the outer tank upper lid 8.
なお、出口筒 40は必ずしも必要なものではなぐ単に孔を明けただけのものでも良い 。この場合、径方向変位兼パイプ収縮補正量計測パイプ 30fの直径 D5は、約 150m m程度とすることが好ましい。  Note that the outlet tube 40 is not necessarily required, but may simply be a hole. In this case, the diameter D5 of the radial displacement and pipe contraction correction amount measuring pipe 30f is preferably about 150 mm.
また、バレル 46の内径 D6は、約 850mm φとすることができる。  The inner diameter D6 of the barrel 46 can be about 850 mmφ.
[0113] このような構成において、径方向変位兼パイプ収縮補正量計測パイプ 30fの右側 に位置するレーザー光 39dは、傾斜したパイプ下端の鏡面体 37cで反射されて内槽 側壁 3に照射されるため径方向変位を計測する。 [0113] In such a configuration, the laser light 39d positioned on the right side of the radial displacement and pipe contraction correction amount measuring pipe 30f is reflected by the mirror body 37c at the lower end of the inclined pipe and applied to the inner tank side wall 3. Therefore, the radial displacement is measured.
また、径方向変位兼パイプ収縮補正量計測パイプ 30fの左側に位置するレーザー光 39hは、水平な水平部材 37dで反射されて戻るため、パイプ収縮補正量を計測する In addition, since the laser beam 39h located on the left side of the pipe 30f in the radial direction is reflected and returned by the horizontal member 37d, the pipe contraction correction amount is measured.
Yes
[0114] このようにして、径方向変位兼パイプ収縮補正量計測装置 26fからは、既径方向変 位の計測値 Ld、既パイプ長の計測値 Lh (或いは、新径方向変位の計測値 Lmd、新 パイプ長の計測値 Lmh)が計測される。  [0114] In this way, from the radial displacement and pipe contraction correction amount measuring device 26f, the measured value Ld of the existing radial displacement, the measured value Lh of the existing pipe length (or the measured value Lmd of the new radial displacement Lmd). The new pipe length measurement (Lmh) is measured.
他の 3個の径方向変位計測装置 26からは、既径方向変位の計測値 La、 Lb、 Lc (或 いは、新径方向変位の計測値 Lma、 Lmb、 Lmc)が計測される。  The other three radial displacement measuring devices 26 measure the measured values La, Lb, and Lc of the existing radial displacement (or the measured values Lma, Lmb, and Lmc of the new radial displacement).
そして、これらの計測値は、後述するタンク監視装置 70に送信されるようになってい [0115] 本発明の第 7の実施の形態に係る二重殻構造タンクの変位計測装置によれば、本 発明の第 1、 2の実施の形態のものに対し、パイプ収縮補正量計測装置 29専用のパ イブ収縮補正用パイプ 33を省略できるという利点がある。 These measured values are transmitted to the tank monitoring device 70 described later. [0115] According to the displacement measuring apparatus for the double-shell structure tank according to the seventh embodiment of the present invention, the pipe contraction correction amount measuring apparatus 29 is different from that of the first and second embodiments of the present invention. There is an advantage that the dedicated pipe shrinkage compensation pipe 33 can be omitted.
[0116] (本発明の第 8の実施の形態) [Eighth Embodiment of the Invention]
次に、本発明の第 8の実施の形態に係る二重殻構造タンク装置、タンクの変位計測 装置及びタンク設備につき説明する。  Next, a double-shell structure tank device, a tank displacement measuring device, and tank equipment according to an eighth embodiment of the present invention will be described.
本発明の第 1〜6の実施の形態に係る二重殻構造タンク装置、タンクの変位計測装 置において、パイプ収縮補正量計測は、専用のレーザー式距離計測器 38hを設け て、クールダウン前後のパイプ収縮補正用パイプ 33の伸縮量を補正して!/、た。  In the double-shell structure tank device and the tank displacement measuring device according to the first to sixth embodiments of the present invention, the pipe contraction correction amount measurement is performed by providing a dedicated laser-type distance measuring device 38h before and after the cool-down. Correct the amount of expansion / contraction of the pipe contraction correction pipe 33!
[0117] これに対し、本実施の形態のものでは、レーザー式距離計測器 38hに換えて、パイ プ収縮補正用パイプ 33の内面に、 lm毎に多対式の温度計を設置し、一定間隔の 温度を監視し、計測された各温度計の温度に基づき、各温度計近傍のパイプ収縮補 正用パイプ 33の収縮量を演算することで、パイプの収縮量の補正を行うよう構成した ものである。  [0117] On the other hand, in the present embodiment, instead of the laser-type distance measuring device 38h, a multi-pair thermometer is installed on the inner surface of the pipe contraction correction pipe 33 for each lm, and the constant The temperature of the interval is monitored, and the pipe contraction amount is corrected by calculating the contraction amount of the pipe contraction correction pipe 33 in the vicinity of each thermometer based on the measured temperature of each thermometer. Is.
[0118] (本発明の第 9の実施の形態)  [Ninth embodiment of the present invention]
次に、図 14〜図 18を参照して、本発明の第 9の実施の形態に係る二重殻構造タンク 装置、タンクの変位計測装置及びタンク設備につき説明する。  Next, a double-shell structure tank device, a tank displacement measuring device, and tank equipment according to a ninth embodiment of the present invention will be described with reference to FIGS.
図 14は、本発明の第 9の実施の形態に係る二重殻構造タンクの径方向変位計測装 置の部分側断面図である。  FIG. 14 is a partial cross-sectional side view of a radial displacement measuring device for a double-shell structure tank according to a ninth embodiment of the present invention.
図 15は、図 14の A部拡大図である。  FIG. 15 is an enlarged view of part A in FIG.
図 16は、本発明の第 9の実施の形態に係る二重殻構造タンクの回転方向変位計測 装置の平面図である。  FIG. 16 is a plan view of a rotational direction displacement measuring device for a double-shell structure tank according to a ninth embodiment of the present invention.
図 17は、本発明の第 9の実施の形態に係る二重殻構造タンクの内槽の高さ方向変 位計測装置の部分側断面図である。  FIG. 17 is a partial cross-sectional side view of the height direction displacement measuring device for the inner tank of the double-shell structure tank according to the ninth embodiment of the present invention.
図 18は、図 17の B部拡大図である。  FIG. 18 is an enlarged view of part B in FIG.
[0119] 本発明の第 9の実施の形態に係るタンクの変位計測装置は、本発明の第 1の実施 の形態のものと同様に、 4個(少なくとも 2個)の径方向変位計測装置 50、 2個(少なく とも 1個)の回転方向変位計測装置 51、 1個の内槽の高さ方向変位計測装置 52及び タンク監視装置 70 (70a)により構成されて!/、る。 [0119] The tank displacement measuring device according to the ninth embodiment of the present invention has four (at least two) radial displacement measuring devices 50 as in the first embodiment of the present invention. 2 (at least 1) rotational direction displacement measuring device 51, 1 inner tank height direction displacement measuring device 52 and Consists of tank monitoring device 70 (70a)!
[0120] 本発明の第 1の実施の形態のものと異なる点は、後述するように、各計測装置用の パイプが内槽側壁 3と外槽 5との間(内槽側壁 3の外面側)に設けられている点にある[0120] The difference from the first embodiment of the present invention is that, as will be described later, the pipe for each measuring device is located between the inner tank side wall 3 and the outer tank 5 (the outer surface side of the inner tank side wall 3). )
Yes
なお、内槽側壁 3と外槽 5との間には粒子状断熱材 12等が充填されているため、各 パイプの周囲の温度は外気の温度とそれ程温度差がなぐパイプの収縮量は無視で きる。  In addition, since the particulate heat insulating material 12 etc. is filled between the inner tank side wall 3 and the outer tank 5, the temperature around each pipe is negligible for the contraction amount of the pipe where the temperature difference is almost the same as the temperature of the outside air. it can.
そこで、本発明の第 1の実施の形態におけるパイプ収縮補正量計測装置 29は不要 となっている。  Therefore, the pipe contraction correction amount measuring device 29 in the first embodiment of the present invention is not necessary.
反面、計測位置を充填材の中に確保するための構造を備えるものとする。  On the other hand, a structure for ensuring the measurement position in the filler is provided.
具体的には各計測位置と計測用パイプを接続する接続管を備える。  Specifically, a connection pipe that connects each measurement position and the measurement pipe is provided.
なお、二重殻構造タンクの全体の構成は、本発明の第 1の実施の形態のものと同じ である。  The overall structure of the double-shell structure tank is the same as that of the first embodiment of the present invention.
また、本発明の第 1の実施の形態のものと同じ符号のものは、同一構成部材である。  The same reference numerals as those in the first embodiment of the present invention are the same constituent members.
[0121] (径方向変位計測装置の構成) [0121] (Configuration of radial displacement measuring device)
まず、図 14、 15を参照して、径方向変位計測装置 50の詳細な構成につき説明する 。図 14に図示のように、径方向変位計測用パイプ 55a、 55b、 55c、 55d、レーザー 式距離計測器 38a、 38b、 38c、 38d等により構成された、 4個の径方向変位計測装 置 50が、外槽 5の内面の金属板 48と内槽側壁 3と間に同一水平面において等角度 に取り付けられている。  First, a detailed configuration of the radial displacement measuring device 50 will be described with reference to FIGS. As shown in FIG. 14, four radial displacement measuring devices 50 constituted by radial displacement measuring pipes 55a, 55b, 55c, 55d, laser distance measuring instruments 38a, 38b, 38c, 38d, etc. However, the metal plate 48 on the inner surface of the outer tank 5 and the inner tank side wall 3 are attached at equal angles on the same horizontal plane.
[0122] 各径方向変位計測装置 50は、変位計測器収納箱 34、レーザー式距離計測器 38 a、 38b、 38c、 38d、径方向変位計測用ノ イプ 55a、 55b、 55c、 55d、レーザー送受 信器用着脱座としてのパイプ側フランジ 41、取付ボルトナット 44、変位計測器収納 箱側フランジ 45、遮断弁 35、鏡面体収納囲い 59、変位計測用の鏡面体 60、出口管 62、内槽壁接続用蛇腹 63等により構成されている。  [0122] Each radial displacement measuring device 50 includes a displacement measuring instrument storage box 34, laser distance measuring instruments 38a, 38b, 38c, 38d, radial displacement measuring type 55a, 55b, 55c, 55d, laser transmission / reception. Pipe side flange 41, mounting bolt nut 44, displacement measuring instrument storage box side flange 45, shut-off valve 35, mirror body storage enclosure 59, displacement measurement mirror surface body 60, outlet pipe 62, inner tank wall It is composed of a connecting bellows 63 and the like.
[0123] 各径方向変位計測用パイプ 55a、 55b、 55c、 55dは、外槽上蓋 8及び気密な金属 板 48を貫通して、垂直方向に延在し、外槽 5の内面の金属板 48と内槽側壁 3と間を 通るように、内槽側壁 3に近接して設けられている。 径方向変位計測用 55a、 55b、 55c、 55dが外槽上蓋 8及び気密な金属板 48を貫通 する部分には、気密性を保持すベぐ天然ガスが外部に漏洩しないように図示略の シール材が設けられて!/、る。 [0123] Each of the radial displacement measuring pipes 55a, 55b, 55c, 55d extends through the outer tank upper lid 8 and the airtight metal plate 48, extends in the vertical direction, and the metal plate 48 on the inner surface of the outer tank 5 And the inner tank side wall 3 so as to pass between the inner tank side wall 3 and the inner tank side wall 3. For the radial displacement measurement 55a, 55b, 55c, 55d, seals (not shown) are installed so that natural gas that should keep airtightness does not leak to the outside where the outer tank top lid 8 and the airtight metal plate 48 penetrate. Materials are provided!
径方向変位計測用パイプ 55a、 55b、 55c、 55dの下部は、外槽側壁 7内面の金属 板 48力もタンクの中心方向に水平に延在するパイプサポート 61により支持されてい  The lower part of the radial displacement measuring pipe 55a, 55b, 55c, 55d is supported by a pipe plate 61 that extends horizontally in the direction of the center of the tank.
[0124] そして、鏡面体収納囲い 59のタンク中心側は、鏡面体収納囲い 59の側面に固定さ れた出口管 62、前述の接続管として両端が出口管 62及び内槽側壁 3外面に固定さ れた内槽壁接続用蛇腹 63により、内槽側壁 3外面に接続されており、内槽 1の径方 向の変形及び回転方向の変形に対応できるようになつている。 [0124] The tank center side of the mirror body enclosure 59 is fixed to the outlet pipe 62 fixed to the side surface of the mirror body enclosure 59, and both ends are fixed to the outlet pipe 62 and the outer surface of the inner tank side wall 3 as the connection pipe described above. The inner tank wall connecting bellows 63 is connected to the outer surface of the inner tank side wall 3 so that it can cope with the deformation of the inner tank 1 in the radial direction and the rotation direction.
[0125] 各径方向変位計測装置 50は、上述のごとく構成されており、各レーザー式距離計 測器 38a、 38b、 38c、 38d力も照射されたレーザー光 39a、 39b、 39c、 39dは、各 鏡面体 60で反射されて、出口管 62、内槽壁接続用蛇腹 63内を通過し、内槽側壁 3 の外面に到達する。  [0125] Each radial displacement measuring device 50 is configured as described above, and each laser type distance measuring device 38a, 38b, 38c, 38d is irradiated with laser light 39a, 39b, 39c, 39d. The light is reflected by the mirror body 60, passes through the outlet pipe 62 and the inner tank wall connecting bellows 63, and reaches the outer surface of the inner tank side wall 3.
そして、内槽側壁 3の外面にて乱反射したレーザー光 39a、 39b、 39c、 39dの一部 は、再び内槽壁接続用蛇腹 63、出口管 62を通過し、各鏡面体 60で反射されて各レ 一ザ一式距離計測器 38a、 38b、 38c、 38dに戻る。  Then, some of the laser beams 39a, 39b, 39c, 39d diffusely reflected on the outer surface of the inner tank side wall 3 pass through the inner tank wall connecting bellows 63 and the outlet pipe 62 again, and are reflected by each mirror body 60. Return to each laser set distance measuring instrument 38a, 38b, 38c, 38d.
[0126] このようにして、各レーザー式距離計測器 38a、 38b、 38c、 38dから内槽側壁 3の 外面迄の径方向変位の計測値が計測される。 In this way, the measured value of the radial displacement from each laser type distance measuring instrument 38a, 38b, 38c, 38d to the outer surface of the inner tank side wall 3 is measured.
そして、径方向変位計測用のレーザー式距離計測器 38a、 38b、 38c、 38dにて計 測された径方向変位の計測値は、後述するようにタンク監視装置 70 (70a)に送信さ れるようになっている。  Then, the radial displacement measurement values measured by the laser-type distance measuring devices 38a, 38b, 38c, and 38d for radial displacement measurement are transmitted to the tank monitoring device 70 (70a) as described later. It has become.
[0127] (回転方向変位計測装置の構成) [0127] (Configuration of rotational displacement measuring device)
次に、図 16を参照して、回転方向変位計測装置 51の詳細な構成につき説明する。 図 16に図示のように、図示略の回転方向変位計測用パイプ、レーザー式距離計測 器 38e、 38f等により構成された 2個の回転方向変位計測装置 51が、外槽 5の内面 の金属板 48と内槽側壁 3と間に同一水平面において等角度(180° ± 20%)に取り 付けられている。 また、内槽側壁 3の外面には、 2枚のタンク回転計測用の垂直部材 69が取り付けられ ている。 Next, a detailed configuration of the rotational direction displacement measuring device 51 will be described with reference to FIG. As shown in FIG. 16, two rotational direction displacement measuring devices 51 constituted by a rotational direction displacement measuring pipe (not shown), laser type distance measuring devices 38e, 38f, etc. are connected to a metal plate on the inner surface of the outer tub 5. 48 and the inner tank side wall 3 are mounted at the same angle (180 ° ± 20%) in the same horizontal plane. Further, two vertical members 69 for tank rotation measurement are attached to the outer surface of the inner tank side wall 3.
そして、内槽壁接続用蛇腹の一端が垂直部材 69に固定されている点を除けば、そ の他の構成は径方向変位計測装置 50と同じである。  The other configuration is the same as that of the radial displacement measuring device 50 except that one end of the inner tank wall connecting bellows is fixed to the vertical member 69.
[0128] 各回転方向変位計測装置 51は、上述のごとく構成されており、各レーザー式距離 計測器 38e、 38fから照射されたレーザー光 39e、 39fは、各鏡面体で反射されて、 垂直部材 69に到達する。 [0128] Each rotational direction displacement measuring device 51 is configured as described above, and the laser beams 39e and 39f emitted from the laser type distance measuring devices 38e and 38f are reflected by the mirror bodies to be a vertical member. Reach 69.
そして、垂直部材 69にて乱反射したレーザー光 39e、 39fの一部は、再び各鏡面体 で反射されて各レーザー式距離計測器 38e、 38fに戻る。  Then, some of the laser beams 39e and 39f irregularly reflected by the vertical member 69 are reflected again by the mirror bodies and return to the laser distance measuring devices 38e and 38f.
このようにして、各レーザー式距離計測器 38e、 38fから垂直部材 69迄の回転方向 変位の計測値が計測される。  In this way, the measured value of the displacement in the rotational direction from each laser type distance measuring device 38e, 38f to the vertical member 69 is measured.
そして、レーザー式距離計測器 38e、 38fにて計測された回転方向変位の計測値は 、後述するタンク監視装置 70 (70a)に送信されるようになっている。  Then, the measurement value of the rotational displacement measured by the laser type distance measuring devices 38e and 38f is transmitted to a tank monitoring device 70 (70a) described later.
[0129] (内槽の高さ方向変位計測装置の構成) [0129] (Configuration of inner tank height direction displacement measuring device)
次に、図 17、図 18を参照して、内槽の高さ方向変位計測装置 52の詳細な構成につ き説明する。  Next, a detailed configuration of the inner tank height direction displacement measuring device 52 will be described with reference to FIG. 17 and FIG.
図 17に図示のように、内槽の高さ方向変位計測用パイプ 57、レーザー式距離計測 器 38g等により構成された 1個の内槽の高さ方向変位計測装置 52が、外槽上蓋 8及 び金属板 48を貫通し、外槽側壁 7の内側に沿って取り付けられている。  As shown in Fig. 17, the inner tank height direction displacement measuring device 52 composed of the inner tank height direction displacement measuring pipe 57, the laser distance measuring device 38g, etc. And through the metal plate 48 and attached along the inside of the outer tank side wall 7.
このとき、内槽の高さ方向変位計測装置 52の外槽上蓋 8の中心からの距離も、径方 向変位計測装置 50の取り付け位置と同じにすることが好ましい。  At this time, the distance from the center of the outer tank upper lid 8 of the inner tank height direction displacement measuring device 52 is preferably the same as the mounting position of the radial direction displacement measuring device 50.
[0130] 内槽の高さ方向変位計測装置 52は、変位計測器収納箱 34、レーザー式距離計測 器 38g、内槽の高さ方向変位計測用パイプ 57、パイプ側フランジ 41、取付ボルトナツ ト 44、変位計測器収納箱側フランジ 45、遮断弁 35等により構成されている。 [0130] Inner tank height direction displacement measuring device 52 is composed of a displacement measuring instrument storage box 34, a laser type distance measuring device 38g, an inner tank height direction displacement measuring pipe 57, a pipe side flange 41, and a mounting bolt nut 44. The displacement measuring instrument storage box side flange 45, the shutoff valve 35, and the like.
また、内槽側壁 3の外側上部には、上方に延在する水平部材支持脚 64が取り付けら れ、水平部材支持脚 64の上端には、内槽の高さ方向変位計測用の水平部材 65が 取り付けられている。  Further, a horizontal member support leg 64 extending upward is attached to the outer upper portion of the inner tank side wall 3, and a horizontal member 65 for measuring the displacement in the height direction of the inner tank is attached to the upper end of the horizontal member support leg 64. Is installed.
なお、内槽の高さ方向変位計測用パイプ 57と内槽の高さ方向変位計測用の水平部 材 65とは、水平部材接続用蛇腹 66により連結されている。 The inner tank height direction displacement measuring pipe 57 and the inner tank height direction displacement measuring pipe 57 The member 65 is connected by a horizontal member connecting bellows 66.
[0131] 内槽の高さ方向変位計測装置 52は、上述のごとく構成されており、各レーザー式 距離計測器 38gから照射されたレーザー光は、内槽の高さ方向変位計測用の水平 部材 65に到達する。 [0131] The inner tank height direction displacement measuring device 52 is configured as described above, and the laser light emitted from each laser-type distance measuring device 38g is a horizontal member for measuring the inner tank height direction displacement. Reach 65.
そして、内槽の高さ方向変位計測用の水平部材 65にて乱反射したレーザー光の一 部は、レーザー式距離計測器 38gに戻る。  Then, a part of the laser beam irregularly reflected by the horizontal member 65 for measuring the displacement in the height direction of the inner tank returns to the laser distance measuring device 38g.
このようにして、各レーザー式距離計測器 38gから内槽の高さ方向変位計測用の水 平部材 65迄の既内槽の高さ方向変位の計測値 Lgが計測される。  In this way, the measured value Lg of the displacement in the height direction of the inner tank from the laser type distance measuring device 38g to the horizontal member 65 for measuring the displacement in the height direction of the inner tank is measured.
そして、レーザー式距離計測器 38gにて計測された既内槽の高さ方向変位の計測 ィ直 Lgは、後述するタンク監視装置 70 (70a)に送信されるようになっている。  Then, the measurement Lg of the displacement in the height direction of the existing tank measured by the laser distance measuring device 38g is transmitted to the tank monitoring device 70 (70a) described later.
[0132] (本発明の第 10の実施の形態)  [0132] (Tenth embodiment of the present invention)
次に、図 19、図 20を参照して、本発明の第 10の実施の形態に係る二重殻構造タン ク装置、タンクの変位計測装置及びタンク設備につき説明する。  Next, with reference to FIGS. 19 and 20, a double-shell structure tank device, a tank displacement measuring device, and tank equipment according to a tenth embodiment of the present invention will be described.
図 19は、本発明の第 10の実施の形態に係る二重殻構造タンクの径方向変位計測 装置の部分側断面図である。  FIG. 19 is a partial sectional side view of a radial displacement measuring device for a double-shell structure tank according to a tenth embodiment of the present invention.
図 20は、図 14の A部拡大図である。  FIG. 20 is an enlarged view of part A in FIG.
本発明の第 10の実施の形態に係るタンクの変位計測装置は、 4個(少なくとも 2個) の径方向変位計測装置 50a、及び本発明の第 9の実施の形態のものと同様に、 2個( 少なくとも 1個)の回転方向変位計測装置 51、 1個の内槽の高さ方向変位計測装置 5 2及びタンク監視装置 70 (70a)により構成されて!/、る。  The tank displacement measuring device according to the tenth embodiment of the present invention includes two (at least two) radial displacement measuring devices 50a and 2 in the same manner as the ninth embodiment of the present invention. It consists of one (at least one) rotation direction displacement measuring device 51, one inner tank height direction displacement measuring device 52, and tank monitoring device 70 (70a).
[0133] 本発明の第 9の実施の形態のものと異なる点は、後述するように、前述の接続管と して各計測装置用のパイプが内槽側壁 3と外槽 5との間(内槽側壁 3の外面側)の外 槽 5の近傍に設けられている点にある。  [0133] The difference from the ninth embodiment of the present invention is that, as will be described later, the pipe for each measuring device is connected between the inner tank side wall 3 and the outer tank 5 as the aforementioned connecting pipe ( The outer tank 5 is provided near the outer tank 5 on the outer surface side of the inner tank side wall 3.
[0134] 即ち、径方向変位計測用パイプ 55a、 55b、 55c、 55d、レーザー式距離計測器 38 a、 38b、 38c、 38d等により構成された、 4個の径方向変位計測装置 50aが、外槽 5 の内面の金属板 48と内槽側壁 3と間の外槽 5の近傍に同一水平面において等角度 に取り付けられている。  That is, four radial displacement measuring devices 50a composed of radial displacement measuring pipes 55a, 55b, 55c, 55d, laser-type distance measuring instruments 38a, 38b, 38c, 38d, etc. In the vicinity of the outer tank 5 between the metal plate 48 on the inner surface of the tank 5 and the inner tank side wall 3, they are attached at equal angles on the same horizontal plane.
[0135] 各径方向変位計測装置 50aは、変位計測器収納箱 34、レーザー式距離計測器 3 8a、 38b、 38c、 38d、径方向変位計測用ノ イプ 55a、 55b、 55c、 55d、レーザー送 受信器用着脱座としてのパイプ側フランジ 41、取付ボルトナット 44、変位計測器収 納箱側フランジ 45、遮断弁 35、鏡面体収納囲い 59、変位計測用の鏡面体 60、出口 管 62、内槽壁側太管 67、シールゴム 68等により構成されている。 [0135] Each radial displacement measuring device 50a includes a displacement measuring instrument storage box 34, a laser distance measuring instrument 3 8a, 38b, 38c, 38d, radial displacement measurement type 55a, 55b, 55c, 55d, pipe side flange 41, mounting bolt nut 44, displacement measuring instrument storage box side flange 45 , A shutoff valve 35, a mirror body enclosure 59, a mirror body 60 for displacement measurement, an outlet pipe 62, an inner tank wall side thick pipe 67, a seal rubber 68, and the like.
[0136] 各径方向変位計測用パイプ 55a、 55b、 55c、 55dは、外槽上蓋 8及び気密な金属 板 48を貫通して、垂直方向に延在し、外槽 5の内面の金属板 48と内槽側壁 3と間を 通るように、外槽側壁 7に近接して設けられている。 [0136] Each of the radial displacement measuring pipes 55a, 55b, 55c, 55d extends vertically through the outer tank upper lid 8 and the airtight metal plate 48, and the metal plate 48 on the inner surface of the outer tank 5 And the inner tank side wall 3 so as to pass between the outer tank side wall 7 and the inner tank side wall 3.
径方向変位計測用 55a、 55b、 55c、 55dが外槽上蓋 8及び気密な金属板 48を貫通 する部分には、気密性を保持すベぐ天然ガスが外部に漏洩しないように図示略の シール材が設けられて!/、る。  For the radial displacement measurement 55a, 55b, 55c, 55d, seals (not shown) are installed so that natural gas that should keep airtightness does not leak to the outside where the outer tank top lid 8 and the airtight metal plate 48 penetrate. Materials are provided!
径方向変位計測用パイプ 55a、 55b、 55c、 55dの下部は、外槽側壁 7内面の金属 板 48力もタンクの中心方向に水平に延在するパイプサポート 61により支持されてい  The lower part of the radial displacement measuring pipe 55a, 55b, 55c, 55d is supported by a pipe plate 61 that extends horizontally in the direction of the center of the tank.
[0137] そして、鏡面体収納囲い 59のタンク中心側面は、鏡面体収納囲い 59の側面に固 定された出口管 62、出口管 62より径が大きく内槽側壁 3外面に固定された内槽壁側 太管 67により、内槽側壁 3外面に接続されており、内槽 1の径方向の変形及び回転 方向の変形に対応できるようになつている。 [0137] The tank central side surface of the mirror body storage enclosure 59 has an outlet pipe 62 fixed to the side surface of the mirror body storage enclosure 59, an inner tank side wall 3 having a diameter larger than the inner tank side wall 3 and fixed to the outer surface. It is connected to the outer surface of the inner tank side wall 3 by a wall-side thick pipe 67 so that it can cope with the deformation of the inner tank 1 in the radial direction and the rotation direction.
なお、出口管 62と内槽壁側太管 67との間には、円筒状のシールゴム 68が介装され ている。  A cylindrical seal rubber 68 is interposed between the outlet pipe 62 and the inner tank wall side thick pipe 67.
[0138] (タンク監視装置の第 1例の構成)  [0138] (Configuration of first example of tank monitoring device)
次に、図 21を参照して、タンク監視装置の第 1例の構成につき説明する。  Next, the configuration of the first example of the tank monitoring device will be described with reference to FIG.
図 21は、本発明の各実施の形態におけるタンク監視装置の第 1例のブロック図であ る。なお、第 1例のタンク監視装置は、第 1の実施の形態(図 1〜図 7参照)、第 2の実 施の形態(図 8参照)、第 6の実施の形態(図 12参照)、第 7の実施の形態(図 13参照 )、第 8の実施の形態、第 9の実施の形態(図 14〜図 18参照)及び第 10の実施の形 態(図 19、図 20参照)のものに適用可能である。  FIG. 21 is a block diagram of a first example of the tank monitoring device in each embodiment of the present invention. The tank monitoring device of the first example includes the first embodiment (see FIGS. 1 to 7), the second embodiment (see FIG. 8), and the sixth embodiment (see FIG. 12). The seventh embodiment (see FIG. 13), the eighth embodiment, the ninth embodiment (see FIGS. 14 to 18) and the tenth embodiment (see FIGS. 19 and 20) Applicable to
[0139] また、 4個の等間隔(90° ±数%)に設置された径方向変位計測装置 26、 26a, 2 6e、 26f、 50、 50aと、 2個の等間隔(180° ±数%)に設置された回転方向変位計 測装置 27、 26e、 51と、 1個の内槽の高さ方向変位計測装置 28、 52と、 1個のパイ プ収縮補正量計測装置 29 (或!/、は温度計)を必要とする。 [0139] In addition, radial displacement measuring devices 26, 26a, 26e, 26f, 50, 50a installed at four equal intervals (90 ° ± several%), two equal intervals (180 ° ± several) %) Rotational direction displacement meter Measuring device 27, 26e, 51, one inner tank height direction displacement measuring device 28, 52, and one pipe shrinkage correction amount measuring device 29 (or! / Or thermometer) are required. .
[0140] 図 21に図示のように、タンク監視装置 70aは、伸縮量演算器 82、中心位置演算器As shown in FIG. 21, the tank monitoring device 70a includes an expansion / contraction amount calculator 82, a center position calculator.
83、回転方向演算器 84、異常値検出器 85、警報表示灯 86及び表示器/記録器 883, rotation direction calculator 84, abnormal value detector 85, alarm indicator 86 and indicator / recorder 8
7等により構成されている。 It is composed of 7 etc.
[0141] 先ず、図 1、図 2、図 3、図 4に図示の 4個の径方向変位計測装置 26a、 26b、 26c、[0141] First, the four radial displacement measuring devices 26a, 26b, 26c shown in FIG. 1, FIG. 2, FIG. 3, and FIG.
26dの各レーザー式距離計測器 38a、 38b、 38c、 38dにて、各レーザー式距離計 測器 38a、 38b、 38c、 38dから第 1の鏡面体 37を経由して内槽側壁 3迄の距離であ る径方向変位の計測値 La、 Lb、 Lc、 Ldが計測される。 The distance from each laser type distance measuring device 38a, 38b, 38c, 38d to the inner tank side wall 3 via the first specular body 37 at each laser type distance measuring device 38a, 38b, 38c, 38d of 26d The measured values La, Lb, Lc, and Ld of the radial displacement are measured.
計測された 4個の径方向変位の計測値 La、 Lb、 Lc、 Ldは、機側表示器 81に表示さ れると共に、タンク監視装置 70aの中心位置演算器 83、異常値検出器 85及び表示 器/記録器 87に送信される。  The measured values La, Lb, Lc, and Ld of the four measured radial displacements are displayed on the machine-side display 81, as well as the center position calculator 83, the abnormal value detector 85, and the display of the tank monitoring device 70a. Device / recorder 87.
なお、説明上、径方向変位の計測値 La、 Lcを y方向、径方向変位の計測値 Lb、 Ld を x方向とする。  For the sake of explanation, the measured values La and Lc of the radial displacement are assumed to be the y direction, and the measured values Lb and Ld of the radial displacement are assumed to be the x direction.
[0142] 中心位置演算器 83では、次式により、内槽 1の中心 Oの X方向変位及び y方向変 位が演算される。  [0142] In the center position calculator 83, the X direction displacement and the y direction displacement of the center O of the inner tank 1 are calculated by the following equations.
X方向変位 Δ χ= (Ld— Lb) /2、  X-direction displacement Δ χ = (Ld— Lb) / 2,
y方向変位 Ay= (La— Lc) /2 (式 1)  y-direction displacement Ay = (La— Lc) / 2 (Equation 1)
演算された径方向変位(Δ χ、 Ay)は、回転方向演算器 84、異常値検出器 85及び 表示器/記録器 87に送信される。  The calculated radial displacement (Δχ, Ay) is transmitted to the rotation direction calculator 84, the abnormal value detector 85, and the display / recorder 87.
異常値検出器 85では、中心 Oの変位(Δ χ、 Ay)が許容値異常になると、異常と判 断し警報表示灯 86を点灯させる。  In the abnormal value detector 85, when the displacement of the center O (Δχ, Ay) becomes an allowable value abnormality, it is determined as abnormal and the alarm indicator lamp 86 is turned on.
なお、各径方向変位の計測値 La、 Lb、 Lc、 Ldは、上記のごとく各レーザー式距離 計測器 38a、 38b、 38c、 38dから第 1の鏡面体 37を経由して内槽側壁 3迄の距離で あり、上記の式 1における差の演算(Ld— Lb)、及び(La— Lc)においては、各レー ザ一式距離計測器 38a、 38b、 38c、 38dから各第 1の鏡面体 37迄の距離は相殺さ れ、各第 1の鏡面体 37から各内槽側壁 3迄の距離の差のみとなる。  The measured values La, Lb, Lc, and Ld of each radial displacement are from the laser distance measuring instruments 38a, 38b, 38c, 38d to the inner tank side wall 3 via the first mirror body 37 as described above. In the calculation of the difference in Equation 1 above (Ld-Lb) and (La-Lc), the distance from each laser set distance measuring device 38a, 38b, 38c, 38d to each first mirror body 37 The distance to each other is canceled out, and only the difference in distance from each first mirror body 37 to each inner tank side wall 3 is obtained.
[0143] また、図 1、図 2、図 3、図 5に図示の 2個の回転方向変位計測装置 27の各レーザ 一式距離計測器 38e、 38fにて、各レーザー式距離計測器 38e、 38fから第 1の鏡面 体 37を経由して各垂直部材 21迄の距離である回転方向変位の計測値 Le、Lfが計 測される。 [0143] In addition, each laser of the two rotational direction displacement measuring devices 27 shown in Fig. 1, Fig. 2, Fig. 3, and Fig. 5 The set distance measuring instruments 38e and 38f measure the rotational displacements Le and Lf, which are the distances from the laser distance measuring instruments 38e and 38f to the vertical members 21 via the first mirror 37. It is measured.
計測された 2個の回転方向変位の計測値 Le、 Lfは、機側表示器 81に表示されると 共に、タンク監視装置 70aのパイプ長補正器 71に送信される。  The measured values Le and Lf of the two measured rotational displacements are displayed on the machine-side display 81 and transmitted to the pipe length corrector 71 of the tank monitoring device 70a.
[0144] また、図 1、図 2、図 7に図示のパイプ収縮補正量計測装置 29のレーザー式距離計 測器 38hにてパイプ長の計測値 Lhが計測される。 Further, the pipe length measurement value Lh is measured by the laser distance measuring device 38h of the pipe contraction correction amount measuring device 29 shown in FIGS. 1, 2, and 7.
計測されたパイプ長の計測値 Lhは、機側表示器 81に表示されると共に、タンク監視 装置 70aのパイプ長補正器 71及び表示器/記録器 87に送信される。  The measurement value Lh of the measured pipe length is displayed on the machine-side display 81 and is transmitted to the pipe length corrector 71 and the display / recorder 87 of the tank monitoring device 70a.
[0145] 或いは、パイプ収縮補正用パイプ 33の内面に、 lm毎に設置された多対式の温度 計 80にて、計測された温度は、機側表示器 81に表示されると共に、タンク監視装置 70aの伸縮量演算器 82及び表示器/記録器 87に送信される。 [0145] Alternatively, the temperature measured by the multi-pair thermometer 80 installed for each lm on the inner surface of the pipe contraction correction pipe 33 is displayed on the machine-side display 81 and tank monitoring It is transmitted to the expansion / contraction amount calculator 82 and the display / recorder 87 of the device 70a.
伸縮量演算器 82では、計測された温度に基づき、回転方向変位計測用パイプ 31a 、 31bのパイプ長の計測値 Lhが演算され、パイプ長補正器 71及び表示器/記録器 87に送信される。  The expansion / contraction amount calculator 82 calculates the pipe length measurement value Lh of the rotational direction displacement measurement pipes 31a and 31b based on the measured temperature, and transmits it to the pipe length corrector 71 and the display / recorder 87. .
[0146] ノイプ長補正器 71では、回転方向変位の計測値 Le、 Lfとパイプ長の計測値 Lhと に基づき、次式により 2個の回転変位 A Le、 A Lfが演算される。  [0146] Based on the measured values Le and Lf of the rotational displacement and the measured value Lh of the pipe length, the Neupe length corrector 71 calculates two rotational displacements A Le and A Lf according to the following equation.
回転変位 Δ Le = (Le Lh)、  Rotational displacement Δ Le = (Le Lh),
回転変位 A Lf= (Lf— Lh) (式 2)  Rotational displacement A Lf = (Lf— Lh) (Equation 2)
演算された回転変位 A Le、 A Lfは、回転方向演算器 84、異常値検出器 85及び表 示器/記録器 87に送信される。  The calculated rotational displacements A Le and A Lf are transmitted to the rotation direction calculator 84, the abnormal value detector 85, and the display / recorder 87.
[0147] 回転方向演算器 84では、内槽側壁 3の半径を Dtとすると、回転変位 A Le及び回 転変位 A Lfに基づき次式により、回転方向変位量 Δ φ (回転角度)が演算される。 回転方向変位量 Δ φ =tan_ 1 ( ( A Le+ A Lf) /Dt) (式 3) [0147] In the rotational direction computing unit 84, assuming that the radius of the inner tank side wall 3 is Dt, the rotational direction displacement amount Δφ (rotational angle) is calculated by the following equation based on the rotational displacement A Le and the rotational displacement A Lf The Rotational displacement Δ φ = tan _ 1 ((A Le + A Lf) / Dt) (Equation 3)
演算された回転方向変位量 Δ φは、異常値検出器 85及び表示器/記録器 87に送 信される。  The calculated rotational displacement Δφ is transmitted to the abnormal value detector 85 and the display / recorder 87.
異常値検出器 85では、回転方向変位量 Δ φが許容値異常になると、異常と判断し 警報表示灯 86を点灯させる。 [0148] 式 1及び式 2を纏めると次式のようになり、径方向変位(Δ χ、 Δ γ)に関係なく回転 方向変位量を計測、演算すること力 Sできる。 In the abnormal value detector 85, when the rotation direction displacement amount Δφ becomes an allowable value abnormality, it is determined as abnormal and the alarm indicator lamp 86 is turned on. [0148] Formulas 1 and 2 are summarized as follows, and the force S for measuring and calculating the rotational displacement can be obtained regardless of the radial displacement (Δχ, Δγ).
回転方向変位量 Δ φ =tan ( (Le + Lf - 2Lh) /2Dt) (式 4) Rotational displacement Δ φ = tan ((Le + Lf-2Lh) / 2Dt) (Equation 4)
[0149] (タンク監視装置の第 2例の構成) [0149] (Configuration of second example of tank monitoring device)
次に、図 22、図 23を参照して、内槽 1の変位状況及びタンク監視装置 70の第 2例の 構成につき説明する。  Next, the displacement state of the inner tank 1 and the configuration of the second example of the tank monitoring device 70 will be described with reference to FIGS.
図 22は、本発明の各実施の形態におけるタンク監視装置の第 2例の計測原理を示 す説明図である。  FIG. 22 is an explanatory diagram showing the measurement principle of the second example of the tank monitoring device in each embodiment of the present invention.
図 23は、本発明の各実施の形態におけるタンク監視装置の第 2例のタンク監視装置 のブロック図である。  FIG. 23 is a block diagram of a tank monitoring apparatus of a second example of the tank monitoring apparatus in each embodiment of the present invention.
なお、タンク監視装置 70の第 2例のものは、第 1の実施の形態〜第 10の実施の形態 のものに適用可能である。  The second example of the tank monitoring device 70 can be applied to the first to tenth embodiments.
[0150] 上述の本発明の第 1〜; 10の実施の形態に係る二重殻構造タンク(図 1〜図 20参照 ) ίこお!/ヽて、各レーザー式 £巨離計視 IJ器 38、 38a, 38b、 38c、 38d、 38e、 38f、 38g、 38hによる計測力 S、年に 1〜2回程度であれば、各計測値をノート等に記録しておき、 各変位を手計算で行うことも可能である。 [0150] The double-shell structure tank according to the first to tenth embodiments of the present invention described above (see Figs. 1 to 20). 38, 38a, 38b, 38c, 38d, 38e, 38f, 38g, 38h Measuring force S, if it is about once or twice a year, record each measured value in a notebook etc. and calculate each displacement manually It is also possible to do this.
し力、しながら、以下に示すように、タンク監視装置に各演算プログラムをインストール して置き、自動的に変位を演算することも可能である。  However, as shown below, it is also possible to install each calculation program in the tank monitoring device and automatically calculate the displacement.
以下に、自動計算する場合のタンク監視装置につき説明する。  The tank monitoring device for automatic calculation will be described below.
[0151] 図 23に図示のように、タンク監視装置 70は、パイプ長補正器 71、内槽側壁位置演 算器 72、中心位置演算器 73、径方向変位演算器 74、垂直部材位置演算器 75、中 心位置補正器 76、回転方向変位演算器 77、記憶器 78a、記録器 78b及び表示器 7 9により構成されている。 [0151] As shown in FIG. 23, the tank monitoring device 70 includes a pipe length corrector 71, an inner tank side wall position calculator 72, a center position calculator 73, a radial displacement calculator 74, and a vertical member position calculator. 75, a center position corrector 76, a rotation direction displacement calculator 77, a storage device 78a, a recording device 78b, and a display device 79.
なお、記憶器 78a、記録器 78b及び表示器 79は、排出ポンプ制御装置 90、タンクの 温度、 LNGのレベルを監視する各種の回路用のものと共有することができる。  The storage device 78a, the recording device 78b, and the display device 79 can be shared with the discharge pump control device 90, the tank temperature, and various circuits for monitoring the LNG level.
[0152] 先ず、記憶器 78aに記憶されて!/、るデータ(或いはメモリ領域)にっき説明する。 First, the data (or memory area) stored in the storage device 78a will be described in detail.
記憶器 78aには、少なくとも次の共通データが、二重殻構造タンクの変位計測用とし て図示略の入力手段により予め入力され、記憶器 78aの所定のメモリ領域に記憶さ れている。 At least the following common data is input to the storage device 78a in advance by input means (not shown) for measuring the displacement of the double-shell structure tank, and stored in a predetermined memory area of the storage device 78a. It is.
1)内槽側壁 3の内径 Dt  1) Inner tank side wall 3 inside diameter Dt
2)内槽側壁 3の既中心点 Oの位置 (座標)  2) Position of existing center point O of inner tank side wall 3 (coordinates)
3)各レーザー式距離計測器 38、 38a, 38b、 38c、 38d、 38e、 38f、 38g、 38hの各 レーザー光 39a、 39b, 39c, 39d、 39e、 39f、 39g、 39hの光軸の中心位置(座標) 3) Each laser type distance measuring instrument 38, 38a, 38b, 38c, 38d, 38e, 38f, 38g, 38h Laser light 39a, 39b, 39c, 39d, 39e, 39f, 39g, 39h (Coordinate)
4)鏡面体 37で反射した各レーザー光 39a、 39b、 39c、 39d、 39e、 39f、 39gの照 射方向(照射角度)。 4) Irradiation direction (irradiation angle) of each laser beam 39a, 39b, 39c, 39d, 39e, 39f, and 39g reflected by the mirror body 37.
なお、上述の共通データは、プログラム等における定数として予め設定しておいても 良い。 The common data described above may be set in advance as a constant in a program or the like.
座標の原点は、内槽側壁 3の既中心点〇、或いは外槽 5の中心点としても良い。 上記の;!)〜 6)のデータは、クールダウン前(二重殻構造タンクの建造が完了した時 点)のデータである。 The origin of the coordinates may be the existing center point 0 of the inner tank side wall 3 or the center point of the outer tank 5. The above ;;) to 6) data are before the cool-down (when the construction of the double-shell structure tank is completed).
更に、記録器 78bには、次の計測データを複数組記憶するメモリ領域が備えられて いる。  Furthermore, the recorder 78b is provided with a memory area for storing a plurality of sets of the following measurement data.
5)計測年月日  5) Date of measurement
6)レーザー式距離計測器 38a、 38b、 38c、 38d、 38e、 38f、 38g、 38hにて計測さ れた既径方向変位の計測値 La、 Lb、 Lc、 Ld、既回転方向変位の計測値 Le、 Lf、既 内槽の高さ方向変位の計測値 Lg、既パイプ長の計測値 Lh (或いは、新径方向変位 の計測値 Lma、 Lmb、 Lmc、 Lmd、新回転方向変位の計測値 Lme、 Lmf、新内槽 の高さ方向変位の計測値 Lmg、新パイプ長の計測値 Lmh)  6) Measured values of radial displacement measured by laser type distance measuring instruments 38a, 38b, 38c, 38d, 38e, 38f, 38g, 38h La, Lb, Lc, Ld, measured values of rotational direction displacement Le, Lf, Measured value of the displacement in the height direction of the existing tank Lg, Measured value of the existing pipe length Lh (or Measured value of the new radial direction displacement Lma, Lmb, Lmc, Lmd, Measured value of the new rotational direction displacement Lme , Lmf, measured value of the displacement in the height direction of the new inner tank Lmg, measured value of the new pipe length Lmh)
7)演算された、各鏡面体 37から内槽側壁 3迄の既径方向距離 A La、 A Lb、 A Lc、 A Ld、内槽の高さ方向変位計測用の水平部材 20迄の内槽の高さ方向変位 A Lg、 及びタンク回転計測用の垂直部材 21迄の回転方向距離 Δ Lme、 Δ Lmf  7) Calculated radial distance from each mirror body 37 to inner tank side wall 3 A La, A Lb, A Lc, A Ld, inner tank up to horizontal member 20 for measuring displacement in height direction of inner tank Displacement in the height direction A Lg, and distance in the rotation direction to the vertical member 21 for tank rotation measurement Δ Lme, Δ Lmf
8)演算された、既計測位置 (座標) Pa、 Pb、 Pc、 Pd、 Pe、 Pf (或いは、新計測位置( 座標) Pam、 Pbm、 Pcm、 Pdm、 Pem、 Pfm)  8) Calculated existing measurement position (coordinates) Pa, Pb, Pc, Pd, Pe, Pf (or new measurement position (coordinates) Pam, Pbm, Pcm, Pdm, Pem, Pfm)
9)演算された、新中心点 Omの位置 (座標)  9) Calculated position of new center point Om (coordinates)
10)演算された、回転方向変位量 Δ φ  10) Calculated rotational displacement Δφ
11)計測時の内槽側壁 3内の温度等の諸条件 [0154] 先ず、図 1、図 2、図 7に図示のパイプ収縮補正量計測装置 29のレーザー式距離 計測器 38hにて既パイプ長の計測値 Lh或いは新パイプ長の計測値 Lmhが計測さ れる。 11) Conditions such as temperature inside the inner tank side wall 3 during measurement [0154] First, the measured value Lh of the existing pipe length or the measured value Lmh of the new pipe length is measured by the laser-type distance measuring device 38h of the pipe contraction correction amount measuring device 29 shown in FIGS. 1, 2, and 7. It is.
計測された既パイプ長の計測値 Lh或いは新パイプ長の計測値 Lmhは、図 23に図 示のパイプ長補正器 71に送信される。  The measured value Lh of the existing pipe length or the measured value Lmh of the new pipe length is transmitted to the pipe length corrector 71 shown in FIG.
[0155] 或いは、パイプ温度がパイプ長演算器 88に入力され、ノイプ長演算器 88にて既パ イブ長の計測値 Lh或いは新パイプ長の計測値 Lmhが演算され、パイプ長補正器 7 1に送信される。 [0155] Alternatively, the pipe temperature is input to the pipe length calculator 88, and the measured value Lh of the existing pipe length or the measured value Lmh of the new pipe length is calculated by the noise length calculator 88, and the pipe length corrector 7 1 Sent to.
[0156] 一方、図 1、図 2、図 3、図 4に図示の各径方向変位計測装置 26、 26a、 26b、 26c 、 26dの各レーザー式 £巨離計視 ij器 38a、 38b、 38c、 38diこて、図 22ίこ図示の既計 測位置 Pa、 Pb、 Pc、 Pdにおける既径方向変位の計測値 La、 Lb、 Lc、 Ld或いは新 計測位置 Pma、 Pmb、 Pmc、 Pmdにおける新径方向変位の計測値 Lma、 Lmb、 L mc、 Lmdが計測される。  [0156] On the other hand, the radial displacement measuring devices 26, 26a, 26b, 26c, and 26d shown in FIGS. 1, 2, 3, and 4 are each a laser type ij device 38a, 38b, 38c , 38di trowel, Fig. 22ί Measured values of radial displacement at the measured positions Pa, Pb, Pc, Pd La, Lb, Lc, Ld or new diameters at the new measured positions Pma, Pmb, Pmc, Pmd Measured values of directional displacement Lma, Lmb, L mc, and Lmd are measured.
計測された既径方向変位の計測値 La、 Lb、 Lc、 Ld或いは新径方向変位の計測値 Lma、 Lmb、 Lmc、 Lmdは、図 23に図示のパイプ長補正器 71に送信される。  The measured values La, Lb, Lc, Ld of the measured radial displacement or the measured values Lma, Lmb, Lmc, Lmd of the new radial displacement are transmitted to the pipe length corrector 71 shown in FIG.
[0157] ノイブ長補正器 71では、各既径方向変位の計測値 La、 Lb、 Lc、 Ld或いは新径方 向変位の計測値 Lma、 Lmb、 Lmc、 Lmdから既パイプ長の計測値 Lh或いは新パイ プ長の計測値 Lmhを減算することにより、各第 1の鏡面体 37から内槽側壁 3までの 既径方向距離 A La、 A Lb、 A Lc、 A Ld或いは新径方向距離 A Lma、 A Lmb、 Δ Lmc、 Δ Lmdが演算される。 [0157] In the Neuve length compensator 71, the measured value La, Lb, Lc, Ld of each existing radial displacement or the measured value Lma, Lmb, Lmc, Lmd of the existing radial displacement Lh or By subtracting the measured value Lmh of the new pipe length, the existing radial distance A La, A Lb, A Lc, A Ld or the new radial distance A Lma from each first mirror body 37 to the inner tank side wall 3 , A Lmb, Δ Lmc, Δ Lmd are calculated.
演算された既径方向距離 A La、 A Lb、 A Lc、 A Ld或いは新径方向変位新径方向 £巨離 A Lma、 A Lmb、 A Lmc, A Lmdは、内槽佃 J壁位置演算器 72に送信される。 また、計測された既径方向変位の計測値 La、 Lb、 Lc、 Ld或いは新径方向変位の計 測値 Lma、 Lmb、: Lmc、: Lmd、演算された既径方向距離 A La、 A Lb、 A Lc、 A Ld 或いは新径方向距離 A Lma、 A Lmb、 A Lmc、 Δ Lmdは、ダイレクト或いは内槽側 壁位置演算器 72等を経由して、記録器 78bに送信され記録される。  Calculated existing radial distance A La, A Lb, A Lc, A Ld or new radial displacement New radial direction £ Large separation A Lma, A Lmb, A Lmc, A Lmd Sent to 72. Also, the measured values of the existing radial displacement La, Lb, Lc, Ld or the measured values of the new radial displacement Lma, Lmb, Lmc, Lmd, the calculated radial distance A La, A Lb , A Lc, A Ld or new radial direction distances A Lma, A Lmb, A Lmc, ΔLmd are transmitted to and recorded in the recorder 78b via the direct or inner tank side wall position calculator 72 or the like.
[0158] 内槽側壁位置演算器 72には、記憶器 78aから、各レーザー式距離計測器 38a、 3 8b、 38c、 38dの各レーザー光 39a、 39b、 39c、 39dの中心位置(座標)、第 1の鏡 面体 37で反射した各レーザー光 39a、 39b、 39c、 39dの照射方向(照射角度)のデ ータが入力されている。 [0158] The inner tank side wall position calculator 72 includes the storage device 78a, the center positions (coordinates) of the laser beams 39a, 39b, 39c, and 39d of the laser distance measuring devices 38a, 38b, 38c, and 38d, First mirror Data of the irradiation direction (irradiation angle) of each laser beam 39a, 39b, 39c, and 39d reflected by the face 37 is input.
そして、内槽側壁位置演算器 72において、これらの諸データに基づき幾何学的演算 方法により、各レーザー光 39a、 39b、 39c、 39dが照射された内槽側壁 3における既 計測位置 Pa、 Pb、 Pc、 Pd (座標)或いは新計測位置 Pma、 Pmb, Pmc、 Pmd (座標 Then, in the inner tank side wall position calculator 72, the measured positions Pa, Pb, and the like in the inner tank side wall 3 irradiated with the respective laser beams 39a, 39b, 39c, and 39d by a geometric calculation method based on these various data. Pc, Pd (coordinates) or new measurement positions Pma, Pmb, Pmc, Pmd (coordinates
)が演算される。 ) Is calculated.
演算された既計測位置 Pa、 Pb、 Pc、 Pd (座標)或いは新計測位置 Pma、 Pmb, Pm c、 Pmd (座標)は、中心位置演算器 73に送信される。  The calculated measurement positions Pa, Pb, Pc, Pd (coordinates) or new measurement positions Pma, Pmb, Pmc, Pmd (coordinates) are transmitted to the center position calculator 73.
また、演算された既計測位置 Pa、 Pb、 Pc、 Pd (座標)或いは新計測位置 Pma、 Pmb 、 Pmc、 Pmd (座標)は、ダイレクト或いは後述する中心位置演算器 73等を経由して 、記録器 78bにも送信され記録される。  The calculated measurement positions Pa, Pb, Pc, Pd (coordinates) or the new measurement positions Pma, Pmb, Pmc, Pmd (coordinates) are recorded directly or via the center position calculator 73 described later. It is also sent and recorded in device 78b.
[0159] 中心位置演算器 73では、受信した既計測位置 Pa、 Pb、 Pc、 Pd (座標)或いは新 計測位置 Pma、 Pmb, Pmc、 Pmd (座標)に基づき、幾何学的演算方法により、内槽 側壁 3の既中心位置 O (座標)或いは新中心位置 Om (座標)が演算される。 [0159] The center position calculator 73 uses a geometric calculation method based on the received measured positions Pa, Pb, Pc, Pd (coordinates) or the new measured positions Pma, Pmb, Pmc, Pmd (coordinates). The existing center position O (coordinates) or new center position Om (coordinates) of the tank side wall 3 is calculated.
演算された内槽側壁 3の既中心位置 O或!/、は新中心位置 Omは、径方向変位演算 器 74に送信される。  The calculated center position O or! / Of the inner tank side wall 3 and the new center position Om are transmitted to the radial displacement calculator 74.
また、演算された内槽側壁 3の既中心位置 O或いは新中心位置 Omは、ダイレクト或 いは径方向変位演算器 74を経由して、記録器 78bにも送信され記録される。  The calculated center position O or new center position Om of the inner tank side wall 3 is also transmitted to and recorded in the recorder 78b via the direct or radial displacement calculator 74.
[0160] なお、計測、演算処理が初回(クールダウン前)の場合は、既中心位置〇(座標)を 演算し、記録器 78bに送信し、計測年月日と共に記憶した時点で終了する。  [0160] If the measurement and calculation processing is the first time (before the cool-down), the existing center position 0 (coordinates) is calculated, transmitted to the recorder 78b, and terminated when stored together with the measurement date.
2回目以降の計測、演算処理の場合、既計測値、既計測位置等は、前回或いは初 回のものであり、どの計測年月日のものを既計測値、既計測位置等とするかは、タン ク監視装置 70にて入力される。  In the case of the second and subsequent measurement and calculation processing, the measured values and measured positions are the previous or first ones. Which measurement date is used as the measured values and measured positions? This is input by the tank monitoring device 70.
[0161] 径方向変位演算器 74では、記憶器 78aから送信された既中心位置〇(座標)と、中 心位置演算器 73から送信された新中心位置 Om (座標)とが比較され、中心位置変 化量 Δ Om (方向及び変位量)が演算される。  [0161] The radial displacement calculator 74 compares the existing center position 0 (coordinates) transmitted from the storage device 78a with the new center position Om (coordinates) transmitted from the center position calculator 73 to obtain the center. The amount of position change Δ Om (direction and displacement) is calculated.
演算された中心位置変化量 Δ θπιは、記録器 78bに送信され記録される。  The calculated center position change amount Δθπι is transmitted to the recorder 78b and recorded.
更に、演算された中心位置変化量 A Omは、後述する中心位置補正器 76にも送信 される。 Further, the calculated center position change amount A Om is also transmitted to the center position corrector 76 described later. Is done.
[0162] 更に、パイプ長補正器 71には、図 1、図 2、図 3、図 5に図示の各回転方向変位計 測装置 27の各レーザー式距離計測器 38e、 38fにて、図 22に図示の既計測位置 Pe 、 Pfにおける既回転方向変位の計測値 Le、 Lf或いは新計測位置 Pme、 Pmfにおけ る新回転方向変位の計測値 Lme、 Lmfが計測される。  [0162] Further, the pipe length compensator 71 includes the laser type distance measuring devices 38e and 38f of the rotational direction displacement measuring devices 27 shown in FIGS. 1, 2, 3, and 5, respectively. The measured values Le and Lf of the existing rotational direction displacement at the existing measured positions Pe and Pf shown in Fig. 5 or the measured values Lme and Lmf of the new rotational direction displacement at the new measured positions Pme and Pmf are measured.
計測された既回転方向変位の計測値 Le、 Lf或いは新回転方向変位の計測値 Lme 、 Lmfは、図 23に図示のパイプ長補正器 71に送信される。  The measured values Le and Lf of the measured rotational direction displacement or the measured values Lme and Lmf of the new rotational direction displacement are transmitted to the pipe length corrector 71 shown in FIG.
[0163] ノイブ長補正器 71では、各既回転方向変位の計測値 Le、 Lf或いは新回転方向 変位の計測値 Lme、 Lmfから既パイプ長の計測値 Lh或いは新パイプ長の計測値 L mhを減算することにより、各第 2の鏡面体 37からタンク回転計測用の垂直部材 21ま での距離である既回転方向距離 A Le、 A Lf或いは新回転方向距離 A Lme、 A Lm fが演算される。 [0163] In the Neuve length corrector 71, the measured value Le, Lf of each existing rotational direction displacement or the measured value Lme, Lmf of the new rotational direction displacement is used to calculate the measured value Lh of the existing pipe length or the measured value L mh of the new pipe length. By subtracting, the already-rotated direction distances A Le, A Lf or new rotation direction distances A Lme, A Lm f, which are the distances from each second mirror body 37 to the vertical member 21 for tank rotation measurement, are calculated. The
演算された既回転方向距離 A Le、 A Lf或いは新回転方向距離 A Lme、 A Lmfは、 垂直部材位置演算器 75に送信される。  The calculated rotation direction distances A Le and A Lf or the new rotation direction distances A Lme and A Lmf are transmitted to the vertical member position calculator 75.
また、計測された既回転方向変位の計測値 Le、 Lf或いは新回転方向変位の計測値 Lme, Lmf、演算された既回転方向距離 Δ Le、 Δ Lf或いは新回転方向距離 Δ Lme 、 A Lmfは、ダイレクト或いは垂直部材位置演算器 75等を経由して、記憶器 78bに 送信され記録される。  Also, the measured values Le, Lf or the measured values of the new rotational direction displacement Lme, Lmf, the calculated rotational direction distances ΔLe, ΔLf, or the new rotational direction distances ΔLme, A Lmf are Then, the data is transmitted and recorded in the storage device 78b via the direct or vertical member position calculator 75 or the like.
[0164] 垂直部材位置演算器 75には、記憶器 78aから、図 5に図示の各レーザー式距離計 測器 38e、 38fの各レーザー光 39e、 39fの中心位置 (座標)、鏡面体 37で反射した 各レーザー光 39e、 39fの照射方向(照射角度)のデータが入力されている。  [0164] The vertical member position calculator 75 includes, from the storage device 78a, the center positions (coordinates) of the laser beams 39e and 39f of the laser distance measuring devices 38e and 38f shown in FIG. Data on the irradiation direction (irradiation angle) of each reflected laser beam 39e, 39f is input.
そして、垂直部材位置演算器 75において、これらの諸データに基づき幾何学的演算 方法により、各レーザー光 39e、 39fが照射されたタンク回転計測用の垂直部材 21 における図 22に図示の見かけの既計測位置 Pe、Pf (座標)或いは見かけの新計測 位置 Pme、 Pmf (座標)が演算される。  Then, the vertical member position calculator 75 uses the geometric calculation method based on these data to perform the apparent rotation shown in FIG. 22 in the vertical member 21 for measuring the tank rotation irradiated with the laser beams 39e and 39f. The measurement positions Pe and Pf (coordinates) or the apparent new measurement positions Pme and Pmf (coordinates) are calculated.
[0165] 演算された見かけの既計測位置 Pe、 Pf (座標)或!/、は見かけの新計測位置 Pme、 Pmf (座標)は、中心位置補正器 76に送信される。  The calculated apparent measured positions Pe, Pf (coordinates) or! /, And the apparent new measured positions Pme, Pmf (coordinates) are transmitted to the center position corrector 76.
また、演算された見かけの既計測位置 Pe、 Pf (座標)或いは見かけの新計測位置 P me、 Pmf (座標)は、ダイレクト或いは中心位置補正器 76等を経由して、記録器 78b にも送信され記録される。 Also, the calculated apparent measured position Pe, Pf (coordinates) or the apparent new measured position P The me and Pmf (coordinates) are also transmitted and recorded to the recorder 78b via the direct or center position corrector 76 and the like.
なお、計測、演算処理が初回(クールダウン前)の場合は、計測年月日と共に記憶し た時点で終了する。  If the measurement and calculation process is the first time (before the cool-down), the process ends when it is stored together with the date of measurement.
[0166] 中心位置補正器 76では、垂直部材位置演算器 75から送信された見かけの既計測 位置 Pe、 Pf (座標)或いは見かけの新計測位置 Pme、 Pmf (座標)を、径方向変位演 算器 74から送信された中心位置変化量 A Omに基づき、真の既計測位置 Pe、 Pf ( 座標)或いは真の新計測位置 Pme、 Pmf (座標)を演算する。  [0166] In the center position compensator 76, the apparent measured positions Pe and Pf (coordinates) or the apparent new measured positions Pme and Pmf (coordinates) transmitted from the vertical member position calculator 75 are calculated by radial displacement. Based on the center position change amount A Om transmitted from the device 74, the true existing measurement positions Pe and Pf (coordinates) or the true new measurement positions Pme and Pmf (coordinates) are calculated.
演算された真の既計測位置 Pe、 Pf (座標)或いは真の新計測位置 Pme、 Pmf (座標 )は、回転方向変位演算器 77に送信される。  The calculated true measured positions Pe and Pf (coordinates) or the true new measured positions Pme and Pmf (coordinates) are transmitted to the rotational direction displacement calculator 77.
また、演算された真の既計測位置 Pe、 Pf (座標)或いは真の新計測位置 Pme、 Pmf (座標)もダイレクト或いは回転方向変位演算器 77等を経由して、記録器 78bにも送 信され記録される。  Also, the calculated true measured position Pe, Pf (coordinate) or the true new measured position Pme, Pmf (coordinate) is also sent directly to the recorder 78b via the rotational displacement calculator 77 or the like. And recorded.
[0167] 回転方向変位演算器 77では、中心位置補正器 76からの真の既計測位置 Pe、 Pf ( 座標)或いは真の新計測位置 Pme、 Pmf (座標)に基づき、回転方向変位量 Δ φ ( 回転角度)を演算する。  [0167] In the rotational direction displacement calculator 77, the rotational direction displacement amount Δφ based on the true existing measured positions Pe and Pf (coordinates) or the true new measured positions Pme and Pmf (coordinates) from the center position corrector 76. Calculate (rotation angle).
演算された回転方向変位量 Δ φ (回転角度)は、記録器 78bに送信され記録される The calculated rotational displacement Δφ (rotation angle) is transmitted to the recorder 78b and recorded.
Yes
[0168] そして、表示器 79では、上記の各種の計測値、演算値に基づき、内槽側壁 3の径 方向変位、回転方向変位等が、デジタル表示或いはグラフィック表示される。  [0168] Then, on the display device 79, the radial displacement, the rotational displacement, and the like of the inner tank side wall 3 are displayed digitally or graphically based on the above-mentioned various measured values and calculated values.
なお、内槽側壁 3の直径が 80m (80000mm)であるのに対し、径方向変位量、回転 方向変位量は数百 mmである。  The diameter of the inner tank side wall 3 is 80 m (80000 mm), whereas the radial displacement and the rotational displacement are several hundred mm.
したがって、この値のままグラフィック表示した場合、変化したことをグラフィック表示に て確認することは困難である。  Therefore, if the graphic display is made with this value, it is difficult to confirm the change by the graphic display.
そこで、量はグラフィック表示する場合、径方向変位量、回転方向変位量を、例えば 10倍に拡大してグラフィック表示することにより、変化したことを目視にて確認すること ができる。  Therefore, when the amount is displayed graphically, it is possible to visually confirm that the amount has changed by displaying the amount of displacement in the radial direction and the amount of displacement in the rotational direction by, for example, enlarging the amount by 10 times.
[0169] (その他の変形例) 以上、本発明の各実施の形態について説明したが、本発明は上記の各実施の形態 に限定されず、本発明の範囲内でその具体的構造に種々の変更を加えてよいことは いうまでもない。 [0169] (Other variations) The embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications may be made to the specific structure within the scope of the present invention. Nor.
例えば、極低温の液化天然ガス(LNG)等の貯蔵用以外の、圧力流体を貯蔵する耐 圧型の二重殻構造タンクにも採用可能である。 For example, it can be applied to a pressure-resistant double shell tank for storing pressure fluid other than for storing cryogenic liquefied natural gas (LNG).
また、半地下式の二重殻構造タンクにおいても採用可能である。 It can also be used in semi-underground double shell tanks.
なお、液化天然ガス貯蔵設備には複数の貯蔵タンク、気化した天然ガスの再液化装 置等が設置されている力 S、タンク監視装置 70をタンク毎に分散して設けても良い。 また、地下式の二重殻構造タンクにも採用可能である。 The liquefied natural gas storage facility may be provided with a plurality of storage tanks, a force S in which a re-liquefaction device for vaporized natural gas is installed, and tank monitoring devices 70 in a distributed manner for each tank. It can also be used in underground double shell tanks.
また、内槽 1の変位を常時監視するのではなぐクールダウン前、クールダウン後、 地震発生後等に計測する場合には、レーザー式距離計測器 38を 1個又は複数個中 央監視センター等に収納しておき、各計測用パイプ 33の遮断弁 35を閉鎖し、各計 測用パイプ 33の上端にフランジには平板を取り付けておき、計測時にのみ計測用パ イブ 33上端にレーザー式距離計測器 38を連結して計測するようにしても良い。  Also, when measuring the displacement of the inner tank 1 before the cooldown, after the cooldown, after the earthquake, etc. And shut off the shutoff valve 35 of each measurement pipe 33, attach a flat plate to the flange at the upper end of each measurement pipe 33, and measure the laser distance at the upper end of the measurement pipe 33 only during measurement. You may make it measure by connecting the measuring instrument 38. FIG.

Claims

請求の範囲 The scope of the claims
[1] 外槽と内槽とを有する二重殻構造タンクにおいて、  [1] In a double shell tank with an outer tank and an inner tank,
前記外槽の上部を貫通する径方向変位計測用パイプと、  A pipe for measuring radial displacement passing through the upper part of the outer tub,
前記径方向変位計測用パイプの前記外槽の外部に設けられた遮断弁と、 前記径方向変位計測用パイプの上端に設けられたレーザー送受信器用着脱座と、 を備えたことを特徴とする二重殻構造タンク装置。  A shut-off valve provided outside the outer tub of the radial displacement measuring pipe, and a laser transceiver attaching / detaching seat provided at an upper end of the radial displacement measuring pipe. Heavy shell tank device.
[2] 前記径方向変位計測用パイプの下端に取り付けられ、前記レーザー送受信器用 着脱座に連結されるレーザー式距離計測器から照射されたレーザー光を前記内槽 の方向に反射させる鏡面体と、  [2] A mirror body that is attached to a lower end of the radial displacement measuring pipe and reflects laser light emitted from a laser-type distance measuring device connected to the laser transmitter / receiver seat in the direction of the inner tank;
を備えたことを特徴とする請求項 1に記載の二重殻構造タンク装置。  The double-shell structure tank apparatus according to claim 1, further comprising:
[3] 前記内槽は、内槽底板及び内槽側壁と、前記内槽側壁に対し相対的に移動可能 に設けられた内槽上蓋とを有し、 [3] The inner tank has an inner tank bottom plate and an inner tank side wall, and an inner tank upper lid provided so as to be movable relative to the inner tank side wall.
前記径方向変位計測用パイプは、垂直方向に延びて前記内槽上蓋も貫通している ことを特徴とする請求項 2に記載の二重殻構造タンク装置。  The double-shell structure tank apparatus according to claim 2, wherein the radial displacement measuring pipe extends in a vertical direction and penetrates the inner tank upper lid.
[4] 前記径方向変位計測用パイプと前記鏡面体とは、同じ材質であることを特徴とする 請求項 3に記載の二重殻構造タンク装置。 4. The double-shell structure tank apparatus according to claim 3, wherein the radial displacement measuring pipe and the mirror body are made of the same material.
[5] 前記内槽に対峙する前記径方向変位計測用パイプを 2本備え、 [5] Two pipes for measuring radial displacement facing the inner tank are provided,
前記鏡面体で反射した前記レーザー光の照射方向が水平面内で互いに 90° ± 20 Irradiation directions of the laser beams reflected by the mirror body are 90 ° ± 20 with respect to each other in a horizontal plane.
%の範囲内で開くように前記鏡面体が設置されたことを特徴とする請求項 3又は 4に 記載の二重殻構造タンク装置。 The double-shell structure tank apparatus according to claim 3 or 4, wherein the mirror body is installed so as to open within a range of%.
[6] 前記内槽に対峙する径方向変位計測用パイプを少なくとも 3本備え、 [6] At least three radial displacement measuring pipes facing the inner tank are provided,
前記鏡面体で反射した前記レーザー光の照射方向が水平面内で等角度に開くよう に前記鏡面体が設置されたことを特徴とする請求項 3又は 4に記載の二重殻構造タ ンク装置。  5. The double-shell structure tank device according to claim 3, wherein the mirror body is installed so that an irradiation direction of the laser beam reflected by the mirror body opens at an equal angle in a horizontal plane.
[7] 前記内槽に対峙する前記径方向変位計測用パイプを 1本とし、  [7] The radial displacement measuring pipe facing the inner tank is one,
前記鏡面体は多角錐状にし、  The specular body has a polygonal pyramid shape,
前記レーザー光を複数箇所に照射することを特徴とする請求項 3又は 4に記載の二 重殻構造タンク装置。 The double-shell structure tank device according to claim 3 or 4, wherein the laser beam is applied to a plurality of locations.
[8] 前記内槽に対峙する前記径方向変位計測用パイプを 1本とし、 [8] The radial displacement measuring pipe facing the inner tank is one,
前記鏡面体は多角錐状にし、  The specular body has a polygonal pyramid shape,
前記レーザー光の照射方向が変更可能なようになつていることを特徴とする請求項 3 又は 4に記載の二重殻構造タンク装置。  5. The double-shell structure tank apparatus according to claim 3, wherein an irradiation direction of the laser beam is changeable.
[9] 前記内槽側壁に取り付けられた垂直部材と、 [9] A vertical member attached to the inner tank side wall;
垂直方向に延びて前記外槽の上部及び前記内槽上蓋を貫通すると共に前記垂直 部材に対峙する回転方向変位計測用パイプと、  A rotational displacement measuring pipe extending in the vertical direction and penetrating the upper part of the outer tank and the upper cover of the inner tank and facing the vertical member;
前記回転方向変位計測用パイプの前記外槽の外部に設けられた遮断弁と、 前記回転方向変位計測用パイプの上端に設けられたレーザー送受信器用着脱座と 前記回転方向変位計測用パイプの下端に取り付けられ、前記レーザー送受信器用 着脱座に連結されるレーザー式距離計測器から照射されたレーザー光を前記垂直 部材の方向に反射させる第 2の鏡面体と、  A shut-off valve provided outside the outer tub of the rotational displacement measuring pipe, a laser transmitter / receiver seat provided at the upper end of the rotational displacement measuring pipe, and a lower end of the rotational displacement measuring pipe A second mirror body that is attached and reflects laser light emitted from a laser-type distance measuring device connected to the laser transmitter / receiver seat, in the direction of the vertical member;
を備えたことを特徴とする請求項 3乃至 8のいずれかに記載の二重殻構造タンク装置  A double-shell structure tank device according to any one of claims 3 to 8, wherein
[10] 前記回転方向変位計測用パイプと前記第 2の鏡面体とは、同じ材質であることを特 徴とする請求項 9に記載の二重殻構造タンク装置。 10. The double-shell structure tank device according to claim 9, wherein the rotational direction displacement measuring pipe and the second mirror body are made of the same material.
[11] 内槽側壁に取り付けられた水平部材と、 [11] a horizontal member attached to the inner tank side wall;
垂直方向に延びて前記外槽の上部及び前記内槽上蓋を貫通すると共に前記水平 部材に対峙する内槽の高さ方向変位計測用パイプと、  A pipe for measuring the displacement in the height direction of the inner tub extending vertically and penetrating the upper portion of the outer tub and the upper lid of the inner tub and facing the horizontal member;
前記内槽の高さ方向変位計測用パイプの前記外槽の外部に設けられた遮断弁と、 前記内槽の高さ方向変位計測用パイプの上端に設けられたレーザー送受信器用着 脱座と、を備えたことを特徴とする請求項 3乃至 10のいずれかに記載の二重殻構造 タンク装置。  A shutoff valve provided outside the outer tank of the height direction displacement measuring pipe of the inner tank, and a laser transmitter / receiver seating provided at the upper end of the height direction displacement measuring pipe of the inner tank, The double-shell structure tank apparatus according to any one of claims 3 to 10, further comprising:
[12] 垂直方向に延びて前記外槽の上部及び前記内槽上蓋を貫通するパイプ収縮補正 用パイプと、  [12] A pipe contraction correction pipe extending in a vertical direction and penetrating the upper part of the outer tank and the upper cover of the inner tank,
前記パイプ収縮補正用パイプの前記外槽の外部に設けられた遮断弁と、 前記パイプ収縮補正用パイプの上端に設けられたレーザー送受信器用着脱座と、 前記パイプ収縮補正用パイプの下端に取り付けられた水平なパイプ下端の水平部 材と、 A shutoff valve provided outside the outer tub of the pipe contraction correction pipe; a laser transceiver mounting / dismounting seat provided at an upper end of the pipe contraction correction pipe; A horizontal member at the lower end of the horizontal pipe attached to the lower end of the pipe contraction correction pipe;
を備えたことを特徴とする請求項 3乃至 11のいずれかに記載の二重殻構造タンク装 置。  The double-shell structure tank apparatus according to any one of claims 3 to 11, further comprising:
[13] 前記径方向変位計測用パイプ、或いは前記内槽上蓋を貫通するパイプに所定の 間隔で温度センサを設けたことを特徴とする請求項 3乃至 8のいずれかに記載の二 重殻構造タンク装置。  [13] The double shell structure according to any one of [3] to [8], wherein a temperature sensor is provided at a predetermined interval on the pipe for measuring the radial displacement or the pipe penetrating the inner tank upper lid. Tank equipment.
[14] 前記回転方向変位計測用パイプに所定の間隔で温度センサを設けたことを特徴と する請求項 9又は 10に記載の二重殻構造タンク装置。  14. The double-shell structure tank apparatus according to claim 9 or 10, wherein a temperature sensor is provided at a predetermined interval on the rotational direction displacement measuring pipe.
[15] 前記内槽の高さ方向変位計測用パイプに所定の間隔で温度センサを設けたことを 特徴とする請求項 11に記載の二重殻構造タンク装置。 15. The double-shell structure tank device according to claim 11, wherein temperature sensors are provided at predetermined intervals on the pipe for measuring displacement in the height direction of the inner tank.
[16] 前記径方向変位計測用パイプは、垂直方向に延びて前記内槽と前記外槽との間 に延在していることを特徴とする請求項 2に記載の二重殻構造タンク装置。 16. The double-shell structure tank device according to claim 2, wherein the radial displacement measuring pipe extends in a vertical direction and extends between the inner tank and the outer tank. .
[17] 前記内槽に対峙する径方向変位計測用パイプを少なくとも 3本備え、 [17] At least three radial displacement measuring pipes facing the inner tank are provided,
前記鏡面体で反射した前記レーザー光の照射方向が水平面内で等角度に開くよう に前記鏡面体が設置されたことを特徴とする請求項 16に記載の二重殻構造タンク装 置。  17. The double-shell structure tank apparatus according to claim 16, wherein the mirror body is installed so that an irradiation direction of the laser beam reflected by the mirror body opens at an equal angle in a horizontal plane.
[18] 前記内槽側壁に取り付けられた垂直部材と、  [18] a vertical member attached to the inner tank side wall;
垂直方向に延びて前記内槽と前記外槽との間に延在する回転方向変位計測用パイ プと、  A rotational displacement measuring pipe extending in the vertical direction and extending between the inner tank and the outer tank;
前記回転方向変位計測用パイプの前記外槽の外部に設けられた遮断弁と、 前記回転方向変位計測用パイプの上端に設けられたレーザー送受信器用着脱座と 前記回転方向変位計測用パイプの下端に取り付けられ、前記レーザー送受信器用 着脱座に連結されるレーザー式距離計測器から照射されたレーザー光を前記垂直 部材の方向に反射させる第 2の鏡面体と、  A shut-off valve provided outside the outer tub of the rotational displacement measuring pipe, a laser transmitter / receiver seat provided at the upper end of the rotational displacement measuring pipe, and a lower end of the rotational displacement measuring pipe A second mirror body that is attached and reflects laser light emitted from a laser-type distance measuring device connected to the laser transmitter / receiver seat, in the direction of the vertical member;
を備えたことを特徴とする請求項 16又は 17に記載の二重殻構造タンク装置。  The double-shell structure tank apparatus according to claim 16 or 17, characterized by comprising:
[19] 内槽側壁に取り付けられた水平部材と、 垂直方向に延びると共に前記水平部材に対峙する内槽の高さ方向変位計測用パイ プと、 [19] a horizontal member attached to the inner tank side wall; A pipe for measuring the displacement in the height direction of the inner tub extending in the vertical direction and facing the horizontal member;
前記内槽の高さ方向変位計測用パイプの前記外槽の外部に設けられた遮断弁と、 前記内槽の高さ方向変位計測用パイプの上端に設けられたレーザー送受信器用着 脱座と、を備えたことを特徴とする請求項 16乃至 18のいずれかに記載の二重殻構 造タンク装置。  A shutoff valve provided outside the outer tank of the height direction displacement measuring pipe of the inner tank, and a laser transmitter / receiver seating provided at the upper end of the height direction displacement measuring pipe of the inner tank, The double-shell structure tank device according to any one of claims 16 to 18, further comprising:
[20] 前記各レーザー送受信器用着脱座にレーザー式距離計測器を連結したことを特 徴とする請求項 1乃至 19のいずれかに記載の二重殻構造タンク装置。  20. The double-shell structure tank device according to any one of claims 1 to 19, wherein a laser type distance measuring device is connected to each of the laser transmitter / receiver seats.
[21] 前記二重殻構造タンク装置に径方向変位及び回転方向変位を演算し表示するタン ク監視装置とを備え、  [21] The double shell structure tank device includes a tank monitoring device that calculates and displays radial displacement and rotational displacement.
前記タンク監視装置は、  The tank monitoring device
前記径方向変位計測用パイプに連結された前記レーザー式距離計測器にて計測さ れた径方向変位の計測値及び前記回転方向変位計測用パイプに連結された前記 レーザー式距離計測器にて計測された回転方向変位の計測値から、前記パイプ収 縮補正用パイプに連結された前記レーザー式距離計測器にて計測されたパイプ長 の計測値を減算して、径方向距離及び回転方向距離を演算するパイプ長補正器と、 前記パイプ長補正器力、らの前記径方向距離力、ら前記内槽側壁の位置を演算する内 槽側壁位置演算器と、  The measured value of the radial displacement measured by the laser type distance measuring instrument connected to the radial displacement measuring pipe and the measured value of the laser type distance measuring instrument connected to the rotational direction displacement measuring pipe. The measured value of the pipe length measured by the laser-type distance measuring instrument connected to the pipe contraction correction pipe is subtracted from the measured value of the displacement in the rotational direction to obtain the radial distance and the rotational distance. A pipe length corrector for calculating, an inner tank side wall position calculator for calculating the radial distance force of the pipe length corrector, and the position of the inner tank side wall;
前記内槽側壁位置演算器からの前記内槽側壁の位置に基づき前記内槽側壁の中 心位置を演算する中心位置演算器と、  A center position calculator for calculating the center position of the inner tank side wall based on the position of the inner tank side wall from the inner tank side wall position calculator;
前記中心位置演算器からの前記中心位置に基づき前記内槽側壁の中心位置の変 位量を演算する径方向変位演算器と、  A radial displacement calculator for calculating a displacement amount of the center position of the inner tank side wall based on the center position from the center position calculator;
前記パイプ長補正器からの前記回転方向距離に基づき前記垂直部材の位置を演算 する垂直部材位置演算器と、  A vertical member position calculator for calculating the position of the vertical member based on the rotational direction distance from the pipe length corrector;
前記垂直部材位置演算器からの前記垂直部材の位置に基づき真の前記垂直部材 の位置を演算する中心位置補正器と、  A center position corrector that calculates the true position of the vertical member based on the position of the vertical member from the vertical member position calculator;
前記中心位置補正器からの前記真の前記垂直部材の位置に基づき前記内槽側壁 の回転角度を演算する回転方向変位演算器と、 前記径方向変位演算器からの前記中心位置の変位量及び前記回転方向変位演算 器からの前記回転角度を表示する表示器と、 A rotation direction displacement calculator for calculating a rotation angle of the inner tank side wall based on the true position of the vertical member from the center position corrector; A display for displaying the amount of displacement of the center position from the radial displacement calculator and the rotation angle from the rotational displacement calculator;
を備えたことを特徴とする請求項 9乃至 13、 18、 19のいずれかに記載の二重殻構造 タンク装置。  The double-shell structure tank device according to any one of claims 9 to 13, 18, and 19, further comprising:
[22] 外槽と内槽とを有する二重殻構造タンクにおいて、  [22] In a double-shell structure tank having an outer tank and an inner tank,
前記外槽の上部を貫通すると共に等間隔に取付けられた 4本の径方向変位計測用 パイプと、  Four radial displacement measuring pipes that penetrate the upper part of the outer tank and are attached at equal intervals;
前記各径方向変位計測用パイプの前記外槽の外部に各々設けられた遮断弁と、 前記各径方向変位計測用パイプの上端に各々設けられたレーザー送受信器用着脱 座と、  A shut-off valve provided outside the outer tub of each radial displacement measuring pipe, and a laser transceiver attaching / detaching seat provided at an upper end of each radial displacement measuring pipe,
前記各径方向変位計測用パイプの下端に各々取り付けられ、前記各レーザー送受 信器用着脱座に連結される各レーザー式距離計測器から照射された各レーザー光 を前記内槽の方向に反射させる鏡面体と、  Mirror surface that reflects each laser beam emitted from each laser-type distance measuring instrument attached to the lower end of each radial displacement measuring pipe and connected to each laser transmitter / receiver seat to the inner tank. Body,
前記内槽側壁に前記内槽の中心に対して対象に取り付けられた 2枚の垂直部材と、 垂直方向に延びて前記外槽の上部及び前記内槽上蓋を貫通すると共に前記各垂 直部材に各々対峙する回転方向変位計測用パイプと、  Two vertical members attached to the inner tank side wall with respect to the center of the inner tank, and extending in the vertical direction through the upper part of the outer tank and the inner tank upper lid, and to each vertical member Pipes for measuring rotational displacement that face each other,
前記各回転方向変位計測用パイプの前記外槽の外部に各々設けられた遮断弁と、 前記各回転方向変位計測用パイプの上端に各々設けられたレーザー送受信器用着 脱座と、前記各回転方向変位計測用パイプの下端に各々取り付けられ、前記各レー ザ一送受信器用着脱座に連結される各レーザー式距離計測器から照射された各レ 一ザ一光を前記各垂直部材の方向に反射させる第 2の鏡面体と、  A shutoff valve provided outside the outer tub of each rotational direction displacement measuring pipe, a laser transmitter / receiver seating provided at an upper end of each rotational direction displacement measuring pipe, and each rotational direction. Each laser beam emitted from each laser type distance measuring device attached to the lower end of each displacement measuring pipe and connected to each laser transmitter / receiver seat is reflected in the direction of each vertical member. A second mirror body,
垂直方向に延びて前記外槽の上部を貫通するパイプ収縮補正用パイプ、前記パイ プ収縮補正用パイプの前記外槽の外部に設けられた遮断弁、前記パイプ収縮補正 用パイプの上端に設けられたレーザー送受信器用着脱座及び前記パイプ収縮補正 用パイプの下端に取り付けられた水平なパイプ下端の水平部材と、  A pipe contraction correction pipe that extends vertically and passes through the upper part of the outer tub, a shutoff valve provided outside the outer tub of the pipe contraction correction pipe, and an upper end of the pipe contraction correction pipe. A horizontal member at the bottom of the horizontal pipe attached to the bottom of the laser transceiver mounting and detaching seat and the pipe contraction correction pipe;
前記二重殻構造タンク装置に径方向変位及び回転方向変位を演算し表示するタン ク監視装置とを備え、  A tank monitoring device for calculating and displaying radial displacement and rotational displacement in the double-shell structure tank device;
前記タンク監視装置は、 前記径方向変位計測用パイプに連結された前記レーザー式距離計測器にて計測さ れた径方向変位の計測値力 前記内槽側壁の中心位置を演算する中心位置演算 器と、 The tank monitoring device A measured force of the radial displacement measured by the laser-type distance measuring instrument connected to the radial displacement measuring pipe; a central position calculator for calculating a central position of the inner tank side wall;
前記回転方向変位計測用パイプに連結された前記レーザー式距離計測器にて計測 された回転方向変位の計測値から、前記パイプ収縮補正用パイプに連結された前記 レーザー式距離計測器にて計測されたパイプ長の計測値を減算して、回転方向距 離を演算するパイプ長補正器と、 Measured by the laser distance measuring instrument connected to the pipe contraction correction pipe from the measured value of the rotational displacement measured by the laser distance measuring instrument connected to the rotational displacement measuring pipe. A pipe length corrector that subtracts the measured pipe length and calculates the distance in the rotational direction;
前記パイプ長補正器からの前記回転方向距離及び前記中心位置演算器にて演算 された中心位置とに基づき前記内槽側壁の回転角度を演算する回転方向演算器と これらの計測値及び演算値を表示する表示器と A rotation direction calculator for calculating the rotation angle of the inner tank side wall based on the rotation direction distance from the pipe length corrector and the center position calculated by the center position calculator, and these measured values and calculated values Display to display and
を備えたことを特徴とする二重殻構造タンク装置。 A double-shell structure tank device.
外槽と内槽とを有する二重殻構造タンクにおいて、  In a double-shell structure tank having an outer tank and an inner tank,
前記外槽の上部を貫通すると共に等間隔に取付けられた 4本の径方向変位計測用 パイプと、 Four radial displacement measuring pipes that penetrate the upper part of the outer tank and are attached at equal intervals;
前記各径方向変位計測用パイプの前記外槽の外部に各々設けられた遮断弁と、 前記各径方向変位計測用パイプの上端に各々設けられたレーザー送受信器用着脱 座と、 A shut-off valve provided outside the outer tub of each radial displacement measuring pipe, and a laser transceiver attaching / detaching seat provided at an upper end of each radial displacement measuring pipe,
前記各径方向変位計測用パイプの下端に各々取り付けられ、前記各レーザー送受 信器用着脱座に連結される各レーザー式距離計測器から照射された各レーザー光 を前記内槽の方向に反射させる鏡面体と、 Mirror surface that reflects each laser beam emitted from each laser-type distance measuring instrument attached to the lower end of each radial displacement measuring pipe and connected to each laser transmitter / receiver seat to the inner tank. Body,
前記内槽側壁に前記内槽の中心に対して対象に取り付けられた 2枚の垂直部材と、 垂直方向に延びて前記外槽の上部及び前記内槽上蓋を貫通すると共に前記各垂 直部材に各々対峙する回転方向変位計測用パイプと、 Two vertical members attached to the inner tank side wall with respect to the center of the inner tank, and extending in the vertical direction through the upper part of the outer tank and the inner tank upper lid, and to each vertical member Pipes for measuring rotational displacement that face each other,
前記各回転方向変位計測用パイプの前記外槽の外部に各々設けられた遮断弁と、 前記各回転方向変位計測用パイプの上端に各々設けられたレーザー送受信器用着 脱座と、前記各回転方向変位計測用パイプの下端に各々取り付けられ、前記各レー ザ一送受信器用着脱座に連結される各レーザー式距離計測器から照射された各レ 一ザ一光を前記各垂直部材の方向に反射させる第 2の鏡面体と、 A shutoff valve provided outside the outer tub of each rotational direction displacement measuring pipe, a laser transmitter / receiver seating provided at an upper end of each rotational direction displacement measuring pipe, and each rotational direction. Each laser irradiated from each laser type distance measuring device attached to the lower end of the displacement measuring pipe and connected to the laser transmitter / receiver seat. A second mirror that reflects the light in the direction of each vertical member;
前記のいずれかの計測用パイプに取付けられた温度センサと、 A temperature sensor attached to any of the measurement pipes;
前記二重殻構造タンク装置に径方向変位及び回転方向変位を演算し表示するタン ク監視装置とを備え、 A tank monitoring device for calculating and displaying radial displacement and rotational displacement in the double-shell structure tank device;
前記タンク監視装置は、 The tank monitoring device
前記径方向変位計測用パイプに連結された前記レーザー式距離計測器にて計測さ れた径方向変位の計測値力 前記内槽側壁の中心位置を演算する中心位置演算 器と、 A measured force of the radial displacement measured by the laser-type distance measuring instrument connected to the radial displacement measuring pipe; a central position calculator for calculating a central position of the inner tank side wall;
前記回転方向変位計測用パイプに連結された前記レーザー式距離計測器にて計測 された回転方向変位の計測値から、前記温度センサにて計測された温度に基づき演 算されたパイプ長の計測値を減算して、回転方向距離を演算するパイプ長補正器と 前記パイプ長補正器からの前記回転方向距離及び前記中心位置演算器にて演算 された中心位置とに基づき前記内槽側壁の回転角度を演算する回転方向演算器と これらの計測値及び演算値を表示する表示器と Pipe length measurement value calculated based on the temperature measured by the temperature sensor from the rotation direction displacement measurement value measured by the laser distance measuring instrument connected to the rotation direction displacement measurement pipe. And a rotation angle of the inner tank side wall based on the rotation direction distance from the pipe length correction unit and the center position calculated by the center position calculator. Rotation direction computing unit that computes these, and a display that displays these measured and computed values,
を備えたことを特徴とする二重殻構造タンク装置。 A double-shell structure tank device.
請求項 21乃至 23のいずれかに記載の二重殻構造タンク装置において、 前記二重殻構造タンクが複数台設置されると共に、  The double-shell structure tank device according to any one of claims 21 to 23, wherein a plurality of the double-shell structure tanks are installed,
前記各タンク監視装置は中央監視センターに設けられたことを特徴とするタンク設備 Each tank monitoring device is provided in a central monitoring center.
PCT/JP2007/064568 2006-09-29 2007-07-25 Double shell structure tank unit equipped with displacement measuring device, and tank facility WO2008041405A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006267387 2006-09-29
JP2006-267387 2006-09-29
JP2007-050405 2007-02-28
JP2007050405A JP4959376B2 (en) 2006-09-29 2007-02-28 Double shell structure tank device with displacement measuring device and tank equipment

Publications (1)

Publication Number Publication Date
WO2008041405A1 true WO2008041405A1 (en) 2008-04-10

Family

ID=39268270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/064568 WO2008041405A1 (en) 2006-09-29 2007-07-25 Double shell structure tank unit equipped with displacement measuring device, and tank facility

Country Status (2)

Country Link
JP (1) JP4959376B2 (en)
WO (1) WO2008041405A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5288275B2 (en) * 2009-07-14 2013-09-11 新日鐵住金株式会社 Gas holder abnormality detection device
CN114812490A (en) * 2021-01-18 2022-07-29 中国石油天然气股份有限公司 Method and device for monitoring deformation of tank wall of storage tank
WO2023157262A1 (en) * 2022-02-18 2023-08-24 川崎重工業株式会社 Floating structure, displacement amount acquisition method, and supporting state determination method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08219400A (en) * 1995-02-16 1996-08-30 Ishikawajima Harima Heavy Ind Co Ltd Inner tank side plate vibration measuring device for double shell tank
JP2002077875A (en) * 2000-08-31 2002-03-15 Tokyo Gas Co Ltd Device for observing inside of low-temperature bath
JP2002267521A (en) * 2001-03-08 2002-09-18 Mitsubishi Heavy Ind Ltd Membrane tank and testing method for ammonia leakage
JP2004163137A (en) * 2002-11-11 2004-06-10 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for detecting displacement in inner tank of double hull low-temperature tank

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166298U (en) * 1985-04-03 1986-10-15
JPH0820039B2 (en) * 1989-10-31 1996-03-04 鹿島建設株式会社 Low temperature liquefied gas tank

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08219400A (en) * 1995-02-16 1996-08-30 Ishikawajima Harima Heavy Ind Co Ltd Inner tank side plate vibration measuring device for double shell tank
JP2002077875A (en) * 2000-08-31 2002-03-15 Tokyo Gas Co Ltd Device for observing inside of low-temperature bath
JP2002267521A (en) * 2001-03-08 2002-09-18 Mitsubishi Heavy Ind Ltd Membrane tank and testing method for ammonia leakage
JP2004163137A (en) * 2002-11-11 2004-06-10 Ishikawajima Harima Heavy Ind Co Ltd Apparatus for detecting displacement in inner tank of double hull low-temperature tank

Also Published As

Publication number Publication date
JP4959376B2 (en) 2012-06-20
JP2008106928A (en) 2008-05-08

Similar Documents

Publication Publication Date Title
KR101959400B1 (en) Tank wall incorporating a pipe
WO2010107317A1 (en) Device for storing gas under pressure
US10384866B2 (en) Floating roof monitoring with laser distance measurement
JP7141536B2 (en) How to detect leaks in sealed insulated tanks
EP3521789B1 (en) System for monitoring leaks of liquid from a spent fuel pool
CN106092512A (en) A kind of irradiation, thermal vacuum and high/low temperature integrated synthesis multichannel on-line monitoring system
WO2008041405A1 (en) Double shell structure tank unit equipped with displacement measuring device, and tank facility
KR20210099654A (en) Method for leak-free checking of leak-free and insulated fluid storage tanks
KR101471152B1 (en) Performance Test Device And Method For Cryogenic Liquefied Gas Storage Tank
KR20100088436A (en) Method of leak detection for lngc cargo tank using infrared rays camera
KR20090085458A (en) Parts tester for an extremely low temperature
KR20100088437A (en) Method of leak detection for lngc cargo tank using infrared rays camera
KR101680590B1 (en) Gas Charging Apparatus
CN112145962A (en) Visual detection integrated device in LNG storage tank
RU2564484C2 (en) Tank for cold of cryogenic liquid
KR20150035645A (en) Oil tank level and density measurement equipment, and sealing and cooling system thereof, and vessel and ocean construction comprising the same
CN102267612B (en) Leakage monitoring system and method for low-temperature liquid hydrocarbon storage tank
US20070140795A1 (en) Liquid storage installation
KR102238262B1 (en) Apparatus and method of total solution for fluid storage tanks management control
KR101069652B1 (en) Fireproofing apparatus for ship
CN110114609A (en) The hermetically sealed can of thermal insulation
RU2352908C2 (en) Design of level indicator for liquid and/or gas-liquid under pressure (versions)
EP1153238B1 (en) Bottom entry pumping system with tertiary containment
KR20110004497A (en) Method and apparatus for determining leakage location in an independence type storage tank
KR20090089620A (en) Outer hull protection device from lng

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07791284

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07791284

Country of ref document: EP

Kind code of ref document: A1