WO2008041363A1 - Projector - Google Patents

Projector Download PDF

Info

Publication number
WO2008041363A1
WO2008041363A1 PCT/JP2007/001061 JP2007001061W WO2008041363A1 WO 2008041363 A1 WO2008041363 A1 WO 2008041363A1 JP 2007001061 W JP2007001061 W JP 2007001061W WO 2008041363 A1 WO2008041363 A1 WO 2008041363A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
projection
filter member
projection device
projection lens
Prior art date
Application number
PCT/JP2007/001061
Other languages
French (fr)
Japanese (ja)
Inventor
Hirotoshi Ichikawa
Keiichi Kuba
Yoshihiro Maeda
Yoshiaki Horikawa
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Publication of WO2008041363A1 publication Critical patent/WO2008041363A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/005Projectors using an electronic spatial light modulator but not peculiar thereto
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD

Definitions

  • the present invention relates to a projection apparatus that enlarges and displays an image using a spatial light modulator. More specifically, the present invention relates to a method for arranging color selection filters in a power sequential projector that obtains a color image by displaying projection light of different colors in time sequence.
  • a spatial light modulator has an array structure in which tens of thousands to millions of minute modulation elements are arranged.
  • Each pixel of the image displayed by the individual modulation elements is enlarged and displayed on the screen by the projection lens.
  • Spatial light modulators used in projectors are roughly divided into a liquid crystal device that modulates the polarization direction of incident light by sealing a liquid crystal between transparent substrates and applying a potential difference, and a fine MEMS (M i cro Electro Mechanic Systems)
  • a micro mirror device that deflects a mirror with an electrostatic force and controls the direction of reflection of illumination light is generally used.
  • micromirror device An early example of the micromirror device is disclosed in USP4229732. It is disclosed that a drive circuit using a MOSFET is formed on a substrate, and a deformable metal mirror is also formed on the substrate. It is also disclosed that the mirror is deformed by the electrostatic force generated by the drive circuit and changes the reflection direction of incident light.
  • USP4662746 discloses an embodiment in which a mirror is held by one or two hinges. Specifically, when the mirror is held by one hinge, the hinge functions as a bending spring, and when the mirror is held by two hinges, the hinge functions as a torsion panel, causing the mirror to move in different directions. By tilting It is disclosed that the illumination light is deflected.
  • Projectors using spatial light modulators are: a single-plate projector that performs display using one spatial light modulator and a multi-plate projector that performs display using a plurality of spatial light modulators. is there.
  • White light emitted from the light source is separated into R, G, B by color separation means arranged in the optical path, irradiated to individual spatial light modulators assigned to each color, and modulated by each spatial light modulator
  • An example of the configuration of a multi-plate projector that synthesizes light rays again by means of optical path synthesis means and then projects them with a projection lens is disclosed in USP4904061.
  • USP4969730 discloses an optical configuration example corresponding to a reflective spatial light modulator.
  • the above-described multi-plate projection apparatus does not cause problems such as a decrease in light utilization efficiency and a color break (also referred to as "color break-up") as seen in the single-plate type described later.
  • problems such as an increase in material costs due to the use of multiple spatial light modulators, an increase in adjustment man-hours, and a relatively complicated optical system. It is actually used only for some business purposes and high-end users.
  • a single-plate projection apparatus divides a period (one frame) for displaying one image into subframes, and irradiates one of R, G, and B illumination light within each subframe period.
  • the spatial light modulator sequentially displays images corresponding to each color in synchronization with the illumination light. Since the subframe period is set sufficiently short, the observer can integrate each color in the brain and recognize it as a color image.
  • the gradation (the number of reproduced colors in the case of color display) is determined by the minimum unit of time that the spatial light modulator sends the projection light to the projection optical path. That is, the gradation of the device is determined depending on the response speed of the spatial light modulator.
  • a micromirror device with a high response speed is more suitable than a liquid crystal device with a relatively low response speed as a spatial light modulator to be generally used in a single-plate projector.
  • a single-plate projection apparatus using a micromirror device as a spatial light modulator will be described in more detail.
  • USP51 92946 discloses an embodiment of the above-described single-plate projector.
  • the illumination light from the light source 1 is condensed on the lens 3 by the mirror 1 to form a light beam 4.
  • the spatial light modulator 5 is controlled by the computer 6 and selectively reflects the illumination light toward the projection lens 7 to display an image on the screen 8.
  • the light source is a single laser or the color wheel is placed in the illumination optical path, so that the illumination light is concentrated at different frequencies and the illumination light is more than the critical flicker frequency of the human eye.
  • a color image is obtained by time-sequential modulation in a fast period.
  • the single-plate projector has only one spatial light modulator and has an advantage that the configuration of the optical system is simple.
  • the contents of the display image, the movement of the observer's viewpoint, etc. There is a problem of a color break that is observed when the colors are separated by the above, and a decrease in light use efficiency due to the fact that light other than the light transmitted by the color wheel is not used for image display.
  • the period in which the color wheel boundary crosses the illumination light flux is called the spoke time or blanking time, and the illumination light color changes every moment. During this period, the micromirror device is basically turned off. This is also a factor that reduces the light utilization efficiency.
  • the color wheel can be rotated at a higher speed, or the color division of the power wheel can be subdivided as shown in Fig. 2, and each color within one frame can be divided. It is known to make the switching time of the above faster.
  • the force wheel 1 0 1 and 1 0 2 are color-divided into three colors having three areas of R (Red), G (Green), and B (B l ue). It is a color wheel.
  • the color division ratio differs between the color wheels 1 0 1 and 1 0 2.
  • the color wheel 103 is a color wheel that is divided into four colors and has four regions R, G, B, and W (Wh i te).
  • the color wheel 1 0 4 has an R area so that two areas of the same color face each other. It is a color wheel divided into three colors with a total of 6 areas, 2 areas, 2 G areas, and 2 B areas.
  • the color wheel 10 5 is a color wheel that is divided into four colors, and has four regions of R, G, B, and Y (Yellow).
  • Separation of illumination light and projection light is an important design item in a projection device using a reflective spatial light modulator.
  • a projection device using a micromirror device there is a design example in which no separate element for illumination light and projection light is provided.
  • separation of luminous flux ⁇ Addition element optical member In the typical configuration of the single-plate projector shown in the figure, the light source light emitted from the light source 1 1 is collected by the condenser lens and incident on the rod integrator 1 2 to be uniform illumination light.
  • the TIR prism 13 separates the illumination light and the projection light from the illumination light on the micromirror device ⁇ ⁇ 4 and the projection light after modulation by the difference in the incident angle on the reflection surface.
  • the device configuration shown on the left is a configuration example in which a color wheel 15 is arranged in front of the rod integrator 12, and a part of the device shown on the right is a mouthpiece. This is a configuration example in which a color wheel 15 is arranged in the subsequent stage of the integer 1 2, and any configuration is applicable.
  • a projection apparatus using a reflective liquid crystal device separation of illumination light and projection light is performed using a difference in polarization direction.
  • the polarization direction of illumination light is rotated 90 degrees to obtain output light. Therefore, separation of illumination light and projection light is performed using a polarization beam splitter.
  • the micromirror device does not require polarization for illumination light because of its operating principle.
  • the use of polarized light has improved performance, or an alternative member that overcomes the disadvantages of conventional components. Peripheral members have been developed.
  • the color wheel there is a wavelength-selective polarizing element using a laminated phase difference plate such as “Color Select” manufactured by Color Link Corporation.
  • This device can output light by selectively rotating the polarization direction of polarized light.
  • the wavelength range of transmitted light can be switched to R, G, and B.
  • there are no moving parts, no noise, fast switching speed, and the time equivalent to the spoke time can be shortened.
  • a projection screen used in a projector apparatus a screen whose characteristics are changed according to the polarization direction of incident light (hereinafter also referred to as a “polarizing screen”) has been proposed for the purpose of improving contrast. .
  • the illumination light and the modulated light are separated by polarization in the same manner as in the reflection type liquid crystal device.
  • the design freedom can be achieved. Can expand the degree.
  • the micromirror device does not require polarization in principle, it can be combined with polarized light for the purpose of improving performance.
  • the light beam that has passed through the wavelength-selective polarizing element is further separated into the illumination projection light described above. It is considered that the polarization property of the projection lens deteriorates until it reaches the projection lens via the element and the spatial light modulator, and the maximum effect cannot be obtained by using in combination with the polarizing screen described above. Conceivable.
  • an object of the present invention is to provide a projection apparatus that can appropriately maintain the polarization of the projection light and can reduce the size of the apparatus.
  • USP2393235 discloses a color flicker reducing apparatus (COLOR FL ICKER REDUCI NG APPARATUS). In this device, a force wheel is placed in front of the screen.
  • USP5541679 and USP5669687 disclose an optical projection system (OPT I CAL PROJECT I ON SYSTEM). These systems are provided after the “Projection on stopper” which gives the “RGB pixel filter“ force ”Projection on aperture” and also determines the projection aperture. A filter is placed on the SLM (spatial light modulator) side of the diaphragm.
  • OPT I CAL PROJECT I ON SYSTEM optical projection system
  • USP5777781 discloses an optical projection system (OPT I CAL PROJECT I ON SYSTEM).
  • OPT I CAL PROJECT I ON SYSTEM the filter area through which the projection light passes is switched by changing the tilt angle of the thin film mirror.
  • USP5993007 includes a reflection type projector (REFLECT I ON TYPE
  • PROJECTOR is disclosed.
  • the claim of this patent includes a birefringent prism and two display devices, and a dependent claim is that a color filter is placed somewhere between the light source and the projection lens.
  • F i g 3 discloses an embodiment in which a color wheel is arranged in the projection optical path.
  • the advantage of placing a color filter in the projection optical path is not disclosed.
  • the embodiment disclosed in this patent cannot obtain polarized projection light.
  • USP6439724 discloses a color projector.
  • the embodiment of this patent discloses a multi-plate projection apparatus in which the size of the panel and the distance from the projection lens are changed in order to correct chromatic aberration. Disclosure of the invention
  • One aspect of the present invention is a projection apparatus using a spatial light modulator, characterized in that a frequency selection filter is arranged in the projection optical path.
  • FIG. 1 is a diagram showing an example of a conventional single-plate projector.
  • FIG. 2 is a diagram showing an example of color division of a conventional color wheel.
  • FIG. 3 is a diagram showing a typical configuration example of a conventional single-plate projector.
  • FIG. 4 is a diagram illustrating a main configuration of a projection apparatus according to Embodiment 1.
  • FIG. 5 is a diagram schematically showing a part of a micromirror device.
  • FIG. 6 is a diagram illustrating a wavelength selective polarizing filter.
  • FIG. 7 is a view showing a modification of the projection apparatus according to the first embodiment.
  • FIG. 8 is a diagram showing a modification of the projection apparatus according to the first embodiment.
  • FIG. 9 is a view showing a modification of the projection apparatus according to the first embodiment.
  • FIG. 10 is a diagram showing a modification of the projection apparatus according to the first embodiment.
  • FIG. 1 1 is a diagram showing a main configuration of a projection apparatus according to Embodiment 2.
  • FIG. 12 is a view showing a modification of the color wheel.
  • FIG. 13 is a view showing a modification of the color wheel.
  • FIG. 14 is a diagram for explaining the relationship between a color wheel and a luminous flux.
  • FIG. 15 is a view showing a modification of the projection apparatus according to the second embodiment.
  • FIG. 16 shows a modification of the projection apparatus according to the second embodiment.
  • FIG. 17 is a view showing a modification of the projection apparatus according to the second embodiment.
  • FIG. 18 is a diagram for explaining an example of a color filter using the Fabry-Mouth one-interference method.
  • FIG. 19 A diagram showing an example of a color wheel designed to have a different thickness for each transmitted light.
  • FIG. 20 is a view showing a modification of the projection apparatus according to the second embodiment.
  • FIG. 21 is a diagram showing a modification of the projection apparatus according to the second embodiment.
  • FIG. 22 is a view showing a modification of the optical aperture member.
  • FIG. 23 is a view showing a modification of the optical aperture member.
  • FIG. 24 is a diagram for explaining a modification of the projection apparatus according to the second embodiment.
  • FIG. 25 is a diagram for explaining a modification of the projection apparatus according to the second embodiment.
  • FIG. 26 is a view showing a modification of the projection apparatus according to the second embodiment.
  • FIG. 27 is a view showing a modification of a cylindrical color wheel.
  • FIG. 28 is a diagram showing a modification of the projection apparatus according to the second embodiment.
  • FIG. 29 is a diagram for explaining the modification shown in FIG. 28.
  • FIG. 30 is a diagram for explaining the modification shown in FIG. 28.
  • FIG. 4 is a diagram showing a main configuration of the projection apparatus according to Embodiment 1 of the present invention. In this projection apparatus, it is possible to reduce disturbance in the polarization direction of light emitted from the apparatus.
  • the light source 31 is a high pressure mercury lamp, a xenon lamp, a composite light source that obtains multi-wavelength light by irradiating a phosphor with a monochromatic light source such as an LD or LED, and the generated illumination light is unpolarized.
  • White light The light source light generated from the light source is collected by the elliptical mirror 3 2 and is incident on the first fly-eye lens 3 3 a in which a plurality of condenser lenses are reduced and arranged in parallel.
  • a second fly-eye lens 33b that relays the light source image and projects it onto the micromirror device surface is disposed.
  • the polarization conversion element 34 is disposed adjacent to the second fly-eye lens 33 b.
  • the polarization conversion element 3 4 separates the incident illumination light into two polarization directions (S-polarized light and P-polarized light) with a polarization beam splitter.
  • S-polarized light is reflected by the polarization beam splitter surface and is emitted from the exit surface of the polarization conversion element 34.
  • P-polarized light passes through the polarization beam splitter, and then the polarization direction is rotated 90 degrees by the 1/2 ⁇ phase difference plate provided on the exit surface of the polarization conversion element 34.
  • the polarization direction of the illumination light output from the polarization conversion element 34 is only S-polarized light, and almost all of the illumination light can be used.
  • the rod integrator described above. In this case, from the viewpoint of maintaining the polarization direction of the illumination light correctly, it is desirable that the polarization conversion element is disposed on the optical path on the exit surface side of the mouth dimmer.
  • the illumination light is directed by the superimposing lens 36 for condensing the principal ray of each lens of the second fly-eye lens 33 b at the center of the micromirror device 35.
  • the desired angle is the micro mirror (also simply referred to as “mirror 1”) of the micro mirror device (also simply referred to as “mirror 1 element” or “mirror-pixel”) of the micro mirror device 35.
  • the emission direction is substantially perpendicular to the substrate of the micromirror device 35. It is an angle.
  • an example of a mirror in the ON state is shown on the left side, and an example of a mirror in the OFF state (a state in which the mirror reflects illumination light outside the projection light path) is shown in the center and right side.
  • the micromirror device 35 according to the present embodiment has a plurality of microphone opening mirror elements arranged in an array, and each micromirror element has a microphone opening mirror. That is, the micromirror device 35 according to the present embodiment has a micromirror array composed of a plurality of micromirrors.
  • each micromirror formed on the micromirror device is shown.
  • the micromirror of the element is individually controlled in tilt direction and displacement time according to a drive signal from a control circuit 71 (not shown in FIGS. 7 to 10 to be described later), and illuminating light along the projection optical path, Reflected as projection light.
  • a control circuit 71 not shown in FIGS. 7 to 10 to be described later
  • illuminating light along the projection optical path Reflected as projection light.
  • the projection light is incident on the TIR surface at a critical angle or less, total reflection does not occur, and between the projection surface and the microphone mouth mirror device 35 (for example, near the aperture position of the projection lens 39 or the microphone mouth mirror)
  • the light is incident on a wavelength selective polarizing filter 3 8 disposed between the device 3 5 and the aperture position of the projection lens 3 9.
  • the wavelength selective polarizing filter 38 for example, a wavelength selective polarizing element using a laminated phase difference plate such as “Color Select” of the above-mentioned Color Link Inc. is used.
  • a wavelength-selective polarizing element is an element that can output by rotating the polarization direction of polarized incident light in a wavelength-selective manner. It is possible to selectively switch areas. More specifically, as shown in FIG. 6, when the projection light incident on the wavelength selective polarizing filter 3 8 is white S-polarized light including R, G, B, for example, wavelength selective polarization Only the light in the specific wavelength range selected by the element 3 8 a is rotated by 90 degrees to become P-polarized light.
  • the wavelength range of the transmitted light of the wavelength selective polarization filter 3 8 is changed to R, G, B by sequentially switching the light of the specific wavelength range selected by the wavelength selective polarization element 3 8 a to R, G, B. It becomes possible to switch to B sequentially.
  • the double arrows indicate the polarization direction of light.
  • a space is provided between the wavelength selective polarizing element 3 8 a and the polarizing element 3 8 b. It may consist of
  • the projection light incident on the wavelength selective polarizing filter 38 is, for example, white S-polarized light.
  • the wavelength-selective polarizing filter 38 selectively converts light of an arbitrary frequency from incident projection light in a time-series and continuous manner and outputs it to the incident surface of the projection lens.
  • the element that determines the polarization direction of the projection light is arranged at the final stage incident on the projection lens 39, there is little disturbance in the polarization direction of the projection light.
  • a good image can be obtained.
  • the light incident on the micromirror device 35 may be P-polarized light or circularly-polarized light.
  • the illumination light and projection light may be separated by a polarizing beam splitter (also simply referred to as “PBS”). In that case, a quarter-wave plate is placed in front of the micromirror device, and the incident light and projection light are projected.
  • the light polarization direction may be rotated 90 degrees.
  • the wavelength selective polarizing element 38a and the polarizing element 38b are integrally configured and arranged in the projection optical path.
  • the wavelength selective polarizing element 3 8 a in the illumination optical path and arrange the polarizing element 3 8 b in the projection optical path.
  • double-headed arrows and double circles indicate the polarization direction of light (the same applies to FIGS. 8, 9, and 10).
  • the polarization direction is changed by using the wavelength selective polarization element 3 8a only in the polarization direction of any one of the primary color lights out of the white light from the light source.
  • the light transmitted through the wavelength selective polarizing element 3 8 a is white light including three primary colors as before input, but only one of the three primary colors can obtain illumination light having a different polarization direction from the other. .
  • This illumination light is modulated and deflected into the projection optical path using a micromirror device 35.
  • a polarizing plate which is a polarizing element 3 8 b is arranged in the projection optical path, and the direction is determined so as to transmit only the light beam whose polarization direction is different from the others.
  • the polarization direction of the projection light is adjusted by the polarizing element 3 8 b arranged in the projection optical path, and the polarization direction is changed by the wavelength selective polarizing element 3 8 a arranged in the illumination optical path side.
  • Color-sequential projection is possible by switching the colors to be used.
  • the polarizing element 38 b arranged in the projection optical path is made rotatable and further rotated in synchronization with the wavelength selective polarizing element 38 a in the illumination optical path.
  • a single-color and two-color mixed color sequence as shown in the lower part of the figure can be performed, and the brightness of the image is improved by setting the total of one cycle of the two-color display period as the white display time.
  • Polarization direction indicates the polarization direction of the light transmitted by the polarizing element 3 8 b after rotation
  • Output is The output light of the polarizing element 3 8 b is shown.
  • the polarizing element 38 b is not limited to the form shown in the figure, and may be a form in which individual polarizing plates having different polarization directions are joined.
  • a liquid crystal element for intensity modulation (intensity modulation LCD 4 1 in FIG. 9) as shown in FIG. 25 described later is further added to the configuration shown in FIG. You may arrange in.
  • the monochromatic light and the two-color mixed light may be distributed to two separate spatial light modulators and modulated respectively.
  • a configuration may be adopted in which at least one liquid crystal element is provided between the wavelength-selective polarizing element 3 8 a and the polarizing element 3 8 b.
  • a laser as the light source.
  • a 1/2 ⁇ wave plate (1/2; i wave pi ate) is placed in the optical path so that it can be inserted into and removed from the optical path of each individual laser source that emits R, G, and B illumination light.
  • the polarization direction of the laser beam from the light source rotates 90 ° when a 1/2 ⁇ wave plate is placed in the optical path.
  • Type polarizing screen It is configured to have the highest reflectance with respect to the polarization direction of the shadow light.
  • transmission type polarization screen whose transmittance varies depending on the polarization direction of incident light is used as the screen, the transmission type polarization screen has the highest transmittance in the polarization direction of the projection light. It is comprised so that it may become.
  • a so-called transmission type polarization element that transmits only light in a specific polarization direction is applied as the polarization element 3 8b. It is also possible to apply a so-called reflective polarizing element that reflects only light in the direction.
  • the apparatus is configured such that only light having a specific polarization direction reflected by the reflective polarizing element is guided to the projection lens 39.
  • a polarization beam splitter (P B S) can be applied as the reflective polarizing element.
  • the apparatus is configured such that only the light reflected by the polarizing beam splitter is guided to the projection lens 39.
  • polarizing element 3 8 b a polarizing element in which a plurality of polarizing elements having different polarization directions of transmitted light can be joined, or a plurality of polarizing elements having different polarization directions of reflected light can be applied. It is also possible to apply a material that has been joined. In this case, in accordance with the polarization direction of the light guided to the projection lens 39, a polarizing element that transmits or reflects light in the corresponding polarization direction is inserted into the projection optical path.
  • FIG. 11 is a diagram showing a main configuration of a projection apparatus according to Embodiment 2 of the present invention.
  • this projection apparatus it is possible to reduce the size of the apparatus housing in the optical axis direction of the apparatus.
  • the light from the light source incident on the micromirror device 46 is reflected by the TIR surface of the TIR prism 47 comprising the first prism and the second prism, and is reflected at a desired angle.
  • the micromirror device 46 according to the present embodiment also has a plurality of micromirror elements arranged in an array, like the microphone mirror device 35 according to the first embodiment.
  • Each micromirror element has a micromirror.
  • the micromirror device 46 according to the present embodiment also has a plurality of micromirrors.
  • the light source according to the present embodiment is, for example, a laser light source or an LED light source.
  • the micromirror of each micromirror element formed on the micromirror device is a control circuit 7 2 (FIGS. 15 to 17 described later, FIG. 20, FIG. 21, FIG. 26, and FIG.
  • the direction of tilt and displacement time are individually controlled according to the drive signal from (2-8, not shown), and the illumination light is reflected as projection light along the projection light path.
  • Projection light is incident on the TIR surface at a critical angle or less and does not generate total reflection, but is incident on a transmission-type force wheel 4 9 disposed between the projection lens 48 and the micromirror device 46.
  • the color wheel 49 is disposed at a position where the projected light beam diameter becomes small at a position where it can be disposed.
  • the diameter of the projected light beam is the smallest at the stop position of the projection lens 48, and it is preferable to arrange the color wheel 49 in the vicinity thereof.
  • a color wheel 49 can be arranged between the aperture positions of the micromirror device 46 and the projection lens 48.
  • the color wheel 49 may be held on the body by a lens holding member that holds the projection lens group.
  • reflection of unwanted light to the spatial light modulator is achieved by applying light absorption processing to the area other than the incident portion of the light beam in the color wheel 49 (black portion in the figure). It is possible to prevent unnecessary light from entering the projection lens 48.
  • “ED” indicates the effective diameter of the incident projected light beam.
  • an area other than the incident part of the light beam on the color wheel 49 is formed at an angle different from the color filter surface with respect to the optical axis, and unnecessary light is reflected outside the optical path. (Refer to planes 50a and 50b in the figure).
  • 51 denotes the rotation center axis of the color wheel 49.
  • the "ON" state in which the modulated light is reflected on the projection light path and the "OFF” state in which the light is reflected outside the projection light path The direction of movement of the optical axis when the It is desirable that the direction is such that it does not straddle different optical characteristic regions of the wheel.
  • FIG. 14 is a diagram showing the relationship between the color wheel 49 and the luminous flux arranged in the projection optical path.
  • is the angle formed by a straight line passing through the centers of the two color wheels that sandwich the effective luminous flux (the white part of the figure).
  • the number of color divisions of color wheel 4 9 is n (three divisions in the figure). The number of times that the color wheel 4 9 rotates and crosses two color boundaries where the effective luminous flux is different is equal to n.
  • the period in which the effective luminous flux straddles two color boundaries (hereinafter referred to as “color transition period”) during the rotation of the color wheel is 0 x n [deg.].
  • control method of the spatial light modulator during this color transition period it is common to control so that the modulated light is not guided to the projection optical path.
  • the longer the color transition period the less efficient the illumination light is used.
  • the control itself is easy to control because it only needs to drive the spatial light modulator based on the signals corresponding to each RGB color.
  • control for improving the efficiency of use of illumination light by guiding light modulated by a spatial light modulator to a projection light path even during a color transition period.
  • the wheel is set so that the color transition period is 2% ⁇ ( ⁇ Xn) / 360 ⁇ 50%, preferably 2% ⁇ ( ⁇ Xn) / 360 ⁇ 20%. Determine the diameter, beam diameter, and number of color divisions
  • the rotation axis of the color wheel 49 is substantially parallel to the optical axis of the projection lens 48, and the housing of the projection apparatus in the direction of the optical axis of the projection lens Miniaturization of body dimensions is facilitated. Since the color wheel 4 9 is arranged close to the micro mirror device 4 6, for example, the fin 1 can be provided on the color wheel 4 9 to cool the micro mirror device 4 6. . Projector with reduced size of device casing in optical axis direction of projection lens 48 described above Is particularly suitable, for example, for a wall-mounted projection device.
  • the micromirrors of each micromirror element formed on the micromirror device are individually controlled in inclination direction and displacement time in accordance with a drive signal from a control circuit 72, not shown,
  • the light is reflected along the projection optical path as projection light.
  • the projection light is incident on the TIR surface at a critical angle or less, and thus does not generate total reflection, but is incident on the color wheel 49 disposed between the projection lens 48 and the micromirror device 46.
  • the light transmitted through the color wheel 49 is deflected by a folding mirror 52, which is a polarization mirror, and then enters the projection lens 48 and is projected.
  • the height of the device can be made relatively thin except for the projection lens 48, and the size of the device can be reduced as in the device shown in FIG.
  • the color wheel 4 9 may be a reflection type filter (reflection type color wheel) 4 9 ′ as shown in FIG. According to such a configuration, the folding mirror 52 shown in FIG.
  • both the transmission type color wheel and the reflection type color wheel to be used may be arranged to be inclined with respect to the optical axis. By placing it at an angle, it is possible to improve space efficiency and to improve the contrast by controlling the reflection of unnecessary light.
  • a linearly moving color filter 53 as shown in FIG. 17 may be arranged instead of the color wheel 49.
  • the outer shape of the filter can be made relatively small.
  • the F value of the projection lens 48 can be increased while maintaining the same resolution as before. This makes it possible to reduce the diameter of the light beam in the projection optical path and to reduce the size of the color filter 53.
  • the color filter 53 may be a color filter using the Fabry-Perot interferometry as shown in FIG.
  • a pair of reflective films having a reflectivity R are arranged in parallel with a minute gap.
  • the wavelength of the transmitted light can be selectively changed by changing the gap length d of the reflecting film using an actuator such as a piezo element.
  • the frequency of transmitted light can be selected by adjusting the inter-reflective film distance d so that the transmittance becomes maximum at a desired wavelength ⁇ .
  • light (colored Iigh) of the selected frequency (wavelength) out of incident light (incident light) can be transmitted.
  • the color wheel or color filter to be used has a different thickness for each transmitted light (d 1, d 2, d It may be designed in 3) to correct the chromatic aberration (axial chromatic aberration) of the projection lens 48.
  • a so-called chromatic aberration is known in which the image forming position shifts for each color due to the difference in refractive index depending on the frequency of illumination light.
  • correction of chromatic aberration has been devised by combining a convex lens with a small refractive index difference by color and a concave lens with a large refractive index difference by color, or by combining lenses made of different types of glass.
  • the lens design is based on a wavelength of 550nm (green), and the axial chromatic aberration of wavelengths 656nm (red) and 470nm (blue) is AX (e), and the color wheel or color filter is refracted.
  • the rate is ⁇ ( ⁇ )
  • the thickness correction amount Ad ( ⁇ ) of the color wheel or color filter is
  • ⁇ d U) -AX U) / (1-1 / n U)) It becomes.
  • the chromatic aberration of the projection lens can be corrected by setting the thickness of each color of the color wheel or color filter so that the above equation is satisfied.
  • the projection apparatus can be configured to form an intermediate image between the micromirror device and the projection lens, as shown in FIG.
  • the light modulated by the micromirror of the micromirror device 46 is imaged by the first projection lens 54 a.
  • a field lens 5 5 for propagating projection light to the second projection lens 5 4 b is disposed at the image formation position by the first projection lens 5 4 a, and the first projection lens 5 4
  • An image of the exit pupil of a is formed at the entrance pupil position of the second projection lens 5 4 b.
  • the color wheel 49 is disposed in the vicinity of the field lens 55.
  • the object-side focal length of the second projection lens 54b can be set short, and the beam diameter can be reduced by setting the magnification of the first projection lens 54b to 1x or less.
  • the color wheel diameter can be reduced.
  • the color wheel 49 is near the aperture position of the first projection lens 54a, near the aperture position of the second projection lens 54b, or between the first projection lens 54a and the second projection lens. It is also possible to place it between the throttle positions of the sensors 5 4 b.
  • the wavelength selection filter is arranged near the aperture position of the projection lens (for example, the aperture of the micromirror / chair 4 6 and the projection lens 48). It is also possible to arrange such that the intensity of the projection light can be adjusted.
  • a substantially fan-shaped optical diaphragm member 5 7 is placed in the optical path by an actuator (for example, a mouthpiece, a solenoid, etc.) in the housing 56 holding the color wheel 49. ⁇ It is held so that it can be removed.
  • a and B in the figure are the symbols used to clarify the positional relationship (the same applies to Fig. 23 described later).
  • optical aperture member 5 7 Since the optical aperture member 5 7 is arranged close to the aperture position of the projection lens 48, the amount of projection light is reduced by inserting the aperture in the optical path, and the brightness of the projection image is reduced without losing the projection image. It is possible.
  • the form of the optical diaphragm member 57 is not limited to that shown in the figure.
  • the diaphragm form shown in FIG. It is possible to use a structure that uses variable squeezing blades, or an ND filter as shown in Fig. 23.
  • a color wheel composed of a color filter as shown in FIG. 24 in order to change the brightness of the projected image.
  • the color wheel shown in the figure has a plurality of frequency selection filters and a concentric filter region having different transmittances (or reflectances). Furthermore, this color wheel is configured to be movable in the direction of the double arrow in the figure with respect to the luminous flux, and a frequency selective filter region having a high transmittance (or reflectance) in conjunction with the display image, and a transmittance ( Alternatively, a frequency selective filter having a low reflectivity can be selectively used. According to such a configuration, the intensity of the projection light can be changed without arranging the color wheel close to the aperture position of the projection lens.
  • a liquid crystal device as shown in FIG. 25 can be provided in order to change the brightness of the projection image.
  • the liquid crystal device 58 is disposed at the same position with respect to the optical diaphragm and the brightness adjusting means having the mechanical operation described with reference to FIGS. 21 to 24 described above, and acts as a light quantity filter or an optical diaphragm. According to such a configuration, it is possible to reduce operating noise.
  • the upper side shows the state when the liquid crystal device 58 acts as a light filter
  • the lower side shows the state where the liquid crystal device 58 acts as an optical aperture. Shows the state.
  • the brightness adjustment means for controlling the brightness of the projected image is not limited to the above-described embodiment.
  • a diaphragm that is directly inserted into and removed from the optical axis may be used, or the division shape of the filter regions having different transmittances may not be concentric.
  • the brightness adjusting means may be configured directly on the housing of the wavelength selection filter or may be individually installed.
  • the amount of light emitted to the projection optical path can be controlled by the display image, and the conventional spatial light modulator can be used.
  • the gradation reproduction more detailed gradation expression is possible.
  • the black float a phenomenon in which black becomes dark gray
  • the dynamic range can be expanded. .
  • the color wheel can be formed in a cylindrical shape.
  • the cylindrical surface of the cylindrical color wheel 59 is subjected to wavelength selection cues having different transmission frequencies.
  • the inner diameter of the cylinder is set to a size that can accommodate the optical element (4 7) for guiding the illumination light to the micromirror device 46 and the micromirror device 46, and the micromirror device At least a part of the micromirror device 46 and the light guide optical element (47) are arranged so that the projection light from 46 passes through the wavelength selection coating surface. Included in 9. In this example, as shown in FIG.
  • the micromirror device 46 can be cooled by forming a fin structure for blowing air on the bottom surface of the cylindrical force roller wheel 59. Furthermore, the bottom of the cylindrical color wheel 59 is structured to absorb the OFF light from the micromirror device 46, or the OFF light is transmitted to the outside from the bottom of the cylindrical color wheel 59, It can also be absorbed by an external antireflection member. At this time, the external antireflection member may be cooled by the above-described cooling fins, and an air flow may be generated inside the cylindrical force roller to cool the micromirror device 46.
  • the wavelength selection coat region with respect to the projected beam diameter becomes relatively narrow, and the blanking period increases.
  • the rotation of one wheel 59 may be an unequal angular speed rotation.
  • the unequal angular velocity rotation of the color wheel is not limited to this example, and may be applied to a normal disk-shaped color wheel.
  • the cylindrical color wheel 59 is arranged so as to contain the micromirror device 46, but it may be simply arranged in the projection optical path.
  • the color wheel is formed in a cylindrical shape. However, it can be formed in, for example, a substantially cylindrical shape and has a cross-section. It can also be formed in a polygonal cylindrical shape.
  • the configuration shown in the lower part is a cross-sectional view of the configuration shown in the upper part.
  • the light source light incident on the micromirror device 46 is reflected by the TIR surface of the TIR prism 47 comprising the first prism and the second prism, and at a desired angle. Reflected.
  • the micro mirror of each microphone mouth mirror element formed on the micro mirror device is individually controlled in the tilt direction and displacement time according to the drive signal from the control circuit 72, not shown, and the illumination light is projected along the projection optical path. And reflected as projection light.
  • the projection light is incident on the TIR surface at a critical angle or less, total reflection does not occur, and the projection light is directed to the exit surface of the TIR prism 47.
  • a first cylindrical lens 60 a having power only in the direction perpendicular to the radial direction of the color wheel 49 is disposed on the exit surface of the TIR prism 47. Due to the action of the first cylindrical lens 60a, the luminous flux is a deformed luminous flux having a long side in the radial direction of the color wheel 4 9 as shown in Fig. 29 (described later).
  • the part represented by The light beam that has passed through the color wheel 49 is disposed in the vicinity of the incident surface of the projection lens 48, and is incident on the second cylindrical lens 60b that corrects distortion of the light beam by the first cylindrical lens 60a.
  • the light beam is corrected to a regular luminous flux shape and enters the projection lens 48.
  • FIG. 29 shows an example of the difference between the blanking time for a normal light beam and the blanking time for a light beam suitably deformed by the first cylindrical lens 60 a.
  • the portion represented by a circle 62 in the color wheel 4 9 shown in the upper part represents a normal light beam
  • the portion represented by an ellipse 61 represents a light beam suitably deformed by the first cylindrical lens 60a.
  • Indicates (irregular luminous flux) is doing.
  • the upper side shows the blanking time (hatched area) for a normal light beam
  • the lower side shows the blanking time (hatched line) due to a light beam (atypical light beam) deformed suitably by the first cylindrical lens 60a. Part).
  • the diameter of the color wheel can be reduced. That is, the diameter 0 B of the color wheel shown in FIG. 30 ⁇ the diameter 0 A of the color wheel shown in FIG.
  • the image to be displayed on the microphone mirror device 46 may be distorted in advance without using the second cylindrical lens 60 b.
  • the NA (Numerical Aperture) of the illumination optical path is preferably asymmetric with respect to the optical axis in order to effectively capture the illumination light with respect to the first cylindrical lens 60 a. desirable.
  • a light source having a plurality of light emitting parts such as a laser array or an LED array is used as a light source, if the direction of high NA of the non-symmetric NA is matched with the alignment direction of the plurality of light emitting parts, Is preferred.
  • the short side direction of the effective light beam is configured to cross the color region of the color wheel, and the blanking time is set. It is basically desirable to minimize
  • the polarizability of the projection light can be maintained correctly, and the maximum effect can be obtained, for example, when used in combination with a polarizing screen.
  • the dynamic range can be expanded by arranging a color filter having a brightness modulation function at the aperture position of the projection lens.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Abstract

A projector comprising a spatial light modulator (46), a control circuit (72) for controlling the spatial light modulator (46), a filter member (49) for transmitting/reflecting beams of different frequencies at a predetermined period, and a lens (48) for projecting modulation light from the spatial light modulator (46) onto a projection plane. The filter member (49) is arranged in the vicinity of the diaphragm position of the projection lens (48) or between the spatial light modulator (46) and the projection lens (48). Total time required by the filter member (49) for transmitting or reflecting two beams of different frequencies is 2%-50% of the above-mentioned period.

Description

明 細 書  Specification
投影装置  Projection device
技術分野  Technical field
[0001 ] 本発明は空間光変調器を用いて画像を拡大表示する投影装置に関する。 更 に詳細には、 異なる色の投影光を時間順次で表示して、 カラー画像を得る力 ラーシ一ケンシャル方式の投影装置における色選択フィルタの配置方法に関 する。  The present invention relates to a projection apparatus that enlarges and displays an image using a spatial light modulator. More specifically, the present invention relates to a method for arranging color selection filters in a power sequential projector that obtains a color image by displaying projection light of different colors in time sequence.
背景技術  Background art
[0002] 透過型液晶、 反射型液晶、 マイクロミラーアレイなどの空間光変調器を用 いた投影装置が知られている。  Projectors using spatial light modulators such as transmissive liquid crystals, reflective liquid crystals, and micromirror arrays are known.
空間光変調器は微細な変調素子を数万〜数百万個並べたァレイ構造を有し A spatial light modulator has an array structure in which tens of thousands to millions of minute modulation elements are arranged.
、 個々の変調素子によって表示される画像の各画素が、 投影レンズによって スクリーン上に拡大表示される。 Each pixel of the image displayed by the individual modulation elements is enlarged and displayed on the screen by the projection lens.
[0003] 投影装置に用いられる空間光変調器は、 大別して液晶を透明基板間に封止 して電位差を与えることで入射光の偏光方向を変調する液晶デバイスと、 微 細な M E M S (M i cro E l ectro Mechan i ca l Systems) ミラ一を静電力によつ て偏向させ、 照明光の反射方向を制御するマイクロミラーデバイスが一般的 に使用されている。 [0003] Spatial light modulators used in projectors are roughly divided into a liquid crystal device that modulates the polarization direction of incident light by sealing a liquid crystal between transparent substrates and applying a potential difference, and a fine MEMS (M i cro Electro Mechanic Systems) A micro mirror device that deflects a mirror with an electrostatic force and controls the direction of reflection of illumination light is generally used.
[0004] 前記マイクロミラ一デバイスの初期の実施例が USP4229732に開示されてい る。 これには、 基板上に MOSFETを用いた駆動回路が形成され、 また、 変形可 能な金属製のミラ一も基板上に形成されることが開示されている。 また、 ミ ラーは駆動回路による静電力によって変形され、 入射光の反射方向を変化さ せることも開示されている。  [0004] An early example of the micromirror device is disclosed in USP4229732. It is disclosed that a drive circuit using a MOSFET is formed on a substrate, and a deformable metal mirror is also formed on the substrate. It is also disclosed that the mirror is deformed by the electrostatic force generated by the drive circuit and changes the reflection direction of incident light.
[0005] USP4662746には、 ミラ一を 1つ、 または 2つのヒンジで保持する実施例が 開示されている。 詳しくは、 ミラ一が 1つのヒンジで保持される場合、 ヒン ジは曲がりばねとして機能し、 ミラーが 2つのヒンジで保持される場合、 ヒ ンジはねじりパネとして機能し、 ミラ一を異なる方向に傾斜させることによ り照明光を偏向させることが開示されている。 [0005] USP4662746 discloses an embodiment in which a mirror is held by one or two hinges. Specifically, when the mirror is held by one hinge, the hinge functions as a bending spring, and when the mirror is held by two hinges, the hinge functions as a torsion panel, causing the mirror to move in different directions. By tilting It is disclosed that the illumination light is deflected.
[0006] 空間光変調器を用いた投影装置は、 只 1つの空間光変調器を用いて表示を 行う単板式投影装置と、 複数の空間光変調器を用いて表示を行う多板式投影 装置がある。  [0006] Projectors using spatial light modulators are: a single-plate projector that performs display using one spatial light modulator and a multi-plate projector that performs display using a plurality of spatial light modulators. is there.
光源から発せられた白色光を光路内に配置した色分離手段により R , G , Bに分離し、 各色に割り当てられた個別の空間光変調器に照射し、 各空間光 変調器によって変調された光線を光路合成手段によって再び合成したのち投 影レンズによって投影する多板式投影装置の一構成例が USP4904061などに開 示されている。 また、 USP4969730には、 反射型空間光変調器に対応した光学 構成例が開示されている。  White light emitted from the light source is separated into R, G, B by color separation means arranged in the optical path, irradiated to individual spatial light modulators assigned to each color, and modulated by each spatial light modulator An example of the configuration of a multi-plate projector that synthesizes light rays again by means of optical path synthesis means and then projects them with a projection lens is disclosed in USP4904061. USP4969730 discloses an optical configuration example corresponding to a reflective spatial light modulator.
[0007] 以上のような多板式の投影装置は、 後述の単板式に見られるような光の利 用効率の低下、 カラ一ブレイク ( 「カラ一ブレイクアップ」 ともいう) とい つた問題は発生しないものの、 空間光変調器を複数使用することによる部材 費アップ、 調整工数増、 光学系が比較的複雑になる、 といった問題があり、 部品単価の高価なマイクロミラ一デバイスを用いた投影装置においては、 一 部の業務用途向け、 ハイェンドユーザ向けにのみ限定して採用されているの が実情である。 [0007] The above-described multi-plate projection apparatus does not cause problems such as a decrease in light utilization efficiency and a color break (also referred to as "color break-up") as seen in the single-plate type described later. However, there are problems such as an increase in material costs due to the use of multiple spatial light modulators, an increase in adjustment man-hours, and a relatively complicated optical system. It is actually used only for some business purposes and high-end users.
[0008] —方、 単板式投影装置は、 一つの画像を表示する期間 (1フレーム) をサ ブフレームに分割し、 それぞれのサブフレーム期間内に R、 G、 Bのいずれ かの照明光を空間光変調器に照射するとともに、 空間光変調器は照明光に同 期して各色に対応した画像を順次表示する。 サブフレームの期間は十分に短 く設定されるので、 観察者は各色を脳内で積分し結果としてカラー画像とし て認識することができる。 ここで、 階調 (カラー表示に照らして表記すれば 再現色数) は空間光変調器が投影光路に投影光を送出する最小時間単位によ つて決定される。 すなわち、 空間光変調器の応答速度に依存して装置の階調 が決定される。 このことから、 一般的に単板式投影装置に採用すべき空間光 変調器としては、 応答速度の比較的遅い液晶デバイスよりも応答速度の速い マイクロミラ一デバイスが適している。 [0009] 以下、 空間光変調器としてマイクロミラ一デバイスを用いた単板式投影装 置に関して更に詳細に説明する。 [0008] On the other hand, a single-plate projection apparatus divides a period (one frame) for displaying one image into subframes, and irradiates one of R, G, and B illumination light within each subframe period. In addition to irradiating the spatial light modulator, the spatial light modulator sequentially displays images corresponding to each color in synchronization with the illumination light. Since the subframe period is set sufficiently short, the observer can integrate each color in the brain and recognize it as a color image. Here, the gradation (the number of reproduced colors in the case of color display) is determined by the minimum unit of time that the spatial light modulator sends the projection light to the projection optical path. That is, the gradation of the device is determined depending on the response speed of the spatial light modulator. For this reason, a micromirror device with a high response speed is more suitable than a liquid crystal device with a relatively low response speed as a spatial light modulator to be generally used in a single-plate projector. Hereinafter, a single-plate projection apparatus using a micromirror device as a spatial light modulator will be described in more detail.
USP51 92946には、 上述の単板式投影装置の一実施例が開示されている。 こ の装置では、 図 1に示したように、 光源 1からの照明光はミラ一 2によって レンズ 3に集光され、 光束 4を形成する。 空間光変調器 5はコンピュータ 6 によって制御され、 選択的に照明光を投影レンズ 7に向かって反射してスク リーン 8上に画像を表示する。 この USP51 92946では、 光源をレーザ一とした り、 またはカラ一ホイールを照明光路に配置することで、 照明光を異なる周 波数に集中させ、 それらの照明光を人間の目の臨界フリッカ周波数よりも速 い期間で時間順次で変調してカラー画像を得る。  USP51 92946 discloses an embodiment of the above-described single-plate projector. In this apparatus, as shown in FIG. 1, the illumination light from the light source 1 is condensed on the lens 3 by the mirror 1 to form a light beam 4. The spatial light modulator 5 is controlled by the computer 6 and selectively reflects the illumination light toward the projection lens 7 to display an image on the screen 8. In this USP51 92946, the light source is a single laser or the color wheel is placed in the illumination optical path, so that the illumination light is concentrated at different frequencies and the illumination light is more than the critical flicker frequency of the human eye. A color image is obtained by time-sequential modulation in a fast period.
[0010] 単板式投影装置には、 前述のごとく空間光変調器が 1つで済み、 光学系の 構成も簡単であるという利点がある一方、 表示画像の内容や、 観察者の視点 の移動などによって色が分解して観察されるカラーブレイクの問題や、 カラ 一ホイールによつて透過される光以外の光線が画像表示に用いられないこと に起因する光の利用効率の低下という欠点がある。 さらに、 カラーホイール の各色の境界が照明光束を横切る期間は、 スポークタイム、 あるいはブラン キングタイムと呼ばれ、 照明光色が刻々と変化する状態にあり、 その間、 基 本的にマイクロミラーデバイスは O F F状態に制御され、 これも光の利用効 率を低下させる要因となる。  [0010] As described above, the single-plate projector has only one spatial light modulator and has an advantage that the configuration of the optical system is simple. On the other hand, the contents of the display image, the movement of the observer's viewpoint, etc. There is a problem of a color break that is observed when the colors are separated by the above, and a decrease in light use efficiency due to the fact that light other than the light transmitted by the color wheel is not used for image display. Furthermore, the period in which the color wheel boundary crosses the illumination light flux is called the spoke time or blanking time, and the illumination light color changes every moment. During this period, the micromirror device is basically turned off. This is also a factor that reduces the light utilization efficiency.
[001 1 ] カラ一ブレイクの発生を抑制する案としては、 カラ一ホイールの回転をよ り高速にしたり、 図 2に示すように力ラーホイールの色分割を細分化して、 1フレーム内の各色の切替え時間をより高速にするなどが公知である。 なお 、 図 2において、 力ラ一ホイール 1 0 1 と 1 0 2は、 R (Red) , G (Green ) , 及び B (B l ue) の 3つの領域を有する、 3色に色分割されたカラ一ホイ —ルである。 但し、 カラ一ホイール 1 0 1 と 1 0 2との間では色分割の割合 が異なっている。 また、 カラ—ホイール 1 0 3は、 R , G , B , 及び W (Wh i te) の 4つの領域を有する、 4色に色分割されたカラ一ホイールである。 ま た、 カラ一ホイール 1 0 4は、 同色の 2つの領域が対向するように、 Rの領 域が 2つ, Gの領域が 2つ, 及び Bの領域が 2つからなる合計 6つの領域を 有する、 3色に色分割されたカラーホイールである。 また、 カラーホイール 1 0 5は、 R , G , B , 及び Y (Ye l l ow) の 4つの領域を有する、 4色に色 分割されたカラーホイールである。 [001 1] As a proposal to suppress the occurrence of color breaks, the color wheel can be rotated at a higher speed, or the color division of the power wheel can be subdivided as shown in Fig. 2, and each color within one frame can be divided. It is known to make the switching time of the above faster. In FIG. 2, the force wheel 1 0 1 and 1 0 2 are color-divided into three colors having three areas of R (Red), G (Green), and B (B l ue). It is a color wheel. However, the color division ratio differs between the color wheels 1 0 1 and 1 0 2. The color wheel 103 is a color wheel that is divided into four colors and has four regions R, G, B, and W (Wh i te). In addition, the color wheel 1 0 4 has an R area so that two areas of the same color face each other. It is a color wheel divided into three colors with a total of 6 areas, 2 areas, 2 G areas, and 2 B areas. The color wheel 10 5 is a color wheel that is divided into four colors, and has four regions of R, G, B, and Y (Yellow).
[0012] —方、 光の利用効率を改善させる 1つの方法として、 カラ一ホイールで反 射された光を光源光路に戻し、 再度利用する構成が公知である。 [0012] On the other hand, as one method for improving the light utilization efficiency, a configuration in which the light reflected by the color wheel is returned to the light source optical path and reused is known.
反射型の空間光変調器を用いた投影装置において、 照明光と投影光 (変調 光) の分離は重要な設計項目である。 マイクロミラーデバイスを用いた投影 装置では、 照明光と投影光の分離素子を特別設けない設計例も見られるが、 各素子のレイァゥ卜に自由度を持たせようとする場合、 図 3に示すように、 光束の分離■合成素子光学部材を追加する。 同図に示した単板式投影装置の 代表的な構成において、 光源 1 1から発した光源光はコンデンサレンズによ つて集光され、 ロッドインテグレ一タ 1 2に入射して均一な照明光にされた 後、 全反射プリズム(以下、 T I Rプリズム) 1 3で反射、 もしくは透過してマイ クロミラ一デバイス 1 4に照射される。 T I Rプリズム 1 3は、 マイクロミラ一 デバイス Ί 4への照明光と変調後の投影光を、 その反射面への入射角度の差 によって、 照明光と投影光を分離する。 なお、 同図において、 左側に示した 装置構成は、 ロッドインテグレ一タ 1 2の前段にカラ一ホイール 1 5を配置 した構成例であり、 右側に示した装置の一部構成は、 口ッドィンテグレータ 1 2の後段にカラ一ホイール 1 5を配置した構成例であって、 何れの構成も 適用可能である。  Separation of illumination light and projection light (modulated light) is an important design item in a projection device using a reflective spatial light modulator. In a projection device using a micromirror device, there is a design example in which no separate element for illumination light and projection light is provided. However, when it is desired to give each element a degree of freedom, as shown in Fig. 3. In addition, separation of luminous flux ■ Addition element optical member. In the typical configuration of the single-plate projector shown in the figure, the light source light emitted from the light source 1 1 is collected by the condenser lens and incident on the rod integrator 1 2 to be uniform illumination light. After that, it is reflected or transmitted by a total reflection prism (hereinafter referred to as TIR prism) 1 3 and irradiated to the micromirror device 14. The TIR prism 13 separates the illumination light and the projection light from the illumination light on the micromirror device 変 調 4 and the projection light after modulation by the difference in the incident angle on the reflection surface. In the figure, the device configuration shown on the left is a configuration example in which a color wheel 15 is arranged in front of the rod integrator 12, and a part of the device shown on the right is a mouthpiece. This is a configuration example in which a color wheel 15 is arranged in the subsequent stage of the integer 1 2, and any configuration is applicable.
[0013] 一方、 反射型液晶デバイスを用いた投影装置では、 照明光と投影光の分離 は偏光方向の差を利用して行われる。 反射型液晶デバイスでは照明光の偏光 方向を 9 0度回転して出力光を得るので、 照明光と投影光の分離は偏光ビー ムスプリッタを用いて行われる。  On the other hand, in a projection apparatus using a reflective liquid crystal device, separation of illumination light and projection light is performed using a difference in polarization direction. In a reflective liquid crystal device, the polarization direction of illumination light is rotated 90 degrees to obtain output light. Therefore, separation of illumination light and projection light is performed using a polarization beam splitter.
[0014] ところで、 マイクロミラ一デバイスはその動作原理から液晶を用いた空間 光変調器と異なり照明光に偏光性を必要としない。 しかしながら近年、 偏光 を利用して性能を向上させる、 あるいは従来部材の欠点を克服する代替部材 、 周辺部材が開発されている。 [0014] By the way, unlike a spatial light modulator using liquid crystal, the micromirror device does not require polarization for illumination light because of its operating principle. In recent years, however, the use of polarized light has improved performance, or an alternative member that overcomes the disadvantages of conventional components. Peripheral members have been developed.
[0015] カラ一ホイールの代替部材として、 カラ一リンク社の "カラ一セレク ト" のような積層位相差板を用いた波長選択性偏光素子がある。 この素子は偏光 して入射した光の偏光方向を波長選択的に回転して出力ができる。 この波長 選択性偏光素子と液晶素子を組み合わせて、 透過光の波長域を R , G , Bに 切り替えることができる。 カラーホイールと比較して、 可動部品がなく騒音 を発しない、 スイッチング速度が速く、 前述のスポークタイムに相当する時 間を短縮できる、 小型、 省消費電力などの優れた特徴がある。  As an alternative member of the color wheel, there is a wavelength-selective polarizing element using a laminated phase difference plate such as “Color Select” manufactured by Color Link Corporation. This device can output light by selectively rotating the polarization direction of polarized light. By combining this wavelength selective polarizing element and a liquid crystal element, the wavelength range of transmitted light can be switched to R, G, and B. Compared to the color wheel, there are no moving parts, no noise, fast switching speed, and the time equivalent to the spoke time can be shortened.
[001 6] また、 一方ではプロジェクタ装置に用いられる投影スクリーンにおいて、 コントラストの向上を目的とし、 入射光の偏光方向によって特性を変化させ たスクリーン (以下 「偏光スクリーン」 ともいう) が提案されている。  [001 6] On the other hand, as a projection screen used in a projector apparatus, a screen whose characteristics are changed according to the polarization direction of incident light (hereinafter also referred to as a “polarizing screen”) has been proposed for the purpose of improving contrast. .
[001 7] 更には、 前述した照明光と変調光の分離を反射型液晶デバイスと同様に偏 光によって行うことが考えられ、 T I Rプリズムを用いた光学系以外の選択肢と して、 設計の自由度を広げることができる。  [001 7] Furthermore, it is conceivable that the illumination light and the modulated light are separated by polarization in the same manner as in the reflection type liquid crystal device. As an option other than the optical system using the TIR prism, the design freedom can be achieved. Can expand the degree.
[0018] 以上のように、 マイクロミラ一デバイスは原理的に偏光を必要としないも のの、 性能向上を目的として、 偏光光との組み合わせが考えられる。  [0018] As described above, although the micromirror device does not require polarization in principle, it can be combined with polarized light for the purpose of improving performance.
しかしながら、 前述のカラーホイール代替手段である電気制御式の波長選 択性偏光素子を照明光路に配置した投影装置においては、 波長選択性偏光素 子を透過した光線が、 更に前述の照明投影光分離素子、 空間光変調器を介し て投影レンズに至るまでに、 その偏光性が劣化することが考えられ、 前述の 偏光スクリーンとの組み合わせ使用で、 最大限の効果を得ることができなく なることが考えられる。  However, in a projection apparatus in which an electrically controlled wavelength-selective polarizing element as an alternative to the color wheel is arranged in the illumination optical path, the light beam that has passed through the wavelength-selective polarizing element is further separated into the illumination projection light described above. It is considered that the polarization property of the projection lens deteriorates until it reaches the projection lens via the element and the spatial light modulator, and the maximum effect cannot be obtained by using in combination with the polarizing screen described above. Conceivable.
[001 9] —方、 従来の照明光路内にカラ一ホイールを配置する構成に起因して生じ る構成上の問題がある。 具体的には、 従来のカラーホイールの配置構成にお いて、 一般にカラ一ホイールはそのフィルタ面が照明光軸に対して垂直にな るように配置される。 本配置によれば、 照明光軸に垂直な面における装置筐 体の物理的大きさがカラーホイールの直径により規定され、 筐体外形を小型 化することが困難となる可能性がある。 [0020] 本発明は、 上記実情に鑑み、 投影光の偏光性を適切に保ち、 また、 装置の 小型化を可能にする投影装置を提供することを目的とする。 [001 9] —On the other hand, there is a structural problem caused by the conventional arrangement of the color wheel in the illumination optical path. Specifically, in a conventional color wheel arrangement, the color wheel is generally arranged such that its filter surface is perpendicular to the illumination optical axis. According to this arrangement, the physical size of the device housing in a plane perpendicular to the illumination optical axis is defined by the diameter of the color wheel, which may make it difficult to reduce the size of the housing. [0020] In view of the above circumstances, an object of the present invention is to provide a projection apparatus that can appropriately maintain the polarization of the projection light and can reduce the size of the apparatus.
なお、 投影装置に関しては、 次のような技術も開示されている。  Regarding the projection device, the following technology is also disclosed.
[0021 ] USP2393235には、 カラ一フリッカーリデュ一シング装置 (COLOR FL I CKER R EDUCI NG APPARATUS) が開示されている。 この装置では、 スクリーンの前に力 ラーホイールが配置されている。  [0021] USP2393235 discloses a color flicker reducing apparatus (COLOR FL ICKER REDUCI NG APPARATUS). In this device, a force wheel is placed in front of the screen.
[0022] USP5541679と USP5669687には、 ォプチカルプロジェクシヨンシステム (OPT I CAL PROJECT I ON SYSTEM) が開示されている。 これらのシステムでは、 "RGB ピクセルフィルタ "力 ' プロジェクシヨンアパーチャ (Project i on aperture ) " を与える" プロジェクシヨンストッパー (Project i on stopper) " の後 に設けられている。 また、 投影開口を決定する絞りよりも SLM (空間光変調器 ) 側にフィルタが配置されている。  [0022] USP5541679 and USP5669687 disclose an optical projection system (OPT I CAL PROJECT I ON SYSTEM). These systems are provided after the “Projection on stopper” which gives the “RGB pixel filter“ force ”Projection on aperture” and also determines the projection aperture. A filter is placed on the SLM (spatial light modulator) side of the diaphragm.
[0023] USP5777781には、 ォプチカルプロジェクシヨンシステム (OPT I CAL PROJECT I ON SYSTEM) が開示されている。 このシステムでは、 薄膜ミラ一の傾斜角を 変えて、 投影光が通過するフィルタ領域を切り替える。  [0023] USP5777781 discloses an optical projection system (OPT I CAL PROJECT I ON SYSTEM). In this system, the filter area through which the projection light passes is switched by changing the tilt angle of the thin film mirror.
[0024] USP5993007には、 リフレクションタイププロジヱクタ一 (REFLECT I ON TYPE  [0024] USP5993007 includes a reflection type projector (REFLECT I ON TYPE
PROJECTOR) が開示されている。 本特許のクレームには、 複屈折プリズムと 2つの表示装置が構成要件に含まれ、 その従属クレームとして光源から投影 レンズの間のどこかにカラ一フィルタを置く、 という記載がある。 F i g 3には 、 投影光路にカラーホイールを配置した実施例が開示されている。 しかしな がら、 特に投影光路にカラーフィルタを置く利点が開示されているわけでは ない。 また、 カラーフィルタの配置位置を特に投影光路に限定し、 それによ るメリット (偏光維持、 色収差補正、 光量変調) を得る事を目的とすること の開示もない。 さらに、 その偏光維持に関して、 本特許に開示の実施例では 偏光投影光を得ることはできない。  PROJECTOR) is disclosed. The claim of this patent includes a birefringent prism and two display devices, and a dependent claim is that a color filter is placed somewhere between the light source and the projection lens. F i g 3 discloses an embodiment in which a color wheel is arranged in the projection optical path. However, the advantage of placing a color filter in the projection optical path is not disclosed. Further, there is no disclosure that aims to obtain the merits (polarization maintenance, chromatic aberration correction, light intensity modulation) by limiting the arrangement position of the color filter to the projection optical path. Furthermore, with respect to the polarization maintenance, the embodiment disclosed in this patent cannot obtain polarized projection light.
[0025] USP6439724には、 カラ一プロジェクタ一 (Co l or projector) が開示されて いる。 本特許の実施例には、 色収差の補正のために、 パネルの大きさや投影 レンズとの距離を変えた多板式投影装置が開示されている。 発明の開示 [0025] USP6439724 discloses a color projector. The embodiment of this patent discloses a multi-plate projection apparatus in which the size of the panel and the distance from the projection lens are changed in order to correct chromatic aberration. Disclosure of the invention
[0026] 本発明の一態様は、 空間光変調器を用いた投影装置であって、 投影光路に 周波数選択フィルタを配置したことを特徴とする。  One aspect of the present invention is a projection apparatus using a spatial light modulator, characterized in that a frequency selection filter is arranged in the projection optical path.
図面の簡単な説明  Brief Description of Drawings
[0027] 本発明は、 後述する詳細な説明を、 下記の添付図面と共に参照すればより 明らかになるであろう。  [0027] The present invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.
[図 1 ]従来の単板式投影装置の一例を示す図である。  FIG. 1 is a diagram showing an example of a conventional single-plate projector.
[図 2]従来のカラーホイールの色分割の一例を示す図である。  FIG. 2 is a diagram showing an example of color division of a conventional color wheel.
[図 3]従来の単板式投影装置の代表的な構成例を示す図である。  FIG. 3 is a diagram showing a typical configuration example of a conventional single-plate projector.
[図 4]実施例 1に係る投影装置の主要構成を示す図である。  FIG. 4 is a diagram illustrating a main configuration of a projection apparatus according to Embodiment 1.
[図 5]マイクロミラ一デバイスの一部を模式的に示す図である。  FIG. 5 is a diagram schematically showing a part of a micromirror device.
[図 6]波長選択性偏光フィルタを説明する図である。  FIG. 6 is a diagram illustrating a wavelength selective polarizing filter.
[図 7]実施例 1に係る投影装置の変形例を示す図である。  FIG. 7 is a view showing a modification of the projection apparatus according to the first embodiment.
[図 8]実施例 1に係る投影装置の変形例を示す図である。  FIG. 8 is a diagram showing a modification of the projection apparatus according to the first embodiment.
[図 9]実施例 1に係る投影装置の変形例を示す図である。  FIG. 9 is a view showing a modification of the projection apparatus according to the first embodiment.
[図 10]実施例 1に係る投影装置の変形例を示す図である。  FIG. 10 is a diagram showing a modification of the projection apparatus according to the first embodiment.
[図 1 1 ]実施例 2に係る投影装置の主要構成を示す図である。  FIG. 1 1 is a diagram showing a main configuration of a projection apparatus according to Embodiment 2.
[図 12]カラ一ホイ一ルの変形例を示す図である。  FIG. 12 is a view showing a modification of the color wheel.
[図 13]カラ一ホイ一ルの変形例を示す図である。  FIG. 13 is a view showing a modification of the color wheel.
[図 14]カラーホイールと光束の関係を説明する図である。  FIG. 14 is a diagram for explaining the relationship between a color wheel and a luminous flux.
[図 15]実施例 2に係る投影装置の変形例を示す図である。  FIG. 15 is a view showing a modification of the projection apparatus according to the second embodiment.
[図 1 6]実施例 2に係る投影装置の変形例を示す図である。  FIG. 16 shows a modification of the projection apparatus according to the second embodiment.
[図 1 7]実施例 2に係る投影装置の変形例を示す図である。  FIG. 17 is a view showing a modification of the projection apparatus according to the second embodiment.
[図 18]フアブリべ口一干渉法を用いたカラ一フィルタの一例を説明する図で  FIG. 18 is a diagram for explaining an example of a color filter using the Fabry-Mouth one-interference method.
[図 1 9]透過光別に異なる厚さに設計されたカラーホイールの一例を示す図で [Figure 19] A diagram showing an example of a color wheel designed to have a different thickness for each transmitted light.
[図 20]実施例 2に係る投影装置の変形例を示す図である。 [図 21 ]実施例 2に係る投影装置の変形例を示す図である。 FIG. 20 is a view showing a modification of the projection apparatus according to the second embodiment. FIG. 21 is a diagram showing a modification of the projection apparatus according to the second embodiment.
[図 22]光学絞り部材の変形例を示す図である。  FIG. 22 is a view showing a modification of the optical aperture member.
[図 23]光学絞り部材の変形例を示す図である。  FIG. 23 is a view showing a modification of the optical aperture member.
[図 24]実施例 2に係る投影装置の変形例を説明する図である。  FIG. 24 is a diagram for explaining a modification of the projection apparatus according to the second embodiment.
[図 25]実施例 2に係る投影装置の変形例を説明する図である。  FIG. 25 is a diagram for explaining a modification of the projection apparatus according to the second embodiment.
[図 26]実施例 2に係る投影装置の変形例を示す図である。  FIG. 26 is a view showing a modification of the projection apparatus according to the second embodiment.
[図 27]円筒形カラ一ホイ一ルの変形例を示す図である。  FIG. 27 is a view showing a modification of a cylindrical color wheel.
[図 28]実施例 2に係る投影装置の変形例を示す図である。  FIG. 28 is a diagram showing a modification of the projection apparatus according to the second embodiment.
[図 29]図 2 8に示した変形例を説明する図である。  FIG. 29 is a diagram for explaining the modification shown in FIG. 28.
[図 30 ]図 2 8に示した変形例を説明する図である。  FIG. 30 is a diagram for explaining the modification shown in FIG. 28.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0028] 以下、 図面を参照しながら本発明の実施例を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<実施例 1 >  <Example 1>
図 4は、 本発明の実施例 1に係る投影装置の主要構成を示す図である。 こ の投影装置では、 当該装置からの射出光の偏光方向の乱れを低減することが 可能になっている。  FIG. 4 is a diagram showing a main configuration of the projection apparatus according to Embodiment 1 of the present invention. In this projection apparatus, it is possible to reduce disturbance in the polarization direction of light emitted from the apparatus.
[0029] 同図において、 光源 3 1は、 高圧水銀ランプ、 キセノンランプ、 LDや LEDな どの単色光源で蛍光体を照射して多波長光を得る複合光源などで、 発生する 照明光は無偏光の白色光である。 光源から発生した光源光は、 楕円鏡 3 2で 集光され、 複数のコンデンサレンズを縮小して並列に多数配置した第 1のフ ライアイレンズ 3 3 aに入射する。 第 1のフライアイレンズ 3 3 aによって 生成される光源像位置近傍には、 前記光源像をリレーして、 マイクロミラー デバイス面に投影する第 2のフライアイレンズ 3 3 bが配置される。 係る構 成によって照射面であるマイクロミラ一面における光強度ムラを低減してい る。 ここで、 第 2のフライアイレンズ 3 3 bには、 偏光変換素子 3 4が隣接 して配置される。 偏光変換素子 3 4は、 入射照明光を偏光ビームスプリッタ で 2つの偏光方向 (S偏光と P偏光) に分離する。 S偏光光は前記偏光ビー ムスプリッタ面で反射して偏光変換素子 3 4の出射面から出射する。 一方、 P偏光光は前記偏光ビームスプリッタを透過したのち、 偏光変換素子 3 4の 出射面に設けられた 1 / 2 λ位相差板によって偏光方向が 9 0度回転する。 そ の結果、 偏光変換素子 3 4から出力される照明光の偏光方向は S偏光のみと なり、 且つ照明光のほぼ全ての光を利用することができる。 なお、 空間光変 調器を均一に照明するためには前述のロッドインテグレ一タを用いる方法も ある。 この場合、 照明光の偏光方向を正しく維持するという観点から偏光変 換素子は口ッドィンテグレ一タの射出面側の光路に配置することが望ましい [0029] In the figure, the light source 31 is a high pressure mercury lamp, a xenon lamp, a composite light source that obtains multi-wavelength light by irradiating a phosphor with a monochromatic light source such as an LD or LED, and the generated illumination light is unpolarized. White light. The light source light generated from the light source is collected by the elliptical mirror 3 2 and is incident on the first fly-eye lens 3 3 a in which a plurality of condenser lenses are reduced and arranged in parallel. Near the position of the light source image generated by the first fly-eye lens 33a, a second fly-eye lens 33b that relays the light source image and projects it onto the micromirror device surface is disposed. Such a configuration reduces light intensity unevenness on the entire surface of the micromirror that is the irradiation surface. Here, the polarization conversion element 34 is disposed adjacent to the second fly-eye lens 33 b. The polarization conversion element 3 4 separates the incident illumination light into two polarization directions (S-polarized light and P-polarized light) with a polarization beam splitter. The S-polarized light is reflected by the polarization beam splitter surface and is emitted from the exit surface of the polarization conversion element 34. on the other hand, The P-polarized light passes through the polarization beam splitter, and then the polarization direction is rotated 90 degrees by the 1/2 λ phase difference plate provided on the exit surface of the polarization conversion element 34. As a result, the polarization direction of the illumination light output from the polarization conversion element 34 is only S-polarized light, and almost all of the illumination light can be used. In order to illuminate the spatial light modulator uniformly, there is also a method using the rod integrator described above. In this case, from the viewpoint of maintaining the polarization direction of the illumination light correctly, it is desirable that the polarization conversion element is disposed on the optical path on the exit surface side of the mouth dimmer.
[0030] 次に、 照明光は前記第 2のフライアイレンズ 3 3 bの各レンズの主光線を マイクロミラ一デバイス 3 5の中心に集光させるための重畳レンズ 3 6によ つて方向つけられ、 T I Rプリズム 3 7によってマイクロミラ一デバイス 3 5に向けて、 所望の角度で反射される。 ここで、 所望の角度とは、 マイクロ ミラ一デバイス 3 5のマイクロミラ一素子 (単に 「ミラ一素子」 又は 「ミラ —ピクセル」 ともいう) におけるマイクロミラ一 (単に 「ミラ一」 ともいう ) の傾角によって決定される角度で、 ミラーが照明光を投影光路に反射する 状態 (単に 「O N状態」 ともいう) において、 その射出方向がマイクロミラ 一デバイス 3 5の基板に対して略垂直となるような角度である。 換言すれば 、 図 5の左側に示すように、 ミラ一素子におけるミラ一 3 5 aのデバイス基 板 3 5 bに対する傾斜角を 0、 照明光のデバイス基板 3 5 bの法線に対する 入射角 としたとき、 φ = 2 0となるように照明光の入射方向が決定される 。 同図においては、 左側に O N状態のミラーの様子の一例、 中央と右側に O F F状態 (ミラーが照明光を投影光路外に反射する状態) のミラーの様子の —例を示している。 Next, the illumination light is directed by the superimposing lens 36 for condensing the principal ray of each lens of the second fly-eye lens 33 b at the center of the micromirror device 35. Reflected at a desired angle by the TIR prism 37 toward the micromirror device 35. Here, the desired angle is the micro mirror (also simply referred to as “mirror 1”) of the micro mirror device (also simply referred to as “mirror 1 element” or “mirror-pixel”) of the micro mirror device 35. In a state where the mirror reflects the illumination light to the projection optical path at an angle determined by the tilt angle (also simply referred to as “ON state”), the emission direction is substantially perpendicular to the substrate of the micromirror device 35. It is an angle. In other words, as shown on the left side of FIG. 5, the inclination angle of the mirror 35a in the mirror element with respect to the device substrate 35b is 0, the incident angle of the illumination light with respect to the normal of the device substrate 35b and Then, the incident direction of the illumination light is determined so that φ = 20. In the figure, an example of a mirror in the ON state is shown on the left side, and an example of a mirror in the OFF state (a state in which the mirror reflects illumination light outside the projection light path) is shown in the center and right side.
[0031 ] なお、 本実施例に係るマイクロミラ一デバイス 3 5は、 アレイ状に配置さ れた複数のマイク口ミラ一素子を有し、 各マイクロミラ一素子はマイク口ミ ラーを有する。 すなわち、 本実施例に係るマイクロミラ一デバイス 3 5は、 複数のマイクロミラ一からなるマイクロミラ一アレイを有する。  [0031] The micromirror device 35 according to the present embodiment has a plurality of microphone opening mirror elements arranged in an array, and each micromirror element has a microphone opening mirror. That is, the micromirror device 35 according to the present embodiment has a micromirror array composed of a plurality of micromirrors.
[0032] 図 4において、 マイクロミラ一デバイス上に形成された各マイクロミラ一 素子のマイクロミラ一は制御回路 7 1 (後述の図 7乃至 1 0では図示を省略 する) からの駆動信号に従って、 個別に傾斜方向と変位時間を制御され、 照 明光を投影光路に沿って、 投影光として反射する。 投影光は前記 T I R面に 臨界角以下で入射することで全反射を発生せず、 投影面とマイク口ミラーデ バイス 3 5の間 (例えば、 投影レンズ 3 9の絞り位置近傍、 もしくはマイク 口ミラ一デバイス 3 5と投影レンズ 3 9の絞り位置との間) に配置された波 長選択性偏光フィルタ 3 8に入射する。 ここで、 波長選択性偏光フィルタ 3 8は、 例えば前述のカラ一リンク社の "カラ一セレク ト" のような積層位相 差板を用いた波長選択性偏光素子などが使用される。 波長選択性偏光素子は 、 偏光して入射した光の偏光方向を波長選択的に回転して出力ができる素子 であり、 当該素子とその出力段に配置された偏光素子によって、 透過光の波 長域を選択的に切り替えることが可能になっている。 より具体的には、 図 6 に示したように、 波長選択性偏光フィルタ 3 8に入射する投影光を例えば R , G , Bを含む白色の S偏光光とした場合には、 波長選択性偏光素子 3 8 a によって選択された特定の波長域の光のみ偏光方向が 9 0度回転され P偏光 光とされる。 そして、 P偏光光のみを透過する偏光素子 (Po l ar i zer) 3 8 b によって、 波長選択性偏光素子 3 8 aから出力される投影光のうち P偏光光 のみが出力される。 よって、 波長選択性偏光素子 3 8 aに選択させる特定の 波長域の光を R、 G、 Bに順次切り替えることよって、 波長選択性偏光フィ ルタ 3 8の透過光の波長域を R , G , Bに順次切り替えることが可能になる 。 なお、 同図において、 両矢印は光の偏光方向を示している。 また、 同図に おいては、 説明の便宜のために、 波長選択性偏光素子 3 8 aと偏光素子 3 8 bとの間に空間を設けて示したが、 実際には、 両素子は一体で構成されても 良い。 In FIG. 4, each micromirror formed on the micromirror device is shown. The micromirror of the element is individually controlled in tilt direction and displacement time according to a drive signal from a control circuit 71 (not shown in FIGS. 7 to 10 to be described later), and illuminating light along the projection optical path, Reflected as projection light. When the projection light is incident on the TIR surface at a critical angle or less, total reflection does not occur, and between the projection surface and the microphone mouth mirror device 35 (for example, near the aperture position of the projection lens 39 or the microphone mouth mirror) The light is incident on a wavelength selective polarizing filter 3 8 disposed between the device 3 5 and the aperture position of the projection lens 3 9. Here, as the wavelength selective polarizing filter 38, for example, a wavelength selective polarizing element using a laminated phase difference plate such as “Color Select” of the above-mentioned Color Link Inc. is used. A wavelength-selective polarizing element is an element that can output by rotating the polarization direction of polarized incident light in a wavelength-selective manner. It is possible to selectively switch areas. More specifically, as shown in FIG. 6, when the projection light incident on the wavelength selective polarizing filter 3 8 is white S-polarized light including R, G, B, for example, wavelength selective polarization Only the light in the specific wavelength range selected by the element 3 8 a is rotated by 90 degrees to become P-polarized light. Then, only the P-polarized light out of the projection light output from the wavelength-selective polarizing element 3 8 a is output by a polarizing element (Polyarizer) 3 8 b that transmits only P-polarized light. Therefore, the wavelength range of the transmitted light of the wavelength selective polarization filter 3 8 is changed to R, G, B by sequentially switching the light of the specific wavelength range selected by the wavelength selective polarization element 3 8 a to R, G, B. It becomes possible to switch to B sequentially. In the figure, the double arrows indicate the polarization direction of light. In the figure, for the convenience of explanation, a space is provided between the wavelength selective polarizing element 3 8 a and the polarizing element 3 8 b. It may consist of
前述のように、 波長選択性偏光フィルタ 3 8に入射する投影光は、 例えば 白色の S偏光光である。 波長選択性偏光フィルタ 3 8は入射投影光から任意 の周波数の光を時系列且つ連続的に選択偏光して投影レンズ入射面に出力す る。 [0034] 以上、 本実施例に係る投影装置によれば、 投影レンズ 3 9に入射する最終 段で投影光の偏光方向を決定する素子が配置されるので、 投影光の偏光方向 の乱れが少なく、 例えば偏光スクリーンとの組み合わせにおいて、 良好な画 像を得ることができる。 また、 ほぼ光束径と同等のフィルタ領域を設けるだ けで良く、 従来の回転式カラーフィルタ (カラーホイール) のように光束径 に対して大きなスペースを必要としない。 As described above, the projection light incident on the wavelength selective polarizing filter 38 is, for example, white S-polarized light. The wavelength-selective polarizing filter 38 selectively converts light of an arbitrary frequency from incident projection light in a time-series and continuous manner and outputs it to the incident surface of the projection lens. As described above, according to the projection apparatus according to the present embodiment, since the element that determines the polarization direction of the projection light is arranged at the final stage incident on the projection lens 39, there is little disturbance in the polarization direction of the projection light. For example, in combination with a polarizing screen, a good image can be obtained. Moreover, it is only necessary to provide a filter area that is almost equal to the beam diameter, and unlike the conventional rotary color filter (color wheel), a large space for the beam diameter is not required.
[0035] なお、 本実施例に係る投影装置において、 マイクロミラ一デバイス 3 5に 入射する光線は P偏光でも良いし、 円偏光でも良い。 また、 照明光と投影光 の分離は偏光ビームスプリッタ (単に 「P B S」 ともいう) でもよく、 その 場合には、 マイクロミラ一デバイス前面に 1 / 4 λ波長板を配置して、 入射光 と投影光の偏光方向を 9 0度回転させればよい。  [0035] In the projection apparatus according to the present embodiment, the light incident on the micromirror device 35 may be P-polarized light or circularly-polarized light. The illumination light and projection light may be separated by a polarizing beam splitter (also simply referred to as “PBS”). In that case, a quarter-wave plate is placed in front of the micromirror device, and the incident light and projection light are projected. The light polarization direction may be rotated 90 degrees.
[0036] また、 本実施例に係る投影装置では、 波長選択性偏光フィルタ 3 8におい て、 波長選択性偏光素子 3 8 aと偏光素子 3 8 bとを一体で構成し投影光路 に配置したが、 例えば図 7に示したように、 波長選択性偏光素子 3 8 aを照 明光路に配置し、 偏光素子 3 8 bを投影光路に配置することも可能である。 なお、 同図において、 両矢印及び二重丸は光の偏光方向を示している (図 8 、 9、 及び 1 0において同じ) 。 図 7に示した例の場合、 光源からの白色光 のうち、 原色光のうちの任意の 1色の偏光方向のみ前記波長選択性偏光素子 3 8 aを用いて、 偏光方向を変化させる。 波長選択性偏光素子 3 8 aを透過す る光は、 入力前と同様に 3原色を含む白色光であるが、 3原色のうちの 1色だけ が他と偏光方向が異なる照明光が得られる。 この照明光をマイクロミラーデ バイス 3 5を用いて投影光路に変調、 偏向する。 投影光路には偏光素子 3 8 bである偏光板が配置されており、 前述の偏光方向を他と異にされた光線の みを透過するように、 その方向が定められている。 係る構成によれば、 投影 光路に配置された偏光素子 3 8 bによって投影光の偏光方向が整えられると ともに、 照明光路側に配置された波長選択性偏光素子 3 8 aによって偏光方 向を変化させる色を切り替えることによって、 カラ一シーケンシャル投影が 可能となる。 [0037] ここで、 図 8に示すように、 投影光路に配置する偏光素子 3 8 bを回転可 能にし、 さらに照明光路の波長選択性偏光素子 3 8 aと同期して回転するよ うにすれば、 例えば同図下段に示すような単色、 2色混合のカラ一シーケンス を行うことができ、 2色表示期間の 1サイクルの合計を白表示時間とすること で、 画像の明るさを向上させることができる。 なお、 同図下段において、 「 偏光方向 (Po l ar i zer d i rect i on) 」 は、 回転後の偏光素子 3 8 bが透過する 光の偏光方向を示し、 「出力 (Output) 」 は、 偏光素子 3 8 bの出力光を示 している。 同図の例において、 偏光素子 3 8 bは、 同図に示した形態に限定 されず、 異なる偏光方向を有する個別の偏光板を接合してなる形態であって も良い。 In the projection apparatus according to the present embodiment, in the wavelength selective polarizing filter 38, the wavelength selective polarizing element 38a and the polarizing element 38b are integrally configured and arranged in the projection optical path. For example, as shown in FIG. 7, it is also possible to arrange the wavelength selective polarizing element 3 8 a in the illumination optical path and arrange the polarizing element 3 8 b in the projection optical path. In the figure, double-headed arrows and double circles indicate the polarization direction of light (the same applies to FIGS. 8, 9, and 10). In the case of the example shown in FIG. 7, the polarization direction is changed by using the wavelength selective polarization element 3 8a only in the polarization direction of any one of the primary color lights out of the white light from the light source. The light transmitted through the wavelength selective polarizing element 3 8 a is white light including three primary colors as before input, but only one of the three primary colors can obtain illumination light having a different polarization direction from the other. . This illumination light is modulated and deflected into the projection optical path using a micromirror device 35. A polarizing plate which is a polarizing element 3 8 b is arranged in the projection optical path, and the direction is determined so as to transmit only the light beam whose polarization direction is different from the others. According to such a configuration, the polarization direction of the projection light is adjusted by the polarizing element 3 8 b arranged in the projection optical path, and the polarization direction is changed by the wavelength selective polarizing element 3 8 a arranged in the illumination optical path side. Color-sequential projection is possible by switching the colors to be used. Here, as shown in FIG. 8, the polarizing element 38 b arranged in the projection optical path is made rotatable and further rotated in synchronization with the wavelength selective polarizing element 38 a in the illumination optical path. For example, a single-color and two-color mixed color sequence as shown in the lower part of the figure can be performed, and the brightness of the image is improved by setting the total of one cycle of the two-color display period as the white display time. be able to. In the lower part of the figure, “Polarization direction” indicates the polarization direction of the light transmitted by the polarizing element 3 8 b after rotation, and “Output” is The output light of the polarizing element 3 8 b is shown. In the example of the figure, the polarizing element 38 b is not limited to the form shown in the figure, and may be a form in which individual polarizing plates having different polarization directions are joined.
[0038] また、 図 9に示したように、 図 8に示した構成に、 さらに後述の図 2 5に 示すような強度変調のための液晶素子 (図 9の強度変調 L C D 4 1 ) をさら に配置しても良い。  Further, as shown in FIG. 9, a liquid crystal element for intensity modulation (intensity modulation LCD 4 1 in FIG. 9) as shown in FIG. 25 described later is further added to the configuration shown in FIG. You may arrange in.
また、 図 8に示した構成において、 単色光と 2色混合光を 2つの個別の空 間光変調器に分配してそれぞれ変調しても良い。  In the configuration shown in FIG. 8, the monochromatic light and the two-color mixed light may be distributed to two separate spatial light modulators and modulated respectively.
[0039] また、 図 7に示した構成において、 波長選択性偏光素子 3 8 aと偏光素子 3 8 bとの間に少なくとも 1つの液晶素子を有するように構成しても良い。 また、 本実施例に係る投影装置おいて、 図 1 0に示すように、 光源にレー ザ一を用いることも可能である。 同図の例では、 R , G , B個別の照明光を 発する個別のレーザー光源のそれぞれの光路上に 1 /2 λ波長板 (1 /2 ;i wave p i ate) が光路に挿抜可能に配置されている。 光路内に 1 /2 λ波長板が配置され ている状態では光源からのレーザー光の偏光方向が 9 0 ° 回転する。 R , G , Βの各照明光のうち、 ひとつの波長に関する照明光路にのみ 1 /2 λ波長板を 挿入する動作を異なる周波数光路別に繰返すことによって、 上述の本実施例 に係る投影装置と同様の効果を得ることができる。  Further, in the configuration shown in FIG. 7, a configuration may be adopted in which at least one liquid crystal element is provided between the wavelength-selective polarizing element 3 8 a and the polarizing element 3 8 b. Further, in the projection apparatus according to the present embodiment, as shown in FIG. 10, it is possible to use a laser as the light source. In the example in the figure, a 1/2 λ wave plate (1/2; i wave pi ate) is placed in the optical path so that it can be inserted into and removed from the optical path of each individual laser source that emits R, G, and B illumination light. Has been. The polarization direction of the laser beam from the light source rotates 90 ° when a 1/2 λ wave plate is placed in the optical path. By repeating the operation of inserting a 1/2 λ wavelength plate only in the illumination light path related to one wavelength among the R, G, and 照明 illumination lights, the same as in the projection apparatus according to the above-described embodiment. The effect of can be obtained.
[0040] また、 本実施例に係る投影装置において、 投影レンズ 3 9による投影画像 を表示するスクリーンとして、 入射光の偏光方向によって反射率が異なる反 射型の偏光スクリーンを適用した場合、 当該反射型の偏光スクリーンは、 投 影光の偏光方向に対して最も反射率が高くなるように構成される。 また、 そ のスクリーンとして、 入射光の偏光方向によって透過率が異なる透過型の偏 光スクリーンを適用した場合、 当該透過型の偏光スクリーンは、 投影光の偏 光方向に対して最も透過率が高くなるように構成される。 [0040] In addition, in the projection apparatus according to the present embodiment, when a reflection type polarization screen having different reflectivity depending on the polarization direction of incident light is applied as a screen for displaying a projection image by the projection lens 39, the reflection is performed. Type polarizing screen It is configured to have the highest reflectance with respect to the polarization direction of the shadow light. In addition, when a transmission type polarization screen whose transmittance varies depending on the polarization direction of incident light is used as the screen, the transmission type polarization screen has the highest transmittance in the polarization direction of the projection light. It is comprised so that it may become.
[0041 ] また、 本実施形態に係る投影装置では、 偏光素子 3 8 bとして、 特定の偏 光方向の光のみを透過する、 いわゆる透過型の偏光素子を適用したが、 例え ば、 特定の偏光方向の光のみを反射する、 いわゆる反射型の偏光素子を適用 することも可能である。 この場合には、 その反射型の偏光素子で反射された 特定の偏光方向の光のみが投影レンズ 3 9へ導かれるように装置が構成され る。 なお、 反射型の偏光素子としては、 例えば偏光ビームスプリツター (P B S ) を適用することもできる。 この場合には、 その偏光ビームスプリッタ 一で反射された光のみが投影レンズ 3 9に導かれるように装置が構成される 。 また、 その他、 偏光素子 3 8 bとして、 透過する光の偏光方向が異なる複 数の偏光素子を接合したものを適用することもできるし、 或いは、 反射する 光の偏光方向が異なる複数の偏光素子を接合したものを適用することもでき る。 この場合には、 投影レンズ 3 9へ導く光の偏光方向に応じて、 対応する 偏光方向の光を透過または反射する偏光素子が投影光路に挿入される。 <実施例 2 >  [0041] In the projection apparatus according to the present embodiment, a so-called transmission type polarization element that transmits only light in a specific polarization direction is applied as the polarization element 3 8b. It is also possible to apply a so-called reflective polarizing element that reflects only light in the direction. In this case, the apparatus is configured such that only light having a specific polarization direction reflected by the reflective polarizing element is guided to the projection lens 39. For example, a polarization beam splitter (P B S) can be applied as the reflective polarizing element. In this case, the apparatus is configured such that only the light reflected by the polarizing beam splitter is guided to the projection lens 39. In addition, as the polarizing element 3 8 b, a polarizing element in which a plurality of polarizing elements having different polarization directions of transmitted light can be joined, or a plurality of polarizing elements having different polarization directions of reflected light can be applied. It is also possible to apply a material that has been joined. In this case, in accordance with the polarization direction of the light guided to the projection lens 39, a polarizing element that transmits or reflects light in the corresponding polarization direction is inserted into the projection optical path. <Example 2>
図 1 1は、 本発明の実施例 2に係る投影装置の主要構成を示す図である。 この投影装置では、 当該装置の光軸方向の装置筐体寸法を低減することが可 能になっている。  FIG. 11 is a diagram showing a main configuration of a projection apparatus according to Embodiment 2 of the present invention. In this projection apparatus, it is possible to reduce the size of the apparatus housing in the optical axis direction of the apparatus.
[0042] 同図において、 マイクロミラ一デバイス 4 6に入射する光源からの光は、 第 1のプリズムと第 2のプリズムからなる T I Rプリズム 4 7の T I R面で 反射し、 所望の角度で反射される。  [0042] In the figure, the light from the light source incident on the micromirror device 46 is reflected by the TIR surface of the TIR prism 47 comprising the first prism and the second prism, and is reflected at a desired angle. The
[0043] なお、 本実施例に係るマイクロミラーデバイス 4 6も、 実施例 1に係るマ イク口ミラ一デバイス 3 5と同様に、 アレイ状に配置された複数のマイクロ ミラ一素子を有し、 各マイクロミラ一素子はマイクロミラ一を有する。 すな わち、 本実施例に係るマイクロミラ一デバイス 4 6も、 複数のマイクロミラ —からなるマイクロミラ一アレイを有する。 また、 本実施例に係る光源は、 例えばレーザ光源や L E D光源等である。 [0043] Note that the micromirror device 46 according to the present embodiment also has a plurality of micromirror elements arranged in an array, like the microphone mirror device 35 according to the first embodiment. Each micromirror element has a micromirror. In other words, the micromirror device 46 according to the present embodiment also has a plurality of micromirrors. A micromirror array consisting of —. The light source according to the present embodiment is, for example, a laser light source or an LED light source.
[0044] マイクロミラ一デバイス上に形成された各マイクロミラ一素子のマイクロ ミラ一は制御回路 7 2 (後述の図 1 5乃至 1 7、 図 2 0、 図 2 1、 図 2 6、 及び図 2 8では図示を省略する) からの駆動信号に従って、 個別に傾斜方向 と変位時間を制御され、 照明光を投影光路に沿って、 投影光として反射する 。 投影光は前記 T I R面に臨界角以下で入射することで全反射を発生せず、 投影レンズ 4 8とマイクロミラ一デバイス 4 6の間に配置された透過型の力 ラーホイール 4 9に入射する。 ここで、 カラーホイール 4 9は、 配置可能な 位置において、 投影光束径がもつとも小さくなる位置に配置することが望ま しい。 一般に投影光束径がもっとも小さくなるのは投影レンズ 4 8の絞り位 置であり、 この近傍にカラ一ホイール 4 9を配置することが好ましい。 なお 、 マイクロミラ一デバイス 4 6と投影レンズ 4 8の絞り位置の間にカラ一ホ ィ一ル 4 9を配置することもできる。  [0044] The micromirror of each micromirror element formed on the micromirror device is a control circuit 7 2 (FIGS. 15 to 17 described later, FIG. 20, FIG. 21, FIG. 26, and FIG. The direction of tilt and displacement time are individually controlled according to the drive signal from (2-8, not shown), and the illumination light is reflected as projection light along the projection light path. Projection light is incident on the TIR surface at a critical angle or less and does not generate total reflection, but is incident on a transmission-type force wheel 4 9 disposed between the projection lens 48 and the micromirror device 46. . Here, it is desirable that the color wheel 49 is disposed at a position where the projected light beam diameter becomes small at a position where it can be disposed. In general, the diameter of the projected light beam is the smallest at the stop position of the projection lens 48, and it is preferable to arrange the color wheel 49 in the vicinity thereof. A color wheel 49 can be arranged between the aperture positions of the micromirror device 46 and the projection lens 48.
[0045] ここで、 カラーホイール 4 9は投影レンズ群を保持するレンズ保持部材に —体に保持されても良い。  Here, the color wheel 49 may be held on the body by a lens holding member that holds the projection lens group.
また、 図 1 2に示すように、 カラーホイール 4 9における光束の入射部以 外の領域 (同図の黒色部分) に光吸収処理を施すことにより不要光の空間光 変調器への反射と、 投影レンズ 4 8への不要光の入射を防止することができ る。 なお、 同図の 「E . D . 」 は、 入射する投影光束の有効径 (Effect i ve D i ameter) を示している。 また、 図 1 3に示すように、 カラ一ホイール 4 9に おける光束の入射部以外の領域を、 光軸に対してカラーフィルタ面と異なる 角度に形成して、 不要光を光路外に反射しても良い (同図の面 5 0 a、 5 0 b参照) 。 なお、 同図において、 5 1はカラ一ホイール 4 9の回転中心軸を 示している。  In addition, as shown in Fig. 12, reflection of unwanted light to the spatial light modulator is achieved by applying light absorption processing to the area other than the incident portion of the light beam in the color wheel 49 (black portion in the figure). It is possible to prevent unnecessary light from entering the projection lens 48. In the figure, “ED” indicates the effective diameter of the incident projected light beam. In addition, as shown in Fig. 13, an area other than the incident part of the light beam on the color wheel 49 is formed at an angle different from the color filter surface with respect to the optical axis, and unnecessary light is reflected outside the optical path. (Refer to planes 50a and 50b in the figure). In the figure, 51 denotes the rotation center axis of the color wheel 49.
[0046] 本実施例のように、 空間光変調器としてマイクロミラ一デバイスを使用す る場合、 変調光を投影光路に反射する "ON" 状態と、 投影光路以外に反射す る" OFF" 状態が切り替わる際の光軸の移動方向は、 カラ一フィルタ (カラー ホイール) の異なる光学特性領域を跨がない方向であることが望ましい。 [0046] When a micromirror device is used as a spatial light modulator as in this embodiment, the "ON" state in which the modulated light is reflected on the projection light path and the "OFF" state in which the light is reflected outside the projection light path The direction of movement of the optical axis when the It is desirable that the direction is such that it does not straddle different optical characteristic regions of the wheel.
[0047] 図 1 4は、 投影光路に配置されるカラーホイール 4 9と光束の関係を示す 図である。 同図において、 有効光束 (同図の白色部分) を挟む 2つのカラー ホイール中心を通る直線のなす角度を Θとする。 一方、 カラーホイール 4 9 の色分割数を n (同図では 3分割) とする。 カラーホイール 4 9が回転して 前記有効光束が異なる 2つの色境界をまたぐ回数は、 前記 nに等しい。 すな わちカラーホイールが 1回転する間のうち、 有効光束が異なる 2つの色境界 をまたぐ状態にある期間 (以降、 「色遷移期間」 と記す) は、 0 x n [deg. ] となる。 この色遷移期間における空間光変調器の制御方法に関して、 通常は 変調光を投影光路に導かないように制御することが一般的である。 この制御 法では、 色遷移期間が長ければ長いほど、 照明光の利用効率が低下してしま う。 また、 特にカラ一ホイールを用いた投影装置において色遷移期間を短く するためには、 光束径に対してカラーホイールを大きくしなければならない という不具合がある。 しかしながら制御自体は RGB各単色に対応した信号に基 づき空間光変調器を駆動するだけでよく、 制御容易である。 一方で特に輝度 向上を目的として、 色遷移期間においても空間光変調器による変調光を投影 光路に導き照明光の利用効率を向上する制御が知られている。 しかしながら 白、 あるいは混合色のための信号を生成しなければならず、 制御的には複雑 になり、 かつ色遷移期間を長くとるほど色純度が低下する。 以上に鑑みて本 実施例では、 色遷移期間が 2%≤ ( Θ X n ) /360≤5 0 %、 好適には 2%≤ ( Θ X n ) /360≤2 0 %となるようにホイール径、 光束径、 色分割数を決定する  FIG. 14 is a diagram showing the relationship between the color wheel 49 and the luminous flux arranged in the projection optical path. In the figure, Θ is the angle formed by a straight line passing through the centers of the two color wheels that sandwich the effective luminous flux (the white part of the figure). On the other hand, the number of color divisions of color wheel 4 9 is n (three divisions in the figure). The number of times that the color wheel 4 9 rotates and crosses two color boundaries where the effective luminous flux is different is equal to n. In other words, the period in which the effective luminous flux straddles two color boundaries (hereinafter referred to as “color transition period”) during the rotation of the color wheel is 0 x n [deg.]. Regarding the control method of the spatial light modulator during this color transition period, it is common to control so that the modulated light is not guided to the projection optical path. With this control method, the longer the color transition period, the less efficient the illumination light is used. Moreover, in order to shorten the color transition period particularly in a projection apparatus using a color wheel, there is a problem that the color wheel has to be increased with respect to the beam diameter. However, the control itself is easy to control because it only needs to drive the spatial light modulator based on the signals corresponding to each RGB color. On the other hand, for the purpose of improving luminance in particular, there is known control for improving the efficiency of use of illumination light by guiding light modulated by a spatial light modulator to a projection light path even during a color transition period. However, a signal for white or mixed colors must be generated, which is complicated in terms of control, and the color purity decreases as the color transition period increases. In view of the above, in this embodiment, the wheel is set so that the color transition period is 2% ≤ (ΘXn) / 360≤50%, preferably 2% ≤ (ΘXn) / 360≤20%. Determine the diameter, beam diameter, and number of color divisions
[0048] 以上、 本実施例に係る投影装置によれば、 投影レンズ 4 8の光軸に対し、 カラーホイール 4 9の回転軸が略平行になり、 投影装置の投影レンズ光軸方 向の筐体寸法の小型化が容易になる。 カラ一ホイール 4 9はマイクロミラ一 デバイス 4 6に近接して配置されるため、 例えばカラ一ホイール 4 9に送風 のためのフィンを設け、 マイクロミラ一デバイス 4 6の冷却を行うこともで きる。 上述の投影レンズ 4 8の光軸方向の装置躯体寸法を低減した投影装置 は、 例えば壁掛け式の投影装置などに特に好適である。 As described above, according to the projection apparatus according to the present embodiment, the rotation axis of the color wheel 49 is substantially parallel to the optical axis of the projection lens 48, and the housing of the projection apparatus in the direction of the optical axis of the projection lens Miniaturization of body dimensions is facilitated. Since the color wheel 4 9 is arranged close to the micro mirror device 4 6, for example, the fin 1 can be provided on the color wheel 4 9 to cool the micro mirror device 4 6. . Projector with reduced size of device casing in optical axis direction of projection lens 48 described above Is particularly suitable, for example, for a wall-mounted projection device.
[0049] なお、 本実施例に係る投影装置においては、 以下に示すような種々の変形 が可能である。  Note that the projection apparatus according to the present embodiment can be modified in various ways as described below.
まず、 本実施例に係る投影装置において、 投影光路にカラーホイール 4 9 を配置する場合に、 図 1 5に示すような構成とすることもできる。  First, in the projection apparatus according to the present embodiment, when the color wheel 4 9 is arranged in the projection optical path, a configuration as shown in FIG.
[0050] 同図において、 マイクロミラ一デバイス上に形成された各マイクロミラ一 素子のマイクロミラ一は図示しない制御回路 7 2からの駆動信号に従って、 個別に傾斜方向と変位時間を制御され、 照明光を投影光路に沿って、 投影光 として反射する。 投影光は前記 T I R面に臨界角以下で入射することで全反 射を発生せず、 投影レンズ 4 8とマイクロミラ一デバイス 4 6の間に配置さ れたカラーホイール 4 9に入射する。 カラーホイール 4 9を透過した光は偏 向ミラ一である折返しミラ一 (Fo l d i ng mi rror) 5 2で偏向された後、 投影 レンズ 4 8に入射し、 投影される。 係る構成によれば、 投影レンズ 4 8を除 く装置高さ寸法を比較的薄く構成することができ、 図 1 1に示した装置と同 様に、 装置の小型化を図ることができる。  [0050] In the figure, the micromirrors of each micromirror element formed on the micromirror device are individually controlled in inclination direction and displacement time in accordance with a drive signal from a control circuit 72, not shown, The light is reflected along the projection optical path as projection light. The projection light is incident on the TIR surface at a critical angle or less, and thus does not generate total reflection, but is incident on the color wheel 49 disposed between the projection lens 48 and the micromirror device 46. The light transmitted through the color wheel 49 is deflected by a folding mirror 52, which is a polarization mirror, and then enters the projection lens 48 and is projected. According to such a configuration, the height of the device can be made relatively thin except for the projection lens 48, and the size of the device can be reduced as in the device shown in FIG.
[0051 ] ここで、 カラ一ホイール 4 9は、 図 1 6に示したような反射型フィルタ ( 反射型カラ一ホイール) 4 9 'であっても良い。 係る構成によれば、 図 1 5 に示した折返しミラー 5 2が不要となる。  Here, the color wheel 4 9 may be a reflection type filter (reflection type color wheel) 4 9 ′ as shown in FIG. According to such a configuration, the folding mirror 52 shown in FIG.
[0052] また、 上述した構成において、 使用する透過型カラ一ホイール、 反射型力 ラーホイール共に光軸に対して傾斜して配置しても良い。 傾斜して配置する ことによりスペース効率を向上させたり、 不要光の反射を制御してコントラ ストを向上させたりすることができる。  [0052] In the above-described configuration, both the transmission type color wheel and the reflection type color wheel to be used may be arranged to be inclined with respect to the optical axis. By placing it at an angle, it is possible to improve space efficiency and to improve the contrast by controlling the reflection of unnecessary light.
[0053] また、 本実施例に係る投影装置において、 カラ一ホイール 4 9の代わりに 、 図 1 7に示すような直動するカラ一フィルタ 5 3を配置しても良い。 係る 構成によれば、 フィルタ外形を比較的小型にすることができる。 さらに、 光 源としてレーザー光源を用いることで、 従来と同様の解像度を保ったまま、 投影レンズ 4 8の F値を大きくすることができる。 これにより投影光路におけ る光束を小径化することができ、 カラーフィルタ 5 3の小型化が可能になる 。 また、 カラ一フィルタ 53は、 図 1 8に示すようなフアブリペロー干渉法 を用いたカラ一フィルタでもよい。 同図に示したカラ一フィルタは、 反射率 (Reflectance) が Rの一対の反射膜が微小な間隙を設けて平行に配置されて いる。 ここで反射膜の間隙長 dをピエゾ素子などのァクチユエ一タを用いて 変化させることにより、 透過光の波長を選択的に変化させることができる。 Further, in the projection apparatus according to the present embodiment, a linearly moving color filter 53 as shown in FIG. 17 may be arranged instead of the color wheel 49. According to such a configuration, the outer shape of the filter can be made relatively small. Furthermore, by using a laser light source as the light source, the F value of the projection lens 48 can be increased while maintaining the same resolution as before. This makes it possible to reduce the diameter of the light beam in the projection optical path and to reduce the size of the color filter 53. . The color filter 53 may be a color filter using the Fabry-Perot interferometry as shown in FIG. In the color filter shown in the figure, a pair of reflective films having a reflectivity R are arranged in parallel with a minute gap. Here, the wavelength of the transmitted light can be selectively changed by changing the gap length d of the reflecting film using an actuator such as a piezo element.
[0054] ここで透過率 tは、 [0054] Here, the transmittance t is
t = (1-R) 2/(1-R) 2+4Rsin2((5/2)  t = (1-R) 2 / (1-R) 2 + 4Rsin2 ((5/2)
δ= Απά/λ  δ = Απά / λ
で表される。 但し、 R :反射率、 d :反射膜間距離、 λ :波長である。  It is represented by Where R: reflectance, d: distance between reflection films, and λ: wavelength.
[0055] 所望の波長 λにおいて透過率が最大となるように、 反射膜間距離 dを調整 することにより、 透過光の周波数を選択可能となる。 これにより、 入射光 (i ncident l ight) のうち、 選択された周波数 (波長) の色の光 (colored I igh t) を透過させることができる。 [0055] The frequency of transmitted light can be selected by adjusting the inter-reflective film distance d so that the transmittance becomes maximum at a desired wavelength λ. As a result, light (colored Iigh) of the selected frequency (wavelength) out of incident light (incident light) can be transmitted.
[0056] また、 本実施例に係る投影装置において、 図 1 9に示すように、 使用する カラーホイールまたはカラーフィルタを透過光別に異なる厚さ (同図の例で は d 1、 d 2、 d 3) に設計し、 投影レンズ 48の色収差 (軸上色収差) を 補正するように構成しても良い。 投影レンズにおいては、 照明光の周波数に よって屈折率が異なることに起因して色毎に結像位置がずれてしまう、 いわ ゆる色収差が知られている。 一般に色収差の補正には、 色による屈折率差の 少ない凸レンズと、 色による屈折率差の大きい凹レンズを組み合わせたり、 異なる種類のガラスで作つたレンズを組み合わせたりするなどの工夫がされ ているが、 投影光路に波長選択フィルタを配置することにより、 周波数ごと の結像位置を調整することができる。 In the projection apparatus according to the present embodiment, as shown in FIG. 19, the color wheel or color filter to be used has a different thickness for each transmitted light (d 1, d 2, d It may be designed in 3) to correct the chromatic aberration (axial chromatic aberration) of the projection lens 48. In the projection lens, a so-called chromatic aberration is known in which the image forming position shifts for each color due to the difference in refractive index depending on the frequency of illumination light. In general, correction of chromatic aberration has been devised by combining a convex lens with a small refractive index difference by color and a concave lens with a large refractive index difference by color, or by combining lenses made of different types of glass. By arranging a wavelength selection filter in the projection optical path, the imaging position for each frequency can be adjusted.
[0057] 一例として、 いま、 波長が 550nm (緑色) 基準でレンズ設計を行い、 波長が 656nm (赤色) 、 470nm (青色) の軸上色収差を A X (え) 、 カラーホイール またはカラ一フィルタの屈折率を η (λ) としたとき、 カラ一ホイールまたは カラ一フィルタの厚さ補正量 Ad (λ) は、 [0057] As an example, the lens design is based on a wavelength of 550nm (green), and the axial chromatic aberration of wavelengths 656nm (red) and 470nm (blue) is AX (e), and the color wheel or color filter is refracted. When the rate is η (λ), the thickness correction amount Ad (λ) of the color wheel or color filter is
△ d U) =-AX U) /(1-1/n U) ) となる。 上式を満足するように、 カラ一ホイールまたはカラ一フィルタの各 色の厚さを設定することで、 投影レンズの色収差を補正することができる。 △ d U) = -AX U) / (1-1 / n U)) It becomes. The chromatic aberration of the projection lens can be corrected by setting the thickness of each color of the color wheel or color filter so that the above equation is satisfied.
[0058] また、 本実施例に係る投影装置において、 図 2 0に示すように、 マイクロ ミラーデバイスと投影レンズの間に中間像を形成するように構成することも 可能である。 この場合、 マイクロミラ一デバイス 4 6のマイクロミラ一で変 調された光は第 1の投影レンズ 5 4 aによって結像される。 第 1の投影レン ズ 5 4 aによる結像位置には投影光を第 2の投影レンズ 5 4 bに伝播するた めのフィ一ルドレンズ 5 5が配置されていて、 第 1の投影レンズ 5 4 aの射 出瞳の像を第 2の投影レンズ 5 4 bの入射瞳位置に形成する。 ここでカラー ホイール 4 9は、 フィールドレンズ 5 5の近傍に配置されている。 係る構成 によれば、 第 2の投影レンズ 5 4 bの物体側焦点距離を短く設定できると共 に、 第 1の投影レンズ 5 4 aの倍率を 1倍以下とすることで光束径を小さく でき、 その結果カラーホイール径を小さくすることができる。 なお、 カラー ホイール 4 9は、 第 1の投影レンズ 5 4 aの絞り位置近傍、 第 2の投影レン ズ 5 4 bの絞り位置近傍、 もしくは第 1の投影レンズ 5 4 aと第 2の投影レ ンズ 5 4 bの絞り位置の間に配置することもできる。  In addition, the projection apparatus according to the present embodiment can be configured to form an intermediate image between the micromirror device and the projection lens, as shown in FIG. In this case, the light modulated by the micromirror of the micromirror device 46 is imaged by the first projection lens 54 a. A field lens 5 5 for propagating projection light to the second projection lens 5 4 b is disposed at the image formation position by the first projection lens 5 4 a, and the first projection lens 5 4 An image of the exit pupil of a is formed at the entrance pupil position of the second projection lens 5 4 b. Here, the color wheel 49 is disposed in the vicinity of the field lens 55. According to such a configuration, the object-side focal length of the second projection lens 54b can be set short, and the beam diameter can be reduced by setting the magnification of the first projection lens 54b to 1x or less. As a result, the color wheel diameter can be reduced. Note that the color wheel 49 is near the aperture position of the first projection lens 54a, near the aperture position of the second projection lens 54b, or between the first projection lens 54a and the second projection lens. It is also possible to place it between the throttle positions of the sensors 5 4 b.
[0059] また、 本実施例に係る投影装置において、 図 2 1に示すように、 波長選択 フィルタを投影レンズの絞り位置近傍 (例えばマイクロミラ一デ /くイス 4 6 と投影レンズ 4 8の絞り位置の間など) に配置し、 さらに投影光の強度を調 整可能に構成することも可能である。 この場合、 同図に示したように、 カラ 一ホイール 4 9を保持するハウジング 5 6には略扇形状の光学絞り部材 5 7 がァクチユエ一タ (たとえば口一タリ一ソレノイ ドなど) によって光路に揷 抜可能に保持されている。 なお、 同図の A、 Bは、 位置関係を明確にするた めに記した符号である (後述の図 2 3において同じ) 。 光学絞り部材 5 7は 投影レンズ 4 8の絞り位置に近接して配置されるので、 光路に絞りが挿入さ れることによって投影光量が減少し、 投影画像がけられることなく投影画像 の明るさを減ずることが可能である。 なお、 光学絞り部材 5 7の形態は同図 に示したものに限定されず、 たとえば図 2 2に示したような絞り形を連続的 に可変できるしぼり羽根を用いた構造であつても良いし、 図 2 3に示したよ うな NDフィルタであっても良い。 Further, in the projection apparatus according to the present embodiment, as shown in FIG. 21, the wavelength selection filter is arranged near the aperture position of the projection lens (for example, the aperture of the micromirror / chair 4 6 and the projection lens 48). It is also possible to arrange such that the intensity of the projection light can be adjusted. In this case, as shown in the figure, a substantially fan-shaped optical diaphragm member 5 7 is placed in the optical path by an actuator (for example, a mouthpiece, a solenoid, etc.) in the housing 56 holding the color wheel 49.保持 It is held so that it can be removed. In addition, A and B in the figure are the symbols used to clarify the positional relationship (the same applies to Fig. 23 described later). Since the optical aperture member 5 7 is arranged close to the aperture position of the projection lens 48, the amount of projection light is reduced by inserting the aperture in the optical path, and the brightness of the projection image is reduced without losing the projection image. It is possible. The form of the optical diaphragm member 57 is not limited to that shown in the figure. For example, the diaphragm form shown in FIG. It is possible to use a structure that uses variable squeezing blades, or an ND filter as shown in Fig. 23.
[0060] また、 本実施例に係る投影装置において、 投影画像の明るさを変化させる ために、 図 2 4に示すようなカラ一フィルタからなるカラ一ホイールを適用 することも可能である。 同図に示したカラ一ホイールは、 複数の周波数選択 フィルタを有すると共に、 同心円状に透過率 (または反射率) が異なるフィ ルタ領域を持つように構成されている。 さらに、 このカラ一ホイールは光束 に対して同図の両矢印方向に移動可能に構成されていて、 表示画像に連動し て透過率 (または反射率) の高い周波数選択フィルタ領域と、 透過率 (また は反射率) の低い周波数選択フィルタとを、 選択的に使用可能となっている 。 係る構成によれば、 カラーホイールを投影レンズの絞り位置に近接して配 置しなくても投影光の強度を変更することができる。  In the projection apparatus according to the present embodiment, it is also possible to apply a color wheel composed of a color filter as shown in FIG. 24 in order to change the brightness of the projected image. The color wheel shown in the figure has a plurality of frequency selection filters and a concentric filter region having different transmittances (or reflectances). Furthermore, this color wheel is configured to be movable in the direction of the double arrow in the figure with respect to the luminous flux, and a frequency selective filter region having a high transmittance (or reflectance) in conjunction with the display image, and a transmittance ( Alternatively, a frequency selective filter having a low reflectivity can be selectively used. According to such a configuration, the intensity of the projection light can be changed without arranging the color wheel close to the aperture position of the projection lens.
[0061 ] また、 本実施例に係る投影装置において、 投影画像の明るさを変化させる ために、 図 2 5に示すような液晶デバイスを設けるようにすることも可能で ある。 前述の図 2 1乃至 2 4を用いて説明した機械的動作からなる光学絞り 、 明るさ調整手段に対し、 同位置に液晶デバイス 5 8を配置し、 光量フィル タ、 もしくは光学絞りとして作用させる。 係る構成によれば動作音の軽減が 可能である。 なお、 図 2 5の右側部分において、 その上側には、 液晶デバィ ス 5 8を光量フィルタとして作用させたときの状態を示し、 その下側には、 液晶デバイス 5 8を光学絞りとして作用させたときの状態を示している。  In the projection apparatus according to the present embodiment, a liquid crystal device as shown in FIG. 25 can be provided in order to change the brightness of the projection image. The liquid crystal device 58 is disposed at the same position with respect to the optical diaphragm and the brightness adjusting means having the mechanical operation described with reference to FIGS. 21 to 24 described above, and acts as a light quantity filter or an optical diaphragm. According to such a configuration, it is possible to reduce operating noise. In the right side of FIG. 25, the upper side shows the state when the liquid crystal device 58 acts as a light filter, and the lower side shows the state where the liquid crystal device 58 acts as an optical aperture. Shows the state.
[0062] ここで、 前述の図 2 1乃至図 2 5を用いて説明した構成において、 投影画 像の明るさを制御する明るさ調整手段は、 上記に記載の形態に限定されるも のではなく、 たとえば光軸に直動して挿抜される絞りでも良いし、 透過率の 異なるフィルタ領域の分割形状が同心円状でなくても良い。 また、 明るさ調 整手段は、 波長選択フィルタのハウジングに直接構成されていても良いし、 個別に設置されても良い。  [0062] Here, in the configuration described with reference to Figs. 21 to 25, the brightness adjustment means for controlling the brightness of the projected image is not limited to the above-described embodiment. For example, a diaphragm that is directly inserted into and removed from the optical axis may be used, or the division shape of the filter regions having different transmittances may not be concentric. Further, the brightness adjusting means may be configured directly on the housing of the wavelength selection filter or may be individually installed.
[0063] 以上のように図 2 1乃至 2 5を用いて説明した構成によれば、 表示画像に よって投影光路に射出する光量を制御可能となり、 従来の空間光変調器によ る階調再生とあわせ、 より精微な階調表現が可能となる。 また、 本来の空間 光変調器では少なからず発生する迷光による黒浮き (黒が濃いグレーのよう になる現象) を、 見かけ上軽微にすることが可能となり、 その結果ダイナミ ックレンジの拡大が可能となる。 As described above, according to the configuration described with reference to FIGS. 21 to 25, the amount of light emitted to the projection optical path can be controlled by the display image, and the conventional spatial light modulator can be used. Along with the gradation reproduction, more detailed gradation expression is possible. In addition, it is possible to make the black float (a phenomenon in which black becomes dark gray) due to stray light generated in the original spatial light modulator apparently light, and as a result, the dynamic range can be expanded. .
[0064] また、 本実施例に係る投影装置において、 図 2 6に示すように、 カラ一ホ ィ一ルを円筒形に形成することも可能である。 この場合、 同図に示したよう に、 円筒形カラ一ホイール 5 9の円筒面にはそれぞれ透過周波数の異なる波 長選択コ一卜が施されている。 円筒の内径は照明光をマイクロミラーデバィ ス 4 6に導光するための光学素子 (4 7 ) 、 及びマイクロミラ一デバイス 4 6が収納される大きさに設定されていて、 マイクロミラ一デバイス 4 6から の投影光が前記波長選択コ一ト面を通過するように、 マイクロミラーデバィ ス 4 6及び、 導光光学素子 (4 7 ) の少なくとも一部が前記円筒形カラーホ ィ一ル 5 9に内包される。 本例においては、 図 2 7に示すように、 円筒形力 ラ一ホイール 5 9の底面に送風のためのフィン構造を形成して、 マイクロミ ラーデバイス 4 6の冷却を行うこともできる。 さらに円筒形カラ一ホイール 5 9の底面に、 マイクロミラ一デバイス 4 6からの O F F光が吸収されるよ うな構造としたり、 O F F光を円筒形カラ一ホイール 5 9の底面から外部に 透過させ、 外部の反射防止部材に吸収させることもできる。 このとき、 前述 の冷却フィンにて外部反射防止部材の冷却を行うとともに、 円筒形力ラーホ ィ一ル内部に気流を生じさせ、 マイクロミラ一デバイス 4 6の冷却を実施し ても良い。  Further, in the projection apparatus according to the present embodiment, as shown in FIG. 26, the color wheel can be formed in a cylindrical shape. In this case, as shown in the figure, the cylindrical surface of the cylindrical color wheel 59 is subjected to wavelength selection cues having different transmission frequencies. The inner diameter of the cylinder is set to a size that can accommodate the optical element (4 7) for guiding the illumination light to the micromirror device 46 and the micromirror device 46, and the micromirror device At least a part of the micromirror device 46 and the light guide optical element (47) are arranged so that the projection light from 46 passes through the wavelength selection coating surface. Included in 9. In this example, as shown in FIG. 27, the micromirror device 46 can be cooled by forming a fin structure for blowing air on the bottom surface of the cylindrical force roller wheel 59. Furthermore, the bottom of the cylindrical color wheel 59 is structured to absorb the OFF light from the micromirror device 46, or the OFF light is transmitted to the outside from the bottom of the cylindrical color wheel 59, It can also be absorbed by an external antireflection member. At this time, the external antireflection member may be cooled by the above-described cooling fins, and an air flow may be generated inside the cylindrical force roller to cool the micromirror device 46.
[0065] 図 2 6及び図 2 7を用いて説明した例においては、 投影光束径に対する前 記波長選択コ一ト領域が相対的に狭くなり、 ブランキング期間が増大するた め、 円筒形カラ一ホイール 5 9の回転を不等角速度回転としても良い。 カラ 一ホイールの不等角速度回転は本例に限定されず、 通常の円盤状カラーホイ —ルに適用しても良い。 また、 本例において、 円筒形カラ一ホイール 5 9は マイクロミラーデバィス 4 6を内包するように配置したが、 単に投影光路に 配置してもよい。 [0066] また、 図 2 6及び図 2 7を用いて説明した例においては、 カラ一ホイール を円筒形に形成したが、 これを、 例えば、 略円筒形に形成することもできる し、 断面が多角形の筒状に形成することもできる。 [0065] In the example described with reference to Figs. 26 and 27, the wavelength selection coat region with respect to the projected beam diameter becomes relatively narrow, and the blanking period increases. The rotation of one wheel 59 may be an unequal angular speed rotation. The unequal angular velocity rotation of the color wheel is not limited to this example, and may be applied to a normal disk-shaped color wheel. Further, in this example, the cylindrical color wheel 59 is arranged so as to contain the micromirror device 46, but it may be simply arranged in the projection optical path. [0066] In the example described with reference to FIG. 26 and FIG. 27, the color wheel is formed in a cylindrical shape. However, it can be formed in, for example, a substantially cylindrical shape and has a cross-section. It can also be formed in a polygonal cylindrical shape.
[0067] また、 本実施例に係る投影装置において、 図 2 8に示すように、 マイクロ ミラ一デ /くィスと投影レンズとの間にシリンドリカルレンズを配置するよう に構成することも可能である。 なお、 同図において、 下段に示した構成は、 上段に示した構成の A A '断面図である。 この場合、 同図に示したように、 マイクロミラ一デバイス 4 6に入射する光源光は、 第 1のプリズムと第 2の プリズムからなる T I Rプリズム 4 7の T I R面で反射し、 所望の角度で反 射される。 マイクロミラ一デバイス上に形成された各マイク口ミラ一素子の マイクロミラ一は図示しない制御回路 7 2からの駆動信号に従って、 個別に 傾斜方向と変位時間が制御され、 照明光を投影光路に沿って、 投影光として 反射する。 投影光は前記 T I R面に臨界角以下で入射することで全反射を発 生せず、 T I Rプリズム 4 7の出射面に向かう。  Further, in the projection apparatus according to the present embodiment, as shown in FIG. 28, it is also possible to configure so that a cylindrical lens is arranged between the micromirror / chip and the projection lens. is there. In the figure, the configuration shown in the lower part is a cross-sectional view of the configuration shown in the upper part. In this case, as shown in the figure, the light source light incident on the micromirror device 46 is reflected by the TIR surface of the TIR prism 47 comprising the first prism and the second prism, and at a desired angle. Reflected. The micro mirror of each microphone mouth mirror element formed on the micro mirror device is individually controlled in the tilt direction and displacement time according to the drive signal from the control circuit 72, not shown, and the illumination light is projected along the projection optical path. And reflected as projection light. When the projection light is incident on the TIR surface at a critical angle or less, total reflection does not occur, and the projection light is directed to the exit surface of the TIR prism 47.
[0068] T I Rプリズム 4 7の出射面には、 カラ一ホイール 4 9の径方向と垂直な 方向にのみパワーを有する第 1のシリンドリカルレンズ 6 0 aが配置されて いる。 第 1のシリンドリカルレンズ 6 0 aの作用によって、 光束は後述の図 2 9に示すようにカラ一ホイール 4 9の径方向に長辺を持つ異形光束 (同図 のカラ一ホイール内の楕円 6 1で表された部分) となる。 カラ一ホイール 4 9を透過した光束は、 投影レンズ 4 8の入射面近傍に配置され、 前記第 1の シリンドリカルレンズ 6 0 aによる光束の歪を補正する第 2のシリンドリカ ルレンズ 6 0 bに入射し、 正規の光束形状に補正され投影レンズ 4 8に入射 する。  A first cylindrical lens 60 a having power only in the direction perpendicular to the radial direction of the color wheel 49 is disposed on the exit surface of the TIR prism 47. Due to the action of the first cylindrical lens 60a, the luminous flux is a deformed luminous flux having a long side in the radial direction of the color wheel 4 9 as shown in Fig. 29 (described later). The part represented by The light beam that has passed through the color wheel 49 is disposed in the vicinity of the incident surface of the projection lens 48, and is incident on the second cylindrical lens 60b that corrects distortion of the light beam by the first cylindrical lens 60a. The light beam is corrected to a regular luminous flux shape and enters the projection lens 48.
[0069] 図 2 9は、 通常の光束におけるブランキングタイムと、 第 1のシリンドリ カルレンズ 6 0 aによって好適に変形した光束によるブランキングタイムの 差を示した一例である。 なお、 同図において、 上段に示すカラ一ホイール 4 9内の円 6 2で表す部分は通常の光束を示し、 楕円 6 1で表す部分は第 1の シリンドリカルレンズ 6 0 aによって好適に変形した光束 (異形光束) を示 している。 また、 同図下段において、 上側は通常の光束におけるブランキン グタイム (斜線部分) を示し、 下側は第 1のシリンドリカルレンズ 6 0 aに よって好適に変形した光束 (異形光束) によるブランキングタイム (斜線部 分) を示している。 同図に示したように、 カラ一ホイールの径が同一であれ ば、 異形光束の場合のほうが照明光を有効に利用でき、 ブランキングタイム を通常光束の場合と同一とすれば、 図 3 0に示すように、 カラ一ホイールの 径を小さくすることができる。 すなわち、 図 3 0に示したカラーホイールの 直径 0 B <図 2 9に示したカラ一ホイールの直径 0 Aとすることができる。 FIG. 29 shows an example of the difference between the blanking time for a normal light beam and the blanking time for a light beam suitably deformed by the first cylindrical lens 60 a. In the figure, the portion represented by a circle 62 in the color wheel 4 9 shown in the upper part represents a normal light beam, and the portion represented by an ellipse 61 represents a light beam suitably deformed by the first cylindrical lens 60a. Indicates (irregular luminous flux) is doing. In the lower part of the figure, the upper side shows the blanking time (hatched area) for a normal light beam, and the lower side shows the blanking time (hatched line) due to a light beam (atypical light beam) deformed suitably by the first cylindrical lens 60a. Part). As shown in the figure, if the diameter of the color wheel is the same, the illumination light can be used more effectively in the case of the irregular light beam, and if the blanking time is the same as that in the case of the normal light beam, the figure 3 0 As shown in the figure, the diameter of the color wheel can be reduced. That is, the diameter 0 B of the color wheel shown in FIG. 30 <the diameter 0 A of the color wheel shown in FIG.
[0070] なお、 本例において、 第 2のシリンドリカルレンズ 6 0 bを用いずマイク 口ミラ一デバイス 4 6に表示する画像をあらかじめ歪ませておいても良い。 また、 本例において、 第 1のシリンドリカルレンズ 6 0 aに対して、 照明光 を有効に取り込むため、 照明光路の N A (Numer i ca l Aperture) を好適に光 軸に対して非対称としておくことが望ましい。 更には、 光源としてレーザ一 アレイや L E Dアレイなど複数の発光部を有する光源を用いる場合、 前記非 対称な N Aのうち高 N Aとなる方向を、 前記複数の発光部の整列方向に合わ せれば、 好適である。  In this example, the image to be displayed on the microphone mirror device 46 may be distorted in advance without using the second cylindrical lens 60 b. In this example, the NA (Numerical Aperture) of the illumination optical path is preferably asymmetric with respect to the optical axis in order to effectively capture the illumination light with respect to the first cylindrical lens 60 a. desirable. Further, when a light source having a plurality of light emitting parts such as a laser array or an LED array is used as a light source, if the direction of high NA of the non-symmetric NA is matched with the alignment direction of the plurality of light emitting parts, Is preferred.
[0071 ] また、 上述のように縦横でパワーの異なる光学素子を用いて光束を異形に しない場合でも、 有効光束の短辺方向がカラーホイールの色領域を横切る方 向に構成し、 ブランキングタイムを最小におさえることが基本的に望ましい  [0071] In addition, as described above, even when optical elements having different powers are used in the vertical and horizontal directions, the short side direction of the effective light beam is configured to cross the color region of the color wheel, and the blanking time is set. It is basically desirable to minimize
[0072] 以上、 本発明について詳細に説明したが、 本発明は上記実施形態に限定さ れず、 本発明の要旨を逸脱しない範囲において、 各種の改良及び変更を行つ ても良いのは勿論である。 例えば、 実施例 1 (変形例も含む) で説明した構 成に、 実施例 2 (変形例も含む) で説明した構成の一部を適用することも可 能であるし、 実施例 2 (変形例も含む) で説明した構成に、 実施例 1 (変形 例も含む) で説明した構成の一部を適用することも可能であるし、 各実施例 において、 変形例で説明した構成に別の変形例で説明した構成の一部を適用 することも可能である。 以上、 本発明によれば、 投影光の偏光性を正しく保つことができ、 例えば 偏光スクリーンとの組み合わせ使用に際して、 最大限の効果を得ることがで きる。 また、 装置形態の小型化に鑑みて、 好適な光学部材の配置が可能にな る。 投影光路にカラーフィルタを配置し、 各色のフィルタ領域に異なる特性 を具備させることで、 投影レンズの色収差を補正するように構成することが できる。 投影レンズの絞り位置に明るさ変調機能を有するカラーフィルタを 配置することでダイナミックレンジを拡大することができる。 [0072] While the present invention has been described in detail above, the present invention is not limited to the above embodiment, and various improvements and modifications may be made without departing from the scope of the present invention. is there. For example, it is possible to apply a part of the configuration described in the second embodiment (including the modified example) to the configuration described in the first embodiment (including the modified example). It is also possible to apply a part of the configuration described in the first embodiment (including the modified example) to the configuration described in (including the example). In each example, the configuration described in the modified example is different from the configuration described in the modified example. It is also possible to apply a part of the configuration described in the modification. As described above, according to the present invention, the polarizability of the projection light can be maintained correctly, and the maximum effect can be obtained, for example, when used in combination with a polarizing screen. Further, in view of the downsizing of the apparatus configuration, it is possible to arrange a suitable optical member. By arranging a color filter in the projection optical path and providing each color filter region with different characteristics, it is possible to correct the chromatic aberration of the projection lens. The dynamic range can be expanded by arranging a color filter having a brightness modulation function at the aperture position of the projection lens.

Claims

請求の範囲 The scope of the claims
[1 ] 投影装置であって、  [1] a projection device,
光源と、  A light source;
空間光変調器と、  A spatial light modulator;
前記空間光変調器を制御する制御回路と、  A control circuit for controlling the spatial light modulator;
異なる周波数の光線を所定の周期で透過または反射するフィルタ部材と、 前記空間光変調器からの変調光を投影面に投影する投影レンズと、 を有し、  A filter member that transmits or reflects light beams having different frequencies at a predetermined period, and a projection lens that projects the modulated light from the spatial light modulator onto a projection surface,
前記フィルタ部材は、 前記投影レンズの絞り位置近傍、 もしくは前記空間 光変調器と前記投影レンズの絞り位置の間に配置され、 前記フィルタ部材に よつて異なる 2つの周波数の光線を同時に透過、 または反射する時間の合計 は、 前記周期の 2 %以上 5 0 %以下であることを特徴とする。  The filter member is disposed in the vicinity of the aperture position of the projection lens or between the spatial light modulator and the aperture position of the projection lens, and simultaneously transmits or reflects light beams having two frequencies that differ depending on the filter member. The total amount of time is 2% or more and 50% or less of the period.
[2] 請求項 1に記載の投影装置であって、 [2] The projection device according to claim 1,
前記空間光変調器は複数のマイク口ミラーを有するマイク口ミラーデバィ スであることを特徴とする。  The spatial light modulator is a microphone mouth mirror device having a plurality of microphone mouth mirrors.
[3] 請求項 2に記載の投影装置であって、 [3] The projection device according to claim 2,
前記マイクロミラーの偏向によって移動する投影光束の移動方向は、 前記 フィルタ部材の異なる光学特性を有する領域を跨がない方向であることを特 徵とする。  The moving direction of the projected light beam that is moved by the deflection of the micromirror is a direction that does not straddle regions having different optical characteristics of the filter member.
[4] 請求項 1に記載の投影装置であって、  [4] The projection device according to claim 1,
前記フィルタ部材は、 前記空間光変調器による変調光の有効光束に異なる 特性のフィルタが所定の周期で挿抜されることにより透過光、 または反射光 の周波数を決定するものであって、  The filter member determines a frequency of transmitted light or reflected light by inserting and extracting a filter having a different characteristic from an effective light flux of modulated light by the spatial light modulator at a predetermined period,
前記フィルタ部材の異なる特性のフィルタ領域が前記有効光束を横切る方 向は、 前記有効光束の短辺方向であることを特徴とする。  The direction in which the filter regions having different characteristics of the filter member cross the effective light beam is the short side direction of the effective light beam.
[5] 請求項 1に記載の投影装置であって、 [5] The projection device according to claim 1,
前記フィルタ部材は、 前記空間光変調器と前記投影レンズの絞り位置との 間に配置され、 前記投影レンズの軸上色収差を補正することを特徴とする。 The filter member is disposed between the spatial light modulator and a stop position of the projection lens, and corrects axial chromatic aberration of the projection lens.
[6] 請求項 1に記載の投影装置であって、 [6] The projection device according to claim 1,
前記フィルタ部材は、 略円筒形状、 または断面が多角形の筒形状を有する ことを特徴とする。  The filter member has a substantially cylindrical shape or a cylindrical shape having a polygonal cross section.
[7] 請求項 1に記載の投影装置であって、 [7] The projection device according to claim 1,
前記フィルタ部材は、 一対の反射膜を微小空隙を介して配置したファブリ ペロー型カラ一フィルタであることを特徴とする。  The filter member is a Fabry-Perot type color filter in which a pair of reflective films are arranged via a minute gap.
[8] 請求項 1に記載の投影装置であって、 [8] The projection device according to claim 1,
前記フィルタ部材は特定の周波数の光線を透過するとともに、 透過光の強 度を調整可能に構成されていることを特徴とする。  The filter member is configured to transmit light of a specific frequency and adjust the intensity of transmitted light.
[9] 投影装置であって、 [9] a projection device,
光源と、  A light source;
空間光変調器と、  A spatial light modulator;
前記空間光変調器を制御する制御回路と、  A control circuit for controlling the spatial light modulator;
異なる周波数の光線を所定の周期で透過または反射するフィルタ部材と、 前記空間光変調器からの変調光を結像する第 1の投影レンズと、 前記第 1の投影レンズによって形成される像をリレーして投影面に投影する 第 2の投影レンズと、  A filter member that transmits or reflects light beams having different frequencies at a predetermined period; a first projection lens that forms an image of modulated light from the spatial light modulator; and an image formed by the first projection lens is relayed. A second projection lens that projects onto the projection surface,
を有し、  Have
前記フィルタ部材は、 前記第 1の投影レンズによる結像面近傍、 前記第 1の 投影レンズの絞り位置近傍、 前記第 2の投影レンズの絞り位置近傍、 もしく は前記第 1の投影レンズと前記第 2の投影レンズの絞り位置の間に配置され ることを特徴とする。  The filter member includes a vicinity of an image plane formed by the first projection lens, a vicinity of a diaphragm position of the first projection lens, a vicinity of a diaphragm position of the second projection lens, or the first projection lens and the It is arranged between the aperture positions of the second projection lens.
[10] 請求項 9に記載の投影装置であって、 [10] The projection device according to claim 9,
前記空間光変調器は複数のマイク口ミラーを有するマイク口ミラーデバィ スであることを特徴とする。  The spatial light modulator is a microphone mouth mirror device having a plurality of microphone mouth mirrors.
[1 1 ] 請求項 1 0に記載の投影装置であって、 [1 1] The projection device according to claim 10,
前記マイクロミラーの偏向によって移動する投影光束の移動方向は、 前記 フィルタ部材の異なる光学特性を有する領域を跨がない方向であることを特 徵とする。 The direction of movement of the projected light beam that is moved by the deflection of the micromirror is a direction that does not straddle the regions having different optical characteristics of the filter member. Say it.
[12] 請求項 9に記載の投影装置であって、  [12] The projection device according to claim 9,
前記フィルタ部材は、 前記空間光変調器による変調光の有効光束に異なる 特性のフィルタが所定の周期で挿抜されることにより透過光、 または反射光 の周波数を決定するものであって、  The filter member determines a frequency of transmitted light or reflected light by inserting and extracting a filter having a different characteristic from an effective light flux of modulated light by the spatial light modulator at a predetermined period,
前記フィルタ部材の異なる特性のフィルタ領域が前記有効光束を横切る方 向は、 前記有効光束の短辺方向であることを特徴とする。  The direction in which the filter regions having different characteristics of the filter member cross the effective light beam is the short side direction of the effective light beam.
[13] 請求項 9に記載の投影装置であって、 [13] The projection device according to claim 9,
前記フィルタ部材は、 前記空間光変調器と前記投影レンズの絞り位置との 間に配置され、 前記投影レンズの軸上色収差を補正することを特徴とする。  The filter member is disposed between the spatial light modulator and a stop position of the projection lens, and corrects axial chromatic aberration of the projection lens.
[14] 請求項 9に記載の投影装置であって、 [14] The projection device according to claim 9,
前記フィルタ部材は、 略円筒形状、 または断面が多角形の筒形状を有する ことを特徴とする。  The filter member has a substantially cylindrical shape or a cylindrical shape having a polygonal cross section.
[15] 請求項 9に記載の投影装置であって、 [15] The projection device according to claim 9,
前記フィルタ部材は、 一対の反射膜を微小空隙を介して配置したファブリ ペロー型カラ一フィルタであることを特徴とする。  The filter member is a Fabry-Perot type color filter in which a pair of reflective films are arranged via a minute gap.
[16] 請求項 9に記載の投影装置であって、 [16] The projection device according to claim 9,
前記フィルタ部材は特定の周波数の光線を透過するとともに、 透過光の強 度を調整可能に構成されていることを特徴とする。  The filter member is configured to transmit light of a specific frequency and adjust the intensity of transmitted light.
[17] 投影装置であって、 [17] a projection device,
波長を異にし、 少なくとも 1つの波長光の偏光方向が他と異なる複数の照 明光と、  A plurality of illumination lights having different wavelengths and different polarization directions of at least one wavelength light, and
空間光変調器と、  A spatial light modulator;
前記空間光変調器を制御する制御回路と、  A control circuit for controlling the spatial light modulator;
前記空間光変調器からの変調光を投影面に投影する投影レンズと、 投影光路に配置された偏光素子と、  A projection lens that projects the modulated light from the spatial light modulator onto a projection surface; a polarizing element disposed in the projection optical path;
を有し、  Have
前記偏光素子によって透過または反射され、 前記投影レンズによって投影 される前記照明光の波長が周期的に変化することを特徴とする。 Transmitted or reflected by the polarizing element, and projected by the projection lens The wavelength of the illumination light is periodically changed.
[18] 請求項 1 7に記載の投影装置であって、  [18] The projection device according to claim 17,
前記偏光素子は異なる偏光方向の光を透過または反射する複数の偏光フィ ルタからなることを特徴とする。  The polarizing element includes a plurality of polarizing filters that transmit or reflect light having different polarization directions.
[1 9] 請求項 1 7に記載の投影装置であって、 [1 9] The projection device according to claim 17, wherein
前記フィルタ部材と前記偏光素子の間に、 さらに少なくとも 1つの液晶素 子を有することを特徴とする。  It further has at least one liquid crystal element between the filter member and the polarizing element.
[20] 請求項 1 7に記載の投影装置であって、 [20] The projection device according to claim 17,
前記投影レンズによる投影画像を表示する反射もしくは透過スクリーンを 更に有し、  A reflection or transmission screen for displaying an image projected by the projection lens;
前記反射もしくは透過スクリーンは、 入射光の偏光方向に対して、 最も効 率よく反射、 または透過を行うようにされた偏光スクリーンであることを特 徵とする。  The reflective or transmissive screen is a polarizing screen that is most efficiently reflected or transmitted with respect to the polarization direction of incident light.
[21 ] 請求項 1 7に記載の投影装置であって、  [21] The projection device according to claim 17,
前記照明光の偏光方向が可変であることを特徴とする。  The polarization direction of the illumination light is variable.
[22] 投影装置であって、  [22] a projection device,
光源と、  A light source;
空間光変調器と、  A spatial light modulator;
前記空間光変調器を制御する制御回路と、  A control circuit for controlling the spatial light modulator;
特定の周波数の光線の偏光方向を他と異なるように変換するフィルタ部材 と、  A filter member that converts the polarization direction of a light beam of a specific frequency differently from the others,
前記空間光変調器からの変調光を投影面に投影する投影レンズと、 投影光路に配置された偏光素子と、  A projection lens that projects the modulated light from the spatial light modulator onto a projection surface; a polarizing element disposed in the projection optical path;
を有し、  Have
前記フィルタ部材は、 周期的に異なる原色の偏光方向を他と異なるように 変換し、 前記投影レンズによって投影される前記照明光の波長が前記周期で 変化することを特徴とする。  The filter member converts a polarization direction of a primary color that is periodically different from another, and the wavelength of the illumination light projected by the projection lens changes in the cycle.
[23] 請求項 2 2に記載の投影装置であって、 前記偏光素子は異なる偏光方向の光を透過または反射する複数の偏光フィ ルタからなることを特徴とする。 [23] The projection device according to claim 22, wherein The polarizing element includes a plurality of polarizing filters that transmit or reflect light having different polarization directions.
[24] 請求項 2 2に記載の投影装置であって、  [24] The projection device according to claim 22, wherein
前記フィルタ部材と前記偏光素子の間に、 さらに少なくとも 1つの液晶素 子を有することを特徴とする。  It further has at least one liquid crystal element between the filter member and the polarizing element.
[25] 請求項 2 2に記載の投影装置であって、 [25] The projection device according to claim 22, wherein
前記投影レンズによる投影画像を表示する反射もしくは透過スクリーンを 更に有し、  A reflection or transmission screen for displaying an image projected by the projection lens;
前記反射もしくは透過スクリーンは、 入射光の偏光方向に対して、 最も効 率よく反射、 または透過を行うようにされた偏光スクリーンであることを特 徵とする。  The reflective or transmissive screen is a polarizing screen that is most efficiently reflected or transmitted with respect to the polarization direction of incident light.
[26] 請求項 2 2に記載の投影装置であって、  [26] The projection device according to claim 22,
前記フィルタ部材は、 略円筒形状、 または断面が多角形の筒形状を有する ことを特徴とする。  The filter member has a substantially cylindrical shape or a cylindrical shape having a polygonal cross section.
[27] 請求項 1乃至 2 6のいずれか一つに記載の投影装置であって、 [27] The projection device according to any one of claims 1 to 26,
投影光は光軸に対して非対称な断面を有することを特徴とする。  The projection light has a cross section that is asymmetric with respect to the optical axis.
PCT/JP2007/001061 2006-10-03 2007-09-28 Projector WO2008041363A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US84893206P 2006-10-03 2006-10-03
US60/848,932 2006-10-03

Publications (1)

Publication Number Publication Date
WO2008041363A1 true WO2008041363A1 (en) 2008-04-10

Family

ID=39268229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/001061 WO2008041363A1 (en) 2006-10-03 2007-09-28 Projector

Country Status (1)

Country Link
WO (1) WO2008041363A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031567A (en) * 2007-07-27 2009-02-12 Necディスプレイソリューションズ株式会社 Projection type display device and projection method
WO2009150743A1 (en) * 2008-06-13 2009-12-17 Necディスプレイソリューションズ株式会社 Image display unit and method for displaying image
WO2011162321A1 (en) * 2010-06-25 2011-12-29 コニカミノルタオプト株式会社 Illumination device and projector
EP2528987A1 (en) * 2010-12-21 2012-12-05 Osram AG Production of phosphor layers using alkali metal silicates
WO2014073043A1 (en) * 2012-11-07 2014-05-15 日立マクセル株式会社 Projecting video display device
US20210084266A1 (en) * 2017-08-30 2021-03-18 Appotronics Corporation Limited Proejction system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001228455A (en) * 2000-02-18 2001-08-24 Sony Corp Video projection device
JP2005189428A (en) * 2003-12-25 2005-07-14 Casio Comput Co Ltd Projection type display device
JP2006235145A (en) * 2005-02-24 2006-09-07 Ricoh Co Ltd Optical device, optical apparatus, display device and stereoscopic picture display device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001228455A (en) * 2000-02-18 2001-08-24 Sony Corp Video projection device
JP2005189428A (en) * 2003-12-25 2005-07-14 Casio Comput Co Ltd Projection type display device
JP2006235145A (en) * 2005-02-24 2006-09-07 Ricoh Co Ltd Optical device, optical apparatus, display device and stereoscopic picture display device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009031567A (en) * 2007-07-27 2009-02-12 Necディスプレイソリューションズ株式会社 Projection type display device and projection method
WO2009150743A1 (en) * 2008-06-13 2009-12-17 Necディスプレイソリューションズ株式会社 Image display unit and method for displaying image
WO2011162321A1 (en) * 2010-06-25 2011-12-29 コニカミノルタオプト株式会社 Illumination device and projector
EP2528987A1 (en) * 2010-12-21 2012-12-05 Osram AG Production of phosphor layers using alkali metal silicates
US8987983B2 (en) 2010-12-21 2015-03-24 Osram Gmbh Production of phosphor layers using alkali silicates
EP2528987B1 (en) * 2010-12-21 2016-08-17 OSRAM GmbH Production of phosphor layers using alkali metal silicates
WO2014073043A1 (en) * 2012-11-07 2014-05-15 日立マクセル株式会社 Projecting video display device
CN104756005A (en) * 2012-11-07 2015-07-01 日立麦克赛尔株式会社 Projecting video display device
JPWO2014073043A1 (en) * 2012-11-07 2016-09-08 日立マクセル株式会社 Projection display device
CN104756005B (en) * 2012-11-07 2016-10-19 日立麦克赛尔株式会社 Projection-type image display device
US20210084266A1 (en) * 2017-08-30 2021-03-18 Appotronics Corporation Limited Proejction system
US11906887B2 (en) * 2017-08-30 2024-02-20 Appotronics Corporation Limited Projection system for reducing light diffraction

Similar Documents

Publication Publication Date Title
JP3635867B2 (en) Projection type liquid crystal display device
US7568805B2 (en) Illumination unit and image projecting apparatus employing the same
JP3845637B2 (en) Color illumination apparatus and image projection apparatus using the same
JP2001051231A (en) Display optical device
JP4091632B2 (en) Projection display optical system and projector including the projection display optical system
US20040201824A1 (en) Projection display device and back projection display device using the display device
WO2008041363A1 (en) Projector
JP2004078159A (en) Projection display device
JP5044723B2 (en) Projection display
JP2002182307A (en) Projection type display device
KR20030018740A (en) Projection apparatus
JP2007316579A (en) Projection type display apparatus
JP2001091894A (en) Display optical device
JP4527420B2 (en) Projector device
JP2005250059A (en) Light source apparatus and projection type image display apparatus using the same
JP4127024B2 (en) projector
JP3984932B2 (en) projector
JP2016099585A (en) Optical device and image projection device
JP4009508B2 (en) Color projector color separation unit, color separation method, and color projector
JP2000010044A (en) Liquid crystal projector
JP3610804B2 (en) Illumination device and projection display device
JP3895991B2 (en) Projection display device
KR100257607B1 (en) Projection type image display apparatus
KR100257609B1 (en) Optical projection system
KR100257608B1 (en) Optical projection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07827840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07827840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP